WO2023063107A1 - Control apparatus - Google Patents

Control apparatus Download PDF

Info

Publication number
WO2023063107A1
WO2023063107A1 PCT/JP2022/036664 JP2022036664W WO2023063107A1 WO 2023063107 A1 WO2023063107 A1 WO 2023063107A1 JP 2022036664 W JP2022036664 W JP 2022036664W WO 2023063107 A1 WO2023063107 A1 WO 2023063107A1
Authority
WO
WIPO (PCT)
Prior art keywords
flow rate
unit
steam flow
information
main steam
Prior art date
Application number
PCT/JP2022/036664
Other languages
French (fr)
Japanese (ja)
Inventor
信治 岩下
博幸 高木
稔彦 瀬戸口
潤司 今田
幸司 滑澤
慶一 林
知通 江草
Original Assignee
三菱重工環境・化学エンジニアリング株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=85988315&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=WO2023063107(A1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by 三菱重工環境・化学エンジニアリング株式会社 filed Critical 三菱重工環境・化学エンジニアリング株式会社
Priority to KR1020247013387A priority Critical patent/KR20240073073A/en
Priority to CN202280068548.2A priority patent/CN118159776A/en
Publication of WO2023063107A1 publication Critical patent/WO2023063107A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23GCREMATION FURNACES; CONSUMING WASTE PRODUCTS BY COMBUSTION
    • F23G5/00Incineration of waste; Incinerator constructions; Details, accessories or control therefor
    • F23G5/50Control or safety arrangements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23GCREMATION FURNACES; CONSUMING WASTE PRODUCTS BY COMBUSTION
    • F23G5/00Incineration of waste; Incinerator constructions; Details, accessories or control therefor
    • F23G5/44Details; Accessories
    • F23G5/442Waste feed arrangements
    • F23G5/444Waste feed arrangements for solid waste
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23GCREMATION FURNACES; CONSUMING WASTE PRODUCTS BY COMBUSTION
    • F23G2205/00Waste feed arrangements
    • F23G2205/14Waste feed arrangements using hopper or bin
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23GCREMATION FURNACES; CONSUMING WASTE PRODUCTS BY COMBUSTION
    • F23G2207/00Control
    • F23G2207/20Waste supply
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E20/00Combustion technologies with mitigation potential
    • Y02E20/12Heat utilisation in combustion or incineration of waste

Definitions

  • Patent Document 1 information indicating the current combustion state is obtained in real time, and based on this information, the amount of combustion heat and the amount of boiler evaporation are estimated, thereby enabling waste combustion control without time delay.
  • a method for controlling combustion is disclosed. This combustion control method obtains the carbon, hydrogen, and moisture in the waste, which are directly related to the calorific value of the waste used as fuel, from the composition of the exhaust gas immediately after combustion, which is obtained in real time. It calculates the amount of combustion heat, the amount of latent heat, and the amount of waste (processed amount).
  • images of a flame reaching a secondary combustion zone from a primary combustion zone are obtained using a plurality of imaging devices with different viewpoints, and image synthesis processing is performed on the plurality of images obtained from different viewpoints.
  • a method for evaporative control is disclosed that includes creating a three-dimensional image containing the flame of the secondary combustion zone by performing . This evaporation amount control method analyzes the above three-dimensional image to calculate the time change of the flame flow velocity in the direction along the flow path of the combustion gas generated by the primary combustion or secondary combustion. It gives an index of the amount of heat that is being used.
  • Patent Document 3 a plurality of infrared cameras are used to observe waste accumulated in at least the drying section and the burning section through a filter that selectively transmits light of wavelengths not emitted by flames, and the viewpoint is
  • a combustion control method is disclosed that includes acquiring a plurality of different thermal images and creating a three-dimensional thermal image based on the plurality of thermal images.
  • thickness progress information indicating how the thickness of the waste has changed in time series is calculated, and the change in the volumetric flow rate of the waste from the past to the present time is calculated. Based on this, the combustion correction coefficient is determined, and the index of the amount of heat generated from the waste is calculated.
  • JP 2017-096517 A Japanese Patent Application Laid-Open No. 2019-219108 JP 2021-067381 A
  • the main steam flow rate may fluctuate greatly depending on the condition of the incinerated material. Therefore, with the techniques described in Patent Documents 1 to 3, it may be difficult to perform combustion control based on a highly accurate predicted value of the main steam flow rate.
  • the present disclosure has been made to solve the above problems, and aims to provide a control device capable of performing combustion control based on a highly accurate predicted value of the main steam flow rate.
  • the control device includes an information acquisition unit, a steam flow rate prediction unit, and a control unit.
  • the information acquisition unit acquires information about the incineration material before it is supplied to the processing space in the incineration facility.
  • the steam flow rate prediction unit predicts the main steam flow rate generated by the boiler of the incineration facility based on the prediction information including the information acquired by the information acquisition unit.
  • the control section performs combustion control based on the main steam flow rate predicted by the steam flow rate prediction section.
  • combustion control can be performed based on a highly accurate predicted value of the main steam flow rate.
  • FIG. 1 is a schematic configuration diagram showing the entirety of an incineration facility according to an embodiment of the present disclosure
  • FIG. 1 is a block diagram showing a functional configuration of combustion equipment according to an embodiment of the present disclosure
  • FIG. 4 is a block diagram showing the functional configuration of a data converter according to the embodiment of the present disclosure
  • FIG. 10 is a diagram showing a correlation between an estimated value of waste calorific value based on a detection result of a moisture meter according to an embodiment of the present disclosure and a waste calorific value confirmed in an actual machine; It is a figure which shows an example of the process by the 1st feature-value extraction part which concerns on embodiment of this indication.
  • FIG. 10 is a diagram showing a correlation between an estimated value of waste calorific value based on a detection result of a moisture meter according to an embodiment of the present disclosure and a waste calorific value confirmed in an actual machine; It is a figure which shows an example of the process by the 1st feature-value extraction part which concerns on embodiment of this indication
  • FIG. 4 is a diagram illustrating an example of processing by an image conversion unit according to the embodiment of the present disclosure
  • FIG. FIG. 7 is a diagram illustrating an example of processing by a dust layer height detection unit according to the embodiment of the present disclosure
  • FIG. 4 is a diagram showing an example of correlation between each piece of input information and main steam flow rate according to an embodiment of the present disclosure
  • FIG. 4 is a diagram showing an example of time delay setting values for each piece of input information according to an embodiment of the present disclosure
  • FIG. It is a figure which shows an example of the evaluation process by the prediction model determination part which concerns on embodiment of this indication.
  • FIG. 4 is a diagram showing an example of control contents by a control unit according to the embodiment of the present disclosure
  • FIG. 4 is a flow chart showing the flow of prediction model creation processing according to the embodiment of the present disclosure.
  • 4 is a flow chart showing the process flow of the operation stage of the combustion facility according to the embodiment of the present disclosure;
  • FIG. 4 is a diagram showing an example of a comparison result between a predicted value and an actual measured value of a main steam flow rate according to an embodiment of the present disclosure;
  • 1 is a hardware configuration diagram showing the configuration of a computer according to an embodiment of the present disclosure;
  • based on XX means “based on at least XX”, and may include cases based on other elements in addition to XX. Also, “based on XX” is not limited to the case of using XX directly, but may also include the case of being based on what has been calculated or processed with respect to XX. In the present disclosure, “XX or YY” is not limited to either one of XX and YY, but may include both XX and YY. This is also the case when there are three or more selective elements. "XX” and “YY” are arbitrary elements (eg, arbitrary information).
  • FIG. 1 is a schematic configuration diagram showing the overall configuration of an incineration facility SF according to an embodiment.
  • the incineration facility SF is a stoker furnace that uses, for example, municipal waste, industrial waste, or biomass as the material to be incinerated G.
  • the “object to be incinerated G” will be referred to as “garbage G”.
  • the incineration facility SF is not limited to the stoker furnace, and may be another type of incineration facility.
  • the incineration facility SF includes, for example, a crane 1, an incinerator 2, an exhaust heat recovery boiler 3, a cooling tower 4, a dust collector 5, a flue 6, a chimney 7, and a control device 100.
  • the crane 1 carries the garbage G stored in the garbage pit to the hopper 11 of the incinerator 2, which will be described later, and throws it into the hopper 11.
  • the crane 1 includes a gripping portion 1a that grips the garbage G, and a weight sensor 1b provided in the gripping portion 1a.
  • the weight sensor 1b is, for example, a load cell.
  • the weight sensor 1b detects the weight of the dust G gripped by the gripping portion 1a in a state in which the dust G is gripped and lifted by the gripping portion 1a.
  • a detection result of the weight sensor 1b is transmitted to the control device 100.
  • the detection result of the weight sensor 1b is an example of "information on the dust G before being supplied to the processing space V" and an example of "information on the properties of the dust G".
  • “information about the properties of the garbage G” means information about the properties or conditions of the garbage G.
  • “information about the properties of the garbage G” is not limited to information that directly indicates the properties of the garbage G, and is information used to specify the properties of the garbage G (for example, combined with other information information that can identify the properties of the dust G) or the like.
  • the weight of the dust G is information that can specify the density of the dust G by being combined with the volume of the dust G, which will be described later.
  • the density of the dust G is an example of the properties of the dust G.
  • the incinerator 2 is a furnace that burns while transporting the garbage G thrown into the hopper 11 described later. Exhaust gas is generated in the incinerator 2 as the garbage G is burned in the incinerator 2 . The generated exhaust gas is sent to an exhaust heat recovery boiler 3 provided above the incinerator 2 . The exhaust heat recovery boiler 3 heats the water by exchanging heat between the exhaust gas generated in the incinerator 2 and the water to generate steam.
  • the exhaust gas that has passed through the heat recovery boiler 3 is cooled by the temperature reduction tower 4 and then sent to the dust collector 5 . After soot and dust are removed by the dust collector 5, the exhaust gas is discharged into the atmosphere through the flue 6 and the chimney 7.
  • the flue 6 is provided with a gas concentration sensor 6a.
  • the gas concentration sensor 6a detects concentrations of various gases (for example, oxygen concentration) contained in the exhaust gas flowing through the flue 6. As shown in FIG.
  • the detection result of the gas concentration sensor 6a may include one or more of the CO concentration, NOx concentration, and SOx concentration instead of/in addition to the oxygen concentration.
  • a detection result of the gas concentration sensor 6 a is transmitted to the control device 100 .
  • the incinerator 2 has, for example, a supply mechanism 10, a furnace body 20, a stoker 30, an air box 41, a discharge chute 42, a furnace 43, and a blower mechanism 50.
  • the supply mechanism 10 is a mechanism that temporarily stores the waste G carried by the crane 1 and sequentially supplies the waste G toward the processing space V of the furnace main body 20, which will be described later.
  • the supply mechanism 10 has, for example, a hopper 11, a feeder 12, an extrusion device 13 (see FIG. 2), an object measuring instrument 14, and a moisture measuring instrument 15.
  • the hopper 11 is a reservoir provided to supply the refuse G to the interior of the furnace body 20 .
  • Garbage G carried by the crane 1 is put into the hopper 11 .
  • the hopper 11 has an inlet portion 11a and an outlet portion 11b.
  • the entrance part 11a is an entrance part for throwing in the garbage G from the outside.
  • the inlet portion 11a extends, for example, in the vertical direction. Garbage G thrown into the inlet portion 11a moves downward due to gravity.
  • the outlet portion 11b is provided below the inlet portion 11a.
  • the outlet portion 11b is an outlet portion that guides the refuse G supplied from the inlet portion 11a toward a processing space V inside the furnace body 20, which will be described later.
  • the outlet portion 11b extends horizontally, for example.
  • the feeder 12 is provided at the outlet portion 11b of the hopper 11.
  • the feeder 12 has a plate shape along the bottom of the outlet 11 b of the hopper 11 and is arranged along the bottom of the outlet 11 b of the hopper 11 .
  • the feeder 12 can reciprocate along the direction from the outlet 11 b of the hopper 11 toward the processing space V of the furnace body 20 .
  • the feeder 12 is driven by an extrusion device 13 to push out the refuse G accumulated inside the hopper 11 (for example, the exit portion 11 b of the hopper 11 ) toward the processing space V of the furnace body 20 .
  • the object measuring instrument 14 is a measuring instrument that detects the height of the garbage G thrown into the hopper 11 by the crane 1 .
  • the object measuring device 14 is, for example, LiDAR (Light Detection and Ranging).
  • the object measuring device 14 is provided, for example, at the entrance portion 11a of the hopper 11 and detects the height of the refuse GM passing through the entrance portion 11a of the hopper 11 .
  • the object measuring instrument 14 may directly detect the volume of the dust G by three-dimensional measurement instead of the height of the dust G.
  • FIG. A detection result of the object measuring device 14 is transmitted to the control device 100 .
  • the detection result of the object measuring device 14 is an example of "information about the dust G before being supplied to the processing space V" and an example of "information about the properties of the dust G".
  • the moisture measuring instrument 15 is a measuring instrument that detects a value related to moisture contained in the garbage G thrown into the hopper 11 (for example, moisture content or moisture content).
  • the moisture meter 15 has an irradiation section and a detection section provided in the hopper 11, and an analysis section.
  • the irradiation unit irradiates the garbage G accumulated in the hopper 11 with an electromagnetic wave of a predetermined frequency band.
  • the detection unit receives electromagnetic waves emitted from the irradiation unit and transmitted through the dust G or reflected by the dust G.
  • the analysis unit stores, for example, correlation information in advance that indicates the relationship between changes in electromagnetic wave characteristics (for example, changes in amplitude or changes in phase) and moisture content.
  • the analysis unit detects the moisture content contained in the dust G based on the characteristic change of the electromagnetic wave between the irradiation unit and the detection unit and the correlation information.
  • the irradiation unit and the detection unit of the moisture meter 15 are provided slightly above the feeder 12 and detect the moisture content of the garbage G deposited on the upper surface of the feeder 12 .
  • a detection result of the moisture meter 15 is transmitted to the control device 100 .
  • the detection result of the moisture measuring device 15 is an example of "information on the garbage G before being supplied to the processing space V", an example of "information on the properties of the garbage G", and an example of "moisture measurement in the hopper 11". This is an example of "Results”.
  • the furnace main body 20 is provided adjacent to the hopper 11 and is a facility for burning the garbage G while conveying it. Below, the conveying direction of the refuse G in the combustion facility F is called "conveying direction D".
  • the furnace body 20 has a drying stage 20a, a combustion stage 20b, and a post-combustion stage 20c in this order from the upstream side to the downstream side in the transport direction D. As shown in FIG.
  • the drying stage 20a is located upstream of the combustion stage 20b and the post-combustion stage 20c, and is an area for drying the refuse G supplied from the hopper 11 prior to combustion on the stoker 30.
  • the combustion stage 20b and the post-combustion stage 20c are areas where the refuse G in a dried state after passing through the drying stage 20a is burned on the stoker 30. As shown in FIG. In the combustion stage 20b, the pyrolysis gas generated from the dust G causes diffusion combustion, and a luminous flame F is generated. In the post-combustion stage 20c, fixed carbon combustion occurs after diffusion combustion of the dust G, so the luminous flame F does not occur.
  • the combustion stage 20b and the post-combustion stage 20c are examples of a processing space V in which the garbage G is burned.
  • the drying stage 20a is an example of a region on the upstream side of the processing space V in the transport direction D. As shown in FIG.
  • the furnace body 20 has a visible light camera 21 and an infrared camera 22 .
  • the visible light camera 21 and the infrared camera 22 are arranged on the downstream side of the processing space V in the transport direction D, and capture images of the upstream side in the transport direction D from the downstream side.
  • the visible light camera 21 and the infrared camera 22 are provided at the downstream end of the furnace main body 20 in the transport direction D (hereinafter referred to as "furnace bottom").
  • the visible light camera 21 and the infrared camera 22 capture an image of the upstream side in the conveying direction D from the downstream side through a window provided at the bottom of the furnace body 20 .
  • the visible light camera 21 and the infrared camera 22 are arranged vertically or horizontally adjacent to each other.
  • the visible light camera 21 captures the luminous flame F from the bottom of the furnace body 20 .
  • the imaging result of the visible light camera 21 is transmitted to the control device 100 .
  • the infrared camera 22 captures an image of the dust G deposited on the drying stage 20a of the furnace body 20 (that is, upstream of the processing space V) from the bottom of the furnace body 20 through the luminous flame F. Further, in the present embodiment, the infrared camera 22 captures an image of the exit portion 11b of the hopper 11 from the bottom of the furnace body 20 through the luminous flame F. For example, the infrared camera 22 captures an image including the garbage G accumulated on the feeder 12 (an image showing the accumulated state of the garbage G) at the exit portion 11b of the hopper 11 .
  • the imaging result of the infrared camera 22 is transmitted to the control device 100 .
  • the imaging result of the infrared camera 22 is an example of "information about the garbage G before being supplied to the processing space V" and an example of "accumulation state information indicating the accumulation state of the garbage G in the hopper 11". .
  • one infrared camera 22 captures an image including both the drying stage 20a of the furnace body 20 and the outlet 11b of the hopper 11 (for example, the dust G accumulated on the feeder 12).
  • the furnace body 20 has a first infrared camera that images the drying stage 20a of the furnace body 20 and a second infrared camera that images the outlet portion 11b of the hopper 11 (for example, the waste G accumulated on the feeder 12). You may provide an outside camera separately. Also, the infrared camera 22 may be provided at another position instead of the bottom of the furnace body 20 .
  • the stoker 30 includes a plurality of grates 31 and a grate drive 32 (see FIG. 2).
  • the plurality of fire grates 31 form a stoker surface 30a that serves as the bottom surface of the furnace body 20 (for example, the bottom surface of the processing space V).
  • Garbage G is supplied in layers by the supply mechanism 10 to the stoker surface 30a.
  • the stoker surface 30a is provided over the drying stage 20a, the combustion stage 20b, and the post-combustion stage 20c.
  • the plurality of grates 31 includes fixed grates and movable grates.
  • the fixed grate is fixed to the upper surface of the wind box 41, which will be described later.
  • the movable grate reciprocates along the conveying direction D at a constant speed, thereby conveying the garbage G on the movable grate and the fixed grate (on the stoker surface 30a) to the downstream side while stirring and mixing. .
  • the wind box 41 is provided below the stoker 30 and supplies combustion air to the interior of the furnace body 20 through the stoker 30 .
  • a plurality of wind boxes 41 are arranged in the transport direction D. As shown in FIG.
  • the windbox 41 has a windbox pressure sensor 41a.
  • the wind box pressure sensor 41 a detects the pressure inside the wind box 41 .
  • the pressure inside the wind box 41 corresponds to the pressure of combustion air supplied to the inside of the furnace body 20 through a primary air line 52, which will be described later.
  • a detection result of the wind box pressure sensor 41 a is transmitted to the control device 100 .
  • the discharge chute 42 is a device for dropping the garbage G, which has become ash after combustion, to the ash extrusion device located below the furnace body 20.
  • the discharge chute 42 is provided at the bottom of the furnace body 20 .
  • the furnace 43 extends upward from the top of the furnace body 20 . Exhaust gas generated by burning the garbage G in the processing space V is sent to the exhaust heat recovery boiler 3 through the furnace 43 .
  • the blower mechanism 50 supplies air (for example, combustion air) to the interior of the furnace body 20 .
  • the blower mechanism 50 has, for example, a blower 51 , a primary air line 52 , an air preheater 53 , a secondary air line 54 , a damper 55 and an air flow rate sensor 56 .
  • the blower 51 is a forced air blower that forces air (for example, combustion air) into the interior of the furnace body 20 .
  • the blower 51 includes, for example, a first blower 51A and a second blower 51B.
  • the first blower 51A pressurizes combustion air into the interior of the furnace body 20 (for example, the processing space V) through the primary air line 52 and the wind box 41 .
  • the second blower 51B pumps combustion air into the furnace 43 through the secondary air line 54 .
  • the primary air line 52 connects the first blower 51A and the air box 41.
  • One or more (eg, multiple) primary air dampers 55A are provided in the middle of the primary air line 52 .
  • the primary air damper 55A changes the flow rate of combustion air flowing through the primary air line 52 according to the degree of opening of the primary air damper 55A.
  • the air preheater 53 is a heat exchanger that preheats the air pressure-fed from the first blower 51A.
  • the air preheater 53 is provided in the middle of the primary air line 52 .
  • the secondary air line 54 connects the second blower 51B and the furnace 43.
  • the secondary air supplied into the furnace 43 goes toward the garbage G from above the stoker 30 .
  • One or more (eg, multiple) secondary air dampers 55B are provided in the middle of the secondary air line 54 .
  • the secondary air damper 55B changes the flow rate of combustion air flowing through the secondary air line 54 according to the degree of opening of the secondary air damper 55B.
  • the primary air damper 55A and the secondary air damper 55B are hereinafter collectively referred to as "damper 55".
  • the air flow rate sensor 56 detects the flow rate of air (for example, combustion air) supplied inside the furnace body 20 .
  • the air flow sensor 56 includes, for example, a first air flow sensor 56A and a second air flow sensor 56B.
  • the first air flow rate sensor 56A is provided in the middle of the primary air line 52 and detects the flow rate of air supplied through the primary air line 52 .
  • the second air flow rate sensor 56B is provided in the middle of the secondary air line 54 and detects the flow rate of air supplied through the secondary air line 54 .
  • the "detection result of the air flow sensor 56" includes, for example, the detection result of the first air flow sensor 56A and the detection result of the second air flow sensor 56B.
  • the exhaust heat recovery boiler 3 includes, for example, a boiler body 61, a pipeline 62, a radiation temperature sensor (infrared temperature sensor) 63, a furnace pressure sensor 64, a feed water flow sensor 65, and a superheater desuperheater flow sensor (steam flow sensor ) 66.
  • the boiler body 61 is connected to the furnace 43 of the incinerator 2. Exhaust gas generated in the incinerator 2 flows into the boiler main body 61 .
  • a radiation temperature sensor 63 and an in-furnace pressure sensor 64 are provided in the boiler main body 61 .
  • a radiation temperature sensor 63 detects the temperature inside the boiler body 61 .
  • the furnace pressure sensor 64 detects the pressure inside the boiler body 61 . The detection results of radiation temperature sensor 63 and furnace pressure sensor 64 are transmitted to control device 100 .
  • the pipeline 62 extends inside the boiler body 61 .
  • Line 62 is provided with multiple superheaters and multiple desuperheaters.
  • Water is supplied from the water supply unit to the inlet of the conduit 62 .
  • At least part of the water flowing through the pipe line 62 is heated by heat exchange inside the boiler body 61 and becomes main steam that flows toward an external device (for example, a turbine).
  • a "main steam flow rate" which will be described later, means a flow rate of steam flowing from the pipeline 62 toward an external device (for example, a turbine).
  • the water supply flow rate sensor 65 is provided at the inlet of the pipeline 62 and detects the flow rate of water supplied to the pipeline 62 .
  • a superheater desuperheater flow sensor 66 is provided in the middle of the pipeline 62 and detects the flow rate of the fluid (eg, steam) flowing through the pipeline 62 .
  • the superheater desuperheater flow sensor 66 includes a first superheater desuperheater flow sensor 66A that detects the flow rate of fluid passing through the primary desuperheater (primary superheater desuperheater flow rate) and a second superheater desuperheater flow sensor 66B that senses the flow rate of fluid passing through the vessel (secondary superheater desuperheater flow).
  • the "detection result of the superheater desuperheater flow sensor 66" means, for example, the detection result of the first superheater desuperheater flow sensor 66A and the detection result of the second superheater desuperheater flow sensor 66B. including.
  • the detection results of the feedwater flow rate sensor 65 and the superheater desuperheater flow rate sensor 66 are sent to the control device 100 .
  • FIG. 2 is a block diagram showing the functional configuration of the incineration facility SF according to the embodiment.
  • the control device 100 centrally controls the incineration facility SF.
  • the control device 100 performs combustion control of the refuse G in the processing space V of the furnace body 20 .
  • the control device 100 has, for example, an information acquisition unit 110, a data conversion unit 120, a prediction model creation unit 130, a prediction model determination unit 140, a steam flow rate prediction unit 150, and a control unit 160.
  • a device to be controlled by the control device 100 includes the extrusion device 13, the blower 51, the damper 55, the grate driving device 32, and the like.
  • the information acquisition unit 110 acquires detection results and the like detected by the above-described various sensors included in the incineration facility SF.
  • the information acquisition unit 110 obtains the detection result of the weight sensor 1b (garbage weight), the detection result of the object measuring instrument 14 (garbage height), the detection result of the moisture measuring instrument 15 (garbage moisture detection result), the visible light camera 21 imaging result (combustion flame image), imaging result of the infrared camera 22 (dust layer image), detection result of the wind box pressure sensor 41a (wind box pressure), detection result of the air flow rate sensor 56 (forced air flow rate), radiation
  • the detection result of the temperature sensor 63 furnace temperature
  • the detection result of the furnace pressure sensor 64 furnace pressure
  • the detection result of the feedwater flow rate sensor 65 feedwater flow rate
  • the detection result of the superheater desuperheater flow rate sensor 66 superheater desuperheater flow rate
  • the detection result oxygen concentration etc.
  • One or more of the detection result of the heater flow rate sensor 66 and the detection result of the gas concentration sensor 6a are included in the process data described later.
  • Each of these detection results is, together with the detection result of the weight sensor 1b, the detection result of the object measuring instrument 14, the detection result of the moisture measuring instrument 15, the imaging result of the visible light camera 21, and the imaging result of the infrared camera 22, " It corresponds to an example of "prediction information”.
  • "obtaining” in the present disclosure is not limited to active acquisition by outputting a transmission request, and includes acquisition by passively receiving information transmitted from various devices. This definition also applies to the following description.
  • the information acquisition unit 110 acquires process values indicating the state of each device included in the control target device S as part of process data described later.
  • the controlled device S includes process values indicating the state of the extrusion device 13 (for example, the stroke length of the feeder 12 and/or the moving speed of the feeder 12, process values indicating the state of the blower 51 (for example, the rotation speed of the blower 51), A process value indicating the state of the damper 55 (for example, the opening of the damper 55) and a process value indicating the state of the grate drive device 32 (for example, the moving speed of the grate 31) are acquired as part of the process data.
  • Each of the process data is an example of “prediction information.”
  • a process value indicating the state of the extrusion device 13 is “the feeder 12 and an example of "supply state information indicating the supply state of the waste G from the hopper 11 to the processing space V.” , to the data conversion unit 120 .
  • the data conversion unit 120 performs predetermined data conversion on information received from the information acquisition unit 110 .
  • the data conversion unit 120 performs predetermined data conversion such as feature amount extraction, time delay adjustment, and averaging.
  • FIG. 3 is a block diagram showing the functional configuration of the data converter 120 according to the embodiment.
  • the data conversion unit 120 includes, for example, a first calorific value estimating unit 121, a second calorific value estimating unit 122, a first feature amount extracting unit 123, an oxygen concentration estimating unit 124, a flammability coefficient calculating unit 125, an image converting unit ( image processing unit) 126, dust layer height detection unit 127, second feature amount extraction unit 128, feeder supply amount estimation unit 129, and adjustment processing unit PU.
  • the detection result (garbage weight) of the weight sensor 1b and the detection result (garbage height) of the object measuring device 14 are input to the first heat generation estimation unit 121 .
  • the first calorific value estimator 121 calculates the volume of the garbage G based on the height of the garbage G (for example, based on the height of the garbage G and the size of the gripping portion 1a of the crane 1). Then, the first calorific value estimation unit 121 calculates the density of the dust G by dividing the weight of the dust G by the volume of the dust G.
  • the first calorific value estimator 121 has a correlation indicating the correlation between the density of the garbage G and the calorific value of the garbage G (for example, lower heating value LHV) (hereinafter referred to as “garbage calorific value”).
  • the correlation information is, for example, a calorific value estimation formula for calculating an estimated value of the calorific value of the refuse G from the density of the refuse G.
  • FIG. The first calorific value estimator 121 calculates an estimated value of the calorific value of waste based on the calculated density of the waste G and the correlation information.
  • the first calorific value estimator 121 outputs the calculated estimated value of the waste calorific value to the adjustment processor PU.
  • the density in the present embodiment means, for example, bulk density.
  • the bulk density is not the specific density (true density) of the object, but the density calculated from the "weight per unit volume including voids".
  • the first calorific value estimation unit 121 may estimate and use the true density instead of/in addition to the bulk density.
  • the density of the garbage G calculated by the first calorific value estimating unit 121 is based on the weight measured outside the hopper 11, and is equivalent to the density of the garbage G inside the hopper 11. is. Therefore, the density of the garbage G calculated by the first calorific value estimator 121 corresponds to an example of "the density of the garbage G in the hopper 11".
  • the detection result of the moisture meter 15 (garbage moisture detection result) is input to the second calorific value estimation unit 122 .
  • the volume of the dust G calculated by the first calorific value estimating unit 121 may also be input to the second calorific value estimating unit 122 .
  • the second calorific value estimator 122 can calculate the moisture content of the dust G by multiplying the moisture content of the dust G by the volume of the dust G.
  • the second calorific value estimator 122 has correlation information indicating the correlation between the value (moisture content or moisture content) related to the moisture content of the garbage G and the calorific value of the garbage (for example, the lower calorific value).
  • the correlation information is, for example, a calorific value estimation formula for calculating an estimated value of the calorific value of waste G from a value related to moisture of the waste G.
  • FIG. The second calorific value estimating unit 122 calculates an estimated value of the calorific value of the waste based on the value related to the water content of the waste G and the correlation information.
  • the second calorific value estimator 122 outputs the calculated estimated value of the waste calorific value to the adjustment processor PU.
  • FIG. 4 is a diagram showing the correlation between the estimated value of the heating value of waste based on the detection result of the moisture measuring instrument 15 and the heating value of waste confirmed in the actual machine.
  • the inventors of the present invention have found that there is a sufficiently high correlation between the estimated value of the heating value of waste based on the detection result of the moisture measuring device 15 and the heating value of waste confirmed in the actual machine. confirmed by et al.
  • the moisture measuring device 15 since the estimated value of the calorific value of the dust based on the detection result of the moisture measuring device 15 is information preceding the calorific value of the dust G confirmed in the actual machine, the moisture measuring device can The inventors of the present invention have confirmed that the correlation between the estimated value of the waste heat generation amount based on the detection result of No. 15 and the waste heat generation amount confirmed in the actual machine can be enhanced.
  • the photographing result (combustion flame image) of the visible light camera 21 is input to the first feature quantity extraction unit 123 .
  • the first feature quantity extraction unit 123 performs clustering processing on the input combustion flame image, thereby converting it into color image data IM (see FIG. 5) divided into a plurality of color regions according to color information. . Then, the first feature quantity extraction unit 123 extracts a feature quantity relating to the flame state based on the color image data IM.
  • the color information is RGB color components, and each of the plurality of color regions is set by clustering processing so that the RGB color components do not overlap each other.
  • the first feature amount extraction unit 123 decomposes the combustion flame image into RGB color components for each pixel, and determines a color region including each pixel. Note that the color information is not limited to RGB color components, and may be luminance or saturation.
  • the algorithm for clustering processing is not particularly limited, and various known clustering algorithms can be used.
  • the clustering process may be performed using an algorithm capable of specifying the number of clusters such as k-means, or may be performed using an algorithm such as flowsom which automatically determines the number of clusters.
  • FIG. 5 is a diagram showing an example of color image data IM.
  • the color image data IM exemplified in FIG. 5 is divided into seven color regions A by clustering processing. It includes an area A4, a fifth color area A5, a sixth color area A6, and a seventh color area A7.
  • Each of the first color area A1 to the seventh color area A7 is converted to a black and white (gray scale) gradation value, and becomes darker from the first color area A1 to the seventh color area A7.
  • the first feature amount extraction unit 123 calculates the total number of pixels (that is, the area) divided into the first color area A1, and extracts the total number of pixels as a feature amount. For example, the first feature amount extraction unit 123 extracts the total number of pixels of the first color area A1 at predetermined time intervals (for example, every second). The first feature amount extraction unit 123 also calculates the total number of pixels for each predetermined time period for each of the second color area A2 to the seventh color area A7, and extracts each total number of pixels as a feature amount.
  • the feature amount includes the total number of pixels of all color regions (the first color region A1 to the seventh color region A7) among the plurality of color regions, but the present disclosure is not limited to this form.
  • the feature amount may include the total number of pixels in at least one color area among the plurality of color areas.
  • the first feature amount extraction unit 123 outputs the extracted feature amount related to the flame state to the oxygen concentration estimation unit 124 and to the adjustment processing unit PU. Note that the method for extracting the feature amount by the first feature amount extraction unit 123 is not limited to clustering, and another method may be used.
  • the feature amount extracted by the first feature amount extraction section 123 and part or all of the process data acquired by the information acquisition section 110 are input to the oxygen concentration estimation section 124 .
  • the process data input to the oxygen concentration estimator 124 are, for example, the detection result of the wind box pressure sensor 41a, the detection result of the air flow rate sensor 56, the detection result of the radiation temperature sensor 63, the detection result of the furnace pressure sensor 64, and the feed water.
  • the oxygen concentration estimation unit 124 derives an estimation formula for estimating the oxygen concentration in the processing space V by performing regression analysis by machine learning based on the input feature amount and process data. Then, the oxygen concentration estimator 124 calculates an estimated value of the oxygen concentration in the processing space V in real time based on the input feature amount and process data and the above estimation formula. The oxygen concentration estimation unit 124 outputs the calculated estimated value of the oxygen concentration to the flammability coefficient calculation unit 125 .
  • the method for deriving the above estimation formula by the oxygen concentration estimating unit 124 is not limited to regression analysis, and may be another method. Also, the machine learning algorithm is not particularly limited, and various known algorithms can be used.
  • the estimated value of the oxygen concentration calculated by the oxygen concentration estimating unit 124 and part or all of the process data acquired by the information acquiring unit 110 are input to the flammability coefficient calculating unit 125 .
  • the process data input to the oxygen concentration estimation unit 124 is, for example, one or more of the detection result of the radiation temperature sensor 63, the moving speed of the feeder 12, and the like.
  • the flammability coefficient calculator 125 quantifies the combustion state of the processing space V based on the estimated value of the oxygen concentration, the detection result of the radiation temperature sensor 63, the amount of change in the moving speed of the feeder 12, and the like. Calculate the flammability factor.
  • the flammability coefficient calculator 125 outputs the calculated flammability coefficient to the adjustment processor PU.
  • "flammability" means "combustion condition.”
  • the imaging result (dust layer image) of the infrared camera 22 is input to the image conversion unit 126 .
  • the image conversion unit 126 performs predetermined image processing on the input dust layer image to simplify the dust layer image. For example, the image conversion unit 126 binarizes the input dust layer image.
  • the binarization method is, for example, the Otsu method, but is not limited to this.
  • FIG. 6 is a diagram showing an example of processing by the image conversion unit 126.
  • the dust layer image which is a color image (or monochrome image) captured by the infrared camera 22, is converted into a black and white image by the image conversion unit 126.
  • An image (for example, a black-and-white image) obtained by the image converter 126 is output to the dust layer height detector 127 .
  • the image obtained by the image conversion unit 126 is input to the dust layer height detection unit 127 .
  • the dust layer height detection unit 127 detects the height of the dust G (dust layer height) in the drying stage 20a of the furnace body 20 based on the input image.
  • FIG. 7 is a diagram showing an example of processing by the dust layer height detection unit 127.
  • the dust layer height detection unit 127 detects one or more predetermined attention areas R (see FIG. 6) that are part of the image obtained by the image conversion unit 126 (in the example shown in FIG. 6, 2 places). Then, the dust layer height detection unit 127 divides the image of the set attention area R into a plurality of divided areas Ra (for example, the attention area R is divided vertically and horizontally into 20 areas, and divided horizontally and horizontally). Divided regions Ra) divided into five in the direction are set (see (a) in FIG. 7). Note that in FIG. 7, the data of the two regions of interest R are shown side by side.
  • the dust layer height detection unit 127 For each divided area Ra, the dust layer height detection unit 127 assigns "1" to the divided area Ra when the black is greater than 50%, and assigns "1" to the divided area Ra when the black is 50% or less. 0” (see (b) in FIG. 7). Then, the dust layer height detection unit 127 calculates the position of the uppermost divided area Ra of "1" as the dust layer height. For example, in the example shown in FIG. 7, the height position of line H is calculated as the dust layer height. The dust layer height detection unit 127 outputs the calculated dust layer height to the feeder supply amount estimation unit 129 .
  • the imaging result (dust layer image) of the infrared camera 22 is input to the second feature amount extraction unit 128 .
  • the second feature amount extraction unit 128 performs clustering processing on the input dust layer image, thereby converting the dust layer image into color image data divided into a plurality of color regions according to the color information. Then, the second feature quantity extraction unit 128 extracts a feature quantity relating to the supply state of dust based on the color image data.
  • the processing method of "dividing an image into a plurality of color regions according to color information by clustering processing" and the clustering processing algorithm are the same as the processing method and algorithm of the first feature quantity extraction unit 123, for example. but can be different.
  • the second feature amount extraction unit 128 classifies the input dust layer image into a plurality of color regions by clustering processing. Then, the second feature amount extraction unit 128 calculates the total number of pixels (that is, the area) of the divided color regions, and extracts the total number of pixels as a feature amount relating to the supply state of the dust G. FIG.
  • the second feature quantity extraction unit 128 extracts the total number of pixels in each color region at predetermined time intervals (for example, every second). Note that in the present embodiment, the feature amount includes the total number of pixels of all color regions among the plurality of color regions, but the present disclosure is not limited to this form.
  • the feature amount may include the total number of pixels in at least one color area among the plurality of color areas.
  • the second feature amount extraction unit 128 outputs the extracted feature amount related to the supply state of the garbage G to the feeder supply amount estimation unit 129 .
  • the method for extracting the feature amount by the second feature amount extraction unit 128 is not limited to clustering, and another method may be used.
  • the feeder supply amount estimating unit 129 is provided with information indicating the dust layer height calculated by the dust layer height detecting unit 127 and the feature amount of the supply state of the dust G extracted by the second feature amount extracting unit 128. information is entered. Further, the feeder supply amount estimation unit 129 has correlation information indicating the correlation between the garbage layer height and the supply state of the garbage G, and the correlation between the amount of the garbage G supplied from the feeder 12 .
  • the correlation information is, for example, a supply amount estimation formula for calculating the supply amount of the garbage G from the feeder 12 from the feature values of the garbage layer height and the supply state of the garbage G.
  • the feeder supply amount estimator 129 estimates the supply amount of the garbage G from the feeder 12 based on the input information indicating the garbage layer height, the feature amount of the supply state of the garbage G, and the correlation information. calculate.
  • the feeder supply amount estimation unit 129 outputs the calculated estimated value of the supply amount of the garbage G to the adjustment processing unit PU.
  • the estimated value of the supply amount of the refuse G is another example of "supply state information indicating the supply state of the refuse G from the hopper 11 to the processing space V".
  • the adjustment processing unit PU includes a first calorific value estimating unit 121, a second calorific value estimating unit 122, a first feature amount extracting unit 123, a non-combustibility coefficient calculating unit 125, and a feeder supply amount estimating unit 129.
  • Information and process data acquired by the information acquisition unit 110 are input. Hereinafter, these are collectively referred to as "input information”.
  • the process data input to the adjustment processing unit PU are, for example, the process value of the feeder 12 (for example, the stroke length of the feeder 12 and/or the moving speed of the feeder 12), the detection result of the wind box pressure sensor 41a, Detection results of the air flow rate sensor 56, detection results of the furnace pressure sensor 64, detection results of the radiation temperature sensor 63, detection results of the feed water flow rate sensor 65, detection results of the superheater desuperheater flow rate sensor 66, and the gas concentration sensor 6a. detection results (eg, oxygen concentration).
  • the process data for example, process values of the feeder 12
  • the detection result of the wind box pressure sensor 41a Detection results of the air flow rate sensor 56
  • detection results of the furnace pressure sensor 64 detection results of the radiation temperature sensor 63
  • detection results of the feed water flow rate sensor 65 detection results of the superheater desuperheater flow rate sensor 66
  • the gas concentration sensor 6a detection results (eg, oxygen concentration).
  • detection results eg, oxygen concentration
  • the adjustment processing unit PU converts the input information into data to be input to the main steam flow rate prediction model M, which will be described later, by performing predetermined processing on the input information.
  • the adjustment processing unit PU includes, for example, a preprocessing unit PUa and a time delay adjustment unit PUb.
  • the preprocessing unit PUa performs preprocessing such as averaging processing on one or more pieces of input information. For example, the preprocessing unit PUa averages values obtained at multiple detection points for one or more pieces of input information. Note that the preprocessing by the preprocessing unit PUa may be differentiation processing or the like instead of/in addition to the averaging processing.
  • the preprocessing unit PUa outputs the preprocessed input information to the time delay adjustment unit PUb.
  • the time delay adjustment unit PUb Based on each input information and the time delay set value individually set for each input information, the time delay adjustment unit PUb simultaneously supplies the data to the main steam flow rate prediction model M as one data set (a set of input information). It associates the input information to be input on the time axis. That is, there is a time lag between each input information change and the main steam flow rate change. In other words, each input information becomes a leading signal leading to changes in the main steam flow rate. For example, input information associated with hopper 11 or a position closer to hopper 11 will have a greater leading lead than input information associated with a position closer to process volume V. FIG.
  • FIG. 8 is a diagram showing an example of the correlation between each piece of input information and the main steam flow rate.
  • the length of the time delay setting value is changed multiple times for each piece of input information, and the time delay setting value with the highest correlation between the input information and the main steam flow rate is selected.
  • the correlation between the input information indicating the supply amount from the feeder 12 and the main steam flow rate is highest when T2 [minute] is set as the time delay setting value. .
  • the input information indicating the supply amount from the feeder 12 is a preceding signal that precedes the main steam flow rate by T2 [minutes].
  • the correlation between the input information indicating the flammability coefficient and the main steam flow rate is highest when T3 [minute] is set as the time delay set value.
  • the input information indicating the flammability coefficient is a preceding signal that precedes the main steam flow rate by T3 [minutes]. For example, T3 [minute] is shorter than T2 [minute].
  • FIG. 9 is a diagram showing an example of time delay setting values for each piece of input information.
  • the time delay adjustment unit PUb correlates the input information simultaneously input to the main steam flow rate prediction model M based on the time delay set values for each input information as described above, thereby adjusting the main steam flow rate at a certain point in the future. Generate a data set (ie, a collection of time-aligned input information) for prediction.
  • the adjustment processing unit PU outputs the data set generated by the time delay adjustment unit PUb.
  • the prediction model creation unit 130 learns the combination of the data set created by the adjustment processing unit PU and the correct data of the predicted value of the main steam flow rate corresponding to the data set. entered as data.
  • the prediction model creation unit 130 performs machine learning based on the input learning data to generate a main steam flow rate prediction model M for predicting the main steam flow rate at a future point in time.
  • the main steam flow rate prediction model M is a learned model that outputs a prediction value of the main steam flow rate at a future point in time when the data set generated by the adjustment processing unit PU is input.
  • the main steam flow rate prediction model M is, for example, LSTM (Long Short Term Memory) or XGBoost (eXtreme Gradient Boosting), but is not limited to these.
  • the machine learning algorithm is not particularly limited, and various known machine learning algorithms can be used.
  • the prediction model creation unit 130 generates a plurality of main steam flow rate prediction models M that predict the main steam flow rate at a plurality of different future times.
  • the predictive model generator 130 generates a plurality of main steam flow rate prediction models M that respectively output predicted values of the main steam flow rates 60 seconds ahead, 120 seconds ahead, and 180 seconds ahead.
  • the prediction model creation unit 130 creates one main steam flow rate prediction model M that outputs a plurality of prediction values respectively corresponding to a plurality of future points in time. may be generated.
  • the prediction model creation unit 130 varies the learning period (learning data accumulation period) and generates a plurality of main steam flow rate prediction models M based on the learning data of a plurality of learning periods with different lengths. For example, the prediction model creation unit 130 creates the main steam flow rate prediction models M respectively corresponding to one day's worth of learning data, two days' worth of learning data, . . . , seven days' worth of learning data.
  • the prediction model determination unit 140 evaluates a plurality of main steam flow rate prediction models M corresponding to a plurality of learning periods generated by the prediction model creation unit 130, and determines the main steam flow rate prediction model M used in the steam flow rate prediction unit 150. Select.
  • FIG. 10 is a diagram showing an example of evaluation processing by the prediction model determination unit 140.
  • the prediction model determination unit 140 is based on accuracy indicators such as the root mean square error (RMSE: Root Mean Square Error) and the mean absolute scale error (MASE: Mean Absolute scale Error) in a plurality of learning periods.
  • RMSE Root Mean Square Error
  • MASE Mean Absolute scale Error
  • a plurality of corresponding main steam flow rate prediction models M are evaluated.
  • a set of a plurality of main steam flow rate prediction models M that respectively predict the main steam flow rates 60 seconds ahead, 120 seconds ahead, and 180 seconds ahead are provided. evaluated.
  • a set of main steam flow prediction models M corresponding to the period is selected.
  • a set of main steam flow rate prediction models M corresponding to a five-day learning period is selected.
  • the main steam flow rate prediction model M selected by the prediction model determination section 140 is output to the steam flow rate prediction section 150 .
  • the values of S1 to S7 in FIG. 10 are values specifically calculated based on the RMSE or MASE formula, and show an example where S1 ⁇ S2 ⁇ S3 ⁇ S4 ⁇ S5 ⁇ S6 ⁇ S7.
  • the steam flow rate prediction unit 150 uses the data set generated by the adjustment processing unit PU and the main steam flow rate prediction model M selected by the prediction model determination unit 140 in the operation stage of the incineration facility SF to predict future Derive the predicted value of the main steam flow rate.
  • a plurality of main steam flow rate prediction models M are used to predict the main steam flow rates 60 seconds ahead, 120 seconds ahead, and 180 seconds ahead, respectively.
  • a predicted value for the main steam flow is derived.
  • the steam flow rate prediction unit 150 derives a predicted value of the main steam flow rate at a predetermined cycle (for example, every second or every 10 seconds).
  • the steam flow rate prediction unit 150 outputs the derived predicted value of the main steam flow rate to the control unit 160 .
  • the control unit 160 performs combustion control of the processing space V based on the predicted value of the main steam flow rate derived by the steam flow rate prediction unit 150 (for example, the predicted value of 60 seconds ahead, 120 seconds ahead, and 180 seconds ahead). . Specifically, the control unit 160 controls the controlled device S so that the amount of fluctuation in the combustion state in the processing space V becomes small.
  • FIG. 11 is a diagram showing an example of the content of control by the control unit 160.
  • the control unit 160 determines that insufficient combustion will occur, and control is performed to promote combustion.
  • the future predicted value of the main steam flow rate exceeds a preset upper threshold value TH2
  • TH2 determines that excessive combustion will occur in the future, and performs control to suppress combustion.
  • the control instruction is output based on the deviation of the predicted value from the set value (reference value), fluctuations in the main steam flow rate can be suppressed. That is, in the present embodiment, the predicted value of the main steam flow rate at a future point in time is set at the lower threshold TH1 or the upper threshold TH2, not at the time when the actual measured value of the main steam flow reaches the lower threshold TH1 or the upper threshold TH2 (point A in FIG. 11). A control instruction to change the combustion control is output when the threshold TH2 is reached (point B in FIG. 11). Fluctuations in the main steam flow rate when control is performed based on predicted values (see the two-dot chain line in FIG. 11) are compared to fluctuations in the main steam flow rate when control is performed based on actual measurements ( (see solid line).
  • control unit 160 includes a feeder control unit 161, an air supply control unit 162, and a grate control unit 163.
  • Each controller performs, for example, PI control (proportional integral control).
  • PI control proportional integral control
  • control algorithm is not limited to PI control, and various known control algorithms can be used.
  • the feeder control unit 161 acquires a process value indicating the movement of the feeder 12 from the extrusion device 13, and generates a control instruction value for the feeder 12 based on PI control, for example.
  • the feeder control unit 161 outputs the generated control instruction value to the extrusion device 13 to control the movement of the feeder 12 and control the amount of the refuse G supplied to the processing space V.
  • FIG. For example, the feeder control unit 161 increases the supply amount of the garbage G when promoting combustion.
  • the feeder control unit 161 reduces the supply amount of the refuse G when suppressing combustion.
  • the air supply control unit 162 acquires a process value relating to the rotational speed of the fan 51 and/or the opening degree of the damper 55 from the fan 51 or the damper 55, and provides a control instruction value for the fan 51 and/or the damper 55 based on, for example, PI control. to generate
  • the air supply control unit 162 controls the blower 51 and/or the damper 55 by outputting the generated control instruction value to the blower 51 and/or the damper 55, and adjusts the supply amount of air (for example, combustion air) to the processing space V. to control.
  • the air supply control unit 162 increases the amount of air supply when promoting combustion.
  • the air supply control unit 162 reduces the amount of air supply when suppressing combustion.
  • the grate control unit 163 acquires process data about the moving speed of the grate 31 from the grate drive device 32, and generates a control instruction value for the grate 31 based on PI control, for example.
  • the grate control unit 163 outputs the generated control instruction value to the grate driving device 32 to control the grate 31 and control the stirring state of the garbage G.
  • FIG. For example, the grate control unit 163 increases the moving speed of the grate 31 when promoting combustion.
  • the grate control unit 163 reduces the moving speed of the grate 31 when suppressing combustion.
  • FIG. 12 is a flow chart showing the flow of prediction model creation processing.
  • the information acquisition unit 110 acquires the detection results of various sensors and process data (S101).
  • the data conversion unit 120 generates a data set to be input to the main steam flow rate prediction model M based on the detection results of various sensors and the process data acquired by the information acquisition unit 110 (S102). That is, the data conversion unit 120 performs calculations and clustering using various estimation formulas, and performs time delay adjustment processing and the like on the input information obtained by these calculations, thereby generating a data set.
  • the prediction model creation unit 130 accumulates the data sets generated by the data conversion unit 120 over multiple days (S103). Then, the prediction model creation unit 130 varies the learning period (learning data accumulation period) to generate a plurality of main steam flow rate prediction models M based on the learning data of a plurality of learning periods of different lengths (S104). .
  • the prediction model determination unit 140 evaluates a plurality of main steam flow rate prediction models M with different learning periods generated by the prediction model creation unit 130, and selects the main steam flow rate prediction model M used in the steam flow rate prediction unit 150. Select (S105). In this embodiment, the prediction model determination unit 140 selects the main steam flow rate prediction model M currently used by the steam flow rate prediction unit 150 among the plurality of main steam flow rate prediction models M newly generated by the prediction model creation unit 130. It is determined whether or not there is a main steam flow rate prediction model M with higher prediction accuracy than the
  • the prediction model determination unit 140 outputs the main steam flow rate prediction model M with high prediction accuracy to the steam flow rate prediction unit 150 to update the main steam flow rate prediction model M to be used (S107).
  • the processes from S101 to S107 described above are repeatedly executed in the operating stage of the incineration facility SF.
  • FIG. 13 is a flow chart showing the flow of processing in the operating stage of the combustion equipment.
  • the information acquisition unit 110 acquires detection results of various sensors and process data (S201).
  • the data conversion unit 120 generates a data set to be input to the main steam flow rate prediction model M based on the detection results of various sensors and the process data acquired by the information acquisition unit 110 (S202).
  • the data conversion section 120 outputs the generated data set to the steam flow rate prediction section 150 .
  • the steam flow rate prediction unit 150 derives a predicted value of the main steam flow rate at a future point in time based on the data set received from the data conversion unit 120 and the main steam flow rate prediction model M (S203).
  • the steam flow rate prediction unit 150 outputs the derived predicted value of the main steam flow rate at the future time to the control unit 160 .
  • the control unit 160 derives the control amount of the controlled device S based on the predicted value of the main steam flow rate (S204).
  • the control unit 160 outputs a control instruction value based on the derived control amount to the controlled device S (S205).
  • the processes from S201 to S205 described above are repeatedly executed in the operating stage of the incineration facility SF.
  • the main steam flow rate may vary greatly depending on the supply state of the dust G and the properties of the dust G. Therefore, when prediction is made from information after the combustion process, it may be difficult to improve the prediction accuracy of the main steam flow rate.
  • control device 100 includes an information acquisition unit 110 that acquires information about the garbage G before being supplied to the processing space V in the incineration facility SF, and the information acquired by the information acquisition unit 110.
  • a steam flow rate prediction unit 150 that predicts the main steam flow rate generated by the heat recovery boiler 3 of the incineration facility SF based on prediction information including and a control unit 160 that performs
  • the flow rate of the main steam is predicted based on the information about the garbage G before it is supplied to the processing space V, so it is possible to predict the flow rate of the main steam with high accuracy.
  • This enables the control device 100 to perform combustion control based on the highly accurate predicted value of the main steam flow rate. As a result, the fluctuation width of the main steam flow rate can be suppressed.
  • FIG. 14 is a diagram showing an example of comparison results between predicted values and measured values according to this embodiment. As shown in FIG. 14, it can be confirmed that the predicted value of the main steam flow rate by the control device 100 follows the variation of the measured value of the main steam flow rate with high accuracy. Further, the present inventors have confirmed that the predicted value of the main steam flow rate by the control device 100 of the present embodiment improves the prediction accuracy as compared with the case where the prediction is performed only from the information after the combustion process. .
  • the time delay setting values individually set for each piece of input information are set after the time delay setting value that maximizes the correlation between each piece of input information and the main steam flow rate is selected and set.
  • the set time delay setting value is used as a fixed value.
  • the time delay adjustment unit PUb recalculates the correlation between each input information and the main steam flow rate at a predetermined cycle, and sets the time delay so that the correlation between each input information and the main steam flow rate becomes higher. You can change the value. According to such a configuration, it may be possible to further improve the prediction accuracy of the main steam flow rate even when the properties of the garbage G change depending on the season or other factors.
  • FIG. 14 is a hardware configuration diagram showing the configuration of the computer 1100 according to this embodiment.
  • Computer 1100 includes, for example, processor 1110 , main memory 1120 , storage 1130 and interface 1140 .
  • Each functional unit of the control device 100 described above is implemented in the computer 1100 .
  • the operation of each functional unit described above is stored in the storage 1130 in the form of a program.
  • the processor 1110 reads a program from the storage 1130, develops it in the main memory 1120, and executes the above processing according to the program. Also, the processor 1110 secures storage areas in the main memory 1120 to be used by the functional units described above according to the program.
  • the program may be for realizing part of the functions that the computer 1100 exhibits.
  • the program may function in combination with another program already stored in storage 1130 or in combination with another program installed in another device.
  • the computer 1100 may include a custom LSI (Large Scale Integrated Circuit) such as a PLD (Programmable Logic Device) in addition to or instead of the above configuration.
  • PLDs include PAL (Programmable Array Logic), GAL (Generic Array Logic), CPLD (Complex Programmable Logic Device), and FPGA (Field Programmable Gate Array).
  • part or all of the functions implemented by processor 1110 may be implemented by the integrated circuit.
  • Examples of the storage 1130 include magnetic disks, magneto-optical disks, and semiconductor memories.
  • the storage 1130 may be an internal medium directly connected to the bus of the computer 1100, or an external medium connected to the computer 1100 via the interface 1140 or communication line.
  • the computer 1100 receiving the delivery may develop the program in the main memory 1120 and execute the above process.
  • the program may be for realizing part of the functions described above.
  • the program may be a so-called difference file (difference program) that implements the above-described functions in combination with another program already stored in the storage 1130 .
  • control device 100 described in each embodiment is understood as follows.
  • the control device 100 includes an information acquisition unit 110 that acquires information about the incinerator G before being supplied to the processing space V in the incineration facility SF, and the information acquired by the information acquisition unit 110. Based on the prediction information including the above information, a steam flow rate prediction unit 150 that predicts the flow rate of the main steam generated by the heat recovery boiler 3 of the incineration facility SF, and the main steam flow rate predicted by the steam flow rate prediction unit 150 and a control unit 160 that performs combustion control based on the control unit 160 .
  • "prediction information” does not mean information dedicated to prediction, but is used in the broad sense of information that can be used for prediction. That is, the prediction information may be information collected or stored mainly for a purpose different from the prediction of the main steam flow rate.
  • the main steam flow rate is predicted based on the information about the incinerator G before being supplied to the processing space V, so it is possible to predict the main steam flow rate with high accuracy.
  • This enables the control device 100 to perform combustion control based on the highly accurate predicted value of the main steam flow rate.
  • the control device 100 according to the second aspect is the control device 100 according to the first aspect, and the information includes information on the property of the incineration material G.
  • Information on the properties of the material to be incinerated G includes, for example, values related to the moisture content of the material to be incinerated G (moisture content or moisture content), weight of the material to be incinerated G, height of the material to be incinerated G, height of the material to be incinerated G , the density (bulk density or true density) of the material G to be incinerated, and the calorific value of the material G to be incinerated.
  • the main steam flow rate can be predicted by reflecting the properties of the incinerator G that affect the main steam flow rate. This makes it possible to predict the main steam flow rate with even higher accuracy.
  • the control device 100 according to the third aspect is the control device 100 according to the first or second aspect, and the information is the accumulation of the incinerator G in the hopper 11 of the incineration facility SF. Contains pile state information that indicates the state.
  • the control device 100 according to the fourth aspect is the control device 100 according to the third aspect, and the accumulation state information is, from the downstream side in the conveying direction D of the incinerator G in the incineration facility SF, An infrared image of the exit portion 11b of the hopper 11 captured through the flame in the processing space V is included.
  • the control device 100 according to the fifth aspect is the control device 100 according to any one of the first to fourth aspects, and the information is sent from the hopper 11 of the incineration facility SF to the processing space V. supply state information indicating the supply state of the incinerator G of
  • the main steam flow rate can be predicted by reflecting the supply state of the incinerator G from the hopper 11 to the processing space V, which affects the main steam flow rate. This makes it possible to predict the main steam flow rate with even higher accuracy.
  • the control device 100 is the control device 100 of any one of the first to fifth aspects, and is included in the information or obtained from the information, the incineration facility SF A calorific value estimating unit (first calorific value estimation 121 or a second calorific value estimator 122), and the steam flow rate predictor 150 predicts the main steam flow rate based on the lower calorific value estimated by the calorific value estimator.
  • the main steam flow rate can be predicted by reflecting the lower calorific value of the incinerated material G estimated from the density or moisture content measurement result of the incinerated material G in the hopper 11 . This makes it possible to predict the main steam flow rate with even higher accuracy.
  • the control method according to the seventh aspect acquires information about the garbage G before being supplied to the processing space V in the incineration facility SF, and based on the prediction information including the acquired information, the incineration facility SF predicting the flow rate of the main steam generated by the heat recovery boiler 3, and performing combustion control based on the predicted flow rate of the main steam. According to such a configuration, as with the control device 100 according to the first aspect, it is possible to perform combustion control based on a highly accurate predicted value of the main steam flow rate.
  • the program according to the eighth aspect causes the computer to acquire information about the garbage G before being supplied to the processing space V in the incineration facility SF, based on the information for prediction including the acquired information, It includes predicting the main steam flow rate generated by the heat recovery boiler 3 of the incineration facility SF and performing combustion control based on the predicted main steam flow rate. According to such a configuration, as with the control device 100 according to the first aspect, it is possible to perform combustion control based on a highly accurate predicted value of the main steam flow rate.
  • the present disclosure relates to a control device for controlling an incineration facility for, for example, municipal solid waste, industrial waste, or biomass.
  • combustion control can be performed based on a highly accurate predicted value of the main steam flow rate.
  • SF... Incineration facility G... Matter to be incinerated (garbage), 1... Crane, 2... Incinerator, 3... Exhaust heat recovery boiler, 4... Cooling tower, 5... Dust collector, 6... Flue, 7... Chimney , 10... Supply mechanism, 11... Hopper, 11a... Inlet part, 11b... Outlet part, 12... Feeder, 13... Extrusion device, 14... Object measuring instrument, 15... Moisture measuring instrument, 20... Furnace body, 20a... Drying stage , 20b... Combustion stage, 20c... Post-combustion stage, V... Processing space, 21... Visible light camera, 22... Infrared camera, 30... Stoker, 31... Grate, 32... Grate drive device, 41... Wind box, 41a...
  • wind box pressure sensor 50... blower mechanism, 51... fan, 52... primary air line, 53... air preheater, 54... secondary air line, 55... damper, 56... air flow rate sensor, 61... boiler body, 62... Pipe line, 63... Radiation temperature sensor, 64... In-furnace pressure sensor, 65... Feed water flow rate sensor, 66... Superheater desuperheater flow rate sensor, 100... Control device, 110... Information acquisition unit, 120... Data conversion unit , 130... Prediction model creation unit, 140... Prediction model determination unit, 150... Steam flow rate prediction unit, 160... Control unit

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Environmental & Geological Engineering (AREA)
  • Incineration Of Waste (AREA)

Abstract

A control apparatus according to the present disclosure comprises: an information acquisition unit; a steam flowrate prediction unit; and a control unit. The information acquisition unit acquires information relating to a to-be-incinerated object yet to be supplied to a processing space in an incineration facility. The steam flowrate prediction unit predicts, on the basis of prediction information including the information acquired by the information acquisition unit, a main steam flowrate of steam to be generated by a boiler in the incineration facility. The control unit carries out combustion control on the basis of the main steam flowrate predicted by the steam flowrate prediction unit.

Description

制御装置Control device
 本開示は、制御装置に関する。
 本願は、2021年10月15日に出願された特願2021-169507号に対して優先権を主張し、その内容をここに援用する。
The present disclosure relates to control devices.
This application claims priority to Japanese Patent Application No. 2021-169507 filed on October 15, 2021, the contents of which are incorporated herein.
 特許文献1には、現在の燃焼状態を示す情報をリアルタイムに取得し、これを基に燃焼熱量およびボイラ蒸発量を推算することによって、時間遅れのない廃棄物の燃焼制御を行うことを可能とする燃焼制御方法が開示されている。この燃焼制御方法は、リアルタイムに取得する燃焼直後の排ガス組成から、燃料となる廃棄物の発熱量に直接関与する廃棄物中の炭素、水素および水分を求め、これを基に、酸素消費量、燃焼熱量、潜熱量、廃棄物量(処理量)を算出するものである。 In Patent Document 1, information indicating the current combustion state is obtained in real time, and based on this information, the amount of combustion heat and the amount of boiler evaporation are estimated, thereby enabling waste combustion control without time delay. A method for controlling combustion is disclosed. This combustion control method obtains the carbon, hydrogen, and moisture in the waste, which are directly related to the calorific value of the waste used as fuel, from the composition of the exhaust gas immediately after combustion, which is obtained in real time. It calculates the amount of combustion heat, the amount of latent heat, and the amount of waste (processed amount).
 特許文献2には、視点が異なる複数の撮像装置を用いて、一次燃焼ゾーンから二次燃焼ゾーンへ到達した火炎の映像をそれぞれ取得し、取得された異なる視点からの複数の映像に画像合成処理を行うことで、二次燃焼ゾーンの火炎を含む3次元映像を作成することを含む蒸発量制御方法が開示されている。この蒸発量制御方法は、上記3次元映像を解析することで、一次燃焼または二次燃焼で発生した燃焼ガスの流路に沿う方向の火炎流速の時間変化を算出し、燃焼室で現在発生している熱量の指標を得るものである。 In Patent Document 2, images of a flame reaching a secondary combustion zone from a primary combustion zone are obtained using a plurality of imaging devices with different viewpoints, and image synthesis processing is performed on the plurality of images obtained from different viewpoints. A method for evaporative control is disclosed that includes creating a three-dimensional image containing the flame of the secondary combustion zone by performing . This evaporation amount control method analyzes the above three-dimensional image to calculate the time change of the flame flow velocity in the direction along the flow path of the combustion gas generated by the primary combustion or secondary combustion. It gives an index of the amount of heat that is being used.
 特許文献3には、複数の赤外線カメラを用いて、火炎が放射しない波長の光を選択的に透過させるフィルタを介して、少なくとも乾燥部及び燃焼部に堆積した廃棄物を観測して、視点が異なる複数の熱画像を取得し、当該複数の熱画像に基づいて3次元熱画像を作成することを含む燃焼制御方法が開示されている。この燃焼制御方法は、上記3次元熱画像に基づいて、廃棄物の厚みが時系列でどのように変化したかを示す厚み経過情報を算出し、廃棄物の過去から現時点までの体積流量の変化に基づいて燃焼補正係数を決定し、当該廃棄物から発生する熱量の指標を算出するものである。 In Patent Document 3, a plurality of infrared cameras are used to observe waste accumulated in at least the drying section and the burning section through a filter that selectively transmits light of wavelengths not emitted by flames, and the viewpoint is A combustion control method is disclosed that includes acquiring a plurality of different thermal images and creating a three-dimensional thermal image based on the plurality of thermal images. In this combustion control method, based on the three-dimensional thermal image, thickness progress information indicating how the thickness of the waste has changed in time series is calculated, and the change in the volumetric flow rate of the waste from the past to the present time is calculated. Based on this, the combustion correction coefficient is determined, and the index of the amount of heat generated from the waste is calculated.
特開2017-096517号公報JP 2017-096517 A 特開2019-219108号公報Japanese Patent Application Laid-Open No. 2019-219108 特開2021-067381号公報JP 2021-067381 A
 ところで、主蒸気流量は、被焼却物の状態などに応じて大きく変動する場合がある。このため、特許文献1から3に記載の技術では、主蒸気流量の高精度の予測値に基づき燃焼制御を行うことが難しい場合がある。 By the way, the main steam flow rate may fluctuate greatly depending on the condition of the incinerated material. Therefore, with the techniques described in Patent Documents 1 to 3, it may be difficult to perform combustion control based on a highly accurate predicted value of the main steam flow rate.
 本開示は、上記課題を解決するためになされたものであって、主蒸気流量の高精度の予測値に基づき燃焼制御を行うことができる制御装置を提供することを目的とする。 The present disclosure has been made to solve the above problems, and aims to provide a control device capable of performing combustion control based on a highly accurate predicted value of the main steam flow rate.
 上記課題を解決するために、本開示に係る制御装置は、情報取得部と、蒸気流量予測部と、制御部とを備える。情報取得部は、焼却設備内の処理空間へ供給される前の被焼却物に関する情報を取得する。蒸気流量予測部は、情報取得部により取得された情報を含む予測用情報に基づき、焼却設備のボイラで生成される主蒸気流量を予測する。制御部は、蒸気流量予測部により予測された主蒸気流量に基づき燃焼制御を行う。 In order to solve the above problems, the control device according to the present disclosure includes an information acquisition unit, a steam flow rate prediction unit, and a control unit. The information acquisition unit acquires information about the incineration material before it is supplied to the processing space in the incineration facility. The steam flow rate prediction unit predicts the main steam flow rate generated by the boiler of the incineration facility based on the prediction information including the information acquired by the information acquisition unit. The control section performs combustion control based on the main steam flow rate predicted by the steam flow rate prediction section.
 本開示の制御装置によれば、主蒸気流量の高精度の予測値に基づき燃焼制御を行うことができる。 According to the control device of the present disclosure, combustion control can be performed based on a highly accurate predicted value of the main steam flow rate.
本開示の実施形態に係る焼却設備の全体を示す概略構成図である。1 is a schematic configuration diagram showing the entirety of an incineration facility according to an embodiment of the present disclosure; FIG. 本開示の実施形態に係る燃焼設備の機能構成を示すブロック図である。1 is a block diagram showing a functional configuration of combustion equipment according to an embodiment of the present disclosure; FIG. 本開示の実施形態に係るデータ変換部の機能構成を示すブロック図である。4 is a block diagram showing the functional configuration of a data converter according to the embodiment of the present disclosure; FIG. 本開示の実施形態に係る水分計測器の検出結果に基づくごみ発熱量の推定値と、実機で確認されたごみ発熱量との相関関係を示す図である。FIG. 10 is a diagram showing a correlation between an estimated value of waste calorific value based on a detection result of a moisture meter according to an embodiment of the present disclosure and a waste calorific value confirmed in an actual machine; 本開示の実施形態に係る第1特徴量抽出部による処理の一例を示す図である。It is a figure which shows an example of the process by the 1st feature-value extraction part which concerns on embodiment of this indication. 本開示の実施形態に係る画像変換部による処理の一例を示す図である。FIG. 4 is a diagram illustrating an example of processing by an image conversion unit according to the embodiment of the present disclosure; FIG. 本開示の実施形態に係るごみ層高さ検出部による処理の一例を示す図である。FIG. 7 is a diagram illustrating an example of processing by a dust layer height detection unit according to the embodiment of the present disclosure; 本開示の実施形態に係る各入力情報と主蒸気流量との間の相関関係の一例を示す図である。FIG. 4 is a diagram showing an example of correlation between each piece of input information and main steam flow rate according to an embodiment of the present disclosure; 本開示の実施形態に係る各入力情報に対する時間遅れ設定値の一例を示す図である。FIG. 4 is a diagram showing an example of time delay setting values for each piece of input information according to an embodiment of the present disclosure; FIG. 本開示の実施形態に係る予測モデル判定部による評価処理の一例を示す図である。It is a figure which shows an example of the evaluation process by the prediction model determination part which concerns on embodiment of this indication. 本開示の実施形態に係る制御部による制御内容の一例を示す図である。FIG. 4 is a diagram showing an example of control contents by a control unit according to the embodiment of the present disclosure; FIG. 本開示の実施形態に係る予測モデルの作成処理の流れを示すフローチャートである。4 is a flow chart showing the flow of prediction model creation processing according to the embodiment of the present disclosure. 本開示の実施形態に係る燃焼設備の運転段階の処理の流れを示すフローチャートである。4 is a flow chart showing the process flow of the operation stage of the combustion facility according to the embodiment of the present disclosure; 本開示の実施形態に係る主蒸気流量の予測値と実測値の比較結果の一例を示す図である。FIG. 4 is a diagram showing an example of a comparison result between a predicted value and an actual measured value of a main steam flow rate according to an embodiment of the present disclosure; 本開示の実施形態に係るコンピュータの構成を示すハードウェア構成図である。1 is a hardware configuration diagram showing the configuration of a computer according to an embodiment of the present disclosure; FIG.
 以下、本開示の実施形態の制御装置を、図面を参照して説明する。以下の説明では、同一または類似の機能を有する構成に同一の符号を付す。そして、それら構成の重複する説明は省略する場合がある。本開示で「XXに基づく」とは、「少なくともXXに基づく」ことを意味し、XXに加えて別の要素に基づく場合も含み得る。また「XXに基づく」とは、XXを直接に用いる場合に限定されず、XXに対して演算や加工が行われたものに基づく場合も含み得る。本開示で「XXまたはYY」とは、XXとYYのうちいずれか一方の場合に限定されず、XXとYYの両方の場合も含み得る。これは選択的要素が3つ以上の場合も同様である。「XX」および「YY」は、任意の要素(例えば任意の情報)である。 A control device according to an embodiment of the present disclosure will be described below with reference to the drawings. In the following description, the same reference numerals are given to components having the same or similar functions. Duplicate descriptions of these configurations may be omitted. In the present disclosure, "based on XX" means "based on at least XX", and may include cases based on other elements in addition to XX. Also, "based on XX" is not limited to the case of using XX directly, but may also include the case of being based on what has been calculated or processed with respect to XX. In the present disclosure, "XX or YY" is not limited to either one of XX and YY, but may include both XX and YY. This is also the case when there are three or more selective elements. "XX" and "YY" are arbitrary elements (eg, arbitrary information).
 (実施形態)
 <1.焼却設備の全体構成>
 図1は、実施形態に係る焼却設備SFの全体構成を示す概略構成図である。焼却設備SFは、例えば、都市ごみ、産業廃棄物、またはバイオマスなどを被焼却物Gとするストーカ炉である。以下では説明の便宜上、「被焼却物G」を「ごみG」と称する。なお、焼却設備SFは、ストーカ炉に限定されるものではなく、別タイプの焼却設備でもよい。本実施形態では、焼却設備SFは、例えば、クレーン1、焼却炉2、排熱回収ボイラ3、減温塔4、集塵装置5、煙道6、煙突7、および制御装置100を備える。
(embodiment)
<1. Overall configuration of incineration facility>
FIG. 1 is a schematic configuration diagram showing the overall configuration of an incineration facility SF according to an embodiment. The incineration facility SF is a stoker furnace that uses, for example, municipal waste, industrial waste, or biomass as the material to be incinerated G. In the following, for convenience of explanation, the “object to be incinerated G” will be referred to as “garbage G”. The incineration facility SF is not limited to the stoker furnace, and may be another type of incineration facility. In this embodiment, the incineration facility SF includes, for example, a crane 1, an incinerator 2, an exhaust heat recovery boiler 3, a cooling tower 4, a dust collector 5, a flue 6, a chimney 7, and a control device 100.
 クレーン1は、ごみピットに貯留されたごみGを、後述する焼却炉2のホッパ11まで運んでホッパ11に投入する。クレーン1は、ごみGを把持する把持部1aと、把持部1aに設けられた重量センサ1bとを含む。重量センサ1bは、例えば、ロードセルである。重量センサ1bは、ごみGが把持部1aに把持されて持ち上げられた状態で、把持部1aに把持されたごみGの重量を検出する。重量センサ1bの検出結果は、制御装置100に送信される。重量センサ1bの検出結果は、「処理空間Vへ供給される前のごみGに関する情報」の一例であり、「ごみGの性状に関する情報」の一例である。 The crane 1 carries the garbage G stored in the garbage pit to the hopper 11 of the incinerator 2, which will be described later, and throws it into the hopper 11. The crane 1 includes a gripping portion 1a that grips the garbage G, and a weight sensor 1b provided in the gripping portion 1a. The weight sensor 1b is, for example, a load cell. The weight sensor 1b detects the weight of the dust G gripped by the gripping portion 1a in a state in which the dust G is gripped and lifted by the gripping portion 1a. A detection result of the weight sensor 1b is transmitted to the control device 100. FIG. The detection result of the weight sensor 1b is an example of "information on the dust G before being supplied to the processing space V" and an example of "information on the properties of the dust G".
 なお本開示で「ごみGの性状に関する情報」とは、ごみGの性質または状態に関する情報を意味する。また本開示で「ごみGの性状に関する情報」とは、ごみGの性状を直接に示す情報に限定されず、ごみGの性状を特定するために用いられる情報(例えば、他の情報を組み合わされることでごみGの性状を特定可能な情報)などでもよい。例えば、ごみGの重量は、後述するごみGの体積と組み合わされることで、ごみGの密度を特定可能な情報である。ごみGの密度は、ごみGの性状の一例である。 In the present disclosure, "information about the properties of the garbage G" means information about the properties or conditions of the garbage G. In addition, in the present disclosure, "information about the properties of the garbage G" is not limited to information that directly indicates the properties of the garbage G, and is information used to specify the properties of the garbage G (for example, combined with other information information that can identify the properties of the dust G) or the like. For example, the weight of the dust G is information that can specify the density of the dust G by being combined with the volume of the dust G, which will be described later. The density of the dust G is an example of the properties of the dust G.
 焼却炉2は、後述するホッパ11に投入されたごみGを搬送しながら燃焼させる炉である。焼却炉2内でのごみGの燃焼に伴って焼却炉2では排ガスが発生する。発生した排ガスは、焼却炉2の上部に設けられた排熱回収ボイラ3に送られる。排熱回収ボイラ3は、焼却炉2で発生した排ガスと水との間で熱交換を行うことで水を加熱して蒸気を発生させる。 The incinerator 2 is a furnace that burns while transporting the garbage G thrown into the hopper 11 described later. Exhaust gas is generated in the incinerator 2 as the garbage G is burned in the incinerator 2 . The generated exhaust gas is sent to an exhaust heat recovery boiler 3 provided above the incinerator 2 . The exhaust heat recovery boiler 3 heats the water by exchanging heat between the exhaust gas generated in the incinerator 2 and the water to generate steam.
 排熱回収ボイラ3を通過した排ガスは、減温塔4で冷却された後、集塵装置5に送られる。排ガスは、集塵装置5でススや塵埃が除去された後、煙道6および煙突7を通じて大気中に排出される。煙道6には、ガス濃度センサ6aが設けられている。ガス濃度センサ6aは、煙道6を流れる排ガスに含まれる各種気体の濃度(例えば酸素濃度)を検出する。なお、ガス濃度センサ6aの検出結果は、酸素濃度に代えて/加えて、CO濃度、NOx濃度、およびSOx濃度のうち1つ以上を含み得る。ガス濃度センサ6aの検出結果は、制御装置100に送信される。 The exhaust gas that has passed through the heat recovery boiler 3 is cooled by the temperature reduction tower 4 and then sent to the dust collector 5 . After soot and dust are removed by the dust collector 5, the exhaust gas is discharged into the atmosphere through the flue 6 and the chimney 7. The flue 6 is provided with a gas concentration sensor 6a. The gas concentration sensor 6a detects concentrations of various gases (for example, oxygen concentration) contained in the exhaust gas flowing through the flue 6. As shown in FIG. The detection result of the gas concentration sensor 6a may include one or more of the CO concentration, NOx concentration, and SOx concentration instead of/in addition to the oxygen concentration. A detection result of the gas concentration sensor 6 a is transmitted to the control device 100 .
 <2.焼却炉>
 次に、焼却炉2について詳しく説明する。焼却炉2は、例えば、供給機構10、炉本体20、ストーカ30、風箱41、排出シュート42、火炉43、および送風機構50を有する。
<2. Incinerator>
Next, the incinerator 2 will be described in detail. The incinerator 2 has, for example, a supply mechanism 10, a furnace body 20, a stoker 30, an air box 41, a discharge chute 42, a furnace 43, and a blower mechanism 50.
 <2.1 供給機構>
 供給機構10は、クレーン1によって運ばれたごみGを、一時的に貯留するとともに、後述する炉本体20の処理空間Vに向けて順次供給する機構である。供給機構10は、例えば、ホッパ11、フィーダ12、押出装置13(図2参照)、物体計測器14、および水分計測器15を有する。
<2.1 Supply Mechanism>
The supply mechanism 10 is a mechanism that temporarily stores the waste G carried by the crane 1 and sequentially supplies the waste G toward the processing space V of the furnace main body 20, which will be described later. The supply mechanism 10 has, for example, a hopper 11, a feeder 12, an extrusion device 13 (see FIG. 2), an object measuring instrument 14, and a moisture measuring instrument 15.
 ホッパ11は、炉本体20の内部へごみGを供給するために設けられた貯留部である。ホッパ11には、クレーン1によって運ばれたごみGが投入される。ホッパ11は、入口部11aと、出口部11bとを有する。入口部11aは、ごみGが外部から投入されるための入口部分である。入口部11aは、例えば鉛直方向に延びている。入口部11aに投入されたごみGは、重力によって下方に移動する。出口部11bは、入口部11aの下方に設けられている。出口部11bは、入口部11aから供給されるごみGを、後述する炉本体20内の処理空間Vに向けて導く出口部分である。出口部11bは、例えば水平方向に延びている。 The hopper 11 is a reservoir provided to supply the refuse G to the interior of the furnace body 20 . Garbage G carried by the crane 1 is put into the hopper 11 . The hopper 11 has an inlet portion 11a and an outlet portion 11b. The entrance part 11a is an entrance part for throwing in the garbage G from the outside. The inlet portion 11a extends, for example, in the vertical direction. Garbage G thrown into the inlet portion 11a moves downward due to gravity. The outlet portion 11b is provided below the inlet portion 11a. The outlet portion 11b is an outlet portion that guides the refuse G supplied from the inlet portion 11a toward a processing space V inside the furnace body 20, which will be described later. The outlet portion 11b extends horizontally, for example.
 フィーダ12は、ホッパ11の出口部11bに設けられている。フィーダ12は、ホッパ11の出口部11bの底部に沿う板状であり、ホッパ11の出口部11bの底部に沿って配置されている。フィーダ12は、ホッパ11の出口部11bから炉本体20の処理空間Vに向かう方向に沿って往復移動可能である。フィーダ12は、押出装置13によって駆動され、ホッパ11の内部(例えばホッパ11の出口部11b)に堆積したごみGを炉本体20の処理空間Vに向けて押し出す。 The feeder 12 is provided at the outlet portion 11b of the hopper 11. The feeder 12 has a plate shape along the bottom of the outlet 11 b of the hopper 11 and is arranged along the bottom of the outlet 11 b of the hopper 11 . The feeder 12 can reciprocate along the direction from the outlet 11 b of the hopper 11 toward the processing space V of the furnace body 20 . The feeder 12 is driven by an extrusion device 13 to push out the refuse G accumulated inside the hopper 11 (for example, the exit portion 11 b of the hopper 11 ) toward the processing space V of the furnace body 20 .
 物体計測器14は、クレーン1によってホッパ11に投入されるごみGの高さを検出する計測器である。物体計測器14は、例えば、LiDAR(Light Detection and Ranging)である。物体計測器14は、例えばホッパ11の入口部11aに設けられ、ホッパ11の入口部11aを通過するごみGMの高さを検出する。なお、物体計測器14は、ごみGの高さに代えて、3次元測定によりごみGの体積を直接に検出してもよい。物体計測器14の検出結果は、制御装置100に送信される。物体計測器14の検出結果は、「処理空間Vへ供給される前のごみGに関する情報」の一例であり、「ごみGの性状に関する情報」の一例である。 The object measuring instrument 14 is a measuring instrument that detects the height of the garbage G thrown into the hopper 11 by the crane 1 . The object measuring device 14 is, for example, LiDAR (Light Detection and Ranging). The object measuring device 14 is provided, for example, at the entrance portion 11a of the hopper 11 and detects the height of the refuse GM passing through the entrance portion 11a of the hopper 11 . Note that the object measuring instrument 14 may directly detect the volume of the dust G by three-dimensional measurement instead of the height of the dust G. FIG. A detection result of the object measuring device 14 is transmitted to the control device 100 . The detection result of the object measuring device 14 is an example of "information about the dust G before being supplied to the processing space V" and an example of "information about the properties of the dust G".
 水分計測器15は、ホッパ11に投入されるごみGに含まれる水分に関する値(例えば水分率または水分量)を検出する計測器である。本実施形態では、水分計測器15は、ホッパ11に設けられた照射部および検出部と、解析部とを有する。照射部は、ホッパ11内に堆積するごみGに所定の周波数帯域の電磁波を照射する。検出部は、照射部から照射されて、ごみGを透過したまたはごみGで反射した電磁波を受信する。解析部は、例えば、電磁波の特性変化(例えば振幅の変化または位相の変化)と水分率との関係を示す相関関係情報を予め記憶している。解析部は、照射部と検出部との間での電磁波の特性変化と、上記相関関係情報とに基づき、ごみGに含まれる水分率を検出する。 The moisture measuring instrument 15 is a measuring instrument that detects a value related to moisture contained in the garbage G thrown into the hopper 11 (for example, moisture content or moisture content). In this embodiment, the moisture meter 15 has an irradiation section and a detection section provided in the hopper 11, and an analysis section. The irradiation unit irradiates the garbage G accumulated in the hopper 11 with an electromagnetic wave of a predetermined frequency band. The detection unit receives electromagnetic waves emitted from the irradiation unit and transmitted through the dust G or reflected by the dust G. The analysis unit stores, for example, correlation information in advance that indicates the relationship between changes in electromagnetic wave characteristics (for example, changes in amplitude or changes in phase) and moisture content. The analysis unit detects the moisture content contained in the dust G based on the characteristic change of the electromagnetic wave between the irradiation unit and the detection unit and the correlation information.
 本実施形態では、水分計測器15の照射部および検出部は、フィーダ12の少し上側に設けられ、フィーダ12の上面に堆積するごみGの水分率を検出する。水分計測器15の検出結果は、制御装置100に送信される。水分計測器15の検出結果は、「処理空間Vへ供給される前のごみGに関する情報」の一例であり、「ごみGの性状に関する情報」の一例であり、「ホッパ11内での水分計測結果」の一例である。 In this embodiment, the irradiation unit and the detection unit of the moisture meter 15 are provided slightly above the feeder 12 and detect the moisture content of the garbage G deposited on the upper surface of the feeder 12 . A detection result of the moisture meter 15 is transmitted to the control device 100 . The detection result of the moisture measuring device 15 is an example of "information on the garbage G before being supplied to the processing space V", an example of "information on the properties of the garbage G", and an example of "moisture measurement in the hopper 11". This is an example of "Results".
 <2.2 炉本体>
 炉本体20は、ホッパ11に隣接して設けられ、ごみGを搬送しながら燃焼させる設備である。以下では、燃焼設備FにおけるごみGの搬送方向を「搬送方向D」と称する。炉本体20は、搬送方向Dにおける上流側から下流側に向けて、乾燥段20a、燃焼段20b、および後燃焼段20cをこの順に有する。乾燥段20aは、燃焼段20bおよび後燃焼段20cよりも上流側に位置し、ホッパ11から供給されたごみGを、ストーカ30上での燃焼に先立って乾燥させる領域である。燃焼段20bおよび後燃焼段20cは、乾燥段20aを通過して乾燥した状態のごみGをストーカ30上で燃焼させる領域である。燃焼段20bでは、ごみGから発生する熱分解ガスによる拡散燃焼が起き、輝炎Fが生じる。後燃焼段20cでは、ごみGの拡散燃焼後の固定炭素燃焼が起きるため、輝炎Fは生じない。燃焼段20bおよび後燃焼段20cは、ごみGを燃焼させる処理空間Vの一例である。乾燥段20aは、搬送方向Dにおいて処理空間Vよりも上流側の領域の一例である。
<2.2 Furnace body>
The furnace main body 20 is provided adjacent to the hopper 11 and is a facility for burning the garbage G while conveying it. Below, the conveying direction of the refuse G in the combustion facility F is called "conveying direction D". The furnace body 20 has a drying stage 20a, a combustion stage 20b, and a post-combustion stage 20c in this order from the upstream side to the downstream side in the transport direction D. As shown in FIG. The drying stage 20a is located upstream of the combustion stage 20b and the post-combustion stage 20c, and is an area for drying the refuse G supplied from the hopper 11 prior to combustion on the stoker 30. The combustion stage 20b and the post-combustion stage 20c are areas where the refuse G in a dried state after passing through the drying stage 20a is burned on the stoker 30. As shown in FIG. In the combustion stage 20b, the pyrolysis gas generated from the dust G causes diffusion combustion, and a luminous flame F is generated. In the post-combustion stage 20c, fixed carbon combustion occurs after diffusion combustion of the dust G, so the luminous flame F does not occur. The combustion stage 20b and the post-combustion stage 20c are examples of a processing space V in which the garbage G is burned. The drying stage 20a is an example of a region on the upstream side of the processing space V in the transport direction D. As shown in FIG.
 本実施形態では、炉本体20は、可視光カメラ21と、赤外カメラ22とを有する。可視光カメラ21および赤外カメラ22は、搬送方向Dにおいて処理空間Vよりも下流側に配置され、当該下流側から搬送方向Dの上流側を撮像する。本実施形態では、可視光カメラ21および赤外カメラ22は、搬送方向Dにおける炉本体20の下流側の端部(以下「炉尻」と称する)に設けられている。例えば、可視光カメラ21および赤外カメラ22は、炉本体20の炉尻に設けられた窓部を通じて、当該下流側から搬送方向Dの上流側を撮像する。例えば、可視光カメラ21および赤外カメラ22は、互いに上下または左右で隣り合う位置に配置されている。 In this embodiment, the furnace body 20 has a visible light camera 21 and an infrared camera 22 . The visible light camera 21 and the infrared camera 22 are arranged on the downstream side of the processing space V in the transport direction D, and capture images of the upstream side in the transport direction D from the downstream side. In this embodiment, the visible light camera 21 and the infrared camera 22 are provided at the downstream end of the furnace main body 20 in the transport direction D (hereinafter referred to as "furnace bottom"). For example, the visible light camera 21 and the infrared camera 22 capture an image of the upstream side in the conveying direction D from the downstream side through a window provided at the bottom of the furnace body 20 . For example, the visible light camera 21 and the infrared camera 22 are arranged vertically or horizontally adjacent to each other.
 可視光カメラ21は、炉本体20の炉尻から、輝炎Fを撮像する。可視光カメラ21の撮像結果は、制御装置100に送信される。 The visible light camera 21 captures the luminous flame F from the bottom of the furnace body 20 . The imaging result of the visible light camera 21 is transmitted to the control device 100 .
 赤外カメラ22は、炉本体20の炉尻から、輝炎Fを透過して炉本体20の乾燥段20a(すなわち、処理空間Vよりも上流側)に堆積したごみGを撮像する。また本実施形態では、赤外カメラ22は、炉本体20の炉尻から、輝炎Fを透過してホッパ11の出口部11bを撮像する。例えば、赤外カメラ22は、ホッパ11の出口部11bにおいて、フィーダ12上に堆積したごみGを含む画像(ごみGの堆積状態を示す画像)を撮像する。赤外カメラ22の撮像結果は、制御装置100に送信される。赤外カメラ22の撮像結果は、「処理空間Vへ供給される前のごみGに関する情報」の一例であり、「ホッパ11内でのごみGの堆積状態を示す堆積状態情報」の一例である。 The infrared camera 22 captures an image of the dust G deposited on the drying stage 20a of the furnace body 20 (that is, upstream of the processing space V) from the bottom of the furnace body 20 through the luminous flame F. Further, in the present embodiment, the infrared camera 22 captures an image of the exit portion 11b of the hopper 11 from the bottom of the furnace body 20 through the luminous flame F. For example, the infrared camera 22 captures an image including the garbage G accumulated on the feeder 12 (an image showing the accumulated state of the garbage G) at the exit portion 11b of the hopper 11 . The imaging result of the infrared camera 22 is transmitted to the control device 100 . The imaging result of the infrared camera 22 is an example of "information about the garbage G before being supplied to the processing space V" and an example of "accumulation state information indicating the accumulation state of the garbage G in the hopper 11". .
 なお本実施形態では、1つの赤外カメラ22によって、炉本体20の乾燥段20aおよびホッパ11の出口部11b(例えばフィーダ12上に堆積したごみG)の両方を含む画像が撮像される。これに代えて、炉本体20は、炉本体20の乾燥段20aを撮像する第1赤外カメラと、ホッパ11の出口部11b(例えばフィーダ12上に堆積したごみG)を撮像する第2赤外カメラとを別々に備えてもよい。また、赤外カメラ22は、炉本体20の炉尻に代えて、別の位置に設けられてもよい。 Note that in this embodiment, one infrared camera 22 captures an image including both the drying stage 20a of the furnace body 20 and the outlet 11b of the hopper 11 (for example, the dust G accumulated on the feeder 12). Instead of this, the furnace body 20 has a first infrared camera that images the drying stage 20a of the furnace body 20 and a second infrared camera that images the outlet portion 11b of the hopper 11 (for example, the waste G accumulated on the feeder 12). You may provide an outside camera separately. Also, the infrared camera 22 may be provided at another position instead of the bottom of the furnace body 20 .
 <2.3 ストーカ>
 ストーカ30は、複数の火格子31と、火格子駆動装置32(図2参照)とを含む。複数の火格子31は、炉本体20の底面(例えば処理空間Vの底面)となるストーカ面30aを形成している。ストーカ面30aには、供給機構10によってごみGが層状に供給される。ストーカ面30aは、上述した乾燥段20a、燃焼段20b、および後燃焼段20cに亘り設けられている。複数の火格子31は、固定火格子と、可動火格子とを含む。固定火格子は、後述する風箱41の上面に固定されている。可動火格子は、一定の速度で搬送方向Dに沿って往復移動することで、可動火格子と固定火格子の上(ストーカ面30a上)にあるごみGを攪拌混合しながら下流側へ搬送する。
<2.3 Stalker>
The stoker 30 includes a plurality of grates 31 and a grate drive 32 (see FIG. 2). The plurality of fire grates 31 form a stoker surface 30a that serves as the bottom surface of the furnace body 20 (for example, the bottom surface of the processing space V). Garbage G is supplied in layers by the supply mechanism 10 to the stoker surface 30a. The stoker surface 30a is provided over the drying stage 20a, the combustion stage 20b, and the post-combustion stage 20c. The plurality of grates 31 includes fixed grates and movable grates. The fixed grate is fixed to the upper surface of the wind box 41, which will be described later. The movable grate reciprocates along the conveying direction D at a constant speed, thereby conveying the garbage G on the movable grate and the fixed grate (on the stoker surface 30a) to the downstream side while stirring and mixing. .
 <2.4 風箱、排出シュート、火炉>
 風箱41は、ストーカ30の下方に設けられ、ストーカ30を通じて炉本体20の内部に燃焼用の空気を供給する。風箱41は、搬送方向Dに複数配列されている。風箱41は、風箱圧力センサ41aを有する。風箱圧力センサ41aは、風箱41の内部の圧力を検出する。風箱41の内部の圧力は、後述する一次空気ライン52を通じて炉本体20の内部に供給される燃焼空気の圧力に相当する。風箱圧力センサ41aの検出結果は、制御装置100に送信される。
<2.4 Wind box, discharge chute, furnace>
The wind box 41 is provided below the stoker 30 and supplies combustion air to the interior of the furnace body 20 through the stoker 30 . A plurality of wind boxes 41 are arranged in the transport direction D. As shown in FIG. The windbox 41 has a windbox pressure sensor 41a. The wind box pressure sensor 41 a detects the pressure inside the wind box 41 . The pressure inside the wind box 41 corresponds to the pressure of combustion air supplied to the inside of the furnace body 20 through a primary air line 52, which will be described later. A detection result of the wind box pressure sensor 41 a is transmitted to the control device 100 .
 排出シュート42は、燃焼を終えて灰となったごみGを炉本体20よりも下方に位置する灰押出装置へ落下させる装置である。排出シュート42は、炉本体20の炉尻に設けられている。 The discharge chute 42 is a device for dropping the garbage G, which has become ash after combustion, to the ash extrusion device located below the furnace body 20. The discharge chute 42 is provided at the bottom of the furnace body 20 .
 火炉43は、炉本体20の上部から上方に向けて延びている。処理空間V内でごみGが燃焼することで生じた排ガスは、火炉43を通じて排熱回収ボイラ3に送られる。 The furnace 43 extends upward from the top of the furnace body 20 . Exhaust gas generated by burning the garbage G in the processing space V is sent to the exhaust heat recovery boiler 3 through the furnace 43 .
 <2.5 送風機構>
 送風機構50は、炉本体20の内部に空気(例えば燃焼空気)を供給する。送風機構50は、例えば、送風機51、一次空気ライン52、空気予熱器53、二次空気ライン54、ダンパ55、および空気流量センサ56を有する。
<2.5 Blower Mechanism>
The blower mechanism 50 supplies air (for example, combustion air) to the interior of the furnace body 20 . The blower mechanism 50 has, for example, a blower 51 , a primary air line 52 , an air preheater 53 , a secondary air line 54 , a damper 55 and an air flow rate sensor 56 .
 送風機51は、炉本体20の内部に空気(例えば燃焼空気)を圧送する押込送風機である。送風機51は、例えば、第1送風機51Aと、第2送風機51Bとを含む。第1送風機51Aは、一次空気ライン52および風箱41を通じて炉本体20の内部(例えば処理空間V)に燃焼空気を圧送する。第2送風機51Bは、二次空気ライン54を通じて、火炉43の内部に燃焼空気を圧送する。 The blower 51 is a forced air blower that forces air (for example, combustion air) into the interior of the furnace body 20 . The blower 51 includes, for example, a first blower 51A and a second blower 51B. The first blower 51A pressurizes combustion air into the interior of the furnace body 20 (for example, the processing space V) through the primary air line 52 and the wind box 41 . The second blower 51B pumps combustion air into the furnace 43 through the secondary air line 54 .
 一次空気ライン52は、第1送風機51Aと風箱41とを接続している。一次空気ライン52の途中には、1つ以上(例えば複数)の一次空気ダンパ55Aが設けられている。一次空気ダンパ55Aは、一次空気ダンパ55Aの開度によって一次空気ライン52を流れる燃焼空気の流量を変更する。 The primary air line 52 connects the first blower 51A and the air box 41. One or more (eg, multiple) primary air dampers 55A are provided in the middle of the primary air line 52 . The primary air damper 55A changes the flow rate of combustion air flowing through the primary air line 52 according to the degree of opening of the primary air damper 55A.
 空気予熱器53は、第1送風機51Aから圧送される空気を予熱する熱交換器である。例えば、空気予熱器53は、一次空気ライン52の途中に設けられている。 The air preheater 53 is a heat exchanger that preheats the air pressure-fed from the first blower 51A. For example, the air preheater 53 is provided in the middle of the primary air line 52 .
 二次空気ライン54は、第2送風機51Bと火炉43とを接続している。火炉43内に供給された二次空気は、ストーカ30の上方からごみGに向かう。二次空気ライン54の途中には、1つ以上(例えば複数)の二次空気ダンパ55Bが設けられている。二次空気ダンパ55Bは、二次空気ダンパ55Bの開度によって二次空気ライン54を流れる燃焼空気の流量を変更する。以下では説明の便宜上、一次空気ダンパ55Aと二次空気ダンパ55Bとを合わせて「ダンパ55」と称する。 The secondary air line 54 connects the second blower 51B and the furnace 43. The secondary air supplied into the furnace 43 goes toward the garbage G from above the stoker 30 . One or more (eg, multiple) secondary air dampers 55B are provided in the middle of the secondary air line 54 . The secondary air damper 55B changes the flow rate of combustion air flowing through the secondary air line 54 according to the degree of opening of the secondary air damper 55B. For convenience of explanation, the primary air damper 55A and the secondary air damper 55B are hereinafter collectively referred to as "damper 55".
 空気流量センサ56は、炉本体20の内部に供給される空気(例えば燃焼空気)の流量を検出する。空気流量センサ56は、例えば、第1空気流量センサ56Aと、第2空気流量センサ56Bとを含む。第1空気流量センサ56Aは、一次空気ライン52の途中に設けられ、一次空気ライン52を通じて供給される空気の流量を検出する。第2空気流量センサ56Bは、二次空気ライン54の途中に設けられ、二次空気ライン54を通じて供給される空気の流量を検出する。以下の説明で「空気流量センサ56の検出結果」とは、例えば、第1空気流量センサ56Aの検出結果と、第2空気流量センサ56Bの検出結果とを含む。 The air flow rate sensor 56 detects the flow rate of air (for example, combustion air) supplied inside the furnace body 20 . The air flow sensor 56 includes, for example, a first air flow sensor 56A and a second air flow sensor 56B. The first air flow rate sensor 56A is provided in the middle of the primary air line 52 and detects the flow rate of air supplied through the primary air line 52 . The second air flow rate sensor 56B is provided in the middle of the secondary air line 54 and detects the flow rate of air supplied through the secondary air line 54 . In the following description, the "detection result of the air flow sensor 56" includes, for example, the detection result of the first air flow sensor 56A and the detection result of the second air flow sensor 56B.
 <3.排熱回収ボイラ>
 次に、排熱回収ボイラ3について説明する。排熱回収ボイラ3は、例えば、ボイラ本体61、管路62、放射温度センサ(赤外線温度センサ)63、炉内圧力センサ64、給水流量センサ65、および過熱器減温器流量センサ(蒸気流量センサ)66を含む。
<3. Exhaust heat recovery boiler>
Next, the exhaust heat recovery boiler 3 will be described. The exhaust heat recovery boiler 3 includes, for example, a boiler body 61, a pipeline 62, a radiation temperature sensor (infrared temperature sensor) 63, a furnace pressure sensor 64, a feed water flow sensor 65, and a superheater desuperheater flow sensor (steam flow sensor ) 66.
 ボイラ本体61は、焼却炉2の火炉43に接続されている。ボイラ本体61の内部には、焼却炉2で発生した排ガスが流入する。放射温度センサ63および炉内圧力センサ64は、ボイラ本体61に設けられている。放射温度センサ63は、ボイラ本体61の内部の温度を検出する。炉内圧力センサ64は、ボイラ本体61の内部の圧力を検出する。放射温度センサ63および炉内圧力センサ64の検出結果は、制御装置100に送信される。 The boiler body 61 is connected to the furnace 43 of the incinerator 2. Exhaust gas generated in the incinerator 2 flows into the boiler main body 61 . A radiation temperature sensor 63 and an in-furnace pressure sensor 64 are provided in the boiler main body 61 . A radiation temperature sensor 63 detects the temperature inside the boiler body 61 . The furnace pressure sensor 64 detects the pressure inside the boiler body 61 . The detection results of radiation temperature sensor 63 and furnace pressure sensor 64 are transmitted to control device 100 .
 管路62は、ボイラ本体61の内部を延びている。管路62には、複数の過熱器および複数の減温器が設けられている。管路62の入口部には、給水部から水が供給される。管路62を流れる水の少なくとも一部は、ボイラ本体61の内部で熱交換により加熱され、主蒸気となって外部機器(例えばタービン)に向けて流れる。後述する「主蒸気流量」とは、管路62から外部機器(例えばタービン)に向けて流れる蒸気の流量を意味する。 The pipeline 62 extends inside the boiler body 61 . Line 62 is provided with multiple superheaters and multiple desuperheaters. Water is supplied from the water supply unit to the inlet of the conduit 62 . At least part of the water flowing through the pipe line 62 is heated by heat exchange inside the boiler body 61 and becomes main steam that flows toward an external device (for example, a turbine). A "main steam flow rate", which will be described later, means a flow rate of steam flowing from the pipeline 62 toward an external device (for example, a turbine).
 給水流量センサ65は、管路62の入口部に設けられており、管路62に給水される水の流量を検出する。過熱器減温器流量センサ66は、管路62の途中に設けられており、管路62を流れる流体(例えば蒸気)の流量を検出する。例えば、過熱器減温器流量センサ66は、一次減温器を通過する流体の流量(一次過熱器減温器流量)を検出する第1過熱器減温器流量センサ66Aと、二次減温器を通過する流体の流量(二次過熱器減温器流量)を検出する第2過熱器減温器流量センサ66Bとを含む。以下の説明で「過熱器減温器流量センサ66の検出結果」とは、例えば、第1過熱器減温器流量センサ66Aの検出結果と、第2過熱器減温器流量センサ66Bの検出結果とを含む。給水流量センサ65および過熱器減温器流量センサ66の検出結果は、制御装置100に送信される。 The water supply flow rate sensor 65 is provided at the inlet of the pipeline 62 and detects the flow rate of water supplied to the pipeline 62 . A superheater desuperheater flow sensor 66 is provided in the middle of the pipeline 62 and detects the flow rate of the fluid (eg, steam) flowing through the pipeline 62 . For example, the superheater desuperheater flow sensor 66 includes a first superheater desuperheater flow sensor 66A that detects the flow rate of fluid passing through the primary desuperheater (primary superheater desuperheater flow rate) and a second superheater desuperheater flow sensor 66B that senses the flow rate of fluid passing through the vessel (secondary superheater desuperheater flow). In the following description, the "detection result of the superheater desuperheater flow sensor 66" means, for example, the detection result of the first superheater desuperheater flow sensor 66A and the detection result of the second superheater desuperheater flow sensor 66B. including. The detection results of the feedwater flow rate sensor 65 and the superheater desuperheater flow rate sensor 66 are sent to the control device 100 .
 <4.制御装置>
 次に、制御装置100について説明する。
 図2は、実施形態に係る焼却設備SFの機能構成を示すブロック図である。制御装置100は、焼却設備SFを統括的に制御する。例えば、制御装置100は、炉本体20の処理空間VでのごみGの燃焼制御を行う。本実施形態では、制御装置100は、例えば、情報取得部110、データ変換部120、予測モデル作成部130、予測モデル判定部140、蒸気流量予測部150、および制御部160を有する。制御装置100による制御対象の装置(以下「制御対象装置S」と称する)は、上述した押出装置13、送風機51、ダンパ55、および火格子駆動装置32などを含む。
<4. Control device>
Next, the control device 100 is described.
FIG. 2 is a block diagram showing the functional configuration of the incineration facility SF according to the embodiment. The control device 100 centrally controls the incineration facility SF. For example, the control device 100 performs combustion control of the refuse G in the processing space V of the furnace body 20 . In this embodiment, the control device 100 has, for example, an information acquisition unit 110, a data conversion unit 120, a prediction model creation unit 130, a prediction model determination unit 140, a steam flow rate prediction unit 150, and a control unit 160. A device to be controlled by the control device 100 (hereinafter referred to as a “controlled device S”) includes the extrusion device 13, the blower 51, the damper 55, the grate driving device 32, and the like.
 <4.1 情報取得部>
 情報取得部110は、焼却設備SFに含まれる上述した各種センサにより検出された検出結果などを取得する。例えば、情報取得部110は、重量センサ1bの検出結果(ごみ重量)、物体計測器14の検出結果(ごみ高さ)、水分計測器15の検出結果(ごみ水分検出結果)、可視光カメラ21の撮像結果(燃焼火炎画像)、赤外カメラ22の撮像結果(ごみ層画像)、風箱圧力センサ41aの検出結果(風箱圧力)、空気流量センサ56の検出結果(押込空気流量)、放射温度センサ63の検出結果(炉内温度)、炉内圧力センサ64の検出結果(炉内圧力)、給水流量センサ65の検出結果(給水流量)、過熱器減温器流量センサ66の検出結果(過熱器減温器流量)、およびガス濃度センサ6aの検出結果(酸素濃度など)を取得する。
<4.1 Information Acquisition Unit>
The information acquisition unit 110 acquires detection results and the like detected by the above-described various sensors included in the incineration facility SF. For example, the information acquisition unit 110 obtains the detection result of the weight sensor 1b (garbage weight), the detection result of the object measuring instrument 14 (garbage height), the detection result of the moisture measuring instrument 15 (garbage moisture detection result), the visible light camera 21 imaging result (combustion flame image), imaging result of the infrared camera 22 (dust layer image), detection result of the wind box pressure sensor 41a (wind box pressure), detection result of the air flow rate sensor 56 (forced air flow rate), radiation The detection result of the temperature sensor 63 (furnace temperature), the detection result of the furnace pressure sensor 64 (furnace pressure), the detection result of the feedwater flow rate sensor 65 (feedwater flow rate), the detection result of the superheater desuperheater flow rate sensor 66 ( superheater desuperheater flow rate) and the detection result (oxygen concentration etc.) of the gas concentration sensor 6a.
 ここで、上述した風箱圧力センサ41aの検出結果、空気流量センサ56の検出結果、放射温度センサ63の検出結果、炉内圧力センサ64の検出結果、給水流量センサ65の検出結果、過熱器減温器流量センサ66の検出結果、およびガス濃度センサ6aの検出結果のうち1つ以上は、後述するプロセスデータに含まれる。これら検出結果の各々は、上述した重量センサ1bの検出結果、物体計測器14の検出結果、水分計測器15の検出結果、可視光カメラ21の撮像結果、赤外カメラ22の撮像結果とともに、「予測用情報」の一例に該当する。なお本開示で「取得する」とは、送信要求を出力することで能動的に取得する場合に限定されず、各種装置から送信される情報を受動的に受信することで取得する場合も含む。この定義は、以下の説明においても同様である。 Here, the detection result of the wind box pressure sensor 41a, the detection result of the air flow sensor 56, the detection result of the radiation temperature sensor 63, the detection result of the furnace pressure sensor 64, the detection result of the feed water flow sensor 65, the superheater One or more of the detection result of the heater flow rate sensor 66 and the detection result of the gas concentration sensor 6a are included in the process data described later. Each of these detection results is, together with the detection result of the weight sensor 1b, the detection result of the object measuring instrument 14, the detection result of the moisture measuring instrument 15, the imaging result of the visible light camera 21, and the imaging result of the infrared camera 22, " It corresponds to an example of "prediction information". Note that "obtaining" in the present disclosure is not limited to active acquisition by outputting a transmission request, and includes acquisition by passively receiving information transmitted from various devices. This definition also applies to the following description.
 また、情報取得部110は、制御対象装置Sに含まれる各装置の状態を示すプロセス値を、後述するプロセスデータの一部として取得する。例えば、制御対象装置Sは、押出装置13の状態を示すプロセス値(例えばフィーダ12のストローク長および/またはフィーダ12の移動速度、送風機51の状態を示すプロセス値(例えば送風機51の回転数)、ダンパ55の状態を示すプロセス値(例えばダンパ55の開度)、および火格子駆動装置32の状態を示すプロセス値(例えば火格子31の移動速度)を、プロセスデータの一部として取得する。これらプロセスデータ(プロセス値)の各々は、「予測用情報」の一例である。押出装置13の状態を示すプロセス値(例えばフィーダ12のストローク長および/またはフィーダ12の移動速度)は、「フィーダ12の動作を示す情報」の一例であり、「ホッパ11から処理空間VへのごみGの供給状態を示す供給状態情報」の一例である。情報取得部110は、取得した各種情報およびプロセスデータを、データ変換部120に出力する。 In addition, the information acquisition unit 110 acquires process values indicating the state of each device included in the control target device S as part of process data described later. For example, the controlled device S includes process values indicating the state of the extrusion device 13 (for example, the stroke length of the feeder 12 and/or the moving speed of the feeder 12, process values indicating the state of the blower 51 (for example, the rotation speed of the blower 51), A process value indicating the state of the damper 55 (for example, the opening of the damper 55) and a process value indicating the state of the grate drive device 32 (for example, the moving speed of the grate 31) are acquired as part of the process data. Each of the process data (process value) is an example of “prediction information.” A process value indicating the state of the extrusion device 13 (for example, the stroke length of the feeder 12 and/or the moving speed of the feeder 12) is “the feeder 12 and an example of "supply state information indicating the supply state of the waste G from the hopper 11 to the processing space V." , to the data conversion unit 120 .
 <4.2 データ変換部>
 データ変換部120は、情報取得部110から受け取る情報に対して所定のデータ変換を行う。例えば、データ変換部120は、所定のデータ変換として、特徴量の抽出、時間遅れの調整、平均化処理などを行う。
<4.2 Data converter>
The data conversion unit 120 performs predetermined data conversion on information received from the information acquisition unit 110 . For example, the data conversion unit 120 performs predetermined data conversion such as feature amount extraction, time delay adjustment, and averaging.
 図3は、実施形態に係るデータ変換部120の機能構成を示すブロック図である。データ変換部120は、例えば、第1発熱量推定部121、第2発熱量推定部122、第1特徴量抽出部123、酸素濃度推定部124、燃え難さ係数算出部125、画像変換部(画像処理部)126、ごみ層高さ検出部127、第2特徴量抽出部128、フィーダ供給量推定部129、および調整処理部PUを含む。 FIG. 3 is a block diagram showing the functional configuration of the data converter 120 according to the embodiment. The data conversion unit 120 includes, for example, a first calorific value estimating unit 121, a second calorific value estimating unit 122, a first feature amount extracting unit 123, an oxygen concentration estimating unit 124, a flammability coefficient calculating unit 125, an image converting unit ( image processing unit) 126, dust layer height detection unit 127, second feature amount extraction unit 128, feeder supply amount estimation unit 129, and adjustment processing unit PU.
 (第1発熱量推定部)
 第1発熱量推定部121には、重量センサ1bの検出結果(ごみ重量)と、物体計測器14の検出結果(ごみ高さ)とが入力される。第1発熱量推定部121は、ごみGの高さに基づき(例えばごみGの高さとクレーン1の把持部1aの大きさに基づき)、ごみGの体積を算出する。そして、第1発熱量推定部121は、ごみGの重量をごみGの体積で除算することで、ごみGの密度を算出する。また、第1発熱量推定部121は、ごみGの密度とごみGの発熱量(例えば低位発熱量LHV:Lower Heating Value)(以下「ごみ発熱量」と称する)との相関関係を示す相関関係情報を有する。上記相関関係情報は、例えば、ごみGの密度からごみ発熱量の推定値を算出する発熱量推定式である。第1発熱量推定部121は、算出されたごみGの密度と、上記相関関係情報とに基づき、ごみ発熱量の推定値を算出する。第1発熱量推定部121は、算出されたごみ発熱量の推定値を、調整処理部PUに出力する。
(First calorific value estimation unit)
The detection result (garbage weight) of the weight sensor 1b and the detection result (garbage height) of the object measuring device 14 are input to the first heat generation estimation unit 121 . The first calorific value estimator 121 calculates the volume of the garbage G based on the height of the garbage G (for example, based on the height of the garbage G and the size of the gripping portion 1a of the crane 1). Then, the first calorific value estimation unit 121 calculates the density of the dust G by dividing the weight of the dust G by the volume of the dust G. In addition, the first calorific value estimator 121 has a correlation indicating the correlation between the density of the garbage G and the calorific value of the garbage G (for example, lower heating value LHV) (hereinafter referred to as “garbage calorific value”). have information. The correlation information is, for example, a calorific value estimation formula for calculating an estimated value of the calorific value of the refuse G from the density of the refuse G. FIG. The first calorific value estimator 121 calculates an estimated value of the calorific value of waste based on the calculated density of the waste G and the correlation information. The first calorific value estimator 121 outputs the calculated estimated value of the waste calorific value to the adjustment processor PU.
 ここで、本実施形態でいう密度とは、例えば、かさ密度を意味する。かさ密度は、対象物固有の密度(真密度)ではなく、「空隙を含む単位体積当たりの重量」から算出した密度である。ただし、第1発熱量推定部121は、かさ密度に代えて/加えて、真密度を推定して用いてもよい。なお、第1発熱量推定部121により算出されるごみGの密度は、ホッパ11内の外部で計測された重量などに基づくものであるが、ホッパ11内でのごみGの密度に相当するものである。このため、第1発熱量推定部121により算出されるごみGの密度は、「ホッパ11内でのごみGの密度」の一例に該当する。 Here, the density in the present embodiment means, for example, bulk density. The bulk density is not the specific density (true density) of the object, but the density calculated from the "weight per unit volume including voids". However, the first calorific value estimation unit 121 may estimate and use the true density instead of/in addition to the bulk density. The density of the garbage G calculated by the first calorific value estimating unit 121 is based on the weight measured outside the hopper 11, and is equivalent to the density of the garbage G inside the hopper 11. is. Therefore, the density of the garbage G calculated by the first calorific value estimator 121 corresponds to an example of "the density of the garbage G in the hopper 11".
 (第2発熱量推定部)
 第2発熱量推定部122には、水分計測器15の検出結果(ごみ水分検出結果)が入力される。なお、第2発熱量推定部122には、第1発熱量推定部121で算出されたごみGの体積がさらに入力されてもよい。ごみGの体積が入力される場合、第2発熱量推定部122は、ごみGの水分率とごみGの体積とを乗算することで、ごみGの水分量を算出することができる。第2発熱量推定部122は、ごみGの水分に関する値(水分率または水分量)とごみ発熱量(例えば低位発熱量)との相関関係を示す相関関係情報を有する。上記相関関係情報は、例えば、ごみGの水分に関する値からごみ発熱量の推定値を算出する発熱量推定式である。第2発熱量推定部122は、ごみGの水分に関する値と、上記相関関係情報とに基づき、ごみ発熱量の推定値を算出する。第2発熱量推定部122は、算出されたごみ発熱量の推定値を、調整処理部PUに出力する。
(Second calorific value estimation unit)
The detection result of the moisture meter 15 (garbage moisture detection result) is input to the second calorific value estimation unit 122 . Note that the volume of the dust G calculated by the first calorific value estimating unit 121 may also be input to the second calorific value estimating unit 122 . When the volume of the dust G is input, the second calorific value estimator 122 can calculate the moisture content of the dust G by multiplying the moisture content of the dust G by the volume of the dust G. The second calorific value estimator 122 has correlation information indicating the correlation between the value (moisture content or moisture content) related to the moisture content of the garbage G and the calorific value of the garbage (for example, the lower calorific value). The correlation information is, for example, a calorific value estimation formula for calculating an estimated value of the calorific value of waste G from a value related to moisture of the waste G. FIG. The second calorific value estimating unit 122 calculates an estimated value of the calorific value of the waste based on the value related to the water content of the waste G and the correlation information. The second calorific value estimator 122 outputs the calculated estimated value of the waste calorific value to the adjustment processor PU.
 ここで図4は、水分計測器15の検出結果に基づくごみ発熱量の推定値と、実機で確認されたごみ発熱量との相関関係を示す図である。図4に示すように、水分計測器15の検出結果に基づくごみ発熱量の推定値と、実機で確認されたごみ発熱量との間には、十分に高い相関関係があることが本発明者らにより確認されている。また、水分計測器15の検出結果に基づくごみ発熱量の推定値は、実機で確認されたごみGの発熱量に対して先行した情報となるため、時間遅れを考慮することで、水分計測器15の検出結果に基づくごみ発熱量の推定値と、実機で確認されたごみ発熱量との間の相関関係を高めることができることが本発明者らにより確認されている。 Here, FIG. 4 is a diagram showing the correlation between the estimated value of the heating value of waste based on the detection result of the moisture measuring instrument 15 and the heating value of waste confirmed in the actual machine. As shown in FIG. 4, the inventors of the present invention have found that there is a sufficiently high correlation between the estimated value of the heating value of waste based on the detection result of the moisture measuring device 15 and the heating value of waste confirmed in the actual machine. confirmed by et al. In addition, since the estimated value of the calorific value of the dust based on the detection result of the moisture measuring device 15 is information preceding the calorific value of the dust G confirmed in the actual machine, the moisture measuring device can The inventors of the present invention have confirmed that the correlation between the estimated value of the waste heat generation amount based on the detection result of No. 15 and the waste heat generation amount confirmed in the actual machine can be enhanced.
 (第1特徴量抽出部)
 第1特徴量抽出部123には、可視光カメラ21の撮影結果(燃焼火炎画像)が入力される。第1特徴量抽出部123は、入力された燃焼火炎画像に対してクラスタリング処理を行うことで、色情報に応じて複数の色領域に区分された色画像データIM(図5参照)に変換する。そして、第1特徴量抽出部123は、色画像データIMに基づいて火炎状態に関する特徴量を抽出する。
(First feature quantity extraction unit)
The photographing result (combustion flame image) of the visible light camera 21 is input to the first feature quantity extraction unit 123 . The first feature quantity extraction unit 123 performs clustering processing on the input combustion flame image, thereby converting it into color image data IM (see FIG. 5) divided into a plurality of color regions according to color information. . Then, the first feature quantity extraction unit 123 extracts a feature quantity relating to the flame state based on the color image data IM.
 「画像をクラスタリング処理により色情報に応じて複数の色領域に区分する」の一例について説明する。色情報はRGBの各色成分であり、複数の色領域のそれぞれは、RGBの各色成分が互いに重複しないようにクラスタリング処理によって設定されている。第1特徴量抽出部123は、燃焼火炎画像を画素ごとにRGBの各色成分に分解し、各画素が含まれる色領域を決定する。なお、色情報は、RGBの各色成分に限定されず、輝度や彩度であってもよい。 An example of "dividing an image into multiple color regions according to color information by clustering processing" will be described. The color information is RGB color components, and each of the plurality of color regions is set by clustering processing so that the RGB color components do not overlap each other. The first feature amount extraction unit 123 decomposes the combustion flame image into RGB color components for each pixel, and determines a color region including each pixel. Note that the color information is not limited to RGB color components, and may be luminance or saturation.
 クラスタリング処理のアルゴリズムは、特に限定されず、公知の種々のクラスタリングアルゴリズムを用いることが可能である。例えば、k-means等のクラスタ数を指定できるアルゴリズムを用いてクラスタリング処理を行ってもよいし、flowsom等の自動的にクラスタ数を決定するようなアルゴリズムを用いてクラスタリング処理を行ってもよい。 The algorithm for clustering processing is not particularly limited, and various known clustering algorithms can be used. For example, the clustering process may be performed using an algorithm capable of specifying the number of clusters such as k-means, or may be performed using an algorithm such as flowsom which automatically determines the number of clusters.
 図5は、色画像データIMの一例を示す図である。図5に例示する色画像データIMでは、クラスタリング処理によって7つの色領域Aに区分されており、輝度が高い順に第1色領域A1、第2色領域A2、第3色領域A3、第4色領域A4、第5色領域A5、第6色領域A6、および第7色領域A7を含む。第1色領域A1~第7色領域A7のそれぞれは、白黒(グレースケール)の濃淡の値に変換されており、第1色領域A1から第7色領域A7に進むにつれて濃くなる。 FIG. 5 is a diagram showing an example of color image data IM. The color image data IM exemplified in FIG. 5 is divided into seven color regions A by clustering processing. It includes an area A4, a fifth color area A5, a sixth color area A6, and a seventh color area A7. Each of the first color area A1 to the seventh color area A7 is converted to a black and white (gray scale) gradation value, and becomes darker from the first color area A1 to the seventh color area A7.
 次に「色画像データIMから特徴量を抽出する」の一例について説明する。第1特徴量抽出部123は、第1色領域A1に区分された画素数の合計(すなわち面積)を算出し、この合計画素数を特徴量として抽出する。例えば、第1特徴量抽出部123は、所定の時間ごと(例えば毎秒)に第1色領域A1の合計画素数を抽出する。第1特徴量抽出部123は、第2色領域A2から第7色領域A7のそれぞれに対しても所定の時間ごとの合計画素数を算出し、それぞれの合計画素数を特徴量として抽出する。なお、本実施形態では、特徴量は、複数の色領域のうち全ての色領域(第1色領域A1から第7色領域A7)の合計画素数を含むが、本開示はこの形態に限定されない。特徴量は、複数の色領域のうちの少なくとも1つの色領域の合計画素数を含めばよい。 Next, an example of "extracting feature values from color image data IM" will be described. The first feature amount extraction unit 123 calculates the total number of pixels (that is, the area) divided into the first color area A1, and extracts the total number of pixels as a feature amount. For example, the first feature amount extraction unit 123 extracts the total number of pixels of the first color area A1 at predetermined time intervals (for example, every second). The first feature amount extraction unit 123 also calculates the total number of pixels for each predetermined time period for each of the second color area A2 to the seventh color area A7, and extracts each total number of pixels as a feature amount. Note that in the present embodiment, the feature amount includes the total number of pixels of all color regions (the first color region A1 to the seventh color region A7) among the plurality of color regions, but the present disclosure is not limited to this form. . The feature amount may include the total number of pixels in at least one color area among the plurality of color areas.
 第1特徴量抽出部123は、抽出した火炎状態に関する特徴量を、酸素濃度推定部124に出力するとともに、調整処理部PUに出力する。なお、第1特徴量抽出部123によって特徴量を抽出する手法は、クラスタリングに限らず、別の手法でもよい。 The first feature amount extraction unit 123 outputs the extracted feature amount related to the flame state to the oxygen concentration estimation unit 124 and to the adjustment processing unit PU. Note that the method for extracting the feature amount by the first feature amount extraction unit 123 is not limited to clustering, and another method may be used.
 (酸素濃度推定部)
 酸素濃度推定部124には、第1特徴量抽出部123により抽出された特徴量と、情報取得部110により取得されたプロセスデータの一部または全部が入力される。酸素濃度推定部124に入力されるプロセスデータは、例えば、風箱圧力センサ41aの検出結果、空気流量センサ56の検出結果、放射温度センサ63の検出結果、炉内圧力センサ64の検出結果、給水流量センサ65の検出結果、過熱器減温器流量センサ66の検出結果、およびガス濃度センサ6aの検出結果などのうち1つ以上である。酸素濃度推定部124は、入力された特徴量およびプロセスデータに基づき機械学習による回帰分析を行うことで、処理空間Vの酸素濃度を推定するための推定式を導出する。そして、酸素濃度推定部124は、入力された特徴量およびプロセスデータと上記推定式に基づいて、処理空間Vの酸素濃度の推定値をリアルタイムで算出する。酸素濃度推定部124は、算出した酸素濃度の推定値を燃え難さ係数算出部125に出力する。なお、酸素濃度推定部124によって上記推定式を導出する手法は、回帰分析に限らず、別の手法でもよい。また、機械学習のアルゴリズムは、特に限定されず、公知の種々のアルゴリズムを用いることが可能である。
(Oxygen concentration estimation unit)
