WO2023063505A1 - 탄소나노튜브 제조용 촉매 및 이를 이용하여 제조한 탄소나노튜브 집합체 - Google Patents

탄소나노튜브 제조용 촉매 및 이를 이용하여 제조한 탄소나노튜브 집합체 Download PDF

Info

Publication number
WO2023063505A1
WO2023063505A1 PCT/KR2022/002894 KR2022002894W WO2023063505A1 WO 2023063505 A1 WO2023063505 A1 WO 2023063505A1 KR 2022002894 W KR2022002894 W KR 2022002894W WO 2023063505 A1 WO2023063505 A1 WO 2023063505A1
Authority
WO
WIPO (PCT)
Prior art keywords
carbon nanotubes
catalyst
carbon
carbon nanotube
nanotube aggregate
Prior art date
Application number
PCT/KR2022/002894
Other languages
English (en)
French (fr)
Inventor
정충헌
류상효
김현태
이완성
정명훈
정우람
Original Assignee
금호석유화학 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 금호석유화학 주식회사 filed Critical 금호석유화학 주식회사
Publication of WO2023063505A1 publication Critical patent/WO2023063505A1/ko

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • B01J35/33Electric or magnetic properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J21/00Catalysts comprising the elements, oxides, or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium, or hafnium
    • B01J21/06Silicon, titanium, zirconium or hafnium; Oxides or hydroxides thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J21/00Catalysts comprising the elements, oxides, or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium, or hafnium
    • B01J21/06Silicon, titanium, zirconium or hafnium; Oxides or hydroxides thereof
    • B01J21/066Zirconium or hafnium; Oxides or hydroxides thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/74Iron group metals
    • B01J23/75Cobalt
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/08Heat treatment
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/08Heat treatment
    • B01J37/082Decomposition and pyrolysis
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/15Nano-sized carbon materials
    • C01B32/158Carbon nanotubes
    • C01B32/16Preparation
    • C01B32/162Preparation characterised by catalysts
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/04Construction or manufacture in general
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2202/00Structure or properties of carbon nanotubes
    • C01B2202/06Multi-walled nanotubes
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2202/00Structure or properties of carbon nanotubes
    • C01B2202/20Nanotubes characterized by their properties
    • C01B2202/26Mechanical properties
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2202/00Structure or properties of carbon nanotubes
    • C01B2202/20Nanotubes characterized by their properties
    • C01B2202/32Specific surface area
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2202/00Structure or properties of carbon nanotubes
    • C01B2202/20Nanotubes characterized by their properties
    • C01B2202/36Diameter
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present specification relates to a catalyst for producing carbon nanotubes and a carbon nanotube assembly prepared using the same.
  • the conductive material serves as a passage for electric charges in the battery, and carbon-based conductive materials such as graphite, carbon black, graphene, and carbon nanotubes may be used. In the past, conductive carbon black was mainly used.
  • Carbon nanotube is a material having a tubular structure composed of a hexagonal honeycomb lattice in which one carbon atom is bonded to three other carbon atoms, and is in the limelight as a next-generation conductive material for secondary batteries due to its excellent electrical conductivity.
  • carbon nanotubes are used as a conductive material, the energy density and lifespan of a secondary battery can be improved and the size of the battery can be reduced.
  • existing carbon nanotubes have a problem in that they are difficult to use as a conductive material for a secondary battery due to insufficient solubility in solvents and dispersibility in solvents.
  • the description of the present specification is to solve the problems of the prior art described above, and one object of the present specification is to provide a catalyst for preparing carbon nanotubes for preparing carbon nanotubes having excellent electrical conductivity and dispersibility.
  • Another object of the present specification is to provide a carbon nanotube aggregate for a conductive material for a secondary battery having excellent electrical conductivity and dispersibility.
  • a catalyst for producing carbon nanotubes including a metal component represented by Formula 1 below is provided.
  • Co represents cobalt, an oxide or derivative thereof
  • M1 is at least one metal selected from Al, Ca, Si, Ti and Mg, an oxide or derivative thereof
  • Zr represents zirconium, an oxide or derivative thereof
  • M2 is at least one metal selected from W, V, Mn and Mo, an oxide or derivative thereof, and 0.2 ⁇ x/y ⁇ 2.6 and 6 ⁇ x/z ⁇ 13.
  • a carbon nanotube aggregate including carbon nanotubes grown on the catalyst for producing carbon nanotubes is provided.
  • the carbon nanotube assembly may include bundled carbon nanotubes.
  • the carbon nanotube assembly may include multi-walled carbon nanotubes.
  • the BET specific surface area of the carbon nanotubes may be 130 to 260 m 2 /g.
  • the apparent density of the carbon nanotubes may be 0.005 to 0.10 g/ml.
  • the average fiber diameter of the carbon nanotubes may be 3 to 30 nm.
  • the average powder resistance of the carbon nanotubes may be 0.005 ⁇ 0.045 ⁇ cm.
  • the Raman spectral intensity ratio (I G /I D ) of the carbon nanotubes may be 0.5 to 2.0.
  • the surface resistance of the carbon nanotubes may be 100 to 250 ⁇ /sq.
  • a conductive material for a secondary battery including the carbon nanotube assembly is provided.
  • the catalyst for producing carbon nanotubes according to one aspect of the present specification can be applied to the synthesis of carbon nanotubes having excellent electrical conductivity and dispersibility.
  • the carbon nanotube aggregate according to another aspect of the present specification has excellent physical properties including electrical conductivity and dispersibility, and thus can improve capacity and lifespan characteristics of a secondary battery when used as a conductive material for a secondary battery.
  • 1 and 2 are FE-SEM images of carbon nanotubes manufactured using a catalyst for preparing carbon nanotubes according to an embodiment of the present specification.
  • a catalyst for producing carbon nanotubes according to an aspect of the present specification includes a metal component represented by Formula 1 below.
  • Co may represent cobalt, an oxide or derivative thereof.
  • the Co may act as a main catalyst in the catalyst for preparing the carbon nanotubes. When synthesizing carbon nanotubes using the catalyst, it can grow into a structure having relatively excellent dispersibility.
  • M1 is one or more metals selected from among Al, Ca, Si, Ti and Mg, oxides or derivatives thereof, and Zr may represent zirconium or oxides or derivatives thereof.
  • the [M1, Zr] is an inert support, and may support a main catalyst and a cocatalyst component.
  • the [M1, Zr] indicates that M1 and Zr are included in the same or different mole numbers, and for example, M1 may be included in an amount of 1.5 times or more, 2 times or more, 2.5 times or more, or 3 times or more of Zr. However, it is not limited thereto.
  • the crystal structure of the catalyst is formed depending on the composition and ratio of the main catalyst, cocatalyst, and inert support, and as a result, the growth form and properties of the carbon nanotubes may vary.
  • the growth form and properties of the carbon nanotubes may vary.
  • electrical conductivity applicable as a conductive material during the synthesis of carbon nanotubes and required levels of solubility and dispersibility when applied to electrodes can be realized.
  • M2 may be one or more metals selected from W, V, Mn, and Mo, oxides or derivatives thereof.
  • the M2 may act as a cocatalyst, which is an active component that assists the action of the main catalyst in the catalyst for producing carbon nanotubes. Synthesis efficiency can be improved while maintaining the structural characteristics of the aforementioned carbon nanotubes.
  • the x/y represents the mole fraction of the main catalyst relative to the support, for example 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0, 1.1, 1.2, 1.3, 1.4, 1.5, 1.6, 1.7, 1.8 , 1.9, 2.0, 2.1, 2.2, 2.3, 2.4, 2.5, 2.6 or a range between two of these values. If the x/y mole fraction is lower than the above range, the activity of the catalyst and the resulting synthesis yield of carbon nanotubes may decrease, and the dispersibility of the produced carbon nanotubes may decrease, making them unsuitable as a conductive material for secondary batteries.
  • the support content is relatively small, and the durability of the catalyst may be lowered, and the synthesized carbon nanotubes exhibit an entangle structure, resulting in a decrease in the BET specific surface area and powder resistance properties, and dispersibility. And it may be unsuitable as a conductive material for a secondary battery due to insufficient electrical conductivity.
  • the x / z represents the mole fraction of the main catalyst compared to the cocatalyst, for example, 6, 6.5, 7, 7.5, 8, 8.5, 9, 9.5, 10, 10.5, 11, 11.5, 12, 12.5, 13 or any of these It can be a range between the two values. If the x/z mole fraction is lower than the above range, the growth of carbon nanotubes may be hindered during the reaction due to an excess of the cocatalyst, resulting in a decrease in production, and the powder resistance of the produced carbon nanotubes may be lowered, making it unsuitable as a conductive material for secondary batteries. can do.
  • the x/z mole fraction is higher than the above range, production may decrease as growth activity of carbon nanotubes decreases during the reaction due to lack of a cocatalyst, and powder resistance of the synthesized carbon nanotubes decreases, making it a conductive material for secondary batteries. may be inappropriate.
  • the catalyst may be used in a chemical vapor deposition method for synthesizing carbon nanotubes, for example, a fluidized bed chemical vapor deposition method or a fixed bed chemical vapor deposition method, but is not limited thereto.
  • the catalyst can be applied to the production of carbon nanotubes with excellent electrical conductivity and dispersibility.
  • a carbon nanotube assembly may include carbon nanotubes grown on the catalyst for preparing the carbon nanotubes. That is, the carbon nanotube assembly may be understood as a concept including both the catalyst composition and the carbon nanotubes.
  • the carbon nanotube assembly includes carbon nanotubes grown from the aforementioned catalyst seed.
  • the growth pattern, purity, etc. of carbon nanotubes are determined, and electrical conductivity, dispersibility, solubility, etc. may vary when applied as a conductive material. Therefore, even if the diameter, length, purity, etc. of carbon nanotubes are similar, properties such as dispersibility, solubility, and electrical conductivity may be different if they are made of catalysts having different compositions.
  • the carbon nanotubes may be prepared by a vapor phase synthesis method in which the catalyst composition is introduced into a reactor and grown while supplying a carbon source such as ethylene, propylene, acetylene, or methane under normal pressure and high temperature conditions.
  • the growth of the carbon nanotubes may be performed while carbon is precipitated after hydrocarbons decomposed by high-temperature heat penetrate and saturate the catalyst composition, but is not limited thereto.
  • the carbon nanotubes may form a bundle by growing individual strands on a catalyst serving as a seed.
  • the term "bundle” as used herein refers to a bundle or rope form in which a plurality of carbon nanotubes are arranged side by side or entangled with each other. Unlike this, a plurality of carbon nanotubes do not form a certain shape. In this case, it is also referred to as “non-bundle type”.
  • each carbon nanotube in the carbon nanotube assembly may be present in a straight shape, a curved shape, or a mixture thereof.
  • Each of the carbon nanotubes may be single-walled, double-walled, or multi-walled carbon nanotubes.
  • the carbon nanotube assembly may include bundle-type carbon nanotubes in which a plurality of carbon nanotubes are mutually aggregated.
  • the bundled carbon nanotubes may be present in a straight, curved, or mixed form, respectively.
  • the carbon nanotube assembly may include multi-walled carbon nanotubes having an average number of walls of 3 to 20.
  • the carbon nanotube assembly can implement required physical properties as a conductive material for a secondary battery while using multi-wall carbon nanotubes, which are known to have relatively low conductivity compared to single-wall carbon nanotubes.
  • the purity of the carbon nanotubes may be 90% or more. For example, it may be 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99% or more, but is not limited thereto. If the purity is out of the above range, electrical conductivity may be insufficient or impurities may react inside the battery, resulting in a safety accident.
  • a BET specific surface area of the carbon nanotube assembly may be 130 to 260 m 2 /g.
  • the bulk density of the carbon nanotube assembly may be 0.005 to 0.10 g/ml.
  • the apparent density may be measured using powdered carbon nanotubes. If the apparent density is out of the above range, excessive scattering of the carbon nanotubes may occur, or dispersibility and solubility may be insufficient during preparation of the conductive material slurry.
  • An average fiber diameter of the carbon nanotubes may be 3 to 30 nm. For example, 3 nm, 4 nm, 5 nm, 6 nm, 7 nm, 8 nm, 9 nm, 10 nm, 11 nm, 12 nm, 13 nm, 14 nm, 15 nm, 16 nm, 17 nm, 18 nm nm, 19 nm, 20 nm, 21 nm, 22 nm, 23 nm, 24 nm, 25 nm, 26 nm, 27 nm, 28 nm, 29 nm, 30 nm, or a range between two of these values. If the average fiber diameter is out of the above range, the synthesized carbon nanotubes may have structural problems, or the desired characteristics of the carbon nanotubes may be insufficient.
  • An average powder resistance of the carbon nanotube assembly may be 0.005 to 0.045 ⁇ cm.
  • Raman spectroscopy for analyzing the surface state of the carbon nanotubes can be usefully used.
  • Raman spectroscopy refers to obtaining the frequency of molecules from the Raman effect, which is a phenomenon in which scattered light having a difference by the frequency of molecules is generated when excitation light of monochromatic color such as laser light is irradiated. It means spectroscopy, and it is possible to quantify and measure the crystallinity of carbon nanotubes through such Raman spectroscopy.
  • a peak existing in the wavenumber 1580 ⁇ 50 cm -1 region is called a G band, which represents sp 2 bonding of the carbon nanotubes, and may represent a carbon crystal having no structural defects.
  • a peak present in the wave number 1360 ⁇ 50 cm -1 region is called a D band, which is a peak representing sp 3 bonding of carbon nanotubes and may represent carbon containing structural defects.
  • the peak values of the G band and the D band are referred to as I G and I D , respectively, and the crystallinity of the carbon nanotubes can be quantified and measured through the Raman spectral intensity ratio (I G /I D ), which is the ratio between the two. there is. That is, the higher the value of the Raman spectral intensity ratio, the smaller the structural defects of the carbon nanotubes. Therefore, when the carbon nanotubes exhibiting the higher Raman spectral intensity ratio are used, better electrical conductivity can be realized.
  • I G /I D the Raman spectral intensity ratio
  • the Raman spectral intensity ratio (I G /I D ) of the carbon nanotube may be 0.5 to 2.0.
  • it may be 0.5, 0.6, 0.7, 0.8, 0.9, 1.0, 1.1, 1.2, 1.3, 1.4, 1.5, 1.6, 1.7, 1.8, 1.9, 2.0 or a range between two of these values.
  • the Raman spectral intensity ratio is out of the above range, the dispersibility of the carbon nanotubes deteriorates, making it difficult to implement uniform conductivity when applied to the electrode.
  • the surface resistance of the carbon nanotubes may be 100 to 250 ⁇ /sq.
  • a conductive material for a secondary battery according to another aspect of the present specification may include the carbon nanotube assembly.
  • the carbon nanotube aggregate can be easily prepared as a slurry and has excellent dispersibility.
  • the conductive material for secondary batteries can suppress safety accidents caused by local concentration of current.
  • the carbon nanotube aggregate has excellent physical properties including electrical conductivity and dispersibility, and when used as a conductive material for a secondary battery, it can improve the capacity and lifespan characteristics of a secondary battery, and accordingly, a high-capacity secondary battery with high energy density and low self-discharge rate. It can be applied to the production of batteries.
  • the carbon nanotube aggregate has excellent powder resistance compared to carbon black used as a conventional conductive material for secondary batteries, and can increase energy density even with a small amount of use, thereby improving the charging speed and efficiency of secondary batteries.
  • the conductive material for a secondary battery it is possible to have sufficient current characteristics while including a relatively large amount of electrode material.
  • a solution was prepared.
  • a second precursor solution was prepared by adding NH 4 VO 3 to the first precursor solution maintained at a temperature of less than 30° C. and stirring under a nitrogen atmosphere. At this time, each precursor was added in a required amount according to the catalyst composition in Table 1 below.
  • a catalyst composition was obtained by spraying the second precursor solution into the spray pyrolysis reactor together with air at a rate of 3 L/hr for thermal decomposition. The spray pressure of air was set to 1-3 bar, and the internal temperature of the spray pyrolysis reactor was set to 750°C.
  • a catalyst composition was prepared with the same composition and method as in Example 1, except that the temperature of the first precursor solution was maintained at 50°C.
  • a catalyst composition was prepared in the same composition and method as in Example 1, except that NH 4 VO 3 was added to the first precursor solution and stirred under air.
  • the catalyst compositions according to Examples and Comparative Examples were introduced into a fluidized bed chemical vapor deposition reactor having a diameter of 350 mm, and the internal temperature of the reactor was elevated to 700 to 800° C. under a nitrogen atmosphere and maintained. Thereafter, carbon nanotubes were synthesized by reacting for 50 minutes while supplying a mixed gas of nitrogen and ethylene at a rate of 150 L/min.
  • the structure, fiber diameter, and number of walls of the carbon nanotubes synthesized according to the preparation example were confirmed through FE-SEM images, and the BET specific surface area and powder resistance were measured and are shown in Table 2 below.
  • the BET specific surface area was measured using a TriStar II 3020 instrument (Micrometritics Co.).
  • the bulk density was measured using HPRM-FA2 equipment (Hantech Co.), and then the volume resistivity ( ⁇ cm) trend line according to the apparent density was used when the density was 0.65 ⁇ 0.01 g / ml. The volume resistance value of was calculated.
  • Example 1 and 2 are FE-SEM images of carbon nanotubes synthesized according to Preparation Example using the catalyst compositions of Example 6 and Comparative Example 1, respectively.
  • the carbon nanotubes synthesized using the catalyst compositions of Examples 1 to 6 exhibited a bundle-shaped structure as shown in FIG. 1, and were excellent in BET specific surface area and powder resistance properties, indicating that they could be applied as a conductive material for secondary batteries. Confirmed.
  • the carbon nanotubes synthesized using the catalyst composition of Comparative Example 2 having a low Co/(Al+Zr) mole fraction of 0.18 have a very high BET specific surface area and excellent powder resistance, but due to the high BET specific surface area, Dispersibility decreased.
  • the carbon nanotubes synthesized using the catalyst composition of Comparative Example 4 having a high Co/V mole fraction of 17.29 decreased in production as the growth activity of carbon nanotubes decreased during the reaction due to the lack of a cocatalyst, an active ingredient. Compared to the example, the powder resistance of the synthesized carbon nanotubes was lowered.
  • the surface resistance of the carbon nanotubes was measured using a 4-point probe after bar coating. Evaluation of the dispersion of carbon nanotubes was performed by adding carbon nanotubes to N-methylpyrrolidone (NMP) to be 5% by weight and using bead mill equipment. When the viscosity did not drop any more during RRG (Rotate Ring Mill) equipment manufacturing, dispersion evaluation was completed and manufacturing time was measured.
  • NMP N-methylpyrrolidone
  • the carbon nanotubes synthesized using the catalyst composition of Comparative Example 1 exhibited an entangled structure, so the dispersion preparation time was short, but the dispersion was not properly performed, resulting in lower electrical conductivity compared to Example.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Nanotechnology (AREA)
  • Thermal Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Inorganic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Carbon And Carbon Compounds (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

본 명세서의 일 실시예는 하기 식 1로 표시되는 금속 성분을 포함하는, 탄소나노튜브 제조용 촉매를 제공한다. <식 1> Cox:[M1, Zr]y:M2z 상기 식에서, Co는 코발트, 그의 산화물 또는 유도체를 나타내고, M1은 Al, Ca, Si, Ti 및 Mg 중에서 선택된 1종 이상의 금속, 그의 산화물 또는 유도체이고, Zr은 지르코늄, 그의 산화물 또는 유도체를 나타내고, M2는 W, V, Mn 및 Mo 중에서 선택된 1종 이상의 금속, 그의 산화물 또는 유도체이고, 0.2≤x/y≤2.6, 6≤x/z≤13이다.

Description

탄소나노튜브 제조용 촉매 및 이를 이용하여 제조한 탄소나노튜브 집합체
본 명세서는 탄소나노튜브 제조용 촉매 및 이를 이용하여 제조한 탄소나노튜브 집합체에 관한 것이다.
친환경 에너지 및 전기차에 대한 관심과 중요도가 증가함에 따라 이차전지의 수요가 급격히 증가하고 있다. 고용량의 전기차용 이차전지는 에너지 밀도가 높고, 수명이 길고, 자기 방전율이 낮을 것이 요구되며, 이러한 물성을 확보하기 위해서는 전기전도성이 높은 도전재의 개발이 필수적이다. 도전재는 전지 내 전하의 이동통로 역할을 하는 것으로 탄소 계열의 도전성 물질, 예를 들어 흑연, 카본블랙, 그래핀, 탄소나노튜브 등이 사용될 수 있으며, 기존에는 주로 도전성 카본블랙을 사용하였다.
탄소나노튜브(carbon nanotube)는 1개의 탄소 원자가 3개의 다른 탄소 원자와 결합한 육각형 벌집 모양의 격자로 구성된 튜브형 구조를 가지는 소재로, 우수한 전기전도성으로 인하여 이차전지용 차세대 도전재로서 각광받고 있다. 탄소나노튜브를 도전재로 사용할 경우 이차전지의 에너지 밀도 및 수명을 향상시킬 수 있고, 전지의 크기를 줄일 수 있다. 다만, 기존의 탄소나노튜브는 용매에 대한 용해성 및 용매 내에서의 분산성이 미흡하여 이차전지용 도전재로서 사용하기에 어려운 문제점이 있다.
이러한 문제점을 해결하기 위해 볼밀, 핀크러셔 등을 이용한 물리적 후처리를 진행하는 등의 다양한 시도가 이루어지고 있으나, 그에 따른 작업상의 어려움 및 비용 증가 문제가 새롭게 발생하고 있다. 또한, 다양한 금속 성분의 조합 및 물리적 특성을 가지는 탄소나노튜브 제조용 촉매가 개발되었으나, 고용량 이차전지용 도전재로서 적합한 분산성을 구현하는 것은 어려운 실정이다. 따라서, 전기전도성 및 분산성이 우수하여 이차전지용 도전재로서 사용 가능한 탄소나노튜브 및 이를 제조하기 위한 촉매의 개발이 요구되고 있다.
본 명세서의 기재사항은 전술한 종래 기술의 문제점을 해결하기 위한 것으로, 본 명세서의 일 목적은 전기전도성 및 분산성이 우수한 탄소나노튜브를 제조하기 위한 탄소나노튜브 제조용 촉매를 제공하는 것이다.
본 명세서의 다른 일 목적은 전기전도성 및 분산성이 우수한 이차전지 도전재용 탄소나노튜브 집합체를 제공하는 것이다.
일 측면에 따르면, 하기 식 1로 표시되는 금속 성분을 포함하는, 탄소나노튜브 제조용 촉매를 제공한다.
<식 1>
Cox:[M1, Zr]y:M2z
상기 식에서, Co는 코발트, 그의 산화물 또는 유도체를 나타내고, M1은 Al, Ca, Si, Ti 및 Mg 중에서 선택된 1종 이상의 금속, 그의 산화물 또는 유도체이고, Zr은 지르코늄, 그의 산화물 또는 유도체를 나타내고, M2는 W, V, Mn 및 Mo 중에서 선택된 1종 이상의 금속, 그의 산화물 또는 유도체이고, 0.2≤x/y≤2.6, 6≤x/z≤13이다.
일 실시예에 있어서, 상기 식에서, 0.5≤x/y≤2.0, 8≤x/z≤9일 수 있다.
다른 일 측면에 따르면, 상기 탄소나노튜브 제조용 촉매 상에 성장된 탄소나노튜브를 포함하는, 탄소나노튜브 집합체를 제공한다.
일 실시예에 있어서, 상기 탄소나노튜브 집합체는 다발형 탄소나노튜브를 포함할 수 있다.
일 실시예에 있어서, 상기 탄소나노튜브 집합체는 다중벽 탄소나노튜브를 포함할 수 있다.
일 실시예에 있어서, 상기 탄소나노튜브의 BET 비표면적이 130~260 m2/g일 수 있다.
일 실시예에 있어서, 상기 탄소나노튜브의 겉보기 밀도가 0.005~0.10 g/ml일 수 있다.
일 실시예에 있어서, 상기 탄소나노튜브의 평균 섬경이 3~30 nm일 수 있다.
일 실시예에 있어서, 상기 탄소나노튜브의 평균 분체저항이 0.005~0.045 Ω·cm일 수 있다.
일 실시예에 있어서, 상기 탄소나노튜브의 라만 분광 강도비(IG/ID)가 0.5~2.0일 수 있다.
일 실시예에 있어서, 상기 탄소나노튜브의 표면저항이 100~250 Ω/sq일 수 있다.
또 다른 일 측면에 따르면, 상기 탄소나노튜브 집합체를 포함하는, 이차전지용 도전재를 제공한다.
본 명세서의 일 측면에 따른 탄소나노튜브 제조용 촉매는 전기전도성 및 분산성이 우수한 탄소나노튜브의 합성에 적용될 수 있다.
또한 본 명세서의 다른 일 측면에 따른 탄소나노튜브 집합체는 전기전도성 및 분산성을 포함하는 물성이 우수하여 이차전지용 도전재로 사용할 경우 이차전지의 용량 및 수명 특성을 향상시킬 수 있다.
본 명세서의 일 측면의 효과는 상기한 효과로 한정되는 것은 아니며, 본 명세서의 상세한 설명 또는 청구범위에 기재된 구성으로부터 추론 가능한 모든 효과를 포함하는 것으로 이해되어야 한다.
도 1 및 도 2는 본 명세서의 일 실시예에 의한 탄소나노튜브 제조용 촉매를 이용하여 제조한 탄소나노튜브의 FE-SEM 이미지이다.
이하에서는 첨부한 도면을 참조하여 본 명세서의 일 측면을 설명하기로 한다. 그러나 본 명세서의 기재사항은 여러 가지 상이한 형태로 구현될 수 있으며, 따라서 여기에서 설명하는 실시예로 한정되는 것은 아니다. 그리고 도면에서 본 명세서의 일 측면을 명확하게 설명하기 위해서 설명과 관계없는 부분은 생략하였으며, 명세서 전체를 통하여 유사한 부분에 대해서는 유사한 도면 부호를 붙였다.
명세서 전체에서, 어떤 부분이 다른 부분과 "연결"되어 있다고 할 때, 이는 "직접적으로 연결"되어 있는 경우뿐 아니라, 그 중간에 다른 부재를 사이에 두고 "간접적으로 연결"되어 있는 경우도 포함한다. 또한 어떤 부분이 어떤 구성요소를 "포함"한다고 할 때, 이는 특별히 반대되는 기재가 없는 한 다른 구성요소를 제외하는 것이 아니라 다른 구성요소를 더 구비할 수 있다는 것을 의미한다.
본 명세서에서 수치적 값의 범위가 기재되었을 때, 이의 구체적인 범위가 달리 기술되지 않는 한 그 값은 유효 숫자에 대한 화학에서의 표준규칙에 따라 제공된 유효 숫자의 정밀도를 갖는다. 예를 들어, 10은 5.0 내지 14.9의 범위를 포함하며, 숫자 10.0은 9.50 내지 10.49의 범위를 포함한다.
이하, 첨부된 도면을 참고하여 본 명세서의 일 실시예를 상세히 설명하기로 한다.
탄소나노튜브 제조용 촉매
본 명세서의 일 측면에 따른 탄소나노튜브 제조용 촉매는 하기 식 1로 표시되는 금속 성분을 포함한다.
<식 1>
Cox:[M1, Zr]y:M2z
상기 식에서, Co는 코발트, 그의 산화물 또는 유도체를 나타낼 수 있다. 상기 Co는 상기 탄소나노튜브 제조용 촉매에서 주촉매로 작용할 수 있다. 상기 촉매를 이용하여 탄소나노튜브의 합성 시 상대적으로 우수한 분산성을 가지는 구조로 성장할 수 있다.
상기 식에서, M1은 Al, Ca, Si, Ti 및 Mg 중에서 선택된 1종 이상의 금속, 그의 산화물 또는 유도체이고, Zr은 지르코늄, 그의 산화물 또는 유도체를 나타낼 수 있다.
상기 [M1, Zr]은 불활성 지지체로, 주촉매 및 조촉매 성분을 담지할 수 있다. 상기 [M1, Zr]은 M1 및 Zr이 동일 또는 상이한 몰수로 포함된 것을 나타내며, 예를 들어, M1이 Zr 대비 1.5배 이상, 2배 이상, 2.5배 이상 또는 3배 이상의 몰수로 포함된 것일 수 있으나, 이에 한정되는 것은 아니다.
주촉매, 조촉매, 불활성 지지체의 조성 및 성분 간 비율에 따라 촉매의 결정 구조가 형성되고, 그 결과 탄소나노튜브의 성장 형태와 성질이 달라질 수 있다. 예를 들어, 불활성 지지체로 M1과 Zr을 포함하는 촉매를 이용하여 탄소나노튜브의 합성 시 도전재로서 적용 가능한 전기전도도와 전극에 도포 시 필요한 수준의 용해성, 분산성을 구현할 수 있다.
상기 식에서, M2는 W, V, Mn 및 Mo 중에서 선택된 1종 이상의 금속, 그의 산화물 또는 유도체일 수 있다. 상기 M2는 상기 탄소나노튜브 제조용 촉매에서 상기 주촉매의 작용을 보조하는 활성 성분인 조촉매로 작용할 수 있다. 전술한 탄소나노튜브의 구조적 특성을 유지하면서 합성 효율을 개선할 수 있다.
상기 식에서, 0.2≤x/y≤2.6일 수 있다. 상기 x/y는 지지체 대비 주촉매의 몰분율을 나타내며, 예를 들어 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0, 1.1, 1.2, 1.3, 1.4, 1.5, 1.6, 1.7, 1.8, 1.9, 2.0, 2.1, 2.2, 2.3, 2.4, 2.5, 2.6 또는 이들 중 두 값의 사이 범위일 수 있다. x/y 몰분율이 상기 범위보다 낮으면 촉매의 활성 및 그에 따른 탄소나노튜브의 합성 수율이 저하될 수 있고, 제조된 탄소나노튜브의 분산성이 저하되어 이차전지용 도전재로서 부적합할 수 있다. x/y 몰분율이 상기 범위보다 높으면 지지체 함량이 상대적으로 적어 촉매의 내구성이 저하될 수 있고, 합성된 탄소나노튜브가 인탱글(entangle) 구조를 나타내어 BET 비표면적 및 분체저항 물성이 저하되고, 분산성 및 전기전도성이 미흡하여 이차전지용 도전재로서 부적합할 수 있다.
상기 식에서, 6≤x/z≤13일 수 있다. 상기 x/z는 조촉매 대비 주촉매의 몰분율을 나타내며, 예를 들어 6, 6.5, 7, 7.5, 8, 8.5, 9, 9.5, 10, 10.5, 11, 11.5, 12, 12.5, 13 또는 이들 중 두 값의 사이 범위일 수 있다. x/z 몰분율이 상기 범위보다 낮으면 조촉매의 과다로 인해 반응 시 탄소나노튜브의 성장이 방해되어 생산량이 감소할 수 있고, 제조된 탄소나노튜브의 분체저항이 저하되어 이차전지용 도전재로서 부적합할 수 있다. x/z 몰분율이 상기 범위보다 높으면 조촉매의 부족으로 인해 반응 시 탄소나노튜브의 성장 활성도가 낮아짐에 따라 생산량이 감소할 수 있고, 합성된 탄소나노튜브의 분체저항이 저하되어 이차전지용 도전재로서 부적합할 수 있다.
상기 식에서, 0.5≤x/y≤2.0, 8≤x/z≤9일 수 있으나, 이에 한정되는 것은 아니다. 상기 촉매가 4성분계 원소를 포함하는 촉매인 경우, 각 성분 간의 비율이 상기 범위를 만족하면 목적하는 탄소나노튜브를 제조하기 위한 공정조건 제어가 보다 용이할 수 있으나, 이에 한정되는 것은 아니다.
상기 촉매는 탄소나노튜브를 합성하기 위한 화학기상증착법에 사용될 수 있고, 예를 들어, 유동층 화학기상증착법 또는 고정층 화학기상증착법에 사용될 수 있으나, 이에 한정되는 것은 아니다.
상기 촉매는 전기전도성 및 분산성이 우수한 탄소나노튜브의 제조에 적용될 수 있다.
탄소나노튜브 집합체
본 명세서의 다른 일 측면에 따른 탄소나노튜브 집합체는 상기 탄소나노튜브 제조용 촉매 상에 성장된 탄소나노튜브를 포함할 수 있다. 즉, 상기 탄소나노튜브 집합체는 촉매 조성물 및 탄소나노튜브를 모두 포함하는 개념으로 이해될 수 있다. 상기 탄소나노튜브 집합체는 전술한 촉매 시드(seed)로부터 성장한 탄소나노튜브를 포함한다. 상기 촉매에 따라 탄소나노튜브의 성장 패턴, 순도 등이 결정되어 도전재로의 적용 시 전기전도성, 분산성, 용해성 등이 달라질 수 있다. 따라서 탄소나노튜브의 직경, 길이, 순도 등이 유사하더라도 상이한 조성의 촉매로 제조된 것이라면 분산성, 용해성, 전기전도도 등의 특성이 달라질 수 있다.
상기 탄소나노튜브는 상기 촉매 조성물을 반응기로 투입한 후, 상압 및 고온 조건 하에서 에틸렌, 프로필렌, 아세틸렌, 메탄 등의 탄소원을 공급하면서 성장시키는 기상합성법에 따라 제조될 수 있다. 상기 탄소나노튜브의 성장은 고온의 열에 의해 분해된 탄화수소가 촉매 조성물 내로 침투, 포화된 후 탄소가 석출되면서 수행될 수 있으나, 이에 한정되는 것은 아니다.
상기 탄소나노튜브는 시드(seed) 역할을 하는 촉매 상에 개개의 가닥이 성장하여 다발(bundle)을 형성할 수 있다. 본 명세서에서 사용된 용어 "다발(bundle)"은 복수의 탄소나노튜브가 나란하게 배열되거나 상호 엉킨 상태의 번들 혹은 로프 형태를 지칭하는 것으로, 이와 달리 복수의 탄소나노튜브가 일정한 형상을 이루지 않고 존재하는 경우 “비다발형”이라 지칭하기도 한다.
일 예에서 상기 탄소나노튜브 집합체에는 각각의 탄소나노튜브가 직선형, 곡선형 또는 이들이 혼합된 형태로 존재할 수 있다. 상기 탄소나노튜브 각각은 단일벽, 이중벽 또는 다중벽 탄소나노튜브일 수 있다.
일 예에서 상기 탄소나노튜브 집합체는 복수의 탄소나노튜브가 상호 응집된 다발(bundle)형 탄소나노튜브를 포함할 수 있다. 상기 다발형 탄소나노튜브는 각각 직선형, 곡선형 또는 이들이 혼합된 형태로 존재할 수 있다.
일 예에서 상기 탄소나노튜브 집합체는 평균 벽 수가 3~20개인 다중벽 탄소나노튜브를 포함할 수 있다. 상기 탄소나노튜브 집합체는 단일벽 탄소나노튜브 대비 상대적으로 전도도가 낮다고 알려진 다중벽 탄소나노튜브를 사용하면서도 이차전지용 도전재로서의 필요 물성을 구현할 수 있다.
상기 탄소나노튜브의 순도는 90 % 이상일 수 있다. 예를 들어, 90 %, 91 %, 92 %, 93 %, 94 %, 95 %, 96 %, 97 %, 98 %, 99 % 이상일 수 있으나, 이에 한정되는 것은 아니다. 순도가 상기 범위를 벗어나면 전기전도도가 미흡하거나, 불순물이 전지 내부에서 반응하여 안전 사고가 발생할 수 있다.
상기 탄소나노튜브 집합체의 BET 비표면적(specific surface area)이 130~260 m2/g일 수 있다. 예를 들어, 130 m2/g, 140 m2/g, 150 m2/g, 160 m2/g, 170 m2/g, 180 m2/g, 190 m2/g, 200 m2/g, 210 m2/g, 220 m2/g, 230 m2/g, 240 m2/g, 250 m2/g, 260 m2/g 또는 이들 중 두 값의 사이 범위일 수 있다. 상기 BET 비표면적이 상기 범위보다 작으면 전기전도성이 저하되어 이차전지용 도전재로서 부적합할 수 있고, 상기 범위보다 높으면 분산성이 저하될 수 있다.
상기 탄소나노튜브 집합체의 겉보기 밀도(bulk density)가 0.005~0.10 g/ml일 수 있다. 예를 들어, 0.005 g/ml, 0.01 g/ml, 0.02 g/ml, 0.03 g/ml, 0.04 g/ml, 0.05 g/ml, 0.06 g/ml, 0.07 g/ml, 0.08 g/ml, 0.09 g/ml, 0.10 g/ml 또는 이들 중 두 값의 사이 범위일 수 있다. 상기 겉보기 밀도는 분말 형태의 탄소나노튜브를 이용하여 측정한 것일 수 있다. 겉보기 밀도가 상기 범위를 벗어나면 탄소나노튜브의 과도한 비산 문제가 발생하거나, 도전재 슬러리의 제조 시 분산성과 용해성이 미흡할 수 있다.
상기 탄소나노튜브의 평균 섬경이 3~30 nm일 수 있다. 예를 들어, 3 nm, 4 nm, 5 nm, 6 nm, 7 nm, 8 nm, 9 nm, 10 nm, 11 nm, 12 nm, 13 nm, 14 nm, 15 nm, 16 nm, 17 nm, 18 nm, 19 nm, 20 nm, 21 nm, 22 nm, 23 nm, 24 nm, 25 nm, 26 nm, 27 nm, 28 nm, 29 nm, 30 nm 또는 이들 중 두 값의 사이 범위일 수 있다. 평균 섬경이 상기 범위를 벗어나면 합성된 탄소나노튜브에 구조적으로 문제가 있거나, 목적하는 탄소나노튜브의 특성 구현이 미흡할 수 있다.
상기 탄소나노튜브 집합체의 평균 분체저항이 0.005~0.045 Ω·cm일 수 있다. 예를 들어, 0.005 Ω·cm, 0.006 Ω·cm, 0.007 Ω·cm, 0.008 Ω·cm, 0.009 Ω·cm, 0.01 Ω·cm, 0.011 Ω·cm, 0.012 Ω·cm, 0.013 Ω·cm, 0.014 Ω·cm, 0.015 Ω·cm, 0.016 Ω·cm, 0.017 Ω·cm, 0.018 Ω·cm, 0.019 Ω·cm, 0.02 Ω·cm, 0.021 Ω·cm, 0.022 Ω·cm, 0.023 Ω·cm, 0.024 Ω·cm, 0.025 Ω·cm, 0.026 Ω·cm, 0.027 Ω·cm, 0.028 Ω·cm, 0.029 Ω·cm, 0.03 Ω·cm, 0.031 Ω·cm, 0.032 Ω·cm, 0.033 Ω·cm, 0.034 Ω·cm, 0.035 Ω·cm, 0.036 Ω·cm, 0.037 Ω·cm, 0.038 Ω·cm, 0.039 Ω·cm, 0.04 Ω·cm, 0.041 Ω·cm, 0.042 Ω·cm, 0.043 Ω·cm, 0.044 Ω·cm, 0.045 Ω·cm 또는 이들 중 두 값의 사이 범위일 수 있다. 상기 분체저항이 상기 범위보다 높으면 전기전도성이 저하되어 이차전지용 도전재로서 부적합할 수 있다.
상기 탄소나노튜브의 구조를 분석하기 위한 방법 중, 탄소나노튜브의 표면 상태를 분석하는 라만 분광법(Raman Spectroscopy)이 유용하게 사용될 수 있다. 본 명세서에서 사용된 용어 "라만 분광법"은, 레이저 광과 같은 단색의 여기 광을 쬐었을 때, 분자의 진동수만큼의 차이가 있는 산란광이 생기는 현상인 라만 효과(Raman effect)에서 분자의 진동수를 구하는 분광법을 의미하는 것으로, 이러한 라만 분광법을 통해 탄소나노튜브의 결정성을 수치화하여 측정할 수 있다.
상기 탄소나노튜브의 라만 스펙트럼 중 파수 1580±50 ㎝-1 영역에 존재하는 피크를 G 밴드라고 하며, 이는 탄소나노튜브의 sp2 결합을 나타내는 피크로서, 구조적 결함이 없는 탄소 결정을 나타낼 수 있다. 또한, 파수 1360±50 ㎝-1 영역에 존재하는 피크를 D 밴드라고 하며, 이는 탄소나노튜브의 sp3 결합을 나타내는 피크로서, 구조적 결함을 함유하는 탄소를 나타낼 수 있다.
나아가, 상기 G 밴드 및 D 밴드의 피크 값을 각각 IG 및 ID라고 하며, 양자 간 비율인 라만 분광 강도비(IG/ID)를 통해 탄소나노튜브의 결정성을 수치화하여 측정할 수 있다. 즉, 라만 분광 강도비가 높은 값을 나타낼수록 탄소나노튜브의 구조적 결함이 적은 것을 의미하므로, 상기 라만 분광 강도비가 높은 값을 나타내는 탄소나노튜브를 사용하는 경우, 보다 우수한 전기전도성을 구현할 수 있다.
상기 탄소나노튜브의 라만 분광 강도비(IG/ID)가 0.5~2.0일 수 있다. 예를 들어, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0, 1.1, 1.2, 1.3, 1.4, 1.5, 1.6, 1.7, 1.8, 1.9, 2.0 또는 이들 중 두 값의 사이 범위일 수 있다. 라만 분광 강도비가 상기 범위를 벗어나면 탄소나노튜브의 분산성이 저하되어 전극에 도포 시 균일한 전도성을 구현하기 어려울 수 있다.
상기 탄소나노튜브의 표면저항이 100~250 Ω/sq일 수 있다. 예를 들어, 100 Ω/sq, 110 Ω/sq, 120 Ω/sq, 130 Ω/sq, 140 Ω/sq, 150 Ω/sq, 160 Ω/sq, 170 Ω/sq, 180 Ω/sq, 190 Ω/sq, 200 Ω/sq, 210 Ω/sq, 220 Ω/sq, 230 Ω/sq, 240 Ω/sq, 250 Ω/sq 또는 이들 중 두 값의 사이 범위일 수 있다. 상기 표면저항이 상기 범위보다 높으면 전기전도성이 저하되어 이차전지용 도전재로서 부적합할 수 있다.
이차전지용 도전재
본 명세서의 또 다른 일 측면에 따른 이차전지용 도전재는 상기 탄소나노튜브 집합체를 포함할 수 있다.
전극재 슬러리 등의 제조 시 용해성이 미흡하여 도전재로의 적용이 어려운 종래의 탄소나노튜브와 달리, 상기 탄소나노튜브 집합체는 슬러리 제조가 용이하고, 분산성이 우수할 수 있다. 상기 이차전지용 도전재는 전류가 국부적으로 집중되어 발생하는 안전사고를 억제할 수 있다.
상기 탄소나노튜브 집합체는 전기전도성 및 분산성을 포함하는 물성이 우수하여 이차전지용 도전재로 사용할 경우 이차전지의 용량 및 수명 특성을 향상시킬 수 있고, 그에 따라 에너지 밀도가 높고 자기 방전율이 낮은 고용량 이차전지의 생산에 적용될 수 있다.
상기 탄소나노튜브 집합체는 기존의 이차전지용 도전재로 사용되는 카본블랙 대비 분체저항이 우수하고, 적은 사용량으로도 에너지 밀도를 높일 수 있어 이차전지의 충전 속도 및 효율을 개선할 수 있다. 또한 상기 이차전지용 도전재를 사용하면 상대적으로 많은 양의 전극재를 포함하면서도 충분한 전류 특성을 가질 수 있다.
이하, 본 명세서의 실시예에 관하여 더욱 상세히 설명하기로 한다. 다만, 이하의 실험 결과는 상기 실시예 중 대표적인 실험 결과만을 기재한 것이며, 실시예 등에 의해 본 명세서의 범위와 내용이 축소되거나 제한되어 해석될 수 없다. 아래에서 명시적으로 제시하지 않은 본 명세서의 여러 구현예의 각각의 효과는 해당 부분에서 구체적으로 기재하도록 한다.
실시예 1~6 및 비교예 1~4
Co(NO3)3·6H2O, Al(NO3)3·9H2O, ZrO(NO3)2·2H2O 및 탈이온수를 반응기에 투입한 후, 질소 분위기 하에서 교반하여 제1 전구체 용액을 제조하였다. 30℃미만의 온도로 유지시킨 제1 전구체 용액에 NH4VO3를 투입하고 질소 분위기 하에서 교반하여 제2 전구체 용액을 제조하였다. 이 때, 각각의 전구체는 하기 표 1의 촉매 조성에 따라 필요한 양으로 투입하였다. 제2 전구체 용액을 3 L/hr의 속도로 공기와 함께 분무열분해 반응기 내부로 분무하여 열분해함으로써 촉매 조성물을 수득하였다. 공기의 분무 압력은 1~3 bar, 분무열분해 반응기 내부 온도는 750℃로 설정하였다.
구분 Co
(몰)
Al
(몰)
Zr
(몰)
V
(몰)
Co/(Al+Zr)
(몰분율)
Co/V
(몰분율)
실시예 1 6.59 3.20 0.83 0.76 1.64 8.67
실시예 2 6.09 3.80 1.12 0.7 1.24 8.70
실시예 3 5.76 4.20 1.24 0.67 1.06 8.60
실시예 4 5.36 4.68 1.38 0.62 0.88 8.65
실시예 5 4.85 5.29 1.57 0.56 0.71 8.66
실시예 6 4.18 6.09 1.80 0.48 0.53 8.71
비교예 1 7.70 1.87 0.55 0.89 3.18 8.65
비교예 2 2.00 8.72 2.58 0.23 0.18 8.70
비교예 3 4.52 4.94 1.46 1.31 0.71 3.45
비교예 4 4.97 5.42 1.60 0.29 0.71 17.14
비교예 5
제1 전구체 용액의 온도를 50℃로 유지시킨 것을 제외하면, 상기 실시예 1과 동일한 조성 및 방법으로 촉매 조성물을 제조하였다.
비교예 6
제1 전구체 용액에 NH4VO3를 투입하고 대기 하에서 교반한 것을 제외하면, 상기 실시예 1과 동일한 조성 및 방법으로 촉매 조성물을 제조하였다.
제조예
상기 실시예 및 비교예에 따른 촉매 조성물을 직경 350 mm의 유동층 화학기상증착 반응기에 투입하고, 질소 분위기 하에서 반응기 내부 온도를 700~800℃까지 승온하여 유지시켰다. 그 후, 질소 및 에틸렌이 혼합된 가스를 150 L/min의 속도로 공급하면서 50분 동안 반응시켜 탄소나노튜브를 합성하였다.
실험예 1
상기 제조예에 따라 합성한 탄소나노튜브의 구조, 섬경 및 벽 수를 FE-SEM 이미지를 통하여 확인하고, BET 비표면적(specific surface area) 및 분체저항을 측정하여 하기 표 2에 나타내었다. BET 비표면적은 TriStar II 3020 장비(Micrometritics 社)를 사용하여 측정하였다. 분체저항은 HPRM-FA2장비(한테크 社)를 사용하여 겉보기 밀도(bulk density)를 측정한 후, 겉보기 밀도에 따른 체적저항률(Ω·cm) 추세선을 활용하여 밀도가 0.65±0.01g/ml일 때의 체적 저항값을 산출하였다.
도 1 및 도 2는 각각 실시예 6 및 비교예 1의 촉매 조성물을 사용하여 제조예에 따라 합성한 탄소나노튜브의 FE-SEM 이미지이다.
구분 탄소나노튜브 구조 BET 비표면적 (m2/g) 분체저항 (Ω·cm)
실시예 1 Bundle 152 0.035
실시예 2 Bundle 156 0.029
실시예 3 Bundle 162 0.026
실시예 4 Bundle 169 0.025
실시예 5 Bundle 187 0.026
실시예 6 Bundle 192 0.018
비교예 1 Entangle 105 0.046
비교예 2 Bundle 279 0.020
비교예 3 Bundle 193 0.047
비교예 4 Bundle 242 0.047
실시예 1 내지 6의 촉매 조성물을 사용하여 합성한 탄소나노튜브는 도 1과 같이 다발(bundle) 형태의 구조를 나타내었으며, BET 비표면적 및 분체저항 물성이 우수하여 이차전지용 도전재로서 적용 가능한 것을 확인하였다.
Co/(Al+Zr) 몰분율이 3.18로 높은 비교예 1의 촉매 조성물을 사용하여 합성한 탄소나노튜브는 도 2와 같이 인탱글(entangle) 구조를 나타내어, 실시예 대비 BET 비표면적 및 분체저항 물성이 저하되었다.
Co/(Al+Zr) 몰분율이 0.18로 낮은 비교예 2의 촉매 조성물을 사용하여 합성한 탄소나노튜브는 BET 비표면적이 매우 높아 분체저항은 우수하나, BET 비표면적이 높음에 따라 분산액 제조 시의 분산성이 저하되었다.
Co/V 몰분율이 3.45로 낮은 비교예 3의 촉매 조성물을 사용하여 합성한 탄소나노튜브는 활성 성분인 조촉매의 과다로 인해 반응 시 탄소나노튜브의 성장을 방해하여 생산량이 감소하였으며, 실시예 대비 합성된 탄소나노튜브의 분체저항이 저하되었다.
Co/V 몰분율이 17.29으로 높은 비교예 4의 촉매 조성물을 사용하여 합성한 탄소나노튜브는 활성 성분인 조촉매의 부족으로 인해 반응 시 탄소나노튜브의 성장 활성도가 낮아짐에 따라 생산량이 감소하였으며, 실시예 대비 합성된 탄소나노튜브의 분체저항이 저하되었다.
실험예 2
상기 제조예에 따라 합성한 탄소나노튜브의 전기전도성 및 분산성을 평가하기 위하여, 탄소나노튜브의 표면저항 측정 및 분산액 평가를 수행하고 그 결과를 하기 표 3에 나타내었다.
탄소나노튜브의 표면저항은 바 코팅(bar coating) 후 4점법(4-point probe)을 이용하여 측정하였다. 탄소나노튜브의 분산액 평가는 N-메틸피롤리돈(NMP, N-methylpyrrolidone)에 5중량%가 되도록 탄소나노튜브를 첨가하고 비드밀 장비를 이용하여 실시하였다. RRG(Rotate Ring Mill) 장비 제조 시 점도가 더 이상 떨어지지 않는 경우 분산 평가를 완료하고 제조시간을 측정하였으며, 48시간 이상 제조 후에도 분산이 이루어지지 않은 경우 분산 안됨으로 평가하였다.
구분 표면저항 (Ω/sq) 제조시간 (hr)
실시예6 190 32
비교예1 300 10
비교예2 - 분산 안됨
실시예 6의 촉매 조성물을 사용하여 합성한 탄소나노튜브는 표면저항이 낮아 전기전도성이 우수하고, 분산성이 높은 것을 확인하였다.
비교예 1의 촉매 조성물을 사용하여 합성한 탄소나노튜브는 인탱글 구조를 나타내어 분산액 제조시간은 짧으나 분산이 제대로 이루어지지 않아 실시예 대비 전기전도성이 저하되었다.
비교예 2의 촉매 조성물을 사용하여 합성한 탄소나노튜브는 BET 비표면적이 매우 높아짐에 따라 분산이 이루어지지 않아 5% 분산액 제조에 실패하였다.
실험예 3
상기 실시예 및 비교예에서 제2 전구체 용액의 제조방법에 따른 용액 침전 현상을 평가하여 하기 표 4에 나타내었다.
구분 제1 전구체 용액 온도 제2 전구체 용액 제조 분위기 침전 발생 여부
실시예 1 30℃미만 질소 미발생
비교예 5 50℃ 질소 발생
비교예 6 30℃미만 대기 발생
실시예 1과 비교예 5를 비교하면, 제1 전구체 용액의 온도가 30℃이상인 경우 열에 의한 부반응이 진행되어 침전 현상이 발생하였다.
실시예 1과 비교예 6을 비교하면, 질소 분위기 하에서 제2 전구체 용액을 제조하는 경우, 산성을 띠는 제1 전구체 용액과 염기성을 띠는 NH4VO3 전구체의 반응 시에 발생하는 침전 현상을 억제할 수 있음을 확인하였다.
용액 침전 현상이 발생하는 경우 촉매 조성물의 생산성 및 품질 균일성이 매우 저하되는 것을 확인하였다.
전술한 본 명세서의 설명은 예시를 위한 것이며, 본 명세서의 일 측면이 속하는 기술분야의 통상의 지식을 가진 자는 본 명세서에 기재된 기술적 사상이나 필수적인 특징을 변경하지 않고서 다른 구체적인 형태로 쉽게 변형이 가능하다는 것을 이해할 수 있을 것이다. 그러므로 이상에서 기술한 실시예들은 모든 면에서 예시적인 것이며 한정적이 아닌 것으로 이해해야만 한다. 예를 들어, 단일형으로 설명되어 있는 각 구성 요소는 분산되어 실시될 수도 있으며, 마찬가지로 분산된 것으로 설명되어 있는 구성 요소들도 결합된 형태로 실시될 수 있다.
본 명세서의 범위는 후술하는 청구범위에 의하여 나타내어지며, 청구범위의 의미 및 범위 그리고 그 균등 개념으로부터 도출되는 모든 변경 또는 변형된 형태가 본 명세서의 범위에 포함되는 것으로 해석되어야 한다.

Claims (12)

  1. 하기 식 1로 표시되는 금속 성분을 포함하는, 탄소나노튜브 제조용 촉매:
    <식 1>
    Cox:[M1, Zr]y:M2z
    상기 식에서,
    Co는 코발트, 그의 산화물 또는 유도체를 나타내고,
    M1은 Al, Ca, Si, Ti 및 Mg 중에서 선택된 1종 이상의 금속, 그의 산화물 또는 유도체이고,
    Zr은 지르코늄, 그의 산화물 또는 유도체를 나타내고,
    M2는 W, V, Mn 및 Mo 중에서 선택된 1종 이상의 금속, 그의 산화물 또는 유도체이고,
    0.2≤x/y≤2.6, 6≤x/z≤13이다.
  2. 제1항에 있어서,
    상기 식에서, 0.5≤x/y≤2.0, 8≤x/z≤9인, 탄소나노튜브 제조용 촉매.
  3. 제1항의 탄소나노튜브 제조용 촉매 상에 성장된 탄소나노튜브를 포함하는, 탄소나노튜브 집합체.
  4. 제3항에 있어서,
    상기 탄소나노튜브 집합체는 다발형 탄소나노튜브를 포함하는, 탄소나노튜브 집합체.
  5. 제3항에 있어서,
    상기 탄소나노튜브 집합체는 다중벽 탄소나노튜브를 포함하는, 탄소나노튜브 집합체.
  6. 제3항에 있어서,
    상기 탄소나노튜브의 BET 비표면적이 130~260 m2/g인, 탄소나노튜브 집합체.
  7. 제3항에 있어서,
    상기 탄소나노튜브의 겉보기 밀도가 0.005~0.10 g/ml인, 탄소나노튜브 집합체.
  8. 제3항에 있어서,
    상기 탄소나노튜브의 평균 섬경이 3~30 nm인, 탄소나노튜브 집합체.
  9. 제3항에 있어서,
    상기 탄소나노튜브의 평균 분체저항이 0.005~0.045 Ω·cm인, 탄소나노튜브 집합체.
  10. 제3항에 있어서,
    상기 탄소나노튜브의 라만 분광 강도비(IG/ID)가 0.5~2.0인, 탄소나노튜브 집합체.
  11. 제3항에 있어서,
    상기 탄소나노튜브의 표면저항이 100~250 Ω/sq인, 탄소나노튜브 집합체.
  12. 제3항의 탄소나노튜브 집합체를 포함하는, 이차전지용 도전재.
PCT/KR2022/002894 2021-10-12 2022-03-02 탄소나노튜브 제조용 촉매 및 이를 이용하여 제조한 탄소나노튜브 집합체 WO2023063505A1 (ko)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2021-0135297 2021-10-12
KR1020210135297A KR102584287B1 (ko) 2021-10-12 2021-10-12 탄소나노튜브 제조용 촉매 및 이를 이용하여 제조한 탄소나노튜브 집합체

Publications (1)

Publication Number Publication Date
WO2023063505A1 true WO2023063505A1 (ko) 2023-04-20

Family

ID=85988331

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2022/002894 WO2023063505A1 (ko) 2021-10-12 2022-03-02 탄소나노튜브 제조용 촉매 및 이를 이용하여 제조한 탄소나노튜브 집합체

Country Status (2)

Country Link
KR (1) KR102584287B1 (ko)
WO (1) WO2023063505A1 (ko)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20080094690A (ko) * 2006-02-16 2008-10-23 바이엘 머티리얼사이언스 아게 촉매의 연속적 제조 방법
KR20140037441A (ko) * 2012-09-18 2014-03-27 한화케미칼 주식회사 탄소나노튜브 제조용 금속촉매의 제조방법 및 이를 이용한 탄소나노튜브의 제조방법
KR20150037661A (ko) * 2013-09-30 2015-04-08 주식회사 엘지화학 탄소나노튜브 제조용 촉매 및 이를 이용하여 제조된 탄소나노튜브
KR20180101223A (ko) * 2017-03-03 2018-09-12 금호석유화학 주식회사 다중벽 탄소나노튜브의 대량 생산을 위한 촉매
KR20180101222A (ko) * 2017-03-03 2018-09-12 금호석유화학 주식회사 연속식 공정을 이용한 다중벽 탄소나노튜브의 제조방법

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20080094690A (ko) * 2006-02-16 2008-10-23 바이엘 머티리얼사이언스 아게 촉매의 연속적 제조 방법
KR20140037441A (ko) * 2012-09-18 2014-03-27 한화케미칼 주식회사 탄소나노튜브 제조용 금속촉매의 제조방법 및 이를 이용한 탄소나노튜브의 제조방법
KR20150037661A (ko) * 2013-09-30 2015-04-08 주식회사 엘지화학 탄소나노튜브 제조용 촉매 및 이를 이용하여 제조된 탄소나노튜브
KR20180101223A (ko) * 2017-03-03 2018-09-12 금호석유화학 주식회사 다중벽 탄소나노튜브의 대량 생산을 위한 촉매
KR20180101222A (ko) * 2017-03-03 2018-09-12 금호석유화학 주식회사 연속식 공정을 이용한 다중벽 탄소나노튜브의 제조방법

Also Published As

Publication number Publication date
KR102584287B1 (ko) 2023-10-05
KR20230052118A (ko) 2023-04-19

Similar Documents

Publication Publication Date Title
JP4835881B2 (ja) リチウムイオン電池用電極およびその製造方法
KR101620720B1 (ko) 탄소나노튜브 제조용 촉매 및 이를 이용하여 제조된 탄소나노튜브
WO2020096338A1 (ko) 탄소 담체 상에 담지된 단일원자 촉매의 제조방법
WO2015005709A1 (ko) 담지촉매, 탄소나노튜브 집합체 및 그 제조방법
WO2021225254A1 (ko) 육방정 구조의 지지체에 촉매금속이 담지된 촉매 및 이의 제조방법
WO2015190774A1 (ko) 벌크밀도가 조절된 탄소나노튜브 응집체의 제조방법
WO2016171386A1 (ko) 고직경 저밀도 카본나노튜브 및 그 제조방법
KR20200012789A (ko) 탄소나노튜브, 이의 제조방법 및 이를 포함하는 일차전지용 양극
WO2018226063A1 (ko) 분산성이 우수한 복합 도전재, 이를 사용한 리튬 이차전지의 전극 형성용 슬러리 및 리튬 이차전지
WO2017018667A1 (ko) 열안정성이 개선된 카본나노튜브
WO2013105780A1 (ko) 카본나노튜브용 균질 담지 촉매의 제조방법
WO2022124799A1 (ko) 탄소나노튜브 제조용 담지촉매
WO2023063505A1 (ko) 탄소나노튜브 제조용 촉매 및 이를 이용하여 제조한 탄소나노튜브 집합체
WO2018143602A1 (ko) 탄소나노튜브 섬유의 제조방법 및 이로 제조된 탄소나노튜브 섬유
WO2023063506A1 (ko) 탄소나노튜브 제조용 촉매 및 탄소나노튜브의 제조방법
WO2017048053A1 (ko) 결정성이 개선된 카본나노튜브
WO2019035663A1 (ko) 그래핀 나노구체 제조방법
WO2022177297A1 (ko) 탄소나노튜브를 포함하는 고무 조성물
WO2015047050A1 (ko) 탄소나노튜브 제조용 촉매 및 이를 이용하여 제조된 탄소나노튜브
WO2020180163A1 (ko) 탄소나노튜브, 상기 탄소나노튜브를 포함하는 전극 및 이차 전지
KR20230134126A (ko) 탄소 나노튜브 하이브리드 재료 및 하이브리드 재료제조 방법
WO2013100693A1 (ko) 탄화규소 분말 제조 방법
WO2013066105A1 (ko) 이중벽 탄소나노튜브 및 그 제조방법
WO2015047048A1 (ko) 탄소나노튜브 집합체의 벌크 밀도 조절 방법
US20240182309A1 (en) Preparing method for low-diameter carbon nanotube and carbon nanotube prepared by the method

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22881137

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2022881137

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2022881137

Country of ref document: EP

Effective date: 20240513