WO2020045609A1 - Resin composition, powder, adhesive and direct glazing adhesive for automobiles - Google Patents

Resin composition, powder, adhesive and direct glazing adhesive for automobiles Download PDF

Info

Publication number
WO2020045609A1
WO2020045609A1 PCT/JP2019/034053 JP2019034053W WO2020045609A1 WO 2020045609 A1 WO2020045609 A1 WO 2020045609A1 JP 2019034053 W JP2019034053 W JP 2019034053W WO 2020045609 A1 WO2020045609 A1 WO 2020045609A1
Authority
WO
WIPO (PCT)
Prior art keywords
resin
resin component
resin composition
polymer block
compound
Prior art date
Application number
PCT/JP2019/034053
Other languages
French (fr)
Japanese (ja)
Inventor
泰史 千田
真裕 加藤
Original Assignee
株式会社クラレ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社クラレ filed Critical 株式会社クラレ
Priority to JP2020539611A priority Critical patent/JPWO2020045609A1/en
Publication of WO2020045609A1 publication Critical patent/WO2020045609A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L101/00Compositions of unspecified macromolecular compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L101/00Compositions of unspecified macromolecular compounds
    • C08L101/02Compositions of unspecified macromolecular compounds characterised by the presence of specified groups, e.g. terminal or pendant functional groups
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L75/00Compositions of polyureas or polyurethanes; Compositions of derivatives of such polymers
    • C08L75/04Polyurethanes
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J11/00Features of adhesives not provided for in group C09J9/00, e.g. additives
    • C09J11/08Macromolecular additives
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J175/00Adhesives based on polyureas or polyurethanes; Adhesives based on derivatives of such polymers
    • C09J175/04Polyurethanes
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J201/00Adhesives based on unspecified macromolecular compounds
    • C09J201/02Adhesives based on unspecified macromolecular compounds characterised by the presence of specified groups, e.g. terminal or pendant functional groups

Definitions

  • the present invention relates to a resin composition, a powder, an adhesive, and a direct glazing adhesive for automobiles.
  • DG direct glazing
  • a window glass is directly bonded to a body without a rubber gasket
  • the rigidity of the vehicle body can be improved, the appearance is excellent, and the degree of freedom in design is high.
  • adhesives for use have been advanced (for example, see Patent Document 1). Since vibrations occur in various machines such as automobiles, there is a need for a means for solving the problems caused by the vibrations.
  • DG adhesive means for reducing road noise in a wide temperature range has been required.
  • a structural unit derived from a compound having a vinyl bonding unit may be used as a vibration damping material (for example, see Patent Document 2). It is generally known that a loss tangent (tan ⁇ ) measured according to JIS K72444-10 is an index of damping properties.
  • the block copolymer By adding such a block copolymer having damping properties to the adhesive, it is conceivable to impart damping properties to the adhesive and improve noise reduction.
  • the block copolymer since the above-mentioned block copolymer is generally low in polarity, it generally has low compatibility with an adhesive having high polarity. For this reason, the block copolymer may aggregate without being mixed with the adhesive, which may cause a decrease in mechanical strength or adhesive strength. Therefore, it is conceivable to mix and disperse powder (fine particles) obtained by pulverizing the styrene-based elastomer into the adhesive. In this case, since the block copolymer is a particle, it is necessary to sufficiently mix with the adhesive and disperse it in the adhesive.
  • the block copolymer becomes smaller in diameter, these are networked in the composition, or the particles are aggregated and unevenly distributed, and the adhesiveness and toughness etc. It is assumed that the performance as an adhesive is impaired. Therefore, the dispersion state of the block copolymer particles in the composition is important in order to exhibit vibration damping properties without impairing the performance of the adhesive.
  • the dispersed state of the vibration damping material in the adhesive composition is focused on, and what kind of dispersed state should be achieved has not yet been sufficiently studied.
  • An object of the present invention is to provide a resin composition that can have functions other than adhesiveness, such as high toughness, high hardness, and high vibration damping properties in a wide range of actual operating temperatures, while maintaining adhesiveness to a steel sheet.
  • An adhesive, and a direct glazing adhesive for automobiles Another object of the present invention is to provide a powder suitable for the resin composition, the adhesive, and the automotive direct glazing adhesive.
  • the present inventors disperse a resin component (II) capable of exhibiting high vibration damping property in a matrix resin component (I) having a monomer unit containing a hetero atom, and convert the resin component (II) in the resin composition. It has been found that the above problems can be solved by setting the specific average dispersion diameter, and the present invention has been completed.
  • a resin composition comprising at least one resin component (II) selected from the group consisting of a copolymer, a styrene-based resin, a conjugated diene polymer, and an olefin-based resin.
  • a resin composition wherein the average dispersion diameter of the resin component (II) is from 10 ⁇ m to 5,000 ⁇ m.
  • a powder comprising at least one resin component (II) selected from the group consisting of a block copolymer having the following, a styrene resin, a conjugated diene polymer, and an olefin resin.
  • Condition (1) Coefficients A 1 to A 3 determined by performing fitting of the following equation [I] on a relaxation curve represented by a relaxation strength y with respect to a relaxation time x measured using a pulse NMR apparatus, and The motility parameter M obtained by the following equation [II] using the spin-spin relaxation times ⁇ 1 to ⁇ 3 of each component is 0.01 to 0.25 seconds.
  • a resin composition capable of having functions other than adhesiveness, such as high toughness, high hardness, and high vibration damping properties in a wide range of actual operating temperatures, while maintaining adhesiveness to a steel sheet, And a direct glazing adhesive for automobiles. Further, according to the present invention, it is possible to provide a powder suitable for the resin composition, the adhesive, and the direct glazing adhesive for automobiles.
  • the resin composition according to the embodiment of the present invention includes a matrix resin component (I) having a monomer unit containing a hetero atom, and a polymer block (A) derived from an aromatic vinyl compound and a polymer resin derived from a conjugated diene compound.
  • a resin composition comprising a block copolymer having a united block (B), a styrene resin, a conjugated diene polymer, and at least one resin component (II) selected from the group consisting of olefin resins.
  • the resin composition has an average dispersion diameter of the resin component (II) in the resin composition of 10 ⁇ m to 5,000 ⁇ m.
  • the matrix resin component (I) is a resin component serving as a dispersion substrate (dispersion medium) of the resin composition, and a resin component (II) described later is dispersed in the matrix resin component (I).
  • the matrix resin component (I) is a resin component having a monomer unit containing a hetero atom, and may contain a curable resin component such as a prepolymer or an oligomer.
  • the matrix resin component (I) may contain a catalyst used in the production process, a curing agent (a cross-linking agent, a polymerization initiator, a co-reactant, etc.) used as necessary.
  • the matrix resin component (I) is preferably a urethane resin (polyurethane), a melamine resin, a urea resin, a phenol resin, a vinyl acetate resin, an ethylene / vinyl acetate resin, an epoxy resin, a cyanoacrylate resin, an acrylic resin, a chloroprene rubber, a nitrile rubber. , Silicone rubber, and polyurethane is particularly preferable.
  • a moisture-curable polyurethane is preferable, and a one-component moisture-curable polyurethane is more preferable.
  • the polyurethane is a polymer having a urethane bond
  • the “polyurethane” in the present invention is an oligomer having a urethane bond or a prepolymer having a urethane bond (hereinafter, may be referred to as “urethane prepolymer”).
  • urethane prepolymer A cured product of the prepolymer, a polyurethane composition and a urethane composition.
  • the prepolymer having a urethane bond may be a polymer obtained by reacting a polyol and an excess of diisocyanate with respect to the polyol, and since such a prepolymer contains unreacted isocyanate groups, it reacts with, for example, moisture.
  • the cured product of the prepolymer means a product obtained by reacting the prepolymer with, for example, moisture, a curing agent, and the like, and curing the prepolymer.
  • the matrix resin component (I) of the present invention is a polyurethane
  • the resin component (I) includes, in addition to the above-mentioned oligomer, prepolymer, and cured product of the prepolymer, a component for producing them.
  • polyurethane composition a composition containing at least one of these components
  • a polyurethane composition or a “urethane composition”.
  • moisture-curable polyurethane may be referred to as “moisture-curable polyurethane composition”
  • one-component moisture-curable polyurethane may be referred to as "one-component moisture-curable polyurethane composition”.
  • the polyurethane is formed using a polyol compound (U) having two or more hydroxy groups in one molecule and an isocyanate compound (V) having two or more isocyanate groups in one molecule. Is preferred.
  • the polyol compound (U) is not particularly limited as long as it can react with the isocyanate compound (V) described below.
  • polyol compound (U) examples include low molecular weight polyhydric alcohols, polyether polyols, polyester polyols, other polyols, and mixtures thereof.
  • low molecular weight polyhydric alcohols include ethylene glycol, diethylene glycol, propylene glycol, dipropylene glycol, 1,3-butanediol, 1,4-butanediol, pentanediol, neopentyl glycol, hexanediol, cyclohexanedimethanol, Glycerin, 1,1,1-trimethylolpropane, 1,2,5-hexanetriol, pentaerythritol; saccharides such as sorbitol;
  • the polyether polyol is obtained, for example, by adding at least one compound selected from alkylene oxide and styrene oxide to at least one compound selected from the above-mentioned low molecular weight polyhydric alcohol, aromatic diol compound, amine compound and alkanolamine compound. And a ring-opening polymerization of a cyclic ether monomer such as butylene oxide (tetramethylene oxide) and tetrahydrofuran.
  • a cyclic ether monomer such as butylene oxide (tetramethylene oxide) and tetrahydrofuran.
  • aromatic diol compound examples include resorcinol (m-dihydroxybenzene), xylylene glycol, 1,4-benzenedimethanol, styrene glycol, 4,4′-dihydroxyethylphenol; bisphenol A structure (4,4 ′ Diol compounds having a bisphenol skeleton such as bisphenol F structure (4,4′-dihydroxyphenylmethane), brominated bisphenol A structure, hydrogenated bisphenol A structure, bisphenol S structure and bisphenol AF structure.
  • the amine compound examples include ethylene diamine and hexamethylene diamine.
  • alkanolamine compound examples include ethanolamine and propanolamine.
  • alkylene oxide examples of the alkylene oxide.
  • polyether polyols examples include polyethylene glycol, polypropylene glycol, polypropylene triol, ethylene oxide / propylene oxide copolymer, polytetramethylene ether glycol, polytetraethylene glycol; sorbitol-based polyols; bisphenol A (4,4′-dihydroxy Phenylpropane) and a polyether polyol obtained by adding an alkylene oxide.
  • polyester polyol examples include a condensation-based polyester polyol, a lactone-based polyol, and a polycarbonate polyol.
  • the condensation-based polyester polyol is, for example, a condensation reaction of at least one compound selected from the above-mentioned low molecular weight polyhydric alcohol, the above-mentioned aromatic diol compound, the above-mentioned amine compound and the above-mentioned alkanolamine compound with a polybasic carboxylic acid. It is manufactured by.
  • polybasic carboxylic acids examples include, for example, glutaric acid, adipic acid, azelaic acid, fumaric acid, maleic acid, pimelic acid, suberic acid, sebacic acid, phthalic acid, terephthalic acid, isophthalic acid, dimer acid, and pyromellitic acid
  • low-molecular-weight carboxylic acids, oligomeric acids, castor oil, and hydroxycarboxylic acids such as reaction products of castor oil and ethylene glycol (or propylene glycol).
  • the lactone-based polyol has, for example, hydroxyl groups at both ends produced by ring-opening polymerization of lactone.
  • lactone examples include ⁇ -caprolactone, ⁇ -methyl- ⁇ -caprolactone, ⁇ -methyl- ⁇ -caprolactone, and the like.
  • polyols include acrylic polyols and the like.
  • polyol compounds (U) when used as a composition containing the reaction product of the urethane composition, for example, a one-part moisture-curable polyurethane composition, the balance between the hardness and elongation at break of the obtained cured product is excellent.
  • Polyether polyols and polypropylene glycols are preferred, and polypropylene glycols are more preferred, since a cured product having such physical properties can be obtained at low cost.
  • the weight average molecular weight of the polyol compound (U) is preferably from 100 to 10,000, and more preferably from 100 to 8,000. When the weight average molecular weight is in this range, the physical properties (for example, hardness, breaking strength, breaking elongation) and viscosity of the prepolymer produced by the reaction with the isocyanate compound (V) described below become favorable.
  • the weight average molecular weight of the polyol compound (U) is a weight average molecular weight in terms of standard polystyrene measured by gel permeation chromatography (GPC).
  • These polyol compounds (U) may be used alone or in combination of two or more.
  • the isocyanate compound (V) is not particularly limited as long as it has two or more isocyanate groups in one molecule.
  • Examples of the isocyanate compound (V) include tolylene diisocyanate, diphenylmethane diisocyanate, 1,4-phenylene diisocyanate, polymethylene polyphenylene polyisocyanate, xylylene diisocyanate, tetramethyl xylylene diisocyanate, tolidine diisocyanate, 1,5-naphthalene diisocyanate, Aromatic polyisocyanates such as triphenylmethane triisocyanate; aliphatic polyisocyanates such as hexamethylene diisocyanate, trimethylhexamethylene diisocyanate, lysine diisocyanate, norbornane diisocyanate methyl; transcyclohexane-1,4-diisocyanate, isophorone diisocyanate
  • aromatic polyisocyanates are preferable, and tolylene diisocyanate (TDI) and diphenylmethane diisocyanate (MDI) are more preferable, because the adhesiveness is further improved.
  • isocyanate compounds (V) may be used alone or in combination of two or more.
  • the amount of the isocyanate compound (V) to be used with respect to 100 parts by mass of the polyol compound (U) is preferably in the range of 1 to 200 parts by mass, more preferably 1 to 150 parts by mass, and still more preferably 1 to 100 parts by mass. It is.
  • the polyol compound (U) and the isocyanate compound (V) react at an appropriate quantitative ratio, and a cured product obtained from a reaction product of the urethane composition to be produced, In addition, physical properties (eg, hardness, breaking strength, breaking elongation) of a cured product obtained from the moisture-curable polyurethane composition containing the reaction composition are improved.
  • the urethane composition can be prepared by mixing the polyol compound (U) with the isocyanate compound (V) and other components (for example, a powder component and a plasticizer described later) included as necessary.
  • the mixing apparatus is not particularly limited, and includes, for example, a roll, a kneader, a pressure kneader, a Banbury mixer, a horizontal mixer (for example, a Ledige mixer), a vertical mixer (for example, a planetary mixer, etc.), an extruder, and a universal stirring. Machine.
  • the resin composition in order to disperse the resin component (II) satisfactorily in the composition without deteriorating the performance as an adhesive, as described below, the polyol compound (U) And a resin component (II), and a plasticizer and a filler used as necessary, and then adding and mixing an isocyanate compound (V), and further adding and mixing a catalyst to thereby form a urethane composition. And a resin composition is preferably prepared.
  • the urethane composition is suitable as a raw material for a moisture-curable polyurethane composition described later.
  • the urethane composition used as a raw material of the moisture-curable polyurethane composition is desirably manufactured through the following mixing step and dehydration step.
  • a preliminary mixture is prepared by mixing the polyol compound (U), a resin component (II) described later, and a component (for example, a powder component) included as necessary.
  • a component for example, a powder component
  • the mixing device for preparing the premix is not particularly limited, and a mixing device for preparing the urethane composition described above can be used.
  • the mixing temperature, the mixing time, and the rotation speed of the stirring member in the mixing step can be appropriately set according to the type of the polyol compound (U), the resin component (II), and the components included as necessary.
  • the mixing temperature is preferably about 20 to 110 ° C.
  • the mixing time is preferably from 30 minutes to 4 hours, more preferably from 30 minutes to 2 hours.
  • the rotation speed of the stirring member is preferably about 20 to 300 rpm.
  • Dehydration step It is desirable that the preliminary mixture obtained in the mixing step be further subjected to a dehydration step.
  • This dehydration step is a step of removing at least a part of the residual moisture in the preliminary mixture.
  • the method for removing the residual moisture is not particularly limited.
  • dehydration is performed at a temperature of about 30 to 60 ° C. under reduced pressure (1.2 kPa or less, preferably 0.6 to 1.2 kPa) for 30 minutes or more.
  • the dehydration step may also serve as the mixing step. In this case, mixing and dehydration may be performed preferably at a rotation speed of the stirring member of 20 to 300 rpm under the temperature and reduced pressure conditions in the dehydration step.
  • a time for dehydration may be added to the above-mentioned preferable mixing time, and for example, a total of 3 to 5 hours for the mixing and dehydration time is preferable.
  • the water content of the premix is preferably adjusted to 0.050% by mass or less, more preferably to 0.025% by mass or less, and further preferably to 0.015% by mass or less.
  • the water content of the premix can be measured by the Karl Fischer method.
  • an electrolytic solution containing iodide ion, sulfur dioxide, and alcohol as main components as Karl Fischer reagents for example, Aquamicron CXU, manufactured by API Corporation
  • coulometric titration based on JIS K0068 (2001) Can be measured using a moisture measuring device (for example, manufactured by Mitsubishi Chemical Corporation).
  • moisture A suitable urethane composition can also be produced for the curable polyurethane composition.
  • the mixing device for mixing the premix and the polyisocyanate compound (V) is not particularly limited, and a mixing device for producing the above-described urethane composition can be used.
  • the moisture-curable polyurethane composition is prepared by mixing a mixture containing a prepolymer (reaction product) by a reaction of the urethane composition (mainly, a urethane prepolymer formation reaction by a reaction between the polyol compound (U) and the isocyanate compound (V)). Then, the mixture can be prepared by mixing such a mixture with an isocyanate compound (V ′) having two or more isocyanate groups in one molecule.
  • the isocyanate compound (V ') contained in the moisture-curable polyurethane composition is not particularly limited as long as it is an isocyanate compound having two or more isocyanate groups in one molecule, and isocyanate compound (V') contained in the urethane composition And the like. That is, specific examples of the isocyanate compound (V ′) include polyisocyanates such as diphenylmethane diisocyanate, hexamethylene diisocyanate, trimethylhexamethylene diisocyanate, lysine diisocyanate, and norbornane diisocyanatomethyl. These are used alone. Or two or more of them may be used in combination.
  • Examples of the isocyanate compound (V ′) contained in the moisture-curable polyurethane composition include, in addition to the isocyanate compound (V), a reaction product of the above-mentioned polyisocyanate and triol; a biuret form of the polyisocyanate, an isocyanurate form And the like. These may be used alone or in combination of two or more.
  • the triol is not particularly limited as long as it has three hydroxy groups in one molecule.
  • 1,2,5-hexanetriol, 1,2,6-hexanetriol examples thereof include 2,3-propanetriol, 1,2,3-benzenetriol, 1,2,4-benzenetriol, trimethylolethane, and trimethylolpropane.
  • the isocyanate compound (V ′) a reaction product of hexamethylene diisocyanate and trimethylolpropane, a biuret of hexamethylene diisocyanate, and an isocyanate of hexamethylene diisocyanate are used because the adhesive effect is more excellent. It is preferably at least one member selected from the group consisting of a nullate form.
  • Prepolymer generation step In the prepolymer production step, a pre-mixture containing the polyol compound (U), the resin component (II), and the components included as necessary is preferably obtained through the above-described mixing step and dehydration step from the urethane composition; This is a step of obtaining the above prepolymer from a resin composition obtained by mixing with the polyisocyanate compound (V).
  • the prepolymer may be mixed with the polyol compound (U), the resin component (II), and a premix containing the components included as required and the polyisocyanate compound (V) simultaneously or continuously to form a prepolymer.
  • Conditions for forming the prepolymer can be appropriately set according to the types of the polyol compound (U) and the isocyanate compound (V) contained in the urethane composition. For example, during or after mixing the premix and the polyisocyanate compound (V), it is preferable that the temperature of the mixture be equal to or higher than the melting point of the isocyanate compound (V) under stirring conditions.
  • the production of the prepolymer is preferably carried out under an atmosphere of an inert gas such as nitrogen or argon or under reduced pressure.
  • the isocyanate compound (V) isocyanate compound (V) with the premix, and then to mix a catalyst for promoting the prepolymer production reaction.
  • the type of the catalyst is not particularly limited, but a metal catalyst, an amine catalyst and the like are preferable. These catalysts may be used in combination. Thereby, the viscosity of the produced prepolymer can be favorably maintained. For example, when the powder component is contained in the pre-mixture, it is considered that the addition of the above-mentioned catalyst does not cause a rapid reaction of forming the prepolymer, thereby maintaining a good viscosity.
  • the metal catalyst examples include organometallic catalysts.
  • organometallic catalyst examples include dimethyltin dilaurate, dibutyltin dilaurate, dioctyltin dilaurate (DOTL), dioctyltin dilaurate, dibutyltin diacetate, and a bismuth-based catalyst (for example, inorganic bismuth (Neostan U- 600, U-660)).
  • amine catalyst examples include triethylenediamine, bis (dimethylaminoethyl) ether, di (N, N-dimethylaminoethyl) amine and the like.
  • the amount of the catalyst is preferably 0.001 to 10 parts by mass with respect to 100 parts by mass of the total of the polyol compound (U) and the polyisocyanate compound (V) contained in the urethane composition. 0.001 to 5 parts by mass.
  • the step of producing the moisture-curable polyurethane composition In the step of producing the moisture-curable polyurethane composition, the mixture containing the above-described prepolymer and an isocyanate compound (V ′) having two or more isocyanate groups in one molecule are mixed, and the moisture-curable polyurethane composition, typically Specifically, it is a step of obtaining a one-pack moisture-curable polyurethane composition.
  • the obtained moisture-curable polyurethane composition contains at least the powder, the prepolymer, and the isocyanate compound (V ′).
  • the method of mixing the mixture containing the prepolymer and the isocyanate compound (V ′) is not particularly limited, and for example, a method of mixing with the same apparatus as the mixing apparatus used in the step of mixing the urethane composition is preferable. is there.
  • the mixing temperature is not particularly limited, but it is preferable that the mixing be performed at a temperature equal to or higher than the melting point of the isocyanate compound (V ') added as a component of the moisture-curable polyurethane composition.
  • the atmosphere at the time of mixing is not particularly limited, but the mixing is preferably performed under an inert gas atmosphere such as nitrogen or argon or under reduced pressure.
  • the moisture-curable polyurethane composition contains a curing catalyst to induce moisture-curing of the obtained moisture-curable polyurethane composition (typically, a one-component moisture-curable polyurethane composition). Is preferred. Thereby, the adhesiveness of the obtained moisture-curable polyurethane composition is more excellent.
  • the curing catalyst is not particularly limited as long as it induces moisture curing, and a conventionally known curing catalyst can be used.
  • a conventionally known curing catalyst can be used.
  • the curing catalyst for example, the organometallic catalyst exemplified as the catalyst that can be used in the above-mentioned prepolymer production step can be mentioned.
  • the compounding amount thereof is determined by mixing the polyol compound (U) contained in the urethane composition with the isocyanate compound (V) and the isocyanate compound (V ′) newly added to the moisture-curable polyurethane composition. 0.001 to 10 parts by mass, preferably 0.001 to 5 parts by mass, based on 100 parts by mass in total.
  • the resin component (II) includes a block copolymer (IIa) having a polymer block (A) derived from an aromatic vinyl compound and a polymer block (B) derived from a conjugated diene compound, and an olefin resin (IIb). ), Styrene resin (IIc), and conjugated diene polymer (IId).
  • the block copolymer (IIa) that can be used as the resin component (II) includes a polymer block (A) containing a structural unit derived from an aromatic vinyl compound and a polymer block containing a structural unit derived from a conjugated diene compound. (B), and preferably a hydrogenated product of the block copolymer.
  • a hydrogenated product of a block copolymer may also be referred to as a hydrogenated block copolymer.
  • the content of the polymer block (A) in the block copolymer (IIa) (when there are a plurality of polymer blocks (A), the total content thereof) is preferably 3% by mass or more, and more preferably 6% by mass or more. It is more preferably at least 10% by mass. Further, it is preferably 80% by mass or less, more preferably 50% by mass or less, still more preferably 35% by mass or less, even more preferably 22% by mass or less, particularly preferably 18% by mass or less, and most preferably 16% by mass or less. For example, the content is preferably 3 to 80% by mass, more preferably 6 to 22% by mass, and still more preferably 10 to 16% by mass.
  • the content of the polymer block (A) in the block copolymer is a value determined by 1 H-NMR measurement, and more specifically, a value measured according to the method described in Examples.
  • the polymer block (A) contains, for example, more than 70 mol% of a structural unit derived from an aromatic vinyl compound (hereinafter, may be abbreviated as “aromatic vinyl compound unit”), and is preferably used from the viewpoint of mechanical properties. Is 80 mol% or more, more preferably 85 mol% or more, further preferably 90 mol% or more, particularly preferably 95 mol% or more, and may be substantially 100 mol%.
  • aromatic vinyl compound examples include styrene, o-methylstyrene, m-methylstyrene, p-methylstyrene, ⁇ -methylstyrene, ⁇ -methylstyrene, 2,6-dimethylstyrene, 2,4-dimethylstyrene, ⁇ -methyl-o-methylstyrene, ⁇ -methyl-m-methylstyrene, ⁇ -methyl-p-methylstyrene, ⁇ -methyl-o-methylstyrene, ⁇ -methyl-m-methylstyrene, ⁇ -methyl-p -Methylstyrene, 2,4,6-trimethylstyrene, ⁇ -methyl-2,6-dimethylstyrene, ⁇ -methyl-2,4-dimethylstyrene, ⁇ -methyl-2,6-dimethylstyrene, ⁇ -methyl- 2,4-dimethylstyrene,
  • aromatic vinyl compounds may be used alone or in combination of two or more.
  • styrene, ⁇ -methylstyrene, p-methylstyrene, and a mixture thereof are preferable, and styrene is more preferable, from the viewpoint of the balance between the production cost and the physical properties.
  • the polymer block (A) is a structural unit derived from an unsaturated monomer other than the aromatic vinyl compound (hereinafter referred to as “another unsaturated monomer”). May be abbreviated as "unit”) at a ratio of less than 30 mol%.
  • Examples of the other unsaturated monomers include butadiene, isoprene, 2,3-dimethylbutadiene, 1,3-pentadiene, 1,3-hexadiene, isobutylene, methyl methacrylate, methyl vinyl ether, N-vinyl carbazole, ⁇ And at least one selected from the group consisting of -pinene, 8,9-p-menthen, dipentene, methylenenorbornene, 2-methylenetetrahydrofuran and the like.
  • the bonding form is not particularly limited, and may be random or tapered.
  • the content of the structural unit derived from the other unsaturated monomer in the polymer block (A) is preferably 10 mol% or less, more preferably 5 mol% or less, and further preferably 0 mol%.
  • the block copolymer (IIa) may have at least one of the polymer blocks (A).
  • the polymer blocks (A) may be the same or different.
  • “different polymer blocks” refers to the monomer units constituting the polymer block, the weight average molecular weight, the stereoregularity, and when there are a plurality of monomer units, the ratio of each monomer unit and the It means that at least one of the forms of polymerization (random, gradient, block) is different.
  • the block copolymer (IIa) preferably has two polymer blocks (A).
  • the weight average molecular weight (Mw) of the polymer block (A) included in the block copolymer (IIa) is not particularly limited, but at least one of the polymer blocks (A) included in the block copolymer.
  • the weight average molecular weight of the polymer block (A) is preferably from 3,000 to 60,000, more preferably from 4,000 to 50,000.
  • the block copolymer has at least one polymer block (A) having a weight average molecular weight within the above range, the mechanical strength is further improved and the film formability is excellent.
  • weight average molecular weights are weight average molecular weights in terms of standard polystyrene obtained by gel permeation chromatography (GPC) measurement. The method described can be followed.
  • the weight average molecular weight of each polymer block (A) of the block copolymer can be determined by measuring a sampled liquid every time polymerization of each polymer block is completed in the production process.
  • the weight average molecular weights of the first polymer block A1 and the polymer block B are determined by the above method, and the weight average molecular weight of the block copolymer is By subtracting them, the weight average molecular weight of the second polymer block A2 can be determined.
  • the total weight average molecular weight of the polymer block (A) is determined by dividing the weight average molecular weight of the block copolymer by 1 H- It is calculated from the total content of the polymer block (A) confirmed by NMR measurement, the weight average molecular weight of the first deactivated polymer block A1 is calculated by GPC measurement, and the second weight is calculated by subtracting this.
  • the weight average molecular weight of the united block A2 can also be determined.
  • the polymer block (B) is a polymer block containing, for example, 30 mol% or more, preferably 50 mol% or more, more preferably 65 mol% or more, and still more preferably 80 mol% or more, of a structural unit derived from a conjugated diene compound. All of the polymer blocks (B) may be structural units derived from a conjugated diene compound. That is, the structural unit derived from the conjugated diene compound contained in the polymer block (B) can be set to 100 mol%.
  • the conjugated diene compound preferably contains isoprene, more preferably contains 20% by mass or more, more preferably contains 40% by mass or more, and further more preferably contains 70% by mass or more. Or 90% by mass or more.
  • the polymer block (B) may contain 30 mol% or more of a structural unit derived from isoprene alone, or may contain 30 mol% or more of a structural unit derived from two or more conjugated diene compounds.
  • the conjugated diene compound include butadiene, hexadiene, 2,3-dimethyl-1,3-butadiene, 1,3-pentadiene, and myrcene, in addition to isoprene.
  • isoprene a mixture of isoprene and butadiene is preferable, and isoprene is more preferable.
  • the conjugated diene compound is a mixture of butadiene and isoprene
  • their mixing ratio [isoprene / butadiene] is not particularly limited, but is preferably 5/95 to 95/5, more preferably 10/90. 9090/10, more preferably 40/60 to 70/30, particularly preferably 45/55 to 65/35.
  • the mixing ratio [isoprene / butadiene] is represented by a molar ratio, it is preferably 5/95 to 95/5, more preferably 10/90 to 90/10, still more preferably 40/60 to 70/30, particularly preferably Preferably it is 45/55 to 55/45.
  • the ratio of the area of the peak having a chemical shift value of 24 to 25 ppm to the area of the peak having a chemical shift value of 5 to 50 ppm measured by 13 C-NMR is preferably 4% or less, more preferably 2% or less, further preferably 1% or less, and most preferably 0.5% or less.
  • the peak having a chemical shift value of 5 to 50 ppm, as measured by 13 C-NMR corresponds to all structural units in the polymer block (B), and the peak having a chemical shift value of 24 to 25 ppm is a structural unit derived from isoprene. Corresponds to a site continuous by 1,4-bonds.
  • the polymer block (B) preferably contains 30 mol% or more of a structural unit derived from isoprene (hereinafter, may be abbreviated as “isoprene unit”), and the polymer block (B) is preferably a mixture of isoprene and butadiene. It is also preferable to contain 30 mol% or more of a structural unit derived from it (hereinafter, may be abbreviated as "mixture unit of isoprene and butadiene”).
  • the bonding forms thereof are random, tapered, completely alternating, partially block-shaped, block, or a combination of two or more types thereof.
  • Vinyl bond amount of polymer block (B) When the structural unit constituting the polymer block (B) is any one of an isoprene unit, a mixture unit of isoprene and butadiene, the bonding form of each of isoprene and butadiene is 1,2-bond in the case of butadiene, In the case of isoprene, 1,4-bond can be 1,2-bond, 3,4-bond, or 1,4-bond.
  • the total content of the 3,4-linkage units and 1,2-linkage units (that is, the amount of vinyl linkages) in the polymer block (B) is preferably at least 50 mol%, It is more preferably at least 60 mol%, further preferably at least 65 mol%, still more preferably at least 70 mol%.
  • the upper limit of the vinyl bond amount in the polymer block (B) may be 90 mol%, 88 mol%, or 85 mol%. Is also good.
  • the vinyl bond amount is a value calculated by 1 H-NMR measurement according to the method described in Examples. Increasing the vinyl bond amount of the polymer block (B) tends to increase compatibility with the matrix resin component (I), which is advantageous for dispersing the resin component (II) in the resin composition. .
  • the total weight average molecular weight of the polymer block (B) of the block copolymer is preferably 15,000 to 800,000 before hydrogenation, from the viewpoint of vibration damping properties and the like, It is more preferably from 20,000 to 400,000, further preferably from 20,000 to 300,000, particularly preferably from 30,000 to 300,000, and most preferably from 40,000 to 300,000.
  • the polymer block (B) may contain a structural unit derived from a polymerizable monomer other than the conjugated diene compound, as long as the object and effects of the present invention are not hindered.
  • the content of the structural unit derived from a polymerizable monomer other than the conjugated diene compound is preferably 70 mol% or less, more preferably 50 mol% or less, and still more preferably. Is at most 35 mol%, particularly preferably at most 20 mol%.
  • the lower limit of the content of the structural unit derived from another polymerizable monomer other than the conjugated diene compound is not particularly limited, but may be 0 mol%, 5 mol%, or 10 mol%. %.
  • Examples of the other polymerizable monomer include styrene, ⁇ -methylstyrene, o-methylstyrene, m-methylstyrene, p-methylstyrene, pt-butylstyrene, 2,4-dimethylstyrene, vinyl Aromatic vinyl compounds such as naphthalene and vinylanthracene, and methyl methacrylate, methyl vinyl ether, N-vinylcarbazole, ⁇ -pinene, 8,9-p-mentene, dipentene, methylenenorbornene, 2-methylenetetrahydrofuran, 1,3- Preferable examples include at least one compound selected from the group consisting of cyclopentadiene, 1,3-cyclohexadiene, 1,3-cycloheptadiene, 1,3-cyclooctadiene, and the like.
  • the polymer block (B) contains a structural unit derived from a polymerizable monomer other than the conjugated diene compound, a specific combination thereof is preferably isoprene and styrene.
  • the bonding form is not particularly limited and may be random or tapered. Random is preferred.
  • the block copolymer only needs to have at least one polymer block (B).
  • the polymer blocks (B) may be the same or different.
  • the block copolymer preferably has only one polymer block (B).
  • the content of the polymer block (B) in the block copolymer (IIa) is not particularly limited, but is preferably 20 to 97% by mass. , More preferably 78 to 94% by mass, and even more preferably 84 to 90% by mass.
  • the content of the polymer block (B) is not particularly limited, but is preferably 20 to 97% by mass. , More preferably 78 to 94% by mass, and even more preferably 84 to 90% by mass.
  • Block copolymer is not limited as long as the polymer block (A) and the polymer block (B) are bonded, and may be linear, branched, radial, or a combination of these two types. Any combination of the above combinations may be used.
  • the bonding form of the polymer block (A) and the polymer block (B) is preferably linear, and as an example, the polymer block (A) is A and the polymer block (B) is When represented by B, a diblock copolymer represented by AB, a triblock copolymer represented by ABA or BAB, and a tetrablock copolymer represented by ABAB A block copolymer, a pentablock copolymer represented by ABABA or BABAB, an (AB) nX-type copolymer (X is a residue of the coupling agent) Represents a group, and n represents an integer of 3 or more).
  • a linear triblock copolymer or a diblock copolymer is preferable, and an ABA triblock copolymer is preferably used from the viewpoint of flexibility, ease of production, and the like.
  • the polymer block which should be strictly described as YXY (X represents a coupling residue), including the above examples, needs to be particularly distinguished from the single polymer block Y. Except for a certain case, Y is displayed as a whole.
  • such a polymer block containing a coupling agent residue is handled as described above, and therefore, for example, it contains a coupling agent residue, and strictly speaking, ABXBA ( X represents a residue of a coupling agent), and the block copolymer is described as ABA, and is treated as an example of a triblock copolymer.
  • the block copolymer (IIa) may not be hydrogenated, but is preferably a hydrogenated product.
  • the polymer block (B) in the block copolymer (IIa) is preferably based on the total number of moles of the carbon-carbon double bonds of the polymer block (B) in the block copolymer (IIa).
  • the hydrogenation is 10 mol% or more, more preferably 50 mol% or more, further preferably 70 mol% or more, and still more preferably 85 mol% or more.
  • heat resistance and weather resistance are easily improved.
  • the value may be referred to as a hydrogenation rate (hydrogenation rate).
  • the upper limit of the hydrogenation rate is not particularly limited, but the upper limit may be 99 mol%, may be 97 mol%, may be 95 mol%, may be 93 mol%.
  • the above hydrogenation rate is a value obtained by measuring the content of carbon-carbon double bonds in the structural unit derived from the conjugated diene compound in the polymer block (B) by 1 H-NMR measurement after hydrogenation. More specifically, it is a value measured according to the method described in Examples.
  • the hydrogenation rate of the polymer block (B) can be adjusted by, for example, changing the amount of a catalyst used for hydrogenation. Therefore, the hydrogenation rate can be adjusted to the above range by adjusting the amount of the catalyst used during hydrogenation.
  • the weight average molecular weight (Mw) of the hydrogenated block copolymer determined by gel permeation chromatography in terms of standard polystyrene is preferably from 20,000 to 800,000, more preferably from 30,000 to 500,000, and still more preferably. Is from 30,000 to 400,000, particularly preferably from 40,000 to 350,000, most preferably from 50,000 to 300,000.
  • weight average molecular weight of the block copolymer is 20,000 or more, heat resistance increases, and when it is 800,000 or less, moldability becomes good.
  • the block copolymer (IIa) may have a functional group such as a carboxyl group, a hydroxyl group, an acid anhydride group, an amino group, or an epoxy group in the molecular chain and / or at the molecular terminal, as long as the objects and effects of the present invention are not impaired. It may have one kind or two or more kinds, and may have no functional group.
  • the block copolymer (IIa) can be produced by, for example, a solution polymerization method, an emulsion polymerization method, or a solid phase polymerization method.
  • a solution polymerization method is preferable, and for example, known methods such as an ionic polymerization method such as anionic polymerization and cationic polymerization, and a radical polymerization method can be applied.
  • the anionic polymerization method is preferable.
  • an anionic polymerization initiator in the presence of a solvent, an anionic polymerization initiator, and, if necessary, a Lewis base, an aromatic vinyl compound and at least one selected from the group consisting of a conjugated diene compound and isobutylene are sequentially added, A block copolymer is obtained, and a coupling agent is added and reacted as needed. Furthermore, a hydrogenated block copolymer can be obtained by hydrogenating the block copolymer.
  • organolithium compound that can be used as a polymerization initiator for anionic polymerization in the above method examples include methyllithium, ethyllithium, n-butyllithium, sec-butyllithium, tert-butyllithium, pentyllithium, and the like.
  • dilithium compound that can be used as the polymerization initiator examples include naphthalenedilithium, dilithiohexylbenzene, and the like.
  • the coupling agent include dichloromethane, dibromomethane, dichloroethane, dibromoethane, dibromobenzene, and phenyl benzoate.
  • the amounts of these polymerization initiators and coupling agents used are appropriately determined according to the desired weight average molecular weight of the target block copolymer.
  • an initiator such as an alkyl lithium compound or a dilithium compound is used in a ratio of 0.01 to 0.2 parts by mass per 100 parts by mass of the total of monomers such as an aromatic vinyl compound and a conjugated diene compound used for polymerization.
  • a coupling agent it is preferably used in a proportion of 0.001 to 0.8 parts by mass per 100 parts by mass of the total of the monomers.
  • the solvent is not particularly limited as long as it does not adversely affect the anionic polymerization reaction.
  • examples thereof include aliphatic hydrocarbons such as cyclohexane, methylcyclohexane, n-hexane, and n-pentane; and aromatic hydrocarbons such as benzene, toluene, and xylene. And the like.
  • the polymerization reaction is carried out at a temperature of usually 0 to 100 ° C., preferably 10 to 70 ° C., for 0.5 to 50 hours, preferably 1 to 30 hours.
  • a Lewis base as a cocatalyst (vinylating agent) during the polymerization, the content (vinyl bond amount) of 3,4-bond and 1,2-bond of the polymer block (B) is increased.
  • a Lewis base it is preferable to use 2,2-di (2-tetrahydrofuryl) propane [DTHFP] as the Lewis base.
  • DTHFP 2,2-di (2-tetrahydrofuryl) propane
  • a Lewis base is usually used as a vinylating agent.
  • ethers such as tetrahydrofuran (THF) and amines such as N, N, N ', N'-tetramethylethylenediamine (TMEDA) have been used (paragraph [0028] of Patent Document 2). reference).
  • a hydrogenated product of a block copolymer having a polymer block (A) containing a structural unit derived from an aromatic vinyl compound and a polymer block (B) containing a structural unit derived from a conjugated diene compound For example, when the polymer block (B) is composed of only butadiene, it is relatively easy to achieve both a high vinyl bond amount and a high hydrogenation rate even by a conventional method because of its low steric barrier. However, from the viewpoint of enhancing the vibration damping properties under the actually used temperature conditions, it is effective that the polymer block (B) contains isoprene. However, when isoprene is contained, the polymer block (B) has a high steric barrier.
  • Lewis bases may be used together with the DTHFP as long as the effects of the present invention are not impaired.
  • Other Lewis bases include, for example, ethers such as dimethyl ether, diethyl ether, and tetrahydrofuran; glycol ethers such as ethylene glycol dimethyl ether and diethylene glycol dimethyl ether; triethylamine; N, N, N ', N'-tetramethylenediamine; Examples include amines such as methylmorpholine.
  • the amount of DTHFP to be added is determined by how much the amount of vinyl bond of the isoprene unit and / or butadiene unit constituting the polymer block (B) is controlled.
  • the amount of the Lewis base to be added is usually 0.1 to 1 per gram atom of lithium contained in the alkyllithium compound or the dilithium compound used as the polymerization initiator, from the viewpoint of satisfying the preferable condition of the vinyl bond amount. It is preferably used in the range of 2,000 mol, preferably 0.3 to 100 mol, most preferably 0.5 to 10 mol.
  • an active hydrogen compound such as alcohols, carboxylic acids, and water is added to stop the polymerization reaction.
  • a hydrogenated copolymer (hydrogenation reaction) is performed in an inert organic solvent in the presence of a hydrogenation catalyst, whereby a hydrogenated copolymer can be obtained.
  • the hydrogen pressure is 0.1 to 20 MPa, preferably 0.5 to 15 MPa, more preferably 0.5 to 5 MPa, and the reaction temperature is 20 to 250 ° C., preferably 50 to 180 ° C., and more preferably 70 to 180 ° C.
  • the reaction can be carried out at a temperature of up to 180 ° C and a reaction time of usually 0.1 to 100 hours, preferably 1 to 50 hours.
  • the hydrogenation catalyst include Raney nickel; a transition metal compound, an alkylaluminum compound, and an alkyllithium compound, from the viewpoint of performing the hydrogenation reaction of the polymer block (B) while suppressing the nuclear hydrogenation of the aromatic vinyl compound.
  • Ziegler catalysts are preferred, Ziegler catalysts composed of a combination of a transition metal compound and an alkylaluminum compound are more preferred, and Ziegler catalysts composed of a combination of a nickel compound and an alkylaluminum compound (Al / Ni-based Ziegler catalyst) is more preferred.
  • the hydrogenated block copolymer obtained in this manner is coagulated by pouring the polymerization reaction solution into methanol or the like, and then heating or drying under reduced pressure, or pouring the polymerization reaction solution together with steam into hot water to form a solvent.
  • the hydrogenated block copolymer thus obtained is not particularly limited, but the used Lewis base tends to remain in the polymer. That is, the hydrogenated block copolymer may contain 2,2-di (2-tetrahydrofuryl) propane [DTHFP] in some cases, and usually has a tendency to contain DTHFP in an amount of 5 ppm by mass or more. , DTHFP may be contained in an amount of 10 ppm by mass or more.
  • the upper limit of the content of DTHFP may be 2,000 mass ppm, may be 1,000 mass ppm, may be 500 mass ppm, may be 250 mass ppm, and may be 50 mass ppm. It may be ppm by mass or 30 ppm by mass.
  • the hydrogenated block copolymer is a Lewis base (vinylating agent) other than DTHFP, specifically, dimethyl ether, diethyl ether, tetrahydrofuran (THF), ethylene glycol dimethyl ether, diethylene glycol dimethyl ether, Triethylamine, N, N, N ', N'-tetramethylenediamine (TMEDA) and N-methylmorpholine are not contained, or their contents tend to be 1 ppm or less.
  • the content of the Lewis base in the hydrogenated block copolymer is not particularly limited, but can be determined by gas chromatography.
  • Olefin-based resin (IIb) examples of the olefin resin (IIb) that can be used as the resin component (II) include a polyolefin resin obtained by polymerizing an olefin, and an olefin polymer. Examples of the olefin constituting the polyolefin resin include ethylene, propylene, 1-butene, 1-pentene, 1-hexene, 1-octene, 4-methyl-1-pentene, cyclohexene and the like. The olefin constituting the polyolefin-based resin may be used alone or in combination of two or more.
  • examples of the polypropylene resin which is one of the polyolefin resins include homopolypropylene, propylene-ethylene random copolymer, propylene-ethylene block copolymer, propylene-butene random copolymer, and propylene-ethylene-butene random copolymer. Copolymer, propylene-pentene random copolymer, propylene-hexene random copolymer, propylene-octene random copolymer, propylene-ethylene-pentene random copolymer, propylene-ethylene-hexene random copolymer, and the like.
  • these polypropylene resins may be added to unsaturated monocarboxylic acids such as acrylic acid, methacrylic acid, crotonic acid, etc .; unsaturated dicarboxylic acids such as maleic acid, citraconic acid and itaconic acid; those unsaturated monocarboxylic acids or unsaturated dicarboxylic acids.
  • Modified polypropylene resins obtained by graft copolymerizing a modifier such as an acid ester, amide or imide; an unsaturated dicarboxylic anhydride such as maleic anhydride, citraconic anhydride, and itaconic anhydride can also be used.
  • the olefin polymer is at least one olefin polymer selected from the group consisting of ethylene-propylene-diene copolymer (EPDM) rubber, ethylene-vinyl acetate copolymer (EVA) and polyethylene resin. is there. Dienes usable as raw materials for the ethylene-propylene-diene copolymer rubber include 1,4-hexadiene, 1,6-octadiene, 2-methyl-1,5-hexadiene, and 6-methyl-1,6-heptadiene.
  • EPDM ethylene-propylene-diene copolymer
  • EVA ethylene-vinyl acetate copolymer
  • Dienes usable as raw materials for the ethylene-propylene-diene copolymer rubber include 1,4-hexadiene, 1,6-octadiene, 2-methyl-1,5-hexadiene, and 6-methyl-1,6-heptadiene.
  • Chain non-conjugated dienes such as, 7-methyl-1,6-octadiene; cyclohexadiene, dichloropentadiene, methyltetrahydroindene, 5-vinylnorbornene, 5-ethylidene-2-norbornene, 5-methylene-2-norbornene, 5 Cyclic non-conjugated dienes such as isopropylidene-2-norbornene and 6-chloromethyl-5-isopropylenyl-2-norbornene; 2,3-diisopropylidene-5-norbornene, 2-ethylidene-3-isopropylidene-5 -Norbornene, 2-propenyl-2,2-norbornadiene, 1 3,7-octatriene, 1,4,9- decatriene like triene such as.
  • styrene resin (IIc) examples include poly- ⁇ -methylstyrene, ⁇ -methylstyrene / styrene copolymer, styrene monomer copolymer, styrene monomer / aromatic monomer copolymer. Coalescence and the like.
  • conjugated diene polymer (IId) As the conjugated diene polymer (IId) that can be used as the resin component (II), a homopolymer or copolymer of a conjugated diene monomer, or a conjugated diene monomer and another monomer other than an aromatic vinyl compound may be used. And a copolymer with a monomer. Examples of the other monomer include a monomer copolymerizable with the conjugated diene monomer.
  • conjugated diene monomer examples include 1,3-butadiene, isoprene, 2,3-dimethyl-1,3-butadiene, 2-phenyl-1,3-butadiene, 1,3-pentadiene, 2-methyl-1, Examples thereof include 3-pentadiene, 1,3-hexadiene, 4,5-diethyl-1,3-octadiene, and 3-butyl-1,3-octadiene.
  • One of these monomers may be used alone, or two or more thereof may be used in combination. Of these, 1,3-butadiene and isoprene are preferred, and isoprene is more preferred.
  • the monomer copolymerizable with the conjugated diene monomer is not particularly limited, but includes, for example, a chain olefin monomer such as ethylene, propylene and 1-butene; and a cyclic olefin monomer such as cyclopentene and 2-norbornene.
  • Non-conjugated diene monomers such as 1,5-hexadiene, 1,6-heptadiene, 1,7-octadiene, dicyclopentadiene, 5-ethylidene-2-norbornene; methyl (meth) acrylate, (meth) (Meth) acrylic acid esters such as ethyl acrylate; (meth) acrylonitrile, (meth) acrylamide and the like.
  • One of these monomers may be used alone, or two or more thereof may be used in combination.
  • conjugated diene polymer examples include natural rubber (NR), styrene-butadiene rubber (SBR), polyisoprene rubber (IR), polybutadiene rubber (BR), isoprene-isobutylene copolymer rubber (IIR), and ethylene-propylene-diene-based polymer.
  • NR natural rubber
  • SBR styrene-butadiene rubber
  • IR polyisoprene rubber
  • BR polybutadiene rubber
  • IIR isoprene-isobutylene copolymer rubber
  • ethylene-propylene-diene-based polymer examples of the conjugated diene polymer
  • Copolymer rubber, butadiene-isoprene copolymer rubber (BIR) and the like can be mentioned. Among them, polyisoprene rubber and polybutadiene rubber are preferred, and polyisoprene rubber is more preferred.
  • the resin component (II) contained in the resin composition of the present invention preferably satisfies the following condition (1).
  • condition (1) Coefficients A 1 to A 3 determined by performing fitting of the following equation [I] on a relaxation curve represented by relaxation strength y with respect to relaxation time x, measured using a pulse NMR apparatus, and The value of the motility parameter M obtained by the following equation [II] using the spin-spin relaxation times ⁇ 1 to ⁇ 3 of each component is 0.01 to 0.25 seconds.
  • the first term of the formula [I] is derived from the relaxation of the component having a relatively low mobility
  • the second and third terms are derived from the relaxation of the component having a relatively high mobility.
  • a 1 corresponds to the ratio of the component having relatively low mobility
  • a 2 and A 3 correspond to the ratio of the component having relatively high mobility.
  • the motility parameter M is the relaxation derived from the polymer block (B) when the behavior of the block copolymer is measured by pulsed NMR. And is an index mainly representing the motility derived from the conjugated diene.
  • the condition (1) also applies when the resin component (II) is an olefin-based resin (IIb).
  • the mobility parameter indicates the mobility derived from the amorphous component of the olefin resin.
  • the motility parameter M takes an appropriate value, vibration is effectively reduced in a temperature range in which the motility parameter is actually used, and the damping property can be improved.
  • the glass transition temperature Tg of the resin component (II) can be relatively increased by setting the mobility parameter M to an appropriate value, powdering by freeze-pulverization described below can be easily performed.
  • the motility parameter M is more preferably 0.01 to 0.10 seconds, further preferably 0.02 to 0.08 seconds, and still more preferably 0.02 to 0.06 seconds.
  • One method for satisfying the condition (1) is to use isoprene as a monomer for constituting a structural unit derived from a conjugated diene compound when the resin component (II) contains a block copolymer.
  • isoprene as a monomer for constituting a structural unit derived from a conjugated diene compound when the resin component (II) contains a block copolymer.
  • the resin component (II) contains an olefin-based resin, for example, 4-methyl-1-pentene can be used as a monomer.
  • fitting the resin component (II) is, in the case is intended to include styrene-based resin (IIc), the conjugated diene polymer (IId) is, by the formula [I], the A 1 0 and the following formula [I '] Can be performed, and in this case, it is preferable to satisfy the following condition (1 ′).
  • the value of the motility parameter M obtained by the following equation [II] using the spin-spin relaxation times ⁇ 2 and ⁇ 3 of 3 and each component is 0.01 to 0.25 seconds.
  • y A 2 * exp ( ⁇ 0.5 * (x / ⁇ 2 ) 2 ) + A 3 * exp ( ⁇ x / ⁇ 3 ) [I ′]
  • M ( ⁇ 2 * A 2 + ⁇ 3 * A 3 ) / (A 2 + A 3 ) [II]
  • the mobility of the resin components (IIc) and (IId) can be obtained by fitting the above relaxation curve by the least squares method using the formula [I ′].
  • the resin component (II) preferably satisfies the following condition (2).
  • Condition (2) 60 ° C. measured based on JIS K7244-10 (2005) under the conditions of a distortion amount of 0.1%, a frequency of 1 Hz, a measurement temperature of ⁇ 70 to + 100 ° C., and a heating rate of 3 ° C./min.
  • a test piece for measuring tan ⁇ was pressed at a temperature of 230 ° C.
  • the test can be carried out by using a rotary rheometer “ARES G2” (manufactured by TA Instruments) or the like and sandwiching the test piece between flat plates having a diameter of 8 mm. .
  • the temperature range in which the resin composition has appropriate hardness and high vibration damping properties can easily cover the temperature range in which the resin composition is actually used.
  • a method for satisfying the condition (2) for example, a method of increasing the vinyl bond amount of the polymer block (B) can be used.
  • the temperature at the peak position of tan ⁇ is more preferably ⁇ 5 to + 35 ° C., further preferably 0 to + 35 ° C., still more preferably +5 to + 35 ° C., particularly preferably +5 to + 33 ° C., and most preferably +10 to + 33 ° C. It is.
  • the shear storage modulus G ′ at 60 ° C. is more preferably 0.1 to 1.8 MPa, still more preferably 0.2 to 1.0 MPa, and particularly preferably 0.3 to 0.55 MPa.
  • the temperature at the tan ⁇ peak position of the resin component (II) can be set in the above range by increasing the vinyl bond amount of the polymer block (B) of the block copolymer.
  • the resin component (II) preferably has a glass transition temperature Tg of 0 ° C. or higher, or is a crystalline resin. By satisfying any one of these conditions, freezing and pulverization can be easily performed, and the resin component (II) can be easily adjusted to a desired particle size.
  • the resin component (II) is preferably a crumb, pellet, micropellet, or powder solid before being added to the resin composition. More preferably, it is a pulverized product in the form of micropellets or powder. Particularly preferred is a powder-like frozen and pulverized product.
  • the 50% volume average diameter of the powdery resin component (II) before addition to the resin composition is preferably 0.01 to 1.0 mm, more preferably 0.03 to 0.5 mm, and Preferably it is 0.05 to 0.3 mm. When the 50% volume average diameter of the powdery resin component (II) is 0.01 mm or more, powder production becomes easy, and when it is 0.5 mm or less, the mechanical strength of the resin composition increases.
  • the 50% volume average diameter of the powdery resin component (II) can be measured by wet laser diffraction using a sample in which powder is dispersed in water using a Mastersizer 3000 manufactured by Malvern.
  • the 50% volume average diameter of the powdery resin component (II) can be set in the above range by adjusting the pulverizing conditions (processing time, processing speed, etc.), selecting the mesh size of the sieve, and the like.
  • the diameter is preferably 0.1 to 5 mm, more preferably 0.3 to 2 mm, and still more preferably 0.5 to 2 mm. From 1 mm.
  • the urethane composition used as the matrix resin component (I) may include a powder component containing a filler.
  • the powder component is not particularly limited as long as it is a component containing a filler, and may contain only the filler.
  • an antioxidant, an antioxidant, and a pigment (Dye) for example, an antioxidant, an antioxidant, and a pigment (Dye), thixotropic agent, ultraviolet absorber, flame retardant, surfactant (including leveling agent), dispersant, dehydrating agent, adhesion imparting agent, various additives such as antistatic agent, etc. There may be.
  • the filler examples include organic or inorganic fillers of various shapes.
  • the filler for example, fumed silica, calcined silica, precipitated silica, ground silica, fused silica; diatomaceous earth; iron oxide, zinc oxide, titanium oxide, barium oxide, magnesium oxide; calcium carbonate, heavy calcium carbonate, sedimentation Calcium carbonate (light calcium carbonate), colloidal calcium carbonate, magnesium carbonate, zinc carbonate; limestone clay, kaolin clay, calcined clay; carbon black; these fatty acid-treated products, resin acid-treated products, urethane compound-treated products, fatty acid esters Treated products; and the like.
  • carbon black and heavy calcium carbonate are preferable because the viscosity and thixotropy of the urethane composition are easily adjusted.
  • carbon black is included as a filler in the urethane composition, a cured urethane product having excellent physical properties (eg, hardness, elongation, etc.) can be obtained.
  • heavy calcium carbonate is included as a filler in the urethane composition, a urethane composition having excellent deep curability can be obtained.
  • the use of pellet carbon black as a filler is preferable in that not only workability is improved, but also when dehydration is further promoted when mixed with the polyol compound (U).
  • antioxidants examples include hindered phenolic antioxidants.
  • antioxidants examples include butylhydroxytoluene and butylhydroxyanisole.
  • pigments examples include inorganic pigments such as titanium oxide, zinc oxide, ultramarine blue, red iron oxide, lithopone, lead, cadmium, iron, cobalt, aluminum, hydrochloride, sulfate, and carbon black; azo pigments, phthalocyanine pigments, and quinacridone pigments , Quinacridonequinone pigments, dioxazine pigments, anthrapyrimidine pigments, anthanthrone pigments, indanthrone pigments, flavanthrone pigments, perylene pigments, perinone pigments, diketopyrrolopyrrole pigments, quinonaphthalone pigments, anthraquinone pigments, thioindigo pigments, benzimidazolone pigments And organic pigments such as isoindoline pigments.
  • inorganic pigments such as titanium oxide, zinc oxide, ultramarine blue, red iron oxide, lithopone, lead, cadmium, iron, cobalt, aluminum,
  • thixotropic agent examples include Aerosil (manufactured by Nippon Aerosil Co., Ltd.) and Dispalon (manufactured by Kusumoto Kasei Co., Ltd.).
  • adhesion-imparting agent examples include terpene resin, phenol resin, terpene-phenol resin, rosin resin, xylene resin and the like.
  • Examples of the flame retardant include chloroalkyl phosphate, dimethyl methyl phosphonate, bromine / phosphorus compound, ammonium polyphosphate, neopentyl bromide-polyether, brominated polyether and the like.
  • antistatic agent examples include quaternary ammonium salts; hydrophilic compounds such as polyglycols and ethylene oxide derivatives.
  • the content of the powder component relative to 100 parts by mass of the polyol compound (U) is preferably 300 parts by mass or less, preferably 0 to 250 parts by mass, and more preferably 0 to 210 parts by mass.
  • the viscosity of the urethane composition becomes appropriate, and the workability is improved.
  • the resin composition may contain a plasticizer.
  • plasticizer include diisononyl adipate; diisononyl phthalate; dioctyl adipate, isodecyl succinate; diethylene glycol dibenzoate, pentaerythritol ester; butyl oleate, methyl acetyl ricinoleate; tricresyl phosphate, trioctyl phosphate; Propylene glycol polyester, butylene glycol adipate polyester, and the like.
  • diisononyl adipate and diisononyl phthalate are preferred because they are excellent in compatibility and advantageous in cost.
  • plasticizers may be used alone or in combination of two or more.
  • the content of the plasticizer based on 100 parts by mass of the total of the polyol compound (U) and the isocyanate compound (V) is preferably 20 to 80 parts by mass, more preferably 30 to 70 parts by mass.
  • the resin composition may contain a crosslinking agent, a photo or thermal polymerization initiator, a co-reactant, and the like as a curing agent.
  • the average dispersion diameter of the resin component (II) in the resin composition is from 10 to 5,000 ⁇ m.
  • the average dispersion diameter of the resin component (II) is preferably from 20 to 3,000 ⁇ m, more preferably from 30 to 1,000 ⁇ m, further preferably from 40 to 500 ⁇ m, and particularly preferably from 50 to 300 ⁇ m. If the average dispersion diameter is less than 10 ⁇ m, the productivity of the resin composition may decrease, and if it exceeds 5,000 ⁇ m, the mechanical properties of the resin composition may decrease.
  • the average dispersion diameter of the resin component (II) in the resin composition is in the above range, the aggregation of the resin component (II) is suppressed without lowering the adhesiveness and strength of the adhesive, and as a result, It is presumed that the resin composition can exhibit high toughness while maintaining the tensile strength and the adhesiveness to the steel sheet, and can be provided with a function other than the adhesiveness, such as high vibration damping property in a wide practical use temperature range. You. Further, since the resin component (II) may be pulverized to such an extent as to have an average dispersion diameter in this range, the labor required for pulverization is less likely to occur, and problems such as deactivation of the material can be avoided and cost increase can be prevented. it can.
  • the resin composition in which the resin component (II) is dispersed can be obtained, for example, by dispersing a powder of the resin component (II) described later in the resin composition.
  • the average dispersion diameter of the resin component (II) is determined by immersing the resin composition in a solvent in which the resin component (II) is dissolved and in which the resin component (I) is not dissolved, and then observing the surface state with a microscope. It was measured by doing
  • the strength of the loss tangent tan ⁇ at 20 ° C. of the resin composition is preferably at least 0.15, more preferably at least 0.23, even more preferably at least 0.30, and preferably at least 0.30. 50 or less.
  • tan ⁇ is 0.15 or more, when used as an adhesive for DG, the sound insulation of glass is improved.
  • the resin component (II) satisfying the above condition (1) may be used.
  • the content of the resin component (II) with respect to the total amount of the resin composition is preferably 5 to 50% by mass, more preferably 10 to 45% by mass, further preferably 15 to 40% by mass, and particularly preferably 20 to 35% by mass. It is.
  • the content of the resin component (II) is 50% by mass or less, it is easy to maintain the viscosity of the resin composition satisfactorily, and when the content of the resin component (II) is 5% by mass or more, the resin composition This can prevent the effect of improving the vibration damping property from being reduced.
  • the content of the resin component (I) relative to the total amount of the resin composition is preferably 10 to 80% by mass, more preferably 15 to 70% by mass, further preferably 20 to 60% by mass, and particularly preferably 25 to 50% by mass. It is. When the content of the resin component (I) is 80% by mass or less, the workability is improved without the viscosity being too low, and when the content of the resin component (I) is 10% by mass or more, the viscosity becomes high. Workability is improved.
  • the total content of the matrix resin component (I) and the resin component (II) is preferably 100% by mass based on the total amount of the resin composition. Components other than the above-mentioned components may be included.
  • the powder according to the present embodiment is a resin component that is at least one selected from the above-described block copolymer (IIa), olefin-based resin (IIb), styrene-based resin (IIc), and conjugated diene polymer (IId).
  • the hydrogenation ratio of B) is from 10 to 99 mol% based on the total number of moles of carbon-carbon double bonds in the polymer block (B) in the block copolymer (IIa).
  • the block copolymer (IIa) has the same material and physical properties as described above, except that the hydrogenation ratio of the polymer block (B) is specified.
  • the olefin resin (IIb), the styrene resin (IIc), and the conjugated diene polymer (IId) are the same as those described for the component (II) constituting the resin composition.
  • a polymer block (A) containing more than 70 mol% of a structural unit derived from an aromatic vinyl compound and a polymer block containing 30 mol% or more of a structural unit derived from a conjugated diene compound are the same as those described for the component (II) constituting the resin composition.
  • a block copolymer having a united block (B) is preferable is also the same as described for the resin component (II). Further, the preferable range of the content of the polymer block (A) in the block copolymer is 6 to 22% by mass in the same manner as described for the resin component (II).
  • the powder is dispersed in the resin composition to improve the vibration damping properties of the resin composition, and the hydrogenation rate of the polymer block (B) is 10 mol% or more, so that the powder is added to the resin composition.
  • the powder can be improved in heat resistance and weatherability.
  • the powder is preferably a pulverized product of the resin component (II), particularly preferably a freeze-pulverized product.
  • Preferred physical properties of the resin component (II) constituting the powder (shear storage modulus G ′ at 60 ° C. is in the range of 0.10 to 0.58 MPa, tan ⁇ peak temperature is in the temperature range of ⁇ 5 to + 40 ° C.) are the same as those described above for the resin component (II).
  • the 50% volume average diameter of the powder is preferably 0.01 mm to 1.0 mm, as described for the resin component (II).
  • the method for producing the powder is not particularly limited, and a known method can be employed. Considering that the resin component (II) is a material having elasticity, the resin component (II) is frozen by a liquefied inert gas (such as nitrogen gas), then pulverized, and sieved to obtain a desired material. It is preferable to obtain a powder having a particle size range.
  • a liquefied inert gas such as nitrogen gas
  • Block copolymers TPE-1 to 3 were produced by the following procedure. 50.0 kg of cyclohexane (solvent) dried with Molecular Sieves A4 and 0.087 kg of a 10.5 mass% sec-butyllithium cyclohexane solution as an anionic polymerization initiator were placed in a pressure-resistant container dried with nitrogen and dried. -Substantially added amount of butyl lithium: 9.1 g). After the temperature inside the pressure vessel was raised to 50 ° C., 1.0 kg of styrene (1) was added and polymerization was carried out for 30 minutes.
  • the hydrogenated block copolymer TPE-1 was replaced with 13.6 kg of isoprene instead of 14.64 kg of isoprene, the diene polymerization temperature was 50 ° C., and no Lewis base was used as the conjugated diene. Similarly, TPE-2 was produced.
  • the addition amount of styrene was 1.7 kg in both the first and second stages, the amount of 10.5 mass% sec-butyllithium cyclohexane solution used as an anionic polymerization initiator was 0.101 kg, and The above water was used, except that 13.3 kg of isoprene was used instead of 14.64 kg of isoprene as the diene, and 0.065 kg of N, N, N ′, N′-tetramethylethylenediamine (TMEDA) was used as the Lewis base.
  • TPE-3 was produced in the same manner as in the addition block copolymer TPE-1. Table 1 shows the materials used and their amounts used.
  • Weight average molecular weight (Mw) The weight average molecular weight (Mw) in terms of polystyrene of the hydrogenated block copolymer was determined by gel permeation chromatography (GPC) measurement under the following conditions. (GPC measurement device and measurement conditions) -Equipment: GPC equipment "HLC-8020" (manufactured by Tosoh Corporation) Separation column: Two “TSKgel G4000HX” manufactured by Tosoh Corporation were connected in series.
  • a distortion control dynamic viscoelasticity device “ARES-G2” (manufactured by TA Instruments) based on JIS K7244-10 (2005) was used as a measuring device, and was formed by two flat plates having a diameter of 8 mm. The test piece was sandwiched, vibrated at a strain of 0.1% and a frequency of 1 Hz, and the temperature was raised from ⁇ 70 ° C. to 100 ° C. at 3 ° C./min for testing. From the above test, a temperature characteristic curve of tan ⁇ and shear storage elastic modulus G ′ was created, and a peak temperature of tan ⁇ , a peak intensity of tan ⁇ , and a shear storage elastic modulus G ′ at 60 ° C. were determined from the obtained temperature characteristic curves.
  • RATS-G2 A distortion control dynamic viscoelasticity device “ARES-G2” (manufactured by TA Instruments) based on JIS K7244-10 (2005) was used as a measuring device, and was formed
  • (Vi) Motility parameter M the relaxation time of the resin component (II) was measured by a pulse NMR method. Specifically, it measured by the following procedures. ⁇ Pulse NMR system: Minispec MQ20 manufactured by Bruker Biospin Measurement method: solid echo method Measurement conditions: The obtained resin component (II) was applied for 3 minutes at a temperature of 230 ° C. and a pressure of 10 MPa using a press molding apparatus “NF-50T” (manufactured by Shinto Metal Industry Co., Ltd.). By pressing, a sheet having a thickness of 1.0 mm was produced, and the sheet cut out into a length of 10 mm ⁇ a width of 10 mm ⁇ was put into a sample tube to obtain a sample.
  • NF-50T press molding apparatus
  • a motility parameter M (that is, a value indicating the motility of the block (B) of the block copolymer as the resin component (II)) was calculated based on the following equation [II].
  • y A 1 * exp ( ⁇ 0.5 * (x / ⁇ 1 ) 2 ) + A 2 * exp ( ⁇ 0.5 * (x / ⁇ 2 ) 2 ) + A 3 * exp ( ⁇ x / ⁇ 3 ) [I]
  • M ( ⁇ 2 * A 2 + ⁇ 3 * A 3 ) / (A 2 + A 3 ) [II] The results are shown in Table 2 below.
  • the block copolymer TPE-1 obtained in Production Example 1 was charged into a cryomill (manufactured by Taiyo Nippon Sanso Co., Ltd.) and freeze-pulverized with liquid nitrogen. The obtained pulverized product was sieved to prepare a block copolymer TPE-1 powder (TPE-1 powder) having an average particle diameter (50% volume average diameter) of 70 ⁇ m. With respect to the block copolymers TPE-2 and TPE-2 obtained in Production Examples 2 and 3, powders having an average particle diameter (50% volume average diameter) of 70 ⁇ m (TPE-2 powder and TPE-3 powder) were obtained in the same procedure. Produced. The average particle diameter (50% volume average diameter) of the powder was measured by wet laser diffraction using a sample in which powder was dispersed in water using a Mastersizer 3000 manufactured by Malvern.
  • a resin composition was prepared using the block copolymers TPE-1 to 3 obtained in Production Examples 1 to 3, a monomer for preparing the resin component (I), other additives, and a catalyst. (Examples 1 to 5, Comparative Example 1). Table 3 below shows the components and the amounts of the components in the examples and comparative examples.
  • the materials used to prepare the resin composition other than the block copolymers TPE-1 to TPE-3 are as follows.
  • the polyol, the plasticizer, and the powder of the resin component (II) and the filler shown in Table 3 were charged into a planetary mixer (manufactured by Primix Co., Ltd.), and the pressure was set to 1.2 kPa at 50 ° C. The mixture was then depressurized and dehydrated by mixing at a rotation speed of 40 rpm for 4 hours to obtain a paste mixture.
  • MDI was put into a planetary mixer, and the paste mixture after the above-mentioned dehydration treatment was added in its entirety. Further, a bismuth-based catalyst was added among the catalysts in Table 3, and at a rotation speed of 40 rpm.
  • tan ⁇ was used at a measurement temperature of ⁇ 80 to + 100 ° C. and a frequency of 10 Hz.
  • a temperature characteristic curve of tan ⁇ was prepared by measurement, and the presence or absence of a tan ⁇ peak at ⁇ 10 to + 40 ° C. was confirmed, and the tan ⁇ peak temperature, tan ⁇ peak intensity, and tan ⁇ intensity at 20 ° C. were measured.
  • ⁇ Tensile test> The following items were all measured according to JIS K6251 (2010). Specifically, the obtained resin composition is applied on a PP film using a glass rod with a 2 mm spacer wound on both ends, and cured for 2 days in an atmosphere of 23 ° C. and 50% RH. No. 5 dumbbell-shaped test piece was punched out from the cured product, and the tensile strength [MPa] and rupture were measured by measuring the test piece at a test speed of 500 mm / min using a universal material tester Model 5966 manufactured by Instron. The elongation [%] was measured. ⁇ Tear test> The tear strength [kN / m] was measured according to JIS K7128-1 (1998).
  • the obtained resin composition is applied on a PP film using a glass rod with a 2 mm spacer wound on both ends, and cured for 2 days in an atmosphere of 23 ° C. and 50% RH.
  • a trouser-type test piece of JIS-K7128-1 was prepared from the cured product, and the tear strength was measured at a test speed of 100 mm / min using a universal material tester 5966 manufactured by Instron. It was measured.
  • Tensile shear adhesive strength [MPa] was measured according to JIS K6850 (1999).
  • ⁇ Average dispersion diameter of component (II)> The obtained resin composition was applied on a PP film using a glass rod having a 1 mm spacer wound on both ends, and cured for 2 days in an atmosphere of 23 ° C. and 50% RH to obtain a cured product.
  • the sample in which the component (II) was dissolved was obtained by immersing the obtained cured product in cyclohexane for 5 minutes.
  • the surface of the sample was observed with a polarization microscope ECLIPSE E600POL manufactured by Nikon Corporation, the size of 30 randomly selected components (II) was measured, their arithmetic average was calculated, and the obtained value was calculated as the component (II). ).
  • ⁇ Weather resistance test> Using the resin compositions obtained in Examples and Comparative Examples, test pieces having a size of 30 mm ⁇ 25 mm ⁇ 5 mm in thickness were prepared, and a weather resistance tester (Super Xenon Weather Meter SX75 manufactured by Suga Test Instruments Co., Ltd.) was used. Then, a weather resistance test was carried out by exposing for 200 hours under the conditions of irradiance 180 W / m 2 , black panel temperature 60 ° C. and relative humidity 50%. If there was no difference in appearance between before and after the weather resistance test, ⁇ , if there was a difference but the level was not problematic for practical use, ⁇ if there was a difference of a level that was not suitable for practical use, then ⁇ evaluated.
  • a weather resistance tester Super Xenon Weather Meter SX75 manufactured by Suga Test Instruments Co., Ltd.
  • FIG. 1 is a graph showing the temperature characteristics of the loss tangent tan ⁇ of the resin compositions of Examples 1 to 4 and Comparative Example 1.
  • Example 1 shows that the failure mode in the adhesive strength test is a cohesive failure type, and the adhesive strength of the adhesive is extremely high.
  • the resin compositions of Examples 1 to 3 had a peak of tan ⁇ in the range of ⁇ 10 to + 40 ° C., and did not contain the resin component (II). It shows that the composition has higher damping properties than the composition.
  • the resin compositions of Examples 1 to 5 have higher sound transmission loss than the resin composition of Comparative Example 1 at any frequency, and are excellent in sound insulation.
  • the block copolymer Since the block copolymer has low polarity and low compatibility with the adhesive, it may aggregate without mixing (decrease in mechanical strength and adhesive strength).
  • the powder (fine particles) obtained by the above with an adhesive before curing and dispersing it with an appropriate dispersion diameter, the tear strength and the hardness are improved while maintaining the adhesiveness to the steel sheet, and further, the mobility parameter is determined by a predetermined value.
  • the resin component (II) in the range the vibration damping property can be improved.
  • a block copolymer having a high peak temperature of tan ⁇ the elongation at break, the tear strength, and the adhesion are improved due to the high material strength of the elastomer.
  • the resin component (II) constituting the powder used in Examples 1 to 4 is a block copolymer, and since the polymer block (B) is hydrogenated, the resin component (II) is high as is apparent from Table 1. It shows weather resistance and can be expected to improve heat resistance.
  • the resin composition of Comparative Example 1 was inferior to the resin compositions of Examples 1 to 5 in evaluation of elongation at break, tensile shear bond strength, hardness and the like.
  • no tan ⁇ peak was observed in the range of ⁇ 10 to + 40 ° C.
  • the resin composition of the present invention can be used for a DG adhesive for automobiles.
  • applications other than the DG adhesive for example, by giving the adhesive an anti-vibration property, by replacing the existing adhesive used for the member for which vibration is to be suppressed with the adhesive of the present invention, It can be expected to reduce vibration and noise while maintaining adhesiveness.

Abstract

A resin composition which is capable of imparting functions other than adhesiveness such as high toughness, high hardness and high vibration damping properties over a wide actual working temperature range, while maintaining good adhesion to a steel sheet, and which is composed of (I) a matrix resin component that has a monomer unit containing a hetero atom, and (II) a resin component that is composed of at least one substance selected from the group consisting of a block copolymer having a polymer block (A) derived from an aromatic vinyl compound and a polymer block (B) derived from a conjugated diene compound, a styrene resin, a conjugated diene polymer and an olefin resin, with the average dispersion diameter of the resin component (II) in the resin composition being from 10 μm to 5,000 μm; a powder which uses this resin composition; an adhesive; and a direct glazing adhesive for automobiles.

Description

樹脂組成物、パウダー、接着剤、及び、自動車用ダイレクトグレージング接着剤Resin composition, powder, adhesive, and direct glazing adhesive for automobile
 本発明は、樹脂組成物、パウダー、接着剤、及び、自動車用ダイレクトグレージング接着剤に関する。 The present invention relates to a resin composition, a powder, an adhesive, and a direct glazing adhesive for automobiles.
 例えば、自動車用途では、車体の剛性を向上させ得ること、外観が優れること、デザイン自由度が高いことなどから、ゴムガスケットを介さずに、窓ガラスを、ボディーに直接接着するダイレクトグレージング(DG)用接着剤の検討が進められている(例えば、特許文献1参照)。このような自動車をはじめとする種々の機械においては振動が発生するため、この振動に由来する問題を解決する手段が必要とされていた。例えば、上述したDG用接着剤の場合、幅広い温度領域でロードノイズを低減させる手段が求められていた。
 近年、自動車内の騒音をさらに低減することについての要請が高まっており、接着性を初めとするDG用接着剤の機能を維持しつつ、さらに静音性を高められ得るDG用接着剤が求められている。また、高い制振性が付与された接着剤で、振動を抑えたい部材を接着するのに用いられている既存の接着剤を置き換えることにより、振動・騒音を低減することが期待でき、接着剤の用途拡大にもつながり得る。
For example, in automotive applications, direct glazing (DG), in which a window glass is directly bonded to a body without a rubber gasket, because the rigidity of the vehicle body can be improved, the appearance is excellent, and the degree of freedom in design is high. Studies on adhesives for use have been advanced (for example, see Patent Document 1). Since vibrations occur in various machines such as automobiles, there is a need for a means for solving the problems caused by the vibrations. For example, in the case of the above-mentioned DG adhesive, means for reducing road noise in a wide temperature range has been required.
In recent years, there has been an increasing demand for further reducing noise in automobiles, and there has been a demand for a DG adhesive capable of further improving noise reduction while maintaining the functions of the DG adhesive such as adhesiveness. ing. In addition, by replacing existing adhesives that are used to adhere members whose vibrations are to be suppressed with adhesives with high vibration damping properties, vibration and noise can be expected to be reduced. Can also lead to an expanded use of.
 一方、芳香族ビニル化合物に由来する構造単位を含有する重合体ブロックと、共役ジエン化合物に由来する構造単位を含有する重合体ブロックとを有するブロック共重合体、特にその水素添加物において、共役ジエン化合物に由来する構造単位がビニル結合単位(例えば1,2-結合単位及び3,4-結合単位)を有するものは制振材として用いられることがある(例えば、特許文献2参照)。また、JIS K7244-10に準拠して測定される損失正接(tanδ)が制振性の指標となることが一般に知られている。 On the other hand, a block copolymer having a polymer block containing a structural unit derived from an aromatic vinyl compound and a polymer block containing a structural unit derived from a conjugated diene compound, particularly a hydrogenated product thereof, contains a conjugated diene A structural unit derived from a compound having a vinyl bonding unit (for example, a 1,2-bonding unit and a 3,4-bonding unit) may be used as a vibration damping material (for example, see Patent Document 2). It is generally known that a loss tangent (tan δ) measured according to JIS K72444-10 is an index of damping properties.
特開2014-122257号公報JP 2014-122257 A 特開2002-284830号公報JP-A-2002-284830
 このような制振性を有するブロック共重合体を接着剤に添加することで、接着剤に制振性を付与し、静音性の向上を図ることが考えられる。しかしながら、上記ブロック共重合体は概して極性が低いため、一般的に高い極性を有している接着剤に対しては相溶性が低い。このため、ブロック共重合体が接着剤に混ざらずに凝集してしまい、力学強度や接着力の低下を招く恐れがある。
 そこで、スチレン系エラストマーを粉砕したパウダー(微粒子)を接着剤に混合し分散させておくことが考えられる。この場合、ブロック共重合体が粒子であるため、接着剤と十分混合して接着剤中に分散させる必要があるが、この混合によって粒子の粒径が添加前のものから変化し得るため、両者を十分に混合するだけでは良好な特性を得られるとは限らない。例えば、両者を必要以上に長く強い力で混合するとブロック共重合体が小径化し、これらが組成物中でネットワーク化したり、粒子同士が凝集して偏在したりすることにより、接着性や靭性などの接着剤としての性能が損なわれることが想定される。したがって、接着剤の性能を損なうことなく制振性を発現させるためには、組成物中におけるブロック共重合体粒子の分散状態が重要である。
 しかしながら、接着剤組成物中における制振性材料の分散状態に着目し、どのような分散状態とするべきかについて、まだ十分に検討されていないのが実情である。
By adding such a block copolymer having damping properties to the adhesive, it is conceivable to impart damping properties to the adhesive and improve noise reduction. However, since the above-mentioned block copolymer is generally low in polarity, it generally has low compatibility with an adhesive having high polarity. For this reason, the block copolymer may aggregate without being mixed with the adhesive, which may cause a decrease in mechanical strength or adhesive strength.
Therefore, it is conceivable to mix and disperse powder (fine particles) obtained by pulverizing the styrene-based elastomer into the adhesive. In this case, since the block copolymer is a particle, it is necessary to sufficiently mix with the adhesive and disperse it in the adhesive. However, it is not always the case that good characteristics can be obtained simply by sufficiently mixing. For example, if both are mixed with a strong force longer than necessary, the block copolymer becomes smaller in diameter, these are networked in the composition, or the particles are aggregated and unevenly distributed, and the adhesiveness and toughness etc. It is assumed that the performance as an adhesive is impaired. Therefore, the dispersion state of the block copolymer particles in the composition is important in order to exhibit vibration damping properties without impairing the performance of the adhesive.
However, the fact is that the dispersed state of the vibration damping material in the adhesive composition is focused on, and what kind of dispersed state should be achieved has not yet been sufficiently studied.
 本発明の課題は、鋼板に対する接着性を維持しつつ、高い靱性、高硬度、及び、広い実使用温度範囲における高い制振性等の、接着性以外の機能を持たせることができる樹脂組成物、接着剤、及び、自動車用ダイレクトグレージング接着剤を提供することにある。また、本発明の他の課題は、上記樹脂組成物、接着剤、及び、自動車用ダイレクトグレージング接着剤に適したパウダーを提供することにある。 An object of the present invention is to provide a resin composition that can have functions other than adhesiveness, such as high toughness, high hardness, and high vibration damping properties in a wide range of actual operating temperatures, while maintaining adhesiveness to a steel sheet. , An adhesive, and a direct glazing adhesive for automobiles. Another object of the present invention is to provide a powder suitable for the resin composition, the adhesive, and the automotive direct glazing adhesive.
 本発明者らは、ヘテロ原子を含むモノマーユニットを有するマトリックス樹脂成分(I)中に、高い制振性を発現し得る樹脂成分(II)を分散させ、樹脂組成物における樹脂成分(II)を特定の平均分散径とすることにより、上記課題を解決し得ることを見出し、本発明を完成させるに至った。 The present inventors disperse a resin component (II) capable of exhibiting high vibration damping property in a matrix resin component (I) having a monomer unit containing a hetero atom, and convert the resin component (II) in the resin composition. It has been found that the above problems can be solved by setting the specific average dispersion diameter, and the present invention has been completed.
 本発明は、下記[1]~[22]に関する。
[1]ヘテロ原子を含むモノマーユニットを有するマトリックス樹脂成分(I)、並びに、芳香族ビニル化合物に由来する重合体ブロック(A)と共役ジエン化合物に由来する重合体ブロック(B)とを有するブロック共重合体、スチレン系樹脂、共役ジエン重合体、及び、オレフィン系樹脂からなる群より選ばれる少なくとも1種である樹脂成分(II)からなる樹脂組成物であって、当該樹脂組成物中における前記樹脂成分(II)の平均分散径が、10μm~5,000μmである樹脂組成物。
[2]前記樹脂成分(II)が下記条件(1)を満たす[1]に記載の樹脂組成物。
条件(1):パルスNMR装置を用いて測定した、緩和時間xに対する緩和強度yで表される緩和曲線に対して、下記式[I]のフィッティングを行って決定した係数A~A及び各成分のスピン-スピン緩和時間τ~τを用いて下記式[II]で求められる、運動性パラメータMが0.01~0.25秒である。
y=A1 * exp(-0.5 * (x/τ1)2)+A2 * exp(-0.5 * (x/τ2)2)+A3 * exp(-x/τ3)  [I]
M=(τ2 * A2+τ3 * A3)/(A2+A3)  [II]
[3]前記樹脂成分(I)が、ポリウレタンである[1]又は[2]に記載の樹脂組成物。
[4]前記樹脂成分(I)が、湿気硬化型ポリウレタンである[1]~[3]のいずれか一つに記載の樹脂組成物。
[5]前記樹脂成分(I)が、ポリオール化合物及びイソシアネート化合物からなる一液湿気硬化型ポリウレタンである[1]~[4]のいずれか一つに記載の樹脂組成物。
[6]前記樹脂成分(II)が、パウダー状の凍結粉砕物である[1]~[5]のいずれか一つに記載の樹脂組成物。
[7]上記パウダー状の凍結粉砕物である前記樹脂成分(II)の50%体積平均径が、0.01mm~1.0mmである[6]に記載の樹脂組成物。
[8]前記樹脂成分(II)の運動性パラメータMが、0.01~0.10秒である[2]に記載の樹脂組成物。
[9]前記樹脂成分(II)が、下記条件(2)を満たす[1]~[8]のいずれか一つに記載の樹脂組成物。
条件(2):JIS K7244-10(2005年)に準拠して、歪み量0.1%、周波数1Hz、測定温度-70~+100℃、昇温速度3℃/分の条件で測定した60℃のせん断貯蔵弾性率G’が0.10~0.58MPaであり、損失正接tanδのピーク温度が-5~+40℃である。
[10]前記樹脂成分(II)が、芳香族ビニル化合物に由来する構造単位を70mol%超含有する重合体ブロック(A)と、共役ジエン化合物に由来する構造単位を30mol%以上含有する重合体ブロック(B)とを有するブロック共重合体である、[1]~[9]のいずれか一つに記載の樹脂組成物。
[11]前記ブロック共重合体における重合体ブロック(A)の含有量が、6~22質量%である[1]~[10]のいずれか一つに記載の樹脂組成物。
[12]前記ブロック共重合体における重合体ブロック(B)の水添率が、10~99mol%である[1]~[11]のいずれか一つに記載の樹脂組成物。
[13]20℃における損失正接tanδの強度が0.15以上である[1]~[12]のいずれか一つに記載の樹脂組成物。
[14]下記条件(1)を満たし、芳香族ビニル化合物に由来する重合体ブロック(A)と、水添率が10~99mol%であり、共役ジエン化合物に由来する重合体ブロック(B)とを有するブロック共重合体、スチレン系樹脂、共役ジエン重合体、及び、オレフィン系樹脂からなる群より選ばれる少なくとも1種である樹脂成分(II)からなるパウダー。
条件(1):パルスNMR装置を用いて測定した、緩和時間xに対する緩和強度yで表される緩和曲線に対して、下記式[I]のフィッティングを行って決定した係数A~A及び各成分のスピン-スピン緩和時間τ~τを用いて下記式[II]で求められる、運動性パラメータMが0.01~0.25秒である。
y=A1 * exp(-0.5 * (x/τ1)2)+A2 * exp(-0.5 * (x/τ2)2)+A3 * exp(-x/τ3)  [I]
M=(τ2 * A2+τ3 * A3)/(A2+A3)  [II]
[15]前記樹脂成分(II)の凍結粉砕物である[14]に記載のパウダー。
[16]50%体積平均径が、0.01mm~1.0mmである[14]又は[15]に記載のパウダー。
[17]前記樹脂成分(II)の運動性パラメータMが、0.01~0.10秒である[14]~[16]のいずれか一つに記載のパウダー。
[18]前記樹脂成分(II)が、下記条件(2)を満たす[14]~[17]のいずれか一つに記載のパウダー。
条件(2):JIS K7244-10(2005年)に準拠して、歪み量0.1%、周波数1Hz、測定温度-70~+100℃、昇温速度3℃/分の条件で測定した60℃のせん断貯蔵弾性率G’が0.10~0.58MPaであり、損失正接tanδのピーク温度が-5~+40℃である。
[19]前記樹脂成分(II)が、芳香族ビニル化合物に由来する構造単位を70mol%超含有する重合体ブロック(A)と、共役ジエン化合物に由来する構造単位を30mol%以上含有する重合体ブロック(B)とを有するブロック共重合体である、[14]~[18]のいずれか一つに記載のパウダー。
[20]前記ブロック共重合体における重合体ブロック(A)の含有量が、6~22質量%である[14]~[19]のいずれか一つに記載のパウダー。
[21][1]~[13]のいずれか一つに記載の樹脂組成物を含有する接着剤。
[22][1]~[13]のいずれか一つに記載の樹脂組成物を含有する自動車用ダイレクトグレージング接着剤。
The present invention relates to the following [1] to [22].
[1] A matrix resin component (I) having a monomer unit containing a hetero atom, and a block having a polymer block (A) derived from an aromatic vinyl compound and a polymer block (B) derived from a conjugated diene compound. A resin composition comprising at least one resin component (II) selected from the group consisting of a copolymer, a styrene-based resin, a conjugated diene polymer, and an olefin-based resin. A resin composition wherein the average dispersion diameter of the resin component (II) is from 10 μm to 5,000 μm.
[2] The resin composition according to [1], wherein the resin component (II) satisfies the following condition (1).
Condition (1): Coefficients A 1 to A 3 determined by performing fitting of the following equation [I] on a relaxation curve represented by a relaxation strength y with respect to a relaxation time x measured using a pulse NMR apparatus, and The motility parameter M obtained by the following equation [II] using the spin-spin relaxation times τ 1 to τ 3 of each component is 0.01 to 0.25 seconds.
y = A 1 * exp (−0.5 * (x / τ 1 ) 2 ) + A 2 * exp (−0.5 * (x / τ 2 ) 2 ) + A 3 * exp (−x / τ 3 ) [I]
M = (τ 2 * A 2 + τ 3 * A 3 ) / (A 2 + A 3 ) [II]
[3] The resin composition according to [1] or [2], wherein the resin component (I) is a polyurethane.
[4] The resin composition according to any one of [1] to [3], wherein the resin component (I) is a moisture-curable polyurethane.
[5] The resin composition according to any one of [1] to [4], wherein the resin component (I) is a one-pack moisture-curable polyurethane comprising a polyol compound and an isocyanate compound.
[6] The resin composition according to any one of [1] to [5], wherein the resin component (II) is a powder-like freeze-ground product.
[7] The resin composition according to [6], wherein the 50% volume average diameter of the resin component (II), which is the powder-like freeze-ground product, is 0.01 mm to 1.0 mm.
[8] The resin composition according to [2], wherein the mobility parameter M of the resin component (II) is 0.01 to 0.10 seconds.
[9] The resin composition according to any one of [1] to [8], wherein the resin component (II) satisfies the following condition (2).
Condition (2): 60 ° C. measured based on JIS K7244-10 (2005) under the conditions of a distortion amount of 0.1%, a frequency of 1 Hz, a measurement temperature of −70 to + 100 ° C., and a heating rate of 3 ° C./min Has a shear storage modulus G ′ of 0.10 to 0.58 MPa and a peak temperature of loss tangent tan δ of −5 to + 40 ° C.
[10] A polymer in which the resin component (II) contains a structural unit derived from an aromatic vinyl compound in an amount of more than 70 mol% and a polymer block containing a structural unit derived from a conjugated diene compound in an amount of 30 mol% or more. The resin composition according to any one of [1] to [9], which is a block copolymer having a block (B).
[11] The resin composition according to any one of [1] to [10], wherein the content of the polymer block (A) in the block copolymer is 6 to 22% by mass.
[12] The resin composition according to any one of [1] to [11], wherein the hydrogenation rate of the polymer block (B) in the block copolymer is 10 to 99 mol%.
[13] The resin composition according to any one of [1] to [12], which has a loss tangent tan δ at 20 ° C. of 0.15 or more.
[14] A polymer block (A) which satisfies the following condition (1) and is derived from an aromatic vinyl compound and a polymer block (B) which has a hydrogenation ratio of 10 to 99 mol% and is derived from a conjugated diene compound. A powder comprising at least one resin component (II) selected from the group consisting of a block copolymer having the following, a styrene resin, a conjugated diene polymer, and an olefin resin.
Condition (1): Coefficients A 1 to A 3 determined by performing fitting of the following equation [I] on a relaxation curve represented by a relaxation strength y with respect to a relaxation time x measured using a pulse NMR apparatus, and The motility parameter M obtained by the following equation [II] using the spin-spin relaxation times τ 1 to τ 3 of each component is 0.01 to 0.25 seconds.
y = A 1 * exp (−0.5 * (x / τ 1 ) 2 ) + A 2 * exp (−0.5 * (x / τ 2 ) 2 ) + A 3 * exp (−x / τ 3 ) [I]
M = (τ 2 * A 2 + τ 3 * A 3 ) / (A 2 + A 3 ) [II]
[15] The powder according to [14], which is a freeze-ground product of the resin component (II).
[16] The powder according to [14] or [15], wherein the 50% volume average diameter is 0.01 mm to 1.0 mm.
[17] The powder according to any one of [14] to [16], wherein the mobility parameter M of the resin component (II) is 0.01 to 0.10 seconds.
[18] The powder according to any one of [14] to [17], wherein the resin component (II) satisfies the following condition (2).
Condition (2): 60 ° C. measured under the conditions of JIS K7244-10 (2005), distortion amount 0.1%, frequency 1 Hz, measurement temperature −70 to + 100 ° C., and heating rate 3 ° C./min. Has a shear storage modulus G ′ of 0.10 to 0.58 MPa and a peak temperature of loss tangent tan δ of −5 to + 40 ° C.
[19] A polymer in which the resin component (II) contains a structural unit derived from an aromatic vinyl compound in excess of 70 mol% and a polymer containing a structural unit derived from a conjugated diene compound in an amount of 30 mol% or more. The powder according to any one of [14] to [18], which is a block copolymer having a block (B).
[20] The powder according to any one of [14] to [19], wherein the content of the polymer block (A) in the block copolymer is 6 to 22% by mass.
[21] An adhesive containing the resin composition according to any one of [1] to [13].
[22] A direct glazing adhesive for automobiles, comprising the resin composition according to any one of [1] to [13].
 本発明により、鋼板に対する接着性を維持しつつ、高い靱性、高硬度、及び、広い実使用温度範囲における高い制振性等の、接着性以外の機能を持たせることができる樹脂組成物、接着剤、及び、自動車用ダイレクトグレージング接着剤を提供することができる。また、本発明により、上記樹脂組成物、接着剤、及び、自動車用ダイレクトグレージング接着剤に適したパウダーを提供することができる。 According to the present invention, a resin composition capable of having functions other than adhesiveness, such as high toughness, high hardness, and high vibration damping properties in a wide range of actual operating temperatures, while maintaining adhesiveness to a steel sheet, And a direct glazing adhesive for automobiles. Further, according to the present invention, it is possible to provide a powder suitable for the resin composition, the adhesive, and the direct glazing adhesive for automobiles.
実施例1~4及び比較例1の樹脂組成物の損失正接tanδの温度特性を示すグラフである。4 is a graph showing temperature characteristics of loss tangent tan δ of the resin compositions of Examples 1 to 4 and Comparative Example 1.
 以下、本発明の実施形態について説明する。なお、本明細書における記載事項を任意に選択した態様又は任意に組み合わせた態様も本発明に含まれる。また、本明細書において、好ましいとされている規定は任意に採用することができ、好ましいもの同士の組み合わせはより好ましいといえる。本明細書において、「XX~YY」の記載は、「XX以上YY以下」を意味する。 Hereinafter, embodiments of the present invention will be described. It should be noted that embodiments in which the items described in this specification are arbitrarily selected or arbitrarily combined are also included in the present invention. Further, in the present specification, a rule that is preferable can be arbitrarily adopted, and a combination of preferable ones is more preferable. In this specification, the description “XX to YY” means “XX or more and YY or less”.
[樹脂組成物の構成]
 本発明の実施形態に係る樹脂組成物は、ヘテロ原子を含むモノマーユニットを有するマトリックス樹脂成分(I)、並びに、芳香族ビニル化合物に由来する重合体ブロック(A)と共役ジエン化合物に由来する重合体ブロック(B)とを有するブロック共重合体、スチレン系樹脂、共役ジエン重合体、及び、オレフィン系樹脂からなる群より選ばれる少なくとも1種である樹脂成分(II)からなる樹脂組成物であって、当該樹脂組成物中における前記樹脂成分(II)の平均分散径が10μm~5,000μmである樹脂組成物である。
 まず、樹脂組成物を構成する各成分について説明する。
[Configuration of resin composition]
The resin composition according to the embodiment of the present invention includes a matrix resin component (I) having a monomer unit containing a hetero atom, and a polymer block (A) derived from an aromatic vinyl compound and a polymer resin derived from a conjugated diene compound. A resin composition comprising a block copolymer having a united block (B), a styrene resin, a conjugated diene polymer, and at least one resin component (II) selected from the group consisting of olefin resins. The resin composition has an average dispersion diameter of the resin component (II) in the resin composition of 10 μm to 5,000 μm.
First, each component constituting the resin composition will be described.
<マトリックス樹脂成分(I)> <Matrix resin component (I)>
 マトリックス樹脂成分(I)とは、樹脂組成物の分散基質(分散媒)となる樹脂成分であり、後述する樹脂成分(II)がマトリックス樹脂成分(I)に分散される。マトリックス樹脂成分(I)は、ヘテロ原子を含むモノマーユニットを有する樹脂成分であって、プレポリマーやオリゴマーなどの硬化が可能な樹脂成分を含むものであってもよい。また、マトリックス樹脂成分(I)にはその製造工程に用いられる触媒や、必要に応じて用いられる硬化剤(架橋剤、重合開始剤、共反応剤等)などが含まれていてもよい。
 マトリックス樹脂成分(I)は、好ましくはウレタン樹脂(ポリウレタン)、メラミン樹脂、ユリア樹脂、フェノール樹脂、酢酸ビニル樹脂、エチレン・酢酸ビニル樹脂、エポキシ樹脂、シアノアクリレート樹脂、アクリル樹脂、クロロプレンゴム、ニトリルゴム、シリコーンゴムであり、中でもポリウレタンが好ましい。ポリウレタンとしては湿気硬化型ポリウレタンが好ましく、一液湿気硬化型ポリウレタンがより好ましい。ここで、ポリウレタンとはウレタン結合を有するポリマーであり、本発明における「ポリウレタン」は、後述する、ウレタン結合を有するオリゴマー、ウレタン結合を有するプレポリマー(以下「ウレタンプレポリマー」と称する場合がある)、該プレポリマーの硬化物、ポリウレタン組成物及びウレタン組成物をも包含する概念である。
 ウレタン結合を有するプレポリマーは、ポリオールとポリオールに対し過剰なジイソシアネートとを反応させて得られるポリマーであってもよく、このようなプレポリマーは未反応のイソシアネート基を含むため、例えば水分と反応することで硬化物を得ることが可能である。また、プレポリマーの硬化物とは、プレポリマーを例えば水分や硬化剤などと反応させ、硬化させたものを意味する。なお、本発明のマトリックス樹脂成分(I)がポリウレタンである場合、該樹脂成分(I)には、上述したオリゴマー、プレポリマー、プレポリマーの硬化物に加えて、それらを生成するための成分であるポリオール化合物やイソシアネート化合物、触媒や硬化剤等も含まれ得るが、本明細書においては、これらの少なくとも1つの成分を含む組成物を「ポリウレタン組成物」又は「ウレタン組成物」という場合がある。同様に、湿気硬化型ポリウレタンの場合は「湿気硬化型ポリウレタン組成物」、一液湿気硬化型ポリウレタンの場合は「一液湿気硬化型ポリウレタン組成物」という場合がある。
The matrix resin component (I) is a resin component serving as a dispersion substrate (dispersion medium) of the resin composition, and a resin component (II) described later is dispersed in the matrix resin component (I). The matrix resin component (I) is a resin component having a monomer unit containing a hetero atom, and may contain a curable resin component such as a prepolymer or an oligomer. The matrix resin component (I) may contain a catalyst used in the production process, a curing agent (a cross-linking agent, a polymerization initiator, a co-reactant, etc.) used as necessary.
The matrix resin component (I) is preferably a urethane resin (polyurethane), a melamine resin, a urea resin, a phenol resin, a vinyl acetate resin, an ethylene / vinyl acetate resin, an epoxy resin, a cyanoacrylate resin, an acrylic resin, a chloroprene rubber, a nitrile rubber. , Silicone rubber, and polyurethane is particularly preferable. As the polyurethane, a moisture-curable polyurethane is preferable, and a one-component moisture-curable polyurethane is more preferable. Here, the polyurethane is a polymer having a urethane bond, and the “polyurethane” in the present invention is an oligomer having a urethane bond or a prepolymer having a urethane bond (hereinafter, may be referred to as “urethane prepolymer”). , A cured product of the prepolymer, a polyurethane composition and a urethane composition.
The prepolymer having a urethane bond may be a polymer obtained by reacting a polyol and an excess of diisocyanate with respect to the polyol, and since such a prepolymer contains unreacted isocyanate groups, it reacts with, for example, moisture. Thus, a cured product can be obtained. The cured product of the prepolymer means a product obtained by reacting the prepolymer with, for example, moisture, a curing agent, and the like, and curing the prepolymer. When the matrix resin component (I) of the present invention is a polyurethane, the resin component (I) includes, in addition to the above-mentioned oligomer, prepolymer, and cured product of the prepolymer, a component for producing them. Certain polyol compounds, isocyanate compounds, catalysts, curing agents, and the like may be included, but in the present specification, a composition containing at least one of these components may be referred to as a “polyurethane composition” or a “urethane composition”. . Similarly, moisture-curable polyurethane may be referred to as "moisture-curable polyurethane composition", and one-component moisture-curable polyurethane may be referred to as "one-component moisture-curable polyurethane composition".
 ポリウレタンは、1分子中に2個以上のヒドロキシ基を有するポリオール化合物(U)と、1分子中に2個以上のイソシアネート基を有するイソシアネート化合物(V)とを用いて生成されるものであることが好ましい。 The polyurethane is formed using a polyol compound (U) having two or more hydroxy groups in one molecule and an isocyanate compound (V) having two or more isocyanate groups in one molecule. Is preferred.
(ポリオール化合物(U))
 ポリオール化合物(U)は、後述するイソシアネート化合物(V)と反応できる化合物である限り特に制限はない。
(Polyol compound (U))
The polyol compound (U) is not particularly limited as long as it can react with the isocyanate compound (V) described below.
 ポリオール化合物(U)としては、低分子多価アルコール、ポリエーテルポリオール、ポリエステルポリオール、その他のポリオール、これらの混合物などが挙げられる。 Examples of the polyol compound (U) include low molecular weight polyhydric alcohols, polyether polyols, polyester polyols, other polyols, and mixtures thereof.
 低分子多価アルコールとしては、例えば、エチレングリコール、ジエチレングリコール、プロピレングリコール、ジプロピレングリコール、1,3-ブタンジオール、1,4-ブタンジオール、ペンタンジオール、ネオペンチルグリコール、ヘキサンジオール、シクロヘキサンジメタノール、グリセリン、1,1,1-トリメチロールプロパン、1,2,5-ヘキサントリオール、ペンタエリスリトール;ソルビトール等の糖類;などが挙げられる。 Examples of low molecular weight polyhydric alcohols include ethylene glycol, diethylene glycol, propylene glycol, dipropylene glycol, 1,3-butanediol, 1,4-butanediol, pentanediol, neopentyl glycol, hexanediol, cyclohexanedimethanol, Glycerin, 1,1,1-trimethylolpropane, 1,2,5-hexanetriol, pentaerythritol; saccharides such as sorbitol;
 ポリエーテルポリオールは、例えば、上記低分子多価アルコール、芳香族ジオール化合物、アミン化合物及びアルカノールアミン化合物から選ばれる少なくとも1種の化合物に、アルキレンオキサイド及びスチレンオキサイドから選ばれる少なくとも1種の化合物を付加する方法、ブチレンオキサイド(テトラメチレンオキサイド)、テトラヒドロフラン等の環状エーテル単量体を開環重合する方法などによって製造されたものである。 The polyether polyol is obtained, for example, by adding at least one compound selected from alkylene oxide and styrene oxide to at least one compound selected from the above-mentioned low molecular weight polyhydric alcohol, aromatic diol compound, amine compound and alkanolamine compound. And a ring-opening polymerization of a cyclic ether monomer such as butylene oxide (tetramethylene oxide) and tetrahydrofuran.
 上記芳香族ジオール化合物としては、例えば、レゾルシン(m-ジヒドロキシベンゼン)、キシリレングリコール、1,4-ベンゼンジメタノール、スチレングリコール、4,4'-ジヒドロキシエチルフェノール;ビスフェノールA構造(4,4’-ジヒドロキシフェニルプロパン)、ビスフェノールF構造(4,4’-ジヒドロキシフェニルメタン)、臭素化ビスフェノールA構造、水添ビスフェノールA構造、ビスフェノールS構造、ビスフェノールAF構造等のビスフェノール骨格を有するジオール化合物などが挙げられる。上記アミン化合物としては、例えば、エチレンジアミン、ヘキサメチレンジアミンなどが挙げられる。上記アルカノールアミン化合物としては、例えば、エタノールアミン、プロパノールアミンなどが挙げられる。上記アルキレンオキサイドとしては、例えば、エチレンオキサイド、プロピレンオキサイドなどが挙げられる。 Examples of the aromatic diol compound include resorcinol (m-dihydroxybenzene), xylylene glycol, 1,4-benzenedimethanol, styrene glycol, 4,4′-dihydroxyethylphenol; bisphenol A structure (4,4 ′ Diol compounds having a bisphenol skeleton such as bisphenol F structure (4,4′-dihydroxyphenylmethane), brominated bisphenol A structure, hydrogenated bisphenol A structure, bisphenol S structure and bisphenol AF structure. Can be Examples of the amine compound include ethylene diamine and hexamethylene diamine. Examples of the alkanolamine compound include ethanolamine and propanolamine. Examples of the alkylene oxide include ethylene oxide and propylene oxide.
 ポリエーテルポリオールとしては、例えば、ポリエチレングリコール、ポリプロピレングリコール、ポリプロピレントリオール、エチレンオキサイド/プロピレンオキサイド共重合体、ポリテトラメチレンエーテルグリコール、ポリテトラエチレングリコール;ソルビトール系ポリオール;ビスフェノールA(4,4’-ジヒドロキシフェニルプロパン)に、アルキレンオキサイドを付加させて得られるポリエーテルポリオールなどが挙げられる。 Examples of polyether polyols include polyethylene glycol, polypropylene glycol, polypropylene triol, ethylene oxide / propylene oxide copolymer, polytetramethylene ether glycol, polytetraethylene glycol; sorbitol-based polyols; bisphenol A (4,4′-dihydroxy Phenylpropane) and a polyether polyol obtained by adding an alkylene oxide.
 ポリエステルポリオールとしては、例えば、縮合系ポリエステルポリオール、ラクトン系ポリオール、ポリカーボネートポリオール等が挙げられる。 Examples of the polyester polyol include a condensation-based polyester polyol, a lactone-based polyol, and a polycarbonate polyol.
 縮合系ポリエステルポリオールは、例えば、上記低分子多価アルコール、上記芳香族ジオール化合物、上記アミン化合部物及び上記アルカノールアミン化合物から選ばれる少なくとも1種の化合物と、多塩基性カルボン酸との縮合反応により製造されたものである。 The condensation-based polyester polyol is, for example, a condensation reaction of at least one compound selected from the above-mentioned low molecular weight polyhydric alcohol, the above-mentioned aromatic diol compound, the above-mentioned amine compound and the above-mentioned alkanolamine compound with a polybasic carboxylic acid. It is manufactured by.
 上記多塩基性カルボン酸としては、例えば、グルタル酸、アジピン酸、アゼライン酸、フマル酸、マレイン酸、ピメリン酸、スベリン酸、セバシン酸、フタル酸、テレフタル酸、イソフタル酸、ダイマー酸、ピロメリット酸等の低分子カルボン酸、オリゴマー酸、ヒマシ油、ヒマシ油とエチレングリコール(又はプロピレングリコール)との反応生成物などのヒドロキシカルボン酸等が挙げられる。 Examples of the polybasic carboxylic acids include, for example, glutaric acid, adipic acid, azelaic acid, fumaric acid, maleic acid, pimelic acid, suberic acid, sebacic acid, phthalic acid, terephthalic acid, isophthalic acid, dimer acid, and pyromellitic acid And low-molecular-weight carboxylic acids, oligomeric acids, castor oil, and hydroxycarboxylic acids such as reaction products of castor oil and ethylene glycol (or propylene glycol).
 ラクトン系ポリオールは、例えば、ラクトンを開環重合することにより製造された両末端にヒドロキシ基を有するものである。上記ラクトンとしては、例えば、ε-カプロラクトン、α-メチル-ε-カプロラクトン、ε-メチル-ε-カプロラクトンなどが挙げられる。 The lactone-based polyol has, for example, hydroxyl groups at both ends produced by ring-opening polymerization of lactone. Examples of the lactone include ε-caprolactone, α-methyl-ε-caprolactone, ε-methyl-ε-caprolactone, and the like.
 その他のポリオールとしては、アクリルポリオールなどが挙げられる。 ア ク リ ル Other polyols include acrylic polyols and the like.
 これらポリオール化合物(U)の中でも、上記ウレタン組成物の反応生成物を含む組成物、例えば一液湿気硬化型ポリウレタン組成物として用いた場合に、得られる硬化物の硬度と破断伸びのバランスおよび優れた物性の硬化物が安価に得られることから、ポリエーテルポリオール及びポリプロピレングリコールが好ましく、ポリプロピレングリコールがより好ましい。 Among these polyol compounds (U), when used as a composition containing the reaction product of the urethane composition, for example, a one-part moisture-curable polyurethane composition, the balance between the hardness and elongation at break of the obtained cured product is excellent. Polyether polyols and polypropylene glycols are preferred, and polypropylene glycols are more preferred, since a cured product having such physical properties can be obtained at low cost.
 ポリオール化合物(U)の重量平均分子量は、100~10,000が好ましく、100~8,000がより好ましい。重量平均分子量がこの範囲であると、後述するイソシアネート化合物(V)との反応によって生成するプレポリマーの物性(例えば、硬度、破断強度、破断伸び)及び粘度が良好となる。なお、ポリオール化合物(U)の重量平均分子量はゲルパーミエーションクロマトグラフィー(GPC)で測定した標準ポリスチレン換算の重量平均分子量である。 重量 The weight average molecular weight of the polyol compound (U) is preferably from 100 to 10,000, and more preferably from 100 to 8,000. When the weight average molecular weight is in this range, the physical properties (for example, hardness, breaking strength, breaking elongation) and viscosity of the prepolymer produced by the reaction with the isocyanate compound (V) described below become favorable. The weight average molecular weight of the polyol compound (U) is a weight average molecular weight in terms of standard polystyrene measured by gel permeation chromatography (GPC).
 これらポリオール化合物(U)は1種単独で用いてもよく、2種以上を組み合わせて用いてもよい。 These polyol compounds (U) may be used alone or in combination of two or more.
(イソシアネート化合物(V))
 イソシアネート化合物(V)は、1分子中に2個以上のイソシアネート基を有する限り特に制限はない。イソシアネート化合物(V)としては、例えば、トリレンジイソシアネート、ジフェニルメタンジイソシアネート、1,4-フェニレンジイソシアネート、ポリメチレンポリフェニレンポリイソシアネート、キシリレンジイソシアネート、テトラメチルキシリレンジイソシアネート、トリジンジイソシアネート、1,5-ナフタレンジイソシアネート、トリフェニルメタントリイソシアネート等の芳香族ポリイソシアネート;ヘキサメチレンジイソシアネート、トリメチルヘキサメチレンジイソシアネート、リジンジイソシアネート、ノルボルナンジイソシアナートメチルなどの脂肪族ポリイソシアネート;トランスシクロヘキサン-1,4-ジイソシアネート、イソホロンジイソシアネート、ビス(イソシアネートメチル)シクロヘキサン、ジシクロヘキシルメタンジイソシアネート等の脂環式ポリイソシアネート;これらイソシアネート化合物のカルボジイミド変性イソシアネート化合物、イソシアヌレート変性イソシアネート化合物;などが挙げられる。
(Isocyanate compound (V))
The isocyanate compound (V) is not particularly limited as long as it has two or more isocyanate groups in one molecule. Examples of the isocyanate compound (V) include tolylene diisocyanate, diphenylmethane diisocyanate, 1,4-phenylene diisocyanate, polymethylene polyphenylene polyisocyanate, xylylene diisocyanate, tetramethyl xylylene diisocyanate, tolidine diisocyanate, 1,5-naphthalene diisocyanate, Aromatic polyisocyanates such as triphenylmethane triisocyanate; aliphatic polyisocyanates such as hexamethylene diisocyanate, trimethylhexamethylene diisocyanate, lysine diisocyanate, norbornane diisocyanate methyl; transcyclohexane-1,4-diisocyanate, isophorone diisocyanate, bis ( Isocyanatomethyl) cyclohexane Carbodiimide-modified isocyanate compounds of these isocyanate compounds, isocyanurate-modified isocyanate compounds; alicyclic polyisocyanates such as dicyclohexylmethane diisocyanate and the like.
 これらイソシアネート化合物(V)の中でも、接着性がより良好になることから、芳香族ポリイソシアネートが好ましく、トリレンジイソシアネート(TDI)、ジフェニルメタンジイソシアネート(MDI)がより好ましい。 中 で も Among these isocyanate compounds (V), aromatic polyisocyanates are preferable, and tolylene diisocyanate (TDI) and diphenylmethane diisocyanate (MDI) are more preferable, because the adhesiveness is further improved.
 これらイソシアネート化合物(V)は1種単独で用いてもよく、2種以上を組み合わせて用いてもよい。 These isocyanate compounds (V) may be used alone or in combination of two or more.
 ポリオール化合物(U)100質量部に対するイソシアネート化合物(V)の使用量は、好ましくは1~200質量部の範囲であり、より好ましくは1~150質量部であり、さらに好ましくは1~100質量部である。イソシアネート化合物(V)が上記範囲で使用されることにより、ポリオール化合物(U)とイソシアネート化合物(V)が適切な量比で反応し、生成するウレタン組成物の反応生成物から得られる硬化物、および該反応組成物を含む湿気硬化型ポリウレタン組成物から得られる硬化物の物性(例えば、硬度、破断強度、破断伸び)が良好となる。 The amount of the isocyanate compound (V) to be used with respect to 100 parts by mass of the polyol compound (U) is preferably in the range of 1 to 200 parts by mass, more preferably 1 to 150 parts by mass, and still more preferably 1 to 100 parts by mass. It is. When the isocyanate compound (V) is used in the above range, the polyol compound (U) and the isocyanate compound (V) react at an appropriate quantitative ratio, and a cured product obtained from a reaction product of the urethane composition to be produced, In addition, physical properties (eg, hardness, breaking strength, breaking elongation) of a cured product obtained from the moisture-curable polyurethane composition containing the reaction composition are improved.
(ウレタン組成物の製造方法)
 ウレタン組成物は、ポリオール化合物(U)にイソシアネート化合物(V)と必要に応じて含まれる他の成分(例えば、後述する粉体成分や可塑剤など)を混合することにより作製できる。混合装置は特に制限はなく、例えば、ロール、ニーダー、加圧ニーダー、バンバリーミキサー、横型ミキサー(例えば、レーディゲミキサー等)、縦型ミキサー(例えば、プラネタリーミキサー等)、押出し機、万能かくはん機などが挙げられる。
 なお、樹脂組成物を調製するに当たっては、接着剤としての性能を低下させることなく、樹脂成分(II)を組成物中に良好に分散させるために、以下説明するように、ポリオール化合物(U)及び樹脂成分(II)と、必要に応じて用いる可塑剤及び充填剤とを混合し、次いでイソシアネート化合物(V)を添加して混合し、さらに触媒を添加して混合することで、ウレタン組成物を調製するとともに樹脂組成物を作製することが好ましい。
(Method for producing urethane composition)
The urethane composition can be prepared by mixing the polyol compound (U) with the isocyanate compound (V) and other components (for example, a powder component and a plasticizer described later) included as necessary. The mixing apparatus is not particularly limited, and includes, for example, a roll, a kneader, a pressure kneader, a Banbury mixer, a horizontal mixer (for example, a Ledige mixer), a vertical mixer (for example, a planetary mixer, etc.), an extruder, and a universal stirring. Machine.
In preparing the resin composition, in order to disperse the resin component (II) satisfactorily in the composition without deteriorating the performance as an adhesive, as described below, the polyol compound (U) And a resin component (II), and a plasticizer and a filler used as necessary, and then adding and mixing an isocyanate compound (V), and further adding and mixing a catalyst to thereby form a urethane composition. And a resin composition is preferably prepared.
 上記ウレタン組成物は、後述する湿気硬化型ポリウレタン組成物の原料として好適である。湿気硬化型ポリウレタン組成物の原料として用いるウレタン組成物は、下記混合工程および脱水工程を経て製造されることが望ましい。 The urethane composition is suitable as a raw material for a moisture-curable polyurethane composition described later. The urethane composition used as a raw material of the moisture-curable polyurethane composition is desirably manufactured through the following mixing step and dehydration step.
(混合工程)
 まず、上記ポリオール化合物(U)、後述する樹脂成分(II)、及び、必要に応じて含まれる成分(例えば、粉体成分)を混合して予備混合物を作製する。なお、予備混合物がポリオール化合物(U)、樹脂成分(II)及び粉体成分を含む場合、通常ペースト状混合物になる。
(Mixing process)
First, a preliminary mixture is prepared by mixing the polyol compound (U), a resin component (II) described later, and a component (for example, a powder component) included as necessary. When the preliminary mixture contains the polyol compound (U), the resin component (II), and the powder component, it usually becomes a paste-like mixture.
 予備混合物を調製するための混合装置は特に制限はなく、上述したウレタン組成物を作製するための混合装置などが使用できる。 混合 The mixing device for preparing the premix is not particularly limited, and a mixing device for preparing the urethane composition described above can be used.
 また、混合工程における混合温度、混合時間、及び、撹拌部材の回転速度は、ポリオール化合物(U)、樹脂成分(II)、及び、必要に応じて含まれる成分の種類に応じて適宜設定できる。混合温度は20~110℃程度が好ましい。混合時間は、好ましくは30分~4時間、より好ましくは30分~2時間である。撹拌部材の回転速度は20~300rpm程度が好ましい。 混合 In addition, the mixing temperature, the mixing time, and the rotation speed of the stirring member in the mixing step can be appropriately set according to the type of the polyol compound (U), the resin component (II), and the components included as necessary. The mixing temperature is preferably about 20 to 110 ° C. The mixing time is preferably from 30 minutes to 4 hours, more preferably from 30 minutes to 2 hours. The rotation speed of the stirring member is preferably about 20 to 300 rpm.
(脱水工程)
 上記混合工程で得られた予備混合物は、さらに脱水工程を経ることが望ましい。この脱水工程は、予備混合物中の残存水分の少なくとも一部を除去する工程である。残存水分を除去する方法は特に制限はないが、例えば、30~60℃程度の温度条件で、減圧下(1.2kPa以下、好ましくは0.6~1.2kPa)で30分間以上、脱水する方法が挙げられる。また、脱水工程が混合工程をも兼ねる場合がある。この場合、好ましくは撹拌部材の回転速度20~300rpmにて、上記脱水工程の温度及び減圧条件で混合及び脱水を行ってもよい。この混合工程を兼ねる脱水工程の時間としては、上述の好ましい混合時間に、脱水のための時間が加算されてもよく、例えば混合及び脱水時間合わせて3~5時間が好ましい。
(Dehydration step)
It is desirable that the preliminary mixture obtained in the mixing step be further subjected to a dehydration step. This dehydration step is a step of removing at least a part of the residual moisture in the preliminary mixture. The method for removing the residual moisture is not particularly limited. For example, dehydration is performed at a temperature of about 30 to 60 ° C. under reduced pressure (1.2 kPa or less, preferably 0.6 to 1.2 kPa) for 30 minutes or more. Method. Further, the dehydration step may also serve as the mixing step. In this case, mixing and dehydration may be performed preferably at a rotation speed of the stirring member of 20 to 300 rpm under the temperature and reduced pressure conditions in the dehydration step. As the time of the dehydration step also serving as the mixing step, a time for dehydration may be added to the above-mentioned preferable mixing time, and for example, a total of 3 to 5 hours for the mixing and dehydration time is preferable.
 上記脱水工程では、予備混合物の水分量を、0.050質量%以下にするのが好ましく、0.025質量%以下にするのがより好ましく、0.015質量%以下にするのがさらに好ましい。なお、予備混合物の水分量は、カールフィッシャー法によって測定できる。例えば、JIS K0068(2001年)に基づいて、電量滴定法に従い、カールフィッシャー試薬としてヨウ化物イオン・二酸化硫黄・アルコールを主成分とする電解液(例えば商品名アクアミクロンCXU、エーピーアイコーポレーション社製)を用い、水分測定装置(例えば三菱化学社製)を用いて測定できる。 で は In the dehydration step, the water content of the premix is preferably adjusted to 0.050% by mass or less, more preferably to 0.025% by mass or less, and further preferably to 0.015% by mass or less. The water content of the premix can be measured by the Karl Fischer method. For example, an electrolytic solution containing iodide ion, sulfur dioxide, and alcohol as main components as Karl Fischer reagents (for example, Aquamicron CXU, manufactured by API Corporation) according to coulometric titration based on JIS K0068 (2001) Can be measured using a moisture measuring device (for example, manufactured by Mitsubishi Chemical Corporation).
 上述した混合工程および脱水工程を経たポリオール化合物(U)、樹脂成分(II)、及び、必要に応じて含まれる成分を含む予備混合物と、ポリイソシアネート化合物(V)とを混合することにより、湿気硬化型ポリウレタン組成物にも好適なウレタン組成物が作製できる。予備混合物とポリイソシアネート化合物(V)とを混合するための混合装置は特に制限はなく、上述したウレタン組成物を作製するための混合装置などが使用できる。 By mixing the polyol compound (U), the resin component (II), and the premix containing the components included as necessary with the polyisocyanate compound (V) through the above-described mixing step and dehydration step, moisture A suitable urethane composition can also be produced for the curable polyurethane composition. The mixing device for mixing the premix and the polyisocyanate compound (V) is not particularly limited, and a mixing device for producing the above-described urethane composition can be used.
 湿気硬化型ポリウレタン組成物は、上記ウレタン組成物の反応(主としてポリオール化合物(U)とイソシアネート化合物(V)との反応による、ウレタンプレポリマー生成反応)によりプレポリマー(反応生成物)を含む混合物を得て、かかる混合物と、1分子中に2個以上のイソシアネート基を有するイソシアネート化合物(V’)とを混合することにより作製することができる。 The moisture-curable polyurethane composition is prepared by mixing a mixture containing a prepolymer (reaction product) by a reaction of the urethane composition (mainly, a urethane prepolymer formation reaction by a reaction between the polyol compound (U) and the isocyanate compound (V)). Then, the mixture can be prepared by mixing such a mixture with an isocyanate compound (V ′) having two or more isocyanate groups in one molecule.
 湿気硬化型ポリウレタン組成物に含まれるイソシアネート化合物(V’)としては、1分子中に2個以上のイソシアネート基を有するイソシアネート化合物であれば特に限定されず、ウレタン組成物に含まれるイソシアネート化合物(V)と同様の化合物が挙げられる。即ち、上記イソシアネート化合物(V’)の具体例としては、ジフェニルメタンジイソシアネート、ヘキサメチレンジイソシアネート、トリメチルヘキサメチレンジイソシアネート、リジンジイソシアネート、ノルボルナンジイソシアナートメチルなどのポリイソシアネートが挙げられ、これらを1種単独で用いても2種以上を併用してもよい。 The isocyanate compound (V ') contained in the moisture-curable polyurethane composition is not particularly limited as long as it is an isocyanate compound having two or more isocyanate groups in one molecule, and isocyanate compound (V') contained in the urethane composition And the like. That is, specific examples of the isocyanate compound (V ′) include polyisocyanates such as diphenylmethane diisocyanate, hexamethylene diisocyanate, trimethylhexamethylene diisocyanate, lysine diisocyanate, and norbornane diisocyanatomethyl. These are used alone. Or two or more of them may be used in combination.
 また、湿気硬化型ポリウレタン組成物に含まれるイソシアネート化合物(V’)としては、イソシアネート化合物(V)のほか、例えば、上記ポリイソシアネートとトリオールとの反応生成物;ポリイソシアネートのビウレット体、イソシアヌレート体などの変性体;等であってもよく、これらを1種単独で用いても2種以上を併用してもよい。ここで、上記トリオールとしては、1分子中に3個のヒドロキシ基を有するものであれば特に限定されないが、例えば、1,2,5-ヘキサントリオール、1,2,6-ヘキサントリオール、1,2,3-プロパントリオール、1,2,3-ベンゼントリオール、1,2,4-ベンゼントリオール、トリメチロールエタン、トリメチロールプロパン等が挙げられる。このようなイソシアネート化合物(V’)としては、接着性の効果がより優れるという理由から、ヘキサメチレンジイソシアネートとトリメチロールプロパンとの反応生成物、ヘキサメチレンジイソシアネートのビウレット体、及び、ヘキサメチレンジイソシアネートのイソシアヌレート体からなる群から選ばれる少なくとも1種であるのが好ましい。 Examples of the isocyanate compound (V ′) contained in the moisture-curable polyurethane composition include, in addition to the isocyanate compound (V), a reaction product of the above-mentioned polyisocyanate and triol; a biuret form of the polyisocyanate, an isocyanurate form And the like. These may be used alone or in combination of two or more. Here, the triol is not particularly limited as long as it has three hydroxy groups in one molecule. For example, 1,2,5-hexanetriol, 1,2,6-hexanetriol, Examples thereof include 2,3-propanetriol, 1,2,3-benzenetriol, 1,2,4-benzenetriol, trimethylolethane, and trimethylolpropane. As the isocyanate compound (V ′), a reaction product of hexamethylene diisocyanate and trimethylolpropane, a biuret of hexamethylene diisocyanate, and an isocyanate of hexamethylene diisocyanate are used because the adhesive effect is more excellent. It is preferably at least one member selected from the group consisting of a nullate form.
 上述したプレポリマーを含む混合物を作製する際には、下記プレポリマー生成工程を経ることが望ましい。 作 製 When preparing a mixture containing the above-described prepolymer, it is desirable to go through the following prepolymer generation step.
(プレポリマー生成工程)
 プレポリマー生成工程は、ウレタン組成物から、望ましくは、上述した混合工程および脱水工程を経たポリオール化合物(U)、樹脂成分(II)、及び、必要に応じて含まれる成分を含む予備混合物と、ポリイソシアネート化合物(V)とを混合することにより得られた樹脂組成物から、上記プレポリマーを得る工程である。
(Prepolymer generation step)
In the prepolymer production step, a pre-mixture containing the polyol compound (U), the resin component (II), and the components included as necessary is preferably obtained through the above-described mixing step and dehydration step from the urethane composition; This is a step of obtaining the above prepolymer from a resin composition obtained by mixing with the polyisocyanate compound (V).
 また、ポリオール化合物(U)、樹脂成分(II)、及び、必要に応じて含まれる成分を含む予備混合物とポリイソシアネート化合物(V)とを混合と同時にあるいは連続してプレポリマー生成を行ってもよい。プレポリマーの生成条件は、ウレタン組成物に含まれるポリオール化合物(U)、イソシアネート化合物(V)の種類などに応じて適宜設定できる。例えば、予備混合物とポリイソシアネート化合物(V)との混合時あるいは混合した後に、かかる混合物を撹拌条件下で、イソシアネート化合物(V)の融点以上の温度とすることが好ましい。また、プレポリマーの生成は、窒素、アルゴン等の不活性ガス雰囲気下または減圧下行われることが好ましい。 Alternatively, the prepolymer may be mixed with the polyol compound (U), the resin component (II), and a premix containing the components included as required and the polyisocyanate compound (V) simultaneously or continuously to form a prepolymer. Good. Conditions for forming the prepolymer can be appropriately set according to the types of the polyol compound (U) and the isocyanate compound (V) contained in the urethane composition. For example, during or after mixing the premix and the polyisocyanate compound (V), it is preferable that the temperature of the mixture be equal to or higher than the melting point of the isocyanate compound (V) under stirring conditions. Further, the production of the prepolymer is preferably carried out under an atmosphere of an inert gas such as nitrogen or argon or under reduced pressure.
 上記プレポリマー生成工程において、イソシアネート化合物(V)と、上記予備混合物とを混合した後に、プレポリマーの生成反応を促進する触媒を混合するのが好ましい。触媒の種類は特に限定されないが、金属触媒やアミン触媒等が好ましい。またこれら触媒を併用して用いてもよい。これにより、生成するプレポリマーの粘度を良好に維持できる。例えば、予備混合物に粉体成分が含まれる場合には、上記触媒が添加されることにより、プレポリマーの急激な生成反応が起きなくなり、これにより粘度を良好に維持できると考えられる。 (4) In the prepolymer production step, it is preferable to mix the isocyanate compound (V) with the premix, and then to mix a catalyst for promoting the prepolymer production reaction. The type of the catalyst is not particularly limited, but a metal catalyst, an amine catalyst and the like are preferable. These catalysts may be used in combination. Thereby, the viscosity of the produced prepolymer can be favorably maintained. For example, when the powder component is contained in the pre-mixture, it is considered that the addition of the above-mentioned catalyst does not cause a rapid reaction of forming the prepolymer, thereby maintaining a good viscosity.
 金属触媒としては、有機金属系触媒などが例示される。有機金属系触媒としては、例えば、ジメチル錫ジラウレート、ジブチル錫ジラウレート、ジオクチル錫ラウレート(DOTL)、ジオクチル錫ジラウレート、ジブチル錫ジアセテート、ビスマス系触媒(例えば、日東化成社製の無機ビスマス(ネオスタンU-600、U-660))等が挙げられる。 有機 Examples of the metal catalyst include organometallic catalysts. Examples of the organometallic catalyst include dimethyltin dilaurate, dibutyltin dilaurate, dioctyltin dilaurate (DOTL), dioctyltin dilaurate, dibutyltin diacetate, and a bismuth-based catalyst (for example, inorganic bismuth (Neostan U- 600, U-660)).
 アミン触媒としては、トリエチレンジアミン、ビス(ジメチルアミノエチル)エーテル、ジ(N,N-ジメチルアミノエチル)アミン等が挙げられる。 Examples of the amine catalyst include triethylenediamine, bis (dimethylaminoethyl) ether, di (N, N-dimethylaminoethyl) amine and the like.
 上記触媒を用いる場合、その配合量は、ウレタン組成物に含まれるポリオール化合物(U)およびポリイソシアネート化合物(V)との合計100質量部に対して、0.001~10質量部が好ましく、0.001~5質量部がより好ましい。 When the above catalyst is used, the amount of the catalyst is preferably 0.001 to 10 parts by mass with respect to 100 parts by mass of the total of the polyol compound (U) and the polyisocyanate compound (V) contained in the urethane composition. 0.001 to 5 parts by mass.
(湿気硬化型ポリウレタン組成物生成工程)
 湿気硬化型ポリウレタン組成物の生成工程は、上述したプレポリマーを含む混合物と1分子中に2個以上のイソシアネート基を有するイソシアネート化合物(V’)とを混合し、湿気硬化型ポリウレタン組成物、典型的には一液湿気硬化型ポリウレタン組成物を得る工程である。得られる湿気硬化型ポリウレタン組成物は、少なくとも、上記粉体、上記プレポリマー、及び、イソシアネート化合物(V’)を含む。
(Moisture-curable polyurethane composition forming step)
In the step of producing the moisture-curable polyurethane composition, the mixture containing the above-described prepolymer and an isocyanate compound (V ′) having two or more isocyanate groups in one molecule are mixed, and the moisture-curable polyurethane composition, typically Specifically, it is a step of obtaining a one-pack moisture-curable polyurethane composition. The obtained moisture-curable polyurethane composition contains at least the powder, the prepolymer, and the isocyanate compound (V ′).
 ここで、プレポリマーを含む混合物とイソシアネート化合物(V’)とを混合する方法は特に制限はなく、例えば、ウレタン組成物の混合工程で用いた混合装置と同様な装置で混合する方法が好適である。また、混合時の温度は、特に限定されないが、湿気硬化型ポリウレタン組成物の一成分として添加されるイソシアネート化合物(V’)の融点以上の温度で混合されるのが好ましい。混合時の雰囲気は特に制限はないが、窒素、アルゴン等の不活性ガス雰囲気下または減圧下で混合されるのが好ましい。 Here, the method of mixing the mixture containing the prepolymer and the isocyanate compound (V ′) is not particularly limited, and for example, a method of mixing with the same apparatus as the mixing apparatus used in the step of mixing the urethane composition is preferable. is there. The mixing temperature is not particularly limited, but it is preferable that the mixing be performed at a temperature equal to or higher than the melting point of the isocyanate compound (V ') added as a component of the moisture-curable polyurethane composition. The atmosphere at the time of mixing is not particularly limited, but the mixing is preferably performed under an inert gas atmosphere such as nitrogen or argon or under reduced pressure.
 また、上記湿気硬化型ポリウレタン組成物は、得られる湿気硬化型ポリウレタン組成物(典型的には一液湿気硬化型ポリウレタン組成物)の湿気硬化を誘導するために、硬化触媒が含まれていることが好ましい。これにより、得られる湿気硬化型ポリウレタン組成物の接着性がより優れる。 Further, the moisture-curable polyurethane composition contains a curing catalyst to induce moisture-curing of the obtained moisture-curable polyurethane composition (typically, a one-component moisture-curable polyurethane composition). Is preferred. Thereby, the adhesiveness of the obtained moisture-curable polyurethane composition is more excellent.
 上記硬化触媒としては、湿気硬化を誘導するものであれば特に限定されず、従来公知のものを用いることができる。硬化触媒としては、例えば、上記プレポリマー生成工程で用いられ得る触媒として例示した有機金属系触媒が挙げられる。 硬化 The curing catalyst is not particularly limited as long as it induces moisture curing, and a conventionally known curing catalyst can be used. As the curing catalyst, for example, the organometallic catalyst exemplified as the catalyst that can be used in the above-mentioned prepolymer production step can be mentioned.
 上記硬化触媒を用いる場合、その配合量は、ウレタン組成物に含まれるポリオール化合物(U)とイソシアネート化合物(V)および湿気硬化型ポリウレタン組成物に新たに添加されるイソシアネート化合物(V’)との合計100質量部に対して、0.001~10質量部が好ましく、0.001~5質量部がより好ましい。 When the above curing catalyst is used, the compounding amount thereof is determined by mixing the polyol compound (U) contained in the urethane composition with the isocyanate compound (V) and the isocyanate compound (V ′) newly added to the moisture-curable polyurethane composition. 0.001 to 10 parts by mass, preferably 0.001 to 5 parts by mass, based on 100 parts by mass in total.
<樹脂成分(II)>
 樹脂成分(II)は、芳香族ビニル化合物に由来する重合体ブロック(A)と、共役ジエン化合物に由来する重合体ブロック(B)とを有するブロック共重合体(IIa)、オレフィン系樹脂(IIb)、スチレン系樹脂(IIc)、共役ジエン重合体(IId)から選択される少なくとも1種である。
<Resin component (II)>
The resin component (II) includes a block copolymer (IIa) having a polymer block (A) derived from an aromatic vinyl compound and a polymer block (B) derived from a conjugated diene compound, and an olefin resin (IIb). ), Styrene resin (IIc), and conjugated diene polymer (IId).
(ブロック共重合体(IIa))
 樹脂成分(II)として用いられ得るブロック共重合体(IIa)は、芳香族ビニル化合物に由来する構造単位を含む重合体ブロック(A)と、共役ジエン化合物に由来する構造単位を含む重合体ブロック(B)とを有するブロック共重合体であり、好ましくは、ブロック共重合体の水素添加物である。本明細書において、ブロック共重合体の水素添加物を水添ブロック共重合体とも称することがある。
 好ましくは、芳香族ビニル化合物に由来する構造単位を70mol%超含有する重合体ブロック(A)と、共役ジエン化合物に由来する構造単位を30mol%以上含有する重合体ブロック(B)とを有するブロック共重合体である。
(Block copolymer (IIa))
The block copolymer (IIa) that can be used as the resin component (II) includes a polymer block (A) containing a structural unit derived from an aromatic vinyl compound and a polymer block containing a structural unit derived from a conjugated diene compound. (B), and preferably a hydrogenated product of the block copolymer. In the present specification, a hydrogenated product of a block copolymer may also be referred to as a hydrogenated block copolymer.
Preferably, a block having a polymer block (A) containing more than 70 mol% of a structural unit derived from an aromatic vinyl compound and a polymer block (B) containing 30 mol% or more of a structural unit derived from a conjugated diene compound. It is a copolymer.
 ブロック共重合体(IIa)における重合体ブロック(A)の含有量(複数の重合体ブロック(A)を有する場合はそれらの合計含有量)は、3質量%以上が好ましく、6質量%以上がより好ましく、10質量%以上がさらに好ましい。また、80質量%以下が好ましく、50質量%以下がより好ましく、35質量%以下がさらに好ましく、22質量%以下がよりさらに好ましく、18質量%以下が特に好ましく、16質量%以下が最も好ましい。例えば、好ましくは3~80質量%、より好ましくは6~22質量%、さらに好ましくは10~16質量%である。重合体ブロック(A)の含有量を3質量%以上とすることで、力学物性が高くなり、80質量%以下とすることで、成形性が高くなる。
 なお、ブロック共重合体における重合体ブロック(A)の含有量は、H-NMR測定により求めた値であり、より詳細には実施例に記載の方法に従って測定した値である。
The content of the polymer block (A) in the block copolymer (IIa) (when there are a plurality of polymer blocks (A), the total content thereof) is preferably 3% by mass or more, and more preferably 6% by mass or more. It is more preferably at least 10% by mass. Further, it is preferably 80% by mass or less, more preferably 50% by mass or less, still more preferably 35% by mass or less, even more preferably 22% by mass or less, particularly preferably 18% by mass or less, and most preferably 16% by mass or less. For example, the content is preferably 3 to 80% by mass, more preferably 6 to 22% by mass, and still more preferably 10 to 16% by mass. By setting the content of the polymer block (A) to 3% by mass or more, mechanical properties are improved, and by setting the content to 80% by mass or less, moldability is improved.
The content of the polymer block (A) in the block copolymer is a value determined by 1 H-NMR measurement, and more specifically, a value measured according to the method described in Examples.
(重合体ブロック(A))
 重合体ブロック(A)は、芳香族ビニル化合物に由来する構造単位(以下、「芳香族ビニル化合物単位」と略称することがある。)を例えば70mol%超含有し、機械物性の観点から、好ましくは80mol%以上、より好ましくは85mol%以上、さらに好ましくは90mol%以上、特に好ましくは95mol%以上であり、実質的に100mol%であってもよい。
(Polymer block (A))
The polymer block (A) contains, for example, more than 70 mol% of a structural unit derived from an aromatic vinyl compound (hereinafter, may be abbreviated as “aromatic vinyl compound unit”), and is preferably used from the viewpoint of mechanical properties. Is 80 mol% or more, more preferably 85 mol% or more, further preferably 90 mol% or more, particularly preferably 95 mol% or more, and may be substantially 100 mol%.
 前記芳香族ビニル化合物としては、例えばスチレン、o-メチルスチレン、m-メチルスチレン、p-メチルスチレン、α-メチルスチレン、β-メチルスチレン、2,6-ジメチルスチレン、2,4-ジメチルスチレン、α-メチル-o-メチルスチレン、α-メチル-m-メチルスチレン、α-メチル-p-メチルスチレン、β-メチル-o-メチルスチレン、β-メチル-m-メチルスチレン、β-メチル-p-メチルスチレン、2,4,6-トリメチルスチレン、α-メチル-2,6-ジメチルスチレン、α-メチル-2,4-ジメチルスチレン、β-メチル-2,6-ジメチルスチレン、β-メチル-2,4-ジメチルスチレン、o-クロロスチレン、m-クロロスチレン、p-クロロスチレン、2,6-ジクロロスチレン、2,4-ジクロロスチレン、α-クロロ-o-クロロスチレン、α-クロロ-m-クロロスチレン、α-クロロ-p-クロロスチレン、β-クロロ-o-クロロスチレン、β-クロロ-m-クロロスチレン、β-クロロ-p-クロロスチレン、2,4,6-トリクロロスチレン、α-クロロ-2,6-ジクロロスチレン、α-クロロ-2,4-ジクロロスチレン、β-クロロ-2,6-ジクロロスチレン、β-クロロ-2,4-ジクロロスチレン、o-t-ブチルスチレン、m-t-ブチルスチレン、p-t-ブチルスチレン、o-メトキシスチレン、m-メトキシスチレン、p-メトキシスチレン、o-クロロメチルスチレン、m-クロロメチルスチレン、p-クロロメチルスチレン、o-ブロモメチルスチレン、m-ブロモメチルスチレン、p-ブロモメチルスチレン、シリル基で置換されたスチレン誘導体、インデン、ビニルナフタレンなどが挙げられる。これらの芳香族ビニル化合物は1種単独で用いてもよく、2種以上用いてもよい。中でも、製造コストと物性バランスの観点から、スチレン、α-メチルスチレン、p-メチルスチレン、及びこれらの混合物が好ましく、スチレンがより好ましい。 Examples of the aromatic vinyl compound include styrene, o-methylstyrene, m-methylstyrene, p-methylstyrene, α-methylstyrene, β-methylstyrene, 2,6-dimethylstyrene, 2,4-dimethylstyrene, α-methyl-o-methylstyrene, α-methyl-m-methylstyrene, α-methyl-p-methylstyrene, β-methyl-o-methylstyrene, β-methyl-m-methylstyrene, β-methyl-p -Methylstyrene, 2,4,6-trimethylstyrene, α-methyl-2,6-dimethylstyrene, α-methyl-2,4-dimethylstyrene, β-methyl-2,6-dimethylstyrene, β-methyl- 2,4-dimethylstyrene, o-chlorostyrene, m-chlorostyrene, p-chlorostyrene, 2,6-dichlorostyrene, 2,4-di Lorostyrene, α-chloro-o-chlorostyrene, α-chloro-m-chlorostyrene, α-chloro-p-chlorostyrene, β-chloro-o-chlorostyrene, β-chloro-m-chlorostyrene, β-chloro -P-chlorostyrene, 2,4,6-trichlorostyrene, α-chloro-2,6-dichlorostyrene, α-chloro-2,4-dichlorostyrene, β-chloro-2,6-dichlorostyrene, β- Chloro-2,4-dichlorostyrene, ot-butylstyrene, mt-butylstyrene, pt-butylstyrene, o-methoxystyrene, m-methoxystyrene, p-methoxystyrene, o-chloromethylstyrene , M-chloromethylstyrene, p-chloromethylstyrene, o-bromomethylstyrene, m-bromomethylstyrene, p-bromomethyl Styrene, a styrene derivative substituted with a silyl group, indene, vinyl naphthalene, and the like. These aromatic vinyl compounds may be used alone or in combination of two or more. Among them, styrene, α-methylstyrene, p-methylstyrene, and a mixture thereof are preferable, and styrene is more preferable, from the viewpoint of the balance between the production cost and the physical properties.
 但し、本発明の目的及び効果の妨げにならない限り、重合体ブロック(A)は芳香族ビニル化合物以外の他の不飽和単量体に由来する構造単位(以下、「他の不飽和単量体単位」と略称することがある。)を30mol%未満の割合で含有していてもよい。該他の不飽和単量体としては、例えばブタジエン、イソプレン、2,3-ジメチルブタジエン、1,3-ペンタジエン、1,3-ヘキサジエン、イソブチレン、メタクリル酸メチル、メチルビニルエーテル、N-ビニルカルバゾール、β-ピネン、8,9-p-メンテン、ジペンテン、メチレンノルボルネン、2-メチレンテトラヒドロフランなどからなる群から選択される少なくとも1種が挙げられる。重合体ブロック(A)が該他の不飽和単量体単位を含有する場合の結合形態は特に制限はなく、ランダム、テーパー状のいずれでもよい。
 重合体ブロック(A)における前記他の不飽和単量体に由来する構造単位の含有量は、好ましくは10mol%以下、より好ましくは5mol%以下、さらに好ましくは0mol%である。
However, as long as the objects and effects of the present invention are not hindered, the polymer block (A) is a structural unit derived from an unsaturated monomer other than the aromatic vinyl compound (hereinafter referred to as “another unsaturated monomer”). May be abbreviated as "unit") at a ratio of less than 30 mol%. Examples of the other unsaturated monomers include butadiene, isoprene, 2,3-dimethylbutadiene, 1,3-pentadiene, 1,3-hexadiene, isobutylene, methyl methacrylate, methyl vinyl ether, N-vinyl carbazole, β And at least one selected from the group consisting of -pinene, 8,9-p-menthen, dipentene, methylenenorbornene, 2-methylenetetrahydrofuran and the like. When the polymer block (A) contains the other unsaturated monomer unit, the bonding form is not particularly limited, and may be random or tapered.
The content of the structural unit derived from the other unsaturated monomer in the polymer block (A) is preferably 10 mol% or less, more preferably 5 mol% or less, and further preferably 0 mol%.
 ブロック共重合体(IIa)は、前記重合体ブロック(A)を少なくとも1つ有していればよい。ブロック共重合体が重合体ブロック(A)を2つ以上有する場合には、それら重合体ブロック(A)は、同一であっても異なっていてもよい。なお、本明細書において「重合体ブロックが異なる」とは、重合体ブロックを構成するモノマー単位、重量平均分子量、立体規則性、及び複数のモノマー単位を有する場合には各モノマー単位の比率及び共重合の形態(ランダム、グラジェント、ブロック)のうち少なくとも1つが異なることを意味する。
 本実施形態においては、ブロック共重合体(IIa)は、前記重合体ブロック(A)を2つ有していることが好ましい。
The block copolymer (IIa) may have at least one of the polymer blocks (A). When the block copolymer has two or more polymer blocks (A), the polymer blocks (A) may be the same or different. In the present specification, “different polymer blocks” refers to the monomer units constituting the polymer block, the weight average molecular weight, the stereoregularity, and when there are a plurality of monomer units, the ratio of each monomer unit and the It means that at least one of the forms of polymerization (random, gradient, block) is different.
In the present embodiment, the block copolymer (IIa) preferably has two polymer blocks (A).
 ブロック共重合体(IIa)が有する前記重合体ブロック(A)の重量平均分子量(Mw)は、特に制限はないが、ブロック共重合体が有する前記重合体ブロック(A)のうち、少なくとも1つの重合体ブロック(A)の重量平均分子量が、好ましくは3,000~60,000、より好ましくは4,000~50,000である。ブロック共重合体が、前記範囲内の重量平均分子量である重合体ブロック(A)を少なくとも1つ有することにより、機械強度がより向上し、フィルム成形性にも優れる。 The weight average molecular weight (Mw) of the polymer block (A) included in the block copolymer (IIa) is not particularly limited, but at least one of the polymer blocks (A) included in the block copolymer. The weight average molecular weight of the polymer block (A) is preferably from 3,000 to 60,000, more preferably from 4,000 to 50,000. When the block copolymer has at least one polymer block (A) having a weight average molecular weight within the above range, the mechanical strength is further improved and the film formability is excellent.
 なお、本明細書及び特許請求の範囲に記載の「重量平均分子量」は全て、ゲル浸透クロマトグラフィー(GPC)測定によって求めた標準ポリスチレン換算の重量平均分子量であり、詳細な測定方法は実施例に記載の方法に従うことができる。ブロック共重合体が有する各重合体ブロック(A)の重量平均分子量は、製造工程において各重合体ブロックの重合が終了する都度、サンプリングした液を測定することで求めることができる。また、例えばA1-B-A2構造を有するトリブロック共重合体の場合は、最初の重合体ブロックA1及び重合体ブロックBの重量平均分子量を上記方法により求め、ブロック共重合体の重量平均分子量からそれらを引き算することにより、2番目の重合体ブロックA2の重量平均分子量を求めることができる。また、他の方法として、A1-B-A2構造を有するトリブロック共重合体の場合は、重合体ブロック(A)の合計の重量平均分子量は、ブロック共重合体の重量平均分子量とH-NMR測定で確認する重合体ブロック(A)の合計含有量から算出し、GPC測定によって、失活した最初の重合体ブロックA1の重量平均分子量を算出し、これを引き算することによって2番目の重合体ブロックA2の重量平均分子量を求めることもできる。 All the “weight average molecular weights” described in the present specification and the claims are weight average molecular weights in terms of standard polystyrene obtained by gel permeation chromatography (GPC) measurement. The method described can be followed. The weight average molecular weight of each polymer block (A) of the block copolymer can be determined by measuring a sampled liquid every time polymerization of each polymer block is completed in the production process. For example, in the case of a triblock copolymer having an A1-BA2 structure, the weight average molecular weights of the first polymer block A1 and the polymer block B are determined by the above method, and the weight average molecular weight of the block copolymer is By subtracting them, the weight average molecular weight of the second polymer block A2 can be determined. As another method, in the case of a triblock copolymer having an A1-BA2 structure, the total weight average molecular weight of the polymer block (A) is determined by dividing the weight average molecular weight of the block copolymer by 1 H- It is calculated from the total content of the polymer block (A) confirmed by NMR measurement, the weight average molecular weight of the first deactivated polymer block A1 is calculated by GPC measurement, and the second weight is calculated by subtracting this. The weight average molecular weight of the united block A2 can also be determined.
(重合体ブロック(B))
 重合体ブロック(B)は、共役ジエン化合物に由来する構造単位を、例えば30mol%以上、好ましくは50mol%以上、より好ましくは65mol%以上、さらに好ましくは80mol%以上含有する重合体ブロックである。重合体ブロック(B)の全てが共役ジエン化合物に由来する構造単位であってもよい。つまり、重合体ブロック(B)に含まれる共役ジエン化合物に由来する構造単位が100mol%とすることもできる。
 共役ジエン化合物がイソプレンを含有していることが好ましく、特に、イソプレンを20質量%以上含有することがより好ましく、40質量%以上含有することがさらに好ましく、さらには、70質量%以上含有していてもよいし、90質量%以上含有していてもよい。
(Polymer block (B))
The polymer block (B) is a polymer block containing, for example, 30 mol% or more, preferably 50 mol% or more, more preferably 65 mol% or more, and still more preferably 80 mol% or more, of a structural unit derived from a conjugated diene compound. All of the polymer blocks (B) may be structural units derived from a conjugated diene compound. That is, the structural unit derived from the conjugated diene compound contained in the polymer block (B) can be set to 100 mol%.
The conjugated diene compound preferably contains isoprene, more preferably contains 20% by mass or more, more preferably contains 40% by mass or more, and further more preferably contains 70% by mass or more. Or 90% by mass or more.
 重合体ブロック(B)は、イソプレン単独に由来する構造単位を30mol%以上含有していてもよいし、共役ジエン化合物2種以上に由来する構造単位を30mol%以上含有していてもよい。
 前記共役ジエン化合物としては、イソプレンの他に、ブタジエン、ヘキサジエン、2,3-ジメチル-1,3-ブタジエン、1,3-ペンタジエン、ミルセンなどを挙げることができる。前記共役ジエン化合物としては、イソプレン、イソプレンとブタジエンの混合物が好ましく、イソプレンがより好ましい。
 前記共役ジエン化合物がブタジエンとイソプレンの混合物である場合、それらの混合比率[イソプレン/ブタジエン](質量比)に特に制限はないが、好ましくは5/95~95/5、より好ましくは10/90~90/10、さらに好ましくは40/60~70/30、特に好ましくは45/55~65/35である。なお、該混合比率[イソプレン/ブタジエン]をモル比で示すと、好ましくは5/95~95/5、より好ましくは10/90~90/10、さらに好ましくは40/60~70/30、特に好ましくは45/55~55/45である。
The polymer block (B) may contain 30 mol% or more of a structural unit derived from isoprene alone, or may contain 30 mol% or more of a structural unit derived from two or more conjugated diene compounds.
Examples of the conjugated diene compound include butadiene, hexadiene, 2,3-dimethyl-1,3-butadiene, 1,3-pentadiene, and myrcene, in addition to isoprene. As the conjugated diene compound, isoprene, a mixture of isoprene and butadiene is preferable, and isoprene is more preferable.
When the conjugated diene compound is a mixture of butadiene and isoprene, their mixing ratio [isoprene / butadiene] (mass ratio) is not particularly limited, but is preferably 5/95 to 95/5, more preferably 10/90. 9090/10, more preferably 40/60 to 70/30, particularly preferably 45/55 to 65/35. When the mixing ratio [isoprene / butadiene] is represented by a molar ratio, it is preferably 5/95 to 95/5, more preferably 10/90 to 90/10, still more preferably 40/60 to 70/30, particularly preferably Preferably it is 45/55 to 55/45.
 また、前記共役ジエン化合物がブタジエンとイソプレンの混合物である場合、13C-NMRで測定される、ケミカルシフト値5~50ppmにあるピークの面積に対するケミカルシフト値24~25ppmにあるピークの面積の比率が、制振性の観点から、4%以下であることが好ましく、2%以下であることがより好ましく、1%以下がさらに好ましく、0.5%以下が最も好ましい。13C-NMRで測定される、ケミカルシフト値5~50ppmにあるピークが重合体ブロック(B)中の全構造単位に対応し、ケミカルシフト値24~25ppmにあるピークがイソプレンに由来する構造単位が1,4-結合で連続する部位に対応する。 When the conjugated diene compound is a mixture of butadiene and isoprene, the ratio of the area of the peak having a chemical shift value of 24 to 25 ppm to the area of the peak having a chemical shift value of 5 to 50 ppm measured by 13 C-NMR. However, from the viewpoint of vibration damping properties, it is preferably 4% or less, more preferably 2% or less, further preferably 1% or less, and most preferably 0.5% or less. The peak having a chemical shift value of 5 to 50 ppm, as measured by 13 C-NMR, corresponds to all structural units in the polymer block (B), and the peak having a chemical shift value of 24 to 25 ppm is a structural unit derived from isoprene. Corresponds to a site continuous by 1,4-bonds.
 換言すると、重合体ブロック(B)は、イソプレンに由来する構造単位(以下、「イソプレン単位」と略称することがある。)を30mol%以上含有していることも好ましく、イソプレン及びブタジエンの混合物に由来する構造単位(以下、「イソプレン及びブタジエンの混合物単位」と略称することがある。)を30mol%以上含有していることも好ましい。
 なお、重合体ブロック(B)が2種以上の構造単位を有している場合は、それらの結合形態はランダム、テーパー、完全交互、一部ブロック状、ブロック、又はそれらの2種以上の組み合わせからなっていることができる。
In other words, the polymer block (B) preferably contains 30 mol% or more of a structural unit derived from isoprene (hereinafter, may be abbreviated as “isoprene unit”), and the polymer block (B) is preferably a mixture of isoprene and butadiene. It is also preferable to contain 30 mol% or more of a structural unit derived from it (hereinafter, may be abbreviated as "mixture unit of isoprene and butadiene").
When the polymer block (B) has two or more types of structural units, the bonding forms thereof are random, tapered, completely alternating, partially block-shaped, block, or a combination of two or more types thereof. Can consist of
(重合体ブロック(B)のビニル結合量)
 重合体ブロック(B)を構成する構成単位が、イソプレン単位、イソプレン及びブタジエンの混合物単位のいずれかである場合、イソプレン及びブタジエンそれぞれの結合形態としては、ブタジエンの場合には1,2-結合、1,4-結合を、イソプレンの場合には1,2-結合、3,4-結合、1,4-結合をとることができる。
 ブロック共重合体(IIa)においては、重合体ブロック(B)中の3,4-結合単位及び1,2-結合単位の含有量(つまりビニル結合量)の合計が、好ましくは50mol%以上、より好ましくは60mol%以上、さらに好ましくは65mol%以上、よりさらに好ましくは70mol%以上である。また、特に制限されるものではないが、重合体ブロック(B)中のビニル結合量の上限値は、90mol%であってもよいし、88mol%であってもよいし、85mol%であってもよい。ここで、ビニル結合量は、実施例に記載の方法に従って、H-NMR測定によって算出した値である。
 重合体ブロック(B)のビニル結合量を高めることで、マトリックス樹脂成分(I)との相溶性が高まる傾向を示すため、樹脂成分(II)を樹脂組成物中に分散させるのに有利になる。
(Vinyl bond amount of polymer block (B))
When the structural unit constituting the polymer block (B) is any one of an isoprene unit, a mixture unit of isoprene and butadiene, the bonding form of each of isoprene and butadiene is 1,2-bond in the case of butadiene, In the case of isoprene, 1,4-bond can be 1,2-bond, 3,4-bond, or 1,4-bond.
In the block copolymer (IIa), the total content of the 3,4-linkage units and 1,2-linkage units (that is, the amount of vinyl linkages) in the polymer block (B) is preferably at least 50 mol%, It is more preferably at least 60 mol%, further preferably at least 65 mol%, still more preferably at least 70 mol%. Although not particularly limited, the upper limit of the vinyl bond amount in the polymer block (B) may be 90 mol%, 88 mol%, or 85 mol%. Is also good. Here, the vinyl bond amount is a value calculated by 1 H-NMR measurement according to the method described in Examples.
Increasing the vinyl bond amount of the polymer block (B) tends to increase compatibility with the matrix resin component (I), which is advantageous for dispersing the resin component (II) in the resin composition. .
 また、ブロック共重合体が有する前記重合体ブロック(B)の合計の重量平均分子量は、制振性などの観点から、水素添加前の状態で、好ましくは15,000~800,000であり、より好ましくは20,000~400,000であり、さらに好ましくは20,000~300,000、特に好ましくは30,000~300,000、最も好ましくは40,000~300,000である。 Further, the total weight average molecular weight of the polymer block (B) of the block copolymer is preferably 15,000 to 800,000 before hydrogenation, from the viewpoint of vibration damping properties and the like, It is more preferably from 20,000 to 400,000, further preferably from 20,000 to 300,000, particularly preferably from 30,000 to 300,000, and most preferably from 40,000 to 300,000.
 なお、重合体ブロック(B)は、本発明の目的及び効果の妨げにならない限り、前記共役ジエン化合物以外の他の重合性の単量体に由来する構造単位を含有していてもよい。この場合、重合体ブロック(B)において、前記共役ジエン化合物以外の他の重合性の単量体に由来する構造単位の含有量は、好ましくは70mol%以下、より好ましくは50mol%以下、さらに好ましくは35mol%以下、特に好ましくは20mol%以下である。共役ジエン化合物以外の他の重合性の単量体に由来する構造単位の含有量の下限値に特に制限はないが、0mol%であってもよいし、5mol%であってもよいし、10mol%であってもよい。
 該他の重合性の単量体としては、例えばスチレン、α-メチルスチレン、o-メチルスチレン、m-メチルスチレン、p-メチルスチレン、p-t-ブチルスチレン、2,4-ジメチルスチレン、ビニルナフタレン及びビニルアントラセンなどの芳香族ビニル化合物、並びにメタクリル酸メチル、メチルビニルエーテル、N-ビニルカルバゾール、β-ピネン、8,9-p-メンテン、ジペンテン、メチレンノルボルネン、2-メチレンテトラヒドロフラン、1,3-シクロペンタジエン、1,3-シクロヘキサジエン、1,3-シクロヘプタジエン、1,3-シクロオクタジエンなどからなる群から選択される少なくとも1種の化合物が好ましく挙げられる。中でも、スチレン、α-メチルスチレン、p-メチルスチレンが好ましく、スチレンがより好ましい。
 重合体ブロック(B)が、共役ジエン化合物以外の他の重合性の単量体に由来する構造単位を含有する場合、その具体的な組み合わせとしては、好ましくは、イソプレンとスチレンである。
 重合体ブロック(B)が、共役ジエン化合物以外の他の重合性の単量体に由来する構造単位を含有する場合、その結合形態は特に制限はなく、ランダム、テーパー状のいずれでもよいが、ランダムが好ましい。
The polymer block (B) may contain a structural unit derived from a polymerizable monomer other than the conjugated diene compound, as long as the object and effects of the present invention are not hindered. In this case, in the polymer block (B), the content of the structural unit derived from a polymerizable monomer other than the conjugated diene compound is preferably 70 mol% or less, more preferably 50 mol% or less, and still more preferably. Is at most 35 mol%, particularly preferably at most 20 mol%. The lower limit of the content of the structural unit derived from another polymerizable monomer other than the conjugated diene compound is not particularly limited, but may be 0 mol%, 5 mol%, or 10 mol%. %.
Examples of the other polymerizable monomer include styrene, α-methylstyrene, o-methylstyrene, m-methylstyrene, p-methylstyrene, pt-butylstyrene, 2,4-dimethylstyrene, vinyl Aromatic vinyl compounds such as naphthalene and vinylanthracene, and methyl methacrylate, methyl vinyl ether, N-vinylcarbazole, β-pinene, 8,9-p-mentene, dipentene, methylenenorbornene, 2-methylenetetrahydrofuran, 1,3- Preferable examples include at least one compound selected from the group consisting of cyclopentadiene, 1,3-cyclohexadiene, 1,3-cycloheptadiene, 1,3-cyclooctadiene, and the like. Among them, styrene, α-methylstyrene and p-methylstyrene are preferred, and styrene is more preferred.
When the polymer block (B) contains a structural unit derived from a polymerizable monomer other than the conjugated diene compound, a specific combination thereof is preferably isoprene and styrene.
When the polymer block (B) contains a structural unit derived from a polymerizable monomer other than the conjugated diene compound, the bonding form is not particularly limited and may be random or tapered. Random is preferred.
 ブロック共重合体は、上記重合体ブロック(B)を少なくとも1つ有していればよい。ブロック共重合体が重合体ブロック(B)を2つ以上有する場合には、それら重合体ブロック(B)は、同一であっても異なっていてもよい。
 本発明では、ブロック共重合体は、上記重合体ブロック(B)を1つだけ有することが好ましい。
The block copolymer only needs to have at least one polymer block (B). When the block copolymer has two or more polymer blocks (B), the polymer blocks (B) may be the same or different.
In the present invention, the block copolymer preferably has only one polymer block (B).
 ブロック共重合体(IIa)における重合体ブロック(B)の含有量(複数の重合体ブロック(B)を有する場合はそれらの合計含有量)に特に制限はないが、好ましくは20~97質量%、より好ましくは78~94質量%、さらに好ましくは84~90質量%である。重合体ブロック(B)の含有量を20質量%以上とすることで、成形性が高くなり、97質量%以下とすることで、力学強度が高くなる。 The content of the polymer block (B) in the block copolymer (IIa) (the total content thereof when having a plurality of polymer blocks (B)) is not particularly limited, but is preferably 20 to 97% by mass. , More preferably 78 to 94% by mass, and even more preferably 84 to 90% by mass. By setting the content of the polymer block (B) to 20% by mass or more, the moldability is increased, and by setting the content to 97% by mass or less, the mechanical strength is increased.
(重合体ブロック(A)と重合体ブロック(B)の結合様式)
 ブロック共重合体は、重合体ブロック(A)と重合体ブロック(B)とが結合している限りは、その結合形式は限定されず、直鎖状、分岐状、放射状、又はこれらの2つ以上が組合わさった結合様式のいずれでもよい。中でも、重合体ブロック(A)と重合体ブロック(B)の結合形式は直鎖状であることが好ましく、その例としては重合体ブロック(A)をAで、また重合体ブロック(B)をBで表したときに、A-Bで示されるジブロック共重合体、A-B-A又はB-A-Bで示されるトリブロック共重合体、A-B-A-Bで示されるテトラブロック共重合体、A-B-A-B-A又はB-A-B-A-Bで示されるペンタブロック共重合体、(A-B)nX型共重合体(Xはカップリング剤残基を表し、nは3以上の整数を表す)などを挙げることができる。中でも、直鎖状のトリブロック共重合体、又はジブロック共重合体が好ましく、A-B-A型のトリブロック共重合体が、柔軟性、製造の容易性などの観点から好ましく用いられる。
 ここで、本明細書においては、同種の重合体ブロックが二官能のカップリング剤などを介して直線状に結合している場合、結合している重合体ブロック全体は一つの重合体ブロックとして取り扱われる。これに従い、上記例示も含め、本来、厳密にはY-X-Y(Xはカップリング残基を表す)と表記されるべき重合体ブロックは、特に単独の重合体ブロックYと区別する必要がある場合を除き、全体としてYと表示される。本明細書においては、カップリング剤残基を含むこの種の重合体ブロックを上記のように取り扱うので、例えば、カップリング剤残基を含み、厳密にはA-B-X-B-A(Xはカップリング剤残基を表す)と表記されるべきブロック共重合体はA-B-Aと表記され、トリブロック共重合体の一例として取り扱われる。
(Binding mode of polymer block (A) and polymer block (B))
The type of the block copolymer is not limited as long as the polymer block (A) and the polymer block (B) are bonded, and may be linear, branched, radial, or a combination of these two types. Any combination of the above combinations may be used. Among them, the bonding form of the polymer block (A) and the polymer block (B) is preferably linear, and as an example, the polymer block (A) is A and the polymer block (B) is When represented by B, a diblock copolymer represented by AB, a triblock copolymer represented by ABA or BAB, and a tetrablock copolymer represented by ABAB A block copolymer, a pentablock copolymer represented by ABABA or BABAB, an (AB) nX-type copolymer (X is a residue of the coupling agent) Represents a group, and n represents an integer of 3 or more). Among them, a linear triblock copolymer or a diblock copolymer is preferable, and an ABA triblock copolymer is preferably used from the viewpoint of flexibility, ease of production, and the like.
Here, in the present specification, when polymer blocks of the same type are linearly bonded via a bifunctional coupling agent or the like, the entirety of the bonded polymer blocks is treated as one polymer block. It is. Accordingly, the polymer block which should be strictly described as YXY (X represents a coupling residue), including the above examples, needs to be particularly distinguished from the single polymer block Y. Except for a certain case, Y is displayed as a whole. In the present specification, such a polymer block containing a coupling agent residue is handled as described above, and therefore, for example, it contains a coupling agent residue, and strictly speaking, ABXBA ( X represents a residue of a coupling agent), and the block copolymer is described as ABA, and is treated as an example of a triblock copolymer.
 ブロック共重合体(IIa)は、水素添加されていなくても構わないが、水素添加物であることが好ましい。そして、ブロック共重合体(IIa)における重合体ブロック(B)は、ブロック共重合体(IIa)における重合体ブロック(B)が有する炭素-炭素二重結合の全モル数に対して、好ましくは10mol%以上、より好ましくは50mol%以上、さらに好ましくは70mol%以上、よりさらに好ましくは85mol%以上水素添加されている。
 重合体ブロック(B)が少なくとも10mol%水素添加されていると、耐熱性及び耐候性を向上させやすくなる。なお、該値を水素添加率(水添率)と称することがある。水素添加率の上限値に特に制限はないが、上限値は99mol%であってもよく、97mol%であってもよく、95mol%であってもよく、93mol%であってもよい。
 上記の水素添加率は、重合体ブロック(B)中の共役ジエン化合物由来の構造単位中の炭素-炭素二重結合の含有量を、水素添加後のH-NMR測定によって求めた値であり、より詳細には実施例に記載の方法に従って測定した値である。
 なお、重合体ブロック(B)の水添率は、例えば、水素添加を行う際に使用する触媒の使用量を変化させることで調整できる。したがって、水素添加時の触媒使用量を調整することで水添率を上記の範囲することができる。
The block copolymer (IIa) may not be hydrogenated, but is preferably a hydrogenated product. The polymer block (B) in the block copolymer (IIa) is preferably based on the total number of moles of the carbon-carbon double bonds of the polymer block (B) in the block copolymer (IIa). The hydrogenation is 10 mol% or more, more preferably 50 mol% or more, further preferably 70 mol% or more, and still more preferably 85 mol% or more.
When the polymer block (B) is hydrogenated by at least 10 mol%, heat resistance and weather resistance are easily improved. The value may be referred to as a hydrogenation rate (hydrogenation rate). The upper limit of the hydrogenation rate is not particularly limited, but the upper limit may be 99 mol%, may be 97 mol%, may be 95 mol%, may be 93 mol%.
The above hydrogenation rate is a value obtained by measuring the content of carbon-carbon double bonds in the structural unit derived from the conjugated diene compound in the polymer block (B) by 1 H-NMR measurement after hydrogenation. More specifically, it is a value measured according to the method described in Examples.
The hydrogenation rate of the polymer block (B) can be adjusted by, for example, changing the amount of a catalyst used for hydrogenation. Therefore, the hydrogenation rate can be adjusted to the above range by adjusting the amount of the catalyst used during hydrogenation.
(水添ブロック共重合体の重量平均分子量(Mw))
 水添ブロック共重合体のゲルパーミエーションクロマトグラフィーによる標準ポリスチレン換算で求めた重量平均分子量(Mw)は、好ましくは20,000~800,000、より好ましくは30,000~500,000、さらに好ましくは30,000~400,000、特に好ましくは40,000~350,000、最も好ましくは50,000~300,000である。ブロック共重合体の重量平均分子量が20,000以上であれば、耐熱性が高くなり、800,000以下であれば、成形性が良好となる。
(Weight average molecular weight (Mw) of hydrogenated block copolymer)
The weight average molecular weight (Mw) of the hydrogenated block copolymer determined by gel permeation chromatography in terms of standard polystyrene is preferably from 20,000 to 800,000, more preferably from 30,000 to 500,000, and still more preferably. Is from 30,000 to 400,000, particularly preferably from 40,000 to 350,000, most preferably from 50,000 to 300,000. When the weight average molecular weight of the block copolymer is 20,000 or more, heat resistance increases, and when it is 800,000 or less, moldability becomes good.
 ブロック共重合体(IIa)は、本発明の目的及び効果を損なわない限り、分子鎖中及び/又は分子末端に、カルボキシル基、水酸基、酸無水物基、アミノ基、エポキシ基などの官能基を、1種又は2種以上を有していてもよく、また官能基を有さないものであってもよい。 The block copolymer (IIa) may have a functional group such as a carboxyl group, a hydroxyl group, an acid anhydride group, an amino group, or an epoxy group in the molecular chain and / or at the molecular terminal, as long as the objects and effects of the present invention are not impaired. It may have one kind or two or more kinds, and may have no functional group.
(ブロック共重合体(IIa)の製造方法)
 ブロック共重合体(IIa)は、例えば、溶液重合法、乳化重合法又は固相重合法などにより製造することができる。中でも溶液重合法が好ましく、例えば、アニオン重合、カチオン重合などのイオン重合法、ラジカル重合法などの公知の方法を適用できる。中でも、アニオン重合法が好ましい。アニオン重合法では、溶媒、アニオン重合開始剤、及び必要に応じてルイス塩基の存在下、芳香族ビニル化合物と、共役ジエン化合物及びイソブチレンからなる群から選択される少なくとも1種を逐次添加して、ブロック共重合体を得、必要に応じてカップリング剤を添加して反応させる。さらに、ブロック共重合体を水素添加することにより、水添ブロック共重合体を得ることができる。
(Method for producing block copolymer (IIa))
The block copolymer (IIa) can be produced by, for example, a solution polymerization method, an emulsion polymerization method, or a solid phase polymerization method. Among them, a solution polymerization method is preferable, and for example, known methods such as an ionic polymerization method such as anionic polymerization and cationic polymerization, and a radical polymerization method can be applied. Among them, the anionic polymerization method is preferable. In the anionic polymerization method, in the presence of a solvent, an anionic polymerization initiator, and, if necessary, a Lewis base, an aromatic vinyl compound and at least one selected from the group consisting of a conjugated diene compound and isobutylene are sequentially added, A block copolymer is obtained, and a coupling agent is added and reacted as needed. Furthermore, a hydrogenated block copolymer can be obtained by hydrogenating the block copolymer.
 上記方法においてアニオン重合の重合開始剤として使用し得る有機リチウム化合物としては、例えばメチルリチウム、エチルリチウム、n-ブチルリチウム、sec-ブチルリチウム、tert-ブチルリチウム、ペンチルリチウムなどが挙げられる。また、重合開始剤として使用し得るジリチウム化合物としては、例えばナフタレンジリチウム、ジリチオヘキシルベンゼンなどが挙げられる。
 前記カップリング剤としては、例えばジクロロメタン、ジブロモメタン、ジクロロエタン、ジブロモエタン、ジブロモベンゼン、安息香酸フェニルなどが挙げられる。
 これらの重合開始剤及びカップリング剤の使用量は、目的とするブロック共重合体の所望とする重量平均分子量により適宜決定される。通常は、アルキルリチウム化合物、ジリチウム化合物などの開始剤は、重合に用いる芳香族ビニル化合物及び共役ジエン化合物などの単量体の合計100質量部あたり0.01~0.2質量部の割合で用いられるのが好ましく、カップリング剤を使用する場合は、前記単量体の合計100質量部あたり0.001~0.8質量部の割合で用いられるのが好ましい。
Examples of the organolithium compound that can be used as a polymerization initiator for anionic polymerization in the above method include methyllithium, ethyllithium, n-butyllithium, sec-butyllithium, tert-butyllithium, pentyllithium, and the like. Examples of the dilithium compound that can be used as the polymerization initiator include naphthalenedilithium, dilithiohexylbenzene, and the like.
Examples of the coupling agent include dichloromethane, dibromomethane, dichloroethane, dibromoethane, dibromobenzene, and phenyl benzoate.
The amounts of these polymerization initiators and coupling agents used are appropriately determined according to the desired weight average molecular weight of the target block copolymer. Usually, an initiator such as an alkyl lithium compound or a dilithium compound is used in a ratio of 0.01 to 0.2 parts by mass per 100 parts by mass of the total of monomers such as an aromatic vinyl compound and a conjugated diene compound used for polymerization. When a coupling agent is used, it is preferably used in a proportion of 0.001 to 0.8 parts by mass per 100 parts by mass of the total of the monomers.
 溶媒としては、アニオン重合反応に悪影響を及ぼさなければ特に制限はなく、例えば、シクロヘキサン、メチルシクロヘキサン、n-ヘキサン、n-ペンタンなどの脂肪族炭化水素;ベンゼン、トルエン、キシレンなどの芳香族炭化水素などが挙げられる。また、重合反応は、通常0~100℃、好ましくは10~70℃の温度で、0.5~50時間、好ましくは1~30時間行う。 The solvent is not particularly limited as long as it does not adversely affect the anionic polymerization reaction. Examples thereof include aliphatic hydrocarbons such as cyclohexane, methylcyclohexane, n-hexane, and n-pentane; and aromatic hydrocarbons such as benzene, toluene, and xylene. And the like. Further, the polymerization reaction is carried out at a temperature of usually 0 to 100 ° C., preferably 10 to 70 ° C., for 0.5 to 50 hours, preferably 1 to 30 hours.
 また、重合の際に共触媒(ビニル化剤)としてルイス塩基を添加することにより、重合体ブロック(B)の3,4-結合及び1,2-結合の含有量(ビニル結合量)を高めることができるが、本実施形態では、当該ルイス塩基として2,2-ジ(2-テトラヒドロフリル)プロパン[DTHFP]を用いることが好ましい。該DTHFPを用いることによって、共役ジエン化合物としてイソプレンを含有しながらも、温和な条件でビニル結合量と水素添加率とをともに高くすることができ、機械物性に優れた、ブロック共重合体の水素添加物を得やすくなる。 Also, by adding a Lewis base as a cocatalyst (vinylating agent) during the polymerization, the content (vinyl bond amount) of 3,4-bond and 1,2-bond of the polymer block (B) is increased. However, in the present embodiment, it is preferable to use 2,2-di (2-tetrahydrofuryl) propane [DTHFP] as the Lewis base. By using the DTHFP, it is possible to increase both the vinyl bond amount and the hydrogenation rate under mild conditions while containing isoprene as a conjugated diene compound, and to obtain a block copolymer having excellent mechanical properties. It becomes easier to obtain additives.
 従来、ブロック共重合体の水素添加物のビニル結合量を高めるためには、通常、ビニル化剤としてルイス塩基が用いられる。該ルイス塩基としては、テトラヒドロフラン(THF)などのエーテル類、N,N,N’,N’-テトラメチルエチレンジアミン(TMEDA)などのアミン類などが利用されていた(特許文献2の段落[0028]参照)。
 ところで、芳香族ビニル化合物に由来する構造単位を含有する重合体ブロック(A)と、共役ジエン化合物に由来する構造単位を含有する重合体ブロック(B)とを有するブロック共重合体の水素添加物において、例えば重合体ブロック(B)がブタジエンのみからなる場合は、その立体障壁の低さから従来の方法でも高ビニル結合量と高水素添加率とを両立させることは比較的容易であった。
 しかし、実際に用いられる温度条件での制振性を高めるという観点からは、重合体ブロック(B)がイソプレンを含有することが有効であるが、イソプレンを含有する場合は、その立体障壁の高さからビニル結合量と水素添加率を両方高くすることは困難であった。
 また例えば、国際公開第2015/156334号の製造例7のように、ビニル結合量と水素添加率が両方とも高い例も見られるが、同文献においてはビニル化剤としてTMEDAが用いられているところ、TMEDAが水素添加触媒を失活させるため、水素添加触媒を多量に用いる必要があり、この場合、原因は定かではないが、ビニル結合量と水素添加率が数値上高くても、実際に用いられる温度条件での制振性を高めることが困難であった。
 また、上記のように水素添加触媒を多量に用いた場合には、重合体ブロック(A)のベンゼン環が水素添加される核水添が起こり、制振材として求められる機械物性が得られないという問題が生じることが判明した。
 本発明者らは、ビニル化剤としてDTHFPを用いることで、イソプレンを含むブロック共重合体であっても、水素添加剤を多量に用いない温和な条件で高いビニル結合量と水素添加率を両立できることを見出した。温和な条件で高いビニル結合量と水素添加率を両立することによって、水素添加率が高く、かつ、実際に用いられる温度条件での制振性が高いブロック共重合体を得ることが可能である。
Conventionally, in order to increase the amount of vinyl bonds in the hydrogenated product of the block copolymer, a Lewis base is usually used as a vinylating agent. As the Lewis base, ethers such as tetrahydrofuran (THF) and amines such as N, N, N ', N'-tetramethylethylenediamine (TMEDA) have been used (paragraph [0028] of Patent Document 2). reference).
Incidentally, a hydrogenated product of a block copolymer having a polymer block (A) containing a structural unit derived from an aromatic vinyl compound and a polymer block (B) containing a structural unit derived from a conjugated diene compound For example, when the polymer block (B) is composed of only butadiene, it is relatively easy to achieve both a high vinyl bond amount and a high hydrogenation rate even by a conventional method because of its low steric barrier.
However, from the viewpoint of enhancing the vibration damping properties under the actually used temperature conditions, it is effective that the polymer block (B) contains isoprene. However, when isoprene is contained, the polymer block (B) has a high steric barrier. Therefore, it was difficult to increase both the vinyl bond amount and the hydrogenation rate.
Further, for example, as in Production Example 7 of WO 2015/156334, an example in which both the amount of vinyl bonds and the hydrogenation rate are high is also found, but in this document, TMEDA is used as a vinylating agent. Since TMEDA deactivates the hydrogenation catalyst, it is necessary to use a large amount of the hydrogenation catalyst. In this case, although the cause is not clear, even if the vinyl bond amount and the hydrogenation rate are numerically high, the hydrogenation catalyst is actually used. It has been difficult to enhance the vibration damping properties under the temperature conditions required.
Further, when a large amount of the hydrogenation catalyst is used as described above, nucleus hydrogenation in which the benzene ring of the polymer block (A) is hydrogenated occurs, and mechanical properties required as a vibration damping material cannot be obtained. It turned out that the problem arises.
The present inventors have found that by using DTHFP as a vinylating agent, even a block copolymer containing isoprene can achieve both a high vinyl bond amount and a hydrogenation rate under mild conditions without using a large amount of a hydrogenating agent. I found what I could do. By balancing high vinyl bond content and hydrogenation rate under mild conditions, it is possible to obtain a block copolymer with a high hydrogenation rate and high vibration damping properties under the temperature conditions actually used. .
 本発明の効果を損なわない限りにおいて、前記DTHFPとともに、その他のルイス塩基を併用してもよい。その他のルイス塩基としては、例えば、ジメチルエーテル、ジエチルエーテル、テトラヒドロフランなどのエーテル類、エチレングリコールジメチルエーテル、ジエチレングリコールジメチルエーテルなどのグリコールエーテル類、トリエチルアミン、N,N,N’,N’-テトラメチレンジアミン、N-メチルモルホリンなどのアミン類などが挙げられる。
 DTHFPの添加量は、重合体ブロック(B)を構成するイソプレン単位及び/又はブタジエン単位のビニル結合量をどの程度に制御するかにより決定される。そのため、ルイス塩基の添加量としては、前記好ましいビニル結合量の条件を満たす観点から、重合開始剤として用いられるアルキルリチウム化合物又はジリチウム化合物に含有されるリチウム1グラム原子あたり、通常0.1~1,000モル、好ましくは0.3~100モル、最も好ましくは0.5~10モルの範囲内で用いるのが好ましい。
Other Lewis bases may be used together with the DTHFP as long as the effects of the present invention are not impaired. Other Lewis bases include, for example, ethers such as dimethyl ether, diethyl ether, and tetrahydrofuran; glycol ethers such as ethylene glycol dimethyl ether and diethylene glycol dimethyl ether; triethylamine; N, N, N ', N'-tetramethylenediamine; Examples include amines such as methylmorpholine.
The amount of DTHFP to be added is determined by how much the amount of vinyl bond of the isoprene unit and / or butadiene unit constituting the polymer block (B) is controlled. Therefore, the amount of the Lewis base to be added is usually 0.1 to 1 per gram atom of lithium contained in the alkyllithium compound or the dilithium compound used as the polymerization initiator, from the viewpoint of satisfying the preferable condition of the vinyl bond amount. It is preferably used in the range of 2,000 mol, preferably 0.3 to 100 mol, most preferably 0.5 to 10 mol.
 上記した方法により重合を行った後、アルコール類、カルボン酸類、水などの活性水素化合物を添加して重合反応を停止させる。その後、不活性有機溶媒中で水添触媒の存在下に水素添加反応(水添反応)を行うことで、水素添加された共重合体を得ることができる。水素添加反応は、水素圧力を0.1~20MPa、好ましくは0.5~15MPa、より好ましくは0.5~5MPa、反応温度を20~250℃、好ましくは50~180℃、より好ましくは70~180℃、反応時間を通常0.1~100時間、好ましくは1~50時間として実施することができる。
 水添触媒としては、前記芳香族ビニル化合物の核水添を抑制しながら重合体ブロック(B)の水素添加反応を行うという観点から、例えば、ラネーニッケル;遷移金属化合物とアルキルアルミニウム化合物、アルキルリチウム化合物などとの組み合わせからなるチーグラー系触媒;メタロセン系触媒などが挙げられる。前記同様の観点から、中でも、チーグラー系触媒が好ましく、遷移金属化合物とアルキルアルミニウム化合物との組み合わせからなるチーグラー系触媒がより好ましく、ニッケル化合物とアルキルアルミニウム化合物との組み合わせからなるチーグラー系触媒(Al/Ni系チーグラー触媒)がさらに好ましい。
After the polymerization is carried out by the above-described method, an active hydrogen compound such as alcohols, carboxylic acids, and water is added to stop the polymerization reaction. Thereafter, a hydrogenated copolymer (hydrogenation reaction) is performed in an inert organic solvent in the presence of a hydrogenation catalyst, whereby a hydrogenated copolymer can be obtained. In the hydrogenation reaction, the hydrogen pressure is 0.1 to 20 MPa, preferably 0.5 to 15 MPa, more preferably 0.5 to 5 MPa, and the reaction temperature is 20 to 250 ° C., preferably 50 to 180 ° C., and more preferably 70 to 180 ° C. The reaction can be carried out at a temperature of up to 180 ° C and a reaction time of usually 0.1 to 100 hours, preferably 1 to 50 hours.
Examples of the hydrogenation catalyst include Raney nickel; a transition metal compound, an alkylaluminum compound, and an alkyllithium compound, from the viewpoint of performing the hydrogenation reaction of the polymer block (B) while suppressing the nuclear hydrogenation of the aromatic vinyl compound. Ziegler catalysts; metallocene catalysts; and the like. From the same viewpoint as above, among them, Ziegler catalysts are preferred, Ziegler catalysts composed of a combination of a transition metal compound and an alkylaluminum compound are more preferred, and Ziegler catalysts composed of a combination of a nickel compound and an alkylaluminum compound (Al / Ni-based Ziegler catalyst) is more preferred.
 このようにして得られた水添ブロック共重合体は、重合反応液をメタノールなどに注ぐことにより凝固させた後、加熱又は減圧乾燥させるか、重合反応液をスチームとともに熱水中に注ぎ、溶媒を共沸させて除去するいわゆるスチームストリッピングを施した後、加熱又は減圧乾燥することにより取得することができる。 The hydrogenated block copolymer obtained in this manner is coagulated by pouring the polymerization reaction solution into methanol or the like, and then heating or drying under reduced pressure, or pouring the polymerization reaction solution together with steam into hot water to form a solvent. Can be obtained by subjecting to so-called steam stripping to remove by azeotropic distillation, followed by heating or drying under reduced pressure.
 こうして得られる水添ブロック共重合体は、特に制限されるわけではないが、使用したルイス塩基が重合体内に残存している傾向にある。つまり、上記水添ブロック共重合体は、2,2-ジ(2-テトラヒドロフリル)プロパン[DTHFP]を含有していることがあり、通常、DTHFPを5質量ppm以上含有している傾向があり、DTHFPを10質量ppm以上含有していることもある。DTHFPの含有量の上限値は、2,000質量ppmであってもよく、1,000質量ppmであってもよく、500質量ppmであってもよく、250質量ppmであってもよく、50質量ppmであってもよく、30質量ppmであってもよい。
 一方、上記製造方法に従うと、水添ブロック共重合体は、DTHFP以外のルイス塩基(ビニル化剤)、具体的に挙げると、ジメチルエーテル、ジエチルエーテル、テトラヒドロフラン(THF)、エチレングリコールジメチルエーテル、ジエチレングリコールジメチルエーテル、トリエチルアミン、N,N,N’,N’-テトラメチレンジアミン(TMEDA)及びN-メチルモルホリンをいずれも含有しないか、又はこれらの含有量がいずれも1ppm以下となる傾向にある。
 水添ブロック共重合体中の上記ルイス塩基の含有量は、特に制限されるわけではないが、ガスクロマトグラフによって求めることができる。
The hydrogenated block copolymer thus obtained is not particularly limited, but the used Lewis base tends to remain in the polymer. That is, the hydrogenated block copolymer may contain 2,2-di (2-tetrahydrofuryl) propane [DTHFP] in some cases, and usually has a tendency to contain DTHFP in an amount of 5 ppm by mass or more. , DTHFP may be contained in an amount of 10 ppm by mass or more. The upper limit of the content of DTHFP may be 2,000 mass ppm, may be 1,000 mass ppm, may be 500 mass ppm, may be 250 mass ppm, and may be 50 mass ppm. It may be ppm by mass or 30 ppm by mass.
On the other hand, according to the above production method, the hydrogenated block copolymer is a Lewis base (vinylating agent) other than DTHFP, specifically, dimethyl ether, diethyl ether, tetrahydrofuran (THF), ethylene glycol dimethyl ether, diethylene glycol dimethyl ether, Triethylamine, N, N, N ', N'-tetramethylenediamine (TMEDA) and N-methylmorpholine are not contained, or their contents tend to be 1 ppm or less.
The content of the Lewis base in the hydrogenated block copolymer is not particularly limited, but can be determined by gas chromatography.
(オレフィン系樹脂(IIb))
 樹脂成分(II)として使用できるオレフィン系樹脂(IIb)としては、オレフィンを重合させて得られるポリオレフィン系樹脂、オレフィン系重合体などが挙げられる。
 ポリオレフィン系樹脂を構成するオレフィンとしては、例えば、エチレン、プロピレン、1-ブテン、1-ペンテン、1-ヘキセン、1-オクテン、4-メチル-1-ペンテン、シクロヘキセン等が挙げられる。ポリオレフィン系樹脂を構成するオレフィンは、1種単独であってもよいし、2種以上であってもよい。特にポリオレフィン系樹脂の1つであるポリプロピレン系樹脂としては、例えば、ホモポリプロピレン、プロピレン-エチレンランダム共重合体、プロピレン-エチレンブロック共重合体、プロピレン-ブテンランダム共重合体、プロピレン-エチレン-ブテンランダム共重合体、プロピレン-ペンテンランダム共重合体、プロピレン-ヘキセンランダム共重合体、プロピレン-オクテンランダム共重合体、プロピレン-エチレン-ペンテンランダム共重合体、プロピレン-エチレン-ヘキセンランダム共重合体等が挙げられる。また、これらのポリプロピレン系樹脂に、アクリル酸、メタクリル酸、クロトン酸等の不飽和モノカルボン酸;マレイン酸、シトラコン酸、イタコン酸等の不飽和ジカルボン酸;それら不飽和モノカルボン酸または不飽和ジカルボン酸のエステル、アミドまたはイミド;無水マレイン酸、無水シトラコン酸、無水イタコン酸等の不飽和ジカルボン酸無水物などの変性剤をグラフト共重合した変性ポリプロピレン系樹脂を用いることもできる。
(Olefin-based resin (IIb))
Examples of the olefin resin (IIb) that can be used as the resin component (II) include a polyolefin resin obtained by polymerizing an olefin, and an olefin polymer.
Examples of the olefin constituting the polyolefin resin include ethylene, propylene, 1-butene, 1-pentene, 1-hexene, 1-octene, 4-methyl-1-pentene, cyclohexene and the like. The olefin constituting the polyolefin-based resin may be used alone or in combination of two or more. In particular, examples of the polypropylene resin which is one of the polyolefin resins include homopolypropylene, propylene-ethylene random copolymer, propylene-ethylene block copolymer, propylene-butene random copolymer, and propylene-ethylene-butene random copolymer. Copolymer, propylene-pentene random copolymer, propylene-hexene random copolymer, propylene-octene random copolymer, propylene-ethylene-pentene random copolymer, propylene-ethylene-hexene random copolymer, and the like. Can be Further, these polypropylene resins may be added to unsaturated monocarboxylic acids such as acrylic acid, methacrylic acid, crotonic acid, etc .; unsaturated dicarboxylic acids such as maleic acid, citraconic acid and itaconic acid; those unsaturated monocarboxylic acids or unsaturated dicarboxylic acids. Modified polypropylene resins obtained by graft copolymerizing a modifier such as an acid ester, amide or imide; an unsaturated dicarboxylic anhydride such as maleic anhydride, citraconic anhydride, and itaconic anhydride can also be used.
 オレフィン系重合体としては、エチレン-プロピレン-ジエン共重合体(EPDM)ゴム、エチレン-酢酸ビニル共重合体(EVA)およびポリエチレン系樹脂からなる群から選択される少なくとも1種のオレフィン系重合体である。
 エチレン-プロピレン-ジエン共重合体ゴムとの原料として使用可能なジエンは、1,4-ヘキサジエン、1,6-オクタジエン、2-メチル-1,5-ヘキサジエン、6-メチル-1,6-ヘプタジエン、7-メチル-1,6-オクタジエンなどの鎖状非共役ジエン;シクロヘキサジエン、ジクロロペンタジエン、メチルテトラヒドロインデン、5-ビニルノルボルネン、5-エチリデン-2-ノルボルネン、5-メチレン-2-ノルボルネン、5-イソプロピリデン-2-ノルボルネン、6-クロロメチル-5-イソプロペニル-2-ノルボルネンなどの環状非共役ジエン;2,3-ジイソプロピリデン-5-ノルボルネン、2-エチリデン-3-イソプロピリデン-5-ノルボルネン、2-プロペニル-2,2-ノルボルナジエン、1,3,7-オクタトリエン、1,4,9-デカトリエンなどのトリエンなどが挙げられる。
The olefin polymer is at least one olefin polymer selected from the group consisting of ethylene-propylene-diene copolymer (EPDM) rubber, ethylene-vinyl acetate copolymer (EVA) and polyethylene resin. is there.
Dienes usable as raw materials for the ethylene-propylene-diene copolymer rubber include 1,4-hexadiene, 1,6-octadiene, 2-methyl-1,5-hexadiene, and 6-methyl-1,6-heptadiene. Chain non-conjugated dienes such as, 7-methyl-1,6-octadiene; cyclohexadiene, dichloropentadiene, methyltetrahydroindene, 5-vinylnorbornene, 5-ethylidene-2-norbornene, 5-methylene-2-norbornene, 5 Cyclic non-conjugated dienes such as isopropylidene-2-norbornene and 6-chloromethyl-5-isopropylenyl-2-norbornene; 2,3-diisopropylidene-5-norbornene, 2-ethylidene-3-isopropylidene-5 -Norbornene, 2-propenyl-2,2-norbornadiene, 1 3,7-octatriene, 1,4,9- decatriene like triene such as.
(スチレン系樹脂(IIc))
 樹脂成分(II)として使用できるスチレン系樹脂(IIc)としては、ポリα-メチルスチレン、α-メチルスチレン/スチレン共重合体、スチレン系モノマー共重合体、スチレン系モノマー/芳香族系モノマー共重合体等を挙げることができる。
(Styrene resin (IIc))
Examples of the styrene resin (IIc) that can be used as the resin component (II) include poly-α-methylstyrene, α-methylstyrene / styrene copolymer, styrene monomer copolymer, styrene monomer / aromatic monomer copolymer. Coalescence and the like.
(共役ジエン重合体(IId))
 樹脂成分(II)として使用できる共役ジエン重合体(IId)としては、共役ジエン単量体の単独重合体もしくは共重合体、又は、共役ジエン単量体と、芳香族ビニル化合物を除く他の単量体との共重合体が挙げられる。前記他の単量体としては、前記共役ジエン単量体と共重合可能な単量体が挙げられる。
 共役ジエン単量体としては、1,3-ブタジエン、イソプレン、2,3-ジメチル-1,3-ブタジエン、2-フェニル-1,3-ブタジエン、1,3-ペンタジエン、2-メチル-1,3-ペンタジエン、1,3-ヘキサジエン、4,5-ジエチル-1,3-オクタジエン、3-ブチル-1,3-オクタジエン等が挙げられる。これらの単量体は、1種が単独で用いられてもよいし、2種以上が組み合わされて用いられてもよい。これらのなかでも、1,3-ブタジエンおよびイソプレンが好ましく、イソプレンがより好ましい。
 共役ジエン単量体と共重合可能な単量体としては、特に限定されないが、例えば、エチレン、プロピレン、1-ブテン等の鎖状オレフィン単量体;シクロペンテン、2-ノルボルネン等の環状オレフィン単量体;1,5-ヘキサジエン、1,6-ヘプタジエン、1,7-オクタジエン、ジシクロペンタジエン、5-エチリデン-2-ノルボルネン等の非共役ジエン単量体;(メタ)アクリル酸メチル、(メタ)アクリル酸エチル等の(メタ)アクリル酸エステル;(メタ)アクリロニトリル、(メタ)アクリルアミド等が挙げられる。これらの単量体は、1種が単独で用いられてもよいし、2種以上が組み合わされて用いられてもよい。
 共役ジエン重合体としては、天然ゴム(NR)、スチレン-ブタジエンゴム(SBR)、ポリイソプレンゴム(IR)、ポリブタジエンゴム(BR)、イソプレン-イソブチレン共重合ゴム(IIR)、エチレン-プロピレン-ジエン系共重合ゴム、ブタジエン-イソプレン共重合体ゴム(BIR)等を挙げることができる。なかでも、ポリイソプレンゴム及びポリブタジエンゴムが好ましく、ポリイソプレンゴムがより好ましい。
(Conjugated diene polymer (IId))
As the conjugated diene polymer (IId) that can be used as the resin component (II), a homopolymer or copolymer of a conjugated diene monomer, or a conjugated diene monomer and another monomer other than an aromatic vinyl compound may be used. And a copolymer with a monomer. Examples of the other monomer include a monomer copolymerizable with the conjugated diene monomer.
Examples of the conjugated diene monomer include 1,3-butadiene, isoprene, 2,3-dimethyl-1,3-butadiene, 2-phenyl-1,3-butadiene, 1,3-pentadiene, 2-methyl-1, Examples thereof include 3-pentadiene, 1,3-hexadiene, 4,5-diethyl-1,3-octadiene, and 3-butyl-1,3-octadiene. One of these monomers may be used alone, or two or more thereof may be used in combination. Of these, 1,3-butadiene and isoprene are preferred, and isoprene is more preferred.
The monomer copolymerizable with the conjugated diene monomer is not particularly limited, but includes, for example, a chain olefin monomer such as ethylene, propylene and 1-butene; and a cyclic olefin monomer such as cyclopentene and 2-norbornene. Non-conjugated diene monomers such as 1,5-hexadiene, 1,6-heptadiene, 1,7-octadiene, dicyclopentadiene, 5-ethylidene-2-norbornene; methyl (meth) acrylate, (meth) (Meth) acrylic acid esters such as ethyl acrylate; (meth) acrylonitrile, (meth) acrylamide and the like. One of these monomers may be used alone, or two or more thereof may be used in combination.
Examples of the conjugated diene polymer include natural rubber (NR), styrene-butadiene rubber (SBR), polyisoprene rubber (IR), polybutadiene rubber (BR), isoprene-isobutylene copolymer rubber (IIR), and ethylene-propylene-diene-based polymer. Copolymer rubber, butadiene-isoprene copolymer rubber (BIR) and the like can be mentioned. Among them, polyisoprene rubber and polybutadiene rubber are preferred, and polyisoprene rubber is more preferred.
(樹脂成分(II)の物性)
 本発明の樹脂組成物に含まれる樹脂成分(II)は、下記の条件(1)を満たすことが好ましい。樹脂成分(II)が、ブロック共重合体(IIa)及びオレフィン系樹脂(IIb)のうち少なくとも一方を含むものである場合に、条件(1)を満たすことがより好ましい。
条件(1):パルスNMR装置を用いて測定した、緩和時間xに対する緩和強度yで表される緩和曲線に対して、下記式[I]のフィッティングを行って決定した係数A1~A3及び各成分のスピン-スピン緩和時間τ1~τ3を用いて下記式[II]で求められる、運動性パラメータMの値が0.01~0.25秒である。
y=A1 * exp(-0.5 * (x/τ1)2)+A2 * exp(-0.5 * (x/τ2)2)+A3 * exp(-x/τ3)  [I]
M=(τ2 * A2+τ3 * A3)/(A2+A3)  [II]
 上記緩和曲線は、比較的運動性の低い1成分と、比較的運動性の高い2成分の計3成分に由来する緩和曲線が重なったものであり、上記緩和曲線を式[I]を用いて最小二乗法でフィッティングすることで、それぞれの成分の割合および運動性を求めることができる。
 式[I]の第一項は比較的運動性の低い成分の緩和に由来し、第二項及び第三項は比較的運動性の高い成分の緩和に由来する。また、Aは比較的運動性の低い成分の割合、A及びAは比較的運動性の高い成分の割合に対応する。
(Physical properties of resin component (II))
The resin component (II) contained in the resin composition of the present invention preferably satisfies the following condition (1). When the resin component (II) contains at least one of the block copolymer (IIa) and the olefin-based resin (IIb), it is more preferable that the condition (1) is satisfied.
Condition (1): Coefficients A 1 to A 3 determined by performing fitting of the following equation [I] on a relaxation curve represented by relaxation strength y with respect to relaxation time x, measured using a pulse NMR apparatus, and The value of the motility parameter M obtained by the following equation [II] using the spin-spin relaxation times τ 1 to τ 3 of each component is 0.01 to 0.25 seconds.
y = A 1 * exp (−0.5 * (x / τ 1 ) 2 ) + A 2 * exp (−0.5 * (x / τ 2 ) 2 ) + A 3 * exp (−x / τ 3 ) [I]
M = (τ 2 * A 2 + τ 3 * A 3 ) / (A 2 + A 3 ) [II]
The above-mentioned relaxation curve is obtained by overlapping a relaxation curve derived from a total of three components, one component having relatively low mobility and two components having relatively high mobility. The fitting and the motility of each component can be obtained by fitting by the least square method.
The first term of the formula [I] is derived from the relaxation of the component having a relatively low mobility, and the second and third terms are derived from the relaxation of the component having a relatively high mobility. A 1 corresponds to the ratio of the component having relatively low mobility, and A 2 and A 3 correspond to the ratio of the component having relatively high mobility.
 樹脂成分(II)がブロック共重合体である場合を例にとると、運動性パラメータMは、パルスNMRによってブロック共重合体の挙動を測定したときの、重合体ブロック(B)に由来する緩和の傾きを示しており、主として共役ジエンに由来する運動性を表す指標である。パルスNMRを用いて、所定周波数のパルスをブロック共重合体に与えると、緩和の開始直後に、比較的運動性の低い成分である重合体ブロック(A)に由来する緩和が生じ、その後、比較的運動性の高い成分である重合体ブロック(B)に由来する緩和が現れる。この現象を利用して、重合体ブロック(B)の物性を測定することができ、上記手順で運動性パラメータMを求めることで、重合体ブロック(B)に由来する緩和の挙動を評価することができる。
 樹脂成分(II)がオレフィン系樹脂(IIb)である場合も条件(1)が当てはまる。この場合、運動性パラメータはオレフィン系樹脂の非晶性成分に由来する運動性を表す。
Taking the case where the resin component (II) is a block copolymer as an example, the motility parameter M is the relaxation derived from the polymer block (B) when the behavior of the block copolymer is measured by pulsed NMR. And is an index mainly representing the motility derived from the conjugated diene. When a pulse of a predetermined frequency is applied to the block copolymer using pulse NMR, the relaxation originating from the polymer block (A), which is a component having a relatively low mobility, occurs immediately after the start of the relaxation. Relaxation due to the polymer block (B), which is a component having high motility, appears. By utilizing this phenomenon, it is possible to measure the physical properties of the polymer block (B), and to evaluate the relaxation behavior derived from the polymer block (B) by obtaining the motility parameter M by the above procedure. Can be.
The condition (1) also applies when the resin component (II) is an olefin-based resin (IIb). In this case, the mobility parameter indicates the mobility derived from the amorphous component of the olefin resin.
 運動性パラメータMが適切な値を取ることで、実際に使用される温度領域での振動に対して効果的に緩和が生じ、制振性を高めることができる。また、運動性パラメータMが適切な値を取ることで、樹脂成分(II)のガラス転移温度Tgを比較的大きくすることができるため、後述する凍結粉砕によるパウダー化を容易にすることもできる。さらに、ガラス転移温度Tgが大きくなる結果、樹脂組成物に分散させた場合に、樹脂組成物に対して高い強度を付与することができ、接着力を維持しつつ、靭性を高められる。
 運動性パラメータMは、より好ましくは0.01~0.10秒、さらに好ましくは0.02~0.08秒、よりさらに好ましくは0.02~0.06秒である。
When the motility parameter M takes an appropriate value, vibration is effectively reduced in a temperature range in which the motility parameter is actually used, and the damping property can be improved. In addition, since the glass transition temperature Tg of the resin component (II) can be relatively increased by setting the mobility parameter M to an appropriate value, powdering by freeze-pulverization described below can be easily performed. Furthermore, as a result of increasing the glass transition temperature Tg, when dispersed in a resin composition, high strength can be imparted to the resin composition, and toughness can be increased while maintaining adhesive strength.
The motility parameter M is more preferably 0.01 to 0.10 seconds, further preferably 0.02 to 0.08 seconds, and still more preferably 0.02 to 0.06 seconds.
 条件(1)を満たすための一手法としては、樹脂成分(II)がブロック共重合体を含むものである場合は、例えば、共役ジエン化合物に由来する構造単位を構成するためのモノマーとしてイソプレンを用いることができる。樹脂成分(II)がオレフィン系樹脂を含むものである場合は、例えば、モノマーとして4-メチル-1-ペンテンを用いることができる。 One method for satisfying the condition (1) is to use isoprene as a monomer for constituting a structural unit derived from a conjugated diene compound when the resin component (II) contains a block copolymer. Can be. When the resin component (II) contains an olefin-based resin, for example, 4-methyl-1-pentene can be used as a monomer.
 なお、樹脂成分(II)が、スチレン系樹脂(IIc)、共役ジエン重合体(IId)を含むものである場合においては、式[I]において、Aを0とした下記式[I’]によりフィッティングを行うことができ、この場合下記条件(1’)を満たすことが好ましい。
条件(1’):パルスNMR装置を用いて測定した、緩和時間xに対する緩和強度yで表される緩和曲線に対して、下記式[I’]のフィッティングを行って決定した係数A2、A3及び各成分のスピン-スピン緩和時間τ2、τ3を用いて下記式[II]で求められる、運動性パラメータMの値が0.01~0.25秒である。
y=A2 * exp(-0.5 * (x/τ2)2)+A3 * exp(-x/τ3)  [I’]
M=(τ2 * A2+τ3 * A3)/(A2+A3)  [II]
 上記緩和曲線を式[I’]を用いて最小二乗法でフィッティングすることで、樹脂成分(IIc)及び(IId)の運動性を求めることができる。
Incidentally, fitting the resin component (II) is, in the case is intended to include styrene-based resin (IIc), the conjugated diene polymer (IId) is, by the formula [I], the A 1 0 and the following formula [I '] Can be performed, and in this case, it is preferable to satisfy the following condition (1 ′).
Condition (1 ′): Coefficients A 2 and A 2 determined by performing fitting of the following equation [I ′] on a relaxation curve represented by a relaxation intensity y with respect to a relaxation time x measured using a pulse NMR apparatus. The value of the motility parameter M obtained by the following equation [II] using the spin-spin relaxation times τ 2 and τ 3 of 3 and each component is 0.01 to 0.25 seconds.
y = A 2 * exp (−0.5 * (x / τ 2 ) 2 ) + A 3 * exp (−x / τ 3 ) [I ′]
M = (τ 2 * A 2 + τ 3 * A 3 ) / (A 2 + A 3 ) [II]
The mobility of the resin components (IIc) and (IId) can be obtained by fitting the above relaxation curve by the least squares method using the formula [I ′].
(条件(2))
 樹脂成分(II)は、下記条件(2)を満たすことが好ましい。
条件(2):JIS K7244-10(2005年)に準拠して、歪み量0.1%、周波数1Hz、測定温度-70~+100℃、昇温速度3℃/分の条件で測定した60℃のせん断貯蔵弾性率G’が0.10~0.58MPaであり、損失正接tanδのピーク温度が-5~+40℃である。
 tanδを測定する際の試験片は、プレス成形装置「NF-50T」(株式会社神藤金属工業所製)によって温度230℃、圧力10MPaで3分間加圧することで、厚み1.0mmのシートを作製し、該シートを直径8mmの円板形状に切り出したものを試験片とする。
 なお、tanδの測定装置に特に制限はないが、回転式レオメータ「ARES G2」(TAインスツルメント社製)などを使用し、直径8mmの平面プレートに前記試験片を挟んで試験することができる。
 条件(2)を満たすことにより、樹脂組成物が適度な硬さを有し、かつ、高い制振性を示す温度範囲が実際に使用される温度領域をカバーしやすくなる。
 条件(2)を満たすための一手法としては、例えば、重合体ブロック(B)のビニル結合量を高める方法を取ることができる。
(Condition (2))
The resin component (II) preferably satisfies the following condition (2).
Condition (2): 60 ° C. measured based on JIS K7244-10 (2005) under the conditions of a distortion amount of 0.1%, a frequency of 1 Hz, a measurement temperature of −70 to + 100 ° C., and a heating rate of 3 ° C./min. Has a shear storage modulus G ′ of 0.10 to 0.58 MPa and a peak temperature of loss tangent tan δ of −5 to + 40 ° C.
A test piece for measuring tan δ was pressed at a temperature of 230 ° C. and a pressure of 10 MPa for 3 minutes using a press molding apparatus “NF-50T” (manufactured by Shinto Metal Industry Co., Ltd.) to produce a sheet having a thickness of 1.0 mm. The sheet was cut into a disk shape having a diameter of 8 mm to obtain a test piece.
Although there is no particular limitation on the tan δ measuring device, the test can be carried out by using a rotary rheometer “ARES G2” (manufactured by TA Instruments) or the like and sandwiching the test piece between flat plates having a diameter of 8 mm. .
By satisfying the condition (2), the temperature range in which the resin composition has appropriate hardness and high vibration damping properties can easily cover the temperature range in which the resin composition is actually used.
As a method for satisfying the condition (2), for example, a method of increasing the vinyl bond amount of the polymer block (B) can be used.
 tanδのピーク位置での温度は、より好ましくは-5~+35℃、さらに好ましくは0~+35℃、よりさらに好ましくは+5~+35℃、特に好ましくは+5~+33℃、最も好ましくは+10~+33℃である。
 上記60℃のせん断貯蔵弾性率G’は、より好ましくは0.1~1.8MPa、さらに好ましくは0.2~1.0MPa、特に好ましくは0.3~0.55MPaである。
 樹脂成分(II)のtanδのピーク位置での温度を上記範囲にするには、ブロック共重合体の重合体ブロック(B)のビニル結合量を高めればよい。また、樹脂成分(II)の60℃のせん断貯蔵弾性率G’を上記範囲にするには、ブロック共重合対の重合体ブロック(A)の含有量を調整する方法や、重合体ブロック(B)のビニル結合量を高める方法を採ることができる。
The temperature at the peak position of tan δ is more preferably −5 to + 35 ° C., further preferably 0 to + 35 ° C., still more preferably +5 to + 35 ° C., particularly preferably +5 to + 33 ° C., and most preferably +10 to + 33 ° C. It is.
The shear storage modulus G ′ at 60 ° C. is more preferably 0.1 to 1.8 MPa, still more preferably 0.2 to 1.0 MPa, and particularly preferably 0.3 to 0.55 MPa.
The temperature at the tan δ peak position of the resin component (II) can be set in the above range by increasing the vinyl bond amount of the polymer block (B) of the block copolymer. Further, in order to set the shear storage modulus G ′ of the resin component (II) at 60 ° C. within the above range, a method of adjusting the content of the polymer block (A) of the block copolymer or the polymer block (B) )), A method of increasing the vinyl bond amount can be adopted.
 樹脂成分(II)は、ガラス転移温度Tgが0℃以上であるか、又は、結晶性樹脂であることが好ましい。これらのいずれかの条件を満たすことで、凍結粉砕を行いやすくなり、樹脂成分(II)を所望の粒径に調整しやすくなる。 The resin component (II) preferably has a glass transition temperature Tg of 0 ° C. or higher, or is a crystalline resin. By satisfying any one of these conditions, freezing and pulverization can be easily performed, and the resin component (II) can be easily adjusted to a desired particle size.
(樹脂成分(II)全体)
 樹脂成分(II)は、好ましくは樹脂組成物への添加前の状態がクラム状、ペレット状、マイクロペレット状、又は、パウダー状の固体である。より好ましくは、マイクロペレット状又はパウダー状の粉砕物である。特に好ましくはパウダー状の凍結粉砕物である。
 樹脂組成物への添加前のパウダー状の樹脂成分(II)の50%体積平均径は、好ましくは0.01から1.0mmであり、より好ましくは0.03~0.5mmであり、さらに好ましくは0.05~0.3mmである。パウダー状の樹脂成分(II)の50%体積平均径が0.01mm以上であるとパウダーの製造が容易になり、0.5mm以下であると樹脂組成物の機械強度が高くなる。
 パウダー状の樹脂成分(II)の50%体積平均径は、Malvern社製マスターサイザー3000を用いて水中にパウダーを分散させたサンプルを用いて、湿式のレーザー回折によって測定することができる。
 パウダー状の樹脂成分(II)の50%体積平均径は、粉砕条件(処理時間、処理速度等)の調整、及び、篩いのメッシュサイズの選択等により、上記範囲とすることができる。
 樹脂成分(II)がクラム状、ペレット状、又は、マイクロペレット状である場合、直径が好ましくは0.1から5mmであり、より好ましくは0.3から2mmであり、さらに好ましくは0.5から1mmである。
(Whole resin component (II))
The resin component (II) is preferably a crumb, pellet, micropellet, or powder solid before being added to the resin composition. More preferably, it is a pulverized product in the form of micropellets or powder. Particularly preferred is a powder-like frozen and pulverized product.
The 50% volume average diameter of the powdery resin component (II) before addition to the resin composition is preferably 0.01 to 1.0 mm, more preferably 0.03 to 0.5 mm, and Preferably it is 0.05 to 0.3 mm. When the 50% volume average diameter of the powdery resin component (II) is 0.01 mm or more, powder production becomes easy, and when it is 0.5 mm or less, the mechanical strength of the resin composition increases.
The 50% volume average diameter of the powdery resin component (II) can be measured by wet laser diffraction using a sample in which powder is dispersed in water using a Mastersizer 3000 manufactured by Malvern.
The 50% volume average diameter of the powdery resin component (II) can be set in the above range by adjusting the pulverizing conditions (processing time, processing speed, etc.), selecting the mesh size of the sieve, and the like.
When the resin component (II) is in the form of crumbs, pellets, or micropellets, the diameter is preferably 0.1 to 5 mm, more preferably 0.3 to 2 mm, and still more preferably 0.5 to 2 mm. From 1 mm.
<その他の成分>
(粉体成分)
 マトリックス樹脂成分(I)として用いられるウレタン組成物は、充填剤を含有する粉体成分を含んでいてもよい。上記粉体成分は、充填剤を含有する成分であれば特に限定されず、該充填剤のみ含有するものであってもよく、該充填剤以外に、例えば、老化防止剤、酸化防止剤、顔料(染料)、揺変性付与剤、紫外線吸収剤、難燃剤、界面活性剤(レベリング剤を含む)、分散剤、脱水剤、接着付与剤、帯電防止剤などの各種添加剤等を含有するものであってもよい。
<Other ingredients>
(Powder component)
The urethane composition used as the matrix resin component (I) may include a powder component containing a filler. The powder component is not particularly limited as long as it is a component containing a filler, and may contain only the filler. In addition to the filler, for example, an antioxidant, an antioxidant, and a pigment (Dye), thixotropic agent, ultraviolet absorber, flame retardant, surfactant (including leveling agent), dispersant, dehydrating agent, adhesion imparting agent, various additives such as antistatic agent, etc. There may be.
 上記充填剤としては、各種形状の有機又は無機の充填剤などが挙げられる。充填材としては、例えば、ヒュームドシリカ、焼成シリカ、沈降シリカ、粉砕シリカ、溶融シリカ;ケイソウ土;酸化鉄、酸化亜鉛、酸化チタン、酸化バリウム、酸化マグネシウム;炭酸カルシウム、重質炭酸カルシウム、沈降性炭酸カルシウム(軽質炭酸カルシウム)、コロイダル炭酸カルシウム、炭酸マグネシウム、炭酸亜鉛;ろう石クレー、カオリンクレー、焼成クレー;カーボンブラック;これらの脂肪酸処理物、樹脂酸処理物、ウレタン化合物処理物、脂肪酸エステル処理物;などが挙げられる。
 これら充填材の中でも、ウレタン組成物の粘度及びチクソ性を調製しやすくなることから、カーボンブラック及び重質炭酸カルシウムが好ましい。
また、ウレタン組成物中にカーボンブラックが充填剤として含まれた場合には、物性(例えば、硬度、伸びなど)に優れたウレタン硬化物が得られる。ウレタン組成物中に重質炭酸カルシウムが充填剤として含まれた場合には、深部硬化性に優れるウレタン組成物が得られる。また、ペレットカーボンブラックを充填剤として用いた場合には、作業性が良好となるのみならず、ポリオール化合物(U)と混合した場合に脱水がより促進する点で好ましい。
Examples of the filler include organic or inorganic fillers of various shapes. As the filler, for example, fumed silica, calcined silica, precipitated silica, ground silica, fused silica; diatomaceous earth; iron oxide, zinc oxide, titanium oxide, barium oxide, magnesium oxide; calcium carbonate, heavy calcium carbonate, sedimentation Calcium carbonate (light calcium carbonate), colloidal calcium carbonate, magnesium carbonate, zinc carbonate; limestone clay, kaolin clay, calcined clay; carbon black; these fatty acid-treated products, resin acid-treated products, urethane compound-treated products, fatty acid esters Treated products; and the like.
Among these fillers, carbon black and heavy calcium carbonate are preferable because the viscosity and thixotropy of the urethane composition are easily adjusted.
When carbon black is included as a filler in the urethane composition, a cured urethane product having excellent physical properties (eg, hardness, elongation, etc.) can be obtained. When heavy calcium carbonate is included as a filler in the urethane composition, a urethane composition having excellent deep curability can be obtained. Further, the use of pellet carbon black as a filler is preferable in that not only workability is improved, but also when dehydration is further promoted when mixed with the polyol compound (U).
 上記老化防止剤としては、例えば、ヒンダードフェノール系老化防止剤などが挙げられる。 Examples of the antioxidants include hindered phenolic antioxidants.
 上記酸化防止剤としては、例えば、ブチルヒドロキシトルエン、ブチルヒドロキシアニソールなどが挙げられる。 Examples of the antioxidant include butylhydroxytoluene and butylhydroxyanisole.
 上記顔料としては、例えば、酸化チタン、酸化亜鉛、群青、ベンガラ、リトポン、鉛、カドミウム、鉄、コバルト、アルミニウム、塩酸塩、硫酸塩、カーボンブラックなどの無機顔料;アゾ顔料、フタロシアニン顔料、キナクリドン顔料、キナクリドンキノン顔料、ジオキサジン顔料、アントラピリミジン顔料、アンサンスロン顔料、インダンスロン顔料、フラバンスロン顔料、ペリレン顔料、ペリノン顔料、ジケトピロロピロール顔料、キノナフタロン顔料、アントラキノン顔料、チオインジゴ顔料、ベンズイミダゾロン顔料、イソインドリン顔料などの有機顔料;などが挙げられる。 Examples of the above pigments include inorganic pigments such as titanium oxide, zinc oxide, ultramarine blue, red iron oxide, lithopone, lead, cadmium, iron, cobalt, aluminum, hydrochloride, sulfate, and carbon black; azo pigments, phthalocyanine pigments, and quinacridone pigments , Quinacridonequinone pigments, dioxazine pigments, anthrapyrimidine pigments, anthanthrone pigments, indanthrone pigments, flavanthrone pigments, perylene pigments, perinone pigments, diketopyrrolopyrrole pigments, quinonaphthalone pigments, anthraquinone pigments, thioindigo pigments, benzimidazolone pigments And organic pigments such as isoindoline pigments.
 上記揺変性付与剤としては、例えば、エアロジル(日本エアロジル社製)、ディスパロン(楠本化成社製)などが挙げられる。 Examples of the thixotropic agent include Aerosil (manufactured by Nippon Aerosil Co., Ltd.) and Dispalon (manufactured by Kusumoto Kasei Co., Ltd.).
 上記接着付与剤としては、例えば、テルペン樹脂、フェノール樹脂、テルペン-フェノール樹脂、ロジン樹脂、キシレン樹脂などが挙げられる。 Examples of the adhesion-imparting agent include terpene resin, phenol resin, terpene-phenol resin, rosin resin, xylene resin and the like.
 上記難燃剤としては、例えば、クロロアルキルホスフェート、ジメチル・メチルホスホネート、臭素・リン化合物、アンモニウムポリホスフェート、ネオペンチルブロマイド-ポリエーテル、臭素化ポリエーテルなどが挙げられる。 Examples of the flame retardant include chloroalkyl phosphate, dimethyl methyl phosphonate, bromine / phosphorus compound, ammonium polyphosphate, neopentyl bromide-polyether, brominated polyether and the like.
 上記帯電防止剤としては、例えば、第四級アンモニウム塩;ポリグリコール、エチレンオキサイド誘導体等の親水性化合物等が挙げられる。 Examples of the antistatic agent include quaternary ammonium salts; hydrophilic compounds such as polyglycols and ethylene oxide derivatives.
 上記ウレタン組成物において、ポリオール化合物(U)100質量部に対する粉体成分の含有量は、300質量部以下が好ましく、0~250質量部が好ましく、0~210質量部がより好ましい。粉体成分の含有量が上記範囲内であると、ウレタン組成物の粘度が適切となり、作業性が良好となる。 に お い て In the urethane composition, the content of the powder component relative to 100 parts by mass of the polyol compound (U) is preferably 300 parts by mass or less, preferably 0 to 250 parts by mass, and more preferably 0 to 210 parts by mass. When the content of the powder component is within the above range, the viscosity of the urethane composition becomes appropriate, and the workability is improved.
(可塑剤)
 樹脂組成物には可塑剤が含まれていてもよい。上記可塑剤としては、例えば、アジピン酸ジイソノニル;フタル酸ジイソノニル;アジピン酸ジオクチル、コハク酸イソデシル;ジエチレングリコールジベンゾエート、ペンタエリスリトールエステル;オレイン酸ブチル、アセチルリシノール酸メチル;リン酸トリクレジル、リン酸トリオクチル;アジピン酸プロピレングリコールポリエステル、アジピン酸ブチレングリコールポリエステルなどが挙げられる。
(Plasticizer)
The resin composition may contain a plasticizer. Examples of the plasticizer include diisononyl adipate; diisononyl phthalate; dioctyl adipate, isodecyl succinate; diethylene glycol dibenzoate, pentaerythritol ester; butyl oleate, methyl acetyl ricinoleate; tricresyl phosphate, trioctyl phosphate; Propylene glycol polyester, butylene glycol adipate polyester, and the like.
 これら可塑剤の中でも、相溶性に優れること、またコスト面でも有利であることから、アジピン酸ジイソノニル、フタル酸ジイソノニルが好ましい。 の Among these plasticizers, diisononyl adipate and diisononyl phthalate are preferred because they are excellent in compatibility and advantageous in cost.
 これら可塑剤は1種単独で用いてもよく、2種以上組み合わせて用いてもよい。 These plasticizers may be used alone or in combination of two or more.
 ポリオール化合物(U)及びイソシアネート化合物(V)の合計100質量部に対する可塑剤の含有量は、20~80質量部が好ましく、30~70質量部がより好ましい。 可塑 The content of the plasticizer based on 100 parts by mass of the total of the polyol compound (U) and the isocyanate compound (V) is preferably 20 to 80 parts by mass, more preferably 30 to 70 parts by mass.
(硬化剤)
 樹脂組成物には、マトリックス樹脂成分(I)を硬化するために、架橋剤、光又は熱重合開始剤、共反応剤等を硬化剤として含んでいてもよい。
(Curing agent)
In order to cure the matrix resin component (I), the resin composition may contain a crosslinking agent, a photo or thermal polymerization initiator, a co-reactant, and the like as a curing agent.
[樹脂組成物の物性等]
(樹脂成分(II)の平均分散径)
 樹脂組成物中における樹脂成分(II)の平均分散径は、10~5,000μmである。樹脂成分(II)の平均分散径は、好ましくは20~3,000μm、より好ましくは30~1,000μm、さらに好ましくは40~500μm、特に好ましくは50~300μmである。平均分散径が10μmを下回ると、樹脂組成物の生産性が低下する恐れがあり、5,000μmを超えると樹脂組成物の機械物性が低下する恐れがある。
 樹脂組成物中の樹脂成分(II)の平均分散径が上記範囲にあることで、接着剤の接着性や強度を低下させることなく、しかも樹脂成分(II)の凝集が抑制され、結果として、引張強度及び鋼板に対する接着性を維持しつつ、高い靱性を示し、しかも広い実使用温度範囲における高い制振性等の、接着性以外の機能を備える樹脂組成物とすることができるものと推測される。
 また、この範囲の平均分散径となる程度に樹脂成分(II)を粉砕すればよいので、粉砕に要する手間がかかりにくくなり、材料の失活等の問題を回避し、コストアップも防ぐことができる。
[Physical properties of resin composition, etc.]
(Average dispersion diameter of resin component (II))
The average dispersion diameter of the resin component (II) in the resin composition is from 10 to 5,000 μm. The average dispersion diameter of the resin component (II) is preferably from 20 to 3,000 μm, more preferably from 30 to 1,000 μm, further preferably from 40 to 500 μm, and particularly preferably from 50 to 300 μm. If the average dispersion diameter is less than 10 μm, the productivity of the resin composition may decrease, and if it exceeds 5,000 μm, the mechanical properties of the resin composition may decrease.
When the average dispersion diameter of the resin component (II) in the resin composition is in the above range, the aggregation of the resin component (II) is suppressed without lowering the adhesiveness and strength of the adhesive, and as a result, It is presumed that the resin composition can exhibit high toughness while maintaining the tensile strength and the adhesiveness to the steel sheet, and can be provided with a function other than the adhesiveness, such as high vibration damping property in a wide practical use temperature range. You.
Further, since the resin component (II) may be pulverized to such an extent as to have an average dispersion diameter in this range, the labor required for pulverization is less likely to occur, and problems such as deactivation of the material can be avoided and cost increase can be prevented. it can.
 樹脂成分(II)が分散した樹脂組成物は、例えば、後述する樹脂成分(II)のパウダーを樹脂組成物中に分散させることで得られる。
 なお、本明細書において、樹脂成分(II)の平均分散径は、樹脂成分(II)が溶解し、樹脂成分(I)が溶解しない溶媒に樹脂組成物を浸した後、表面状態を顕微鏡観察することで測定されたものである。
The resin composition in which the resin component (II) is dispersed can be obtained, for example, by dispersing a powder of the resin component (II) described later in the resin composition.
In the present specification, the average dispersion diameter of the resin component (II) is determined by immersing the resin composition in a solvent in which the resin component (II) is dissolved and in which the resin component (I) is not dissolved, and then observing the surface state with a microscope. It was measured by doing
(20℃におけるtanδの強度)
 樹脂組成物の、20℃における損失正接tanδの強度が、好ましくは0.15以上であり、より好ましくは0.23以上であり、さらに好ましくは0.30以上であり、また、好ましくは0.50以下である。tanδが0.15以上であると、DG用接着剤として用いた際に、ガラスの遮音性が向上する。
 20℃における損失正接tanδの強度を上記範囲とするには、上述した条件(1)を満たす樹脂成分(II)を用いればよい。
(Intensity of tan δ at 20 ° C.)
The strength of the loss tangent tan δ at 20 ° C. of the resin composition is preferably at least 0.15, more preferably at least 0.23, even more preferably at least 0.30, and preferably at least 0.30. 50 or less. When tan δ is 0.15 or more, when used as an adhesive for DG, the sound insulation of glass is improved.
In order to set the strength of the loss tangent tan δ at 20 ° C. within the above range, the resin component (II) satisfying the above condition (1) may be used.
 樹脂組成物全量に対する、樹脂成分(II)の含有量は、好ましくは5~50質量%、より好ましくは10~45質量%、さらに好ましくは15~40質量%、特に好ましくは20~35質量%である。樹脂成分(II)の含有量が50質量%以下であると、樹脂組成物の粘度を良好に維持しやすくなり、樹脂成分(II)の含有量が5質量%以上であると、樹脂組成物の制振性向上効果が小さくなるのを防ぐことができる。 The content of the resin component (II) with respect to the total amount of the resin composition is preferably 5 to 50% by mass, more preferably 10 to 45% by mass, further preferably 15 to 40% by mass, and particularly preferably 20 to 35% by mass. It is. When the content of the resin component (II) is 50% by mass or less, it is easy to maintain the viscosity of the resin composition satisfactorily, and when the content of the resin component (II) is 5% by mass or more, the resin composition This can prevent the effect of improving the vibration damping property from being reduced.
 樹脂組成物全量に対する、樹脂成分(I)の含有量は、好ましくは10~80質量%、より好ましくは15~70質量%、さらに好ましくは20~60質量%、特に好ましくは25~50質量%である。樹脂成分(I)の含有量が80質量%以下であると、粘度が低くなりすぎず作業性が良好となり、樹脂成分(I)の含有量が10質量%以上であると、粘度が高くなり過ぎず作業性が良好となる。 The content of the resin component (I) relative to the total amount of the resin composition is preferably 10 to 80% by mass, more preferably 15 to 70% by mass, further preferably 20 to 60% by mass, and particularly preferably 25 to 50% by mass. It is. When the content of the resin component (I) is 80% by mass or less, the workability is improved without the viscosity being too low, and when the content of the resin component (I) is 10% by mass or more, the viscosity becomes high. Workability is improved.
 樹脂組成物全量に対して、マトリックス樹脂成分(I)及び樹脂成分(II)の合計含有量が100質量%であることが好ましいが、本発明の効果を損なわない範囲で、樹脂組成物が上述した各成分以外の成分を含んでいてもよい。 The total content of the matrix resin component (I) and the resin component (II) is preferably 100% by mass based on the total amount of the resin composition. Components other than the above-mentioned components may be included.
[パウダー]
 本実施形態にかかるパウダーは、上述したブロック共重合体(IIa)、オレフィン系樹脂(IIb)、スチレン系樹脂(IIc)、共役ジエン重合体(IId)から選択される少なくとも1種である樹脂成分(II)からなるパウダーであって、かつ、樹脂成分(II)が上述した条件(1)を満たし、さらに、樹脂成分(II)を構成し得るブロック共重合体(IIa)の重合体ブロック(B)の水添率が、ブロック共重合体(IIa)における重合体ブロック(B)が有する炭素-炭素二重結合の全モル数に対して、10~99mol%である。
[powder]
The powder according to the present embodiment is a resin component that is at least one selected from the above-described block copolymer (IIa), olefin-based resin (IIb), styrene-based resin (IIc), and conjugated diene polymer (IId). A powder composed of (II), wherein the resin component (II) satisfies the above-mentioned condition (1), and further, a polymer block (IIa) of a block copolymer (IIa) capable of constituting the resin component (II) The hydrogenation ratio of B) is from 10 to 99 mol% based on the total number of moles of carbon-carbon double bonds in the polymer block (B) in the block copolymer (IIa).
 ここで、ブロック共重合体(IIa)は、重合体ブロック(B)の水添率が規定されている以外は、上述したのと同様の材質及び物性を有するものである。また、オレフィン系樹脂(IIb)、スチレン系樹脂(IIc)、共役ジエン重合体(IId)は、樹脂組成物を構成する成分(II)について説明したものと同様である。
 上記パウダーを構成する樹脂成分(II)において、芳香族ビニル化合物に由来する構造単位を70mol%超含有する重合体ブロック(A)と、共役ジエン化合物に由来する構造単位を30mol%以上含有する重合体ブロック(B)とを有するブロック共重合体であることが好ましい点も、樹脂成分(II)について述べたのと同様である。
 また、ブロック共重合体における重合体ブロック(A)の含有量の好ましい範囲が、6~22質量%であることも、樹脂成分(II)について述べたのと同様である。
Here, the block copolymer (IIa) has the same material and physical properties as described above, except that the hydrogenation ratio of the polymer block (B) is specified. The olefin resin (IIb), the styrene resin (IIc), and the conjugated diene polymer (IId) are the same as those described for the component (II) constituting the resin composition.
In the resin component (II) constituting the powder, a polymer block (A) containing more than 70 mol% of a structural unit derived from an aromatic vinyl compound and a polymer block containing 30 mol% or more of a structural unit derived from a conjugated diene compound. The fact that a block copolymer having a united block (B) is preferable is also the same as described for the resin component (II).
Further, the preferable range of the content of the polymer block (A) in the block copolymer is 6 to 22% by mass in the same manner as described for the resin component (II).
 上記パウダーは、樹脂組成物中に分散されることで、樹脂組成物の制振性を向上させるとともに、重合体ブロック(B)の水添率が10mol%以上であることにより、樹脂組成物に添加された際に、耐熱性及び対候性も向上させることができるパウダーとすることができる。 The powder is dispersed in the resin composition to improve the vibration damping properties of the resin composition, and the hydrogenation rate of the polymer block (B) is 10 mol% or more, so that the powder is added to the resin composition. When added, the powder can be improved in heat resistance and weatherability.
 上記パウダーは、好ましくは、上記樹脂成分(II)の粉砕物、特に好ましくは凍結粉砕物である。 The powder is preferably a pulverized product of the resin component (II), particularly preferably a freeze-pulverized product.
 パウダーを構成する樹脂成分(II)の好ましい物性(60℃のせん断貯蔵弾性率G’が0.10~0.58MPaの範囲内にあること、tanδピーク温度が-5~+40℃の温度範囲内にあること等)は先に樹脂成分(II)について述べたのと同様である。
 上記パウダーの50%体積平均径が、好ましくは0.01mm~1.0mmであることも、樹脂成分(II)について述べたのと同様である。
Preferred physical properties of the resin component (II) constituting the powder (shear storage modulus G ′ at 60 ° C. is in the range of 0.10 to 0.58 MPa, tan δ peak temperature is in the temperature range of −5 to + 40 ° C.) Are the same as those described above for the resin component (II).
The 50% volume average diameter of the powder is preferably 0.01 mm to 1.0 mm, as described for the resin component (II).
 上記パウダーの製造方法に特に制限はなく、公知の方法を採用できる。樹脂成分(II)が弾性を有する材料であることを考慮すると、液化された不活性ガス(窒素ガス等)によって樹脂成分(II)を凍結させた上で粉砕し、篩いにかけることで所望の粒径範囲のパウダーを得ることが好ましい。 方法 The method for producing the powder is not particularly limited, and a known method can be employed. Considering that the resin component (II) is a material having elasticity, the resin component (II) is frozen by a liquefied inert gas (such as nitrogen gas), then pulverized, and sieved to obtain a desired material. It is preferable to obtain a powder having a particle size range.
 以下、本発明を実施例によりさらに詳細に説明するが、本発明はこれらの実施例によって何ら限定されるものではない。
 以下に、各例で用いた樹脂成分(I)及び樹脂成分(II)の製造方法を示す。
Hereinafter, the present invention will be described in more detail with reference to Examples, but the present invention is not limited to these Examples.
Hereinafter, a method for producing the resin component (I) and the resin component (II) used in each example will be described.
(製造例1~3)樹脂成分(II)としてのブロック共重合体TPE-1~3の製造
 以下の手順で、ブロック共重合体TPE-1~3を製造した。
 窒素置換し、乾燥させた耐圧容器に、モレキュラーシーブスA4にて乾燥したシクロヘキサン(溶媒)50.0kg、アニオン重合開始剤として濃度10.5質量%のsec-ブチルリチウムのシクロヘキサン溶液0.087kg(sec-ブチルリチウムの実質的な添加量:9.1g)を仕込んだ。
 耐圧容器内を50℃に昇温した後、スチレン(1)1.0kgを加えて30分間重合させた後、40℃に降温し、2,2-ジ(2-テトラヒドロフリル)プロパン[DTHFP]0.032kgを加えてから、イソプレン14.64kgを5時間かけて加え、1時間重合させた。その後、50℃に昇温し、スチレン(2)1.0kgを加えて30分間重合させ、メタノールを投入して反応を停止し、ポリスチレン-ポリイソプレン-ポリスチレンのトリブロック共重合体を含む反応液を得た。
 該反応液を50℃に昇温後、水素圧力1MPaまで加圧し、それからオクチル酸ニッケル及びトリメチルアルミニウムから形成されるチーグラー系触媒(水素添加触媒)を水素雰囲気下で添加し、反応熱によって80℃まで昇温して水素の吸収がなくなるまで反応させた。該反応液を放冷及び放圧させた後、水洗により上記チーグラー系触媒を除去し、真空乾燥させることにより、製造例1のポリスチレン-ポリイソプレン-ポリスチレンのトリブロック共重合体の水素添加物(TPE-1)を得た。
 また、製造例2、3として、原料及びその使用量を表1に示したものに変更して、水添ブロック共重合体(ポリスチレン-ポリイソプレン-ポリスチレンのトリブロック共重合体の水素添加物)TPE-2、3を得た。具体的には、スチレンの添加量を1段階目、2段階目ともに1.5kgとし、アニオン重合開始剤である濃度10.5質量%のsec-ブチルリチウムのシクロヘキサン溶液の使用量を0.166kgとし、共役ジエンとして、イソプレン14.64kgに代えて、イソプレン13.6kgを用い、ジエン重合温度を50℃とし、ルイス塩基を用いなかったこと以外は、上記水添ブロック共重合体TPE-1と同様にしてTPE-2を作製した。また、スチレンの添加量を1段階目、2段階目ともに1.7kgとし、アニオン重合開始剤である濃度10.5質量%のsec-ブチルリチウムのシクロヘキサン溶液の使用量を0.101kgとし、共役ジエンとして、イソプレン14.64kgに代えて、イソプレン13.3kgを用い、ルイス塩基として0.065kgのN,N,N’,N’-テトラメチルエチレンジアミン(TMEDA)を用いたこと以外は、上記水添ブロック共重合体TPE-1と同様にしてTPE-3を作製した。
 使用した材料及びそれらの使用量を表1に示す。
(Production Examples 1 to 3) Production of Block Copolymers TPE-1 to 3 as Resin Component (II) Block copolymers TPE-1 to 3 were produced by the following procedure.
50.0 kg of cyclohexane (solvent) dried with Molecular Sieves A4 and 0.087 kg of a 10.5 mass% sec-butyllithium cyclohexane solution as an anionic polymerization initiator were placed in a pressure-resistant container dried with nitrogen and dried. -Substantially added amount of butyl lithium: 9.1 g).
After the temperature inside the pressure vessel was raised to 50 ° C., 1.0 kg of styrene (1) was added and polymerization was carried out for 30 minutes. Then, the temperature was lowered to 40 ° C. and 2,2-di (2-tetrahydrofuryl) propane [DTHFP] After adding 0.032 kg, 14.64 kg of isoprene was added over 5 hours, and the mixture was polymerized for 1 hour. Thereafter, the temperature was raised to 50 ° C., 1.0 kg of styrene (2) was added, polymerization was performed for 30 minutes, methanol was added to stop the reaction, and a reaction solution containing a triblock copolymer of polystyrene-polyisoprene-polystyrene. I got
After the temperature of the reaction solution was raised to 50 ° C., the hydrogen pressure was increased to 1 MPa, and then a Ziegler-based catalyst (hydrogenation catalyst) formed from nickel octylate and trimethylaluminum was added under a hydrogen atmosphere. The reaction was continued until the absorption of hydrogen ceased. After allowing the reaction mixture to cool and release pressure, the Ziegler catalyst was removed by washing with water, and the mixture was dried under vacuum to obtain a hydrogenated product of the polystyrene-polyisoprene-polystyrene triblock copolymer of Production Example 1 ( TPE-1) was obtained.
In Production Examples 2 and 3, the raw materials and the amounts used were changed to those shown in Table 1, and hydrogenated block copolymers (hydrogenated products of triblock copolymers of polystyrene-polyisoprene-polystyrene) were used. TPE-2 and 3 were obtained. Specifically, the amount of styrene added was 1.5 kg in both the first and second stages, and the amount of the cyclohexane solution of sec-butyllithium having a concentration of 10.5 mass%, which was an anionic polymerization initiator, was 0.166 kg. The hydrogenated block copolymer TPE-1 was replaced with 13.6 kg of isoprene instead of 14.64 kg of isoprene, the diene polymerization temperature was 50 ° C., and no Lewis base was used as the conjugated diene. Similarly, TPE-2 was produced. The addition amount of styrene was 1.7 kg in both the first and second stages, the amount of 10.5 mass% sec-butyllithium cyclohexane solution used as an anionic polymerization initiator was 0.101 kg, and The above water was used, except that 13.3 kg of isoprene was used instead of 14.64 kg of isoprene as the diene, and 0.065 kg of N, N, N ′, N′-tetramethylethylenediamine (TMEDA) was used as the Lewis base. TPE-3 was produced in the same manner as in the addition block copolymer TPE-1.
Table 1 shows the materials used and their amounts used.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 得られたブロック共重合体TPE-1~3の物性を以下の手順で測定した。 物 Physical properties of the obtained block copolymers TPE-1 to TPE-3 were measured by the following procedures.
<水添ブロック共重合体の物性>
(i)重合体ブロック(A)の含有量
 水添ブロック共重合体をCDClに溶解してH-NMR測定[装置:「ADVANCE 400 Nano bay」(Bruker社製)、測定温度:30℃]を行い、スチレンに由来するピーク強度から重合体ブロック(A)の含有量を算出した。
<Physical properties of hydrogenated block copolymer>
(I) Content of Polymer Block (A) The hydrogenated block copolymer was dissolved in CDCl 3 and subjected to 1 H-NMR measurement [Apparatus: “ADVANCE 400 Nano bay” (manufactured by Bruker), measurement temperature: 30 ° C. And the content of the polymer block (A) was calculated from the peak intensity derived from styrene.
(ii)重合体ブロック(B)のビニル結合量
 水添前のブロック共重合体をCDClに溶解してH-NMR測定[装置:「ADVANCE 400 Nano bay」(Bruker社製)、測定温度:30℃]を行った。イソプレン及び/又はブタジエン由来の構造単位の全ピーク面積に対する、イソプレン構造単位における3,4-結合単位及び1,2-結合単位並びにブタジエン構造単位における1,2-結合単位に対応するピーク面積の比から、ビニル結合量(3,4-結合単位と1,2-結合単位の含有量の合計)を算出した。
(Ii) Amount of vinyl bond in polymer block (B) The block copolymer before hydrogenation was dissolved in CDCl 3 and subjected to 1 H-NMR measurement [Apparatus: “ADVANCE 400 Nano bay” (manufactured by Bruker), measurement temperature] : 30 ° C]. Ratio of the peak area corresponding to the 3,4-linkage unit and 1,2-linkage unit in the isoprene structural unit and the 1,2-linkage unit in the butadiene structural unit to the total peak area of the structural units derived from isoprene and / or butadiene. The amount of vinyl bond (total content of 3,4-linkage unit and 1,2-linkage unit) was calculated from.
(iii)重合体ブロック(B)の水素添加率
 水添ブロック共重合体をCDClに溶解してH-NMR測定[装置:「ADVANCE 400 Nano bay」(Bruker社製)、測定温度:30℃]を行い、イソプレン又はブタジエンの残存オレフィン由来のピーク面積と、エチレン、プロピレン、ブチレン、2-メチルブチレン、及び、3-メチルブチレン由来のピーク面積比から水素添加率を算出した。
(Iii) Hydrogenation rate of polymer block (B) The hydrogenated block copolymer was dissolved in CDCl 3 and measured by 1 H-NMR [apparatus: “ADVANCE 400 Nano bay” (manufactured by Bruker), measurement temperature: 30 ° C], and the hydrogenation rate was calculated from the peak area derived from the residual olefin of isoprene or butadiene and the peak area ratio derived from ethylene, propylene, butylene, 2-methylbutylene, and 3-methylbutylene.
(iv)重量平均分子量(Mw)
 下記条件のゲルパーミエーションクロマトグラフィー(GPC)測定により、水添ブロック共重合体のポリスチレン換算の重量平均分子量(Mw)を求めた。
(GPC測定装置及び測定条件)
・装置    :GPC装置「HLC-8020」(東ソー株式会社製)
・分離カラム :東ソ-株式会社製の「TSKgel G4000HX」2本を直列に連結した。
・溶離液   :テトラヒドロフラン
・溶離液流量 :0.7mL/min
・サンプル濃度:5mg/10mL
・カラム温度 :40℃
・検出器:示差屈折率(RI)検出器
・検量線:標準ポリスチレンを用いて作成
(Iv) Weight average molecular weight (Mw)
The weight average molecular weight (Mw) in terms of polystyrene of the hydrogenated block copolymer was determined by gel permeation chromatography (GPC) measurement under the following conditions.
(GPC measurement device and measurement conditions)
-Equipment: GPC equipment "HLC-8020" (manufactured by Tosoh Corporation)
Separation column: Two “TSKgel G4000HX” manufactured by Tosoh Corporation were connected in series.
・ Eluent: tetrahydrofuran ・ Eluent flow rate: 0.7 mL / min
-Sample concentration: 5mg / 10mL
・ Column temperature: 40 ℃
・ Detector: Differential refractive index (RI) detector ・ Calibration curve: Created using standard polystyrene
(v)損失正接tanδのピーク温度、tanδのピーク強度、せん断貯蔵弾性率
 得られたブロック共重合体を、プレス成形装置「NF-50T」(株式会社神藤金属工業所製)により、温度230℃、圧力10MPaで3分間加圧することで、厚み1.0mmのシートを作製し、該シートを直径8mmの円板形状に切り出したものを試験片とした。
 測定装置として、JIS K7244-10(2005年)に基づいて、ゆがみ制御型動的粘弾性装置「ARES-G2」(TAインスツルメント社製)を使用し、直径8mmの2枚の平面プレートによって前記試験片を挟み、歪み量0.1%、周波数1Hzで振動を与え、-70℃から100℃まで3℃/分で昇温して試験した。
 上記試験によって、tanδ及びせん断貯蔵弾性率G’の温度特性曲線を作成し、得られた温度特性曲線から、tanδのピーク温度、tanδのピーク強度及び60℃でのせん断貯蔵弾性率G’を求めた。
(V) Peak temperature of loss tangent tan δ, peak intensity of tan δ, shear storage modulus The obtained block copolymer was subjected to a temperature of 230 ° C. by a press molding apparatus “NF-50T” (manufactured by Shinto Metal Industry Co., Ltd.). A sheet having a thickness of 1.0 mm was prepared by applying pressure at a pressure of 10 MPa for 3 minutes, and the sheet was cut into a disk shape having a diameter of 8 mm to obtain a test piece.
A distortion control dynamic viscoelasticity device “ARES-G2” (manufactured by TA Instruments) based on JIS K7244-10 (2005) was used as a measuring device, and was formed by two flat plates having a diameter of 8 mm. The test piece was sandwiched, vibrated at a strain of 0.1% and a frequency of 1 Hz, and the temperature was raised from −70 ° C. to 100 ° C. at 3 ° C./min for testing.
From the above test, a temperature characteristic curve of tan δ and shear storage elastic modulus G ′ was created, and a peak temperature of tan δ, a peak intensity of tan δ, and a shear storage elastic modulus G ′ at 60 ° C. were determined from the obtained temperature characteristic curves. Was.
(vi)運動性パラメータM
 まず、パルスNMR法によって、樹脂成分(II)の緩和時間を測定した。具体的には、以下の手順で測定した。
・パルスNMR装置:Bruker Biospin社製Minispec MQ20
・測定手法:ソリッドエコー法
・測定条件:得られた樹脂成分(II)を、プレス成形装置「NF-50T」(株式会社神藤金属工業所製)により、温度230℃、圧力10MPaで3分間加圧することで、厚み1.0mmのシートを作製し、該シートを長さ10mm×幅10mm×に切り出したものを試料管に入れてサンプルとした。このサンプルを60℃にて15分間保持した後、パルス幅7.2μsec、パルス間隔10μsec、積算回数60回、スピンエコー繰返し時間1.0sec、ダミーショット4回、測定温度60℃、の条件で測定を行い、樹脂成分(II)(ここでは、ブロック共重合体)のスピン-スピン緩和における緩和曲線(緩和時間xに対する緩和強度y)を作成した。
 次に、上記パルスNMR法によって得られた緩和曲線に対して、下記式[I]を用いて最小二乗法でフィッティングを行い、係数A1~A3及び各成分のスピン-スピン緩和時間τ1~τ3を決定した。ここで、τ1<τ2である。これらの数値を用いて下記式[II]に基づいて、運動性パラメータM(つまり、樹脂成分(II)であるブロック共重合体のブロック(B)の運動性を示す値)を算出した。
y=A1 * exp(-0.5 * (x/τ1)2)+A2 * exp(-0.5 * (x/τ2)2)+A3 * exp(-x/τ3)  [I]
M=(τ2 * A2+τ3 * A3)/(A2+A3)  [II]
 結果を以下の表2に示す。
(Vi) Motility parameter M
First, the relaxation time of the resin component (II) was measured by a pulse NMR method. Specifically, it measured by the following procedures.
・ Pulse NMR system: Minispec MQ20 manufactured by Bruker Biospin
Measurement method: solid echo method Measurement conditions: The obtained resin component (II) was applied for 3 minutes at a temperature of 230 ° C. and a pressure of 10 MPa using a press molding apparatus “NF-50T” (manufactured by Shinto Metal Industry Co., Ltd.). By pressing, a sheet having a thickness of 1.0 mm was produced, and the sheet cut out into a length of 10 mm × a width of 10 mm × was put into a sample tube to obtain a sample. After holding this sample at 60 ° C. for 15 minutes, measurement was performed under the conditions of a pulse width of 7.2 μsec, a pulse interval of 10 μsec, an integration count of 60, a spin echo repetition time of 1.0 sec, four dummy shots, and a measurement temperature of 60 ° C. To prepare a relaxation curve (relaxation strength y with respect to the relaxation time x) in the spin-spin relaxation of the resin component (II) (here, the block copolymer).
Next, the relaxation curve obtained by the above-mentioned pulse NMR method is fitted by the least square method using the following equation [I] to obtain coefficients A 1 to A 3 and the spin-spin relaxation time τ 1 of each component. ~ Τ 3 was determined. Here, τ 12 . Using these numerical values, a motility parameter M (that is, a value indicating the motility of the block (B) of the block copolymer as the resin component (II)) was calculated based on the following equation [II].
y = A 1 * exp (−0.5 * (x / τ 1 ) 2 ) + A 2 * exp (−0.5 * (x / τ 2 ) 2 ) + A 3 * exp (−x / τ 3 ) [I]
M = (τ 2 * A 2 + τ 3 * A 3 ) / (A 2 + A 3 ) [II]
The results are shown in Table 2 below.
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
(パウダーの作製)
 製造例1で得られたブロック共重合体TPE-1を、クライオミル(大陽日酸株式会社製)に投入し、液体窒素による凍結粉砕を行った。得られた粉砕物を篩いにかけて、平均粒子径(50%体積平均径)70μmのブロック共重合体TPE-1のパウダー(TPE-1パウダー)を作製した。
 製造例2、3で得られたブロック共重合体TPE-2、3についても、同様の手順で平均粒子径(50%体積平均径)70μmのパウダー(TPE-2パウダー、TPE-3パウダー)を作製した。
 なお、パウダーの平均粒子径(50%体積平均径)は、Malvern社製マスターサイザー3000を用いて水中にパウダーを分散させたサンプルを用いて、湿式のレーザー回折によって測定した。
(Production of powder)
The block copolymer TPE-1 obtained in Production Example 1 was charged into a cryomill (manufactured by Taiyo Nippon Sanso Co., Ltd.) and freeze-pulverized with liquid nitrogen. The obtained pulverized product was sieved to prepare a block copolymer TPE-1 powder (TPE-1 powder) having an average particle diameter (50% volume average diameter) of 70 μm.
With respect to the block copolymers TPE-2 and TPE-2 obtained in Production Examples 2 and 3, powders having an average particle diameter (50% volume average diameter) of 70 μm (TPE-2 powder and TPE-3 powder) were obtained in the same procedure. Produced.
The average particle diameter (50% volume average diameter) of the powder was measured by wet laser diffraction using a sample in which powder was dispersed in water using a Mastersizer 3000 manufactured by Malvern.
(樹脂組成物の調製)
 製造例1~3で得られたブロック共重合体TPE-1~3と、樹脂成分(I)を調製するためのモノマーと、他の添加剤と、触媒とを用いて、樹脂組成物を調製した(実施例1~5、比較例1)。各実施例及び比較例における、配合成分とその配合量を以下の表3に示す。
 なお、樹脂組成物を調製するのに用いた、ブロック共重合体TPE-1~3以外の各材料は以下のとおりである。
(ポリオール)
・2官能ポリプロピレングリコール(旭硝子株式会社製Excenol2020、数平均分子量2,000)
・3官能ポリプロピレングリコール(旭硝子株式会社製Excenol5030、数平均分子量5,040)
(可塑剤)
・フタル酸ジイソノニル(DINP)
(イソシアネート)
・ジフェニルメタンジイソシアネート(MDI)
・ヘキサメチレンジイソシアネート-ビウレット体(HDI-b)
(充填剤)
・炭酸カルシウム
・カーボンブラック
(触媒)
・ビスマストリス(2-エチルへキサノエート)(日東化成株式会社製ネオスタンU-600)
・ジオクチル錫ジラウレート(日東化成株式会社製ネオスタンU-810)
(Preparation of resin composition)
A resin composition was prepared using the block copolymers TPE-1 to 3 obtained in Production Examples 1 to 3, a monomer for preparing the resin component (I), other additives, and a catalyst. (Examples 1 to 5, Comparative Example 1). Table 3 below shows the components and the amounts of the components in the examples and comparative examples.
The materials used to prepare the resin composition other than the block copolymers TPE-1 to TPE-3 are as follows.
(Polyol)
-Bifunctional polypropylene glycol (Exenol 2020 manufactured by Asahi Glass Co., Ltd., number average molecular weight 2,000)
・ Trifunctional polypropylene glycol (Exenol 5030 manufactured by Asahi Glass Co., Ltd., number average molecular weight 5,040)
(Plasticizer)
・ Diisononyl phthalate (DINP)
(Isocyanate)
・ Diphenylmethane diisocyanate (MDI)
・ Hexamethylene diisocyanate-biuret (HDI-b)
(filler)
・ Calcium carbonate ・ Carbon black (catalyst)
-Bismuth tris (2-ethylhexanoate) (Neostan U-600 manufactured by Nitto Kasei Co., Ltd.)
・ Dioctyl tin dilaurate (Neostan U-810 manufactured by Nitto Kasei Co., Ltd.)
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
 具体的には、窒素雰囲気下において、表3に示すポリオールと可塑剤と樹脂成分(II)のパウダーと充填剤とをプラネタリーミキサー(プライミクス株式会社製)に投入し、50℃で1.2kPa以下に減圧して40rpmの回転速度で4時間混合することで脱水し、ペースト混合物を得た。
 次に、表3に示すイソシアネートのうちMDIをプラネタリーミキサーに投入し、上述した脱水処理後のペースト混合物を全量添加し、さらに表3の触媒のうちビスマス系触媒を添加し、回転速度40rpmで、50℃で1時間混合した。さらに、表3に示すイソシアネートのうちHDI-bと、表3に示す触媒のうち錫系触媒とを添加して、回転速度40rpmで10分間混合することにより、マトリックス樹脂成分(I)として、一液湿気硬化型ポリウレタン組成物を含む、樹脂組成物を得た。
Specifically, under a nitrogen atmosphere, the polyol, the plasticizer, and the powder of the resin component (II) and the filler shown in Table 3 were charged into a planetary mixer (manufactured by Primix Co., Ltd.), and the pressure was set to 1.2 kPa at 50 ° C. The mixture was then depressurized and dehydrated by mixing at a rotation speed of 40 rpm for 4 hours to obtain a paste mixture.
Next, among the isocyanates shown in Table 3, MDI was put into a planetary mixer, and the paste mixture after the above-mentioned dehydration treatment was added in its entirety. Further, a bismuth-based catalyst was added among the catalysts in Table 3, and at a rotation speed of 40 rpm. And mixed at 50 ° C. for 1 hour. Further, HDI-b among the isocyanates shown in Table 3 and a tin-based catalyst among the catalysts shown in Table 3 were added and mixed at a rotation speed of 40 rpm for 10 minutes to obtain one matrix resin component (I). A resin composition containing a liquid moisture-curable polyurethane composition was obtained.
(樹脂組成物の評価)
 実施例1~5及び比較例1で得られた樹脂組成物について、以下の測定方法に従って各物性評価を行った。
<動的粘弾性測定(DMA)>
 JIS K 7244-4(1999年)に従って、測定を行った。具体的には、得られた樹脂組成物を、両端に1mmのスペーサーを巻いたガラス棒を用いてポリプロピレン(PP)フィルム上に塗布し、23℃、50%RHの雰囲気下で2日間硬化させて得られた硬化物を用いて、縦50mm×横10mmの試験片を打ち抜き、日立ハイテクサイエンス社製動的粘弾性測定装置を用いて、測定温度-80~+100℃、周波数10Hzの条件で、測定することによりtanδの温度特性曲線を作成し、-10~+40℃のtanδピークの有無を確認するとともに、tanδピーク温度、tanδピーク強度、及び、20℃におけるtanδ強度を測定した。
(Evaluation of resin composition)
The physical properties of the resin compositions obtained in Examples 1 to 5 and Comparative Example 1 were evaluated according to the following measurement methods.
<Dynamic viscoelasticity measurement (DMA)>
The measurement was performed according to JIS K 7244-4 (1999). Specifically, the obtained resin composition was applied on a polypropylene (PP) film using a glass rod having a 1 mm spacer wound at both ends, and cured at 23 ° C. and 50% RH for 2 days. Using a cured product obtained in this manner, a test piece of 50 mm long × 10 mm wide was punched out, and a dynamic viscoelasticity measuring device manufactured by Hitachi High-Tech Science Co., Ltd. was used at a measurement temperature of −80 to + 100 ° C. and a frequency of 10 Hz. A temperature characteristic curve of tan δ was prepared by measurement, and the presence or absence of a tan δ peak at −10 to + 40 ° C. was confirmed, and the tan δ peak temperature, tan δ peak intensity, and tan δ intensity at 20 ° C. were measured.
<引張試験>
 下記項目について、いずれもJIS K 6251(2010年)に従って、測定を行った。具体的には、得られた樹脂組成物を、両端に2mmのスペーサーを巻いたガラス棒を用いてPPフィルム上に塗布し、23℃、50%RHの雰囲気下で2日間硬化させて得られた硬化物を用いて、5号ダンベル状試験片を打ち抜き、インストロン社製万能材料試験機5966型を用いて、試験速度500mm/minで測定することにより、引張強度[MPa]、及び、破断伸び[%]を測定した。
<引裂試験>
 JIS K7128-1(1998年)に従って、引裂強さ[kN/m]を測定した。具体的には、得られた樹脂組成物を、両端に2mmのスペーサーを巻いたガラス棒を用いてPPフィルム上に塗布し、23℃、50%RHの雰囲気下で2日間硬化させて得られた硬化物を用いて、JIS-K7128-1のトラウザー型試験片を作成し、インストロン社製万能材料試験機5966型を用いて、試験速度100mm/minで測定することにより、引裂強さを測定した。
<接着力試験(鋼板)>
 JIS K6850(1999年)に従って、引張せん断接着強さ[MPa]を測定した。具体的には、鋼板としてSPCC SD(25mm×100mm×厚さ2mm)を2枚使用し、これらをアセトン脱脂し、引張せん断接着試験片のように向かい合わせ、25mm×10mm×厚さ5mmのPTFE製スペーサーを3枚挟み、マスキングテープで固定した。この後、中央のスペーサーを抜き取り、そこへ測定対象の樹脂組成物を充填してサンプルを作製した。このサンプルについて、インストロン社製万能材料試験機5966型を用いて、試験速度2mm/minで測定することにより、引張せん断接着強さを測定した。このとき、目視により、破壊モードが凝集破壊であるか接着破壊であるかを確認した。
<Tensile test>
The following items were all measured according to JIS K6251 (2010). Specifically, the obtained resin composition is applied on a PP film using a glass rod with a 2 mm spacer wound on both ends, and cured for 2 days in an atmosphere of 23 ° C. and 50% RH. No. 5 dumbbell-shaped test piece was punched out from the cured product, and the tensile strength [MPa] and rupture were measured by measuring the test piece at a test speed of 500 mm / min using a universal material tester Model 5966 manufactured by Instron. The elongation [%] was measured.
<Tear test>
The tear strength [kN / m] was measured according to JIS K7128-1 (1998). Specifically, the obtained resin composition is applied on a PP film using a glass rod with a 2 mm spacer wound on both ends, and cured for 2 days in an atmosphere of 23 ° C. and 50% RH. A trouser-type test piece of JIS-K7128-1 was prepared from the cured product, and the tear strength was measured at a test speed of 100 mm / min using a universal material tester 5966 manufactured by Instron. It was measured.
<Adhesion test (steel plate)>
Tensile shear adhesive strength [MPa] was measured according to JIS K6850 (1999). Specifically, two SPCC SD (25 mm × 100 mm × 2 mm thick) steel plates were used, and these were degreased with acetone and faced like a tensile-shear adhesive test piece, and PTFE of 25 mm × 10 mm × 5 mm thickness was used. The three spacers made were sandwiched and fixed with masking tape. Thereafter, the spacer at the center was extracted, and a resin composition to be measured was filled therein to prepare a sample. With respect to this sample, tensile shear strength was measured at a test speed of 2 mm / min using a universal material tester Model 5966 manufactured by Instron. At this time, it was visually confirmed whether the failure mode was cohesive failure or adhesive failure.
<硬度>
 実施例および比較例で得られた樹脂組成物を用いて、30mm×25mm×厚さ5mmのサイズの硬度測定用試験片を作製し、樹脂組成物を硬化させた後、JIS K 6253(2012年)に準じて、デュロメータ硬度計タイプA GS-619R-G(株式会社テクロック製)を用いてデュロメータ硬さ試験を行い、ショアA硬度を測定した。
<Hardness>
Using the resin compositions obtained in Examples and Comparative Examples, test pieces for measuring hardness having a size of 30 mm × 25 mm × thickness of 5 mm were prepared, and after the resin compositions were cured, JIS K 6253 (2012) ), A durometer hardness test was performed using a durometer hardness meter type A GS-619R-G (manufactured by Teclock Corporation) to measure Shore A hardness.
<成分(II)の平均分散径>
得られた樹脂組成物を、両端に1mmのスペーサーを巻いたガラス棒を用いてPPフィルム上に塗布し、23℃、50%RHの雰囲気下で2日間硬化させて硬化物を得た。得られた硬化物をシクロヘキサンに5分間浸漬することで成分(II)が溶解したサンプルを得た。サンプルの表面をニコン社製偏光顕微鏡ECLIPSE E600POLで観察し、無作為に選定した30個の成分(II)のサイズを測定し、それらの算術平均値を算出し、得られた値を成分(II)の平均分散径とした。
<Average dispersion diameter of component (II)>
The obtained resin composition was applied on a PP film using a glass rod having a 1 mm spacer wound on both ends, and cured for 2 days in an atmosphere of 23 ° C. and 50% RH to obtain a cured product. The sample in which the component (II) was dissolved was obtained by immersing the obtained cured product in cyclohexane for 5 minutes. The surface of the sample was observed with a polarization microscope ECLIPSE E600POL manufactured by Nikon Corporation, the size of 30 randomly selected components (II) was measured, their arithmetic average was calculated, and the obtained value was calculated as the component (II). ).
<耐候性試験>
 実施例および比較例で得られた樹脂組成物を用いて、30mm×25mm×厚さ5mmのサイズの試験片を作製し、耐候性試験機(スガ試験機社製スーパーキセノンウェザーメーターSX75)を用いて、放射照度180W/m、ブラックパネル温度60℃、相対湿度50%の条件で200時間曝露する耐候性試験を行った。耐候性試験前後で外観に違いが見られなかった場合は〇、違いは見られたが実用に支障のないレベルである場合は△、実用に適さないレベルの違いがみられた場合は×と評価した。
<Weather resistance test>
Using the resin compositions obtained in Examples and Comparative Examples, test pieces having a size of 30 mm × 25 mm × 5 mm in thickness were prepared, and a weather resistance tester (Super Xenon Weather Meter SX75 manufactured by Suga Test Instruments Co., Ltd.) was used. Then, a weather resistance test was carried out by exposing for 200 hours under the conditions of irradiance 180 W / m 2 , black panel temperature 60 ° C. and relative humidity 50%. If there was no difference in appearance between before and after the weather resistance test, 〇, if there was a difference but the level was not problematic for practical use, △ if there was a difference of a level that was not suitable for practical use, then × evaluated.
<音響透過損失>
 900mm×600mm×厚さ6mmの鋼板の中央を770mm×470mmの大きさに切り抜き、切り抜かれた鋼板の淵に、幅が1cm、厚さが5mmとなるように実施例および比較例で得られた樹脂組成物を塗布した。
 その後、800mm×500mm×厚さ5mmの単板ガラスを、塗布した樹脂組成物の上に密着させて、樹脂組成物を硬化させることで試験片とした。得られた試験片を用いてJIS A 1416(2000年)に基づく残響室と無響室による音響透過損失(STL)の測定を行った。
<Sound transmission loss>
The center of a steel plate having a size of 900 mm x 600 mm x a thickness of 6 mm was cut into a size of 770 mm x 470 mm, and the edge of the cut steel plate was obtained in Examples and Comparative Examples so that the width was 1 cm and the thickness was 5 mm. The resin composition was applied.
Thereafter, a single glass sheet having a size of 800 mm x 500 mm x a thickness of 5 mm was brought into close contact with the applied resin composition, and the resin composition was cured to obtain a test piece. Using the obtained test piece, the sound transmission loss (STL) of a reverberation room and an anechoic room based on JIS A 1416 (2000) was measured.
 結果を以下の表4及び図1に示す。なお、図1は、実施例1~4及び比較例1の樹脂組成物の損失正接tanδの温度特性を示すグラフである。 The results are shown in Table 4 below and FIG. FIG. 1 is a graph showing the temperature characteristics of the loss tangent tan δ of the resin compositions of Examples 1 to 4 and Comparative Example 1.
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000004
 表4の結果から明らかなように、実施例1~5の樹脂組成物は、引裂強さ、引張せん断接着強さ、及び、硬度が比較例1より高い値を示している。特に実施例1は、接着力試験による破壊モードが凝集破壊タイプであり、接着剤の接着力が極めて高いことを示している。また、図1に示すように、実施例1~3の樹脂組成物は、-10~+40℃の範囲にtanδのピークを有しており、樹脂成分(II)を含まない比較例1の樹脂組成物に比べて高い制振性を有することを示している。さらに、実施例1~5の樹脂組成物は、いずれの周波数においても比較例1の樹脂組成物に比べて高い音響透過損失を有しており、遮音性に優れていることが分かる。 明 ら か As is clear from the results in Table 4, the resin compositions of Examples 1 to 5 have higher values of tear strength, tensile shear bond strength, and hardness than Comparative Example 1. In particular, Example 1 shows that the failure mode in the adhesive strength test is a cohesive failure type, and the adhesive strength of the adhesive is extremely high. Further, as shown in FIG. 1, the resin compositions of Examples 1 to 3 had a peak of tan δ in the range of −10 to + 40 ° C., and did not contain the resin component (II). It shows that the composition has higher damping properties than the composition. Furthermore, it can be seen that the resin compositions of Examples 1 to 5 have higher sound transmission loss than the resin composition of Comparative Example 1 at any frequency, and are excellent in sound insulation.
 ブロック共重合体は、極性が小さく、接着剤との相容性が低いため、混ざらずに凝集してしまう(力学強度、接着力の低下)恐れがあるが、ブロック共重合体を粉砕することによって得られたパウダー(微粒子)を硬化前の接着剤に混合し適度な分散径で分散させることで、鋼板に対する接着性を維持しつつ、引裂強さや硬度を向上させ、さらに運動性パラメータが所定範囲にある樹脂成分(II)を用いることで制振性をも高めることができる。
 また、ブロック共重合体としてtanδのピーク温度の高いものを用いることで、エラストマーの高い材料強度によって、破断伸び、引裂強さ、接着力の向上が見られる。
 さらに、実施例1~4で用いたパウダーを構成する樹脂成分(II)はブロック共重合体であり、その重合体ブロック(B)が水素添加されているため、表1から明らかなように高い耐候性を示しており、また、耐熱性の向上も期待できる。
Since the block copolymer has low polarity and low compatibility with the adhesive, it may aggregate without mixing (decrease in mechanical strength and adhesive strength). By mixing the powder (fine particles) obtained by the above with an adhesive before curing and dispersing it with an appropriate dispersion diameter, the tear strength and the hardness are improved while maintaining the adhesiveness to the steel sheet, and further, the mobility parameter is determined by a predetermined value. By using the resin component (II) in the range, the vibration damping property can be improved.
Further, by using a block copolymer having a high peak temperature of tan δ, the elongation at break, the tear strength, and the adhesion are improved due to the high material strength of the elastomer.
Furthermore, the resin component (II) constituting the powder used in Examples 1 to 4 is a block copolymer, and since the polymer block (B) is hydrogenated, the resin component (II) is high as is apparent from Table 1. It shows weather resistance and can be expected to improve heat resistance.
 一方、比較例1の樹脂組成物については、破断伸び、引張せん断接着強さ、硬度等の評価が、実施例1~5の樹脂組成物よりも劣っている。また、比較例1の樹脂組成物については、-10~+40℃の範囲にtanδのピークは観察されない。 On the other hand, the resin composition of Comparative Example 1 was inferior to the resin compositions of Examples 1 to 5 in evaluation of elongation at break, tensile shear bond strength, hardness and the like. In the resin composition of Comparative Example 1, no tan δ peak was observed in the range of −10 to + 40 ° C.
 本発明の樹脂組成物は、自動車用のDG用接着剤に利用できる。また、DG用接着剤以外の用途においても、接着剤に例えば制振性が付与されることにより、振動を抑えたい部材に用いている既存の接着剤を本願発明の接着剤に置き換えることで、接着性を維持しつつ、振動や騒音を低減することが期待できる。
 
The resin composition of the present invention can be used for a DG adhesive for automobiles. In applications other than the DG adhesive, for example, by giving the adhesive an anti-vibration property, by replacing the existing adhesive used for the member for which vibration is to be suppressed with the adhesive of the present invention, It can be expected to reduce vibration and noise while maintaining adhesiveness.

Claims (22)

  1.  ヘテロ原子を含むモノマーユニットを有するマトリックス樹脂成分(I)、並びに、芳香族ビニル化合物に由来する重合体ブロック(A)と共役ジエン化合物に由来する重合体ブロック(B)とを有するブロック共重合体、スチレン系樹脂、共役ジエン重合体、及び、オレフィン系樹脂からなる群より選ばれる少なくとも1種である樹脂成分(II)からなる樹脂組成物であって、当該樹脂組成物中における前記樹脂成分(II)の平均分散径が、10μm~5,000μmである樹脂組成物。 A matrix resin component (I) having a monomer unit containing a hetero atom, and a block copolymer having a polymer block (A) derived from an aromatic vinyl compound and a polymer block (B) derived from a conjugated diene compound A resin composition comprising at least one resin component (II) selected from the group consisting of styrene-based resin, conjugated diene polymer, and olefin-based resin, wherein the resin component ( A resin composition wherein the average dispersion diameter of II) is from 10 μm to 5,000 μm.
  2.  前記樹脂成分(II)が下記条件(1)を満たす請求項1に記載の樹脂組成物。
    条件(1):パルスNMR装置を用いて測定した、緩和時間xに対する緩和強度yで表される緩和曲線に対して、下記式[I]のフィッティングを行って決定した係数A~A及び各成分のスピン-スピン緩和時間τ~τを用いて下記式[II]で求められる、運動性パラメータMが0.01~0.25秒である。
    y=A1 * exp(-0.5 * (x/τ1)2)+A2 * exp(-0.5 * (x/τ2)2)+A3 * exp(-x/τ3)  [I]
    M=(τ2 * A2+τ3 * A3)/(A2+A3)  [II]
    The resin composition according to claim 1, wherein the resin component (II) satisfies the following condition (1).
    Condition (1): Coefficients A 1 to A 3 determined by performing fitting of the following equation [I] on a relaxation curve represented by a relaxation strength y with respect to a relaxation time x measured using a pulse NMR apparatus, and The motility parameter M obtained by the following equation [II] using the spin-spin relaxation times τ 1 to τ 3 of each component is 0.01 to 0.25 seconds.
    y = A 1 * exp (−0.5 * (x / τ 1 ) 2 ) + A 2 * exp (−0.5 * (x / τ 2 ) 2 ) + A 3 * exp (−x / τ 3 ) [I]
    M = (τ 2 * A 2 + τ 3 * A 3 ) / (A 2 + A 3 ) [II]
  3.  前記樹脂成分(I)が、ポリウレタンである請求項1又は2に記載の樹脂組成物。 樹脂 The resin composition according to claim 1 or 2, wherein the resin component (I) is a polyurethane.
  4.  前記樹脂成分(I)が、湿気硬化型ポリウレタンである請求項1~3のいずれか1項に記載の樹脂組成物。 樹脂 The resin composition according to any one of claims 1 to 3, wherein the resin component (I) is a moisture-curable polyurethane.
  5.  前記樹脂成分(I)が、ポリオール化合物及びイソシアネート化合物からなる一液湿気硬化型ポリウレタンである請求項1~4のいずれか1項に記載の樹脂組成物。 樹脂 The resin composition according to any one of claims 1 to 4, wherein the resin component (I) is a one-pack moisture-curable polyurethane comprising a polyol compound and an isocyanate compound.
  6.  前記樹脂成分(II)が、パウダー状の凍結粉砕物である請求項1~5のいずれか1項に記載の樹脂組成物。 (6) The resin composition according to any one of (1) to (5), wherein the resin component (II) is a powdery frozen and pulverized product.
  7.  上記パウダー状の凍結粉砕物である前記樹脂成分(II)の50%体積平均径が、0.01mm~1.0mmである請求項6に記載の樹脂組成物。 (7) The resin composition according to (6), wherein the 50% volume average diameter of the resin component (II), which is the powder-like freeze-ground product, is 0.01 mm to 1.0 mm.
  8.  前記樹脂成分(II)の運動性パラメータMが、0.01~0.10秒である請求項2に記載の樹脂組成物。 The resin composition according to claim 2, wherein the mobility parameter M of the resin component (II) is 0.01 to 0.10 seconds.
  9.  前記樹脂成分(II)が、下記条件(2)を満たす請求項1~8のいずれか1項に記載の樹脂組成物。
    条件(2):JIS K7244-10(2005年)に準拠して、歪み量0.1%、周波数1Hz、測定温度-70~+100℃、昇温速度3℃/分の条件で測定した60℃のせん断貯蔵弾性率G’が0.10~0.58MPaであり、損失正接tanδのピーク温度が-5~+40℃である。
    9. The resin composition according to claim 1, wherein the resin component (II) satisfies the following condition (2).
    Condition (2): 60 ° C. measured based on JIS K7244-10 (2005) under the conditions of a distortion amount of 0.1%, a frequency of 1 Hz, a measurement temperature of −70 to + 100 ° C., and a heating rate of 3 ° C./min. Has a shear storage modulus G ′ of 0.10 to 0.58 MPa and a peak temperature of loss tangent tan δ of −5 to + 40 ° C.
  10.  前記樹脂成分(II)が、芳香族ビニル化合物に由来する構造単位を70mol%超含有する重合体ブロック(A)と、共役ジエン化合物に由来する構造単位を30mol%以上含有する重合体ブロック(B)とを有するブロック共重合体である、請求項1~9のいずれか1項に記載の樹脂組成物。 The resin component (II) has a polymer block (A) containing more than 70 mol% of a structural unit derived from an aromatic vinyl compound and a polymer block (B) containing 30 mol% or more of a structural unit derived from a conjugated diene compound. The resin composition according to any one of claims 1 to 9, which is a block copolymer having:
  11.  前記ブロック共重合体における重合体ブロック(A)の含有量が、6~22質量%である請求項1~10のいずれか1項に記載の樹脂組成物。 The resin composition according to any one of claims 1 to 10, wherein the content of the polymer block (A) in the block copolymer is 6 to 22% by mass.
  12.  前記ブロック共重合体における重合体ブロック(B)の水添率が、10~99mol%である請求項1~11のいずれか1項に記載の樹脂組成物。 The resin composition according to any one of claims 1 to 11, wherein the hydrogenation ratio of the polymer block (B) in the block copolymer is 10 to 99 mol%.
  13.  20℃における損失正接tanδの強度が0.15以上である請求項1~12のいずれか1項に記載の樹脂組成物。 The resin composition according to any one of claims 1 to 12, wherein the strength of the loss tangent tan δ at 20 ° C is 0.15 or more.
  14.  下記条件(1)を満たし、芳香族ビニル化合物に由来する重合体ブロック(A)と、水添率が10~99mol%であり、共役ジエン化合物に由来する重合体ブロック(B)とを有するブロック共重合体、スチレン系樹脂、共役ジエン重合体、及び、オレフィン系樹脂からなる群より選ばれる少なくとも1種である樹脂成分(II)からなるパウダー。
    条件(1):パルスNMR装置を用いて測定した、緩和時間xに対する緩和強度yで表される緩和曲線に対して、下記式[I]のフィッティングを行って決定した係数A~A及び各成分のスピン-スピン緩和時間τ~τを用いて下記式[II]で求められる、運動性パラメータMが0.01~0.25秒である。
    y=A1 * exp(-0.5 * (x/τ1)2)+A2 * exp(-0.5 * (x/τ2)2)+A3 * exp(-x/τ3)  [I]
    M=(τ2 * A2+τ3 * A3)/(A2+A3)  [II]
    A block that satisfies the following condition (1) and has a polymer block (A) derived from an aromatic vinyl compound and a polymer block (B) having a hydrogenation rate of 10 to 99 mol% and derived from a conjugated diene compound. A powder comprising at least one resin component (II) selected from the group consisting of a copolymer, a styrene resin, a conjugated diene polymer, and an olefin resin.
    Condition (1): Coefficients A 1 to A 3 determined by performing fitting of the following equation [I] on a relaxation curve represented by a relaxation strength y with respect to a relaxation time x measured using a pulse NMR apparatus, and The motility parameter M obtained by the following equation [II] using the spin-spin relaxation times τ 1 to τ 3 of each component is 0.01 to 0.25 seconds.
    y = A 1 * exp (−0.5 * (x / τ 1 ) 2 ) + A 2 * exp (−0.5 * (x / τ 2 ) 2 ) + A 3 * exp (−x / τ 3 ) [I]
    M = (τ 2 * A 2 + τ 3 * A 3 ) / (A 2 + A 3 ) [II]
  15.  前記樹脂成分(II)の凍結粉砕物である請求項14に記載のパウダー。 The powder according to claim 14, which is a freeze-ground product of the resin component (II).
  16.  50%体積平均径が、0.01mm~1.0mmである請求項14又は15に記載のパウダー。 16. The powder according to claim 14, wherein the 50% volume average diameter is 0.01 mm to 1.0 mm.
  17.  前記樹脂成分(II)の運動性パラメータMが、0.01~0.10秒である請求項14~16のいずれか1項に記載のパウダー。 The powder according to any one of claims 14 to 16, wherein the mobility parameter M of the resin component (II) is 0.01 to 0.10 seconds.
  18.  前記樹脂成分(II)が、下記条件(2)を満たす請求項14~17のいずれか1項に記載のパウダー。
    条件(2):JIS K7244-10(2005年)に準拠して、歪み量0.1%、周波数1Hz、測定温度-70~+100℃、昇温速度3℃/分の条件で測定した60℃のせん断貯蔵弾性率G’が0.10~0.58MPaであり、損失正接tanδのピーク温度が-5~+40℃である。
    18. The powder according to claim 14, wherein the resin component (II) satisfies the following condition (2).
    Condition (2): 60 ° C. measured based on JIS K7244-10 (2005) under the conditions of a distortion amount of 0.1%, a frequency of 1 Hz, a measurement temperature of −70 to + 100 ° C., and a heating rate of 3 ° C./min. Has a shear storage modulus G ′ of 0.10 to 0.58 MPa and a peak temperature of loss tangent tan δ of −5 to + 40 ° C.
  19.  前記樹脂成分(II)が、芳香族ビニル化合物に由来する構造単位を70mol%超含有する重合体ブロック(A)と、共役ジエン化合物に由来する構造単位を30mol%以上含有する重合体ブロック(B)とを有するブロック共重合体である、請求項14~18のいずれか1項に記載のパウダー。 The resin component (II) has a polymer block (A) containing a structural unit derived from an aromatic vinyl compound exceeding 70 mol% and a polymer block (B) containing a structural unit derived from a conjugated diene compound in an amount of 30 mol% or more. The powder according to any one of claims 14 to 18, which is a block copolymer having:
  20.  前記ブロック共重合体における重合体ブロック(A)の含有量が、6~22質量%である請求項14~19のいずれか1項に記載のパウダー。 20. The powder according to any one of claims 14 to 19, wherein the content of the polymer block (A) in the block copolymer is 6 to 22% by mass.
  21.  請求項1~13のいずれか1項に記載の樹脂組成物を含有する接着剤。 An adhesive containing the resin composition according to any one of claims 1 to 13.
  22.  請求項1~13のいずれか1項に記載の樹脂組成物を含有する自動車用ダイレクトグレージング接着剤。 A direct glazing adhesive for automobiles, comprising the resin composition according to any one of claims 1 to 13.
PCT/JP2019/034053 2018-08-31 2019-08-30 Resin composition, powder, adhesive and direct glazing adhesive for automobiles WO2020045609A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2020539611A JPWO2020045609A1 (en) 2018-08-31 2019-08-30 Resin compositions, powders, adhesives, and automotive direct glazing adhesives

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018163980 2018-08-31
JP2018-163980 2018-08-31

Publications (1)

Publication Number Publication Date
WO2020045609A1 true WO2020045609A1 (en) 2020-03-05

Family

ID=69643662

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/034053 WO2020045609A1 (en) 2018-08-31 2019-08-30 Resin composition, powder, adhesive and direct glazing adhesive for automobiles

Country Status (3)

Country Link
JP (1) JPWO2020045609A1 (en)
TW (1) TW202030261A (en)
WO (1) WO2020045609A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023063406A1 (en) * 2021-10-15 2023-04-20 積水化学工業株式会社 Thermally conductive resin sheet

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000290339A (en) * 1999-02-04 2000-10-17 Kuraray Co Ltd Thermoplastic polyuretahne composition
JP2003119343A (en) * 2001-10-12 2003-04-23 Kuraray Co Ltd Powdery polymer composition
WO2011040586A1 (en) * 2009-09-30 2011-04-07 株式会社クラレ Thermoplastic elastomer composition, molded article, and sealing material for medical use
JP2014080488A (en) * 2012-10-16 2014-05-08 Kuraray Co Ltd Thermoplastic elastomer composition and molded article formed from the composition
JP2014159537A (en) * 2013-02-21 2014-09-04 Okura Ind Co Ltd Semiconductive thermoplastic elastomer composition and electrophotographic seamless belt using the same
JP2018048236A (en) * 2016-09-20 2018-03-29 日本ゼオン株式会社 Antiblocking agent, molding material and molded body

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000290339A (en) * 1999-02-04 2000-10-17 Kuraray Co Ltd Thermoplastic polyuretahne composition
JP2003119343A (en) * 2001-10-12 2003-04-23 Kuraray Co Ltd Powdery polymer composition
WO2011040586A1 (en) * 2009-09-30 2011-04-07 株式会社クラレ Thermoplastic elastomer composition, molded article, and sealing material for medical use
JP2014080488A (en) * 2012-10-16 2014-05-08 Kuraray Co Ltd Thermoplastic elastomer composition and molded article formed from the composition
JP2014159537A (en) * 2013-02-21 2014-09-04 Okura Ind Co Ltd Semiconductive thermoplastic elastomer composition and electrophotographic seamless belt using the same
JP2018048236A (en) * 2016-09-20 2018-03-29 日本ゼオン株式会社 Antiblocking agent, molding material and molded body

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023063406A1 (en) * 2021-10-15 2023-04-20 積水化学工業株式会社 Thermally conductive resin sheet

Also Published As

Publication number Publication date
TW202030261A (en) 2020-08-16
JPWO2020045609A1 (en) 2021-08-26

Similar Documents

Publication Publication Date Title
CN109071860B (en) Foam molded body, sealing rubber, composite body of sealing rubber and panel, and method for increasing sound transmission loss
JP3309438B2 (en) Block copolymer
US10913843B2 (en) Resin composition, pellet, veil, damping material, sound insulation material, and intermediate film for laminated glass
CN112204059B (en) Hydrogenated product of block copolymer, resin composition, and various uses thereof
JPWO2010074267A1 (en) Block copolymer composition and hot melt adhesive composition
WO2020045609A1 (en) Resin composition, powder, adhesive and direct glazing adhesive for automobiles
JP4064158B2 (en) Adhesive / adhesive composition
WO2008029887A1 (en) Polyol composition for polyolefin adhesive and use thereof
EP3901211A2 (en) Thermoplastic elastomer composition and molded body
JPH01297443A (en) Crosslinked substance of high hardness
WO2020235661A1 (en) Tackifying composition
WO2019176659A1 (en) Urethane composition
JP7364671B2 (en) laminate
JP2698810B2 (en) Adhesive composition
JP6842262B2 (en) Urethane composition and moisture-curable polyurethane composition
JP4849209B2 (en) Adhesive composition and adhesive tape using the same
JP2005105209A (en) Highly damping elastomer composition
JP2021191813A (en) Tire and Thermoplastic Elastomer Composite
JPH0317176A (en) Hot-melt adhesive
JP4730505B2 (en) Adhesive composition
JP2001526722A (en) Polyurethane foam
JP2005272528A (en) Thermoplastic elastomer composition
JPS5936158A (en) Bituminous composition
TW202248256A (en) Block polymer, polymer mixture and adhesive
WO1993014135A1 (en) Damping material composition

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19854721

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2020539611

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19854721

Country of ref document: EP

Kind code of ref document: A1