The feature amount extracted by the first feature amount extraction section 123 and part or all of the process data acquired by the information acquisition section 110 are input to the oxygen concentration estimation section 124 . The process data input to the oxygen concentration estimator 124 are, for example, the detection result of the wind box pressure sensor 41a, the detection result of the air flow rate sensor 56, the detection result of the radiation temperature sensor 63, the detection result of the furnace pressure sensor 64, and the feed water. One or more of the detection result of the flow sensor 65, the detection result of the superheater desuperheater flow sensor 66, the detection result of the gas concentration sensor 6a, and the like. The oxygen concentration estimation unit 124 derives an estimation formula for estimating the oxygen concentration in the processing space V by performing regression analysis by machine learning based on the input feature amount and process data. Then, the oxygen concentration estimator 124 calculates an estimated value of the oxygen concentration in the processing space V in real time based on the input feature amount and process data and the above estimation formula. The oxygen concentration estimation unit 124 outputs the calculated estimated value of the oxygen concentration to the flammability coefficient calculation unit 125 . Note that the method for deriving the above estimation formula by the oxygen concentration estimating unit 124 is not limited to regression analysis, and may be another method. Also, the machine learning algorithm is not particularly limited, and various known algorithms can be used.
 (燃え難さ係数算出部)
 燃え難さ係数算出部125には、酸素濃度推定部124により算出された酸素濃度の推定値と、情報取得部110により取得されたプロセスデータの一部または全部が入力される。酸素濃度推定部124に入力されるプロセスデータは、例えば、放射温度センサ63の検出結果、およびフィーダ12の移動速度などのうち1つ以上である。本実施形態では、燃え難さ係数算出部125は、酸素濃度の推定値、放射温度センサ63の検出結果、およびフィーダ12の移動速度の変化量などに基づき、処理空間Vの燃焼状態を数値化した燃え難さ係数を算出する。燃え難さ係数算出部125は、算出した燃え難さ係数を、調整処理部PUに出力する。本開示で「燃え難さ」とは、「燃焼状況」を意味する。
(Combustibility factor calculator)
The estimated value of the oxygen concentration calculated by the oxygen concentration estimating unit 124 and part or all of the process data acquired by the information acquiring unit 110 are input to the flammability coefficient calculating unit 125 . The process data input to the oxygen concentration estimation unit 124 is, for example, one or more of the detection result of the radiation temperature sensor 63, the moving speed of the feeder 12, and the like. In this embodiment, the flammability coefficient calculator 125 quantifies the combustion state of the processing space V based on the estimated value of the oxygen concentration, the detection result of the radiation temperature sensor 63, the amount of change in the moving speed of the feeder 12, and the like. Calculate the flammability factor. The flammability coefficient calculator 125 outputs the calculated flammability coefficient to the adjustment processor PU. In the present disclosure, "flammability" means "combustion condition."
 (画像変換部)
 画像変換部126には、赤外カメラ22の撮像結果(ごみ層画像)が入力される。画像変換部126は、入力されたごみ層画像に対して所定の画像処理を行い、ごみ層画像を単純化する。例えば、画像変換部126は、入力されたごみ層画像を二値化する。二値化の手法は、例えば大津法であるが、これに限定されない。
(Image converter)
The imaging result (dust layer image) of the infrared camera 22 is input to the image conversion unit 126 . The image conversion unit 126 performs predetermined image processing on the input dust layer image to simplify the dust layer image. For example, the image conversion unit 126 binarizes the input dust layer image. The binarization method is, for example, the Otsu method, but is not limited to this.
 図6は、画像変換部126による処理の一例を示す図である。図6に示すように、赤外カメラ22により撮像されたカラー画像(またはモノクロ画像)であるごみ層画像は、画像変換部126によって白黒画像に変換される。画像変換部126により得らえた画像(例えば白黒画像)は、ごみ層高さ検出部127に出力される。 FIG. 6 is a diagram showing an example of processing by the image conversion unit 126. FIG. As shown in FIG. 6, the dust layer image, which is a color image (or monochrome image) captured by the infrared camera 22, is converted into a black and white image by the image conversion unit 126. FIG. An image (for example, a black-and-white image) obtained by the image converter 126 is output to the dust layer height detector 127 .
 (ごみ層高さ検出部)
 ごみ層高さ検出部127には、画像変換部126により得られた画像が入力される。ごみ層高さ検出部127は、入力された画像に基づき、炉本体20の乾燥段20aにおけるごみGの高さ(ごみ層高さ)を検出する。
(Garbage layer height detector)
The image obtained by the image conversion unit 126 is input to the dust layer height detection unit 127 . The dust layer height detection unit 127 detects the height of the dust G (dust layer height) in the drying stage 20a of the furnace body 20 based on the input image.
 図7は、ごみ層高さ検出部127による処理の一例を示す図である。ごみ層高さ検出部127は、画像変換部126により得られた画像に対して、当該画像の一部である所定の注目領域R(図6参照)を1箇所以上(図6に示す例では2箇所)設定する。そして、ごみ層高さ検出部127は、設定した注目領域Rの画像に対して、上下方向および左右方向に分割された複数の分割領域Ra(例えば、注目領域Rを上下方向で20分割、左右方向で5分割された分割領域Ra)を設定する(図7中の(a)参照)。なお図7では、2箇所の注目領域Rのデータが横に並べられて図示されている。 FIG. 7 is a diagram showing an example of processing by the dust layer height detection unit 127. FIG. The dust layer height detection unit 127 detects one or more predetermined attention areas R (see FIG. 6) that are part of the image obtained by the image conversion unit 126 (in the example shown in FIG. 6, 2 places). Then, the dust layer height detection unit 127 divides the image of the set attention area R into a plurality of divided areas Ra (for example, the attention area R is divided vertically and horizontally into 20 areas, and divided horizontally and horizontally). Divided regions Ra) divided into five in the direction are set (see (a) in FIG. 7). Note that in FIG. 7, the data of the two regions of interest R are shown side by side.
 ごみ層高さ検出部127は、各分割領域Raについて、黒が50%より大きい場合に当該分割領域Raに「1」を付与し、黒が50%以下である場合に当該分割領域Raに「0」を付与する(図7中の(b)参照)。そして、ごみ層高さ検出部127は、最も上部にある「1」の分割領域Raの位置をごみ層高さとして算出する。例えば、図7に示す例では、線Hの高さ位置をごみ層高さとして算出する。ごみ層高さ検出部127は、算出したごみ層高さを、フィーダ供給量推定部129に出力する。 For each divided area Ra, the dust layer height detection unit 127 assigns "1" to the divided area Ra when the black is greater than 50%, and assigns "1" to the divided area Ra when the black is 50% or less. 0” (see (b) in FIG. 7). Then, the dust layer height detection unit 127 calculates the position of the uppermost divided area Ra of "1" as the dust layer height. For example, in the example shown in FIG. 7, the height position of line H is calculated as the dust layer height. The dust layer height detection unit 127 outputs the calculated dust layer height to the feeder supply amount estimation unit 129 .
 (第2特徴量抽出部)
 第2特徴量抽出部128には、赤外カメラ22の撮像結果(ごみ層画像)が入力される。第2特徴量抽出部128は、入力されたごみ層画像に対してクラスタリング処理を行うことで、色情報に応じて複数の色領域に区分された色画像データに変換する。そして、第2特徴量抽出部128は、上記色画像データに基づいてごみの供給状態に関する特徴量を抽出する。なお、「画像をクラスタリング処理により色情報に応じて複数の色領域に区分する」ことの処理方法、および、クラスタリング処理のアルゴリズムは、例えば、第1特徴量抽出部123の処理方法およびアルゴリズムと同じであるが、異なってもよい。
(Second feature quantity extraction unit)
The imaging result (dust layer image) of the infrared camera 22 is input to the second feature amount extraction unit 128 . The second feature amount extraction unit 128 performs clustering processing on the input dust layer image, thereby converting the dust layer image into color image data divided into a plurality of color regions according to the color information. Then, the second feature quantity extraction unit 128 extracts a feature quantity relating to the supply state of dust based on the color image data. Note that the processing method of "dividing an image into a plurality of color regions according to color information by clustering processing" and the clustering processing algorithm are the same as the processing method and algorithm of the first feature quantity extraction unit 123, for example. but can be different.
 本実施形態では、第2特徴量抽出部128は、入力されたごみ層画像をクラスタリング処理によって複数の色領域に区分する。そして、第2特徴量抽出部128は、区分された各色領域の画素数の合計(すなわち面積)を算出し、この合計画素数を、ごみGの供給状態に関する特徴量として抽出する。第2特徴量抽出部128は、所定の時間ごと(例えば毎秒)に、各色領域の合計画素数を抽出する。なお、本実施形態では、特徴量は、複数の色領域のうち全ての色領域の合計画素数を含むが、本開示はこの形態に限定されない。特徴量は、複数の色領域のうちの少なくとも1つの色領域の合計画素数を含めばよい。第2特徴量抽出部128は、抽出したごみGの供給状態に関する特徴量を、フィーダ供給量推定部129に出力する。なお、第2特徴量抽出部128によって特徴量を抽出する手法は、クラスタリングに限らず、別の手法でもよい。 In this embodiment, the second feature amount extraction unit 128 classifies the input dust layer image into a plurality of color regions by clustering processing. Then, the second feature amount extraction unit 128 calculates the total number of pixels (that is, the area) of the divided color regions, and extracts the total number of pixels as a feature amount relating to the supply state of the dust G. FIG. The second feature quantity extraction unit 128 extracts the total number of pixels in each color region at predetermined time intervals (for example, every second). Note that in the present embodiment, the feature amount includes the total number of pixels of all color regions among the plurality of color regions, but the present disclosure is not limited to this form. The feature amount may include the total number of pixels in at least one color area among the plurality of color areas. The second feature amount extraction unit 128 outputs the extracted feature amount related to the supply state of the garbage G to the feeder supply amount estimation unit 129 . Note that the method for extracting the feature amount by the second feature amount extraction unit 128 is not limited to clustering, and another method may be used.
 (フィーダ供給量推定部)
 フィーダ供給量推定部129には、ごみ層高さ検出部127により算出されたごみ層高さを示す情報と、第2特徴量抽出部128により抽出されたごみGの供給状態の特徴量を示す情報とが入力される。また、フィーダ供給量推定部129は、ごみ層高さおよびごみGの供給状態の特徴量と、フィーダ12からのごみGの供給量との相関関係を示す相関関係情報を有する。上記相関関係情報は、例えば、ごみ層高さおよびごみGの供給状態の特徴量から、フィーダ12からのごみGの供給量を算出する供給量推定式である。フィーダ供給量推定部129は、入力されたごみ層高さを示す情報およびごみGの供給状態の特徴量と、上記相関関係情報とに基づき、フィーダ12からのごみGの供給量の推定値を算出する。フィーダ供給量推定部129は、算出したごみGの供給量の推定値を、調整処理部PUに出力する。ごみGの供給量の推定値は、「ホッパ11から処理空間VへのごみGの供給状態を示す供給状態情報」の別の一例である。
(Feeder supply amount estimation unit)
The feeder supply amount estimating unit 129 is provided with information indicating the dust layer height calculated by the dust layer height detecting unit 127 and the feature amount of the supply state of the dust G extracted by the second feature amount extracting unit 128. information is entered. Further, the feeder supply amount estimation unit 129 has correlation information indicating the correlation between the garbage layer height and the supply state of the garbage G, and the correlation between the amount of the garbage G supplied from the feeder 12 . The correlation information is, for example, a supply amount estimation formula for calculating the supply amount of the garbage G from the feeder 12 from the feature values of the garbage layer height and the supply state of the garbage G. The feeder supply amount estimator 129 estimates the supply amount of the garbage G from the feeder 12 based on the input information indicating the garbage layer height, the feature amount of the supply state of the garbage G, and the correlation information. calculate. The feeder supply amount estimation unit 129 outputs the calculated estimated value of the supply amount of the garbage G to the adjustment processing unit PU. The estimated value of the supply amount of the refuse G is another example of "supply state information indicating the supply state of the refuse G from the hopper 11 to the processing space V".
 (調整処理部)
 調整処理部PUには、第1発熱量推定部121、第2発熱量推定部122、第1特徴量抽出部123、燃え難さ係数算出部125、およびフィーダ供給量推定部129により算出された情報、並びに情報取得部110により取得されたプロセスデータが入力される。以下、これらを纏めて「入力情報」と称する。本実施形態では、調整処理部PUに入力されるプロセスデータは、例えば、フィーダ12のプロセス値(例えばフィーダ12のストローク長および/またはフィーダ12の移動速度)、風箱圧力センサ41aの検出結果、空気流量センサ56の検出結果、炉内圧力センサ64の検出結果、放射温度センサ63の検出結果、給水流量センサ65の検出結果、過熱器減温器流量センサ66の検出結果、およびガス濃度センサ6aの検出結果(例えば酸素濃度)を含む。なお、上記プロセスデータの一部または全部(例えばフィーダ12のプロセス値)は省略されてもよい。
(adjustment processor)
The adjustment processing unit PU includes a first calorific value estimating unit 121, a second calorific value estimating unit 122, a first feature amount extracting unit 123, a non-combustibility coefficient calculating unit 125, and a feeder supply amount estimating unit 129. Information and process data acquired by the information acquisition unit 110 are input. Hereinafter, these are collectively referred to as "input information". In this embodiment, the process data input to the adjustment processing unit PU are, for example, the process value of the feeder 12 (for example, the stroke length of the feeder 12 and/or the moving speed of the feeder 12), the detection result of the wind box pressure sensor 41a, Detection results of the air flow rate sensor 56, detection results of the furnace pressure sensor 64, detection results of the radiation temperature sensor 63, detection results of the feed water flow rate sensor 65, detection results of the superheater desuperheater flow rate sensor 66, and the gas concentration sensor 6a. detection results (eg, oxygen concentration). Part or all of the process data (for example, process values of the feeder 12) may be omitted.
 調整処理部PUは、入力情報に対して所定の処理を行うことで、入力情報を後述する主蒸気流量予測モデルMに入力されるデータに変換する。調整処理部PUは、例えば、前処理部PUaと、時間遅れ調整部PUbとを含む。 The adjustment processing unit PU converts the input information into data to be input to the main steam flow rate prediction model M, which will be described later, by performing predetermined processing on the input information. The adjustment processing unit PU includes, for example, a preprocessing unit PUa and a time delay adjustment unit PUb.
 前処理部PUaは、1つ以上の入力情報に対して平均化処理などの前処理を行う。例えば、前処理部PUaは、1つ以上の入力情報について、複数の検出時点で得られた値を平均化する。なお、前処理部PUaによる前処理は、平均化処理に代えて/加えて、微分処理などでもよい。前処理部PUaは、前処理を行った入力情報を時間遅れ調整部PUbに出力する。 The preprocessing unit PUa performs preprocessing such as averaging processing on one or more pieces of input information. For example, the preprocessing unit PUa averages values obtained at multiple detection points for one or more pieces of input information. Note that the preprocessing by the preprocessing unit PUa may be differentiation processing or the like instead of/in addition to the averaging processing. The preprocessing unit PUa outputs the preprocessed input information to the time delay adjustment unit PUb.
 時間遅れ調整部PUbは、各入力情報と、各入力情報に対して個別に設定された時間遅れ設定値とに基づき、1つのデータセット(入力情報の集合)として主蒸気流量予測モデルMに同時に入力される入力情報の時間軸上の関連付けを行う。すなわち、各入力情報の変化と主蒸気流量の変化との間には時間遅れが存在する。言い換えると、各入力情報は、主蒸気流量の変化に対して先行する先行信号となる。例えば、ホッパ11またはホッパ11に近い位置に関連する入力情報は、処理空間Vに近い位置に関連する入力情報と比べて、より大きく先行する先行信号となる。 Based on each input information and the time delay set value individually set for each input information, the time delay adjustment unit PUb simultaneously supplies the data to the main steam flow rate prediction model M as one data set (a set of input information). It associates the input information to be input on the time axis. That is, there is a time lag between each input information change and the main steam flow rate change. In other words, each input information becomes a leading signal leading to changes in the main steam flow rate. For example, input information associated with hopper 11 or a position closer to hopper 11 will have a greater leading lead than input information associated with a position closer to process volume V. FIG.
 図8は、各入力情報と主蒸気流量との間の相関関係の一例を示す図である。本実施形態では、各入力情報に対して時間遅れ設置値の長さが複数回変更され、当該入力情報と主蒸気流量との相関関係が最も高くなる時間遅れ設定値が選定される。 FIG. 8 is a diagram showing an example of the correlation between each piece of input information and the main steam flow rate. In this embodiment, the length of the time delay setting value is changed multiple times for each piece of input information, and the time delay setting value with the highest correlation between the input information and the main steam flow rate is selected.
 例えば、フィーダ12からの供給量を示す入力情報と主蒸気流量との相関関係(図8中の(a)参照)は、時間遅れ設定値としてT2[分]が設定された場合に最も高くなる。言い換えると、フィーダ12からの供給量を示す入力情報は、主蒸気流量に対してT2[分]だけ先行する先行信号となる。同様に、燃え難さ係数を示す入力情報と主蒸気流量との相関関係(図8中の(b)参照)は、時間遅れ設定値としてT3[分]が設定された場合に最も高くなる。言い換えると、燃え難さ係数を示す入力情報は、主蒸気流量に対してT3[分]だけ先行する先行信号となる。例えば、T3[分]は、T2[分]よりも短い時間である。 For example, the correlation between the input information indicating the supply amount from the feeder 12 and the main steam flow rate (see (a) in FIG. 8) is highest when T2 [minute] is set as the time delay setting value. . In other words, the input information indicating the supply amount from the feeder 12 is a preceding signal that precedes the main steam flow rate by T2 [minutes]. Similarly, the correlation between the input information indicating the flammability coefficient and the main steam flow rate (see (b) in FIG. 8) is highest when T3 [minute] is set as the time delay set value. In other words, the input information indicating the flammability coefficient is a preceding signal that precedes the main steam flow rate by T3 [minutes]. For example, T3 [minute] is shorter than T2 [minute].
 図9は、各入力情報に対する時間遅れ設定値の一例を示す図である。図9において、T1[分]>T2[分]>T3[分]である。ただし、これら関係は限定されるものではない。各入力情報に対する時間遅れ設定値は、適宜設定可能である。 FIG. 9 is a diagram showing an example of time delay setting values for each piece of input information. In FIG. 9, T1 [minute]>T2 [minute]>T3 [minute]. However, these relationships are not limited. The time delay setting value for each piece of input information can be set as appropriate.
 時間遅れ調整部PUbは、上述したような各入力情報に対する時間遅れ設定値に基づき、主蒸気流量予測モデルMに同時に入力される入力情報を関連付けることで、将来のある時点での主蒸気流量を予測するためのデータセット(すなわち、時間調整が行われた入力情報の集合体)を生成する。調整処理部PUは、時間遅れ調整部PUbにより生成されたデータセットを出力する。 The time delay adjustment unit PUb correlates the input information simultaneously input to the main steam flow rate prediction model M based on the time delay set values for each input information as described above, thereby adjusting the main steam flow rate at a certain point in the future. Generate a data set (ie, a collection of time-aligned input information) for prediction. The adjustment processing unit PU outputs the data set generated by the time delay adjustment unit PUb.
 <4.3 予測モデル作成部>
 予測モデル作成部130には、予測モデル作成処理(学習処理)において、調整処理部PUにより生成されたデータセットと、当該データセットに対応する主蒸気流量の予測値の正解データとの組み合わせが学習データとして入力される。予測モデル作成部130は、入力された学習データに基づき機械学習を行うことで、将来時点の主蒸気流量を予測するための主蒸気流量予測モデルMを生成する。主蒸気流量予測モデルMは、調整処理部PUにより生成されたデータセットが入力された場合に、将来時点の主蒸気流量の予測値を出力する学習済みモデルである。主蒸気流量予測モデルMは、例えば、LSTM(Long Short Term Memory)またはXGBoost(eXtreme Gradient Boosting)などであるが、これらに限定されない。機械学習のアルゴリズムは、特に限定されず、公知の種々の機械学習のアルゴリズムを用いることが可能である。
<4.3 Prediction model creation unit>
In the prediction model creation process (learning process), the prediction model creation unit 130 learns the combination of the data set created by the adjustment processing unit PU and the correct data of the predicted value of the main steam flow rate corresponding to the data set. entered as data. The prediction model creation unit 130 performs machine learning based on the input learning data to generate a main steam flow rate prediction model M for predicting the main steam flow rate at a future point in time. The main steam flow rate prediction model M is a learned model that outputs a prediction value of the main steam flow rate at a future point in time when the data set generated by the adjustment processing unit PU is input. The main steam flow rate prediction model M is, for example, LSTM (Long Short Term Memory) or XGBoost (eXtreme Gradient Boosting), but is not limited to these. The machine learning algorithm is not particularly limited, and various known machine learning algorithms can be used.
 本実施形態では、予測モデル作成部130は、互いに異なる複数の将来時点の主蒸気流量を予測する複数の主蒸気流量予測モデルMを生成する。例えば、予測モデル作成部130は、60秒先、120秒先、および180秒先の主蒸気流量の予測値をそれぞれ出力する複数の主蒸気流量予測モデルMを生成する。なお、予測モデル作成部130は、上記複数の主蒸気流量予測モデルMを生成することに代えて、複数の将来時点にそれぞれ対応する複数の予測値を出力する1つの主蒸気流量予測モデルMを生成してもよい。 In this embodiment, the prediction model creation unit 130 generates a plurality of main steam flow rate prediction models M that predict the main steam flow rate at a plurality of different future times. For example, the predictive model generator 130 generates a plurality of main steam flow rate prediction models M that respectively output predicted values of the main steam flow rates 60 seconds ahead, 120 seconds ahead, and 180 seconds ahead. Note that, instead of generating the plurality of main steam flow rate prediction models M, the prediction model creation unit 130 creates one main steam flow rate prediction model M that outputs a plurality of prediction values respectively corresponding to a plurality of future points in time. may be generated.
 また、予測モデル作成部130は、学習期間(学習データの蓄積期間)を可変させ、長さが異なる複数の学習期間の学習データに基づく複数の主蒸気流量予測モデルMを生成する。例えば、予測モデル作成部130は、1日分の学習データ、2日分の学習データ、…、7日分の学習データにそれぞれ対応する主蒸気流量予測モデルMを生成する。 In addition, the prediction model creation unit 130 varies the learning period (learning data accumulation period) and generates a plurality of main steam flow rate prediction models M based on the learning data of a plurality of learning periods with different lengths. For example, the prediction model creation unit 130 creates the main steam flow rate prediction models M respectively corresponding to one day's worth of learning data, two days' worth of learning data, . . . , seven days' worth of learning data.
 <4.4 予測モデル判定部>
 予測モデル判定部140は、予測モデル作成部130により生成された複数の学習期間に対応する複数の主蒸気流量予測モデルMについて評価を行い、蒸気流量予測部150で用いる主蒸気流量予測モデルMを選定する。
<4.4 Prediction model determination unit>
The prediction model determination unit 140 evaluates a plurality of main steam flow rate prediction models M corresponding to a plurality of learning periods generated by the prediction model creation unit 130, and determines the main steam flow rate prediction model M used in the steam flow rate prediction unit 150. Select.
 図10は、予測モデル判定部140による評価処理の一例を示す図である。本実施形態では、予測モデル判定部140は、二乗平均平方根誤差(RMSE:Root Mean Square Error)と、平均絶対スケール誤差(MASE:Mean Absolute scale Error)などの精度指標に基づき、複数の学習期間に対応する複数の主蒸気流量予測モデルMについて評価を行う。本実施形態では、各学習期間に対応する主蒸気流量予測モデルMとして、60秒先、120秒先、および180秒先の主蒸気流量をそれぞれ予測する複数の主蒸気流量予測モデルMの組が評価される。そして、複数の学習期間に対応する複数の主蒸気流量予測モデルMのなかで、複数の将来時点(60秒先、120秒先、および180秒先)の予測精度が総合的に最も高くなる学習期間に対応する主蒸気流量予測モデルMの組が選定される。図10に示される例では、5日分の学習期間に対応する主蒸気流量予測モデルMの組が選択される。予測モデル判定部140により選択された主蒸気流量予測モデルMは、蒸気流量予測部150に出力される。なお図10中におけるS1~S7の値は、RMSEまたはMASEの計算式に基づき具体的に算出された値であり、S1<S2<S3<S4<S5<S6<S7である例を示す。 FIG. 10 is a diagram showing an example of evaluation processing by the prediction model determination unit 140. FIG. In the present embodiment, the prediction model determination unit 140 is based on accuracy indicators such as the root mean square error (RMSE: Root Mean Square Error) and the mean absolute scale error (MASE: Mean Absolute scale Error) in a plurality of learning periods. A plurality of corresponding main steam flow rate prediction models M are evaluated. In this embodiment, as the main steam flow rate prediction model M corresponding to each learning period, a set of a plurality of main steam flow rate prediction models M that respectively predict the main steam flow rates 60 seconds ahead, 120 seconds ahead, and 180 seconds ahead are provided. evaluated. Then, among the plurality of main steam flow rate prediction models M corresponding to the plurality of learning periods, the learning that has the highest overall prediction accuracy at a plurality of future points in time (60 seconds ahead, 120 seconds ahead, and 180 seconds ahead) A set of main steam flow prediction models M corresponding to the period is selected. In the example shown in FIG. 10, a set of main steam flow rate prediction models M corresponding to a five-day learning period is selected. The main steam flow rate prediction model M selected by the prediction model determination section 140 is output to the steam flow rate prediction section 150 . Note that the values of S1 to S7 in FIG. 10 are values specifically calculated based on the RMSE or MASE formula, and show an example where S1<S2<S3<S4<S5<S6<S7.
 <4.5 主蒸気流量予測部>
 蒸気流量予測部150は、焼却設備SFの運転段階において、調整処理部PUにより生成されたデータセットと、予測モデル判定部140により選択された主蒸気流量予測モデルMとを用いて、将来時点における主蒸気流量の予測値を導出する。本実施形態では、60秒先、120秒先、および180秒先の主蒸気流量をそれぞれ予測する複数の主蒸気流量予測モデルMが用いられ、60秒先、120秒先、および180秒先の主蒸気流量の予測値が導出される。蒸気流量予測部150は、所定の周期(例えば毎秒や10秒毎)に主蒸気流量の予測値を導出する。蒸気流量予測部150は、導出された主蒸気流量の予測値を、制御部160に出力する。
<4.5 Main Steam Flow Rate Predictor>
The steam flow rate prediction unit 150 uses the data set generated by the adjustment processing unit PU and the main steam flow rate prediction model M selected by the prediction model determination unit 140 in the operation stage of the incineration facility SF to predict future Derive the predicted value of the main steam flow rate. In this embodiment, a plurality of main steam flow rate prediction models M are used to predict the main steam flow rates 60 seconds ahead, 120 seconds ahead, and 180 seconds ahead, respectively. A predicted value for the main steam flow is derived. The steam flow rate prediction unit 150 derives a predicted value of the main steam flow rate at a predetermined cycle (for example, every second or every 10 seconds). The steam flow rate prediction unit 150 outputs the derived predicted value of the main steam flow rate to the control unit 160 .
 <4.6 制御部>
 制御部160は、蒸気流量予測部150により導出された主蒸気流量の予測値(例えば、60秒先、120秒先、および180秒先の予測値)に基づき、処理空間Vの燃焼制御を行う。具体的には、制御部160は、処理空間Vの燃焼状態の変動量が小さくなるように、制御対象装置Sを制御する。
<4.6 Control section>
The control unit 160 performs combustion control of the processing space V based on the predicted value of the main steam flow rate derived by the steam flow rate prediction unit 150 (for example, the predicted value of 60 seconds ahead, 120 seconds ahead, and 180 seconds ahead). . Specifically, the control unit 160 controls the controlled device S so that the amount of fluctuation in the combustion state in the processing space V becomes small.
 図11は、制御部160による制御内容の一例を示す図である。制御部160は、主蒸気流量の将来的な予測値(例えば、60秒先、120秒先、および180秒先の予測値のいずれか)が予め設定された下限閾値TH1を下回る場合に、将来的に燃焼不足が生じると判定し、燃焼を促進させる制御を行う。また、制御部160は、主蒸気流量の将来的な予測値(例えば、60秒先、120秒先、および180秒先の予測値のいずれか)が予め設定された上限閾値TH2を上回る場合、将来的に燃焼過多が生じると判定し、燃焼を抑制する制御を行う。 FIG. 11 is a diagram showing an example of the content of control by the control unit 160. As shown in FIG. If the future predicted value of the main steam flow rate (for example, one of the predicted values for 60 seconds ahead, 120 seconds ahead, and 180 seconds ahead) is below a preset lower threshold TH1, the control unit 160 It is determined that insufficient combustion will occur, and control is performed to promote combustion. In addition, when the future predicted value of the main steam flow rate (for example, one of the predicted values for 60 seconds ahead, 120 seconds ahead, and 180 seconds ahead) exceeds a preset upper threshold value TH2, It determines that excessive combustion will occur in the future, and performs control to suppress combustion.
 本実施形態では、設定値(基準値)に対する予測値の偏差に基づいて制御指示が出力されるため、主蒸気流量の変動を抑制することができる。すなわち本実施形態では、主蒸気流量の実測値が下限閾値TH1または上限閾値TH2に到達した時点(図11中のA点)ではなく、主蒸気流量の将来時点の予測値が下限閾値TH1または上限閾値TH2に到達した時点(図11中のB点)で燃焼制御を変更する制御指示が出力される。予測値に基づいて制御が行われる場合の主蒸気流量の変動(図11中の2点鎖線を参照)は、実測値に基づいて制御が行われる場合の主蒸気流量の変動(図11中に実線を参照)と比べて小さくなる。 In this embodiment, since the control instruction is output based on the deviation of the predicted value from the set value (reference value), fluctuations in the main steam flow rate can be suppressed. That is, in the present embodiment, the predicted value of the main steam flow rate at a future point in time is set at the lower threshold TH1 or the upper threshold TH2, not at the time when the actual measured value of the main steam flow reaches the lower threshold TH1 or the upper threshold TH2 (point A in FIG. 11). A control instruction to change the combustion control is output when the threshold TH2 is reached (point B in FIG. 11). Fluctuations in the main steam flow rate when control is performed based on predicted values (see the two-dot chain line in FIG. 11) are compared to fluctuations in the main steam flow rate when control is performed based on actual measurements ( (see solid line).
 具体的には、制御部160は、フィーダ制御部161、空気供給制御部162、および火格子制御部163を含む。各制御部は、例えばPI制御(比例積分制御)を行う。ただし、制御アルゴリズムは、PI制御に限定されず、公知の種々の制御アルゴリズムを用いることが可能である。 Specifically, the control unit 160 includes a feeder control unit 161, an air supply control unit 162, and a grate control unit 163. Each controller performs, for example, PI control (proportional integral control). However, the control algorithm is not limited to PI control, and various known control algorithms can be used.
 フィーダ制御部161は、フィーダ12の動きを示すプロセス値を押出装置13から取得し、例えばPI制御に基づいてフィーダ12に関する制御指示値を生成する。フィーダ制御部161は、生成した制御指示値を押出装置13に出力することで、フィーダ12の動きを制御し、処理空間Vに対するごみGの供給量を制御する。例えば、フィーダ制御部161は、燃焼を促進する場合にごみGの供給量を増加させる。一方で、フィーダ制御部161は、燃焼を抑制する場合にごみGの供給量を減少させる。 The feeder control unit 161 acquires a process value indicating the movement of the feeder 12 from the extrusion device 13, and generates a control instruction value for the feeder 12 based on PI control, for example. The feeder control unit 161 outputs the generated control instruction value to the extrusion device 13 to control the movement of the feeder 12 and control the amount of the refuse G supplied to the processing space V. FIG. For example, the feeder control unit 161 increases the supply amount of the garbage G when promoting combustion. On the other hand, the feeder control unit 161 reduces the supply amount of the refuse G when suppressing combustion.
 空気供給制御部162は、送風機51の回転数および/またはダンパ55の開度に関するプロセス値を送風機51またはダンパ55から取得し、例えばPI制御に基づいて送風機51および/またはダンパ55に関する制御指示値を生成する。空気供給制御部162は、生成した制御指示値を送風機51および/またはダンパ55に出力することで、送風機51および/またはダンパ55を制御し、処理空間Vに対する空気(例えば燃焼空気)の供給量を制御する。例えば、空気供給制御部162は、燃焼を促進する場合に空気の供給量を増加させる。一方で、空気供給制御部162は、燃焼を抑制する場合に空気の供給量を減少させる。 The air supply control unit 162 acquires a process value relating to the rotational speed of the fan 51 and/or the opening degree of the damper 55 from the fan 51 or the damper 55, and provides a control instruction value for the fan 51 and/or the damper 55 based on, for example, PI control. to generate The air supply control unit 162 controls the blower 51 and/or the damper 55 by outputting the generated control instruction value to the blower 51 and/or the damper 55, and adjusts the supply amount of air (for example, combustion air) to the processing space V. to control. For example, the air supply control unit 162 increases the amount of air supply when promoting combustion. On the other hand, the air supply control unit 162 reduces the amount of air supply when suppressing combustion.
 火格子制御部163は、火格子31の移動速度に関するプロセスデータを火格子駆動装置32から取得し、例えばPI制御に基づいて火格子31に関する制御指示値を生成する。火格子制御部163は、生成した制御指示値を火格子駆動装置32に出力することで、火格子31を制御し、ごみGの攪拌状態を制御する。例えば、火格子制御部163は、燃焼を促進する場合に火格子31の移動速度を増加させる。一方で、火格子制御部163は、燃焼を抑制する場合に火格子31の移動速度を減少させる。 The grate control unit 163 acquires process data about the moving speed of the grate 31 from the grate drive device 32, and generates a control instruction value for the grate 31 based on PI control, for example. The grate control unit 163 outputs the generated control instruction value to the grate driving device 32 to control the grate 31 and control the stirring state of the garbage G. FIG. For example, the grate control unit 163 increases the moving speed of the grate 31 when promoting combustion. On the other hand, the grate control unit 163 reduces the moving speed of the grate 31 when suppressing combustion.
 <5 処理の流れ>
 次に、上述した制御装置100における処理の流れの一例について説明する。ただし、以下に説明する処理の順番は、以下の例に限定されず、適宜入れ替えられてもよい。
<5 Process flow>
Next, an example of the flow of processing in the control device 100 described above will be described. However, the order of the processes described below is not limited to the following example, and may be changed as appropriate.
 <5.1 予測モデルの作成>
 まず、主蒸気流量予測モデルMの作成処理(学習処理)について説明する。以下に説明する主蒸気流量予測モデルMの作成処理は、後述する焼却設備SFの運転段階においても並行して実行される。
<5.1 Prediction model creation>
First, the processing (learning processing) for creating the main steam flow rate prediction model M will be described. The processing for creating the main steam flow rate prediction model M, which will be described below, is also executed in parallel during the operation stage of the incineration facility SF, which will be described later.
 図12は、予測モデルの作成処理の流れを示すフローチャートである。まず、情報取得部110は、各種センサの検出結果およびプロセスデータを取得する(S101)。次に、データ変換部120は、情報取得部110により取得された各種センサの検出結果およびプロセスデータに基づき、主蒸気流量予測モデルMに入力するデータセットを生成する(S102)。すなわち、データ変換部120は、各種推定式を用いた計算やクラスタリングを行い、それらで得られた入力情報に対して時間遅れに関する調整処理などを行うことで、データセットを生成する。 FIG. 12 is a flow chart showing the flow of prediction model creation processing. First, the information acquisition unit 110 acquires the detection results of various sensors and process data (S101). Next, the data conversion unit 120 generates a data set to be input to the main steam flow rate prediction model M based on the detection results of various sensors and the process data acquired by the information acquisition unit 110 (S102). That is, the data conversion unit 120 performs calculations and clustering using various estimation formulas, and performs time delay adjustment processing and the like on the input information obtained by these calculations, thereby generating a data set.
 次に、予測モデル作成部130は、データ変換部120によって生成されたデータセットを、複数日に亘り蓄積する(S103)。そして、予測モデル作成部130は、学習期間(学習データの蓄積期間)を可変させて、長さが異なる複数の学習期間の学習データに基づく複数の主蒸気流量予測モデルMを生成する(S104)。 Next, the prediction model creation unit 130 accumulates the data sets generated by the data conversion unit 120 over multiple days (S103). Then, the prediction model creation unit 130 varies the learning period (learning data accumulation period) to generate a plurality of main steam flow rate prediction models M based on the learning data of a plurality of learning periods of different lengths (S104). .
 次に、予測モデル判定部140は、予測モデル作成部130により生成された学習期間が異なる複数の主蒸気流量予測モデルMについて評価を行い、蒸気流量予測部150で用いる主蒸気流量予測モデルMを選定する(S105)。本実施形態では、予測モデル判定部140は、予測モデル作成部130により新しく生成された複数の主蒸気流量予測モデルMのなかに、蒸気流量予測部150で現在使用中の主蒸気流量予測モデルMよりも予測精度が高くなる主蒸気流量予測モデルMがあるか否かを判定する。 Next, the prediction model determination unit 140 evaluates a plurality of main steam flow rate prediction models M with different learning periods generated by the prediction model creation unit 130, and selects the main steam flow rate prediction model M used in the steam flow rate prediction unit 150. Select (S105). In this embodiment, the prediction model determination unit 140 selects the main steam flow rate prediction model M currently used by the steam flow rate prediction unit 150 among the plurality of main steam flow rate prediction models M newly generated by the prediction model creation unit 130. It is determined whether or not there is a main steam flow rate prediction model M with higher prediction accuracy than the
 そして、新しく生成された複数の主蒸気流量予測モデルMのなかに現在使用中の主蒸気流量予測モデルMよりも予測精度が高くなる主蒸気流量予測モデルMがない場合(S105:NO)、S103の処理の前に戻り、S103およびS104の処理が再び行われる。一方で、新しく生成された複数の主蒸気流量予測モデルMのなかに現在使用中の主蒸気流量予測モデルMよりも予測精度が高くなる主蒸気流量予測モデルMがある場合(S106:YES)、予測モデル判定部140は、予測精度が高くなる主蒸気流量予測モデルMを蒸気流量予測部150に出力し、使用する主蒸気流量予測モデルMを更新させる(S107)。以上説明したS101からS107の処理は、焼却設備SFの運転段階において繰り返し実行される。 Then, if there is no main steam flow rate prediction model M with higher prediction accuracy than the main steam flow rate prediction model M currently in use among the plurality of newly generated main steam flow rate prediction models M (S105: NO), S103 , and the processes of S103 and S104 are performed again. On the other hand, if there is a main steam flow rate prediction model M with higher prediction accuracy than the main steam flow rate prediction model M currently in use among the plurality of newly generated main steam flow rate prediction models M (S106: YES), The prediction model determination unit 140 outputs the main steam flow rate prediction model M with high prediction accuracy to the steam flow rate prediction unit 150 to update the main steam flow rate prediction model M to be used (S107). The processes from S101 to S107 described above are repeatedly executed in the operating stage of the incineration facility SF.
 <5.2 燃焼設備の運転段階の処理>
 次に、焼却設備SFの運転段階の処理について説明する。
 図13は、燃焼設備の運転段階の処理の流れを示すフローチャートである。まず、情報取得部110は、各種センサの検出結果およびプロセスデータを取得する(S201)。次に、データ変換部120は、情報取得部110により取得された各種センサの検出結果およびプロセスデータに基づき、主蒸気流量予測モデルMに入力するためのデータセットを生成する(S202)。データ変換部120は、生成したデータセットを蒸気流量予測部150に出力する。
<5.2 Treatment at the operating stage of combustion equipment>
Next, the processing at the operating stage of the incineration facility SF will be described.
FIG. 13 is a flow chart showing the flow of processing in the operating stage of the combustion equipment. First, the information acquisition unit 110 acquires detection results of various sensors and process data (S201). Next, the data conversion unit 120 generates a data set to be input to the main steam flow rate prediction model M based on the detection results of various sensors and the process data acquired by the information acquisition unit 110 (S202). The data conversion section 120 outputs the generated data set to the steam flow rate prediction section 150 .
 次に、蒸気流量予測部150は、データ変換部120から受け取るデータセットと、主蒸気流量予測モデルMとに基づいて、将来時点の主蒸気流量の予測値を導出する(S203)。蒸気流量予測部150は、導出した将来時点の主蒸気流量の予測値を制御部160に出力する。次に、制御部160は、主蒸気流量の予測値に基づき、制御対象装置Sの制御量を導出する(S204)。そして、制御部160は、導出した制御量に基づく制御指示値を制御対象装置Sに出力する(S205)。以上説明したS201からS205の処理は、焼却設備SFの運転段階において繰り返し実行される。 Next, the steam flow rate prediction unit 150 derives a predicted value of the main steam flow rate at a future point in time based on the data set received from the data conversion unit 120 and the main steam flow rate prediction model M (S203). The steam flow rate prediction unit 150 outputs the derived predicted value of the main steam flow rate at the future time to the control unit 160 . Next, the control unit 160 derives the control amount of the controlled device S based on the predicted value of the main steam flow rate (S204). Then, the control unit 160 outputs a control instruction value based on the derived control amount to the controlled device S (S205). The processes from S201 to S205 described above are repeatedly executed in the operating stage of the incineration facility SF.
 <6.作用効果>
 主蒸気流量は、ごみGの供給状態やごみGの性状によって大きく変動する場合がある。このため、燃焼工程以降の情報から予測を行う場合、主蒸気流量の予測精度を高めることが難しい場合がある。
<6. Action effect>
The main steam flow rate may vary greatly depending on the supply state of the dust G and the properties of the dust G. Therefore, when prediction is made from information after the combustion process, it may be difficult to improve the prediction accuracy of the main steam flow rate.
 一方で、本実施形態では、制御装置100は、焼却設備SF内の処理空間Vへ供給される前のごみGに関する情報を取得する情報取得部110と、情報取得部110により取得された上記情報を含む予測用情報に基づき、焼却設備SFの排熱回収ボイラ3で生成される主蒸気流量を予測する蒸気流量予測部150と、蒸気流量予測部150により予測された主蒸気流量に基づき燃焼制御を行う制御部160と、備える。 On the other hand, in the present embodiment, the control device 100 includes an information acquisition unit 110 that acquires information about the garbage G before being supplied to the processing space V in the incineration facility SF, and the information acquired by the information acquisition unit 110. A steam flow rate prediction unit 150 that predicts the main steam flow rate generated by the heat recovery boiler 3 of the incineration facility SF based on prediction information including and a control unit 160 that performs
 このような構成によれば、処理空間Vに供給される前のごみGに関する情報に基づいて主蒸気流量が予測されるため、主蒸気流量を高い精度で予測することが可能になる。これにより、制御装置100は、主蒸気流量の高精度の予測値に基づき燃焼制御を行うことが可能になる。その結果、主蒸気流量の変動幅を抑制することができる。 According to such a configuration, the flow rate of the main steam is predicted based on the information about the garbage G before it is supplied to the processing space V, so it is possible to predict the flow rate of the main steam with high accuracy. This enables the control device 100 to perform combustion control based on the highly accurate predicted value of the main steam flow rate. As a result, the fluctuation width of the main steam flow rate can be suppressed.
 図14は、本実施形態に係る予測値と実測値の比較結果の一例を示す図である。図14に示すように、制御装置100による主蒸気流量の予測値は、主蒸気流量の実測値の変動に対して高い精度で追随していることが確認できる。また本実施形態の制御装置100による主蒸気流量の予測値によれば、燃焼工程以降の情報のみから予測を行う場合と比べて、予測精度が改善することが本発明者らにより確認されている。 FIG. 14 is a diagram showing an example of comparison results between predicted values and measured values according to this embodiment. As shown in FIG. 14, it can be confirmed that the predicted value of the main steam flow rate by the control device 100 follows the variation of the measured value of the main steam flow rate with high accuracy. Further, the present inventors have confirmed that the predicted value of the main steam flow rate by the control device 100 of the present embodiment improves the prediction accuracy as compared with the case where the prediction is performed only from the information after the combustion process. .
 <7.変形例>
 上述した実施形態では、各入力情報に対して個別に設定された時間遅れ設定値は、各入力情報と主蒸気流量との相関関係が最も高くなる時間遅れ設定値が選定されて設定された後、設定された時間遅れ設定値が固定値として用いられる。しかしながら、時間遅れ調整部PUbは、所定の周期で、各入力情報と主蒸気流量との相関関係を計算し直し、各入力情報と主蒸気流量との相関関係がより高くなるように時間遅れ設定値を変更してもよい。このような構成によれば、ごみGの性状が季節やその他の要因によって変わる場合でも、主蒸気流量の予測精度をさらに高めることができる場合がある。
<7. Variation>
In the above-described embodiment, the time delay setting values individually set for each piece of input information are set after the time delay setting value that maximizes the correlation between each piece of input information and the main steam flow rate is selected and set. , the set time delay setting value is used as a fixed value. However, the time delay adjustment unit PUb recalculates the correlation between each input information and the main steam flow rate at a predetermined cycle, and sets the time delay so that the correlation between each input information and the main steam flow rate becomes higher. You can change the value. According to such a configuration, it may be possible to further improve the prediction accuracy of the main steam flow rate even when the properties of the garbage G change depending on the season or other factors.
 (その他の実施形態)
 以上、本開示の実施形態について図面を参照して詳述したが、具体的な構成はこの実施形態に限られるものではなく、本開示の要旨を逸脱しない範囲の設計変更なども含まれる。
(Other embodiments)
As described above, the embodiments of the present disclosure have been described in detail with reference to the drawings, but the specific configuration is not limited to these embodiments, and design changes and the like are included within the scope of the present disclosure.
 図14は、本実施形態に係るコンピュータ1100の構成を示すハードウェア構成図である。コンピュータ1100は、例えば、プロセッサ1110、メインメモリ1120、ストレージ1130、インターフェース1140を備える。 FIG. 14 is a hardware configuration diagram showing the configuration of the computer 1100 according to this embodiment. Computer 1100 includes, for example, processor 1110 , main memory 1120 , storage 1130 and interface 1140 .
 上述の制御装置100の各機能部は、コンピュータ1100に実装される。そして、上述した各機能部の動作は、プログラムの形式でストレージ1130に記憶されている。プロセッサ1110は、プログラムをストレージ1130から読み出してメインメモリ1120に展開し、当該プログラムに従って上記処理を実行する。また、プロセッサ1110は、プログラムに従って、上述した各機能部が使用する記憶領域をメインメモリ1120に確保する。 Each functional unit of the control device 100 described above is implemented in the computer 1100 . The operation of each functional unit described above is stored in the storage 1130 in the form of a program. The processor 1110 reads a program from the storage 1130, develops it in the main memory 1120, and executes the above processing according to the program. Also, the processor 1110 secures storage areas in the main memory 1120 to be used by the functional units described above according to the program.
 プログラムは、コンピュータ1100に発揮させる機能の一部を実現するためのものであってもよい。例えば、プログラムは、ストレージ1130に既に記憶されている他のプログラムとの組み合わせ、または他の装置に実装された他のプログラムとの組み合わせによって機能を発揮させるものであってもよい。また、コンピュータ1100は、上記構成に加えて、又は上記構成に代えてPLD(Programmable Logic Device)などのカスタムLSI(Large Scale Integrated Circuit)を備えてもよい。PLDの例としては、PAL(Programmable Array Logic)、GAL(Generic Array Logic)、CPLD(Complex Programmable Logic Device)、FPGA(Field Programmable Gate Array)が挙げられる。この場合、プロセッサ1110によって実現される機能の一部または全部が当該集積回路によって実現されてよい。 The program may be for realizing part of the functions that the computer 1100 exhibits. For example, the program may function in combination with another program already stored in storage 1130 or in combination with another program installed in another device. Further, the computer 1100 may include a custom LSI (Large Scale Integrated Circuit) such as a PLD (Programmable Logic Device) in addition to or instead of the above configuration. Examples of PLDs include PAL (Programmable Array Logic), GAL (Generic Array Logic), CPLD (Complex Programmable Logic Device), and FPGA (Field Programmable Gate Array). In this case, part or all of the functions implemented by processor 1110 may be implemented by the integrated circuit.
 ストレージ1130の例としては、磁気ディスク、光磁気ディスク、半導体メモリなどが挙げられる。ストレージ1130は、コンピュータ1100のバスに直接接続された内部メディアであってもよいし、インターフェース1140又は通信回線を介してコンピュータ1100に接続される外部メディアであってもよい。また、このプログラムが通信回線によってコンピュータ1100に配信される場合、配信を受けたコンピュータ1100が当該プログラムをメインメモリ1120に展開し、上記処理を実行してもよい。また、当該プログラムは、前述した機能の一部を実現するためのものであってもよい。さらに、当該プログラムは、前述した機能をストレージ1130に既に記憶されている他のプログラムとの組み合わせで実現するもの、いわゆる差分ファイル(差分プログラム)であってもよい。 Examples of the storage 1130 include magnetic disks, magneto-optical disks, and semiconductor memories. The storage 1130 may be an internal medium directly connected to the bus of the computer 1100, or an external medium connected to the computer 1100 via the interface 1140 or communication line. Moreover, when this program is delivered to the computer 1100 via a communication line, the computer 1100 receiving the delivery may develop the program in the main memory 1120 and execute the above process. Also, the program may be for realizing part of the functions described above. Furthermore, the program may be a so-called difference file (difference program) that implements the above-described functions in combination with another program already stored in the storage 1130 .
<付記>
 各実施形態に記載の制御装置100は、例えば以下のように把握される。
<Appendix>
For example, the control device 100 described in each embodiment is understood as follows.
(1)第1の態様に係る制御装置100は、焼却設備SF内の処理空間Vへ供給される前の被焼却物Gに関する情報を取得する情報取得部110と、情報取得部110により取得された上記情報を含む予測用情報に基づき、焼却設備SFの排熱回収ボイラ3で生成される主蒸気流量を予測する蒸気流量予測部150と、蒸気流量予測部150により予測された主蒸気流量に基づき燃焼制御を行う制御部160と、備える。なお「予測用情報」とは、予測専用の情報という意味ではなく、予測に供することができる情報という広い概念の意味で用いている。すなわち、予測用情報とは、主蒸気流量の予測とは異なる目的を主目的として収集または記憶されている情報でもよい。 (1) The control device 100 according to the first aspect includes an information acquisition unit 110 that acquires information about the incinerator G before being supplied to the processing space V in the incineration facility SF, and the information acquired by the information acquisition unit 110. Based on the prediction information including the above information, a steam flow rate prediction unit 150 that predicts the flow rate of the main steam generated by the heat recovery boiler 3 of the incineration facility SF, and the main steam flow rate predicted by the steam flow rate prediction unit 150 and a control unit 160 that performs combustion control based on the control unit 160 . Note that "prediction information" does not mean information dedicated to prediction, but is used in the broad sense of information that can be used for prediction. That is, the prediction information may be information collected or stored mainly for a purpose different from the prediction of the main steam flow rate.
 このような構成によれば、処理空間Vに供給される前の被焼却物Gに関する情報に基づいて主蒸気流量が予測されるため、主蒸気流量を高い精度で予測することが可能になる。これにより、制御装置100は、主蒸気流量の高精度の予測値に基づき燃焼制御を行うことが可能になる。 According to such a configuration, the main steam flow rate is predicted based on the information about the incinerator G before being supplied to the processing space V, so it is possible to predict the main steam flow rate with high accuracy. This enables the control device 100 to perform combustion control based on the highly accurate predicted value of the main steam flow rate.
(2)第2の態様に係る制御装置100は、上記第1の態様の制御装置100であって、上記情報は、被焼却物Gの性状に関する情報を含む。「被焼却物Gの性状に関する情報」は、例えば、被焼却物Gの水分に関する値(水分率または水分量など)、被焼却物Gの重量、被焼却物Gの高さ、被焼却物Gの体積、被焼却物Gの密度(かさ密度または真密度)、および被焼却物Gの発熱量のうち1つ以上である。 (2) The control device 100 according to the second aspect is the control device 100 according to the first aspect, and the information includes information on the property of the incineration material G. "Information on the properties of the material to be incinerated G" includes, for example, values related to the moisture content of the material to be incinerated G (moisture content or moisture content), weight of the material to be incinerated G, height of the material to be incinerated G, height of the material to be incinerated G , the density (bulk density or true density) of the material G to be incinerated, and the calorific value of the material G to be incinerated.
 このような構成によれば、主蒸気流量に影響を与える被焼却物Gの性状を反映させて主蒸気流量を予測することができる。これにより、主蒸気流量をさらに高い精度で予測することができる。 According to such a configuration, the main steam flow rate can be predicted by reflecting the properties of the incinerator G that affect the main steam flow rate. This makes it possible to predict the main steam flow rate with even higher accuracy.
(3)第3の態様に係る制御装置100は、上記第1又は第2の態様の制御装置100であって、上記情報は、前記焼却設備SFのホッパ11内での被焼却物Gの堆積状態を示す堆積状態情報を含む。 (3) The control device 100 according to the third aspect is the control device 100 according to the first or second aspect, and the information is the accumulation of the incinerator G in the hopper 11 of the incineration facility SF. Contains pile state information that indicates the state.
 このような構成によれば、主蒸気流量に対して影響を与えるホッパ11内での被焼却物Gの堆積状態を反映させて主蒸気流量を予測することができる。これにより、主蒸気流量をさらに高い精度で予測することができる。 According to such a configuration, it is possible to predict the main steam flow rate by reflecting the accumulated state of the incinerator G in the hopper 11, which affects the main steam flow rate. This makes it possible to predict the main steam flow rate with even higher accuracy.
(4)第4の態様に係る制御装置100は、上記第3の態様の制御装置100であって、上記堆積状態情報は、焼却設備SFにおける被焼却物Gの搬送方向Dの下流側から、処理空間Vの火炎を透過してホッパ11の出口部11bが撮像された赤外画像を含む。 (4) The control device 100 according to the fourth aspect is the control device 100 according to the third aspect, and the accumulation state information is, from the downstream side in the conveying direction D of the incinerator G in the incineration facility SF, An infrared image of the exit portion 11b of the hopper 11 captured through the flame in the processing space V is included.
 このような構成によれば、赤外画像に基づいてホッパ11内での被焼却物Gの堆積状態をより高い精度で反映させることができる。これにより、主蒸気流量をさらに高い精度で予測することができる。 According to such a configuration, it is possible to reflect the accumulated state of the incineration materials G in the hopper 11 with higher accuracy based on the infrared image. This makes it possible to predict the main steam flow rate with even higher accuracy.
(5)第5の態様に係る制御装置100は、上記第1から第4の態様のうちいずれか1つの制御装置100であって、上記情報は、焼却設備SFのホッパ11から処理空間Vへの被焼却物Gの供給状態を示す供給状態情報を含む。 (5) The control device 100 according to the fifth aspect is the control device 100 according to any one of the first to fourth aspects, and the information is sent from the hopper 11 of the incineration facility SF to the processing space V. supply state information indicating the supply state of the incinerator G of
 このような構成によれば、主蒸気流量に対して影響を与えるホッパ11から処理空間Vへの被焼却物Gの供給状態を反映させて主蒸気流量を予測することができる。これにより、主蒸気流量をさらに高い精度で予測することができる。 According to such a configuration, the main steam flow rate can be predicted by reflecting the supply state of the incinerator G from the hopper 11 to the processing space V, which affects the main steam flow rate. This makes it possible to predict the main steam flow rate with even higher accuracy.
(6)第6の態様に係る制御装置100は、上記第1から第5の態様のうちいずれか1つの制御装置100であって、上記情報に含まれるまたは上記情報から得られる、焼却設備SFのホッパ11内での被焼却物Gの密度またはホッパ11内での被焼却物Gの水分計測結果に基づいて被焼却物Gの低位発熱量を推定する発熱量推定部(第1発熱量推定部121または第2発熱量推定部122)をさらに備え、蒸気流量予測部150は、上記発熱量推定部により推定された低位発熱量に基づき主蒸気流量を予測する。 (6) The control device 100 according to the sixth aspect is the control device 100 of any one of the first to fifth aspects, and is included in the information or obtained from the information, the incineration facility SF A calorific value estimating unit (first calorific value estimation 121 or a second calorific value estimator 122), and the steam flow rate predictor 150 predicts the main steam flow rate based on the lower calorific value estimated by the calorific value estimator.
 このような構成によれば、ホッパ11内での被焼却物Gの密度または水分計測結果から推定される被焼却物Gの低位発熱量を反映させて主蒸気流量を予測することができる。これにより、主蒸気流量をさらに高い精度で予測することができる。 According to such a configuration, the main steam flow rate can be predicted by reflecting the lower calorific value of the incinerated material G estimated from the density or moisture content measurement result of the incinerated material G in the hopper 11 . This makes it possible to predict the main steam flow rate with even higher accuracy.
(7)第7の態様に係る制御方法は、焼却設備SF内の処理空間Vへ供給される前のごみGに関する情報を取得し、取得した上記情報を含む予測用情報に基づき、焼却設備SFの排熱回収ボイラ3で生成される主蒸気流量を予測し、予測した主蒸気流量に基づき燃焼制御を行う、ことを含む。このような構成によれば、第1の態様に係る制御装置100と同様に、主蒸気流量の高精度の予測値に基づき燃焼制御を行うことが可能になる。 (7) The control method according to the seventh aspect acquires information about the garbage G before being supplied to the processing space V in the incineration facility SF, and based on the prediction information including the acquired information, the incineration facility SF predicting the flow rate of the main steam generated by the heat recovery boiler 3, and performing combustion control based on the predicted flow rate of the main steam. According to such a configuration, as with the control device 100 according to the first aspect, it is possible to perform combustion control based on a highly accurate predicted value of the main steam flow rate.
(8)第8の態様に係るプログラムは、コンピュータに、焼却設備SF内の処理空間Vへ供給される前のごみGに関する情報を取得させ、取得させた上記情報を含む予測用情報に基づき、焼却設備SFの排熱回収ボイラ3で生成される主蒸気流量を予測させ、予測させた主蒸気流量に基づき燃焼制御を行わせる、ことを含む。このような構成によれば、第1の態様に係る制御装置100と同様に、主蒸気流量の高精度の予測値に基づき燃焼制御を行うことが可能になる。 (8) The program according to the eighth aspect causes the computer to acquire information about the garbage G before being supplied to the processing space V in the incineration facility SF, based on the information for prediction including the acquired information, It includes predicting the main steam flow rate generated by the heat recovery boiler 3 of the incineration facility SF and performing combustion control based on the predicted main steam flow rate. According to such a configuration, as with the control device 100 according to the first aspect, it is possible to perform combustion control based on a highly accurate predicted value of the main steam flow rate.
 本開示は、例えば都市ごみ、産業廃棄物、またはバイオマスなどの焼却設備を制御するための制御装置に関する。本開示の制御装置によれば、主蒸気流量の高精度の予測値に基づき燃焼制御を行うことができる。 The present disclosure relates to a control device for controlling an incineration facility for, for example, municipal solid waste, industrial waste, or biomass. According to the control device of the present disclosure, combustion control can be performed based on a highly accurate predicted value of the main steam flow rate.
 SF…焼却設備、G…被焼却物(ごみ)、1…クレーン、2…焼却炉、3…排熱回収ボイラ、4…減温塔、5…集塵装置、6…煙道、7…煙突、10…供給機構、11…ホッパ、11a…入口部、11b…出口部、12…フィーダ、13…押出装置、14…物体計測器、15…水分計測器、20…炉本体、20a…乾燥段、20b…燃焼段、20c…後燃焼段、V…処理空間、21…可視光カメラ、22…赤外カメラ、30…ストーカ、31…火格子、32…火格子駆動装置、41…風箱、41a…風箱圧力センサ、50…送風機構、51…送風機、52…一次空気ライン、53…空気予熱器、54…二次空気ライン、55…ダンパ、56…空気流量センサ、61…ボイラ本体、62…管路、63…放射温度センサ、64…炉内圧力センサ、65…給水流量センサ、66…過熱器減温器流量センサ、100…制御装置、110…情報取得部、120…データ変換部、130…予測モデル作成部、140…予測モデル判定部、150…蒸気流量予測部、160…制御部 SF... Incineration facility, G... Matter to be incinerated (garbage), 1... Crane, 2... Incinerator, 3... Exhaust heat recovery boiler, 4... Cooling tower, 5... Dust collector, 6... Flue, 7... Chimney , 10... Supply mechanism, 11... Hopper, 11a... Inlet part, 11b... Outlet part, 12... Feeder, 13... Extrusion device, 14... Object measuring instrument, 15... Moisture measuring instrument, 20... Furnace body, 20a... Drying stage , 20b... Combustion stage, 20c... Post-combustion stage, V... Processing space, 21... Visible light camera, 22... Infrared camera, 30... Stoker, 31... Grate, 32... Grate drive device, 41... Wind box, 41a... wind box pressure sensor, 50... blower mechanism, 51... fan, 52... primary air line, 53... air preheater, 54... secondary air line, 55... damper, 56... air flow rate sensor, 61... boiler body, 62... Pipe line, 63... Radiation temperature sensor, 64... In-furnace pressure sensor, 65... Feed water flow rate sensor, 66... Superheater desuperheater flow rate sensor, 100... Control device, 110... Information acquisition unit, 120... Data conversion unit , 130... Prediction model creation unit, 140... Prediction model determination unit, 150... Steam flow rate prediction unit, 160... Control unit

Claims (6)

  1.  焼却設備内の処理空間へ供給される前の被焼却物に関する情報を取得する情報取得部と、
     前記情報取得部により取得された前記情報を含む予測用情報に基づき、前記焼却設備のボイラで生成される主蒸気流量を予測する蒸気流量予測部と、
     前記蒸気流量予測部により予測された前記主蒸気流量に基づき燃焼制御を行う制御部と
    を備える制御装置。
    an information acquisition unit that acquires information about the incinerated material before it is supplied to the processing space in the incineration facility;
    a steam flow rate prediction unit that predicts a main steam flow rate generated by a boiler of the incineration facility based on prediction information including the information acquired by the information acquisition unit;
    and a control unit that performs combustion control based on the main steam flow rate predicted by the steam flow rate prediction section.
  2.  前記情報は、前記被焼却物の性状に関する情報を含む、請求項1に記載の制御装置。 The control device according to claim 1, wherein the information includes information on the properties of the incinerator.
  3.  前記情報は、前記焼却設備のホッパ内での前記被焼却物の堆積状態を示す堆積状態情報を含む、請求項1または請求項2に記載の制御装置。 The control device according to claim 1 or claim 2, wherein the information includes accumulation state information indicating the accumulation state of the incinerator in the hopper of the incineration facility.
  4.  前記堆積状態情報は、前記焼却設備における前記被焼却物の搬送方向の下流側から、前記処理空間の火炎を透過して前記ホッパの出口部が撮像された赤外画像を含む、請求項3に記載の制御装置。 4. The method according to claim 3, wherein the accumulation state information includes an infrared image obtained by capturing an exit portion of the hopper through a flame of the processing space from a downstream side of the incineration facility in a conveying direction of the material to be incinerated. Control device as described.
  5.  前記情報は、前記焼却設備のホッパから前記処理空間への前記被焼却物の供給状態を示す供給状態情報を含む、請求項1から請求項4のうちいずれか一項に記載の制御装置。 5. The control device according to any one of claims 1 to 4, wherein the information includes supply state information indicating a supply state of the material to be incinerated from a hopper of the incineration facility to the processing space.
  6.  前記情報に含まれるまたは前記情報から得られる、前記焼却設備のホッパ内での前記被焼却物の密度または前記ホッパ内での前記被焼却物の水分計測結果に基づいて前記被焼却物の低位発熱量を推定する発熱量推定部をさらに備え、
     前記蒸気流量予測部は、前記発熱量推定部により推定された前記低位発熱量に基づき前記主蒸気流量を予測する、請求項1から請求項5のうちいずれか一項に記載の制御装置。
    Low heat generation of the incinerated matter based on the density of the incinerated matter in the hopper of the incineration facility or the moisture content measurement result of the incinerated matter in the hopper included in or obtained from the information further comprising a calorific value estimator for estimating the amount of
    The control device according to any one of claims 1 to 5, wherein the steam flow rate prediction section predicts the main steam flow rate based on the lower heating value estimated by the heating value estimation section.
PCT/JP2022/036664 2021-10-15 2022-09-30 Control apparatus WO2023063107A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
KR1020247013387A KR20240073073A (en) 2021-10-15 2022-09-30 controller
CN202280068548.2A CN118159776A (en) 2021-10-15 2022-09-30 Control device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021169507A JP7296436B2 (en) 2021-10-15 2021-10-15 Control device
JP2021-169507 2021-10-15

Publications (1)

Publication Number Publication Date
WO2023063107A1 true WO2023063107A1 (en) 2023-04-20

Family

ID=85988315

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/036664 WO2023063107A1 (en) 2021-10-15 2022-09-30 Control apparatus

Country Status (5)

Country Link
JP (1) JP7296436B2 (en)
KR (1) KR20240073073A (en)
CN (1) CN118159776A (en)
TW (1) TW202323728A (en)
WO (1) WO2023063107A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116300666A (en) * 2023-05-24 2023-06-23 科大智能物联技术股份有限公司 Power plant boiler operation control method based on XGBoost optimization

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019032123A (en) * 2017-08-09 2019-02-28 川崎重工業株式会社 Heat quantity estimation method, heat quantity estimation device, and waste storage facility
JP2021089097A (en) * 2019-12-04 2021-06-10 三菱重工業株式会社 Incineration facility control device, incineration facility control method and program
JP2022161065A (en) * 2021-04-08 2022-10-21 Jfeエンジニアリング株式会社 Garbage property prediction device, combustion control device of incinerator, garbage property prediction method, learning method for garbage property prediction model, and garbage property predication model program

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5996762B1 (en) 2015-11-19 2016-09-21 株式会社タクマ Waste combustion control method and combustion control apparatus to which the method is applied
JP6543390B1 (en) 2018-06-20 2019-07-10 川崎重工業株式会社 Furnace internal condition judging method and evaporation control method
JP6880146B2 (en) 2019-10-18 2021-06-02 川崎重工業株式会社 Combustion status evaluation method and combustion control method

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019032123A (en) * 2017-08-09 2019-02-28 川崎重工業株式会社 Heat quantity estimation method, heat quantity estimation device, and waste storage facility
JP2021089097A (en) * 2019-12-04 2021-06-10 三菱重工業株式会社 Incineration facility control device, incineration facility control method and program
JP2022161065A (en) * 2021-04-08 2022-10-21 Jfeエンジニアリング株式会社 Garbage property prediction device, combustion control device of incinerator, garbage property prediction method, learning method for garbage property prediction model, and garbage property predication model program

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116300666A (en) * 2023-05-24 2023-06-23 科大智能物联技术股份有限公司 Power plant boiler operation control method based on XGBoost optimization

Also Published As

Publication number Publication date
TW202323728A (en) 2023-06-16
JP2023059470A (en) 2023-04-27
CN118159776A (en) 2024-06-07
KR20240073073A (en) 2024-05-24
JP7296436B2 (en) 2023-06-22

Similar Documents

Publication Publication Date Title
JP6824859B2 (en) In-core state quantity estimation device, estimation model creation device, their programs and methods
WO2023063107A1 (en) Control apparatus
JP6723864B2 (en) Combustion control device equipped with a garbage moving speed detection function
WO2023037742A1 (en) Control device for incinerator equipment
WO2021075490A1 (en) Combustion state evaluation method and combustion control method
KR20190011282A (en) Control method of waste incineration plant and waste incineration plant
JP7256016B2 (en) Predictive model generation device, prediction model generation method by prediction model generation device, and prediction device
KR102276894B1 (en) Calorific value estimation method, calorific value estimation device and waste storage facility
JP7308016B2 (en) Waste quality estimation system and method, and waste storage facility
JP7085039B1 (en) Predictive model creation device, exhaust gas concentration control system, predictive model creation method, and exhaust gas concentration control method
JP7478297B1 (en) Information processing system, information processing method, learning system, and learning method
JP2019086255A (en) Device and method for controlling combustion of stoker furnace and device and method for detecting fuel movement amount
WO2021075489A1 (en) Combustion state evaluation method and combustion control method
KR20240029089A (en) Method for determining local temperature anomalies in the fluidized bed of a combustion boiler, method for calibrating the numerical model of the fluidized bed of a combustion boiler, method for estimating the risk of bed sintering in a fluidized bed combustion boiler, method for controlling fluidized bed combustion boilers and combustion boilers.
JP7445058B1 (en) Combustion equipment system and combustion control method
JP2021103063A (en) Refuse layer thickness evaluation method of refuse incinerator and combustion control method of refuse incinerator
JP4036768B2 (en) Combustion control device for incinerator
WO2021095431A1 (en) Combustion method and combustion control method
WO2022172481A1 (en) Operation assistance device, operation assistance method, and operation assistance program
CN116906910A (en) Efficient combustion control method and system based on deep convolutional neural network
JP2024021223A (en) Method of agitating waste, and system of agitating waste
JP2022134564A (en) Feature amount extraction method, performance prediction model generation method, plant operation support method, feature amount extraction device, performance prediction model creation device, and plant operation support device
JP2021103062A (en) Burn-off point estimation method for refuse incinerator and burn-off point adjustment method for refuse incinerator
TW202332865A (en) waste treatment facility

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22880803

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20247013387

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE