WO2023063406A1 - Thermally conductive resin sheet - Google Patents

Thermally conductive resin sheet Download PDF

Info

Publication number
WO2023063406A1
WO2023063406A1 PCT/JP2022/038304 JP2022038304W WO2023063406A1 WO 2023063406 A1 WO2023063406 A1 WO 2023063406A1 JP 2022038304 W JP2022038304 W JP 2022038304W WO 2023063406 A1 WO2023063406 A1 WO 2023063406A1
Authority
WO
WIPO (PCT)
Prior art keywords
thermally conductive
component
resin sheet
conductive resin
less
Prior art date
Application number
PCT/JP2022/038304
Other languages
French (fr)
Japanese (ja)
Inventor
賢人 土屋
裕希 星山
奈未 中島
和幸 矢原
Original Assignee
積水化学工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 積水化学工業株式会社 filed Critical 積水化学工業株式会社
Priority to JP2022566028A priority Critical patent/JPWO2023063406A1/ja
Publication of WO2023063406A1 publication Critical patent/WO2023063406A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/18Manufacture of films or sheets
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/01Use of inorganic substances as compounding ingredients characterized by their specific function
    • C08K3/013Fillers, pigments or reinforcing additives
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/38Boron-containing compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L33/00Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides or nitriles thereof; Compositions of derivatives of such polymers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L9/00Compositions of homopolymers or copolymers of conjugated diene hydrocarbons
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/34Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
    • H01L23/36Selection of materials, or shaping, to facilitate cooling or heating, e.g. heatsinks
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/34Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
    • H01L23/36Selection of materials, or shaping, to facilitate cooling or heating, e.g. heatsinks
    • H01L23/373Cooling facilitated by selection of materials for the device or materials for thermal expansion adaptation, e.g. carbon

Definitions

  • the present invention relates to a thermally conductive resin sheet.
  • a thermally conductive resin sheet is mainly placed between a heating element such as a semiconductor package and a radiator such as aluminum or copper, and has the function of quickly transferring the heat generated by the heating element to the radiator. have.
  • a heating element such as a semiconductor package
  • a radiator such as aluminum or copper
  • thermally conductive resin sheets that can promote more rapid heat dissipation with improved efficiency.
  • Patent Document 1 describes an invention relating to a thermally conductive resin sheet containing liquid polybutene and a thermally conductive filler.
  • Patent Document 2 describes an epoxy resin and hexagonal boron nitride or the like as a thermally conductive filler.
  • An invention relating to a thermally conductive resin sheet containing Further, Patent Document 3 describes a resin composition using both specific plate-shaped heat conductive particles and spherical heat conductive particles, and describes that the resin composition is excellent in heat conductivity.
  • thermally conductive resin sheets tend to harden when a large amount of thermally conductive filler is added to improve thermal conductivity. etc., and there is concern that electronic components may be damaged. There is a need for a thermally conductive resin sheet that prevents such problems and has good flexibility. On the other hand, if the design emphasizes flexibility, the tackiness of the thermally conductive resin sheet becomes stronger, making it difficult to peel off the separate film attached to the surface of the thermally conductive resin sheet. Deformation of the sheet occurs, and the yield deteriorates.
  • thermally conductive resin sheet has strong tackiness, a residue remains on the adherend when it is peeled off, which necessitates cleaning and replacement of parts for rework, increasing the process load.
  • designing for flexibility increases oil bleeding, which may contaminate electronic components and cause contact failure.
  • the present inventors have found that the component ratio of the C component, which is a component with high molecular mobility measured by pulse NMR, the relaxation time of the C component, and the The inventors have found that the above problem can be solved by adjusting the product of the component ratio and the relaxation time of the C component within a specific range, and have completed the present invention.
  • the present invention relates to the following [1] to [7].
  • [1] Waveform separation of the 1H spin-spin relaxation free induction decay curve measured in pulse NMR into three curves derived from the three components of the A component, the B component, and the C component in ascending order of relaxation time.
  • the obtained component ratio of the C component is 5% or more and 35% or less
  • the relaxation time of the C component is 600 milliseconds or less
  • the product of the component ratio of the C component and the relaxation time of the C component is less than 5000, thermal conductivity resin sheet.
  • thermally conductive resin sheet according to any one of [1] to [4] above, containing at least one resin selected from the group consisting of elastomer resins and acrylic resins.
  • thermoly conductive resin sheet with excellent flexibility, low tackiness, and suppressed oil bleeding.
  • FIG. 1 is a schematic cross-sectional view of a thermally conductive resin sheet made of a laminate
  • FIG. 2 is a schematic cross-sectional view of a thermally conductive resin sheet composed of a laminate in use.
  • the 1H spin-spin relaxation free induction decay curve measured by pulse NMR is divided into three curves derived from three components, A component, B component, and C component, in order of shortest relaxation time.
  • the component ratio of the C component obtained by waveform separation is 5% or more and 35% or less
  • the relaxation time of the C component is 600 milliseconds or less
  • the product of the component ratio of the C component and the relaxation time of the C component is less than 5000. .
  • a thermally conductive resin sheet is measured by pulse NMR
  • a 1H spin-spin relaxation free induction decay curve is obtained.
  • the obtained free induction decay curve can be waveform-separated into three curves derived from the three components of the A component, the B component and the C component in ascending order of relaxation time. That is, the actually measured free induction attenuation curve is obtained by superimposing the free induction attenuation curve derived from the three components of the A component, the B component and the C component.
  • Such a method of separating and analyzing three components using pulse NMR is known, and examples of literature include Japanese Patent Laid-Open No. 2018-2983.
  • the A component is a component with a short relaxation time in pulse NMR measurement, meaning a hard component with low molecular mobility.
  • the C component is a component with a long relaxation time in pulse NMR measurement, and means a soft component with high molecular mobility.
  • the B component has a relaxation time in pulsed NMR measurements between the A and C components, so the molecular mobility is also between the A and C components.
  • the component ratio is the ratio to the total amount of the A component, the B component and the C component.
  • the component ratio of the C component, the relaxation time of the C component, and the product of the component ratio of the C component and the relaxation time of the C component are adjusted to specific ranges.
  • the component ratio of the C component means the component ratio of the component with high molecular mobility in the thermally conductive sheet
  • the relaxation time of the C component indicates the degree of molecular mobility of the component with high molecular mobility. show. Note that the pulse NMR measurement is performed at 25° C. by the CPMG method.
  • the component ratio of the C component in the thermally conductive resin sheet of the present invention is 5% or more and 35% or less. If the component ratio of the C component is less than 5%, the flexibility of the thermally conductive resin sheet is reduced, and the sheet becomes hard, which may damage electronic components. If the component ratio of the C component exceeds 35%, the tackiness of the thermally conductive resin sheet increases, and problems such as difficulty in peeling the separate film from the thermally conductive resin sheet tend to occur. Increased oil bleeding.
  • the component ratio of component C is preferably 5.5% or more and 30% or less, more preferably 6% or more and 20% or less, and still more preferably, from the viewpoint of improving flexibility and lowering tackiness. It is 8% or more and 15% or less.
  • the relaxation time of the C component of the thermally conductive resin sheet of the present invention is 600 milliseconds or less.
  • the relaxation time of the C component of the thermally conductive resin sheet is preferably 300 milliseconds or less, more preferably 100 milliseconds or less, and still more preferably from the viewpoint of reducing tackiness and suppressing oil bleeding. is less than 50 milliseconds.
  • the relaxation time of the C component is preferably 5 milliseconds or more, more preferably 9 milliseconds or more, from the viewpoint of ensuring the flexibility of the thermally conductive resin sheet.
  • the product (% ⁇ milliseconds) of the component ratio (%) of the C component and the relaxation time (milliseconds) of the C component in the thermally conductive resin sheet of the present invention is less than 5,000.
  • the product of the component ratio (%) of the C component and the relaxation time (milliseconds) of the C component is 5000 or more, there are many components with high molecular mobility in the thermally conductive resin sheet.
  • the tackiness of the resin sheet becomes high, and problems such as difficulty in peeling of the separate film are likely to occur, and more oil bleeds onto the sheet surface.
  • the product of the component ratio (%) of the C component and the relaxation time (milliseconds) of the C component is preferably 3000 or less, more preferably 1000 or less, from the viewpoint of reducing tackiness and suppressing oil bleeding. Yes, more preferably 500 or less. Then, from the viewpoint of improving flexibility, the product of the component ratio (%) of the C component and the relaxation time (milliseconds) of the C component is preferably 30 or more, more preferably 50 or more, and further Preferably it is 100 or more.
  • flexibility and low tackiness can be obtained.
  • a thermally conductive resin sheet in which oil bleeding is suppressed can be provided.
  • the component ratio of the C component, the relaxation time of the C component, and the product of the component ratio of the C component and the relaxation time of the C component are determined by the content of the resin and the thermally conductive filler contained in the thermally conductive resin sheet, the type of resin and A desired value can be obtained by adjusting the viscosity (or weight average molecular weight), the type of the thermally conductive filler, and the like.
  • the thermally conductive resin sheet of the present invention preferably has a contact time of 1.5 seconds or less as measured by a tap tester.
  • the adhesion time is 1.5 seconds or less, the thermally conductive resin sheet has low tackiness.
  • the adhesion time is preferably 1.3 seconds or less, more preferably 1.0 seconds or less.
  • the adhesion time was measured by pressing a SUS (stainless steel) probe with a load of 3000 gf/cm 2 onto the surface of the thermally conductive resin sheet for 10 seconds using a tap tester, and then vertically at a speed of 0.5 mm/s. It means the time from the start of pulling up until the probe comes off the thermally conductive resin sheet.
  • the SUS probe diameter (diameter) is 5.6 mm.
  • the 30% compressive strength of the thermally conductive resin sheet of the present invention is preferably 3000 kPa or less.
  • the 30% compressive strength of the thermally conductive resin sheet is preferably 1500 kPa or less, more preferably 1000 kPa or less, and even more preferably 800 kPa or less.
  • the 30% compressive strength of the thermally conductive resin sheet is usually 10 kPa or more, preferably 50 kPa or more.
  • the 30% compressive strength of the thermally conductive resin sheet can be adjusted by the type of resin constituting the thermally conductive resin sheet described later, the presence or absence of cross-linking, the type and amount of thermally conductive filler, and the like.
  • the 30% compressive strength means the load when compressed by a thickness corresponding to 30% of the initial thickness, and can be obtained by the method described in Examples.
  • the thermal conductivity of the thermally conductive resin sheet of the present invention is preferably 6 W/m ⁇ K or more.
  • the thermal conductivity of the thermally conductive resin sheet is preferably 8 W/mK or more, more preferably 10 W/m ⁇ K or more.
  • the higher the thermal conductivity of the thermally conductive resin sheet the better, but it is usually 100 W/m ⁇ K or less.
  • the thermal conductivity can be easily adjusted to a desired value by, for example, adjusting the content, orientation, etc. of the thermally conductive filler, which will be described later.
  • the thermally conductive resin sheet of the present invention contains a resin, and the type of the resin is not particularly limited, but from the viewpoint of improving flexibility, one or more selected from the group consisting of elastomer resins and acrylic resins. is preferably
  • the resin contained in the thermally conductive resin sheet may be solid or liquid, but from the viewpoint of better flexibility, it is preferably a liquid resin such as a liquid elastomer resin.
  • the term "liquid” means a liquid state at normal temperature (23°C) and normal pressure (1 atmosphere)
  • solid state means a solid state at normal temperature (23°C) and normal pressure (1 atmosphere).
  • elastomer resins include acrylonitrile butadiene rubber, ethylene-propylene-diene rubber, ethylene-propylene rubber, natural rubber, polyisoprene rubber, polybutadiene rubber, hydrogenated polybutadiene rubber, styrene-butadiene block copolymer, and hydrogenated styrene.
  • elastomer resins may be solid or liquid, but liquid elastomer resins are preferred.
  • the liquid elastomer resin is not particularly limited, and for example, among the elastomer resins described above, liquid ones can be used. Among them, liquid polyisoprene rubber and liquid polybutadiene rubber are preferable. It is also preferable to use UV-curable liquid polyisoprene rubber as the liquid polyisoprene rubber.
  • UV-curable liquid polyisoprene rubbers include liquid polyisoprene rubbers having (meth)acryloyl groups at their terminals. In addition, a (meth)acryloyl group means at least one of an acryloyl group and a methacryloyl group. Only one type of elastomer resin may be used, or a plurality of types may be used in combination.
  • the viscosity of the elastomer resin at 38° C. is preferably 15 to 350 Pa ⁇ s, more preferably 20 to 200 Pa ⁇ s, still more preferably 30 to 100 Pa ⁇ s.
  • the viscosity of the resin is within the above range, and by adjusting the type and content of the thermally conductive filler as described later, the component ratio of the C component measured by pulse NMR of the thermally conductive resin sheet, the C component and the product of the component ratio of the C component and the relaxation time of the C component can be easily adjusted within the predetermined ranges described above.
  • the viscosity can be measured with a Brookfield viscometer at 38°C.
  • the weight average molecular weight of the elastomer resin is preferably 10,000 to 40,000, more preferably 15,000 to 35,000, still more preferably 20,000 to 30,000.
  • the component ratio of the C component measured by pulse NMR of the thermally conductive resin sheet, the relaxation time of the C component, and the component ratio of the C component and the relaxation time of the C component It becomes easy to adjust the product of to within the predetermined range described above.
  • a weight average molecular weight is a weight average molecular weight in terms of polystyrene measured by gel permeation chromatography (GPC).
  • acrylic resins include polymers of monomer components containing one or more acrylic monomers selected from acrylic acid, acrylic acid esters, methacrylic acid, and methacrylic acid esters. It may be a combination or a copolymer of acrylic monomers and other monomers.
  • the acrylic resin may be a solid acrylic resin or a liquid acrylic resin.
  • the acrylic resin is preferably a polymer of a monomer component containing one or more selected from acrylic acid ester and methacrylic acid ester, more preferably a polymer of a monomer component containing acrylic acid ester.
  • the acrylic acid ester is not particularly limited, and examples thereof include methyl acrylate, ethyl acrylate, n-butyl acrylate, isobutyl acrylate, 2-ethylhexyl acrylate, cyclohexyl acrylate and the like.
  • the methacrylic acid ester is not particularly limited, and examples thereof include methyl methacrylate, ethyl methacrylate, n-butyl methacrylate, isobutyl methacrylate, 2-ethylhexyl methacrylate, cyclohexyl methacrylate and the like.
  • the acrylic resin is preferably an acrylic resin having at least one functional group selected from the group consisting of a carboxyl group, a hydroxyl group, an epoxy group and an amide group, and more preferably selected from the group consisting of a carboxyl group and a hydroxyl group.
  • Acrylic resins having at least one functional group are preferred. Only one type of acrylic resin may be used, or a plurality of types may be used in combination.
  • the acrylic resin preferably has a weight average molecular weight of 50,000 to 1,000,000, more preferably 100,000 to 1,000,000, and still more preferably 300,000 to 900,000.
  • the weight average molecular weight of the acrylic resin is in such a range, the component ratio of the C component measured by pulse NMR of the thermally conductive resin sheet, the relaxation time of the C component, the component ratio of the C component and the relaxation of the C component It becomes easier to adjust the product of time to the predetermined range described above.
  • a weight average molecular weight is a weight average molecular weight in terms of polystyrene measured by gel permeation chromatography (GPC).
  • the content of at least one resin selected from the group consisting of elastomer resins and acrylic resins in the thermally conductive resin sheet of the present invention is preferably 30% by mass or more, based on the total amount of the thermally conductive resin sheet. More preferably 35% by mass or more, still more preferably 40% by mass or more, and preferably 60% by mass or less, more preferably 55% by mass or less.
  • the content of the liquid resin is preferably 60% by mass or more, more preferably 90% by mass or more, and still more preferably 100% by mass, based on the total amount of resin in the thermally conductive resin sheet of the present invention. is.
  • the thermally conductive resin sheet of the present invention preferably contains a thermally conductive filler.
  • the thermally conductive filler is dispersed in the resin component of the thermally conductive resin sheet to increase thermal conductivity.
  • the average particle size of the thermally conductive filler is preferably 0.1-300 ⁇ m, more preferably 0.5-100 ⁇ m, still more preferably 5-50 ⁇ m. The average particle size can be obtained by measuring the particle size distribution with a laser diffraction particle size distribution analyzer.
  • the thermally conductive filler may be a spherical filler or a non-spherical filler, but from the viewpoint of increasing the thermal conductivity of the thermally conductive resin sheet, it is preferable to contain at least a non-spherical filler. In addition, only 1 type may be used for a thermally conductive filler, and 2 or more types may be used together.
  • non-spherical fillers examples include plate-like fillers such as scaly and flaky fillers, needle-like fillers, fibrous fillers, dendritic fillers, amorphous fillers, aggregated fillers, and the like.
  • a plate-like filler is preferable from the viewpoint of improving the thermal conductivity of the thermally conductive resin sheet.
  • spherical means a shape with an aspect ratio of 1.0 to 2.0, preferably 1.0 to 1.5, and does not necessarily mean a true sphere.
  • the aspect ratio in the case of a spherical filler means length / breadth ratio.
  • non-spherical means a shape other than the above spherical shape, that is, a shape with an aspect ratio of more than 2.
  • the aspect ratio of the thermally conductive filler is preferably 5 or more, more preferably 10 or more, and usually 200 or less.
  • the aspect ratio is an average aspect ratio calculated by weighted averaging the aspect ratios of the respective thermally conductive fillers.
  • the thermal conductivity in the thickness direction can be improved by orienting the thermally conductive filler having a high aspect ratio at a high orientation angle as described later.
  • the aspect ratio is the ratio of the maximum length to the minimum length of the filler (maximum length/minimum length). is the ratio of length to thickness (maximum length/thickness).
  • the aspect ratio may be determined as an average value by observing a sufficient number (for example, 250) of thermally conductive fillers with a scanning electron microscope.
  • the thermal conductivity of the thermally conductive filler is not particularly limited, it is preferably 12 W/m ⁇ K or more, more preferably 15 to 70 W/m ⁇ K, still more preferably 25 to 70 W/m ⁇ K.
  • Materials for the thermally conductive filler include, for example, carbides, nitrides, oxides, hydroxides, metals, and carbonaceous materials.
  • Carbides include, for example, silicon carbide, boron carbide, aluminum carbide, titanium carbide, and tungsten carbide.
  • nitrides include silicon nitride, boron nitride, boron nitride nanotubes, aluminum nitride, gallium nitride, chromium nitride, tungsten nitride, magnesium nitride, molybdenum nitride, and lithium nitride.
  • oxides include iron oxide, silicon oxide (silica), aluminum oxide (alumina) (including hydrates of aluminum oxide (boehmite, etc.)), magnesium oxide, titanium oxide, cerium oxide, zirconium oxide, and the like. mentioned.
  • oxides include transition metal oxides such as barium titanate, and metal ion-doped materials such as indium tin oxide and antimony tin oxide.
  • Hydroxides include, for example, aluminum hydroxide, calcium hydroxide, magnesium hydroxide and the like.
  • Metals include, for example, copper, gold, nickel, tin, iron, or alloys thereof.
  • Carbon-based materials include, for example, carbon black, graphite, diamond, graphene, fullerene, carbon nanotubes, carbon nanofibers, nanohorns, carbon microcoils, and nanocoils.
  • Talc which is a silicate mineral, can be mentioned as a thermally conductive filler other than the above. These thermally conductive fillers can be used alone or in combination of two or more.
  • the thermally conductive filler is preferably boron nitride, magnesium hydroxide, or magnesium oxide, and more preferably contains boron nitride.
  • the content of the non-spherical filler in the thermally conductive filler is preferably 60% by mass or more, more preferably 90% by mass or more, and preferably 100% by mass, based on the total amount of the thermally conductive filler. More preferred.
  • the content of the thermally conductive filler in the thermally conductive resin sheet is preferably 40 to 70% by mass, more preferably 45 to 65% by mass, and still more preferably 50 to 70% by mass, based on the total amount of the thermally conductive resin sheet. 60% by mass.
  • the orientation angle of the thermally conductive filler is preferably greater than 45°, more preferably 50° or more, still more preferably 70° or more, and even more preferably 80° or more.
  • the orientation angle is the angle of the long axis of the thermally conductive filler with respect to the surface of the thermally conductive resin sheet.
  • the major axis of the thermally conductive filler is aligned with the maximum length of the thermally conductive filler.
  • the orientation angle can be measured by observing a cross section of the thermally conductive resin sheet in the thickness direction with a scanning electron microscope. For example, first, a thin film slice of the central portion in the thickness direction of the thermally conductive resin sheet is produced. Then, using a scanning electron microscope (SEM), the thermally conductive filler in the thin film section is observed at a magnification of 3000 times, and the angle formed between the observed long axis of the filler and the plane constituting the sheet surface is measured. can be obtained by In this specification, angles of 45°, 50°, 70°, 80° or more mean that the average value of the values measured as described above is the angle or more. For example, "an orientation angle of 50° or more" does not deny the existence of thermally conductive fillers with an orientation angle of less than 50°, because 50° is an average value. If the angle exceeds 90°, the supplementary angle is taken as the measured value.
  • the thermally conductive resin sheet of the present invention may optionally contain antioxidants, thermal stabilizers, colorants, flame retardants, antistatic agents, fillers other than the thermally conductive fillers, decomposition temperature adjusters, and the like. Additives commonly used in thermally conductive resin sheets may be added.
  • the thermally conductive resin sheet of the present invention may be a single layer or a laminate. From the viewpoint of improving thermal conductivity, a laminate obtained by laminating resin layers containing a resin and an aspherical filler is preferable. An example of an embodiment of a laminate in which resin layers containing resin and non-spherical filler are laminated will be described below with reference to FIG. In each figure, each filler overlaps the vertically adjacent filler, but in the present invention, the fillers do not necessarily have to overlap each other. As shown in FIG. 1, the thermally conductive resin sheet 1 has a structure in which a plurality of resin layers 2 are laminated. A surface perpendicular to the lamination surface of the plurality of resin layers 2 is a sheet surface 5 which is the surface of the resin sheet 1 .
  • the thickness T1 of the thermally conductive resin sheet 1 (that is, the distance between the sheet surfaces 5) is not particularly limited, but can be in the range of 0.1 to 30 mm, for example.
  • the thickness W1 (resin layer width) of one layer of the resin layer 2 is not particularly limited, but is preferably 1000 ⁇ m or less, more preferably 500 ⁇ m or less, and preferably 0.1 ⁇ m or more, more preferably 0.5 ⁇ m or more, More preferably, it can be 1 ⁇ m or more. Thermal conductivity can be improved by adjusting the thickness in this way.
  • the resin layer 2 is a thermally conductive resin layer 7 containing thermally conductive fillers 6 .
  • the thermally conductive resin layer 7 has a structure in which thermally conductive fillers 6 are dispersed in a resin 8 .
  • the thermally conductive filler has an angle larger than 45°, more preferably 50° or more, still more preferably 60°C or more, still more preferably 70° or more, and further preferably 70° or more with respect to the sheet surface as described above. It is preferably oriented at an angle of 80° or more.
  • the thickness of the thermally conductive resin layer 7 is preferably 1 to 1000 times the thickness of the thermally conductive filler 6 contained in the thermally conductive resin layer 7, more preferably 1 to 500 times.
  • the method for producing the thermally conductive resin sheet of the present invention is not particularly limited.
  • a thermally conductive resin sheet may be formed by extruding a mixture obtained by supplying the mixture to a machine and melt-kneading it into a sheet form from an extruder.
  • the method for producing the thermally conductive resin sheet comprising the laminate of the present invention is not particularly limited. can.
  • a thermally conductive filler and a resin are kneaded to prepare a thermally conductive resin composition.
  • the thermally conductive filler and the resin are preferably kneaded under heating using a twin-screw kneader such as Plastomill or a twin-screw extruder. is uniformly dispersed in the resin to obtain a thermally conductive resin composition. Then, by pressing the thermally conductive resin composition, a sheet-like resin layer (thermally conductive resin layer) can be obtained.
  • the resin layers obtained in the kneading step are laminated to form a laminate having an n-layer structure.
  • a lamination method for example, the resin layer produced in the kneading step is divided into xi and laminated, and after producing a laminate having an xi layer structure, hot pressing is performed as necessary, and then, further, if necessary. Accordingly, it is possible to use a method of repeating the division, lamination, and the above-described hot press to fabricate a laminated body having a width of D ⁇ m and an n-layer structure.
  • the width W2 (D ⁇ m) of the laminate after the lamination step and the thickness t (d ⁇ m) of the thermally conductive filler are 0.0005 ⁇ d/(D/n) ⁇ 1. is preferably satisfied, more preferably 0.001 ⁇ d/(D/n) ⁇ 1, and even more preferably 0.02 ⁇ d/(D/n) ⁇ 1.
  • the molding pressure in each time can be made smaller than in the case of performing molding once, so phenomena such as destruction of the laminated structure caused by molding can be prevented. can be avoided.
  • an extruder equipped with a multilayer forming block is used, the multilayer forming block is prepared, and co-extrusion is performed to obtain a laminate having the n-layer structure and the thickness of D ⁇ m.
  • the thermally conductive resin composition obtained in the kneading step is introduced into both the first extruder and the second extruder, and the thermally conductive resin composition is introduced from the first extruder and the second extruder.
  • the resin composition is extruded at the same time.
  • the thermally conductive resin composition extruded from the first extruder and the second extruder is sent to the feedblock.
  • the thermally conductive resin composition extruded from the first extruder and the second extruder join together. Thereby, a two-layer body in which the thermally conductive resin composition is laminated can be obtained.
  • the two-layer body is transferred to a multi-layer forming block, and the two-layer body is divided into a plurality of pieces along a plurality of planes parallel to the direction of extrusion and perpendicular to the plane of lamination, and then laminated.
  • n-layer structure, and a laminate having a thickness of D ⁇ m can be produced. At this time, the thickness per layer (D/n) can be adjusted to a desired value by adjusting the multi-layer formation block.
  • a thermally conductive resin sheet can be produced by slicing the laminate obtained in the lamination step in a direction parallel to the lamination direction.
  • a step of cross-linking the resin may be provided.
  • Crosslinking may be carried out by, for example, a method of irradiating ionizing radiation such as electron beams, ⁇ -rays, ⁇ -rays, and ⁇ -rays, a method of using an organic peroxide, or the like.
  • the acceleration voltage for electron beam irradiation is preferably 50 to 800 kV, more preferably 200 to 700 kV, even more preferably 400 to 600 kV.
  • the dose of electron beam irradiation is preferably 200 to 1200 kGy, more preferably 300 to 1000 kGy, even more preferably 400 to 800 KGy.
  • the thermally conductive resin sheet of the present invention can promote heat dissipation from the heat generating body to the heat radiating body, for example, by placing it between the heat generating body and the heat radiating body inside the electronic device. This will be explained using the thermally conductive resin sheet 1 explained in FIG. As shown in FIG. 2 , the thermally conductive resin sheet 1 is arranged so that the sheet surface 5 is in contact with the heating element 3 and the radiator 4 . Also, the thermally conductive resin sheet 1 is arranged in a compressed state between two members such as the heating element 3 and the radiator 4 . At this time, the thermally conductive resin sheet 1 of the present invention can exhibit stable heat radiation performance even at a relatively wide compression rate.
  • the heating element 3 is, for example, a semiconductor package or the like, and the radiator 4 is, for example, metal such as aluminum or copper.
  • the thermally conductive resin sheet 1 By using the thermally conductive resin sheet 1 in such a state, the heat generated by the heating element 3 can be easily thermally diffused to the radiator 4, enabling efficient heat dissipation.
  • Resin/liquid elastomer 1 Liquid polybutadiene rubber, manufactured by Kuraray Co., Ltd., trade name “LBR-305” Viscosity: 40 Pa s (38° C.), weight average molecular weight: 26,000 ⁇
  • Liquid elastomer 2 Liquid polyisoprene rubber, manufactured by Kuraray Co., Ltd., trade name “LIR-403” Viscosity: 200 Pa s (38 ° C.), weight average molecular weight: 34,000 ⁇
  • Liquid elastomer 3 UV curable liquid polyisoprene rubber, manufactured by Kuraray Co., Ltd., trade name “UC-102M” Viscosity: 30 Pa s (38 ° C.), weight average molecular weight: 17,000 ⁇ Liquid elastomer 4: Liquid polyisoprene rubber, manufactured by Kuraray Co., Ltd., product “LIR-390”
  • the thermally conductive resin sheet produced in each example and comparative example was placed in a glass sample tube with a diameter of 10 mm (manufactured by BRUKER, product number 1824511, 10 mm diameter length 180 mm, flat bottom) to a height of 1.5 cm (about 2 g). filled to The sample tube was placed in a pulse NMR device ("the minispec mq20" manufactured by BRUKER). The measurement was carried out by the CPMG method after incubating at 25 ° C. for 10 minutes, and the obtained 1H spin-spin relaxation free induction decay curve was divided into three curves derived from the three components of the A component, the B component, and the C component. separated.
  • Waveform separation was performed by fitting using an exponential type. From the curves derived from the three components obtained in each measurement, the component ratio and relaxation time of each component were obtained. All of the A, B and C components were subjected to exponential fitting according to the product manual using analysis software "TD-NMRA (Version 4.3 Rev 0.8)" manufactured by BRUKER.
  • Y A1*exp(-1/w1*(t/T2A) ⁇ w1)+B1*exp(-1/w2*(t/T2B) ⁇ w2)+C1*exp(-1/w3*(t/ T2C) ⁇ w3)
  • Y is the relaxation strength.
  • w1 to w3 are Weibull coefficients, all of which take a value of one.
  • A1 is the A component
  • B1 is the B component
  • C1 is the C component, respectively.
  • t is time.
  • ⁇ CPMG method> Scans: 256 times Recycle Delay: 1sec
  • Number of Points: 8000 The above measurement conditions are an example, the number of scans is set so that the normalized relaxation curve strength is 0.02 msec or less, and the recycle delay is preferably five times the longitudinal relaxation time T1.
  • 90-180 Pulse Separation (tau) and Number of Points set the values at which the transition curve completely decays.
  • the thermal conductivity in the thickness direction of the obtained thermally conductive resin sheet was measured using a laser flash method thermal constant measuring device (“LFA447” manufactured by NETZSCH).
  • LFA447 laser flash method thermal constant measuring device
  • ⁇ 30% Compressive Strength> The 30% compressive strength of the resulting thermally conductive resin sheet was measured using "RTG-1250" manufactured by A&D. The measurement was performed with a sample size of 2 mm ⁇ 15 mm ⁇ 15 mm, a measurement temperature of 23° C., and a compression rate of 1 mm/min.
  • ⁇ Oil bleed> A sample (thermal conductive resin sheet) having a thickness of 2 mm and a size of 30 mm square was placed in the center of A4 size paper, and after 336 hours at 125.degree. The seepage distance was calculated as the average value of the maximum seepage distances from each side of the sample. When the oil seepage distance was 10 mm or less, it was judged that "there was little oil bleeding", and when the oil seepage distance was more than 10 mm, it was judged that "there was a lot of oil bleeding".
  • Example 1 Liquid Elastomer 1 (manufactured by Kuraray Co., Ltd., trade name “LBR-305”) and boron nitride (manufactured by Denka Co., Ltd., trade name “SGP”) were mixed so that the content of boron nitride was 55 based on the total amount of the thermally conductive resin sheet. The mixture was mixed so as to make the mass %, melted and kneaded, and then pressed to obtain a sheet-like resin layer having a thickness of 0.5 mm, a width of 80 mm, and a depth of 80 mm.
  • the obtained resin layer was divided into 16 equal parts and superimposed to obtain a laminate consisting of 16 layers with a total thickness of 8 mm, a width of 20 mm and a depth of 20 mm. Then, it was sliced parallel to the stacking direction to obtain a thermally conductive resin sheet having a thickness of 2 mm, a width of 8 mm and a depth of 20 mm. The thickness of one of the resin layers constituting the laminate of the thermally conductive resin sheets was 0.5 mm.
  • Table 1 Various evaluation results are shown in Table 1.
  • Examples 2 to 6 Comparative Examples 1 to 5
  • Examples 2 to 6 Comparative Examples 1 to 5
  • Table 1 Various evaluation results are shown in Table 1.
  • the thermally conductive resin sheet shown in each example is a thermally conductive resin sheet that satisfies the requirements of the present invention, has high thermal conductivity, is flexible, has low tackiness, and suppresses oil bleeding.
  • the thermally conductive resin sheet of Comparative Example 1 had a large component ratio of C component and was poor in tackiness and oil bleeding.
  • the thermally conductive resin sheets of Comparative Examples 2 and 3 had a small component ratio of the C component, a high 30% compressive strength value, and poor flexibility.
  • the thermally conductive resin sheets of Comparative Examples 4 and 5 had a large value of the product of the component ratio of the C component and the relaxation time of the C component, resulting in poor tackiness and oil bleeding.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • Organic Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Medicinal Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Computer Hardware Design (AREA)
  • General Physics & Mathematics (AREA)
  • Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Cooling Or The Like Of Semiconductors Or Solid State Devices (AREA)
  • Manufacture Of Macromolecular Shaped Articles (AREA)

Abstract

The present invention provides a thermally conductive resin sheet which gives such a free induction decay curve of 1H spin-spin relaxation, as determined by means of pulsed NMR, that if the free induction decay curve is separated, through curve fitting, into three curves respectively derived from three components, namely, A component, B component and C component, and lying in ascending order of relaxation time, the proportion of C component is 5% to 35%, the relaxation time of C component is 600 milliseconds or less, and the product of the proportion of C component and the relaxation time of C component is less than 5,000. The present invention is capable of providing a thermally conductive resin sheet which has high thermal conductivity, flexibility and low tack properties, while being suppressed in oil bleeding.

Description

熱伝導性樹脂シートThermally conductive resin sheet
 本発明は、熱伝導性樹脂シートに関する。 The present invention relates to a thermally conductive resin sheet.
 熱伝導性樹脂シートは、主に、半導体パッケージのような発熱体と、アルミニウムや銅等の放熱体との間に配置して、発熱体で発生する熱を放熱体に速やかに移動させる機能を有する。近年、半導体素子の高集積化や半導体パッケージにおける配線の高密度化によって、半導体パッケージの単位面積当たりの発熱量が大きくなっており、これに伴い、従来の熱伝性樹脂シートに比べ、熱伝導率が向上した、より速やかな熱放散を促すことができる熱伝導性樹脂シートへの需要が高まってきている。
 このような熱伝導性樹脂シートとして、熱伝導性フィラーを含有させた熱伝導性樹脂シートが知られている。例えば、特許文献1では、液状のポリブテンと熱伝導性フィラーを含有する熱伝導性樹脂シートに関する発明が記載されており、特許文献2では、エポキシ樹脂と、熱伝導性フィラーとして六方晶窒化ホウ素などを含有する熱伝導性樹脂シートに関する発明が記載されている。
 また、特許文献3では、特定の板状熱伝導粒子及び球状熱伝導粒子を併用した樹脂組成物が記載されており、熱伝導性に優れることが記載されている。
A thermally conductive resin sheet is mainly placed between a heating element such as a semiconductor package and a radiator such as aluminum or copper, and has the function of quickly transferring the heat generated by the heating element to the radiator. have. In recent years, due to the high integration of semiconductor elements and the high density wiring in semiconductor packages, the amount of heat generated per unit area of semiconductor packages has increased. There is an increasing demand for thermally conductive resin sheets that can promote more rapid heat dissipation with improved efficiency.
As such a thermally conductive resin sheet, a thermally conductive resin sheet containing a thermally conductive filler is known. For example, Patent Document 1 describes an invention relating to a thermally conductive resin sheet containing liquid polybutene and a thermally conductive filler. Patent Document 2 describes an epoxy resin and hexagonal boron nitride or the like as a thermally conductive filler. An invention relating to a thermally conductive resin sheet containing
Further, Patent Document 3 describes a resin composition using both specific plate-shaped heat conductive particles and spherical heat conductive particles, and describes that the resin composition is excellent in heat conductivity.
特開2012-38763号公報JP 2012-38763 A 特開2013-254880号公報JP 2013-254880 A 特開2015-174906号公報JP 2015-174906 A
 熱伝導性樹脂シートは、一般には、熱伝導率を向上させるために、熱伝導性フィラーを多く含有させると、シートが硬くなってしまい、シートを使用する電子機器内部でハンダクラックや基板の反りなどが生じ、電子部品にダメージを与えることが懸念される。このようなことを防止し、柔軟性の良好な熱伝導性樹脂シートが必要とされている。
 一方で、柔軟性を重視した設計にすると、熱伝導性樹脂シートのタック性が強くなり、熱伝導性樹脂シートの表面に貼付されたセパレートフィルムの剥離が困難になり、剥離時に熱伝導性樹脂シートの変形などが生じ歩留まりが悪化してしまう。また、熱伝導性樹脂シートのタック性が強いと、剥離時に被着体に残渣が残るため、リワークのためには清掃や部品の交換などが必要になり工程負荷が増していた。さらに、柔軟性を重視した設計にするとオイルブリードが多くなり、電子部品が汚染されて接点障害の原因になるおそれがある。
 本発明は、上記従来の課題に鑑みてなされたものであって、柔軟性に優れ、タック性が低く、オイルブリードが抑制された熱伝導性樹脂シートを提供することを目的とする。
In general, thermally conductive resin sheets tend to harden when a large amount of thermally conductive filler is added to improve thermal conductivity. etc., and there is concern that electronic components may be damaged. There is a need for a thermally conductive resin sheet that prevents such problems and has good flexibility.
On the other hand, if the design emphasizes flexibility, the tackiness of the thermally conductive resin sheet becomes stronger, making it difficult to peel off the separate film attached to the surface of the thermally conductive resin sheet. Deformation of the sheet occurs, and the yield deteriorates. In addition, if the thermally conductive resin sheet has strong tackiness, a residue remains on the adherend when it is peeled off, which necessitates cleaning and replacement of parts for rework, increasing the process load. In addition, designing for flexibility increases oil bleeding, which may contaminate electronic components and cause contact failure.
SUMMARY OF THE INVENTION It is an object of the present invention to provide a thermally conductive resin sheet having excellent flexibility, low tackiness, and suppressed oil bleeding.
 本発明者らは、前記目的を達成するために鋭意研究を重ねた結果、パルスNMRにおいて測定される分子運動性の高い成分であるC成分の成分比、C成分の緩和時間、及びC成分の成分比とC成分の緩和時間の積を特定範囲に調整することにより、上記課題を解決できることを見出し、本発明を完成させた。 As a result of intensive studies to achieve the above object, the present inventors have found that the component ratio of the C component, which is a component with high molecular mobility measured by pulse NMR, the relaxation time of the C component, and the The inventors have found that the above problem can be solved by adjusting the product of the component ratio and the relaxation time of the C component within a specific range, and have completed the present invention.
 すなわち、本発明は、下記[1]~[7]に関する。
[1]パルスNMRにおいて測定される1Hのスピン-スピン緩和の自由誘導減衰曲線を、緩和時間の短い順にA成分、B成分、及びC成分の3成分に由来する3つの曲線に波形分離して得たC成分の成分比が5%以上35%以下、C成分の緩和時間が600ミリ秒以下であり、C成分の成分比とC成分の緩和時間の積が5000未満である、熱伝導性樹脂シート。
[2]タップテスターを用いて、SUS製のプローブを荷重3000gf/cmで熱伝導性樹脂シートの表面に10秒間押し付けた後、垂直方向に0.5mm/sの速度で引き上げた場合の、引き上げ開始からプローブが熱伝導性樹脂シートから外れるまでの密着時間が1.5秒以下である、上記[1]に記載の熱伝導性樹脂シート。
[3]熱伝導率が6W/m・K以上である、上記[1]又は[2]に記載の熱伝導性樹脂シート。
[4]30%圧縮強度が3000kPa以下である、上記[1]~[3]のいずれかに記載の熱伝導性樹脂シート。
[5]エラストマー樹脂及びアクリル樹脂からなる群から選択される少なくとも1種以上の樹脂を含有する、上記[1]~[4]いずれかに記載の熱伝導性樹脂シート。
[6]熱伝導性フィラーを含有する、上記[1]~[5]のいずれかに記載の熱伝導性樹脂シート。
[7]前記熱伝導性フィラーが窒化ホウ素を含む、上記[1]~[6]のいずれかに記載の熱伝導性樹脂シート。
That is, the present invention relates to the following [1] to [7].
[1] Waveform separation of the 1H spin-spin relaxation free induction decay curve measured in pulse NMR into three curves derived from the three components of the A component, the B component, and the C component in ascending order of relaxation time. The obtained component ratio of the C component is 5% or more and 35% or less, the relaxation time of the C component is 600 milliseconds or less, and the product of the component ratio of the C component and the relaxation time of the C component is less than 5000, thermal conductivity resin sheet.
[2] Using a tap tester, a SUS probe is pressed against the surface of the thermally conductive resin sheet with a load of 3000 gf / cm 2 for 10 seconds, and then lifted vertically at a speed of 0.5 mm / s. The thermally conductive resin sheet according to [1] above, wherein the adhesion time from the start of pulling up until the probe is removed from the thermally conductive resin sheet is 1.5 seconds or less.
[3] The thermally conductive resin sheet according to [1] or [2] above, which has a thermal conductivity of 6 W/m·K or more.
[4] The thermally conductive resin sheet according to any one of [1] to [3] above, which has a 30% compressive strength of 3000 kPa or less.
[5] The thermally conductive resin sheet according to any one of [1] to [4] above, containing at least one resin selected from the group consisting of elastomer resins and acrylic resins.
[6] The thermally conductive resin sheet according to any one of [1] to [5] above, which contains a thermally conductive filler.
[7] The thermally conductive resin sheet according to any one of [1] to [6] above, wherein the thermally conductive filler contains boron nitride.
 本発明によれば、柔軟性に優れ、タック性が低く、オイルブリードが抑制された熱伝導性樹脂シートを提供することができる。 According to the present invention, it is possible to provide a thermally conductive resin sheet with excellent flexibility, low tackiness, and suppressed oil bleeding.
積層体からなる熱伝導性樹脂シートの模式的断面図である。1 is a schematic cross-sectional view of a thermally conductive resin sheet made of a laminate; FIG. 積層体からなる熱伝導性樹脂シートの使用状態における模式的断面図である。FIG. 2 is a schematic cross-sectional view of a thermally conductive resin sheet composed of a laminate in use.
[熱伝導性樹脂シート]
 本発明の熱伝導性樹脂シートは、パルスNMRで測定した1Hのスピン-スピン緩和の自由誘導減衰曲線を緩和時間の短い順にA成分、B成分、C成分の3成分に由来する3つの曲線に波形分離して得たC成分の成分比が5%以上35%以下、C成分の緩和時間が600ミリ秒以下であり、C成分の成分比とC成分の緩和時間の積が5000未満である。
[Thermal conductive resin sheet]
In the thermally conductive resin sheet of the present invention, the 1H spin-spin relaxation free induction decay curve measured by pulse NMR is divided into three curves derived from three components, A component, B component, and C component, in order of shortest relaxation time. The component ratio of the C component obtained by waveform separation is 5% or more and 35% or less, the relaxation time of the C component is 600 milliseconds or less, and the product of the component ratio of the C component and the relaxation time of the C component is less than 5000. .
 一般的に、熱伝導性樹脂シートは、パルスNMRにより測定すると、1Hのスピン-スピン緩和の自由誘導減衰曲線が得られる。得られた自由誘導減衰曲線は、緩和時間の短い順に、A成分、B成分、C成分の3成分に由来する3つの曲線に波形分離することができる。すなわち、実測された自由誘導減衰曲線は、A成分、B成分、C成分の3成分に由来する自由誘導減衰曲線を重畳したものである。このようなパルスNMRを用いて3成分に分離して解析する手法は、公知であり、文献の例としては、特開2018-2983号公報などが挙げられる。 Generally, when a thermally conductive resin sheet is measured by pulse NMR, a 1H spin-spin relaxation free induction decay curve is obtained. The obtained free induction decay curve can be waveform-separated into three curves derived from the three components of the A component, the B component and the C component in ascending order of relaxation time. That is, the actually measured free induction attenuation curve is obtained by superimposing the free induction attenuation curve derived from the three components of the A component, the B component and the C component. Such a method of separating and analyzing three components using pulse NMR is known, and examples of literature include Japanese Patent Laid-Open No. 2018-2983.
 A成分は、パルスNMR測定における緩和時間の短い成分であり、分子運動性が低く、硬い成分を意味する。一方、C成分は、パルスNMR測定における緩和時間の長い成分であり、分子運動性が高く、柔らかい成分を意味する。B成分は、A成分とC成分の間のパルスNMR測定における緩和時間を有し、そのため分子運動性もA成分及びC成分の間となる。ここで、成分比とは、A成分、B成分、及びC成分の合計量に対する割合である。 The A component is a component with a short relaxation time in pulse NMR measurement, meaning a hard component with low molecular mobility. On the other hand, the C component is a component with a long relaxation time in pulse NMR measurement, and means a soft component with high molecular mobility. The B component has a relaxation time in pulsed NMR measurements between the A and C components, so the molecular mobility is also between the A and C components. Here, the component ratio is the ratio to the total amount of the A component, the B component and the C component.
 本発明の熱伝導性樹脂シートは、C成分の成分比、C成分の緩和時間、及びC成分の成分比とC成分の緩和時間の積が特定範囲に調整されている。なお、C成分の成分比は、熱伝導性シート中の分子運動性の高い成分の成分比を意味し、C成分の緩和時間は分子運動性の高い成分の分子運動性の高さの度合いを表す。
 なおパルスNMR測定は25℃において、CPMG法により行うこととする。
In the thermally conductive resin sheet of the present invention, the component ratio of the C component, the relaxation time of the C component, and the product of the component ratio of the C component and the relaxation time of the C component are adjusted to specific ranges. The component ratio of the C component means the component ratio of the component with high molecular mobility in the thermally conductive sheet, and the relaxation time of the C component indicates the degree of molecular mobility of the component with high molecular mobility. show.
Note that the pulse NMR measurement is performed at 25° C. by the CPMG method.
 本発明の熱伝導性樹脂シートのC成分の成分比は、5%以上35%以下である。C成分の成分比が5%未満であると熱伝導性樹脂シートの柔軟性が低下して、シートが硬くなるため電子部品にダメージを与えることが懸念される。C成分の成分比が35%超であると熱伝導性樹脂シートのタック性が高くなり、熱伝導性樹脂シートからセパレートフィルムが剥離し難くなるなどの不具合を生じやすくなり、またシート表面へのオイルブリードが多くなる。
 C成分の成分比は、柔軟性を良好にしつつ、タック性を低くする観点から、好ましくは5.5%以上30%以下であり、より好ましくは6%以上20%以下であり、さらに好ましくは8%以上15%以下である。
The component ratio of the C component in the thermally conductive resin sheet of the present invention is 5% or more and 35% or less. If the component ratio of the C component is less than 5%, the flexibility of the thermally conductive resin sheet is reduced, and the sheet becomes hard, which may damage electronic components. If the component ratio of the C component exceeds 35%, the tackiness of the thermally conductive resin sheet increases, and problems such as difficulty in peeling the separate film from the thermally conductive resin sheet tend to occur. Increased oil bleeding.
The component ratio of component C is preferably 5.5% or more and 30% or less, more preferably 6% or more and 20% or less, and still more preferably, from the viewpoint of improving flexibility and lowering tackiness. It is 8% or more and 15% or less.
 本発明の熱伝導性樹脂シートのC成分の緩和時間は、600ミリ秒以下である。C成分の緩和時間が600ミリ秒超であると、熱伝導性樹脂シートのタック性が高くなり、熱伝導性樹脂シートからセパレートフィルムが剥離し難くなるなどの不具合を生じやすくなり、またシート表面へのオイルブリードが多くなる。
 熱伝導性樹脂シートのC成分の緩和時間は、タック性を低くする観点、オイルブリードを抑制する観点などから、好ましくは300ミリ秒以下であり、より好ましくは100ミリ秒以下であり、さらに好ましくは50ミリ秒以下である。また、C成分の緩和時間は、熱伝導性樹脂シートの柔軟性を確保する観点から、好ましくは5ミリ秒以上、より好ましくは9ミリ秒以上である。
The relaxation time of the C component of the thermally conductive resin sheet of the present invention is 600 milliseconds or less. When the relaxation time of the C component exceeds 600 milliseconds, the tackiness of the thermally conductive resin sheet becomes high, and problems such as difficulty in peeling the separate film from the thermally conductive resin sheet tend to occur. more oil bleed to
The relaxation time of the C component of the thermally conductive resin sheet is preferably 300 milliseconds or less, more preferably 100 milliseconds or less, and still more preferably from the viewpoint of reducing tackiness and suppressing oil bleeding. is less than 50 milliseconds. In addition, the relaxation time of the C component is preferably 5 milliseconds or more, more preferably 9 milliseconds or more, from the viewpoint of ensuring the flexibility of the thermally conductive resin sheet.
 本発明の熱伝導性樹脂シートのC成分の成分比(%)とC成分の緩和時間(ミリ秒)との積(%・ミリ秒)は、5000未満である。C成分の成分比(%)とC成分の緩和時間(ミリ秒)との積が5000以上であると、熱伝導性樹脂シート中に分子運動性の高い成分が多く存在するため、熱伝導性樹脂シートのタック性が高くなり、セパレートフィルムが剥離し難くなるなどの不具合を生じやすくなり、またシート表面へのオイルブリードが多くなる。
 C成分の成分比(%)とC成分の緩和時間(ミリ秒)との積は、タック性を低くし、オイルブリードを抑制する観点から、好ましくは3000以下であり、より好ましくは1000以下であり、さらに好ましくは500以下である。そして、柔軟性を良好にする観点から、C成分の成分比(%)とC成分の緩和時間(ミリ秒)との積は、好ましくは30以上であり、より好ましくは50以上であり、さらに好ましくは100以上である。
 本発明においては、C成分の成分比、C成分の緩和時間、及びC成分の成分比とC成分の緩和時間を上記した所定の範囲とすることにより、柔軟であると共に、タック性が低く、オイルブリードが抑制された熱伝導性樹脂シートを提供することができる。
 C成分の成分比、C成分の緩和時間、及びC成分の成分比とC成分の緩和時間の積は、熱伝導性樹脂シートに含まれる樹脂及び熱伝導性フィラーの含有量、樹脂の種類及び粘度(又は重量平均分子量)、熱伝導性フィラーの種類などを調整することにより、所望の値に調節することができる。
The product (%·milliseconds) of the component ratio (%) of the C component and the relaxation time (milliseconds) of the C component in the thermally conductive resin sheet of the present invention is less than 5,000. When the product of the component ratio (%) of the C component and the relaxation time (milliseconds) of the C component is 5000 or more, there are many components with high molecular mobility in the thermally conductive resin sheet. The tackiness of the resin sheet becomes high, and problems such as difficulty in peeling of the separate film are likely to occur, and more oil bleeds onto the sheet surface.
The product of the component ratio (%) of the C component and the relaxation time (milliseconds) of the C component is preferably 3000 or less, more preferably 1000 or less, from the viewpoint of reducing tackiness and suppressing oil bleeding. Yes, more preferably 500 or less. Then, from the viewpoint of improving flexibility, the product of the component ratio (%) of the C component and the relaxation time (milliseconds) of the C component is preferably 30 or more, more preferably 50 or more, and further Preferably it is 100 or more.
In the present invention, by setting the component ratio of the C component, the relaxation time of the C component, and the component ratio of the C component and the relaxation time of the C component to the above-described predetermined ranges, flexibility and low tackiness can be obtained. A thermally conductive resin sheet in which oil bleeding is suppressed can be provided.
The component ratio of the C component, the relaxation time of the C component, and the product of the component ratio of the C component and the relaxation time of the C component are determined by the content of the resin and the thermally conductive filler contained in the thermally conductive resin sheet, the type of resin and A desired value can be obtained by adjusting the viscosity (or weight average molecular weight), the type of the thermally conductive filler, and the like.
(密着時間)
 本発明の熱伝導性樹脂シートは、タップテスターにより測定される密着時間が1.5秒以下であることが好ましい。密着時間が1.5秒以下であることにより、タック性の低い熱伝導性樹脂シートとなる。熱伝導性樹脂シートのタック性をより低くする観点から、密着時間は好ましくは1.3秒以下であり、より好ましくは1.0秒以下である。
 密着時間は、タップテスターを用いて、SUS製(ステンレス製)のプローブを荷重3000gf/cmで熱伝導性樹脂シートの表面に10秒間押し付けた後、垂直方向に0.5mm/sの速度で引き上げた場合の、引き上げ開始からプローブが熱伝導性樹脂シートから外れるまでの時間を意味する。上記SUS製のプローブ径(直径)は5.6mmである。
(Adhesion time)
The thermally conductive resin sheet of the present invention preferably has a contact time of 1.5 seconds or less as measured by a tap tester. When the adhesion time is 1.5 seconds or less, the thermally conductive resin sheet has low tackiness. From the viewpoint of lowering the tackiness of the thermally conductive resin sheet, the adhesion time is preferably 1.3 seconds or less, more preferably 1.0 seconds or less.
The adhesion time was measured by pressing a SUS (stainless steel) probe with a load of 3000 gf/cm 2 onto the surface of the thermally conductive resin sheet for 10 seconds using a tap tester, and then vertically at a speed of 0.5 mm/s. It means the time from the start of pulling up until the probe comes off the thermally conductive resin sheet. The SUS probe diameter (diameter) is 5.6 mm.
(30%圧縮強度)
 本発明の熱伝導性樹脂シートの30%圧縮強度は、好ましくは3000kPa以下である。30%圧縮強度が3000kPa以下であると、熱伝導性樹脂シートの柔軟性が高まり、シートを使用する電子機器内部の電子部品などにダメージを与え難くなる。熱伝導性樹脂シートの柔軟性を高める観点から、熱伝導性樹脂シートの30%圧縮強度は、好ましくは1500kPa以下、より好ましくは1000kPa以下、さらに好ましくは800kPa以下である。また、熱伝導性樹脂シートの30%圧縮強度は、通常10kPa以上であり、好ましくは50kPa以上である。
 熱伝導性樹脂シートの30%圧縮強度は、後述する熱伝導性樹脂シートを構成する樹脂の種類、架橋の有無、熱伝導性フィラーの種類及び量などにより調節することができる。
 30%圧縮強度は、当初の厚さの30%に相当する厚さ分だけ圧縮したときの荷重を意味し、実施例に記載の方法で求めることができる。
(30% compressive strength)
The 30% compressive strength of the thermally conductive resin sheet of the present invention is preferably 3000 kPa or less. When the 30% compressive strength is 3000 kPa or less, the flexibility of the thermally conductive resin sheet is increased, and it becomes difficult to damage the electronic components inside the electronic device using the sheet. From the viewpoint of increasing the flexibility of the thermally conductive resin sheet, the 30% compressive strength of the thermally conductive resin sheet is preferably 1500 kPa or less, more preferably 1000 kPa or less, and even more preferably 800 kPa or less. Moreover, the 30% compressive strength of the thermally conductive resin sheet is usually 10 kPa or more, preferably 50 kPa or more.
The 30% compressive strength of the thermally conductive resin sheet can be adjusted by the type of resin constituting the thermally conductive resin sheet described later, the presence or absence of cross-linking, the type and amount of thermally conductive filler, and the like.
The 30% compressive strength means the load when compressed by a thickness corresponding to 30% of the initial thickness, and can be obtained by the method described in Examples.
(熱伝導率)
 本発明の熱伝導性樹脂シートの熱伝導率は6W/m・K以上であることが好ましい。熱伝導率が6W/m・K以上であると、発熱体から発生する熱を効果的に放熱しやすくなる。熱伝導性樹脂シートの放熱性を向上させる観点から、熱伝導性樹脂シートの熱伝導率は、好ましくは8W/mK以上であり、より好ましくは10W/m・K以上である。また、熱伝導性樹脂シートの熱伝導率は、高ければ高い方がよいが、通常、100W/m・K以下である。熱伝導率は、例えば、後述する熱伝導性フィラーの含有量や配向などを調節することで、所望の値に調整しやすくなる。
(Thermal conductivity)
The thermal conductivity of the thermally conductive resin sheet of the present invention is preferably 6 W/m·K or more. When the thermal conductivity is 6 W/m·K or more, it becomes easy to effectively dissipate the heat generated from the heating element. From the viewpoint of improving the heat dissipation property of the thermally conductive resin sheet, the thermal conductivity of the thermally conductive resin sheet is preferably 8 W/mK or more, more preferably 10 W/m·K or more. Moreover, the higher the thermal conductivity of the thermally conductive resin sheet, the better, but it is usually 100 W/m·K or less. The thermal conductivity can be easily adjusted to a desired value by, for example, adjusting the content, orientation, etc. of the thermally conductive filler, which will be described later.
(樹脂)
 本発明の熱伝導性樹脂シートは、樹脂を含有し、その樹脂の種類は、特に制限されないが、柔軟性を良好とする観点から、エラストマー樹脂及びアクリル樹脂からなる群から選択される1種以上であることが好ましい。
 熱伝導性樹脂シートに含有される樹脂は固体状でも液状でもよいが、より柔軟性を良好とする観点から、液状エラストマー樹脂などの液状の樹脂であることが好ましい。
 なお、本明細書において、液状とは常温(23℃)かつ常圧(1気圧)で液状であることをいい、固体状とは常温(23℃)かつ常圧(1気圧)で固体状であることをいう。
(resin)
The thermally conductive resin sheet of the present invention contains a resin, and the type of the resin is not particularly limited, but from the viewpoint of improving flexibility, one or more selected from the group consisting of elastomer resins and acrylic resins. is preferably
The resin contained in the thermally conductive resin sheet may be solid or liquid, but from the viewpoint of better flexibility, it is preferably a liquid resin such as a liquid elastomer resin.
In this specification, the term "liquid" means a liquid state at normal temperature (23°C) and normal pressure (1 atmosphere), and the term "solid state" means a solid state at normal temperature (23°C) and normal pressure (1 atmosphere). Say something.
 エラストマー樹脂の種類としては、例えば、アクリロニトリルブタジエンゴム、エチレン-プロピレン-ジエンゴム、エチレン-プロピレンゴム、天然ゴム、ポリイソプレンゴム、ポリブタジエンゴム、水素添加ポリブタジエンゴム、スチレン-ブタジエンブロック共重合体、水素添加スチレン-ブタジエンブロック共重合体、水素添加スチレン-ブタジエン-スチレンブロック共重合体、水素添加スチレン-イソプレンブロック共重合体、水素添加スチレン-イソプレン-スチレンブロック共重合体等が挙げられる。
 これらのエラストマー樹脂は、固体状であっても液状であってもよいが、液状エラストマー樹脂が好ましい。液状エラストマー樹脂としては、特に限定されず、例えば、上記したエラストマー樹脂のうち液状のものを用いることができるが、中でも、液状ポリイソプレンゴム、液状ポリブタジエンゴムが好ましい。
 上記液状ポリイソプレンゴムとして、UV硬化型の液状ポリイソプレンゴムを用いることも好ましい。UV硬化型の液状ポリイソプレンゴムとしては、末端に(メタ)アクリロイル基を有する液状ポリイソプレンゴムが挙げられる。なお、(メタ)アクリロイル基とは、アクリロイル基及びメタアクリロイル基の少なくともいずれかを意味する。
 エラストマー樹脂は、1種のみを用いてもよいし、複数種類を併用してもよい。
Examples of elastomer resins include acrylonitrile butadiene rubber, ethylene-propylene-diene rubber, ethylene-propylene rubber, natural rubber, polyisoprene rubber, polybutadiene rubber, hydrogenated polybutadiene rubber, styrene-butadiene block copolymer, and hydrogenated styrene. -butadiene block copolymer, hydrogenated styrene-butadiene-styrene block copolymer, hydrogenated styrene-isoprene block copolymer, hydrogenated styrene-isoprene-styrene block copolymer and the like.
These elastomer resins may be solid or liquid, but liquid elastomer resins are preferred. The liquid elastomer resin is not particularly limited, and for example, among the elastomer resins described above, liquid ones can be used. Among them, liquid polyisoprene rubber and liquid polybutadiene rubber are preferable.
It is also preferable to use UV-curable liquid polyisoprene rubber as the liquid polyisoprene rubber. Examples of UV-curable liquid polyisoprene rubbers include liquid polyisoprene rubbers having (meth)acryloyl groups at their terminals. In addition, a (meth)acryloyl group means at least one of an acryloyl group and a methacryloyl group.
Only one type of elastomer resin may be used, or a plurality of types may be used in combination.
 エラストマー樹脂の38℃における粘度は、好ましくは15~350Pa・sであり、より好ましくは20~200Pa・sであり、さらに好ましくは30~100Pa・sである。樹脂の粘度が上記範囲内であり、かつ熱伝導性フィラーの種類及び含有量を後述するように調整することにより、熱伝導性樹脂シートのパルスNMRにより測定されるC成分の成分比、C成分の緩和時間、及びC成分の成分比とC成分の緩和時間の積を上記した所定の範囲に調整しやすくなる。
 粘度は、38℃においてB型粘度計で測定することができる。
The viscosity of the elastomer resin at 38° C. is preferably 15 to 350 Pa·s, more preferably 20 to 200 Pa·s, still more preferably 30 to 100 Pa·s. The viscosity of the resin is within the above range, and by adjusting the type and content of the thermally conductive filler as described later, the component ratio of the C component measured by pulse NMR of the thermally conductive resin sheet, the C component and the product of the component ratio of the C component and the relaxation time of the C component can be easily adjusted within the predetermined ranges described above.
The viscosity can be measured with a Brookfield viscometer at 38°C.
 エラストマー樹脂の重量平均分子量は、好ましくは10,000~40,000であり、より好ましくは15,000~35,000であり、さらに好ましくは20,000~30,000である。樹脂の重量平均分子量がこのような範囲であると、熱伝導性樹脂シートのパルスNMRにより測定されるC成分の成分比、C成分の緩和時間、及びC成分の成分比とC成分の緩和時間の積を上記した所定の範囲に調整しやすくなる。
 重量平均分子量は、ゲルパーミエーションクロマトグラフィー(GPC)により測定されたポリスチレン換算での重量平均分子量である。
The weight average molecular weight of the elastomer resin is preferably 10,000 to 40,000, more preferably 15,000 to 35,000, still more preferably 20,000 to 30,000. When the weight average molecular weight of the resin is in such a range, the component ratio of the C component measured by pulse NMR of the thermally conductive resin sheet, the relaxation time of the C component, and the component ratio of the C component and the relaxation time of the C component. It becomes easy to adjust the product of to within the predetermined range described above.
A weight average molecular weight is a weight average molecular weight in terms of polystyrene measured by gel permeation chromatography (GPC).
 アクリル樹脂の種類としては、例えば、アクリル酸、アクリル酸エステル、メタクリル酸、及びメタクリル酸エステルから選択される1種以上のアクリル系モノマーを含むモノマー成分の重合体が挙げられ、アクリル系モノマーの重合体であってもよいし、アクリル系モノマーと他のモノマーとの共重合体であってもよい。
 アクリル樹脂は、固体状のアクリル樹脂であっても、液状アクリル樹脂であってもよい。
 アクリル樹脂は、好ましくは、アクリル酸エステル及びメタクリル酸エステルから選択される1種以上を含むモノマー成分の重合体が挙げられ、より好ましくはアクリル酸エステルを含むモノマー成分の重合体である。アクリル酸エステルとしては、特に限定されず、例えば、アクリル酸メチル、アクリル酸エチル、アクリル酸n-ブチル、アクリル酸イソブチル、アクリル酸2-エチルヘキシル、アクリル酸シクロヘキシル等が挙げられる。メタクリル酸エステルとしては、特に限定されず、例えばメタクリル酸メチル、メタクリル酸エチル、メタクリル酸n-ブチル、メタクリル酸イソブチル、メタクリル酸2-エチルヘキシル、メタクリル酸シクロヘキシル等が挙げられる。
Examples of acrylic resins include polymers of monomer components containing one or more acrylic monomers selected from acrylic acid, acrylic acid esters, methacrylic acid, and methacrylic acid esters. It may be a combination or a copolymer of acrylic monomers and other monomers.
The acrylic resin may be a solid acrylic resin or a liquid acrylic resin.
The acrylic resin is preferably a polymer of a monomer component containing one or more selected from acrylic acid ester and methacrylic acid ester, more preferably a polymer of a monomer component containing acrylic acid ester. The acrylic acid ester is not particularly limited, and examples thereof include methyl acrylate, ethyl acrylate, n-butyl acrylate, isobutyl acrylate, 2-ethylhexyl acrylate, cyclohexyl acrylate and the like. The methacrylic acid ester is not particularly limited, and examples thereof include methyl methacrylate, ethyl methacrylate, n-butyl methacrylate, isobutyl methacrylate, 2-ethylhexyl methacrylate, cyclohexyl methacrylate and the like.
 アクリル樹脂は、カルボキシル基、ヒドロキシル基、エポキシ基及びアミド基からなる群から選択される少なくとも1種の官能基を有するアクリル樹脂であることが好ましく、中でもカルボキシル基及びヒドロキシル基からなる群から選択される少なくとも1種の官能基を有するアクリル樹脂が好ましい。
 アクリル樹脂は、1種のみを用いてもよいし、複数種類を併用してもよい。
The acrylic resin is preferably an acrylic resin having at least one functional group selected from the group consisting of a carboxyl group, a hydroxyl group, an epoxy group and an amide group, and more preferably selected from the group consisting of a carboxyl group and a hydroxyl group. Acrylic resins having at least one functional group are preferred.
Only one type of acrylic resin may be used, or a plurality of types may be used in combination.
 アクリル樹脂の重量平均分子量は、好ましくは50,000~1,000,000であり、より好ましくは100,000~1,000,000であり、さらに好ましくは300,000~900,000である。アクリル樹脂の重量平均分子量がこのような範囲であると、熱伝導性樹脂シートのパルスNMRにより測定されるC成分の成分比、C成分の緩和時間、及びC成分の成分比とC成分の緩和時間の積を上記した所定の範囲に調整しやすくなる。
 重量平均分子量は、ゲルパーミエーションクロマトグラフィー(GPC)により測定されたポリスチレン換算での重量平均分子量である。
The acrylic resin preferably has a weight average molecular weight of 50,000 to 1,000,000, more preferably 100,000 to 1,000,000, and still more preferably 300,000 to 900,000. When the weight average molecular weight of the acrylic resin is in such a range, the component ratio of the C component measured by pulse NMR of the thermally conductive resin sheet, the relaxation time of the C component, the component ratio of the C component and the relaxation of the C component It becomes easier to adjust the product of time to the predetermined range described above.
A weight average molecular weight is a weight average molecular weight in terms of polystyrene measured by gel permeation chromatography (GPC).
 本発明の熱伝導性樹脂シート中の、エラストマー樹脂及びアクリル樹脂からなる群から選択される少なくとも1種以上の樹脂の含有量は、熱伝導性樹脂シート全量基準で、好ましくは30質量%以上、より好ましくは35質量%以上、更に好ましくは40質量%以上であり、そして好ましくは60質量%以下、より好ましくは55質量%以下である。 The content of at least one resin selected from the group consisting of elastomer resins and acrylic resins in the thermally conductive resin sheet of the present invention is preferably 30% by mass or more, based on the total amount of the thermally conductive resin sheet. More preferably 35% by mass or more, still more preferably 40% by mass or more, and preferably 60% by mass or less, more preferably 55% by mass or less.
 本発明の熱伝導性樹脂シート中の樹脂全量基準に対して、液状の樹脂の含有量は、好ましくは60質量%以上であり、より好ましくは90質量%以上であり、更に好ましくは100質量%である。 The content of the liquid resin is preferably 60% by mass or more, more preferably 90% by mass or more, and still more preferably 100% by mass, based on the total amount of resin in the thermally conductive resin sheet of the present invention. is.
(熱伝導性フィラー)
 本発明の熱伝導性樹脂シートは、熱伝導性フィラーを含有することが好ましい。熱伝導性フィラーは熱伝導性樹脂シート中の樹脂成分中に分散され、熱伝導率が高くなる。
 熱伝導性フィラーの平均粒子径は、好ましくは0.1~300μm、より好ましくは0.5~100μm、更に好ましくは5~50μmである。平均粒子径は、レーザー回折式粒度分布測定装置により粒度分布を測定して求めることができる。
(Thermal conductive filler)
The thermally conductive resin sheet of the present invention preferably contains a thermally conductive filler. The thermally conductive filler is dispersed in the resin component of the thermally conductive resin sheet to increase thermal conductivity.
The average particle size of the thermally conductive filler is preferably 0.1-300 μm, more preferably 0.5-100 μm, still more preferably 5-50 μm. The average particle size can be obtained by measuring the particle size distribution with a laser diffraction particle size distribution analyzer.
 熱伝導性フィラーは、球状フィラーでも非球状フィラーでもよいが、熱伝導性樹脂シートの熱伝導率を高くする観点から、非球状フィラーを少なくとも含有することが好ましい。なお、熱伝導性フィラーは、一種のみを用いてもよいし、二種以上を併用してもよい。 The thermally conductive filler may be a spherical filler or a non-spherical filler, but from the viewpoint of increasing the thermal conductivity of the thermally conductive resin sheet, it is preferable to contain at least a non-spherical filler. In addition, only 1 type may be used for a thermally conductive filler, and 2 or more types may be used together.
 非球状フィラーとしては、例えば、鱗片状、薄片状などの板状フィラー、針状フィラー、繊維状フィラー、樹枝状フィラー、不定形状フィラー、凝集フィラーなどが挙げられる。中でも、熱伝導性樹脂シートの熱伝導性を良好とする観点から、板状フィラーが好ましい。
 ここで、「球状」とはアスペクト比が1.0~2.0、好ましくは1.0~1.5の形状であることを意味し、必ずしも真球であることを意味しない。なお、球状フィラーの場合のアスペクト比は、長径/短径比を意味する。また、「非球状」とは上記球状以外の形状、すなわちアスペクト比が2を超える形状を意味する。
Examples of non-spherical fillers include plate-like fillers such as scaly and flaky fillers, needle-like fillers, fibrous fillers, dendritic fillers, amorphous fillers, aggregated fillers, and the like. Among them, a plate-like filler is preferable from the viewpoint of improving the thermal conductivity of the thermally conductive resin sheet.
Here, "spherical" means a shape with an aspect ratio of 1.0 to 2.0, preferably 1.0 to 1.5, and does not necessarily mean a true sphere. In addition, the aspect ratio in the case of a spherical filler means length / breadth ratio. In addition, "non-spherical" means a shape other than the above spherical shape, that is, a shape with an aspect ratio of more than 2.
 熱伝導性フィラーのアスペクト比は、熱伝導率を高くする観点から、5以上であることが好ましく、10以上であることがより好ましく、そして通常は200以下である。
 なお、2種以上の熱伝導性フィラーを用いる場合は、上記アスペクト比は、それぞれの熱伝導性フィラーのアスペクト比を加重平均して算出した、平均アスペクト比とする。
From the viewpoint of increasing thermal conductivity, the aspect ratio of the thermally conductive filler is preferably 5 or more, more preferably 10 or more, and usually 200 or less.
When two or more types of thermally conductive fillers are used, the aspect ratio is an average aspect ratio calculated by weighted averaging the aspect ratios of the respective thermally conductive fillers.
 熱伝導性樹脂シートは、アスペクト比が高い熱伝導性フィラーを後述するように高い配向角度で配向させることで、厚み方向の熱伝導率が向上することが可能となる。
 なお、非球状フィラーにおいて、アスペクト比とは、フィラーの最大長さの最小長さに対する比(最大長さ/最小長さ)であり、例えば、形状が板状である場合は、フィラーの最大長さの厚みに対する比(最大長さ/厚み)である。アスペクト比は走査型電子顕微鏡で、十分な数(例えば250個)の熱伝導性フィラーを観察して平均値として求めるとよい。
In the thermally conductive resin sheet, the thermal conductivity in the thickness direction can be improved by orienting the thermally conductive filler having a high aspect ratio at a high orientation angle as described later.
In the non-spherical filler, the aspect ratio is the ratio of the maximum length to the minimum length of the filler (maximum length/minimum length). is the ratio of length to thickness (maximum length/thickness). The aspect ratio may be determined as an average value by observing a sufficient number (for example, 250) of thermally conductive fillers with a scanning electron microscope.
 熱伝導性フィラーの熱伝導率は特に限定されないが、好ましくは12W/m・K以上であり、より好ましくは15~70W/m・K、さらに好ましくは25~70W/m・Kである。 Although the thermal conductivity of the thermally conductive filler is not particularly limited, it is preferably 12 W/m·K or more, more preferably 15 to 70 W/m·K, still more preferably 25 to 70 W/m·K.
 熱伝導性フィラーの材質としては、例えば、炭化物、窒化物、酸化物、水酸化物、金属、炭素系材料などが挙げられる。
 炭化物としては、例えば、炭化ケイ素、炭化ホウ素、炭化アルミニウム、炭化チタン、炭化タングステンなどが挙げられる。
 窒化物としては、例えば、窒化ケイ素、窒化ホウ素、窒化ホウ素ナノチューブ、窒化アルミニウム、窒化ガリウム、窒化クロム、窒化タングステン、窒化マグネシウム、窒化モリブデン、窒化リチウムなどが挙げられる。
 酸化物としては、例えば、酸化鉄、酸化ケイ素(シリカ)、酸化アルミニウム(アルミナ)(酸化アルミニウムの水和物(ベーマイトなど)を含む。)、酸化マグネシウム、酸化チタン、酸化セリウム、酸化ジルコニウムなどが挙げられる。また、酸化物として、チタン酸バリウムなどの遷移金属酸化物などや、さらには、金属イオンがドーピングされている、例えば、酸化インジウムスズ、酸化アンチモンスズなどが挙げられる。
Materials for the thermally conductive filler include, for example, carbides, nitrides, oxides, hydroxides, metals, and carbonaceous materials.
Carbides include, for example, silicon carbide, boron carbide, aluminum carbide, titanium carbide, and tungsten carbide.
Examples of nitrides include silicon nitride, boron nitride, boron nitride nanotubes, aluminum nitride, gallium nitride, chromium nitride, tungsten nitride, magnesium nitride, molybdenum nitride, and lithium nitride.
Examples of oxides include iron oxide, silicon oxide (silica), aluminum oxide (alumina) (including hydrates of aluminum oxide (boehmite, etc.)), magnesium oxide, titanium oxide, cerium oxide, zirconium oxide, and the like. mentioned. Examples of oxides include transition metal oxides such as barium titanate, and metal ion-doped materials such as indium tin oxide and antimony tin oxide.
 水酸化物としては、例えば、水酸化アルミニウム、水酸化カルシウム、水酸化マグネシウムなどが挙げられる。
 金属としては、例えば、銅、金、ニッケル、錫、鉄、または、それらの合金が挙げられる。
 炭素系材料としては、例えば、カーボンブラック、黒鉛、ダイヤモンド、グラフェン、フラーレン、カーボンナノチューブ、カーボンナノファイバー、ナノホーン、カーボンマイクロコイル、ナノコイルなどが挙げられる。
 上記以外の熱伝導性フィラーとして、ケイ酸塩鉱物であるタルクを挙げることができる。
 これら熱伝導性フィラーは、単独使用または2種類以上併用することができる。
Hydroxides include, for example, aluminum hydroxide, calcium hydroxide, magnesium hydroxide and the like.
Metals include, for example, copper, gold, nickel, tin, iron, or alloys thereof.
Carbon-based materials include, for example, carbon black, graphite, diamond, graphene, fullerene, carbon nanotubes, carbon nanofibers, nanohorns, carbon microcoils, and nanocoils.
Talc, which is a silicate mineral, can be mentioned as a thermally conductive filler other than the above.
These thermally conductive fillers can be used alone or in combination of two or more.
 これらの中でも、熱伝導性フィラーは、窒化ホウ素、水酸化マグネシウム、及び酸化マグネシウムが好ましく、窒化ホウ素を含むことがより好ましい。 Among these, the thermally conductive filler is preferably boron nitride, magnesium hydroxide, or magnesium oxide, and more preferably contains boron nitride.
 熱伝導性フィラー中の非球状フィラーの含有量は、熱伝導性フィラー全量基準で、60質量%以上であることが好ましく、90質量%以上であることがより好ましく、100質量%であることが更に好ましい。 The content of the non-spherical filler in the thermally conductive filler is preferably 60% by mass or more, more preferably 90% by mass or more, and preferably 100% by mass, based on the total amount of the thermally conductive filler. More preferred.
 熱伝導性樹脂シートにおける熱伝導性フィラーの含有量は、熱伝導性樹脂シート全量基準で、好ましくは40~70質量%であり、より好ましくは45~65質量%であり、さらに好ましくは50~60質量%である。熱伝導性フィラーの含有量をこのような範囲にすることにより、熱伝導性樹脂シートの熱伝導率が高まり、熱伝導性樹脂シートのパルスNMRにより測定されるC成分の成分比、C成分の緩和時間及びC成分の成分比とC成分の緩和時間の積を上記した所定の範囲に調整しやすくなる。 The content of the thermally conductive filler in the thermally conductive resin sheet is preferably 40 to 70% by mass, more preferably 45 to 65% by mass, and still more preferably 50 to 70% by mass, based on the total amount of the thermally conductive resin sheet. 60% by mass. By setting the content of the thermally conductive filler in such a range, the thermal conductivity of the thermally conductive resin sheet is increased, and the component ratio of the C component measured by pulse NMR of the thermally conductive resin sheet, the C component It becomes easy to adjust the relaxation time and the product of the component ratio of the C component and the relaxation time of the C component within the predetermined range described above.
(配向)
 熱伝導性樹脂シートにおいて、熱伝導性フィラーの配向角度は45°より大きいことが好ましく、50°以上がより好ましく、70°以上がさらに好ましく、80°以上がさらに好ましい。ここで、配向角度とは、熱伝導性フィラーの長軸の、熱伝導性樹脂シートの表面であるシート面に対する角度である。なお、熱伝導性フィラーの長軸は、前記した熱伝導性フィラーの最大長さと方向が一致している。熱伝導性フィラーの配向角度が上記範囲であると、熱伝導率を高めやすくなる。
(orientation)
In the thermally conductive resin sheet, the orientation angle of the thermally conductive filler is preferably greater than 45°, more preferably 50° or more, still more preferably 70° or more, and even more preferably 80° or more. Here, the orientation angle is the angle of the long axis of the thermally conductive filler with respect to the surface of the thermally conductive resin sheet. The major axis of the thermally conductive filler is aligned with the maximum length of the thermally conductive filler. When the orientation angle of the thermally conductive filler is within the above range, it becomes easier to increase the thermal conductivity.
 上記配向角度は、熱伝導性樹脂シートの厚さ方向の断面を走査型電子顕微鏡により観察することにより測定できる。例えば、まず、熱伝導性樹脂シートの厚み方向の中央部分の薄膜切片を作製する。そして、走査型電子顕微鏡(SEM)により倍率3000倍で該薄膜切片中の熱伝導性フィラーを観察し、観察されたフィラーの長軸と、シート面を構成する面とのなす角度を測定することにより、求めることができる。本明細書において、45°、50°、70°、80°以上の角度とは、上記のように測定された値の平均値がその角度以上であることを意味する。例えば「配向角度が50°以上」は、50°は平均値であるため、配向角度が50°未満の熱伝導性フィラーの存在を否定するものではない。なお、なす角度が90°を超える場合は、その補角を測定値とする。 The orientation angle can be measured by observing a cross section of the thermally conductive resin sheet in the thickness direction with a scanning electron microscope. For example, first, a thin film slice of the central portion in the thickness direction of the thermally conductive resin sheet is produced. Then, using a scanning electron microscope (SEM), the thermally conductive filler in the thin film section is observed at a magnification of 3000 times, and the angle formed between the observed long axis of the filler and the plane constituting the sheet surface is measured. can be obtained by In this specification, angles of 45°, 50°, 70°, 80° or more mean that the average value of the values measured as described above is the angle or more. For example, "an orientation angle of 50° or more" does not deny the existence of thermally conductive fillers with an orientation angle of less than 50°, because 50° is an average value. If the angle exceeds 90°, the supplementary angle is taken as the measured value.
(その他の添加剤)
 本発明の熱伝導性樹脂シートには、必要に応じて、酸化防止剤、熱安定剤、着色剤、難燃剤、帯電防止剤、前記熱伝導性フィラー以外の充填材、分解温度調整剤等の熱伝導性樹脂シートに一般的に使用する添加剤を配合されてもよい。
(Other additives)
The thermally conductive resin sheet of the present invention may optionally contain antioxidants, thermal stabilizers, colorants, flame retardants, antistatic agents, fillers other than the thermally conductive fillers, decomposition temperature adjusters, and the like. Additives commonly used in thermally conductive resin sheets may be added.
(積層体)
 本発明の熱伝導性樹脂シートは単層でもよいし、積層体でもよい。熱伝導性を良好とする観点から、樹脂及び非球状フィラーを含む樹脂層が積層された積層体が好ましい。以下、樹脂及び非球状フィラーを含む樹脂層が積層された積層体の実施形態の一例を図1により説明する。
 各図において、各フィラーは上下に隣接するフィラーと重複しているが、本発明においてフィラー同士は必ずしも重複していなくてよい。
 図1に示すように、熱伝導性樹脂シート1は、複数の樹脂層2を積層した構造を有している。複数の樹脂層2の積層面に対する垂直面が樹脂シート1の表面であるシート面5となる。
(Laminate)
The thermally conductive resin sheet of the present invention may be a single layer or a laminate. From the viewpoint of improving thermal conductivity, a laminate obtained by laminating resin layers containing a resin and an aspherical filler is preferable. An example of an embodiment of a laminate in which resin layers containing resin and non-spherical filler are laminated will be described below with reference to FIG.
In each figure, each filler overlaps the vertically adjacent filler, but in the present invention, the fillers do not necessarily have to overlap each other.
As shown in FIG. 1, the thermally conductive resin sheet 1 has a structure in which a plurality of resin layers 2 are laminated. A surface perpendicular to the lamination surface of the plurality of resin layers 2 is a sheet surface 5 which is the surface of the resin sheet 1 .
 熱伝導性樹脂シート1の厚みT1(すなわち、シート面5とシート面5との間の距離)は特に限定されないが、例えば、0.1~30mmの範囲とすることができる。
 樹脂層2の1層の厚みW1(樹脂層幅)は特に限定されないが、好ましくは1000μm以下、より好ましくは500μm以下であり、そして、好ましくは0.1μm以上、より好ましくは0.5μm以上、更に好ましくは1μm以上とすることができる。このように厚みを調整することにより、熱伝導性を高めることができる。
 樹脂層2は、熱伝導性フィラー6を含有する熱伝導性樹脂層7である。熱伝導性樹脂層7は、樹脂8中に熱伝導性の熱伝導性フィラー6が分散された構造を有する。
 各樹脂層2においては、熱伝導性フィラーは、上記のようにシート面に対して45°より大きい角度、より好ましくは50°以上、更に好ましくは60℃以上、更に好ましくは70°以上、更に好ましくは80°以上の角度で配向している。
The thickness T1 of the thermally conductive resin sheet 1 (that is, the distance between the sheet surfaces 5) is not particularly limited, but can be in the range of 0.1 to 30 mm, for example.
The thickness W1 (resin layer width) of one layer of the resin layer 2 is not particularly limited, but is preferably 1000 μm or less, more preferably 500 μm or less, and preferably 0.1 μm or more, more preferably 0.5 μm or more, More preferably, it can be 1 μm or more. Thermal conductivity can be improved by adjusting the thickness in this way.
The resin layer 2 is a thermally conductive resin layer 7 containing thermally conductive fillers 6 . The thermally conductive resin layer 7 has a structure in which thermally conductive fillers 6 are dispersed in a resin 8 .
In each resin layer 2, the thermally conductive filler has an angle larger than 45°, more preferably 50° or more, still more preferably 60°C or more, still more preferably 70° or more, and further preferably 70° or more with respect to the sheet surface as described above. It is preferably oriented at an angle of 80° or more.
 熱伝導性樹脂層7の厚みは、熱伝導性樹脂層7中に含まれる熱伝導性フィラー6の厚みの好ましくは1~1000倍、より好ましくは1~500倍である。
 熱伝導性樹脂層7の幅(厚み)を上記範囲とすることにより、熱伝導性フィラー6を、その長軸が、前記シート面に対して90°に近い角度に配向させやすくなる。なお熱伝導性樹脂層7の幅は、上記範囲内であれば均等でなくてもよい。
The thickness of the thermally conductive resin layer 7 is preferably 1 to 1000 times the thickness of the thermally conductive filler 6 contained in the thermally conductive resin layer 7, more preferably 1 to 500 times.
By setting the width (thickness) of the thermally conductive resin layer 7 within the above range, the long axis of the thermally conductive filler 6 is easily oriented at an angle close to 90° with respect to the sheet surface. The width of the thermally conductive resin layer 7 does not have to be uniform as long as it is within the above range.
[熱伝導性樹脂シートの製造方法]
 本発明の熱伝導性樹脂シートの製造方法は、特に限定されないが、単層の熱伝導性樹脂シートを製造する場合は、例えば、熱伝導性フィラー、樹脂、及び必要に応じて添加剤を押出機に供給し溶融混練して得た混合物を、押出機からシート状に押出すことによって熱伝導性樹脂シートを成形すればよい。
[Method for producing thermally conductive resin sheet]
The method for producing the thermally conductive resin sheet of the present invention is not particularly limited. A thermally conductive resin sheet may be formed by extruding a mixture obtained by supplying the mixture to a machine and melt-kneading it into a sheet form from an extruder.
(積層体の製造方法)
 本発明の積層体からなる熱伝導性樹脂シートの製造方法は、特に限定されないが、以下に説明するように、混練工程、積層工程、さらに必要に応じてスライス工程を含む方法により製造することができる。
(Laminate manufacturing method)
The method for producing the thermally conductive resin sheet comprising the laminate of the present invention is not particularly limited. can.
<混練工程>
 熱伝導性フィラーと樹脂とを混練して、熱伝導性樹脂組成物を作製する。
 前記の混練は、例えば、熱伝導性フィラーと樹脂とを、プラストミル等の二軸スクリュー混練機や二軸押出機等を用いて、加熱下において混練することが好ましく、これにより、熱伝導性フィラーが樹脂中に均一に分散された熱伝導性樹脂組成物を得ることができる。
 次いで、該熱伝導性樹脂組成物をプレスすることにより、シート状の樹脂層(熱伝導性樹脂層)を得ることができる。
<Kneading process>
A thermally conductive filler and a resin are kneaded to prepare a thermally conductive resin composition.
For the kneading, for example, the thermally conductive filler and the resin are preferably kneaded under heating using a twin-screw kneader such as Plastomill or a twin-screw extruder. is uniformly dispersed in the resin to obtain a thermally conductive resin composition.
Then, by pressing the thermally conductive resin composition, a sheet-like resin layer (thermally conductive resin layer) can be obtained.
<積層工程>
 積層工程では、前記混練工程で得た樹脂層を積層してn層構造の積層体を作成する。積層方法としては、例えば、混練工程で作製した樹脂層をx分割して積層し、x層構造の積層体を作製後、必要に応じて、熱プレスを行い、その後、更に、必要に応じて、分割と積層と前記の熱プレスを繰り替えして、幅がDμmでn層構造の積層体を作製する方法を用いることができる。
 熱伝導性フィラーが板状である場合、積層工程後の積層体の幅W2(Dμm)、前記熱伝導性フィラーの厚みt(dμm)は、0.0005≦d/(D/n)≦1を満足することが好ましく、0.001≦d/(D/n)≦1を満足することがより好ましく、0.02≦d/(D/n)≦1を満足することが更に好ましい。
 このように、複数回の成形を行う場合には、各回における成形圧を、1回の成形で行う場合に比べて、小さくすることができるため、成形に起因する積層構造の破壊等の現象を回避することができる。
 その他の積層方法として、例えば、多層形成ブロックを備える押出機を用い、前記多層形成ブロックを調製して、共押出し成形により、前記n層構造で、かつ、前記厚さDμmの積層体を得る方法を用いることもできる。
 具体的には、第1の押出機及び第2の押出機の双方に前記混練工程で得た熱伝導性樹脂組成物を導入し、第1の押出機及び第2の押出機から熱伝導性樹脂組成物を同時に押出す。第1の押出機及び第2の押出機から押出された熱伝導性樹脂組成物は、フィードブロックに送られる。フィードブロックでは、第1の押出機及び上記第2の押出機から押出された熱伝導性樹脂組成物が合流する。それによって、熱伝導性樹脂組成物が積層された2層体を得ることができる。次に、前記の2層体を多層形成ブロックへと移送し、押出し方向に平行な方向であり、かつ積層面に垂直な複数の面に沿って2層体を複数に分割後、積層して、n層構造で、厚みDμmの積層体を作製することができる。このとき、1層当たりの厚み(D/n)は、多層形成ブロックを調整して所望の値とすることができる。
<Lamination process>
In the lamination step, the resin layers obtained in the kneading step are laminated to form a laminate having an n-layer structure. As a lamination method, for example, the resin layer produced in the kneading step is divided into xi and laminated, and after producing a laminate having an xi layer structure, hot pressing is performed as necessary, and then, further, if necessary. Accordingly, it is possible to use a method of repeating the division, lamination, and the above-described hot press to fabricate a laminated body having a width of D μm and an n-layer structure.
When the thermally conductive filler is plate-shaped, the width W2 (D μm) of the laminate after the lamination step and the thickness t (d μm) of the thermally conductive filler are 0.0005≦d/(D/n)≦1. is preferably satisfied, more preferably 0.001≤d/(D/n)≤1, and even more preferably 0.02≤d/(D/n)≤1.
In this way, when molding is performed a plurality of times, the molding pressure in each time can be made smaller than in the case of performing molding once, so phenomena such as destruction of the laminated structure caused by molding can be prevented. can be avoided.
As another lamination method, for example, an extruder equipped with a multilayer forming block is used, the multilayer forming block is prepared, and co-extrusion is performed to obtain a laminate having the n-layer structure and the thickness of D μm. can also be used.
Specifically, the thermally conductive resin composition obtained in the kneading step is introduced into both the first extruder and the second extruder, and the thermally conductive resin composition is introduced from the first extruder and the second extruder. The resin composition is extruded at the same time. The thermally conductive resin composition extruded from the first extruder and the second extruder is sent to the feedblock. In the feed block, the thermally conductive resin composition extruded from the first extruder and the second extruder join together. Thereby, a two-layer body in which the thermally conductive resin composition is laminated can be obtained. Next, the two-layer body is transferred to a multi-layer forming block, and the two-layer body is divided into a plurality of pieces along a plurality of planes parallel to the direction of extrusion and perpendicular to the plane of lamination, and then laminated. , n-layer structure, and a laminate having a thickness of D μm can be produced. At this time, the thickness per layer (D/n) can be adjusted to a desired value by adjusting the multi-layer formation block.
(スライス工程)
 前記積層工程で得た積層体を積層方向に対して平行方向にスライスすることにより、熱伝導性樹脂シートを作製することができる。
(Slicing process)
A thermally conductive resin sheet can be produced by slicing the laminate obtained in the lamination step in a direction parallel to the lamination direction.
(その他工程)
 熱伝導性樹脂シートの製造方法においては、樹脂を架橋する工程を設けてもよい。架橋は、例えば、電子線、α線、β線、γ線等の電離性放射線を照射する方法、有機過酸化物を用いる方法等により行えばよい。電子線照射を行う場合の加速電圧は50~800kVが好ましく、200~700kVがより好ましく、400~600kVがさらに好ましい。同様の観点から、電子線照射の照射量は200~1200kGyが好ましく、300~1000kGyがより好ましく、400~800KGyがさらに好ましい。
(Other processes)
In the method for producing a thermally conductive resin sheet, a step of cross-linking the resin may be provided. Crosslinking may be carried out by, for example, a method of irradiating ionizing radiation such as electron beams, α-rays, β-rays, and γ-rays, a method of using an organic peroxide, or the like. The acceleration voltage for electron beam irradiation is preferably 50 to 800 kV, more preferably 200 to 700 kV, even more preferably 400 to 600 kV. From the same point of view, the dose of electron beam irradiation is preferably 200 to 1200 kGy, more preferably 300 to 1000 kGy, even more preferably 400 to 800 KGy.
 本発明の熱伝導性樹脂シートは、例えば、電子機器内部の発熱体と放熱体の間に配置させることで、発熱体から放熱体への熱放散を促進させることができる。このことを図1で説明した熱伝導性樹脂シート1を用いて説明する。
 図2に示すように、熱伝導性樹脂シート1は、シート面5が発熱体3や放熱体4と接するように配置される。また、熱伝導性樹脂シート1は、発熱体3と放熱体4等の2つの部材の間において、圧縮した状態で配置される。この際、本発明の熱伝導性樹脂シート1は、比較的広い圧縮率においても安定した放熱性能を発揮できる。なお、発熱体3は、例えば、半導体パッケージ等であり、放熱体4は、例えば、アルミニウムや銅などの金属等である。熱伝導性樹脂シート1をこのような状態で使用することにより、発熱体3で発生した熱が、放熱体4へ熱拡散しやすくなり、効率的な放熱が可能となる。
The thermally conductive resin sheet of the present invention can promote heat dissipation from the heat generating body to the heat radiating body, for example, by placing it between the heat generating body and the heat radiating body inside the electronic device. This will be explained using the thermally conductive resin sheet 1 explained in FIG.
As shown in FIG. 2 , the thermally conductive resin sheet 1 is arranged so that the sheet surface 5 is in contact with the heating element 3 and the radiator 4 . Also, the thermally conductive resin sheet 1 is arranged in a compressed state between two members such as the heating element 3 and the radiator 4 . At this time, the thermally conductive resin sheet 1 of the present invention can exhibit stable heat radiation performance even at a relatively wide compression rate. The heating element 3 is, for example, a semiconductor package or the like, and the radiator 4 is, for example, metal such as aluminum or copper. By using the thermally conductive resin sheet 1 in such a state, the heat generated by the heating element 3 can be easily thermally diffused to the radiator 4, enabling efficient heat dissipation.
 本発明を実施例により更に詳細に説明するが、本発明はこれらの例によってなんら限定されるものではない。 Although the present invention will be described in more detail by way of examples, the present invention is not limited by these examples.
 以下の実施例及び比較例で使用した材料は以下のとおりである。
樹脂
・液状エラストマー1:液状ポリブタジエンゴム、株式会社クラレ社製、商品名「LBR-305」 粘度:40Pa・s(38℃)、重量平均分子量:26,000
・液状エラストマー2:液状ポリイソプレンゴム、株式会社クラレ社製、商品名「LIR-403」 粘度:200Pa・s(38℃)、重量平均分子量:34,000
・液状エラストマー3:UV硬化型液状ポリイソプレンゴム、株式会社クラレ社製、商品名「UC-102M」 粘度:30Pa・s(38℃)、重量平均分子量:17,000
・液状エラストマー4:液状ポリイソプレンゴム、株式会社クラレ社製、商品「LIR-390」 粘度:400Pa・s(38℃)、重量平均分子量:48,000
・液状エラストマー5:液状ポリブタジエンゴム、株式会社クラレ社製、商品名「L-1203」 粘度:10Pa・s(38℃)、重量平均分子量:7,000
・アクリル樹脂1:ナガセケムテックス社製、商品名「SG-708-6」、重量平均分子量:700,000
・アクリル樹脂2:ナガセケムテックス社製、商品名「SG-600TEA」、重量平均分子量:1,200,000
Materials used in the following examples and comparative examples are as follows.
Resin/liquid elastomer 1: Liquid polybutadiene rubber, manufactured by Kuraray Co., Ltd., trade name “LBR-305” Viscosity: 40 Pa s (38° C.), weight average molecular weight: 26,000
・ Liquid elastomer 2: Liquid polyisoprene rubber, manufactured by Kuraray Co., Ltd., trade name “LIR-403” Viscosity: 200 Pa s (38 ° C.), weight average molecular weight: 34,000
・ Liquid elastomer 3: UV curable liquid polyisoprene rubber, manufactured by Kuraray Co., Ltd., trade name “UC-102M” Viscosity: 30 Pa s (38 ° C.), weight average molecular weight: 17,000
・Liquid elastomer 4: Liquid polyisoprene rubber, manufactured by Kuraray Co., Ltd., product “LIR-390” Viscosity: 400 Pa s (38 ° C.), weight average molecular weight: 48,000
・ Liquid elastomer 5: Liquid polybutadiene rubber, manufactured by Kuraray Co., Ltd., trade name “L-1203” Viscosity: 10 Pa s (38 ° C.), weight average molecular weight: 7,000
・ Acrylic resin 1: manufactured by Nagase ChemteX, trade name “SG-708-6”, weight average molecular weight: 700,000
・ Acrylic resin 2: manufactured by Nagase ChemteX, trade name “SG-600TEA”, weight average molecular weight: 1,200,000
(2)熱伝導性フィラー
 窒化ホウ素 デンカ社製、商品名「SGP」、平均粒子径15μm、板状、アスペクト比20
(2) Thermally conductive filler Boron nitride Denka, trade name “SGP”, average particle size 15 μm, plate shape, aspect ratio 20
 各種物性、評価方法は以下のとおりである。 Various physical properties and evaluation methods are as follows.
<C成分の成分比及び緩和時間の測定>
 各実施例及び比較例で作製した熱伝導性樹脂シートを直径10mmのガラス製のサンプル管(BRUKER製、品番1824511、10mm径長さ180mm、フラットボトム)に高さ1.5cm(2g程度)になるように充填した。該サンプル管をパルスNMR装置(BRUKER製「the minispec mq20」)に設置した。測定は25℃で10分保温した後にCPMG法を行い、得られた1Hのスピン-スピン緩和の自由誘導減衰曲線を、A成分、B成分、C成分の3成分に由来する3つの曲線に波形分離した。波形分離は、エクスポーネンシャル型を用いて、フィッティングさせることで行った。それぞれの測定で得られた3成分に由来する曲線から、各成分の成分比及び緩和時間を求めた。
 なお、BRUKER社製の解析ソフトウェア「TD-NMRA(Version 4.3 Rev 0.8)」を用い製品マニュアルに従って、A成分、B成分およびC成分全てにおいてエクスポーネンシャル型でフィッティングを行った。
<Component ratio of C component and measurement of relaxation time>
The thermally conductive resin sheet produced in each example and comparative example was placed in a glass sample tube with a diameter of 10 mm (manufactured by BRUKER, product number 1824511, 10 mm diameter length 180 mm, flat bottom) to a height of 1.5 cm (about 2 g). filled to The sample tube was placed in a pulse NMR device ("the minispec mq20" manufactured by BRUKER). The measurement was carried out by the CPMG method after incubating at 25 ° C. for 10 minutes, and the obtained 1H spin-spin relaxation free induction decay curve was divided into three curves derived from the three components of the A component, the B component, and the C component. separated. Waveform separation was performed by fitting using an exponential type. From the curves derived from the three components obtained in each measurement, the component ratio and relaxation time of each component were obtained.
All of the A, B and C components were subjected to exponential fitting according to the product manual using analysis software "TD-NMRA (Version 4.3 Rev 0.8)" manufactured by BRUKER.
 また、フィッティングには以下の式を用いた。
Y=A1*exp(-1/w1*(t/T2A)^w1)+B1*exp(-1/w2*(t/T2B)^w2)+C1*exp(-1/w3*(t/T2C)^w3)
ここで、Yは緩和強度である。w1~w3はワイブル係数であり、全て1の値を取る。A1はA成分の、B1はB成分の、C1はC成分のそれぞれ成分比であり、T2AはA成分の、T2BはB成分の、T2CはC成分のそれぞれ緩和時間を示す。tは時間である。
<CPMG法>
Scans:256times
Recycle Deray:1sec
90-180 Pulse Separation(tau):0.1ms
Number of Points:8000
 上記測定条件は一例であり、Scan回数は規格化した緩和曲線の強度が0.02msec以下となるように設定し、Recycle Derayは縦緩和時間T1の5倍の値が望ましい。90-180 Pulse Separation(tau)およびNumber of Pointsは緩和曲線が完全に減衰しきる値を設定する。
Also, the following formula was used for fitting.
Y=A1*exp(-1/w1*(t/T2A)^w1)+B1*exp(-1/w2*(t/T2B)^w2)+C1*exp(-1/w3*(t/ T2C)^w3)
where Y is the relaxation strength. w1 to w3 are Weibull coefficients, all of which take a value of one. A1 is the A component, B1 is the B component, and C1 is the C component, respectively. t is time.
<CPMG method>
Scans: 256 times
Recycle Delay: 1sec
90-180 Pulse Separation (tau): 0.1ms
Number of Points: 8000
The above measurement conditions are an example, the number of scans is set so that the normalized relaxation curve strength is 0.02 msec or less, and the recycle delay is preferably five times the longitudinal relaxation time T1. 90-180 Pulse Separation (tau) and Number of Points set the values at which the transition curve completely decays.
<熱伝導率>
 得られた熱伝導性樹脂シートの厚み方向の熱伝導率を、レーザーフラッシュ法熱定数測定装置(NETZSCH社製「LFA447」)を用いて測定を行った。
<30%圧縮強度>
 得られた熱伝導性樹脂シートの30%圧縮強度を、エー・アンド・ディ社製「RTG-1250」を用いて測定した。サンプル寸法を2mm×15mm×15mm、測定温度を23℃、圧縮速度を1mm/minとして測定を行った。
<Thermal conductivity>
The thermal conductivity in the thickness direction of the obtained thermally conductive resin sheet was measured using a laser flash method thermal constant measuring device (“LFA447” manufactured by NETZSCH).
<30% Compressive Strength>
The 30% compressive strength of the resulting thermally conductive resin sheet was measured using "RTG-1250" manufactured by A&D. The measurement was performed with a sample size of 2 mm×15 mm×15 mm, a measurement temperature of 23° C., and a compression rate of 1 mm/min.
<タック性の評価(密着時間)>
 タップテスター(UBM社製「TA500」)を用いて、SUS製のプローブを荷重3000gf/cmで熱伝導性樹脂シートの表面に10秒間押し付けた後、垂直方向に0.5mm/sの速度で引き上げた場合の、引き上げ開始からプローブが熱伝導性樹脂シートから外れるまでの密着時間を測定した。測定は23℃で行った。
<Evaluation of tackiness (adhesion time)>
Using a tap tester (UBM "TA500"), a SUS probe was pressed against the surface of the thermally conductive resin sheet with a load of 3000 gf/cm 2 for 10 seconds, and then vertically at a speed of 0.5 mm / s. When the probe was pulled up, the adhesion time from the start of pulling up until the probe came off the thermally conductive resin sheet was measured. Measurements were made at 23°C.
<オイルブリード>
 A4サイズの紙上の中央に厚さ2mm、大きさ30mm角のサンプル(熱伝導性樹脂シート)を置き、125℃、336時間後にサンプル端部からオイルの染み出した距離を測定した。染み出しの距離は、サンプルの各辺からの最大の染み出し距離を測定し、その平均値として算出した。オイルの染み出し距離が10mm以下の場合を「オイルブリードが少ない」と判断し、オイルの染み出し距離が10mm超の場合を「オイルブリードが多い」と判断した。
<Oil bleed>
A sample (thermal conductive resin sheet) having a thickness of 2 mm and a size of 30 mm square was placed in the center of A4 size paper, and after 336 hours at 125.degree. The seepage distance was calculated as the average value of the maximum seepage distances from each side of the sample. When the oil seepage distance was 10 mm or less, it was judged that "there was little oil bleeding", and when the oil seepage distance was more than 10 mm, it was judged that "there was a lot of oil bleeding".
<フィルム剥離性>
 熱伝導性樹脂シートの両面に、厚さ50μmのPET製のセパレートフィルム(東レ社製、商品名ルミラーS)を貼り付けて、50℃で48時間静置した。その後、一方の面のセパレートフィルムを剥がした際に、熱伝導性樹脂シートのちぎれ及び変形が確認されなかった場合を「A」、ちぎれ及び変形の少なくとも一方が確認された場合を「B」として評価した。
<Film peelability>
A 50 μm-thick PET separate film (manufactured by Toray Industries, Inc., product name Lumirror S) was attached to both surfaces of the thermally conductive resin sheet, and left at rest at 50° C. for 48 hours. After that, when the separate film on one side is peeled off, "A" indicates that no tearing or deformation of the thermally conductive resin sheet is confirmed, and "B" indicates that at least one of tearing or deformation is confirmed. evaluated.
(実施例1)
 液状エラストマー1(株式会社クラレ社製、商品名「LBR-305」)と、窒化ホウ素(デンカ社製、商品名「SGP」)とを窒化ホウ素の含有量が熱伝導性樹脂シート全量基準で55質量%となるように混合し、溶融混練後、プレスすることにより厚さ0.5mm、幅80mm、奥行き80mmのシート状の樹脂層を得た。次に積層工程として、得られた樹脂層を16等分して重ねあわせて総厚さ8mm、幅20mm、奥行き20mmの16層からなる積層体を得た。次いで積層方向に平行にスライスし、厚さ2mm、幅8mm、奥行き20mmの熱伝導性樹脂シートを得た。該熱伝導性樹脂シートの積層体を構成する樹脂層の1層の厚みは0.5mmであった。各種評価結果を表1に示す。
(Example 1)
Liquid Elastomer 1 (manufactured by Kuraray Co., Ltd., trade name “LBR-305”) and boron nitride (manufactured by Denka Co., Ltd., trade name “SGP”) were mixed so that the content of boron nitride was 55 based on the total amount of the thermally conductive resin sheet. The mixture was mixed so as to make the mass %, melted and kneaded, and then pressed to obtain a sheet-like resin layer having a thickness of 0.5 mm, a width of 80 mm, and a depth of 80 mm. Next, as a lamination step, the obtained resin layer was divided into 16 equal parts and superimposed to obtain a laminate consisting of 16 layers with a total thickness of 8 mm, a width of 20 mm and a depth of 20 mm. Then, it was sliced parallel to the stacking direction to obtain a thermally conductive resin sheet having a thickness of 2 mm, a width of 8 mm and a depth of 20 mm. The thickness of one of the resin layers constituting the laminate of the thermally conductive resin sheets was 0.5 mm. Various evaluation results are shown in Table 1.
(実施例2~6、比較例1~5)
 表1のとおりに組成を変更した以外は、実施例1と同様にして熱伝導性樹脂シートを得た。各種評価結果を表1に示す。
(Examples 2 to 6, Comparative Examples 1 to 5)
A thermally conductive resin sheet was obtained in the same manner as in Example 1, except that the composition was changed as shown in Table 1. Various evaluation results are shown in Table 1.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 各実施例に示す熱伝導性樹脂シートは、本発明の要件を満足する熱伝導性樹脂シートであり、熱伝導性が高く、柔軟であると共に、タック性が低く、オイルブリードが抑制されていた。
 これに対して、比較例1の熱伝導性樹脂シートはC成分の成分比が大きく、タック性及びオイルブリードの結果が悪かった。比較例2及び3の熱伝導性樹脂シートは、C成分の成分比が小さく、30%圧縮強度が高い値となっており、柔軟性に劣っていた。また、比較例4、5の熱伝導性樹脂シートは、C成分の成分比とC成分の緩和時間との積の値が大きく、タック性及びオイルブリードの結果が悪かった。
The thermally conductive resin sheet shown in each example is a thermally conductive resin sheet that satisfies the requirements of the present invention, has high thermal conductivity, is flexible, has low tackiness, and suppresses oil bleeding. .
On the other hand, the thermally conductive resin sheet of Comparative Example 1 had a large component ratio of C component and was poor in tackiness and oil bleeding. The thermally conductive resin sheets of Comparative Examples 2 and 3 had a small component ratio of the C component, a high 30% compressive strength value, and poor flexibility. In addition, the thermally conductive resin sheets of Comparative Examples 4 and 5 had a large value of the product of the component ratio of the C component and the relaxation time of the C component, resulting in poor tackiness and oil bleeding.
 1 熱伝導性樹脂シート
 2 樹脂層
 3 発熱体
 4 放熱体
 5 シート面
 6 熱伝導性フィラー
 7 熱伝導性樹脂層
 8 樹脂
REFERENCE SIGNS LIST 1 thermally conductive resin sheet 2 resin layer 3 heating element 4 radiator 5 sheet surface 6 thermally conductive filler 7 thermally conductive resin layer 8 resin

Claims (7)

  1.  パルスNMRにおいて測定される1Hのスピン-スピン緩和の自由誘導減衰曲線を、緩和時間の短い順にA成分、B成分、及びC成分の3成分に由来する3つの曲線に波形分離して得たC成分の成分比が5%以上35%以下、C成分の緩和時間が600ミリ秒以下であり、C成分の成分比とC成分の緩和時間の積が5000未満である、熱伝導性樹脂シート。 The 1H spin-spin relaxation free induction decay curve measured in pulsed NMR was waveform-separated into three curves derived from three components, the A component, the B component, and the C component, in order of decreasing relaxation time. A thermally conductive resin sheet, wherein the component ratio is 5% or more and 35% or less, the relaxation time of the C component is 600 milliseconds or less, and the product of the component ratio of the C component and the relaxation time of the C component is less than 5000.
  2.  タップテスターを用いて、SUS製のプローブを荷重3000gf/cmで熱伝導性樹脂シートの表面に10秒間押し付けた後、垂直方向に0.5mm/sの速度で引き上げた場合の、引き上げ開始からプローブが熱伝導性樹脂シートから外れるまでの密着時間が1.5秒以下である、請求項1に記載の熱伝導性樹脂シート。 Using a tap tester, a SUS probe was pressed against the surface of the thermally conductive resin sheet with a load of 3000 gf / cm 2 for 10 seconds, and then lifted vertically at a speed of 0.5 mm / s. 2. The thermally conductive resin sheet according to claim 1, wherein the contact time until the probe is detached from the thermally conductive resin sheet is 1.5 seconds or less.
  3.  熱伝導率が6W/m・K以上である、請求項1又は2に記載の熱伝導性樹脂シート。 The thermally conductive resin sheet according to claim 1 or 2, which has a thermal conductivity of 6 W/m·K or more.
  4.  30%圧縮強度が3000kPa以下である、請求項1~3のいずれかに記載の熱伝導性樹脂シート。 The thermally conductive resin sheet according to any one of claims 1 to 3, which has a 30% compressive strength of 3000 kPa or less.
  5.  エラストマー樹脂及びアクリル樹脂からなる群から選択される少なくとも1種以上の樹脂を含有する、請求項1~4のいずれかに記載の熱伝導性樹脂シート。 The thermally conductive resin sheet according to any one of claims 1 to 4, containing at least one resin selected from the group consisting of elastomer resins and acrylic resins.
  6.  熱伝導性フィラーを含有する、請求項1~5のいずれかに記載の熱伝導性樹脂シート。 The thermally conductive resin sheet according to any one of claims 1 to 5, which contains a thermally conductive filler.
  7.  前記熱伝導性フィラーが窒化ホウ素を含む、請求項1~6のいずれかに記載の熱伝導性樹脂シート。 The thermally conductive resin sheet according to any one of claims 1 to 6, wherein the thermally conductive filler contains boron nitride.
PCT/JP2022/038304 2021-10-15 2022-10-14 Thermally conductive resin sheet WO2023063406A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2022566028A JPWO2023063406A1 (en) 2021-10-15 2022-10-14

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021-169827 2021-10-15
JP2021169827 2021-10-15

Publications (1)

Publication Number Publication Date
WO2023063406A1 true WO2023063406A1 (en) 2023-04-20

Family

ID=85988327

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/038304 WO2023063406A1 (en) 2021-10-15 2022-10-14 Thermally conductive resin sheet

Country Status (2)

Country Link
JP (1) JPWO2023063406A1 (en)
WO (1) WO2023063406A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020045609A1 (en) * 2018-08-31 2020-03-05 株式会社クラレ Resin composition, powder, adhesive and direct glazing adhesive for automobiles
JP2021004285A (en) * 2019-06-25 2021-01-14 日本ゼオン株式会社 Heat-conductive sheet
JP2021054969A (en) * 2019-09-30 2021-04-08 積水化学工業株式会社 Thermally conductive resin sheet
JP2021143297A (en) * 2020-03-12 2021-09-24 積水化学工業株式会社 Polyvinyl alcohol film and package material
JP2021160335A (en) * 2020-04-03 2021-10-11 旭化成株式会社 Cured resin and method for producing the same, metal-clad laminate, and printed wiring board

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020045609A1 (en) * 2018-08-31 2020-03-05 株式会社クラレ Resin composition, powder, adhesive and direct glazing adhesive for automobiles
JP2021004285A (en) * 2019-06-25 2021-01-14 日本ゼオン株式会社 Heat-conductive sheet
JP2021054969A (en) * 2019-09-30 2021-04-08 積水化学工業株式会社 Thermally conductive resin sheet
JP2021143297A (en) * 2020-03-12 2021-09-24 積水化学工業株式会社 Polyvinyl alcohol film and package material
JP2021160335A (en) * 2020-04-03 2021-10-11 旭化成株式会社 Cured resin and method for producing the same, metal-clad laminate, and printed wiring board

Also Published As

Publication number Publication date
JPWO2023063406A1 (en) 2023-04-20

Similar Documents

Publication Publication Date Title
JP6746540B2 (en) Heat conduction sheet
JP5423455B2 (en) HEAT CONDUCTIVE SHEET, ITS MANUFACTURING METHOD, AND HEAT DISCHARGE DEVICE USING HEAT CONDUCTIVE SHEET
WO2020153377A1 (en) Thermally-conductive resin sheet
EP3549974B1 (en) Thermally conductive sheet
TWI577959B (en) Thermal conductive sheet, method of producing thermal conductive sheet and radiator
KR101550083B1 (en) Heat radiation sheet and heat radiation device
JP2010132866A (en) Thermal conductive sheet, method for producing the thermal conductive sheet, and heat dissipator using the thermal conductive sheet
KR20180115269A (en) HEAT CONDUCTIVE SHEET, METHOD FOR MANUFACTURING THE SAME,
JP5866830B2 (en) Thermal conductive sheet, heat dissipation device, and method of manufacturing thermal conductive sheet
WO2021065899A1 (en) Thermally conductive resin sheet
WO2023063406A1 (en) Thermally conductive resin sheet
JP2023104942A (en) Thermoconductive sheet
WO2022190293A1 (en) Thermally conductive resin sheet
JP7235633B2 (en) Thermally conductive resin sheet
JP7488636B2 (en) Thermally conductive resin sheet
JP7218510B2 (en) thermal conductive sheet
JP2023049931A (en) multilayer structure
WO2022030012A1 (en) Heat-conducting sheet and device having heat-conducting sheet
JP2021150467A (en) Heat conduction sheet

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 2022566028

Country of ref document: JP

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22881101

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE