WO2023063763A1 - L-아르기닌을 생산하는 코리네박테리움 속 미생물 및 이를 이용한 l-아르기닌 생산방법 - Google Patents
L-아르기닌을 생산하는 코리네박테리움 속 미생물 및 이를 이용한 l-아르기닌 생산방법 Download PDFInfo
- Publication number
- WO2023063763A1 WO2023063763A1 PCT/KR2022/015551 KR2022015551W WO2023063763A1 WO 2023063763 A1 WO2023063763 A1 WO 2023063763A1 KR 2022015551 W KR2022015551 W KR 2022015551W WO 2023063763 A1 WO2023063763 A1 WO 2023063763A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- protein
- microorganism
- arginine
- present application
- seq
- Prior art date
Links
- 244000005700 microbiome Species 0.000 title claims abstract description 98
- ODKSFYDXXFIFQN-BYPYZUCNSA-N L-arginine Chemical compound OC(=O)[C@@H](N)CCCN=C(N)N ODKSFYDXXFIFQN-BYPYZUCNSA-N 0.000 title claims abstract description 60
- 238000004519 manufacturing process Methods 0.000 title claims abstract description 42
- 241000186216 Corynebacterium Species 0.000 title claims description 29
- 108090000623 proteins and genes Proteins 0.000 claims abstract description 162
- 102000004169 proteins and genes Human genes 0.000 claims abstract description 123
- 235000018102 proteins Nutrition 0.000 claims abstract description 119
- 150000001413 amino acids Chemical group 0.000 claims abstract description 71
- 229930064664 L-arginine Natural products 0.000 claims abstract description 57
- 235000014852 L-arginine Nutrition 0.000 claims abstract description 57
- 230000002238 attenuated effect Effects 0.000 claims abstract description 17
- 108091033319 polynucleotide Proteins 0.000 claims description 82
- 102000040430 polynucleotide Human genes 0.000 claims description 82
- 239000002157 polynucleotide Substances 0.000 claims description 82
- 230000000694 effects Effects 0.000 claims description 63
- 239000002773 nucleotide Substances 0.000 claims description 30
- 125000003729 nucleotide group Chemical group 0.000 claims description 30
- 238000000034 method Methods 0.000 claims description 25
- 241000186226 Corynebacterium glutamicum Species 0.000 claims description 23
- 238000012258 culturing Methods 0.000 claims description 11
- 101710149879 Arginine repressor Proteins 0.000 claims description 5
- 239000004475 Arginine Substances 0.000 claims description 4
- ODKSFYDXXFIFQN-UHFFFAOYSA-N arginine Natural products OC(=O)C(N)CCCNC(N)=N ODKSFYDXXFIFQN-UHFFFAOYSA-N 0.000 claims description 4
- 235000009697 arginine Nutrition 0.000 claims description 4
- 102100025169 Max-binding protein MNT Human genes 0.000 claims description 2
- 108091006107 transcriptional repressors Proteins 0.000 claims description 2
- 230000014509 gene expression Effects 0.000 description 30
- 239000002609 medium Substances 0.000 description 26
- 239000013598 vector Substances 0.000 description 25
- 210000004027 cell Anatomy 0.000 description 24
- 235000001014 amino acid Nutrition 0.000 description 22
- 229940024606 amino acid Drugs 0.000 description 21
- 210000000349 chromosome Anatomy 0.000 description 17
- 230000004048 modification Effects 0.000 description 17
- 238000012986 modification Methods 0.000 description 17
- 230000035772 mutation Effects 0.000 description 13
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 12
- 238000006467 substitution reaction Methods 0.000 description 12
- 230000009466 transformation Effects 0.000 description 11
- 108020004705 Codon Proteins 0.000 description 10
- 230000000295 complement effect Effects 0.000 description 10
- 238000012217 deletion Methods 0.000 description 10
- 230000037430 deletion Effects 0.000 description 10
- 238000013519 translation Methods 0.000 description 9
- NLXLAEXVIDQMFP-UHFFFAOYSA-N Ammonia chloride Chemical compound [NH4+].[Cl-] NLXLAEXVIDQMFP-UHFFFAOYSA-N 0.000 description 8
- 108091081024 Start codon Proteins 0.000 description 8
- 238000003780 insertion Methods 0.000 description 8
- 230000037431 insertion Effects 0.000 description 8
- 229920001184 polypeptide Polymers 0.000 description 8
- 102000004196 processed proteins & peptides Human genes 0.000 description 8
- 108090000765 processed proteins & peptides Proteins 0.000 description 8
- 238000013518 transcription Methods 0.000 description 8
- 230000035897 transcription Effects 0.000 description 8
- FWMNVWWHGCHHJJ-SKKKGAJSSA-N 4-amino-1-[(2r)-6-amino-2-[[(2r)-2-[[(2r)-2-[[(2r)-2-amino-3-phenylpropanoyl]amino]-3-phenylpropanoyl]amino]-4-methylpentanoyl]amino]hexanoyl]piperidine-4-carboxylic acid Chemical compound C([C@H](C(=O)N[C@H](CC(C)C)C(=O)N[C@H](CCCCN)C(=O)N1CCC(N)(CC1)C(O)=O)NC(=O)[C@H](N)CC=1C=CC=CC=1)C1=CC=CC=C1 FWMNVWWHGCHHJJ-SKKKGAJSSA-N 0.000 description 7
- 238000007792 addition Methods 0.000 description 7
- 238000009396 hybridization Methods 0.000 description 7
- 239000003550 marker Substances 0.000 description 7
- 150000007523 nucleic acids Chemical class 0.000 description 7
- YBJHBAHKTGYVGT-ZKWXMUAHSA-N (+)-Biotin Chemical compound N1C(=O)N[C@@H]2[C@H](CCCCC(=O)O)SC[C@@H]21 YBJHBAHKTGYVGT-ZKWXMUAHSA-N 0.000 description 6
- VTYYLEPIZMXCLO-UHFFFAOYSA-L Calcium carbonate Chemical compound [Ca+2].[O-]C([O-])=O VTYYLEPIZMXCLO-UHFFFAOYSA-L 0.000 description 6
- WQZGKKKJIJFFOK-GASJEMHNSA-N Glucose Natural products OC[C@H]1OC(O)[C@H](O)[C@@H](O)[C@@H]1O WQZGKKKJIJFFOK-GASJEMHNSA-N 0.000 description 6
- DFPAKSUCGFBDDF-UHFFFAOYSA-N Nicotinamide Chemical compound NC(=O)C1=CC=CN=C1 DFPAKSUCGFBDDF-UHFFFAOYSA-N 0.000 description 6
- 101150089004 argR gene Proteins 0.000 description 6
- 239000008103 glucose Substances 0.000 description 6
- 239000000203 mixture Substances 0.000 description 6
- 229910052757 nitrogen Inorganic materials 0.000 description 6
- 102000039446 nucleic acids Human genes 0.000 description 6
- 108020004707 nucleic acids Proteins 0.000 description 6
- 239000013612 plasmid Substances 0.000 description 6
- 108020004414 DNA Proteins 0.000 description 5
- 108700026244 Open Reading Frames Proteins 0.000 description 5
- 238000010276 construction Methods 0.000 description 5
- 230000006801 homologous recombination Effects 0.000 description 5
- 238000002744 homologous recombination Methods 0.000 description 5
- 230000004952 protein activity Effects 0.000 description 5
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 5
- 108020003589 5' Untranslated Regions Proteins 0.000 description 4
- QGZKDVFQNNGYKY-UHFFFAOYSA-N Ammonia Chemical compound N QGZKDVFQNNGYKY-UHFFFAOYSA-N 0.000 description 4
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 4
- CURLTUGMZLYLDI-UHFFFAOYSA-N Carbon dioxide Chemical compound O=C=O CURLTUGMZLYLDI-UHFFFAOYSA-N 0.000 description 4
- WHUUTDBJXJRKMK-VKHMYHEASA-N L-glutamic acid Chemical compound OC(=O)[C@@H](N)CCC(O)=O WHUUTDBJXJRKMK-VKHMYHEASA-N 0.000 description 4
- FAPWRFPIFSIZLT-UHFFFAOYSA-M Sodium chloride Chemical compound [Na+].[Cl-] FAPWRFPIFSIZLT-UHFFFAOYSA-M 0.000 description 4
- 230000004913 activation Effects 0.000 description 4
- 235000019270 ammonium chloride Nutrition 0.000 description 4
- BFNBIHQBYMNNAN-UHFFFAOYSA-N ammonium sulfate Chemical compound N.N.OS(O)(=O)=O BFNBIHQBYMNNAN-UHFFFAOYSA-N 0.000 description 4
- 229910052921 ammonium sulfate Inorganic materials 0.000 description 4
- 235000011130 ammonium sulphate Nutrition 0.000 description 4
- 229910052799 carbon Inorganic materials 0.000 description 4
- 238000004587 chromatography analysis Methods 0.000 description 4
- 238000010367 cloning Methods 0.000 description 4
- 239000012153 distilled water Substances 0.000 description 4
- 239000012634 fragment Substances 0.000 description 4
- 239000007789 gas Substances 0.000 description 4
- 238000004128 high performance liquid chromatography Methods 0.000 description 4
- BAUYGSIQEAFULO-UHFFFAOYSA-L iron(2+) sulfate (anhydrous) Chemical compound [Fe+2].[O-]S([O-])(=O)=O BAUYGSIQEAFULO-UHFFFAOYSA-L 0.000 description 4
- 229940099596 manganese sulfate Drugs 0.000 description 4
- 239000011702 manganese sulphate Substances 0.000 description 4
- 235000007079 manganese sulphate Nutrition 0.000 description 4
- SQQMAOCOWKFBNP-UHFFFAOYSA-L manganese(II) sulfate Chemical compound [Mn+2].[O-]S([O-])(=O)=O SQQMAOCOWKFBNP-UHFFFAOYSA-L 0.000 description 4
- 235000013379 molasses Nutrition 0.000 description 4
- 229910000402 monopotassium phosphate Inorganic materials 0.000 description 4
- 235000019796 monopotassium phosphate Nutrition 0.000 description 4
- 238000005457 optimization Methods 0.000 description 4
- GNSKLFRGEWLPPA-UHFFFAOYSA-M potassium dihydrogen phosphate Chemical compound [K+].OP(O)([O-])=O GNSKLFRGEWLPPA-UHFFFAOYSA-M 0.000 description 4
- 239000000047 product Substances 0.000 description 4
- 239000013587 production medium Substances 0.000 description 4
- 238000000746 purification Methods 0.000 description 4
- 239000000126 substance Substances 0.000 description 4
- 108020005544 Antisense RNA Proteins 0.000 description 3
- WHUUTDBJXJRKMK-UHFFFAOYSA-N Glutamic acid Natural products OC(=O)C(N)CCC(O)=O WHUUTDBJXJRKMK-UHFFFAOYSA-N 0.000 description 3
- FFEARJCKVFRZRR-BYPYZUCNSA-N L-methionine Chemical compound CSCC[C@H](N)C(O)=O FFEARJCKVFRZRR-BYPYZUCNSA-N 0.000 description 3
- KWYUFKZDYYNOTN-UHFFFAOYSA-M Potassium hydroxide Chemical compound [OH-].[K+] KWYUFKZDYYNOTN-UHFFFAOYSA-M 0.000 description 3
- 229930006000 Sucrose Natural products 0.000 description 3
- CZMRCDWAGMRECN-UGDNZRGBSA-N Sucrose Chemical compound O[C@H]1[C@H](O)[C@@H](CO)O[C@@]1(CO)O[C@@H]1[C@H](O)[C@@H](O)[C@H](O)[C@@H](CO)O1 CZMRCDWAGMRECN-UGDNZRGBSA-N 0.000 description 3
- 239000002253 acid Substances 0.000 description 3
- 229960002685 biotin Drugs 0.000 description 3
- 235000020958 biotin Nutrition 0.000 description 3
- 239000011616 biotin Substances 0.000 description 3
- FAPWYRCQGJNNSJ-UBKPKTQASA-L calcium D-pantothenic acid Chemical compound [Ca+2].OCC(C)(C)[C@@H](O)C(=O)NCCC([O-])=O.OCC(C)(C)[C@@H](O)C(=O)NCCC([O-])=O FAPWYRCQGJNNSJ-UBKPKTQASA-L 0.000 description 3
- 229910000019 calcium carbonate Inorganic materials 0.000 description 3
- 229960002079 calcium pantothenate Drugs 0.000 description 3
- 238000004422 calculation algorithm Methods 0.000 description 3
- KRKNYBCHXYNGOX-UHFFFAOYSA-N citric acid Chemical compound OC(=O)CC(O)(C(O)=O)CC(O)=O KRKNYBCHXYNGOX-UHFFFAOYSA-N 0.000 description 3
- 239000003184 complementary RNA Substances 0.000 description 3
- 229910000365 copper sulfate Inorganic materials 0.000 description 3
- ARUVKPQLZAKDPS-UHFFFAOYSA-L copper(II) sulfate Chemical compound [Cu+2].[O-][S+2]([O-])([O-])[O-] ARUVKPQLZAKDPS-UHFFFAOYSA-L 0.000 description 3
- 239000011790 ferrous sulphate Substances 0.000 description 3
- 235000003891 ferrous sulphate Nutrition 0.000 description 3
- 230000006870 function Effects 0.000 description 3
- 235000013922 glutamic acid Nutrition 0.000 description 3
- 239000004220 glutamic acid Substances 0.000 description 3
- 230000002779 inactivation Effects 0.000 description 3
- 229910000359 iron(II) sulfate Inorganic materials 0.000 description 3
- WRUGWIBCXHJTDG-UHFFFAOYSA-L magnesium sulfate heptahydrate Chemical compound O.O.O.O.O.O.O.[Mg+2].[O-]S([O-])(=O)=O WRUGWIBCXHJTDG-UHFFFAOYSA-L 0.000 description 3
- 229940061634 magnesium sulfate heptahydrate Drugs 0.000 description 3
- 239000011159 matrix material Substances 0.000 description 3
- 229930182817 methionine Natural products 0.000 description 3
- 235000006109 methionine Nutrition 0.000 description 3
- 238000010369 molecular cloning Methods 0.000 description 3
- 229960003966 nicotinamide Drugs 0.000 description 3
- 235000005152 nicotinamide Nutrition 0.000 description 3
- 239000011570 nicotinamide Substances 0.000 description 3
- 235000015097 nutrients Nutrition 0.000 description 3
- 230000002018 overexpression Effects 0.000 description 3
- 238000011084 recovery Methods 0.000 description 3
- 230000001105 regulatory effect Effects 0.000 description 3
- 238000011160 research Methods 0.000 description 3
- 150000003839 salts Chemical class 0.000 description 3
- 229960004793 sucrose Drugs 0.000 description 3
- 229960003495 thiamine Drugs 0.000 description 3
- DPJRMOMPQZCRJU-UHFFFAOYSA-M thiamine hydrochloride Chemical compound Cl.[Cl-].CC1=C(CCO)SC=[N+]1CC1=CN=C(C)N=C1N DPJRMOMPQZCRJU-UHFFFAOYSA-M 0.000 description 3
- 235000019190 thiamine hydrochloride Nutrition 0.000 description 3
- 239000011747 thiamine hydrochloride Substances 0.000 description 3
- 230000003827 upregulation Effects 0.000 description 3
- NWONKYPBYAMBJT-UHFFFAOYSA-L zinc sulfate Chemical compound [Zn+2].[O-]S([O-])(=O)=O NWONKYPBYAMBJT-UHFFFAOYSA-L 0.000 description 3
- 229910000368 zinc sulfate Inorganic materials 0.000 description 3
- 229960001763 zinc sulfate Drugs 0.000 description 3
- 108091032973 (ribonucleotides)n+m Proteins 0.000 description 2
- 241000251468 Actinopterygii Species 0.000 description 2
- 241000446654 Corynebacterium deserti Species 0.000 description 2
- FBPFZTCFMRRESA-FSIIMWSLSA-N D-Glucitol Natural products OC[C@H](O)[C@H](O)[C@@H](O)[C@H](O)CO FBPFZTCFMRRESA-FSIIMWSLSA-N 0.000 description 2
- DHMQDGOQFOQNFH-UHFFFAOYSA-N Glycine Chemical compound NCC(O)=O DHMQDGOQFOQNFH-UHFFFAOYSA-N 0.000 description 2
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 2
- ZDXPYRJPNDTMRX-VKHMYHEASA-N L-glutamine Chemical compound OC(=O)[C@@H](N)CCC(N)=O ZDXPYRJPNDTMRX-VKHMYHEASA-N 0.000 description 2
- KDXKERNSBIXSRK-YFKPBYRVSA-N L-lysine Chemical compound NCCCC[C@H](N)C(O)=O KDXKERNSBIXSRK-YFKPBYRVSA-N 0.000 description 2
- COLNVLDHVKWLRT-QMMMGPOBSA-N L-phenylalanine Chemical compound OC(=O)[C@@H](N)CC1=CC=CC=C1 COLNVLDHVKWLRT-QMMMGPOBSA-N 0.000 description 2
- QIVBCDIJIAJPQS-VIFPVBQESA-N L-tryptophane Chemical compound C1=CC=C2C(C[C@H](N)C(O)=O)=CNC2=C1 QIVBCDIJIAJPQS-VIFPVBQESA-N 0.000 description 2
- OUYCCCASQSFEME-QMMMGPOBSA-N L-tyrosine Chemical compound OC(=O)[C@@H](N)CC1=CC=C(O)C=C1 OUYCCCASQSFEME-QMMMGPOBSA-N 0.000 description 2
- KDXKERNSBIXSRK-UHFFFAOYSA-N Lysine Natural products NCCCCC(N)C(O)=O KDXKERNSBIXSRK-UHFFFAOYSA-N 0.000 description 2
- 239000004472 Lysine Substances 0.000 description 2
- CSNNHWWHGAXBCP-UHFFFAOYSA-L Magnesium sulfate Chemical compound [Mg+2].[O-][S+2]([O-])([O-])[O-] CSNNHWWHGAXBCP-UHFFFAOYSA-L 0.000 description 2
- 108091028043 Nucleic acid sequence Proteins 0.000 description 2
- 108091034117 Oligonucleotide Proteins 0.000 description 2
- 239000001888 Peptone Substances 0.000 description 2
- 108010080698 Peptones Proteins 0.000 description 2
- NBIIXXVUZAFLBC-UHFFFAOYSA-N Phosphoric acid Chemical compound OP(O)(O)=O NBIIXXVUZAFLBC-UHFFFAOYSA-N 0.000 description 2
- LCTONWCANYUPML-UHFFFAOYSA-N Pyruvic acid Chemical compound CC(=O)C(O)=O LCTONWCANYUPML-UHFFFAOYSA-N 0.000 description 2
- QAOWNCQODCNURD-UHFFFAOYSA-N Sulfuric acid Chemical compound OS(O)(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-N 0.000 description 2
- QIVBCDIJIAJPQS-UHFFFAOYSA-N Tryptophan Natural products C1=CC=C2C(CC(N)C(O)=O)=CNC2=C1 QIVBCDIJIAJPQS-UHFFFAOYSA-N 0.000 description 2
- XSQUKJJJFZCRTK-UHFFFAOYSA-N Urea Chemical compound NC(N)=O XSQUKJJJFZCRTK-UHFFFAOYSA-N 0.000 description 2
- 240000008042 Zea mays Species 0.000 description 2
- 235000005824 Zea mays ssp. parviglumis Nutrition 0.000 description 2
- 235000002017 Zea mays subsp mays Nutrition 0.000 description 2
- 239000000654 additive Substances 0.000 description 2
- 230000000996 additive effect Effects 0.000 description 2
- 229910021529 ammonia Inorganic materials 0.000 description 2
- 239000000074 antisense oligonucleotide Substances 0.000 description 2
- 238000012230 antisense oligonucleotides Methods 0.000 description 2
- 101150056313 argF gene Proteins 0.000 description 2
- -1 aromatic amino acids Chemical class 0.000 description 2
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 2
- 229940041514 candida albicans extract Drugs 0.000 description 2
- 150000001720 carbohydrates Chemical class 0.000 description 2
- 235000014633 carbohydrates Nutrition 0.000 description 2
- 239000001569 carbon dioxide Substances 0.000 description 2
- 229910002092 carbon dioxide Inorganic materials 0.000 description 2
- 230000008859 change Effects 0.000 description 2
- 239000003795 chemical substances by application Substances 0.000 description 2
- 230000002759 chromosomal effect Effects 0.000 description 2
- 230000001276 controlling effect Effects 0.000 description 2
- 235000005822 corn Nutrition 0.000 description 2
- 238000012136 culture method Methods 0.000 description 2
- OPTASPLRGRRNAP-UHFFFAOYSA-N cytosine Chemical compound NC=1C=CNC(=O)N=1 OPTASPLRGRRNAP-UHFFFAOYSA-N 0.000 description 2
- 230000002950 deficient Effects 0.000 description 2
- 239000007857 degradation product Substances 0.000 description 2
- 238000004925 denaturation Methods 0.000 description 2
- 230000036425 denaturation Effects 0.000 description 2
- 230000003828 downregulation Effects 0.000 description 2
- 238000011156 evaluation Methods 0.000 description 2
- 230000001747 exhibiting effect Effects 0.000 description 2
- 239000000284 extract Substances 0.000 description 2
- 230000004927 fusion Effects 0.000 description 2
- 230000002068 genetic effect Effects 0.000 description 2
- 238000010362 genome editing Methods 0.000 description 2
- ZDXPYRJPNDTMRX-UHFFFAOYSA-N glutamine Natural products OC(=O)C(N)CCC(N)=O ZDXPYRJPNDTMRX-UHFFFAOYSA-N 0.000 description 2
- 235000004554 glutamine Nutrition 0.000 description 2
- 239000001963 growth medium Substances 0.000 description 2
- UYTPUPDQBNUYGX-UHFFFAOYSA-N guanine Chemical compound O=C1NC(N)=NC2=C1N=CN2 UYTPUPDQBNUYGX-UHFFFAOYSA-N 0.000 description 2
- 239000001257 hydrogen Substances 0.000 description 2
- 229910052739 hydrogen Inorganic materials 0.000 description 2
- 230000005764 inhibitory process Effects 0.000 description 2
- 150000002484 inorganic compounds Chemical class 0.000 description 2
- 229910010272 inorganic material Inorganic materials 0.000 description 2
- 230000003834 intracellular effect Effects 0.000 description 2
- 229930027917 kanamycin Natural products 0.000 description 2
- SBUJHOSQTJFQJX-NOAMYHISSA-N kanamycin Chemical compound O[C@@H]1[C@@H](O)[C@H](O)[C@@H](CN)O[C@@H]1O[C@H]1[C@H](O)[C@@H](O[C@@H]2[C@@H]([C@@H](N)[C@H](O)[C@@H](CO)O2)O)[C@H](N)C[C@@H]1N SBUJHOSQTJFQJX-NOAMYHISSA-N 0.000 description 2
- 229960000318 kanamycin Drugs 0.000 description 2
- 229930182823 kanamycin A Natural products 0.000 description 2
- JVTAAEKCZFNVCJ-UHFFFAOYSA-N lactic acid Chemical compound CC(O)C(O)=O JVTAAEKCZFNVCJ-UHFFFAOYSA-N 0.000 description 2
- 108020004999 messenger RNA Proteins 0.000 description 2
- 108091005573 modified proteins Proteins 0.000 description 2
- 102000035118 modified proteins Human genes 0.000 description 2
- FEMOMIGRRWSMCU-UHFFFAOYSA-N ninhydrin Chemical compound C1=CC=C2C(=O)C(O)(O)C(=O)C2=C1 FEMOMIGRRWSMCU-UHFFFAOYSA-N 0.000 description 2
- 239000001301 oxygen Substances 0.000 description 2
- 229910052760 oxygen Inorganic materials 0.000 description 2
- 235000019319 peptone Nutrition 0.000 description 2
- 239000000546 pharmaceutical excipient Substances 0.000 description 2
- COLNVLDHVKWLRT-UHFFFAOYSA-N phenylalanine Natural products OC(=O)C(N)CC1=CC=CC=C1 COLNVLDHVKWLRT-UHFFFAOYSA-N 0.000 description 2
- 238000006116 polymerization reaction Methods 0.000 description 2
- LWIHDJKSTIGBAC-UHFFFAOYSA-K potassium phosphate Substances [K+].[K+].[K+].[O-]P([O-])([O-])=O LWIHDJKSTIGBAC-UHFFFAOYSA-K 0.000 description 2
- 239000002243 precursor Substances 0.000 description 2
- 238000002360 preparation method Methods 0.000 description 2
- 230000008569 process Effects 0.000 description 2
- 230000006798 recombination Effects 0.000 description 2
- 238000005215 recombination Methods 0.000 description 2
- 230000009467 reduction Effects 0.000 description 2
- 238000010839 reverse transcription Methods 0.000 description 2
- 239000011780 sodium chloride Substances 0.000 description 2
- 239000007787 solid Substances 0.000 description 2
- 239000000600 sorbitol Substances 0.000 description 2
- 239000005720 sucrose Substances 0.000 description 2
- RWQNBRDOKXIBIV-UHFFFAOYSA-N thymine Chemical compound CC1=CNC(=O)NC1=O RWQNBRDOKXIBIV-UHFFFAOYSA-N 0.000 description 2
- 238000011282 treatment Methods 0.000 description 2
- 235000002374 tyrosine Nutrition 0.000 description 2
- OUYCCCASQSFEME-UHFFFAOYSA-N tyrosine Natural products OC(=O)C(N)CC1=CC=C(O)C=C1 OUYCCCASQSFEME-UHFFFAOYSA-N 0.000 description 2
- 229940088594 vitamin Drugs 0.000 description 2
- 235000013343 vitamin Nutrition 0.000 description 2
- 239000011782 vitamin Substances 0.000 description 2
- 229930003231 vitamin Natural products 0.000 description 2
- 238000005406 washing Methods 0.000 description 2
- 239000003643 water by type Substances 0.000 description 2
- 239000012138 yeast extract Substances 0.000 description 2
- MTCFGRXMJLQNBG-REOHCLBHSA-N (2S)-2-Amino-3-hydroxypropansäure Chemical compound OC[C@H](N)C(O)=O MTCFGRXMJLQNBG-REOHCLBHSA-N 0.000 description 1
- OWEGMIWEEQEYGQ-UHFFFAOYSA-N 100676-05-9 Natural products OC1C(O)C(O)C(CO)OC1OCC1C(O)C(O)C(O)C(OC2C(OC(O)C(O)C2O)CO)O1 OWEGMIWEEQEYGQ-UHFFFAOYSA-N 0.000 description 1
- PAWQVTBBRAZDMG-UHFFFAOYSA-N 2-(3-bromo-2-fluorophenyl)acetic acid Chemical compound OC(=O)CC1=CC=CC(Br)=C1F PAWQVTBBRAZDMG-UHFFFAOYSA-N 0.000 description 1
- 229930024421 Adenine Natural products 0.000 description 1
- GFFGJBXGBJISGV-UHFFFAOYSA-N Adenine Chemical compound NC1=NC=NC2=C1N=CN2 GFFGJBXGBJISGV-UHFFFAOYSA-N 0.000 description 1
- 229920001817 Agar Polymers 0.000 description 1
- GUBGYTABKSRVRQ-XLOQQCSPSA-N Alpha-Lactose Chemical compound O[C@@H]1[C@@H](O)[C@@H](O)[C@@H](CO)O[C@H]1O[C@@H]1[C@@H](CO)O[C@H](O)[C@H](O)[C@H]1O GUBGYTABKSRVRQ-XLOQQCSPSA-N 0.000 description 1
- USFZMSVCRYTOJT-UHFFFAOYSA-N Ammonium acetate Chemical compound N.CC(O)=O USFZMSVCRYTOJT-UHFFFAOYSA-N 0.000 description 1
- 239000005695 Ammonium acetate Substances 0.000 description 1
- ATRRKUHOCOJYRX-UHFFFAOYSA-N Ammonium bicarbonate Chemical compound [NH4+].OC([O-])=O ATRRKUHOCOJYRX-UHFFFAOYSA-N 0.000 description 1
- VHUUQVKOLVNVRT-UHFFFAOYSA-N Ammonium hydroxide Chemical compound [NH4+].[OH-] VHUUQVKOLVNVRT-UHFFFAOYSA-N 0.000 description 1
- 239000004254 Ammonium phosphate Substances 0.000 description 1
- 101100533902 Arabidopsis thaliana SPL13A gene Proteins 0.000 description 1
- 101100533904 Arabidopsis thaliana SPL13B gene Proteins 0.000 description 1
- DCXYFEDJOCDNAF-UHFFFAOYSA-N Asparagine Natural products OC(=O)C(N)CC(N)=O DCXYFEDJOCDNAF-UHFFFAOYSA-N 0.000 description 1
- 101100455080 Bacillus subtilis (strain 168) lmrB gene Proteins 0.000 description 1
- 241000186146 Brevibacterium Species 0.000 description 1
- 238000010356 CRISPR-Cas9 genome editing Methods 0.000 description 1
- UXVMQQNJUSDDNG-UHFFFAOYSA-L Calcium chloride Chemical compound [Cl-].[Cl-].[Ca+2] UXVMQQNJUSDDNG-UHFFFAOYSA-L 0.000 description 1
- 101100163308 Clostridium perfringens (strain 13 / Type A) argR1 gene Proteins 0.000 description 1
- 108091026890 Coding region Proteins 0.000 description 1
- 241000186145 Corynebacterium ammoniagenes Species 0.000 description 1
- 241000186248 Corynebacterium callunae Species 0.000 description 1
- 241001605246 Corynebacterium crudilactis Species 0.000 description 1
- 241001644925 Corynebacterium efficiens Species 0.000 description 1
- 241001134763 Corynebacterium flavescens Species 0.000 description 1
- 241000291063 Corynebacterium halotolerans Species 0.000 description 1
- 241000024402 Corynebacterium imitans Species 0.000 description 1
- 241000128247 Corynebacterium pollutisoli Species 0.000 description 1
- 241000334675 Corynebacterium singulare Species 0.000 description 1
- 241000186308 Corynebacterium stationis Species 0.000 description 1
- 241000158523 Corynebacterium striatum Species 0.000 description 1
- 241000960580 Corynebacterium testudinoris Species 0.000 description 1
- FBPFZTCFMRRESA-KVTDHHQDSA-N D-Mannitol Chemical compound OC[C@@H](O)[C@@H](O)[C@H](O)[C@H](O)CO FBPFZTCFMRRESA-KVTDHHQDSA-N 0.000 description 1
- FBPFZTCFMRRESA-JGWLITMVSA-N D-glucitol Chemical compound OC[C@H](O)[C@@H](O)[C@H](O)[C@H](O)CO FBPFZTCFMRRESA-JGWLITMVSA-N 0.000 description 1
- 238000012270 DNA recombination Methods 0.000 description 1
- 206010059866 Drug resistance Diseases 0.000 description 1
- 241000620209 Escherichia coli DH5[alpha] Species 0.000 description 1
- 241000701959 Escherichia virus Lambda Species 0.000 description 1
- 229930091371 Fructose Natural products 0.000 description 1
- 239000005715 Fructose Substances 0.000 description 1
- RFSUNEUAIZKAJO-ARQDHWQXSA-N Fructose Chemical compound OC[C@H]1O[C@](O)(CO)[C@@H](O)[C@@H]1O RFSUNEUAIZKAJO-ARQDHWQXSA-N 0.000 description 1
- 108091092584 GDNA Proteins 0.000 description 1
- 239000004471 Glycine Substances 0.000 description 1
- 244000068988 Glycine max Species 0.000 description 1
- 235000010469 Glycine max Nutrition 0.000 description 1
- 206010020772 Hypertension Diseases 0.000 description 1
- DGAQECJNVWCQMB-PUAWFVPOSA-M Ilexoside XXIX Chemical compound C[C@@H]1CC[C@@]2(CC[C@@]3(C(=CC[C@H]4[C@]3(CC[C@@H]5[C@@]4(CC[C@@H](C5(C)C)OS(=O)(=O)[O-])C)C)[C@@H]2[C@]1(C)O)C)C(=O)O[C@H]6[C@@H]([C@H]([C@@H]([C@H](O6)CO)O)O)O.[Na+] DGAQECJNVWCQMB-PUAWFVPOSA-M 0.000 description 1
- XUJNEKJLAYXESH-REOHCLBHSA-N L-Cysteine Chemical compound SC[C@H](N)C(O)=O XUJNEKJLAYXESH-REOHCLBHSA-N 0.000 description 1
- ONIBWKKTOPOVIA-BYPYZUCNSA-N L-Proline Chemical compound OC(=O)[C@@H]1CCCN1 ONIBWKKTOPOVIA-BYPYZUCNSA-N 0.000 description 1
- QNAYBMKLOCPYGJ-REOHCLBHSA-N L-alanine Chemical compound C[C@H](N)C(O)=O QNAYBMKLOCPYGJ-REOHCLBHSA-N 0.000 description 1
- ODKSFYDXXFIFQN-BYPYZUCNSA-P L-argininium(2+) Chemical compound NC(=[NH2+])NCCC[C@H]([NH3+])C(O)=O ODKSFYDXXFIFQN-BYPYZUCNSA-P 0.000 description 1
- DCXYFEDJOCDNAF-REOHCLBHSA-N L-asparagine Chemical compound OC(=O)[C@@H](N)CC(N)=O DCXYFEDJOCDNAF-REOHCLBHSA-N 0.000 description 1
- HNDVDQJCIGZPNO-YFKPBYRVSA-N L-histidine Chemical compound OC(=O)[C@@H](N)CC1=CN=CN1 HNDVDQJCIGZPNO-YFKPBYRVSA-N 0.000 description 1
- AGPKZVBTJJNPAG-WHFBIAKZSA-N L-isoleucine Chemical compound CC[C@H](C)[C@H](N)C(O)=O AGPKZVBTJJNPAG-WHFBIAKZSA-N 0.000 description 1
- ROHFNLRQFUQHCH-YFKPBYRVSA-N L-leucine Chemical compound CC(C)C[C@H](N)C(O)=O ROHFNLRQFUQHCH-YFKPBYRVSA-N 0.000 description 1
- AYFVYJQAPQTCCC-GBXIJSLDSA-N L-threonine Chemical compound C[C@@H](O)[C@H](N)C(O)=O AYFVYJQAPQTCCC-GBXIJSLDSA-N 0.000 description 1
- KZSNJWFQEVHDMF-BYPYZUCNSA-N L-valine Chemical compound CC(C)[C@H](N)C(O)=O KZSNJWFQEVHDMF-BYPYZUCNSA-N 0.000 description 1
- GUBGYTABKSRVRQ-QKKXKWKRSA-N Lactose Natural products OC[C@H]1O[C@@H](O[C@H]2[C@H](O)[C@@H](O)C(O)O[C@@H]2CO)[C@H](O)[C@@H](O)[C@H]1O GUBGYTABKSRVRQ-QKKXKWKRSA-N 0.000 description 1
- ROHFNLRQFUQHCH-UHFFFAOYSA-N Leucine Natural products CC(C)CC(N)C(O)=O ROHFNLRQFUQHCH-UHFFFAOYSA-N 0.000 description 1
- GUBGYTABKSRVRQ-PICCSMPSSA-N Maltose Natural products O[C@@H]1[C@@H](O)[C@H](O)[C@@H](CO)O[C@@H]1O[C@@H]1[C@@H](CO)OC(O)[C@H](O)[C@H]1O GUBGYTABKSRVRQ-PICCSMPSSA-N 0.000 description 1
- 240000003183 Manihot esculenta Species 0.000 description 1
- 235000016735 Manihot esculenta subsp esculenta Nutrition 0.000 description 1
- 229930195725 Mannitol Natural products 0.000 description 1
- 101710163270 Nuclease Proteins 0.000 description 1
- 101710145031 Ornithine carbamoyltransferase subunit F Proteins 0.000 description 1
- 240000007594 Oryza sativa Species 0.000 description 1
- 235000007164 Oryza sativa Nutrition 0.000 description 1
- 101100070556 Oryza sativa subsp. japonica HSFA4D gene Proteins 0.000 description 1
- 101100043227 Oryza sativa subsp. japonica SPL13 gene Proteins 0.000 description 1
- OAICVXFJPJFONN-UHFFFAOYSA-N Phosphorus Chemical compound [P] OAICVXFJPJFONN-UHFFFAOYSA-N 0.000 description 1
- ONIBWKKTOPOVIA-UHFFFAOYSA-N Proline Natural products OC(=O)C1CCCN1 ONIBWKKTOPOVIA-UHFFFAOYSA-N 0.000 description 1
- 108010009736 Protein Hydrolysates Proteins 0.000 description 1
- 101150099282 SPL7 gene Proteins 0.000 description 1
- MTCFGRXMJLQNBG-UHFFFAOYSA-N Serine Natural products OCC(N)C(O)=O MTCFGRXMJLQNBG-UHFFFAOYSA-N 0.000 description 1
- 240000006394 Sorghum bicolor Species 0.000 description 1
- 235000011684 Sorghum saccharatum Nutrition 0.000 description 1
- 238000002105 Southern blotting Methods 0.000 description 1
- 229920002472 Starch Polymers 0.000 description 1
- AYFVYJQAPQTCCC-UHFFFAOYSA-N Threonine Natural products CC(O)C(N)C(O)=O AYFVYJQAPQTCCC-UHFFFAOYSA-N 0.000 description 1
- 239000004473 Threonine Substances 0.000 description 1
- KZSNJWFQEVHDMF-UHFFFAOYSA-N Valine Natural products CC(C)C(N)C(O)=O KZSNJWFQEVHDMF-UHFFFAOYSA-N 0.000 description 1
- 241000700605 Viruses Species 0.000 description 1
- 230000002378 acidificating effect Effects 0.000 description 1
- 150000007513 acids Chemical class 0.000 description 1
- 229960000643 adenine Drugs 0.000 description 1
- 238000005377 adsorption chromatography Methods 0.000 description 1
- 239000008272 agar Substances 0.000 description 1
- 235000004279 alanine Nutrition 0.000 description 1
- 229910000147 aluminium phosphate Inorganic materials 0.000 description 1
- 235000019257 ammonium acetate Nutrition 0.000 description 1
- 229940043376 ammonium acetate Drugs 0.000 description 1
- 239000001099 ammonium carbonate Substances 0.000 description 1
- 235000012501 ammonium carbonate Nutrition 0.000 description 1
- 239000000908 ammonium hydroxide Substances 0.000 description 1
- 229910000148 ammonium phosphate Inorganic materials 0.000 description 1
- 235000019289 ammonium phosphates Nutrition 0.000 description 1
- 238000004458 analytical method Methods 0.000 description 1
- 238000000137 annealing Methods 0.000 description 1
- 230000000692 anti-sense effect Effects 0.000 description 1
- 239000002518 antifoaming agent Substances 0.000 description 1
- 235000009582 asparagine Nutrition 0.000 description 1
- 229960001230 asparagine Drugs 0.000 description 1
- 230000001580 bacterial effect Effects 0.000 description 1
- 235000015278 beef Nutrition 0.000 description 1
- WQZGKKKJIJFFOK-VFUOTHLCSA-N beta-D-glucose Chemical compound OC[C@H]1O[C@@H](O)[C@H](O)[C@@H](O)[C@@H]1O WQZGKKKJIJFFOK-VFUOTHLCSA-N 0.000 description 1
- GUBGYTABKSRVRQ-QUYVBRFLSA-N beta-maltose Chemical compound OC[C@H]1O[C@H](O[C@H]2[C@H](O)[C@@H](O)[C@H](O)O[C@@H]2CO)[C@H](O)[C@@H](O)[C@@H]1O GUBGYTABKSRVRQ-QUYVBRFLSA-N 0.000 description 1
- 230000004071 biological effect Effects 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 210000004556 brain Anatomy 0.000 description 1
- 230000003925 brain function Effects 0.000 description 1
- 239000001110 calcium chloride Substances 0.000 description 1
- 229910001628 calcium chloride Inorganic materials 0.000 description 1
- 239000004202 carbamide Substances 0.000 description 1
- 108010079058 casein hydrolysate Proteins 0.000 description 1
- 230000007910 cell fusion Effects 0.000 description 1
- 230000001413 cellular effect Effects 0.000 description 1
- 238000005119 centrifugation Methods 0.000 description 1
- 150000001875 compounds Chemical class 0.000 description 1
- 238000004590 computer program Methods 0.000 description 1
- 239000013601 cosmid vector Substances 0.000 description 1
- XUJNEKJLAYXESH-UHFFFAOYSA-N cysteine Natural products SCC(N)C(O)=O XUJNEKJLAYXESH-UHFFFAOYSA-N 0.000 description 1
- 235000018417 cysteine Nutrition 0.000 description 1
- 229940104302 cytosine Drugs 0.000 description 1
- 229940127089 cytotoxic agent Drugs 0.000 description 1
- 239000002254 cytotoxic agent Substances 0.000 description 1
- 231100000599 cytotoxic agent Toxicity 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 230000007812 deficiency Effects 0.000 description 1
- 238000000502 dialysis Methods 0.000 description 1
- MNNHAPBLZZVQHP-UHFFFAOYSA-N diammonium hydrogen phosphate Chemical compound [NH4+].[NH4+].OP([O-])([O-])=O MNNHAPBLZZVQHP-UHFFFAOYSA-N 0.000 description 1
- 235000014113 dietary fatty acids Nutrition 0.000 description 1
- 235000013681 dietary sucrose Nutrition 0.000 description 1
- ZPWVASYFFYYZEW-UHFFFAOYSA-L dipotassium hydrogen phosphate Chemical compound [K+].[K+].OP([O-])([O-])=O ZPWVASYFFYYZEW-UHFFFAOYSA-L 0.000 description 1
- 229910000396 dipotassium phosphate Inorganic materials 0.000 description 1
- 235000019797 dipotassium phosphate Nutrition 0.000 description 1
- 239000002270 dispersing agent Substances 0.000 description 1
- 239000003814 drug Substances 0.000 description 1
- 230000002708 enhancing effect Effects 0.000 description 1
- 230000007613 environmental effect Effects 0.000 description 1
- 239000013604 expression vector Substances 0.000 description 1
- 238000000605 extraction Methods 0.000 description 1
- 229930195729 fatty acid Natural products 0.000 description 1
- 239000000194 fatty acid Substances 0.000 description 1
- 150000004665 fatty acids Chemical class 0.000 description 1
- 238000001914 filtration Methods 0.000 description 1
- 235000013305 food Nutrition 0.000 description 1
- 238000010230 functional analysis Methods 0.000 description 1
- 238000002523 gelfiltration Methods 0.000 description 1
- 238000012224 gene deletion Methods 0.000 description 1
- 238000012239 gene modification Methods 0.000 description 1
- 230000030279 gene silencing Effects 0.000 description 1
- 238000012226 gene silencing method Methods 0.000 description 1
- 238000012252 genetic analysis Methods 0.000 description 1
- 238000010353 genetic engineering Methods 0.000 description 1
- 230000005017 genetic modification Effects 0.000 description 1
- 235000013617 genetically modified food Nutrition 0.000 description 1
- 229930195712 glutamate Natural products 0.000 description 1
- 230000036541 health Effects 0.000 description 1
- HNDVDQJCIGZPNO-UHFFFAOYSA-N histidine Natural products OC(=O)C(N)CC1=CN=CN1 HNDVDQJCIGZPNO-UHFFFAOYSA-N 0.000 description 1
- 230000001631 hypertensive effect Effects 0.000 description 1
- 238000009776 industrial production Methods 0.000 description 1
- 238000001802 infusion Methods 0.000 description 1
- 230000000977 initiatory effect Effects 0.000 description 1
- 239000007924 injection Substances 0.000 description 1
- 238000002347 injection Methods 0.000 description 1
- 238000004255 ion exchange chromatography Methods 0.000 description 1
- FBAFATDZDUQKNH-UHFFFAOYSA-M iron chloride Chemical compound [Cl-].[Fe] FBAFATDZDUQKNH-UHFFFAOYSA-M 0.000 description 1
- 229910000358 iron sulfate Inorganic materials 0.000 description 1
- AGPKZVBTJJNPAG-UHFFFAOYSA-N isoleucine Natural products CCC(C)C(N)C(O)=O AGPKZVBTJJNPAG-UHFFFAOYSA-N 0.000 description 1
- 229960000310 isoleucine Drugs 0.000 description 1
- 239000007951 isotonicity adjuster Substances 0.000 description 1
- 239000004310 lactic acid Substances 0.000 description 1
- 235000014655 lactic acid Nutrition 0.000 description 1
- 239000008101 lactose Substances 0.000 description 1
- 230000000670 limiting effect Effects 0.000 description 1
- 230000003908 liver function Effects 0.000 description 1
- 229910052943 magnesium sulfate Inorganic materials 0.000 description 1
- 235000019341 magnesium sulphate Nutrition 0.000 description 1
- 239000000594 mannitol Substances 0.000 description 1
- 235000010355 mannitol Nutrition 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 235000013372 meat Nutrition 0.000 description 1
- 230000007246 mechanism Effects 0.000 description 1
- 230000000813 microbial effect Effects 0.000 description 1
- 239000002808 molecular sieve Substances 0.000 description 1
- 239000000178 monomer Substances 0.000 description 1
- 150000007524 organic acids Chemical class 0.000 description 1
- 235000005985 organic acids Nutrition 0.000 description 1
- 125000001477 organic nitrogen group Chemical group 0.000 description 1
- 229910052698 phosphorus Inorganic materials 0.000 description 1
- 239000011574 phosphorus Substances 0.000 description 1
- 239000013600 plasmid vector Substances 0.000 description 1
- 229920001522 polyglycol ester Polymers 0.000 description 1
- 229920000642 polymer Polymers 0.000 description 1
- 230000001376 precipitating effect Effects 0.000 description 1
- 239000003755 preservative agent Substances 0.000 description 1
- 230000002335 preservative effect Effects 0.000 description 1
- 229940107700 pyruvic acid Drugs 0.000 description 1
- 230000005855 radiation Effects 0.000 description 1
- 230000002829 reductive effect Effects 0.000 description 1
- 238000012552 review Methods 0.000 description 1
- 235000009566 rice Nutrition 0.000 description 1
- 238000005185 salting out Methods 0.000 description 1
- 239000000523 sample Substances 0.000 description 1
- 238000012216 screening Methods 0.000 description 1
- 238000011218 seed culture Methods 0.000 description 1
- 235000004400 serine Nutrition 0.000 description 1
- 230000037432 silent mutation Effects 0.000 description 1
- 239000011734 sodium Substances 0.000 description 1
- 229910052708 sodium Inorganic materials 0.000 description 1
- URGAHOPLAPQHLN-UHFFFAOYSA-N sodium aluminosilicate Chemical compound [Na+].[Al+3].[O-][Si]([O-])=O.[O-][Si]([O-])=O URGAHOPLAPQHLN-UHFFFAOYSA-N 0.000 description 1
- 239000003381 stabilizer Substances 0.000 description 1
- 239000008107 starch Substances 0.000 description 1
- 235000019698 starch Nutrition 0.000 description 1
- 235000000346 sugar Nutrition 0.000 description 1
- 150000005846 sugar alcohols Chemical class 0.000 description 1
- 230000004083 survival effect Effects 0.000 description 1
- 239000000375 suspending agent Substances 0.000 description 1
- 235000008521 threonine Nutrition 0.000 description 1
- 229940113082 thymine Drugs 0.000 description 1
- 230000005030 transcription termination Effects 0.000 description 1
- 238000000844 transformation Methods 0.000 description 1
- 238000011426 transformation method Methods 0.000 description 1
- 238000000108 ultra-filtration Methods 0.000 description 1
- 241001515965 unidentified phage Species 0.000 description 1
- 239000004474 valine Substances 0.000 description 1
- 230000003313 weakening effect Effects 0.000 description 1
- 239000000080 wetting agent Substances 0.000 description 1
- 101150062776 yccA gene Proteins 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12P—FERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
- C12P13/00—Preparation of nitrogen-containing organic compounds
- C12P13/04—Alpha- or beta- amino acids
- C12P13/10—Citrulline; Arginine; Ornithine
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K14/00—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
- C07K14/195—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from bacteria
- C07K14/34—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from bacteria from Corynebacterium (G)
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N15/00—Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
- C12N15/09—Recombinant DNA-technology
- C12N15/63—Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
- C12N15/74—Vectors or expression systems specially adapted for prokaryotic hosts other than E. coli, e.g. Lactobacillus, Micromonospora
- C12N15/77—Vectors or expression systems specially adapted for prokaryotic hosts other than E. coli, e.g. Lactobacillus, Micromonospora for Corynebacterium; for Brevibacterium
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12R—INDEXING SCHEME ASSOCIATED WITH SUBCLASSES C12C - C12Q, RELATING TO MICROORGANISMS
- C12R2001/00—Microorganisms ; Processes using microorganisms
- C12R2001/01—Bacteria or Actinomycetales ; using bacteria or Actinomycetales
- C12R2001/15—Corynebacterium
Definitions
- the present application relates to an L-arginine producing microorganism in which the activity of a protein comprising the amino acid sequence of SEQ ID NO: 1 is attenuated; And it relates to a method for producing L-arginine.
- L-arginine is used for medicine such as liver function promoter, brain function promoter, and comprehensive amino acid preparation, and it is also in the spotlight recently for food such as fish cake additive, health drink additive, and salt substitute for hypertensive patients.
- the problem to be solved by the present application is to provide a recombinant microorganism of the genus Corynebacterium that produces L-arginine, a method for producing L-arginine using the same, and a use thereof.
- One object of the present application is to provide a recombinant microorganism of the genus of Corynebacterium that produces L-arginine, in which the activity of a protein comprising the amino acid sequence of SEQ ID NO: 1 is attenuated.
- Another object of the present application is to provide a method for producing L-arginine, comprising culturing a recombinant microorganism of the genus Corynebacterium in which the activity of a protein containing the amino acid sequence of SEQ ID NO: 1 is attenuated in a medium. .
- a microorganism of the genus Corynebacterium in which the protein comprising the amino acid sequence of SEQ ID NO: 1 of the present application is attenuated can produce L-arginine in high yield and can be usefully used for industrial production.
- One aspect of the present application is to provide a recombinant microorganism of the genus of Corynebacterium in which the activity of a protein comprising the amino acid sequence of SEQ ID NO: 1 is attenuated.
- the protein of the present application may have, include, consist of, or consist essentially of the amino acid sequence set forth in SEQ ID NO: 1.
- the protein comprising the amino acid sequence of SEQ ID NO: 1 may be an endogenous protein of the microorganism of the present application, but is not limited thereto.
- the amino acid sequence of SEQ ID NO: 1 can be obtained from NIH GenBank, a known database.
- the amino acid sequence of SEQ ID NO: 1 is at least 70%, 75%, 80%, 85%, 90%, 95%, 96%, 97%, 98%, It may include amino acid sequences that have greater than 99%, 99.5%, 99.7% or 99.9% homology or identity.
- proteins having such homology or identity and amino acid sequences in which some sequences are deleted, modified, substituted, conservatively substituted or added are also included within the scope of the present application, as long as they are amino acid sequences showing efficacy corresponding to the proteins of the present application. is self-explanatory.
- sequence additions or deletions naturally occurring mutations, silent mutations, or conservations to the amino acid sequence N-terminus, C-terminus, and/or within that do not alter the function of the protein of the present application. This is the case with redundant substitution.
- conservative substitution means the substitution of one amino acid with another amino acid having similar structural and/or chemical properties.
- the protein may have, for example, one or more conservative substitutions while still retaining one or more biological activities.
- conservative substitutions can generally occur based on similarities in polarity, charge, solubility, hydrophobicity, hydrophilicity and/or amphipathic nature of the residues.
- positively charged (basic) amino acids include arginine, lysine, and histidine
- negatively charged (acidic) amino acids include glutamic acid and arpartic acid.
- Nonpolar amino acids among amino acids with uncharged side chains include glycine, alanine, valine, leucine, isoleucine, methionine, phenylalanine, tryptophan, and proline, and are polar or hydrophilic ( hydrophilic) amino acids include serine, threonine, cysteine, tyrosine, asparagine and glutamine, and aromatic amino acids among the amino acids include phenylalanine, tryptophan and tyrosine.
- the term 'homology' or 'identity' refers to the degree of similarity between two given amino acid sequences or nucleotide sequences and can be expressed as a percentage.
- the terms homology and identity are often used interchangeably.
- Sequence homology or identity of conserved polynucleotides or proteins is determined by standard alignment algorithms, together with default gap penalties established by the program used. Substantially homologous or identical sequences are generally capable of hybridizing with all or part of the sequence under moderate or high stringent conditions. It is obvious that hybridization also includes hybridization with polynucleotides containing common codons or codons in consideration of codon degeneracy in polynucleotides.
- GAP program can define the total number of symbols in the shorter of the two sequences divided by the number of similarly arranged symbols (i.e., nucleotides or amino acids).
- the default parameters for the GAP program are (1) a binary comparison matrix (containing values of 1 for identity and 0 for non-identity) and Schwartz and Dayhoff, eds., Atlas Of Protein Sequence And Structure, National Biomedical Research Foundation , pp. 353-358 (1979), Gribskov et al (1986) Nucl. Acids Res. 14: weighted comparison matrix of 6745 (or EDNAFULL (EMBOSS version of NCBI NUC4.4) substitution matrix); (2) a penalty of 3.0 for each gap and an additional penalty of 0.10 for each symbol in each gap (or 10 gap opening penalty, 0.5 gap extension penalty); and (3) no penalty for end gaps.
- a polynucleotide encoding a protein comprising the amino acid sequence of SEQ ID NO: 1 may be named NCgl1469 gene.
- polynucleotide is a polymer of nucleotides in which nucleotide monomers are covalently linked in a long chain shape, and is a DNA or RNA strand of a certain length or more, more specifically, encoding the protein means a polynucleotide fragment.
- the polynucleotide encoding the protein of the present application may include a nucleotide sequence encoding the amino acid sequence shown in SEQ ID NO: 1.
- the polynucleotide of the present application may have or include the nucleotide sequence of SEQ ID NO: 2.
- the polynucleotide of the present application may consist of or essentially consist of the nucleotide sequence of SEQ ID NO: 2.
- polynucleotides of the present application are various in the coding region within the range that does not change the amino acid sequence of the protein of the present application in consideration of codon degeneracy or codons preferred in organisms intended to express the protein of the present application. Transformations can be made.
- the polynucleotide of the present application has 70% or more, 75% or more, 80% or more, 85% or more, 90% or more, 95% or more, 96% or more, having or comprising 97% or more, 98% or more, and less than 100% of a nucleotide sequence, or having at least 70%, 75% or more, 80% or more, 85% or more, 90 or more homology or identity to the sequence of SEQ ID NO: 2; % or more, 95% or more, 96% or more, 97% or more, 98% or more, and may consist essentially of, or consist essentially of, a nucleotide sequence that is less than 100%, but is not limited thereto.
- the polynucleotide of the present application is not limited as long as it is a probe that can be prepared from a known gene sequence, for example, a sequence that can hybridize under stringent conditions with a sequence complementary to all or part of the polynucleotide sequence of the present application.
- the "stringent condition” means a condition that allows specific hybridization between polynucleotides. These conditions are described in J. Sambrook et al., Molecular Cloning, A Laboratory Manual, 2nd Edition, Cold Spring Harbor Laboratory press, Cold Spring Harbor, New York, 1989; F.M. Ausubel et al., Current Protocols in Molecular Biology, John Wiley & Sons, Inc., New York, 9.50-9.51, 11.7-11.8).
- polynucleotides with high homology or identity 70% or more, 75% or more, 80% or more, 85% or more, 90% or more, 95% or more, 96% or more, 97% or more, 98% or more, Or a condition in which polynucleotides having 99% or more homology or identity hybridize and polynucleotides having lower homology or identity do not hybridize, or 60 ° C., which is a washing condition for normal southern hybridization, 1 ⁇ SSC, 0.1% SDS, specifically at 60 °C 0.1 ⁇ SSC, 0.1% SDS, more specifically at a salt concentration and temperature corresponding to 68 °C, 0.1 ⁇ SSC, 0.1% SDS, washing once, specifically 2 to 3 times conditions can be listed.
- Hybridization requires that two nucleic acids have complementary sequences, although mismatches between bases are possible depending on the stringency of hybridization.
- complementary is used to describe the relationship between nucleotide bases that are capable of hybridizing to each other. For example, with respect to DNA, adenine is complementary to thymine and cytosine is complementary to guanine.
- the polynucleotides of the present application may also include substantially similar nucleotide sequences as well as isolated nucleic acid fragments that are complementary to the entire sequence.
- a polynucleotide having homology or identity to the polynucleotide of the present application can be detected using hybridization conditions including a hybridization step at a Tm value of 55°C and using the above-described conditions.
- the Tm value may be 60 ° C, 63 ° C or 65 ° C, but is not limited thereto and may be appropriately adjusted by those skilled in the art according to the purpose.
- Appropriate stringency for hybridizing the polynucleotides depends on the length of the polynucleotides and the degree of complementarity, parameters well known in the art (e.g., J. Sambrook et al., supra).
- microorganism or strain
- microorganism includes both wild-type microorganisms and naturally or artificially genetically modified microorganisms, and causes foreign genes to be inserted or endogenous genes to be activated or inactivated.
- a microorganism in which a specific mechanism is weakened or enhanced due to it may be a microorganism including genetic modification (modification) for the production of a desired protein, protein or product.
- the microorganism of the present application includes a microorganism in which a protein comprising the amino acid sequence of SEQ ID NO: 1 of the present application is weakened or a polynucleotide encoding the same is missing; Alternatively, it may be a microorganism (eg, a recombinant microorganism) genetically modified through a vector such that the protein comprising the amino acid sequence of SEQ ID NO: 1 of the present application is attenuated or the polynucleotide encoding it is missing, but is not limited thereto.
- a microorganism eg, a recombinant microorganism
- the microorganism of the present application may be a microorganism capable of producing L-arginine.
- the microorganism of the present application may be a microorganism with increased L-arginine production ability compared to the parent strain.
- the microorganism of the present application is a protein comprising the amino acid sequence of SEQ ID NO: 1 of the present application in a parent strain (eg, a parent strain that naturally has L-arginine production ability or does not have L-arginine production ability), or a polynucleotide encoding the same. It may be a microorganism endowed with L-arginine-producing ability due to a lack of nucleotides, but is not limited thereto.
- the recombinant microorganism of the present application is transformed through a vector such that the protein comprising the amino acid sequence of SEQ ID NO: 1 of the present application is weakened or the polynucleotide encoding it is missing, A strain or microorganism in which a protein is weakened or the polynucleotide encoding the same is deficient, and the attenuated protein comprising the amino acid sequence of SEQ ID NO: 1 of the present application or a polynucleotide encoding the same is present in a natural wild-type microorganism or a microorganism producing L-arginine.
- the L-arginine-producing ability may be a natural wild-type microorganism or a microorganism having an increased protein or polynucleotide encoding the amino acid sequence of SEQ ID NO: 1 compared to an unmodified microorganism, but is not limited thereto.
- the non-modified microorganism or parent strain which is a target strain for comparing the increase in the L-arginine production ability
- the recombinant strain with increased production capacity is about 1% or more, specifically about 1% or more, about 2.5% or more, about 5% or more, about 6% or more, about 7% or more, about 8% or more, about 9% or more, about 10% or more, about 10.5% or more, about 11% or more, about 11.5% or more, about 12% or more, about 12.5% or more, about 13% or more, about 13.5% or more, or about 14% or more (the upper limit is not particularly limited, for example, about 200% or less, about 150% or less, about 100% or less, about 50% or less, about 40% or less, about 30% or less) % or less or about 25% or less) may be increased, but is not limited thereto as long as it has an increased amount of + value compared to the production capacity of the parent strain or unmodified microorganism before mutation.
- the recombinant strain having increased production capacity has an L-arginine production capacity of about 1.1 times, about 1.12 times, about 1.13 times or more, or about 1.14 times or more (the upper limit is a special There is no limitation, for example, about 10 times or less, about 5 times or less, about 3 times or less, or about 2 times or less) may be increased, but is not limited thereto.
- the term “about” includes all ranges of ⁇ 0.5, ⁇ 0.4, ⁇ 0.3, ⁇ 0.2, ⁇ 0.1, etc., and includes all ranges equivalent to or similar to the ranges following the term “about”. Not limited.
- the term "unmodified microorganism” does not exclude strains containing mutations that may occur naturally in microorganisms, and are wild-type strains or wild-type strains themselves, or are genetically modified by natural or artificial factors. It may mean a strain before change.
- the unmodified microorganism may refer to a microorganism before a weakening of a protein comprising the amino acid sequence of SEQ ID NO: 1 described herein or a polynucleotide encoding the same is lost.
- the "unmodified microorganism” may be used interchangeably with “strain before transformation”, “microorganism before transformation”, “non-mutated strain”, “unmodified strain”, “non-mutated microorganism” or “reference microorganism”.
- the microorganisms of the genus Corynebacterium of the present application include Corynebacterium glutamicum, Corynebacterium crudilactis, and Corynebacterium deserti ( Corynebacterium deserti), Corynebacterium efficiens, Corynebacterium callunae, Corynebacterium stationis, Corynebacterium singulare, Corynebacterium halotolerans, Corynebacterium striatum, Corynebacterium ammoniagenes, Corynebacterium pollutisoli, Corynebacterium It may be Corynebacterium imitans, Corynebacterium testudinoris or Corynebacterium flavescens.
- the recombinant microorganism of the present application may be a microorganism lacking all or part of a polynucleotide encoding a protein consisting of the amino acid sequence of SEQ ID NO: 1.
- the microorganism of the present application may be a microorganism in which the activity of an arginine repressor (ArgR) is further weakened.
- the microorganism of the present application may be a microorganism in which all or part of the argR gene is further deleted.
- the ArgR may include a polypeptide described in the amino acid sequence of SEQ ID NO: 13.
- the argR gene may include the polynucleotide described in the nucleotide sequence of SEQ ID NO: 14, but is not limited thereto.
- the microorganism of the present application is a strain or Corynebacterium glutamicum in which the NCgl1469 gene is deleted in Corynebacterium glutamicum KCCM10741P (van der Rest et al., Appl Microbiol Biotechnol 52:541-545, 1999) It may be a strain in which the NCgl1469 gene is deleted in CJ1R.
- the microorganism of the present application may include ArgF (ornithine carbamoyltransferase subunit F), a polynucleotide encoding the ArgF, or an argF gene.
- ArgF of the present application may consist of the amino acid sequence represented by SEQ ID NO: 15.
- the argF gene of the present application may consist of the nucleotide sequence represented by SEQ ID NO: 16.
- the term "attenuation" of a protein is a concept that includes both decreased activity or no activity compared to intrinsic activity.
- the attenuation may be used interchangeably with terms such as inactivation, deficiency, down-regulation, decrease, reduce, and attenuation.
- the attenuation is when the activity of the protein itself is reduced or eliminated compared to the activity of the protein originally possessed by the microorganism due to mutation of the polynucleotide encoding the protein, inhibition of gene expression or translation into protein of the polynucleotide encoding it.
- the overall protein activity level and/or concentration (expression level) in the cell is lower than that of the native strain due to inhibition of translation, etc., when the polynucleotide is not expressed at all, and/or when the polynucleotide is expressed Even if it is, it may also include the case where there is no activity of the protein.
- the "intrinsic activity” refers to the activity of a specific protein originally possessed by the parent strain, wild-type or unmodified microorganism before the transformation, when the character is changed due to genetic mutation caused by natural or artificial factors. This may be used interchangeably with “activation before transformation”. "Inactivation, depletion, reduction, downregulation, reduction, attenuation" of a protein's activity compared to its intrinsic activity means that it is lower than the activity of a specific protein originally possessed by the parent strain or non-transformed microorganism before transformation.
- Attenuation of the activity of such a protein may be performed by any method known in the art, but is not limited thereto, and may be achieved by applying various methods well known in the art (e.g., Nakashima N et al., Bacterial cellular engineering by genome editing and gene silencing. Int J Mol Sci. 2014;15(2):2773-2793, Sambrook et al. Molecular Cloning 2012, etc.).
- modification of the gene sequence encoding the protein such that the activity of the protein is eliminated or attenuated e.g., one or more nucleotides on the nucleotide sequence of the protein gene to encode the modified protein such that the activity of the protein is eliminated or attenuated) deletion / substitution / addition of);
- an antisense oligonucleotide eg, antisense RNA
- an antisense oligonucleotide that binds complementarily to the transcript of the gene encoding the protein
- It may be a combination of two or more selected from 1) to 8), but is not particularly limited thereto.
- Deletion of part or all of the gene encoding the protein may include removal of the entire polynucleotide encoding the endogenous target protein in the chromosome, replacement with a polynucleotide in which some nucleotides are deleted, or replacement with a marker gene.
- modification of the expression control region is a deletion, insertion, non-conservative or conservative substitution, or a combination thereof, resulting in mutations in the expression control region (or expression control sequence), or weaker It may be a replacement with an active sequence.
- the expression control region includes, but is not limited to, a promoter, an operator sequence, a sequence encoding a ribosome binding site, and a sequence controlling termination of transcription and translation.
- the above 3) modification of the nucleic acid base sequence encoding the initiation codon or 5'-UTR region of the gene transcript encoding the protein encodes another initiation codon with a lower expression rate of the protein compared to the endogenous initiation codon, for example. It may be substituted with a nucleotide sequence to, but is not limited thereto.
- the modification of the amino acid sequence or polynucleotide sequence of 4) and 5) may be a deletion, insertion, non-conservative or conservative substitution of the amino acid sequence of the protein or the polynucleotide sequence encoding the protein to weaken the activity of the protein.
- a combination thereof may be a sequence mutation, or replacement with an amino acid sequence or polynucleotide sequence improved to have weaker activity or an amino acid sequence or polynucleotide sequence improved to have no activity, but is not limited thereto.
- expression of a gene may be inhibited or attenuated by introducing a mutation in a polynucleotide sequence to form a stop codon, but is not limited thereto.
- antisense oligonucleotide e.g., antisense RNA
- antisense RNA complementary to the transcript of the gene encoding the protein
- the term "enhancement" of the activity of a protein means that the activity of the protein is increased compared to the intrinsic activity.
- the enhancement may be used interchangeably with terms such as activation, up-regulation, overexpression, and increase.
- activation, enhancement, upregulation, overexpression, and increase may include those that exhibit an activity that was not originally possessed, or those that exhibit enhanced activity compared to intrinsic activity or activity before modification.
- the "intrinsic activity” refers to the activity of a specific protein originally possessed by a parent strain or unmodified microorganism before transformation when a character is changed due to genetic mutation caused by natural or artificial factors. This may be used interchangeably with “activation before transformation”.
- “Enhancement”, “upregulation”, “overexpression” or “increase” of the activity of a protein compared to its intrinsic activity means the activity and/or concentration (expression amount) is improved.
- the enhancement can be achieved by introducing an exogenous protein or enhancing the activity and/or concentration (expression level) of an endogenous protein. Whether or not the activity of the protein is enhanced can be confirmed from an increase in the activity level, expression level, or amount of a product released from the protein.
- Enhancement of the activity of the protein can be applied by various methods well known in the art, and is not limited as long as the activity of the target protein can be enhanced compared to that of the microorganism before transformation. Specifically, it may be using genetic engineering and / or protein engineering, which is well known to those skilled in the art, which is a routine method of molecular biology, but is not limited thereto (e.g., Sitnicka et al. Functional Analysis of Genes. Advances in Cell Biology. 2010, Vol. 2. 1-16, Sambrook et al. Molecular Cloning 2012, etc.).
- modification of the polynucleotide sequence encoding the protein to enhance the protein activity eg, modification of the polynucleotide sequence of the protein gene to encode the modified protein to enhance the activity of the protein
- It may be a combination of two or more selected from 1) to 8), but is not particularly limited thereto.
- the increase in the intracellular copy number of the polynucleotide encoding the protein is caused by the introduction of a vector into the host cell that can replicate and function independently of the host, to which the polynucleotide encoding the protein is operably linked. may be achieved. Alternatively, it may be achieved by introducing 1 copy or 2 copies or more of the polynucleotide encoding the protein into the chromosome of the host cell.
- the introduction into the chromosome may be performed by introducing a vector capable of inserting the polynucleotide into the chromosome of the host cell into the host cell, but is not limited thereto. The vector is as described above.
- the expression control region may include a promoter, an operator sequence, a sequence encoding a ribosome binding site, and a sequence regulating termination of transcription and translation.
- the original promoter may be replaced with a strong promoter, but is not limited thereto.
- Examples of known strong promoters include the CJ1 to CJ7 promoter (US Patent US 7662943 B2), lac promoter, trp promoter, trc promoter, tac promoter, lambda phage PR promoter, PL promoter, tet promoter, gapA promoter, SPL7 promoter, SPL13 (sm3) promoter (US Patent US 10584338 B2), O2 promoter (US Patent US 10273491 B2), tkt promoter, yccA promoter, etc., but are not limited thereto.
- nucleic acid base sequence modification encoding the initiation codon or 5'-UTR region of the gene transcript encoding the protein is, for example, a nucleic acid base encoding another initiation codon with a higher protein expression rate compared to the endogenous initiation codon It may be substituted with a sequence, but is not limited thereto.
- Modification of the amino acid sequence or polynucleotide sequence of 4) and 5) above may include deletion, insertion, non-conservative or conservative substitution of the amino acid sequence of the protein or the polynucleotide sequence encoding the protein to enhance the activity of the protein.
- the combination thereof may be a sequence mutation, or replacement with an amino acid sequence or polynucleotide sequence improved to have stronger activity, or an amino acid sequence or polynucleotide sequence improved to increase activity, but is not limited thereto.
- the replacement may be specifically performed by inserting the polynucleotide into a chromosome by homologous recombination, but is not limited thereto.
- the vector used at this time may further include a selection marker for checking whether the chromosome is inserted.
- the selectable marker is as described above.
- Introduction of the foreign polynucleotide exhibiting the activity of the protein may be introduction of a foreign polynucleotide encoding a protein exhibiting the same/similar activity to the protein into the host cell.
- the foreign polynucleotide is not limited in origin or sequence as long as it exhibits the same/similar activity as the protein.
- the method used for the introduction can be performed by appropriately selecting a known transformation method by a person skilled in the art, and expression of the introduced polynucleotide in a host cell can produce a protein and increase its activity.
- Codon optimization of polynucleotides encoding proteins is codon optimization of endogenous polynucleotides to increase transcription or translation in host cells, or optimization of transcription and translation of exogenous polynucleotides in host cells. It may be that the codons of this have been optimized.
- Analyzing the tertiary structure of a protein to select and modify or chemically modify the exposed site for example, by comparing the sequence information of the protein to be analyzed with a database in which sequence information of known proteins is stored, depending on the degree of sequence similarity. It may be to determine a template protein candidate according to the method, confirm the structure based on this, and modify or modify an exposed portion to be chemically modified to be modified or modified.
- Such enhancement of protein activity is an increase in the activity or concentration of the corresponding protein based on the activity or concentration of the protein expressed in the wild-type or unmodified microbial strain, or an increase in the amount of a product produced from the protein. It may be, but is not limited thereto.
- the term "vector” includes a nucleotide sequence of a polynucleotide encoding the target polypeptide operably linked to a suitable expression control region (or expression control sequence) so as to express the target polypeptide in a suitable host. DNA preparations may be included.
- the expression control region may include a promoter capable of initiating transcription, an arbitrary operator sequence for regulating such transcription, a sequence encoding a suitable mRNA ribosome binding site, and a sequence regulating termination of transcription and translation. After transformation into a suitable host cell, the vector can replicate or function independently of the host genome and can integrate into the genome itself.
- Vectors used in the present application are not particularly limited, and any vectors known in the art may be used.
- Examples of commonly used vectors include natural or recombinant plasmids, cosmids, viruses and bacteriophages.
- pWE15, M13, MBL3, MBL4, IXII, ASHII, APII, t10, t11, Charon4A, and Charon21A can be used as phage vectors or cosmid vectors, and pDZ-based, pBR-based, and pUC-based plasmid vectors , pBluescriptII-based, pGEM-based, pTZ-based, pCL-based, pET-based, etc. can be used.
- pDZ, pDC, pDCM2, pACYC177, pACYC184, pCL, pECCG117, pUC19, pBR322, pMW118, pCC1BAC vectors and the like can be used.
- a polynucleotide encoding a target polypeptide may be inserted into a chromosome through a vector for chromosomal insertion into a cell. Insertion of the polynucleotide into the chromosome may be performed by any method known in the art, for example, homologous recombination, but is not limited thereto.
- a selection marker for determining whether the chromosome is inserted may be further included.
- the selectable marker is used to select cells transformed with a vector, that is, to determine whether a target nucleic acid molecule has been inserted, and can exhibit selectable phenotypes such as drug resistance, auxotrophy, resistance to cytotoxic agents, or surface polypeptide expression. markers may be used. In an environment treated with a selective agent, only cells expressing the selectable marker survive or exhibit other expression traits, so transformed cells can be selected.
- the term "transformation” means introducing a vector containing a polynucleotide encoding a target polypeptide into a host cell or microorganism so that the polypeptide encoded by the polynucleotide can be expressed in the host cell.
- the transformed polynucleotide can be expressed in the host cell, it may be inserted into and located in the chromosome of the host cell or located outside the chromosome.
- the polynucleotide includes DNA and/or RNA encoding a polypeptide of interest.
- the polynucleotide may be introduced in any form as long as it can be introduced and expressed into a host cell.
- the polynucleotide may be introduced into a host cell in the form of an expression cassette, which is a genetic construct containing all elements required for self-expression.
- the expression cassette may include a promoter operably linked to the polynucleotide, a transcription termination signal, a ribosome binding site, and a translation termination signal.
- the expression cassette may be in the form of an expression vector capable of self-replication.
- the polynucleotide may be introduced into a host cell in its own form and operably linked to a sequence necessary for expression in the host cell, but is not limited thereto.
- operably linked means that the polynucleotide sequence is functionally linked to a promoter sequence that initiates and mediates transcription of the polynucleotide encoding the target protein of the present application.
- Modification of some or all of the polynucleotides in the microorganism of the present application is (a) genome editing using homologous recombination or genetic scissors (engineered nuclease, e.g., CRISPR-Cas9) using a vector for chromosomal insertion into the microorganism and / or (b) It may be induced by light and/or chemical treatment, such as ultraviolet light and radiation, but is not limited thereto.
- a method of modifying part or all of the gene may include a method using DNA recombination technology.
- a part or all of a gene may be deleted by injecting a nucleotide sequence or vector containing a nucleotide sequence homologous to a target gene into the microorganism to cause homologous recombination.
- the injected nucleotide sequence or vector may include a dominant selection marker, but is not limited thereto.
- Another aspect of the present application provides a method for producing L-arginine, comprising culturing a recombinant microorganism of the genus Corynebacterium in which the activity of a protein containing the amino acid sequence of SEQ ID NO: 1 is attenuated in a medium.
- Proteins, weakened organisms and microorganisms comprising the amino acid sequence of SEQ ID NO: 1 are as described in the other aspects.
- the microorganism of the genus Corynebacterium may be Corynebacterium glutamicum, but is not limited thereto.
- the microorganism may have an arginine transcriptional repressor (ArgR) activity further weakened or an argR gene may be further deleted, but is not limited thereto, as described in another aspect.
- ArgR arginine transcriptional repressor
- the term "cultivation” means growing a microorganism of the genus Corynebacterium of the present application under appropriately controlled environmental conditions.
- the culture process of the present application may be performed according to suitable media and culture conditions known in the art. This culturing process can be easily adjusted and used by those skilled in the art according to the selected strain. Specifically, the culture may be batch, continuous and/or fed-batch, but is not limited thereto.
- the term "medium” refers to a material in which nutrients required for culturing microorganisms of the genus Corynebacterium of the present application are mixed as main components, including water essential for survival and growth, as well as nutrients and growth supplies, etc.
- any medium and other culture conditions used for culturing microorganisms of the genus Corynebacterium of the present application may be used without particular limitation as long as they are mediums used for culturing common microorganisms, but any medium used for culturing microorganisms of the genus Corynebacterium of the present application
- Microorganisms can be cultured while controlling temperature, pH, etc. under aerobic conditions in a conventional medium containing appropriate carbon sources, nitrogen sources, phosphorus, inorganic compounds, amino acids, and/or vitamins.
- culture media for microorganisms of the genus Corynebacterium can be found in the literature ["Manual of Methods for General Bacteriology” by the American Society for Bacteriology (Washington D.C., USA, 1981)].
- Examples of the carbon source in the present application include carbohydrates such as glucose, saccharose, lactose, fructose, sucrose, and maltose; sugar alcohols such as mannitol and sorbitol; organic acids such as pyruvic acid, lactic acid, citric acid and the like; Amino acids such as glutamic acid, methionine, lysine, and the like may be included.
- natural organic nutrients such as starch hydrolysate, molasses, blackstrap molasses, rice winter, cassava, sorghum pomace and corn steep liquor can be used, specifically glucose and sterilized pretreated molasses (i.e. converted to reducing sugar).
- Carbohydrates such as molasses
- other carbon sources in an appropriate amount may be used in various ways without limitation. These carbon sources may be used alone or in combination of two or more, but are not limited thereto.
- nitrogen source examples include inorganic nitrogen sources such as ammonia, ammonium sulfate, ammonium chloride, ammonium acetate, ammonium phosphate, ammonium carbonate, and ammonium nitrate; Amino acids such as glutamic acid, methionine, glutamine, etc., organic nitrogen sources such as peptone, NZ-amine, meat extract, yeast extract, malt extract, corn steep liquor, casein hydrolysate, fish or degradation products thereof, defatted soybean cake or degradation products thereof, etc. can be used These nitrogen sources may be used alone or in combination of two or more, but are not limited thereto.
- inorganic nitrogen sources such as ammonia, ammonium sulfate, ammonium chloride, ammonium acetate, ammonium phosphate, ammonium carbonate, and ammonium nitrate
- Amino acids such as glutamic acid, methionine, glutamine, etc.
- organic nitrogen sources such as peptone, NZ-amine,
- the number of persons may include monopotassium phosphate, dipotassium phosphate, or a sodium-containing salt corresponding thereto.
- the inorganic compound sodium chloride, calcium chloride, iron chloride, magnesium sulfate, iron sulfate, manganese sulfate, calcium carbonate, etc. may be used, and amino acids, vitamins, and/or appropriate precursors may be included. These components or precursors may be added to the medium either batchwise or continuously. However, it is not limited thereto.
- compounds such as ammonium hydroxide, potassium hydroxide, ammonia, phosphoric acid, sulfuric acid and the like may be added to the medium in an appropriate manner to adjust the pH of the medium.
- an antifoaming agent such as a fatty acid polyglycol ester.
- oxygen or oxygen-containing gas may be injected into the medium, or nitrogen, hydrogen or carbon dioxide gas may be injected without gas injection or nitrogen, hydrogen or carbon dioxide gas may be injected to maintain the anaerobic and non-aerobic state. It is not.
- the culture temperature may be maintained at 20 to 45 ° C, specifically 25 to 40 ° C, and may be cultured for about 10 to 160 hours, but is not limited thereto.
- L-arginine produced by the culture of the present application may be secreted into the medium or remain in the cells.
- the L-arginine production method of the present application includes preparing a microorganism of the genus Corynebacterium of the present application, preparing a medium for culturing the microorganism, or a combination thereof (in any order) , For example, prior to the culturing step, it may be further included.
- the method for producing L-arginine of the present application may further include a step of recovering L-arginine from the cultured medium (cultured medium) or the cultured medium Corynebacterium genus microorganism.
- the recovering step may be further included after the culturing step.
- the recovery may be to collect the desired L-arginine using a suitable method known in the art according to the culture method of the microorganism of the present application, for example, a batch, continuous or fed-batch culture method.
- a suitable method known in the art according to the culture method of the microorganism of the present application, for example, a batch, continuous or fed-batch culture method.
- affinity may be used in combination with various chromatography such as doe chromatography, HPLC, or these methods, and the desired L-arginine may be recovered from a medium or microorganism using a suitable method known in the art.
- the L-arginine production method of the present application may additionally include a purification step.
- the purification may be performed using suitable methods known in the art.
- the recovery step and the purification step are performed continuously or discontinuously regardless of order, or simultaneously or integrated into one step. It can be performed, but is not limited thereto.
- Another aspect of the present application is a Corynebacterium genus microorganism in which the activity of a protein comprising the amino acid sequence of SEQ ID NO: 1 of the present application is attenuated; medium in which it was cultured; Or to provide a composition for preparing L- arginine comprising a combination thereof.
- composition of the present application may further include any suitable excipient commonly used in amino acid production compositions, and such an excipient may be, for example, a preservative, a wetting agent, a dispersing agent, a suspending agent, a buffer, a stabilizer, or an isotonic agent. However, it is not limited thereto.
- proteins, weakened substances, microorganisms, cultures, and media containing the amino acid sequence of SEQ ID NO: 1 are as described in the other embodiments above.
- Another aspect of the present application provides a method for producing a microorganism of the genus Corynebacterium, comprising the step of attenuating the activity of a protein comprising the amino acid sequence of SEQ ID NO: 1.
- Another aspect of the present application provides a use of a microorganism of the genus Corynebacterium for producing L-arginine, in which the activity of a protein comprising the amino acid sequence of SEQ ID NO: 1 is attenuated.
- the protein, attenuation and microorganism containing the amino acid sequence of SEQ ID NO: 1 are as described in the other aspects above. .
- the plasmid obtained using EZ-Tn5TM ⁇ R6K ⁇ ori/KAN-2>Tnp TransposomeTM Kit (Epicentre) was transformed into Corynebacterium glutamicum KCCM10741P (US 8034602 B2). Transformed with the electric pulse method (Appl. Microbiol. Biothcenol. (1999) 52: 541-545) as a parent strain, and spread on a complex plate medium containing kanamycin (25 mg/l) to secure about 20,000 colonies. did
- Glucose 10 g Peptone 10 g, Beef extract 5 g, Yeast extract 5 g, Brain Heart Infusion 18.5 g, NaCl 2.5 g, Urea 2 g, Sorbitol 91 g, Agar 20 g (based on 1 liter of distilled water)
- Glucose 60g Ammonium sulfate 45g, Magnesium sulfate heptahydrate 2g, Potassium phosphate monobasic 2g, Ammonium chloride 10g, Biotin 0.01mg, Thiamine-HCl 0.1mg, Calcium pantothenate 2mg, Nicotinamide 3mg, Ferrous sulfate 10mg, Manganese sulfate 10mg , zinc sulfate 0.02mg, copper sulfate 0.5mg, calcium carbonate 30 g (based on 1 liter of distilled water).
- KCCM10741P/mt-7 was finally selected as a strain with significantly improved L-arginine production ability.
- the genomic DNA of KCCM10741P/mt-7 was extracted, cut, linked, transformed into E. coli DH5 ⁇ , and plated on LB solid medium containing kanamycin (25 mg/l). After selecting 20 transformed colonies, a plasmid containing a part of an unknown gene was obtained, and primer 1 (SEQ ID NO: 3) and primer 2 (SEQ ID NO: 3) of EZ-Tn5TM ⁇ R6K ⁇ ori/KAN-2> Tnp TransposomeTM Kit
- SEQ ID NO: 4 primer 1 (SEQ ID NO: 3) and primer 2 (SEQ ID NO: 3) of EZ-Tn5TM ⁇ R6K ⁇ ori/KAN-2> Tnp TransposomeTM Kit
- a recombinant vector for deleting the NCgl1469 gene was constructed on the chromosome of a strain of the genus Corynebacterium.
- primers 3 to 6 were synthesized to prepare a fragment for the deletion of the gene, and these are shown in Table 3.
- Primer 3 (SEQ ID NO: 5) TCGAGCTCGGTACCC TCAGTGCTCCAACTGCTTG Primer 4 (SEQ ID NO: 6) CTTCAGGGGGATACCAGAATAGCGAAATGAAAAG Primer 5 (SEQ ID NO: 7) CTGGTATCCCCCCTGAAGGCGATTTAAGGGGTCGA Primer 6 (SEQ ID NO: 8) CTCTAGAGGATCCCC GCAGGGGAGTTTGAAAAAC
- PCR using wild-type Corynebacterium glutamicum ATCC13869 gDNA as a template using primer pairs of SEQ ID NOs: 5 and 6 and primer pairs of SEQ ID NOs: 7 and 8 to construct a vector deficient in the ORF region based on SEQ ID NO: 2 was performed. At this time, PCR was performed under conditions of denaturation at 95 ° C for 5 minutes, denaturation at 95 ° C for 30 seconds, annealing at 55 ° C for 30 seconds, and polymerization at 72 ° C for 30 seconds repeated 30 times, followed by polymerization at 72 ° C for 5 minutes.
- PCR was denatured at 94°C for 5 minutes, followed by 30 cycles of 95°C for 30 seconds, 55°C for 30 seconds, and 72°C for 1 minute, followed by 5 minutes at 72°C.
- the pDCM2 vector (Korean Publication No. 10-2020-0136813) was treated with smaI, and the PCR product obtained above was subjected to fusion cloning.
- In-Fusion® HD cloning kit (Clontech) was used.
- the plasmid obtained as a result of the cloning was named pDCM2- ⁇ NCgl1469.
- Corynebacterium glutamicum KCCM10741P an L-arginine producing strain, was transformed by homologous recombination on the chromosome using pDCM2- ⁇ NCgl1469 (van der Rest et al., Appl Microbiol Biotechnol 52:541-545, 1999).
- the composition of the seed medium and production medium is as follows, respectively.
- Glucose 20g Ammonium sulfate 45g, Magnesium sulfate heptahydrate 2g, Potassium phosphate monobasic 2g, Ammonium chloride 10g, Biotin 0.01mg, Thiamine-HCl 0.1mg, Calcium pantothenate 2mg, Nicotinamide 3mg Ferrous sulfate 10mg, Manganese sulfate 10mg, Zinc sulfate 0.02mg, copper sulfate 0.5mg, (based on 1 liter of distilled water).
- Glucose 60g Ammonium sulfate 45g, Magnesium sulfate heptahydrate 2g, Potassium phosphate monobasic 2g, Ammonium chloride 10g, Biotin 0.01mg, Thiamine-HCl 0.1mg, Calcium pantothenate 2mg, Nicotinamide 3mg, Ferrous sulfate 10mg, Manganese sulfate 10mg , zinc sulfate 0.02mg, copper sulfate 0.5mg, calcium carbonate 30 g (based on 1 liter of distilled water).
- KCCM10741P- ⁇ increased the L-arginine production ability by an average of 19.8% compared to the parent strain.
- a strain producing L-arginine was prepared by introducing one mutation (argR gene defect, hereinafter referred to as ⁇ argR) into a wild strain of Corynebacterium glutamicum (ATCC13869).
- the recombinant vector for ⁇ argR was prepared in the same manner as in Example 4, and the primers used for vector construction are shown in Table 5.
- Primer 7 TCGAGCTCGGTACCC AGCAGGCCTTAAGGGTAAG Primer 8 (SEQ ID NO: 10) AGGGGCGCTGTCTTACCTCGGCTGGTGGGCCAGC Primer 9 (SEQ ID NO: 11) GGTAAGACAGCGCCCCTAGTTCAAGGCTTGTTAATC Primer 10 (SEQ ID NO: 12) CTCTAGAGGATCCCC ACCGTTGAACTGCTTGCCAG
- the plasmid was named pDCM2- ⁇ argR.
- the Corynebacterium glutamicum wild strain ATCC13869 was transformed in the same manner as in Example 5 using pDCM2- ⁇ argR, and the chromosome of the transformant was subjected to PCR using primers 7 and 10.
- a strain lacking argR was identified and named as Corynebacterium glutamicum CJ1R.
- a strain in which the NCgl1469 gene was deleted was prepared in the same manner as in Example 5 for the Corynebacterium glutamicum CJ1R and named CJ1R- ⁇ NCgl1469.
- the CJ1R- ⁇ NCgl1469 was cultured in the same manner as in Example 5, and after the culture was completed, the L-arginine production ability was measured by HPLC (Waters 2478) and is shown in Table 6 below.
- CJ1R- ⁇ increased the L-arginine production ability by an average of 19.7% compared to the parent strain CJ1R.
Landscapes
- Chemical & Material Sciences (AREA)
- Health & Medical Sciences (AREA)
- Organic Chemistry (AREA)
- Life Sciences & Earth Sciences (AREA)
- Genetics & Genomics (AREA)
- Engineering & Computer Science (AREA)
- Wood Science & Technology (AREA)
- Zoology (AREA)
- General Health & Medical Sciences (AREA)
- Biotechnology (AREA)
- General Engineering & Computer Science (AREA)
- Biochemistry (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Biophysics (AREA)
- Microbiology (AREA)
- Molecular Biology (AREA)
- Biomedical Technology (AREA)
- Plant Pathology (AREA)
- Physics & Mathematics (AREA)
- Gastroenterology & Hepatology (AREA)
- Medicinal Chemistry (AREA)
- Proteomics, Peptides & Aminoacids (AREA)
- Chemical Kinetics & Catalysis (AREA)
- General Chemical & Material Sciences (AREA)
- Preparation Of Compounds By Using Micro-Organisms (AREA)
- Micro-Organisms Or Cultivation Processes Thereof (AREA)
Abstract
Description
균주 | L-아르기닌(g/L) | ||||
배치 1 | 배치 2 | 배치 3 | 평균 | ||
대조군 | KCCM10741P | 3 | 3.1 | 3.3 | 3.13 |
1 | KCCM10741P/mt-1 | 3.1 | 3 | 3.1 | 3.07 |
2 | KCCM10741P/mt-2 | 3 | 2.9 | 3 | 2.97 |
3 | KCCM10741P/mt-3 | 3.1 | 3 | 3.1 | 3.07 |
4 | KCCM10741P/mt-4 | 2.9 | 3 | 3.2 | 3.03 |
5 | KCCM10741P/mt-5 | 3.1 | 3.3 | 2.8 | 3.07 |
6 | KCCM10741P/mt-6 | 2.9 | 3.1 | 3.2 | 3.07 |
7 | KCCM10741P/mt-7 | 3.4 | 3.7 | 3.8 | 3.63 |
프라이머 | 핵산염기 서열 |
프라이머 1(서열번호 3) | ACCTACAACAAAGCTCTCATCAACC |
프라이머 2(서열번호 4) | CTACCCTGTGGAACACCTACATCT |
프라이머 | 핵산염기 서열 |
프라이머 3 (서열번호 5) | TCGAGCTCGGTACCC TCAGTGCTCCAACTGCTTG |
프라이머 4 (서열번호 6) | CTTCAGGGGGATACCAGAATAGCGAAATGAAAAG |
프라이머 5 (서열번호 7) | CTGGTATCCCCCTGAAGGCGATTTAAGGGGTCGA |
프라이머 6 (서열번호 8) | CTCTAGAGGATCCCC GCAGGGGAGTTTGAAAAAC |
균주 | L-아르기닌(g/L) | ||||
배치 1 | 배치 2 | 배치 3 | 평균 | ||
대조군 | KCCM10741P | 2.9 | 3.0 | 3.05 | 2.98 |
실험군 | KCCM10741P-△NCgl1469 | 3.5 | 3.4 | 3.8 | 3.57 |
프라이머 | 핵산염기 서열 |
프라이머 7 (서열번호 9) | TCGAGCTCGGTACCC AGCAGGCCTTAAGGGTAAG |
프라이머 8 (서열번호 10) | AGGGGCGCTGTCTTACCTCGGCTGGTGGGCCAGC |
프라이머 9 (서열번호 11) | GGTAAGACAGCGCCCCTAGTTCAAGGCTTGTTAATC |
프라이머 10 (서열번호 12) | CTCTAGAGGATCCCC ACCGTTGAACTGCTTGCCAG |
균주 | L-아르기닌(g/L) | ||||
배치 1 | 배치 2 | 배치 3 | 평균 | ||
대조군 | CJ1R | 1.5 | 1.45 | 1.6 | 1.52 |
실험군 | CJ1R-△NCgl1469 | 1.85 | 1.72 | 1.9 | 1.82 |
Claims (10)
- 서열번호 1의 아미노산 서열로 이루어진 단백질의 활성이 약화되고, L-아르기닌을 생산하는, 코리네박테리움 속 (the genus of Corynebacterium) 재조합 미생물.
- 제1항에 있어서, 상기 미생물은 상기 서열번호 1의 아미노산 서열로 이루어진 단백질의 활성이 약화되지 않은 모균주에 비해 L-아르기닌 생산능이 증가된, 미생물.
- 제1항에 있어서, 상기 미생물은 코리네박테리움 글루타미쿰(Corynebacterium glutamicum)인, 미생물.
- 제1항에 있어서, 상기 미생물은 추가적으로 아르기닌 전사 억제 인자(arginine repressor)의 활성이 약화된, 미생물.
- 제1항에 있어서, 상기 미생물은 상기 서열번호 1의 아미노산 서열로 이루어진 단백질을 코딩하는 폴리뉴클레오티드가 결손된, 미생물.
- 서열번호 1의 아미노산 서열을 포함하는 단백질의 활성이 약화된 코리네박테리움 속 재조합 미생물을 배지에서 배양하는 단계를 포함하는, L-아르기닌 제조방법.
- 제6항에 있어서, 상기 미생물은 코리네박테리움 글루타미쿰인, 방법.
- 제6항에 있어서, 상기 코리네박테리움 속 미생물은 추가적으로 아르기닌 전사 억제 인자가 약화된 것인, 방법.
- 제6항에 있어서, 상기 미생물은 상기 서열번호 1의 아미노산 서열로 이루어진 단백질을 코딩하는 핵산염기 서열이 결손된 것인, 방법.
- 제1항 내지 제5항 중 어느 한 항에 따른 미생물의 L-아르기닌 생산 용도.
Priority Applications (5)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
AU2022365825A AU2022365825A1 (en) | 2021-10-15 | 2022-10-14 | Corynebacterium genus microorganism producing l-arginine, and method for producing l-arginine using same |
EP22881390.3A EP4394040A1 (en) | 2021-10-15 | 2022-10-14 | Corynebacterium genus microorganism producing l-arginine, and method for producing l-arginine using same |
JP2024518960A JP2024534636A (ja) | 2021-10-15 | 2022-10-14 | L-アルギニンを生産するコリネバクテリウム属微生物及びそれを用いたl-アルギニン生産方法 |
CN202280069377.5A CN118119712A (zh) | 2021-10-15 | 2022-10-14 | 生产l-精氨酸的棒状杆菌属微生物和使用其生产l-精氨酸的方法 |
MX2024004497A MX2024004497A (es) | 2021-10-15 | 2022-10-14 | Microorganismo del genero corynebacterium productor de l-arginina y procedimiento para la produccion de l-arginina mediante el uso del mismo. |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR10-2021-0137890 | 2021-10-15 | ||
KR1020210137890A KR20230054183A (ko) | 2021-10-15 | 2021-10-15 | L-아르기닌을 생산하는 코리네박테리움 속 미생물 및 이를 이용한 l-아르기닌 생산방법 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2023063763A1 true WO2023063763A1 (ko) | 2023-04-20 |
Family
ID=85987538
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/KR2022/015551 WO2023063763A1 (ko) | 2021-10-15 | 2022-10-14 | L-아르기닌을 생산하는 코리네박테리움 속 미생물 및 이를 이용한 l-아르기닌 생산방법 |
Country Status (7)
Country | Link |
---|---|
EP (1) | EP4394040A1 (ko) |
JP (1) | JP2024534636A (ko) |
KR (1) | KR20230054183A (ko) |
CN (1) | CN118119712A (ko) |
AU (1) | AU2022365825A1 (ko) |
MX (1) | MX2024004497A (ko) |
WO (1) | WO2023063763A1 (ko) |
Citations (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20020045223A1 (en) * | 2000-04-28 | 2002-04-18 | Ajinomoto Co., Inc. | Arginine repressor deficient strain of coryneform bacterium and method for producing L-arginine |
KR20090107920A (ko) * | 2008-04-10 | 2009-10-14 | 한국과학기술원 | 퓨트레신 고생성능을 가지는 변이 미생물 및 이를 이용한 퓨트레신의 제조방법 |
US7662943B2 (en) | 2004-12-16 | 2010-02-16 | Cj Cheiljedang Corporation | Promoter sequences from Corynebacterium ammoniagenes |
KR20110080475A (ko) * | 2010-01-06 | 2011-07-13 | 씨제이제일제당 (주) | L-오르니틴 또는 l-아르기닌 생산 변이주 및 이의 제조방법 |
US8034602B2 (en) | 2006-07-13 | 2011-10-11 | Cj Cheiljedang Corporation | Method for producing L-arginine using Corynebacterium glutamicum |
KR20130082478A (ko) * | 2012-01-11 | 2013-07-19 | 씨제이제일제당 (주) | 퓨트레신 생산능이 향상된 재조합 미생물 및 이를 이용하여 퓨트레신을 생산하는 방법 |
KR20160043890A (ko) * | 2014-10-13 | 2016-04-22 | 씨제이제일제당 (주) | L-아르기닌을 생산하는 코리네박테리움 속 미생물 및 이를 이용한 l-아르기닌의 제조 방법 |
KR20170010960A (ko) * | 2015-07-20 | 2017-02-02 | 씨제이제일제당 (주) | 퓨트레신 또는 오르니틴 생산 미생물 및 이를 이용한 퓨트레신 또는 오르니틴 생산방법 |
US10273491B2 (en) | 2015-01-29 | 2019-04-30 | Cj Cheiljedang Corporation | Promoter and uses thereof |
KR20190073844A (ko) * | 2017-12-19 | 2019-06-27 | 씨제이제일제당 (주) | L-아르기닌을 생산하는 코리네박테리움 속 미생물 및 이를 이용한 l-아르기닌 생산방법 |
US10584338B2 (en) | 2016-08-31 | 2020-03-10 | Cj Cheiljedang Corporation | Promoter and use thereof |
KR20200136813A (ko) | 2020-03-17 | 2020-12-08 | 씨제이제일제당 (주) | 프리페네이트 디하이드라타아제 활성 강화를 통한 l-트립토판을 생산하는 방법 |
KR20210106971A (ko) * | 2018-12-26 | 2021-08-31 | 대상 주식회사 | L-아미노산을 생산하는 대장균 변이주 또는 코리네박테리움 글루타미컴 변이주 및 이를 이용한 l-아미노산의 생산 방법 |
-
2021
- 2021-10-15 KR KR1020210137890A patent/KR20230054183A/ko not_active Application Discontinuation
-
2022
- 2022-10-14 EP EP22881390.3A patent/EP4394040A1/en active Pending
- 2022-10-14 MX MX2024004497A patent/MX2024004497A/es unknown
- 2022-10-14 CN CN202280069377.5A patent/CN118119712A/zh active Pending
- 2022-10-14 WO PCT/KR2022/015551 patent/WO2023063763A1/ko active Application Filing
- 2022-10-14 JP JP2024518960A patent/JP2024534636A/ja active Pending
- 2022-10-14 AU AU2022365825A patent/AU2022365825A1/en active Pending
Patent Citations (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20020045223A1 (en) * | 2000-04-28 | 2002-04-18 | Ajinomoto Co., Inc. | Arginine repressor deficient strain of coryneform bacterium and method for producing L-arginine |
US7662943B2 (en) | 2004-12-16 | 2010-02-16 | Cj Cheiljedang Corporation | Promoter sequences from Corynebacterium ammoniagenes |
US8034602B2 (en) | 2006-07-13 | 2011-10-11 | Cj Cheiljedang Corporation | Method for producing L-arginine using Corynebacterium glutamicum |
KR20090107920A (ko) * | 2008-04-10 | 2009-10-14 | 한국과학기술원 | 퓨트레신 고생성능을 가지는 변이 미생물 및 이를 이용한 퓨트레신의 제조방법 |
KR20110080475A (ko) * | 2010-01-06 | 2011-07-13 | 씨제이제일제당 (주) | L-오르니틴 또는 l-아르기닌 생산 변이주 및 이의 제조방법 |
KR20130082478A (ko) * | 2012-01-11 | 2013-07-19 | 씨제이제일제당 (주) | 퓨트레신 생산능이 향상된 재조합 미생물 및 이를 이용하여 퓨트레신을 생산하는 방법 |
KR20160043890A (ko) * | 2014-10-13 | 2016-04-22 | 씨제이제일제당 (주) | L-아르기닌을 생산하는 코리네박테리움 속 미생물 및 이를 이용한 l-아르기닌의 제조 방법 |
US10273491B2 (en) | 2015-01-29 | 2019-04-30 | Cj Cheiljedang Corporation | Promoter and uses thereof |
KR20170010960A (ko) * | 2015-07-20 | 2017-02-02 | 씨제이제일제당 (주) | 퓨트레신 또는 오르니틴 생산 미생물 및 이를 이용한 퓨트레신 또는 오르니틴 생산방법 |
US10584338B2 (en) | 2016-08-31 | 2020-03-10 | Cj Cheiljedang Corporation | Promoter and use thereof |
KR20190073844A (ko) * | 2017-12-19 | 2019-06-27 | 씨제이제일제당 (주) | L-아르기닌을 생산하는 코리네박테리움 속 미생물 및 이를 이용한 l-아르기닌 생산방법 |
KR20210106971A (ko) * | 2018-12-26 | 2021-08-31 | 대상 주식회사 | L-아미노산을 생산하는 대장균 변이주 또는 코리네박테리움 글루타미컴 변이주 및 이를 이용한 l-아미노산의 생산 방법 |
KR20200136813A (ko) | 2020-03-17 | 2020-12-08 | 씨제이제일제당 (주) | 프리페네이트 디하이드라타아제 활성 강화를 통한 l-트립토판을 생산하는 방법 |
Non-Patent Citations (20)
Title |
---|
"Guide to Huge Computers", 1994, ACADEMIC PRESS |
"Manual of Methods for General Bacteriology", 1981, AMERICAN SOCIETY FOR BACTERIOLOGY |
APPL. MICROBIOL. BIOTECHNOL., vol. 52, 1999, pages 541 - 545 |
ATSCHUL, [S.] [F., J MOLEC BIOL, vol. 215, 1990, pages 403 |
CARILLO, SIAM J APPLIED MATH, vol. 48, 1988, pages 1073 |
DATABASE PROTEIN ANONYMOUS : "MULTISPECIES: GNAT family N-acetyltransferase [Corynebacterium] ", XP093057280, retrieved from NCBI * |
DEVEREUX, J. ET AL., NUCLEIC ACIDS RESEARCH, vol. 12, 1984, pages 387 |
GRIBSKOV ET AL., NUCL. ACIDS RES., vol. 14, 1986, pages 6745 |
J. SAMBROOK ET AL.: "Atlas of Protein Sequence and Structure, National Biomedical Research Foundation", 1989, COLD SPRING HARBOR LABORATORY PRESS, pages: 353 - 358 |
MOORE, S.STEIN, W. H.: "Photometric ninhydrin method for use in the chromatography of amino acids", J. BIOL. CHEM., vol. 176, 1948, pages 367 - 388 |
NAKASHIMA N ET AL.: "Bacterial cellular engineering by genome editing and gene silencing", INT J MOL SCI., vol. 15, no. 2, 2014, pages 2773 - 2793, XP055376889, DOI: 10.3390/ijms15022773 |
NEEDLEMAN ET AL., J MOL BIOL., vol. 48, 1970, pages 443 |
NEEDLEMANWUNSCH, J. MOL. BIOL., vol. 48, 1970, pages 443 - 453 |
PEARSON ET AL., PROC. NATL. ACAD. SCI. USA, vol. 85, 1988, pages 2444 |
RICE ET AL., TRENDS GENET., vol. 16, 2000, pages 276 - 277 |
SAMBROOK ET AL., MOLECULAR CLONING, 2012 |
SITNICKA ET AL.: "Functional Analysis of Genes", ADVANCES IN CELL BIOLOGY, vol. 2, 2010, pages 1 - 16 |
SMITHWATERMAN, ADV. APPL. MATH, vol. 2, 1981, pages 482 |
VAN DER REST ET AL., APPL. MICROBIOL BIOTECHNOL, vol. 52, 1999, pages 541 - 545 |
WEINTRAUB, H. ET AL.: "Antisense-RNA as a molecular tool for genetic analysis", REVIEWS - TRENDS IN GENETICS, vol. 1, no. 1, 1986 |
Also Published As
Publication number | Publication date |
---|---|
AU2022365825A1 (en) | 2024-04-18 |
MX2024004497A (es) | 2024-05-03 |
KR20230054183A (ko) | 2023-04-24 |
JP2024534636A (ja) | 2024-09-20 |
EP4394040A1 (en) | 2024-07-03 |
CN118119712A (zh) | 2024-05-31 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2022163933A1 (ko) | 신규한 abc 트랜스포터 atp-결합 단백질 변이체 및 이를 이용한 l-글루탐산 생산 방법 | |
WO2022163934A1 (ko) | 신규한 d-알라닌-d-알라닌 리가아제 a 변이체 및 이를 이용한 l-글루탐산 생산 방법 | |
WO2022231368A1 (ko) | 신규한 글루타메이트 합성 효소 서브 유니트 알파 변이체 및 이를 이용한 l-글루탐산 생산 방법 | |
WO2022163917A1 (ko) | 신규한 단백질 변이체 및 이를 이용한 l-발린 생산 방법 | |
WO2022216088A1 (ko) | L-아르기닌을 생산하는 코리네박테리움 속 미생물 및 이를 이용한 l-아르기닌 생산방법 | |
WO2022163935A1 (ko) | 신규한 글루코사민-6-포스페이트 디아미나제 변이체 및 이를 이용한 l-글루탐산 생산 방법 | |
WO2022163939A1 (ko) | 신규한 mfs 트랜스포터 변이체 및 이를 이용한 l-글루탐산 생산 방법 | |
WO2022163922A1 (ko) | 신규한 아스파라긴 신타제 변이체 및 이를 이용한 l-발린 생산 방법 | |
WO2022163923A1 (ko) | 신규한 atp 포스포리보실트랜스퍼라제 변이체 및 이를 이용한 l-발린 생산 방법 | |
WO2022154177A1 (ko) | 신규한 3d-(3,5/4)-트리하이드록시사이클로헥세인-1,2-다이온 아실하이드롤라아제 변이체 및 이를 이용한 imp 생산 방법 | |
WO2022154178A1 (ko) | 신규한 혐기성 코프로포르피리노겐 iii 옥시다제 변이체 및 이를 이용한 imp 생산 방법 | |
WO2022163920A1 (ko) | 신규한 시스테인 설피네이트 디설피나제 변이체 및 이를 이용한 l-발린 생산 방법 | |
WO2022191630A1 (ko) | 신규한 시트레이트 신타아제 변이체 및 이를 이용한 l-발린 생산 방법 | |
WO2022245176A1 (ko) | 퓨린 뉴클레오티드를 생산하는 미생물 및 이를 이용한 퓨린 뉴클레오티드의 생산방법 | |
WO2022163904A1 (ko) | 신규한 단백질 변이체 및 이를 이용한 l-라이신 생산 방법 | |
WO2023063763A1 (ko) | L-아르기닌을 생산하는 코리네박테리움 속 미생물 및 이를 이용한 l-아르기닌 생산방법 | |
WO2022163919A1 (ko) | 신규한 우레아제 부속 단백질 변이체 및 이를 이용한 l-발린 생산 방법 | |
WO2022163940A1 (ko) | 신규한 갈락토사이드 o-아세틸트랜스퍼라제 변이체 및 이를 이용한 l-글루탐산 생산 방법 | |
WO2022163936A1 (ko) | 신규한 엑시뉴클레아제 abc 서브유닛 a 변이체 및 이를 이용한 l-글루탐산 생산 방법 | |
WO2022163941A1 (ko) | 신규한 스퍼미딘 신타아제 변이체 및 이를 이용한 l-글루탐산 생산 방법 | |
WO2022163924A1 (ko) | 신규한 5,10-메틸렌테트라하이드로폴레이트 리덕타제 변이체 및 이를 이용한 l-발린 생산 방법 | |
WO2023075397A1 (ko) | Lyse 변이체 및 이를 이용한 l-아르기닌 생산방법 | |
WO2022163938A1 (ko) | 신규한 리보뉴클레아제 p 변이체 및 이를 이용한 l-글루탐산 생산 방법 | |
WO2022154189A1 (ko) | 신규한 피토엔 신타제 변이체 및 이를 이용한 xmp 또는 gmp 생산 방법 | |
WO2022163937A1 (ko) | 신규한 abc 트랜스포터 atp-결합 단백질 변이체 및 이를 이용한 l-글루탐산 생산 방법 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 22881390 Country of ref document: EP Kind code of ref document: A1 |
|
WWE | Wipo information: entry into national phase |
Ref document number: 12024550674 Country of ref document: PH |
|
ENP | Entry into the national phase |
Ref document number: 2024518960 Country of ref document: JP Kind code of ref document: A |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2022881390 Country of ref document: EP |
|
WWE | Wipo information: entry into national phase |
Ref document number: AU2022365825 Country of ref document: AU |
|
REG | Reference to national code |
Ref country code: BR Ref legal event code: B01A Ref document number: 112024006047 Country of ref document: BR |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2401002267 Country of ref document: TH |
|
WWE | Wipo information: entry into national phase |
Ref document number: MX/A/2024/004497 Country of ref document: MX |
|
ENP | Entry into the national phase |
Ref document number: 2022881390 Country of ref document: EP Effective date: 20240329 |
|
WWE | Wipo information: entry into national phase |
Ref document number: 202280069377.5 Country of ref document: CN |
|
ENP | Entry into the national phase |
Ref document number: 2022365825 Country of ref document: AU Date of ref document: 20221014 Kind code of ref document: A |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2024107197 Country of ref document: RU |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
ENP | Entry into the national phase |
Ref document number: 112024006047 Country of ref document: BR Kind code of ref document: A2 Effective date: 20240326 |