WO2023062155A2 - Électrode enzymatique à réservoir intégré - Google Patents

Électrode enzymatique à réservoir intégré Download PDF

Info

Publication number
WO2023062155A2
WO2023062155A2 PCT/EP2022/078570 EP2022078570W WO2023062155A2 WO 2023062155 A2 WO2023062155 A2 WO 2023062155A2 EP 2022078570 W EP2022078570 W EP 2022078570W WO 2023062155 A2 WO2023062155 A2 WO 2023062155A2
Authority
WO
WIPO (PCT)
Prior art keywords
electrode
reservoir
enzyme
conductive material
glucose
Prior art date
Application number
PCT/EP2022/078570
Other languages
English (en)
Other versions
WO2023062155A3 (fr
Inventor
Serge Cosnier
Yannig Nedellec
Anastasiia BEREZOVSKA
Paulo Henrique MACIEL BUZZETTI
Original Assignee
Centre National De La Recherche Scientifique
Université Grenoble Alpes
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Centre National De La Recherche Scientifique, Université Grenoble Alpes filed Critical Centre National De La Recherche Scientifique
Priority to CN202280074622.1A priority Critical patent/CN118216020A/zh
Priority to EP22803196.9A priority patent/EP4416776A2/fr
Publication of WO2023062155A2 publication Critical patent/WO2023062155A2/fr
Publication of WO2023062155A3 publication Critical patent/WO2023062155A3/fr

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/16Biochemical fuel cells, i.e. cells in which microorganisms function as catalysts
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/8605Porous electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/8663Selection of inactive substances as ingredients for catalytic active masses, e.g. binders, fillers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/90Selection of catalytic material
    • H01M4/9008Organic or organo-metallic compounds

Definitions

  • the invention relates in particular to an enzymatic electrode, or bioelectrode, and to its uses for the production of electricity, to biofuel cells comprising it as well as to electrical or electronic devices incorporating it.
  • the invention also relates to methods of manufacturing this bioelectrode as well as to assemblies comprising at least two bioelectrodes according to the invention.
  • An electrode according to the invention can also be used to carry out non-enzymatic reactions such as the production of hydrogen by reduction of protons in an aqueous medium or the electrochemical reduction of CO2.
  • Fuel cell technology is based on the conversion of chemical energy into electronic energy.
  • An organic molecule such as glucose is one of the most important energy sources for many living organisms and can be considered a safe, easy to handle, biodegradable and consumable biofuel.
  • Biofuel enzyme cells also called biofuel cells
  • Biofuel cells convert biofuel in the presence of enzymatic compounds which produces power.
  • the best known biofuel cells operate by glucose oxidation (GBFC) are cells of this type which convert glucose by oxidation at the anode for the production of power by using an enzyme incorporated therein and having a catalyst function of the reaction.
  • the cathode generally has the function of reducing oxygen and may or may not include an enzyme that catalyzes this reaction.
  • Enzymes are promising alternatives to noble metal catalysts since most of them operate at neutral pH and room temperature and offer low or no toxicity, which is not the case with other catalysts. based on metals.
  • Biological fuel cells therefore offer an attractive means of supplying environmentally friendly and sustainable energy to electronic devices, in particular small portable, and/or single-use devices, for applications such as healthcare, environment, biodefense, etc.
  • enzyme-based fuel cells, or biofuel cells can operate using substrates (such as glucose) that are abundant in biological fluids (saliva, blood, urine), of animal or vegetable origin (juice destroyed) etc. as activator and/or fuel.
  • substrates such as glucose
  • biological fluids saliva, blood, urine
  • animal or vegetable origin juice destroyed
  • fuel and “biofuel” are interchangeable.
  • these cells can also make use of environmental effluents (eg glucose and oxygen) while exhibiting power densities that are often higher than microbial power densities.
  • biofuel cells One of the important characteristics of biofuel cells is their small size (for example from 1 to 10 cm 2 in area), or even a very small size (less than 0.5 cm 2 in area) to be able to replace "button" type batteries frequently. used in disposable devices. In addition, they must advantageously be of low mass, and preferably inexpensive. Fuel cells therefore offer an interesting proposal for increasing the power or self-powering portable or implantable miniaturized devices [1, 2, 3].
  • Biofuel cells are confronted with two major technological obstacles which are currently blocking their development, namely their short lifespan and, to a lesser extent, their low output power.
  • the low stability of enzyme stacks is related to the deactivation of immobilized enzymes and seems inevitable.
  • the energy-generating elements (bioanode and biocathode) of these biofuel cells rely on the immobilization of different redox enzymes on the surfaces of the electrodes for their electrical connection. This binding of the enzymes can be obtained by physical trapping or by chemical grafting or affinity interactions. The first leads to a denaturation process due to the trapping process itself and the non-biocompatible environment.
  • the activity of the entrapped enzyme can be affected by the permeability and hydrophobicity of the host structure, and the steric constraints that block its conformational flexibility. Concerning the process of chemical grafting and affinity bonding, a better access of the substrate to the immobilized enzyme can be obtained but the quantity of biocatalyst is limited to a quasi monolayer at the interface modified electrode-solution thus strongly limiting the power. Moreover, the electrical connection of enzymes by redox mediators proves difficult due to the access to the active site of the enzyme which can be blocked by the immobilization of the latter.
  • Cinquin et al. 1 proposes the use of electrodes where the enzymes and the mediators are compacted in graphite discs but which are not attached thereto. covalent way. These electrodes are placed in dialysis bags. However in such devices the connection of the enzyme by the redox mediator is random. The enzyme and the mediator are immobilized by the compression and can hardly move to connect when they must be in very close proximity to the active site.
  • WO2019234573 also describes pad type electrodes which offer the same limitations. These limitations are also present in the biofuel cells described in FR3103325 where the enzymes are arranged on sheets of carbon nanotubes by depositing with a pipette. None of these devices have reservoirs internal to the electrode, simply an association of reagents.
  • Hammond et al. 2 have also proposed bioanodes comprising disks of conductive substrates placed in an aqueous suspension comprising enzymes and non-immobilized specialized mediator nanoparticles.
  • the suspension can diffuse through a wall made of a dialysis membrane, thereby preventing the escape of mobile active compounds (enzymes, coenzymes, mediators) and the arrival of glucose.
  • Li et al. 3 describe a bioanode comprising an enzymatic/mediator/conductor system in the form of an aqueous suspension, or “slurry”.
  • the anode is composed of: an enzymatic system composed of glucose oxidase (GOx) and its cofactor Flavin Adenine Dinucleotide (FAD); of TisC nanosheets? MXene (a graphene-like lamellar conductor); carbon felt; and an electronic mediator based on terephthaldehyde (TPA) crosslinked with aminoferrocene (amino-FC).
  • Gx glucose oxidase
  • FAD Flavin Adenine Dinucleotide
  • MXene a graphene-like lamellar conductor
  • MXene a graphene-like lamellar conductor
  • carbon felt and an electronic mediator based on terephthaldehyde (TPA) crosslinked with aminoferrocene (amino-
  • the aqueous suspension is stored in a dialysis bag of dimension 20 ⁇ 14 ⁇ 4 mm, having a molecular retention threshold of 100 Da.
  • the particles of MWCNT multi-walled carbon nanotubes do not allow acceptable results because of their poor dispersions in the liquid.
  • some mediators are inadequate because their sizes do not allow them to be effectively retained by the dialysis envelope.
  • the invention aims in particular to solve the problem of providing an electrode for a biofuel cell, in particular of a design allowing its use in devices of restricted dimensions, inexpensive (for example of the type button or “coin” batteries) and/or easy to store and/or use, while having optimized power.
  • the invention also aims to increase/maximize the power of a biofuel cell while minimizing its size and the total mass of enzyme used.
  • the aim of the invention is in particular to combine the presence of enzymes or catalysts having improved activity, since they can be put into solution, in a device having simplicity of operation, manufacture and/or storage while respecting the environment.
  • the use of toxic and/or expensive compounds can be minimized, or even eliminated, when producing an electrode according to the invention.
  • an object of the invention is an electrode comprising:
  • an electronically (or ionically) conductive material forming, at least in part, a reservoir, said material being permeable and porous, and/or comprising carbon nanotubes;
  • Electrode is used in a broad sense and designates not only the electronic (or ionic) conductor capable of capturing or releasing electrons but also, by extension, the anode or cathode compartment of a half cell.
  • permeable is used to indicate that the voids that the conductive material contains are continuous and allow the diffusion of liquid and in particular water.
  • porous is used to describe a material with voids (pores) that are sized to allow the passage of liquid.
  • the material according to the invention must be of a porosity allowing the passage of the substrate of the electrochemical reaction in question (for example oxygen, glucose etc.) while allowing the retention of the catalytic entities used such as an enzyme , a coenzyme, an orientator, and/or a redox mediator, etc.
  • the average pore size that is to say its porosity, is measured by adsorption/resorption of nitrogen under pressure.
  • This porosity is preferably chosen in a range going from 0.1 nm to 5 nm, preferably from 0.2 nm to 3 nm and advantageously from 0.3 to 2 nm.
  • the standard measurement technique used is nitrogen adsorption-desorption manometry implementing the BJH method (Barrett-Joyner Halena) derived from the BET specific surface measurement (Brunauer Hemmet Teller).
  • the sample is degassed beforehand under vacuum in order to eliminate any trace of residual humidity or possible solvent which could falsify the measurement at temperatures between room temperature and 80°C max for at least 1 hour and at most 4 hours.
  • the devices used can be Micromeritics (ASAP 2020) by Micromeritics Instrument Corporation (CA) or Quantachrome (NOVAtouch), AT.
  • the term reservoir designates a physical space, such as a cavity, making it possible to store a compound, and in particular an electrochemical reaction catalyst such as an enzymatic compound. Because it is stored, the compound does not react immediately when the conditions for the electrochemical reaction are present at the electrode.
  • the conductive material according to the invention can comprise, or consist of, a solid agglomerate, preferably recyclable, such as carbon felt, microporous carbon, carbon nanotubes, activated carbon, mesoporous carbon, carbon black, conductive polymers and their mixtures.
  • Carbon nanotubes are particularly suitable for the manufacture of a conductive material for the electrode according to the invention.
  • This material can be an agglomerate based on single-walled or more advantageously multi-walled (MWCNT) carbon nanotubes (CNT), since they offer excellent porosity associated with excellent conductivity.
  • MWCNT multi-walled
  • the electrode according to the invention is not contained, in part or in whole, in a dialysis membrane.
  • carbon nanotube is meant a carbon nanotube of which at least one dimension is less than 1500 nm.
  • the carbon nanotubes have a length (L) to diameter ratio noted L/diameter of between 100 and 5000.
  • the carbon nanotubes have a length of approximately 1.5 ⁇ m and/or, for example, a diameter less than around 20 nm.
  • the average diameter of the nanotubes which is particularly preferred for implementing the invention and which gives the best results is less than 10 nm and in particular can range from 1 to 8 nm.
  • Carbon nanotubes having diameters of the order of a micron, or even of the order of 75 to 200 nm are not the most efficient.
  • the conductive material may comprise such materials or consist essentially thereof.
  • the material consists of more than 90%, preferably more than 95%, by mass of this conductive material.
  • the conductive material may not include other materials and in particular it may not include polymeric materials (binder) which could affect the performance of the electrode.
  • the conductive material may comprise one or more compounds which take part in the electrochemical reaction taking place at the electrode.
  • an orientator or a redox mediator may be present in the material.
  • this material is adsorbed on a conductive material so as to preserve a certain mobility.
  • the conductive material is preferably in the form of sheet, film or thin sheets.
  • the sheet, the film or the sheet may have a thickness of less than 1 mm, preferably from 50 to 500 ⁇ m, in particular from 100 to 400 ⁇ m, for example around 250 ⁇ m.
  • the presentation in the form of thin sheets allows simplicity of handling, and in particular of cutting, and therefore of manufacturing of the electrode.
  • the electrode can easily have various shapes. A cylindrical or circular shape is preferred but many other shapes can thus be envisaged.
  • the conductive material forms at least part of the electrode reservoir. It can constitute it entirely or in major part but according to a particular variant of the invention it constitutes it only in part.
  • the conductive material is hydrophilic, that is to say that in the presence of an aqueous liquid, the contact angle at equilibrium of a drop of this liquid on the surface of the material is less than 90 °.
  • the contact angle can be measured by the sessile drop method using a goniometer assisted by a camera. The measurement is carried out at atmospheric pressure and at ambient temperature. The sample does not undergo any prior treatment.
  • the equipment used may for example be a DATA Physics OCA 35 Microdrop from the company DataPhysics Instruments GmbH (Germany).
  • the measurement is carried out using a goniometer consisting of a CCD (Charge Coupled Device) camera, a high magnification optical system and a light source.
  • the liquid deposition system is automated to obtain better reproducibility in the measurements.
  • the volume of the drop is usually 1-5 pL.
  • the contact angle is measured on the left and right sides of the drop in order to calculate an average of the contact angle and the standard deviation of the series of measurements.
  • image analysis we use the circle or ellipse equation method where the entire contour of the drop is correlated to a circle or ellipse by application of Young's law.
  • the contact angle is less than 45°, preferably less than 30°, advantageously less than 10°C, even more advantageously less than 5°.
  • the tank comprises, or consists of, two sheets of conductive material secured to one another by an adhesive.
  • glue is used to designate any material making it possible to join together by contact with the walls of conductive material.
  • This term encompasses products which may be designated by other names, for example "ink”, but whose liquid, gelatinous or pasty consistency allows them to be deposited on parts and then to bind them together by contact then drying, hardening and / or polymerization.
  • this glue is not insoluble in liquids such as water or aqueous liquids.
  • This glue can be chosen from the group consisting of vinyl glues (white glues), acrylics, aliphatics, cyanoacrylates, polyurethanes, epoxies, neoprenes, hot melt (or hot melt) glues, thermoplastic resins, silicones (for example polydimethylsiloxane (cPDMS) ) and mixtures thereof.
  • this adhesive is itself conductive and/or contains conductive particles such as carbon or graphite particles.
  • a thermoplastic resin containing fine particles of graphite or polydimethylsiloxane are particularly suitable for implementing the invention.
  • the reservoir be formed for the most part of a permeable and porous conductive material, and/or comprising carbon nanotubes.
  • a tank of which less than 50% of the internal surface consists of said materials makes it possible to obtain good results.
  • the rest of the walls of the reservoir can comprise one or more conductive materials which have characteristics other than porosity and permeability, such as for example flexibility and/or solidity.
  • Such materials can be sheets of nanotubes with a polymeric binder or glassy carbon, carbon fibers etc.
  • the internal surface of the tank and in particular between 30% and 80%, in particular between 40 and 60% of the internal surface of the tank consist of a permeable and porous conductive material, and/ or comprising carbon nanotubes.
  • the internal surface of the reservoir consists of more than 50%, preferably more than 75%, and more particularly more than 85% of permeable conductive material. It is thus possible to obtain a tank electrode according to the invention of a very limited size (volume) and in a particularly simple manner, in particular by gluing two conductive sheets to each other so as to form a tank, one of which part, especially part of the height, is made of the sticky material.
  • Such an electrode having a microreservoir is a particularly advantageous variant of the invention.
  • Preferred dimensions of this electrode include in particular: a total internal volume of the reservoir ranging from 10 ⁇ L to 500 ⁇ L, preferably from 10 ⁇ L to 100 ⁇ L and advantageously from 10 ⁇ L to 50 ⁇ L; a height of the reservoir of 25 ⁇ m to 200 ⁇ m, preferably 40 ⁇ m to 100 ⁇ m, for example 60 ⁇ m ⁇ 10 ⁇ m; a thickness of the electrode ranging from 400 ⁇ m to 5 mm, preferably 500 ⁇ m to 2 mm, for example around 1 mm; and/or an outer surface of the electrode which can vary from 0.5 to 10.0 cm 2 , preferably from 0.8 to 7 cm 2 , for example approximately 1 cm 2 .
  • the electrodes according to may take the form of small (1 to 2 cm in diameter), or even very small (less than 0.5 cm in diameter), pellets, for example circular or polygonal.
  • Such electrodes can have a thickness varying from 5 mm to 0.1 mm, for example 0.25 mm.
  • the reservoir of the electrode preferably contains a catalyst
  • the term "catalyst” is used in its meaning of catalytic entity to designate one or more compounds making it possible, alone or in combination, to catalyze, accelerate and/or promote the electrochemical reaction taking place at the electrode.
  • it may be an enzymatic compound, such as an enzyme and/or an enzymatic cofactor, a compound that absorbs harmful species, an orientator (a compound making it possible to orient the enzyme when it approaches the conductive material to facilitate electron transfer) and/or a redox mediator.
  • proteins or protein derivatives having an enzymatic function are used, these enzymatic compounds include the native proteins as well as their derivatives, mutants and/or functional equivalents.
  • the enzymatic compound can be a combination, or association, of enzymes, these being able to catalyze the same reaction or different reactions.
  • the enzyme can be a glucose oxidase (GOX), preferably with its cofactor Flavin Adenine Dinucleotide (FAD) or a dehydrogenase such as Flavin Adenine Dinucleotide - Glucose DeHydrogenase (FAD-GDH) (EC 1.1.5.9).
  • GOX glucose oxidase
  • FAD flavin Adenine Dinucleotide
  • FAD-GDH dehydrogenase
  • a compound contained in the tank of the anode can be a catalase.
  • the enzyme may be an oxygen-reducing enzyme, and more particularly bilirubin oxidase (BOD) (CAS number 80619-01-8; April 2018), a polyphenol oxidase (PPG), or a laccase (LAC), which can advantageously be combined with a protoporphyrin IX orientator, such as hemin.
  • BOD bilirubin oxidase
  • PPG polyphenol oxidase
  • LAC laccase
  • the electrode reservoir may contain an oxygen-reducing enzyme, and more particularly a glucose oxidase (e.g. from Aspergillus niger), in combination with an enzyme reducing hydrogen peroxide to water, such as than a peroxidase (e.g. horseradish peroxidase).
  • an oxygen-reducing enzyme e.g. a glucose oxidase (e.g. from Aspergillus niger)
  • an enzyme reducing hydrogen peroxide to water such as than a peroxidase (e.g. horseradish peroxidase).
  • a peroxidase e.g. horseradish peroxidase
  • biocathode and bioanode refer to the presence of biological material, for example an enzyme, in their structure or close to it.
  • a redox mediator when used, it can also comprise a molecule, in particular aromatic, acting as a redox mediator or orientator, such as 1,4-naphthoquinone, to improve electronic exchanges.
  • Molecules chosen from the group formed by 9,10-phenanthrenequinone, 1,10-phenanthroline-5,6-dione, 9,10-anthraquinone, phenanthrene, 1,10-phenanthroline, 5-methyl- 1,10-phenanthroline, pyrene, 1-aminopyrene, pyrene-1-butyric acid, ABTS, protoporphyrin IX such as hemin, and mixtures of two or more of these may also be considered.
  • the use of such compounds proves to be particularly advantageous in the case of enzymatic systems comprising an FAD-GDH or a GOx.
  • the catalyst in particular when the latter is an enzyme, is advantageously placed in the reservoir in solid form, in particular powder.
  • This shape not only allows for simple and easy manufacture but provides an electrode that can be stored and stored prior to use and easily provide a high catalyst concentration.
  • the concentration of catalyst, in particular of an enzyme, when diluted in a liquid medium such as water is high.
  • this concentration can be from 0.01 g/mL to 1 g/mL, preferably from 0.05 g/ml_ to 0.5 g/ml, for example being around 0.2 ⁇ 0.1.
  • this concentration may be from 0.5 mM to 5 mM, preferably from 1 mM to 3 mM, for example around 2.5 mM ⁇ 0.1.
  • the conductive material forming, at least in part, the reservoir, and being permeable and porous, and/or comprising carbon nanotubes is a solid agglomerate
  • it can be advantageously combined (“functionalized”) with an enzymatic compound or with a forming part of an enzyme system.
  • a compound such as an orientator or a redox mediator (see above) can be mixed with the conductive material. The mixing can be carried out during the manufacture of the material or adsorbed thereon, for example by drop casting.
  • the conductive material of the electrode according to the invention is not functionalized by an orientator or a redox mediator.
  • it is not functionalized by ABTS and/or by one of the compounds mentioned above.
  • an orientator or a redox mediator is present, it can be placed directly in the reservoir, for example in solid form, such as a powder, without having to be associated, or bonded, with the conductive material. This simplicity of use is very advantageous since it makes it possible to dispense with a manufacturing step.
  • the electrode according to the invention can also comprise a current collector.
  • This can be in the form of layers, strips, films and/or threads. It advantageously has a low thickness, a high thermal and/or electrical conductivity and can comprise, or be (substantially) made of, highly oriented and preferably flexible graphite.
  • a sheet, or a strip, of pyrolytic graphite pyrolytic graphite sheet.
  • the use of graphite is advantageous because it combines stability, lightness and electrical and thermal conductivity.
  • Its thickness can be chosen as ranging from 10 to 500 ⁇ m, preferably from 17 to 300 ⁇ m, and advantageously from 40 to 2000 ⁇ m.
  • Its thermal conductivity may be from 100 to 1000 W/(mK), preferably from 100 to 1950 W/(mK) and advantageously 100 to 1350 W/(mK).
  • This layer can also have an electrical conductivity greater than 5000 S/cm, preferably greater than or equal to 8000 S/cm, for example around 10,000 S/cm. It can however have a higher conductivity, for example around 20,000 S/cm, in particular if the thickness of the layer is less than 40 ⁇ m.
  • This layer can also have a resistance to heat, for example a resistance to a temperature of more than 200°C, advantageously of more than 300°C, for example of about 400°C.
  • biofuel cell can comprise an electrochemical cell, said electrochemical cell comprising an anode and a cathode.
  • the anode or the cathode, and advantageously both, are advantageously an electrode according to the invention.
  • Said biofuel cell may further comprise means for electrically circuiting said biofuel cell with an electrical receiver, said electrical circuiting means allowing current to flow between the anode and the cathode.
  • battery is used in its broadest sense. Thus by “battery” is understood, inter alia, a device having only one electrochemical cell and/or a rechargeable or non-rechargeable device. A battery comprising a stack of several electrochemical cells is envisaged to obtain the required voltage.
  • the battery according to the invention can be of varied shape and/or of small size. In particular, it can only occupy a volume less than or equal to 2 cm 3 , preferably less than or equal to 1 cm 3 , or even less than or equal to 0.75 cm 3 . It can in particular be designed to be able to replace “button type” batteries.
  • the distance between the electrodes is easily adapted by those skilled in the art, but it is noted that this distance can vary from 1 to 10 mm without this variation having consequences on the performance of the cell.
  • the cell according to the invention can comprise circuiting means such as terminals (for example at least one positive terminal and at least one negative terminal) which can connect the current collectors with the outside of the biocell.
  • circuiting means such as terminals (for example at least one positive terminal and at least one negative terminal) which can connect the current collectors with the outside of the biocell.
  • terminals make it possible to let in or out electric current.
  • These terminals can be a portion of the circuit means which are dimensioned and positioned in a suitable manner.
  • the battery according to the invention may comprise a separating and porous membrane, electrically insulating, and permeable to the liquid medium, which is placed between the anode on the one hand and the cathode on the other hand.
  • This membrane allows the passage in particular of the ionic species and, advantageously, of the substrates between the anode and the cathode.
  • the battery according to the invention can advantageously comprise an external coating which can be a support, a layer, or a protective film which partly covers the electrochemical cell(s) of the device.
  • This is preferably flexible, adhesive, non-toxic, chemically stable, electrically insulating, not very sensitive to radiation and/or has a wide operating temperature range (for example from -150° C. to 200° C., or even around 260°C).
  • This covering, or outer protective film may comprise, or be (substantially) made of a fiberglass fabric impregnated with a relatively inert material such as a perfluorinated polymer such as PTFE (polytetrafluoroethylene) or a silicone-based material.
  • the PTFE can be Teflon® from Du Pont de Nemours, Fluon® from Asahi Glass, Hostaflon® from Dyneon.
  • the film or coating is preferably impregnated with more than 50% by weight of said material, advantageously from 50 to 70%, preferably from 57 to 64% relative to the total weight of the film. Its thickness can be a few tenths, or even hundredths of millimeters. For example, it can be chosen in a range going from 0.03 to 0.50 mm, preferably from 0.05 to 0.30 mm and preferably from 0.06 to 0.14 mm, for example being 0 .07mm.
  • the coating, or protective film comprises an adhesive layer, preferably water-resistant, allowing it to adhere to the external surface of the electrochemical cell(s). s) of the biofuel cell according to the invention.
  • an adhesive layer preferably water-resistant
  • Another material that can be used as an external covering can be of the nonwoven adhesive tape type comprising a layer of synthetic fibers (for example a polyester/rayon blend) and an adhesive layer (for example based on acrylate). This type of material generally for medical use is well suited as an external coating.
  • this protective film can be affixed directly to one face of an electrode or of the cell.
  • this outer coating which is preferably flexible and insulating, comprises one or more openings positioned and dimensioned so as to allow in particular access of a liquid to the anode and/or or the cathode.
  • This opening can be pre-cut in the coating. Additionally, or alternatively, this opening can be constituted by the fact that the coating does not completely surround the biofuel cell comprising the electrochemical cell(s) but leaves an opening giving access to these elements.
  • the battery according to the invention can advantageously comprise an external coating, preferably flexible, insulating and/or impermeable to liquid comprising openings positioned and dimensioned so as to allow access of a fluid and in particular of a liquid, for example an aqueous liquid.
  • the electrochemical cell can comprise a series of layers, preferably thin, flexible and/or mechanically robust, forming a preferably self-supporting multilayer (or multi-lamellar) stack.
  • the shape and/or the dimension of these layers, and in particular the presence of at least one opening and/or recess, are advantageously determined so as to constitute, or allow, an electrical connection, an input for the substrates.
  • These layers include the anode, the cathodes, any separating layers and the circuiting means, as described in the present application.
  • An object of the invention is also a method of manufacturing an electrode as described in the present application.
  • This method includes positioning and joining together the constituent elements of said electrode.
  • This method may comprise the use of at least one material (in particular in the form of a sheet) and an adhesive as described previously and comprises the step of positioning on this material, a wall, continuous or not, of adhesive to form a cavity and then to seal this cavity by means of a permeable and porous conductive material, and/or comprising carbon nanotubes, to form, at least in part, a reservoir.
  • This method may also include at least one of the following steps:
  • the positioning is a superposition of said elements.
  • the invention also relates to a biofuel cell as described in the present application and further comprising an aqueous liquid, said liquid optionally comprising a biofuel.
  • the fuel may however already be present in the device in a dry and/or solid and/or non-solubilized form and/or capable of migrating towards the enzymatic sites as described in the patent publications FR1855014 and WO2019234573.
  • the aqueous liquid When the aqueous liquid is added, it diffuses inside the reservoir and the catalyst (in particular the enzyme) present in the reservoir is dissolved in the liquid, which allows electrochemical exchanges to take place.
  • the liquid added comprises the biofuel.
  • This can be, for example, a physiological liquid such as blood, urine or saliva or an alcoholic or glucose drink.
  • An object of the invention is also a process for activating the electrode comprising bringing an electrode as described in the present application into contact with a liquid, preferably an aqueous liquid, optionally comprising a fuel such as a sugar (for example glucose, fructose, sucrose and/or lactose etc.), starch and/or ethanol.
  • a liquid preferably an aqueous liquid, optionally comprising a fuel such as a sugar (for example glucose, fructose, sucrose and/or lactose etc.), starch and/or ethanol.
  • Another object of the invention is an apparatus comprising a biobattery according to the invention, and an electrical receiver (that is to say to an apparatus which uses (receives) electric current), said biobattery being electrically connected to said receiver electric.
  • a device can be a test, in particular a biological fluid test: for example a pregnancy test or a blood sugar test. It can also be a device for emitting an alert signal, for example when the biofuel cell is associated with a diode. In view of its very low cost, an alert device for changing protective layers (for example for urinary leakage) is envisaged.
  • the device can also be in the form of a patch for the skin, the supply of the biopile being done by perspiration which contains lactate and oxygen.
  • enzyme stacks according to the invention can be used in implantable devices, including devices for feeding in the human body, implanted medical devices such as stimulation electrodes, pacemakers, pumps, sensors and bionic implants etc.
  • a battery according to the invention can also be used in a GPS tracking device which can be used for the movement mapping of animal species endangered (tigers, elephants, etc.).
  • biofuel cell (and/or the device) according to the invention can be incorporated into an electronic device with electronic display and/or light emission.
  • the device according to the invention is of the type operating with button-type batteries using metal derivatives, such as a point-of-service test device (POCT), the Internet of Things (loT) or a sensor environmental.
  • POCT point-of-service test device
  • LoT Internet of Things
  • sensor environmental a sensor environment
  • Such a device according to the invention can advantageously be disposable, biodegradable and/or single-use.
  • Another object of the invention is a kit for the manufacture of a biofuel cell as described in the present application and which comprises a biofuel cell as described in the present application, associated with instructions for use.
  • Another object of the invention is a use of a biofuel cell according to the invention for generating an electric current.
  • Another object of the invention is an electrochemical cell as described above.
  • Another object of the invention is the use of an electrode according to the invention in the manufacture of batteries, biobatteries, devices and apparatus as described in the present application.
  • the internal reservoir electrode can be used for chemical reactions other than reactions using biochemical compounds such as enzymes.
  • An electrode according to the invention can be used to carry out non-enzymatic reactions such as the production of hydrogen by reduction of protons in an aqueous medium or the electrochemical reduction of CO2.
  • the catalysts or mediators of the reaction can be organic or metalloorganic compounds that are soluble or partially soluble in an aqueous medium which will be trapped like the enzymes in the (micro)cavity.
  • iron porphyrin 5,10,15,20 tetrakis(4-sulfonatophenyl) could be used for the electrochemical reduction of CO2 and a rhodium complex: [Rhlll(tpy)(CH3CN)CI2](CF3SO3)for the electrogeneration of H2.
  • Figure 1 is an exploded perspective view of an example configuration of a bioelectrode according to the invention.
  • Figure 2 is a schematic view in transparency and in perspective of the bioelectrode of Figure 1.
  • Figure 3 is a top photographic view of an electrode as shown in Figures 1 and 2 during manufacture.
  • Figure 4 is a top photographic view of a manufacturing step of an electrode as shown in Figures 1 and 2, subsequent to the step of Figure 3.
  • Figure 5 is a top photographic view of a manufacturing step of an electrode as shown in Figures 1 and 2, subsequent to the step of Figure 4.
  • Figure 6 is a view by laser microscopy of a cross section of an electrode according to example 2.
  • Figure 7 is a cyclic voltammetry diagram of the bioanode of Example 1, with and without the presence of glucose
  • Figure 8 is a cyclic voltammetry diagram of the biocathode of Example 2, with and without the presence of oxygen.
  • Figure 9 shows the evolution of the catalytic current at 0.3V as a function of time while maintaining a bubbling of O? of the electrode of example 3.
  • Figure 10 shows a diagram of the biofuel cell of example 4.
  • Figure 11 shows the polarization/power curve of the cavity biofuel cell of Example 4 and the power obtained during discharge for 10 s in a pH 6.5 phosphate buffer in the presence of 100 mM glucose saturated with O2.
  • Figure 12 shows the evolution of the maximum power (obtained by linear sweep voltammetry at 0.2 mv/s) as a function of time in a phosphate buffer medium (pH 6.5) containing 100 mM glucose and saturated with C from the biofuel cell of the example 4.
  • FIG. 14 is a representation of the operation of a bi-enzymatic cavity electrode GOx-HRP-ABTS according to example 6 of the invention.
  • Figure 15A shows the indirect detection of H2O2 produces GOx by successive injections of glucose - catalytic reduction of H2O2 by HRP @ 0V vs Ag/AgCI; PB 7.4- ambient air) -
  • Figure 15B shows the calibration curve established from Fig. 3(A) - catalytic current of reduction of H2O2 by HRP as a function of the concentration of glucose in solution.
  • FIG. 1 shows a basic configuration of electrodes according to the invention.
  • the electrode 10 comprises a reservoir 12.
  • the reservoir 12 here consists of a disk 14 of Buckypaper on the periphery of which is arranged a circular line of glue 16 defining an internal cavity 18.
  • This internal cavity 18 and the line of glue 16 are covered with another disc of Buckypaper 15, covering the cavity 18 and this line of glue 16 and thus defining the tank 12.
  • FIG. 3 shows a top view of a Buckypaper disc 14 12 mm in diameter on the periphery of which is placed a circular line of glue 16 defining a circular internal cavity 18 7 mm in diameter.
  • An electric wire 20 is placed in/on the glue and a powdered enzyme 22 is placed in the cavity 18 (FIG. 4).
  • This enzyme powder 22 and the cavity 18 containing it are then covered with a sheet of Buckypaper 15, which, adhering to the glue 16, seals the internal cavity 18 and transforms it into a reservoir 12.
  • CNTS Multi-walled carbon nanotubes
  • BOD Bilirubin Oxidase
  • PQ Phenanthrene quinone; CAS 84-11-7 from Fluka AG
  • PLQ 1,10-Phenatroline-5,6 dione
  • CAS 27318-90-7 Sigma Aldrich
  • the carbon nanotubes (CNTs) (NC7000) are dispersed in DMF (ratio 1/1 mass(mg)/volume(mL) and subjected to an ultrasonic bath for 1 hour 30 minutes.
  • the ultrasonic bath used is a Fisher Scientific FB15050.
  • the ultrasonic frequency is 37 kHz for an effective power of 80 W RMS.
  • the dispersion is then filtered on a Buchner under vacuum (0.45 pm PTFE filter) until the solvent evaporates for a minimum period of 3 hours.
  • the film solid is then rinsed with water (H2O), dried under vacuum, then dried in ambient air overnight under compression.
  • the buckypaper (A) can be cut to the desired size using a cookie cutter, by example in the form of a disk 12 mm in diameter, its thickness is about 200-250 ⁇ m.
  • Buckypapers (A) and (B) were functionalized by drop-casting 200 ⁇ L of 5 mM PLQ/CH2Cl2).
  • the commercial buckypaper (B) is a composite buckypaper comprising a binder to give some flexibility to the electrode.
  • the spacer material is LOCTITE EDAG 423SS E&C carbon adhesive, and the powdered enzyme deposited in the cavity is FAD-GDH 4 mg.
  • the anode is placed in a beaker containing a phosphate buffer solution at pH 7 and then in a solution containing glucose (100 mmol. L′ 1 ) solution in the presence of the same phosphate buffer.
  • a cyclic voltammetry recording ( Figure 7) shows that in the presence of glucose, an anodic catalytic current due to the oxidation of glucose via the electrical connection of the enzyme appears.
  • the electrical connection of the enzyme is ensured by the redox mediator (PLQ) adsorbed on the surface of the carbon nanotubes, which allows indirect electron transfer with the enzyme.
  • An electrode was fabricated according to the protocol generally described above. However, only buckypaper (BP(A)) was functionalized with hemin (0.6 mM). In addition, the functionalization was carried out during the manufacture of buckypaper A.
  • the nanotubes were dispersed in DMF in a ratio of 1/1 by mass (mg/mL). In this solution, the Hemin was added in quantity necessary to obtain a concentration of 0.6 mM (or 0.6 mmol. L-1). This nanotube/hemin/DMF solution is then filtered through a Buchner filter according to the method described previously.
  • Figure 6 is a laser microscopy view of a cross-section of this electrode.
  • the cavity C of heights ⁇ , ® and ®, is visible between the thickness ® of buckypaper A (B (A)) and the thickness ® of buckypaper B (BP (B)).
  • the BOD enzyme present in the cavity does not appear due to the contrast used.
  • the dimensions ®, ®, ®, ® and ® of buckypaper A (B (A)) and of this electrode are given in table 1 with reference to figure 6.
  • the spacer material is LOCTITE EDAG 423SS E&C carbon adhesive, and the powdered enzyme deposited in the cavity is BOD in an amount of 2 mg.
  • the anode is placed in a beaker containing a phosphate buffer solution at pH 7.4 then in a solution with oxygen bubbling in the presence of the same phosphate buffer.
  • a cyclic voltammetry recording ( Figure 8) shows the appearance of a strong cathodic current which reflects the connection of the enzyme by direct electron transfer with the sheets of carbon nanotubes: BP(A)+hemin/Glue LoctiteZBP (B) - phosphate buffer pH 7.4 O2 bubbling.
  • Example 3 Stability of a biocathode according to the invention
  • the cathode of example 2 was reproduced with increased dimensions (external diameter 30 mm, internal diameter 13 mm) and the same quantities of hemin and BOD as in example 2 so as to observe its stability via the recording of the catalytic current at 0.3 V in a pH 6.5 phosphate buffer ( Figure 9) while maintaining O2 bubbling.
  • the performance of the electrode appears to be, to some extent, dependent on the conductive surface available. For an identical quantity of enzyme, it is therefore possible to increase the electro-enzymatic current by increasing the surface of the electrode.
  • Example 4 Biofuel cell based on two reservoir electrodes according to the invention.
  • a biofuel cell (30) according to the invention was produced according to the diagram in Figure 10 using a bioanode according to Example 1 and a biocathode according to Example 2. Their respective compositions are summarized in Table 2 below: [Table 2]
  • the stability of the biofuel cell is illustrated via the evolution of its maximum power (obtained by linear sweep voltammetry at 0.2 mv/s) as a function of time in a phosphate buffer medium (pH 6.5) containing 100 mM glucose and saturated with O2 (Figure 12) .
  • An electrode is made on the principle of the previous examples.
  • two sheets of buckypaper (A) obtained according to the aforementioned protocol, are joined together with LOCTITE EDAG 423SS E&C carbon adhesive as a spacer material so as to form a reservoir.
  • This reservoir is filled with the following enzyme and mediator:
  • Enzyme HRP Horseradish Peroxidase; CAS 9003-99-0; Sigma Aldrich
  • Redox mediator 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulphonic acid; CAS 30931-67-0; Fluka
  • the HRP enzyme (2mg) and the ABTS mediator (1mg) are simply deposited in powder form during the manufacture of the electrode. .
  • a phosphate buffer at pH 7.4 is used when operating the electrode.
  • a detection curve by chronoamperometry under argon at -0.2V vs Ag/AgCI in PB at pH 7.4 makes it possible to record the response of the catalytic current of reduction of H2O2 by HRP as a function of the concentration of H2O2 in solution. This curve is represented in FIG. 13A and B (partial enlargement). HRP in solution in the tank works and electronic transfer via ABTS is ensured.
  • An electrode is made on the principle of the previous examples.
  • two sheets of buckypaper (A) obtained according to the aforementioned protocol, are joined together with LOCTITE EDAG 423SS E&C carbon adhesive as a spacer material so as to form a reservoir.
  • This reservoir is filled with the following two enzymes and the mediator:
  • Enzyme No. 1 (GOx): Glucose Oxidase from Aspergillus niger; CAS 9001-37-0; Sigma Aldrich.
  • HRP Horseradish peroxidase
  • Redox mediator 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulphonic acid; CAS 30931-67-0; Fluka.
  • the enzymes and the mediator are simply deposited in the form of powder during the manufacture of the electrode.
  • a phosphate buffer at pH 7.4 is used when operating the electrode.
  • Glucose is injected into the aqueous buffer in which the cavity electrode is immersed, it diffuses through the buckypapers and enters the cavity where it is oxidized by the GOx enzyme.
  • GOx catalyzes the reduction of dioxygen O2 to hydrogen peroxide H2O2 in the presence of glucose following the reaction:
  • HRP HRP reduces hydrogen peroxide H2O2 to water H2O.
  • ABTS is a redox mediator which allows the transfer of electrons from the HRP to the current collector buckypaper(A)
  • a detection curve by chronoamperometry (ambient air) at 0V vs Ag/AgCI in PB at pH 7.4 (Figure 15A) makes it possible to record the response of the catalytic current of reduction of H2O2 by HRP as a function of the concentration of glucose in solution . Indirectly, this reflects the first catalysis reaction of GOx.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Biochemistry (AREA)
  • Microbiology (AREA)
  • Manufacturing & Machinery (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Inert Electrodes (AREA)
  • Apparatus Associated With Microorganisms And Enzymes (AREA)
  • Immobilizing And Processing Of Enzymes And Microorganisms (AREA)

Abstract

Une électrode comprenant un matériau électroniquement conducteur formant, au moins en partie, un réservoir, ledit matériau étant perméable et poreux; un composé enzymatique placé dans le réservoir; et éventuellement, un collecteur de courant.

Description

Description
Titre de l’invention : Électrode enzymatique à réservoir intégré
Domaine de l’invention
L’invention se rapporte notamment à une électrode enzymatique, ou bioélectrode, et à ses utilisations pour la production d’électricité, à des biopiles la comprenant ainsi qu’à des appareils électriques ou électroniques l’incorporant. L’invention porte également sur des procédés de fabrication de cette bioélectrode ainsi qu’à des assemblages comprenant au moins deux bioélectrodes selon l’invention. Une électrode selon l’invention peut également être utilisée pour effectuer des réactions non enzymatiques telles que la production d’hydrogène par réduction des protons en milieu aqueux ou la réduction électrochimique de CO2.
Art antérieur
La technologie des piles à combustible se base sur la conversion de l’énergie chimique en énergie électronique. Une molécule organique telle que le glucose est une des sources d’énergie les plus importantes de nombreux organismes vivants et peut être considérée comme un biocombustible sûr, facile à manipuler, biodégradable puisque consommable. Les piles enzymatiques (également appelées biopiles) à biocombustible utilisent des enzymes pour produire de l’énergie ou de la puissance électrique à partir de substrats biologiques tels que le méthanol, le glucose ou l’amidon.
Les biopiles à combustible convertissent le biocombustible en présence de composés enzymatiques ce qui produit de la puissance. Les biopiles les plus connues fonctionnent par oxydation du glucose (GBFC) sont des piles de ce type qui convertissent le glucose par oxydation à l’anode pour la production de puissance en utilisant une enzyme incorporée à celle-ci et ayant une fonction de catalyseur de la réaction. La cathode a généralement pour fonction de réduire l’oxygène et peut, ou non, comprendre une enzyme catalysant cette réaction.
Les enzymes sont des alternatives prometteuses à des catalyseurs à base de métaux nobles puisque la plupart d’entre elles sont opérationnelles à pH neutre et à température ambiante et offre une toxicité faible ou nulle, ce qui n’est pas le cas d’autres catalyseurs à base de métaux. Les piles à combustible biologiques offrent donc un moyen intéressant de fournir une énergie écologique et durable aux appareils électroniques, en particulier aux petits appareils portables, et/ou à usage unique, pour des applications telles que les soins de santé, la surveillance de l'environnement, la biodéfense, etc. Étant donné que les piles à combustible à base d'enzymes, ou biopiles, peuvent fonctionner en utilisant des substrats (comme le glucose) qui sont abondants dans les fluides biologiques (salive, sang, urine), d’origine animale ou végétale (jus dé truits) etc. en tant qu’activateur et/ou de combustible. Dans ce contexte le terme « combustible » et « biocombustible » est interchangeable. De plus ces piles peuvent également faire usage des effluents environnementaux (par exemple le glucose et l'oxygène) tout en présentant des densités de puissance qui sont souvent supérieures aux densités de puissance microbienne.
Un des caractéristiques importantes des biopiles est une petite taille (par exemple de 1 à 10 cm2 de surface), voire une très petite taille (moins de 0,5 cm2 de surface) pour pouvoir remplacer les piles de types «bouton» fréquemment utilisées dans des dispositifs jetables. De plus elles doivent avantageusement être de masses faibles, et de préférence, peu coûteuses. Les piles à combustible, offrent donc une proposition intéressante pour augmenter la puissance ou auto-alimenter des dispositifs miniaturisés portables ou implantables [1 , 2,3].
Les biopiles sont confrontées à deux verrous technologiques majeurs qui bloquent actuellement leur développement, à savoir leur courte durée de vie, et dans une moindre mesure, leur faible puissance de sortie. La faible stabilité des piles enzymatiques est liée à la désactivation des enzymes immobilisées et semble inéluctable. En effet, les éléments générateurs d'énergie (bioanode et biocathode) de ces biopiles reposent sur l'immobilisation de différentes enzymes redox sur les surfaces des électrodes pour leur connexion électrique. Cette fixation des enzymes peut être obtenue par piégeage physique ou par greffage chimique ou interactions d'affinité. Le premier conduit à un processus de dénaturation dû au processus de piégeage lui-même et à l'environnement non biocompatible. De plus, l'activité de l'enzyme piégée peut être affectée par la perméabilité et l'hydrophobie de la structure hôte, et les contraintes stériques qui bloquent sa flexibilité conformationnelle. Concernant le processus de greffage chimique et de liaison par affinité, un meilleur accès du substrat à l'enzyme immobilisée peut être obtenu mais la quantité de biocatalyseur est limitée à une quasi monocouche à l'interface électrode modifiée-solution limitant ainsi fortement la puissance. De plus, la connexion électrique des enzymes par des médiateurs rédox s’avère difficile en raison de l’accès au site actif de l’enzyme qui peut être bloqué par l’immobilisation de cette dernière.
Une stratégie développée récemment consiste à utiliser un sac de dialyse pour contenir les éléments de la bioélectrode (enzymes/conducteur) dans un milieu liquide ceci permettant de ne pas immobiliser l’enzyme de manière covalente et de préserver son activité. Ainsi Cinquin et al.1 propose l’utilisation d’électrodes où les enzymes et les médiateurs sont compactés dans des disques de graphite mais qui n’y sont pas fixés de manière covalente. Ces électrodes sont placées dans des sacs de dialyse. Cependant dans de tels dispositifs la connexion de l’enzyme par le médiateur rédox est aléatoire. L’enzyme et le médiateur sont immobilisés par la compression et peuvent difficilement bouger pour se connecter alors qu’ils doivent se trouver à proximité très proche du site actif. De plus seules les enzymes situées proches de la surface du disque de graphite compressé seront actives, les autres enzymes n’étant pas accessibles aux substrats. WO2019234573 décrit également des électrodes de types pastilles qui offrent les mêmes limitations. Ces limitations sont également présentes dans les biopiles décrites dans FR3103325 où les enzymes sont disposées sur des feuilles de nanotubes de carbone par dépôt à la pipette. Aucun de ces dispositifs ne présentent de réservoirs internes à l’électrode, simplement une association des réactifs.
Hammond et al.2 ont également proposés des bioanodes comprenant des disques de substrats conducteurs placés dans une suspension aqueuse comprenant des enzymes et des nanoparticules de médiateurs spécialisés non-immobilisés. La suspension peut diffuser à travers une paroi faite d’une membrane de dialyse ceci permettant d’empêcher la fuite des composés actifs mobiles (enzymes, coenzymes, médiateurs) et l’arrivée du glucose.
Li et al. 3 décrivent une bioanode comprenant un système enzymatique/médiateur/conducteur sous forme d’une suspension aqueuse, ou « slurry ». L’anode est composée : d’un système enzymatique composé de glucose oxydase (GOx) et de son cofacteur Flavine Adénine Dinucléotide (FAD) ; de nanofeuilles TisC? MXène (un conducteur lamellaire de type graphène) ; de feutre de carbone ; et d’un médiateur électronique à base de térephthaldéhyde (TPA) réticulé à de l’aminoferrocène (amino-FC).
La suspension aqueuse est conservée dans un sac de dialyse de dimension 20 x 14 x 4 mm, ayant un seuil de rétention des molécules de 100 Da. Les particules de nanotubes de carbone à multi-paroi MWCNT ne permettent pas des résultats acceptables du fait de leurs mauvaises dispersions dans le liquide. De plus certain médiateurs sont inadéquats car leurs tailles ne leurs permettent pas d’être efficacement retenue par l’enveloppe de dialyse.
Cependant du fait de leurs structures ces dispositifs présentent de nombreux inconvénients. Tout d’abord la taille, en particulier le volume, de tels dispositifs est augmentée, ce qui est à l’opposée d’un des avantages particulièrement recherché. La fragilité et la porosité de film de dialyse et/ou la présence de liquide ne permet pas de stockage et/ou de manipulation aisée. Les composants de l’électrode doivent être adaptés à une utilisation sous forme de dispersion liquide et sont donc hautement spécialisés et donc coûteux. Enfin, la fabrication de ces électrodes est rendues particulièrement délicate par la présence de liquide et de films poreux et flexibles.
Ainsi, d’une manière générale l’invention vise notamment à résoudre le problème de la fourniture d’une électrode pour biopile à combustible, en particulier de conception permettant son utilisation dans des dispositifs de dimensions restreintes, peu coûteux (par ex. de type piles boutons ou « coins ») et/ou faciles à stocker et/ou à utiliser, tout en ayant une puissance optimisée.
L’invention a également pour but d'augmenter/de maximiser la puissance d’une biopile tout en minimisant sa taille et la masse totale d'enzyme utilisée.
L'invention a notamment pour but de combiner la présence d’enzymes ou de catalyseurs présentant une activité améliorée, car pouvant être mis en solution, dans un dispositif présentant une simplicité de fonctionnement, de fabrication et/ou de stockage tout en respectant l’environnement. En effet l’utilisation de composés toxiques et/ou coûteux peut être minimisée, voir supprimée, lors de la réalisation d’une électrode selon l’invention.
Description de l’invention
De manière ingénieuse il est proposé une électrode à réservoir dont le réservoir comprend un matériau conducteur. Ainsi un objet de l’invention est une électrode comprenant :
- un matériau électroniquement (ou ioniquement) conducteur formant, au moins en partie, un réservoir, ledit matériau étant perméable et poreux, et/ou comprenant des nanotubes de carbone;
- un catalyseur de réaction électrochimique, et en particulier un composé enzymatique, placé dans le réservoir ; et
- éventuellement, un collecteur de courant.
Le terme « électrode » est utilisé dans un sens large et désigne non seulement le conducteur électronique (ou ionique) pouvant capter ou libérer des électrons mais également par extension le compartiment anodique ou cathodique d’une demi pile.
Le terme « perméable » est utilisé pour indiquer que les vides que le matériau conducteur contient sont continus et permettent la diffusion de liquide et en particulier de l’eau.
Le terme « poreux » est utilisé pour décrire un matériau comprenant des vides (pores) dont la taille permet le passage de liquide. Le matériau selon l’invention doit être d’une porosité permettant le passage du substrat de la réaction électrochimique en cause (par exemple l’oxygène, le glucose etc..) tout en permettant la rétention des entités catalytiques utilisées telles qu’une enzyme, une coenzyme, un orienteur, et/ou un médiateur rédox, etc. Dans les bioélectrodes qui sont un aspect préféré de l’invention la taille moyenne des pores, c’est-à-dire sa porosité, est mesurée par adsorption/résorption d’azote sous pression. Cette porosité est de préférence choisie dans une gamme allant de 0,1 nm à 5 nm, de préférence de 0,2 nm à 3 nm et avantageusement de 0,3 à 2 nm. La technique de mesure standard utilisée est la manométrie d’adsorption-désorption d'azote mettant en œuvre la méthode BJH (Barrett-Joyner Halena) dérivée de la mesure de surface spécifique BET (Brunauer Hemmet Teller). L'échantillon est préalablement dégazé sous vide afin d'éliminer toute trace d'humidité résiduelle ou solvant éventuel qui pourrait fausser la mesure à des températures comprises entre la température ambiante et 80 °C max pendant au minimum 1 h et au maximum 4h. Les appareils utilisés peuvent être de marque Micromeritics (ASAP 2020) par la société Micromeritics Instrument Corporation (CA) ou Quantachrome (NOVAtouch), AT.
Le terme réservoir désigne un espace physique, telle une cavité, permettant de mettre en réserve un composé, et en particulier un catalyseur de réaction électrochimique tel qu’un composé enzymatique. Parce qu’il est mis en réserve le composé n’entre pas immédiatement en réaction lorsque les conditions de la réaction électrochimique sont présentes à l’électrode.
Le matériau conducteur selon l’invention peut comprendre, ou être constitué d’, un agglomérat solide, de préférence recyclable, tel que feutre de carbone, carbone microporeux, nanotubes de carbone, charbon actif, carbone mésoporeux, noir de carbone, polymères conducteurs et leurs mélanges. Les nanotubes de carbone sont particulièrement adaptés à la fabrication d’un matériau conducteur pour l’électrode selon l’invention. Ce matériau peut être un agglomérat de à base de nanotubes de carbone (CNT) à parois simples ou plus avantageusement à multi-paroi (MWCNT), car ils offrent une excellente porosité associée à une excellente conductivité. Selon un aspect particulier de l’invention l’électrode selon l’invention n’est pas contenue, en partie ou en totalité, dans une membrane de dialyse.
Par « nanotube de carbone », on entend un nanotube de carbone dont au moins une dimension est inférieure à 1500 nm. De préférence, les nanotubes de carbone ont un rapport longueur (L) sur diamètre noté L/diamètre compris entre 100 et 5000. De préférence les nanotubes de carbone ont une longueur d’environ 1 ,5 pm et/ou exemple un diamètre inférieur à environs 20 nm. Le diamètre moyen des nanotubes qui est particulièrement préféré pour mettre en œuvre l’invention et qui donne les meilleurs résultats est inférieur à 10nm et en particulier peut aller de 1 à 8 nm. Des nanotubes de carbone présentant des diamètres de l’ordre du micron, voire même de l’ordre de 75 à 200 nm ne sont pas les plus performants. Le matériau conducteur peut comprendre de tels matériaux ou être constitué essentiellement de ceux-ci. Par « constitué essentiellement » il est voulu dire que le matériau est constitué à plus de 90 %, de préférence à plus de 95%, en masse de ce matériau conducteur. Un tel matériau associe une très bonne porosité et une grande simplicité de fabrication a très faible coût et permet d’optimiser les interactions entre le catalyseur et le substrat, ou combustible de la réaction électrochimique. Ainsi, selon un aspect de l’invention, le matériau conducteur peut ne pas comprendre d’autres matériaux et en particulier il peut ne pas comprendre de matériaux polymériques (liant) qui pourraient affecter les performances de l’électrode. Cependant le matériau conducteur peut comprendre un ou plusieurs composés qui prennent part à la réaction électrochimique ayant lieu à l’électrode. Par exemple un orienteur ou un médiateur rédox (cf. infra) peut être présent dans le matériau. De préférence ce matériau est adsorbé sur un matériau conducteur de manière à préserver une certaine mobilité.
Le matériau conducteur est de préférence sous forme de feuille, de film ou de feuillets minces. La feuille, le film ou le feuillet peut avoir une épaisseur inférieure à 1 mm, de préférence de 50 à 500 pm, en particulier de 100 à 400 pm, par exemple environs 250 pm. La présentation sous forme de feuilles minces permet une simplicité de manipulation, et en particulier de découpe, et donc de fabrication de l’électrode. Ainsi l’électrode peut facilement présenter des formes variées. Une forme cylindrique ou circulaire est préférée mais de nombreuses autres formes peuvent ainsi être envisagées.
Le matériau conducteur forme au moins une partie du réservoir de l’électrode. Elle peut le constituer entièrement ou en majeure partie mais selon une variante particulière de l’invention elle ne le constitue qu’en partie.
De préférence le matériau conducteur est hydrophile, c’est-à-dire qu’en présence d’un liquide aqueux, l’angle de contact à l’équilibre d’une goutte de ce liquide sur la surface du matériau est inférieur à 90°. L’angle de contact peut être mesuré par la méthode de la goutte sessile à l’aide d’un goniomètre assisté d’une caméra. La mesure est réalisée à pression atmosphérique et à température ambiante. L'échantillon ne subit aucun traitement préalable. L'équipement utilisé peut-être par exemple un DATA Physics OCA 35 Microdrop de la société DataPhysics Instruments GmbH (Germany). La mesure est réalisée à l’aide d’un goniomètre constitué d’une caméra CCD (Charge Coupled Device), d’un système optique à fort grossissement et d’une source lumineuse. Le système de dépôt du liquide est automatisé pour obtenir une meilleure reproductibilité dans les mesures. Le volume de la goutte est généralement de 1 à 5 pL. Pour la caractérisation du mouillage de surfaces texturées, l’angle de contact est mesuré sur les côtés gauche et droit de la goutte afin de calculer une moyenne de l’angle de contact et l’écart type de la série de mesures. Pour l'analyse d'image, nous utilisons la méthode d’équation de cercle ou d’ellipse où l’ensemble du contour de la goutte est corrélé à un cercle ou une ellipse par application de la loi de Young. De préférence l’angle de contact est inférieur à 45°, de préférence inférieur à 30°, avantageusement inférieur à 10°C, encore plus avantageusement inférieur à 5°.
Selon un mode de réalisation préféré du fait de sa grande simplicité et adaptabilité, le réservoir comprend, ou est constitué, de deux feuilles en matériau conducteur solidarisée l’une à l’autre par une colle. Le terme colle est utilisé pour désigner toute matière permettant de solidariser entres elles par contact des parois de matériau conducteur. Ce terme englobe des produits qui peuvent être désignés par d’autres noms, par exemple « encre », mais dont la consistance liquide, gélatineuse ou pâteuse permet une dépose sur des pièces puis de les lier ensuite entre elles par contact puis séchage, durcissement et/ou polymérisation. Bien entendu il est préféré que cette colle ne soit pas insoluble dans les liquides tels que l’eau ou des liquides aqueux. Cette colle peut être choisie dans le groupe constitué par les colles vinyliques (colles blanches), acryliques, aliphatiques, cyanoacrylates, polyuréthanes, époxydes, néoprènes, colles thermofusibles (ou hot melt), résines thermoplastiques, silicones (par exemple des polydiméthylsiloxane (cPDMS)) et leurs mélanges. De préférence cette colle est elle- même conductrice et/ou contient des particules conductrices telles des particules de carbone ou de graphite. Une résine thermoplastique contenant de fines particules de graphite ou du polydiméthylsiloxane sont particulièrement adaptés à la mise en œuvre de l’invention.
Il convient de noter qu’il n’est pas nécessaire pour la mise en œuvre de l’invention que le réservoir soir formé dans sa majeure partie d’un matériau conducteur perméable et poreux, et/ou comprenant des nanotubes de carbone. En effet un réservoir dont moins de 50% de la surface interne est constituée dudit matériaux permet d’obtenir de bons résultats. Le reste des parois du réservoir peut comprendre un ou plusieurs matériaux conducteurs qui présentent d’autres caractéristiques que la porosité et la perméabilité, comme par exemple la flexibilité et/ou la solidité. De tels matériaux peuvent être des feuilles de nanotubes avec un liant polymérique ou du carbone vitreux, des fibres de carbones etc. Cependant il est préféré que plus de 30% de la surface interne du réservoir et en particulier entre 30% et 80%, en particulier entre 40 et 60% de la surface interne du réservoir soit constitué par un matériau conducteur perméable et poreux, et/ou comprenant des nanotubes de carbone. Selon une variante de préférée de l’invention la surface interne du réservoir est constituée à plus de 50%, de préférence à plus de 75%, et plus particulièrement à plus de 85% du matériau conducteur perméable. II est ainsi possible d’obtenir une électrode à réservoir selon l’invention d’une dimension (volume) très restreinte et de manière particulièrement simple notamment en collant deux feuilles conductrices l’une à l’autre de manière à former un réservoir dont une partie, en particulier une partie de la hauteur, est faite du matériau collant. Une telle électrode ayant un microréservoir est une variante particulièrement avantageuse de l’invention. Des dimensions préférées de cette électrode comprennent notamment : à un volume interne total du réservoir allant de 10 pL à 500 pL, de préférence de 10 pL à 100pL et avantageusement de 10pL à 50pL ; une hauteur du réservoir de 25 pm à 200 pm, de préférence de 40 pm à 100 pm, par exemple de 60 pm ± 10 pm ; une épaisseur de l’électrode allant de 400 pm à 5 mm, de préférence 500 pm à 2 mm, par exemple aux alentour d’1 mm ; et/ou une surface extérieure de l’électrode pouvant varier de 0,5 à 10,0 cm2, de préférence de 0,8 à 7 cm2, par exemple d’environ 1 cm2.
Sélectionner un réservoir de très faible volume (par exemple quelques dizaines de microL) permet d’avoir une forte concentration de composé catalytique en solution (par exemple 0,2 g/mL) pour une très faible quantité de composé catalytique (quelque mg) et donc un très faible coût de production.
En particulier, les électrodes selon peuvent prendre la forme de petite (1 à 2 cm de diamètre), voire de très petite (moins de 0.5 cm de diamètre), pastilles, par exemple circulaires ou polygonales. De telles électrodes peuvent avoir une épaisseur variant de 5 mm à 0,1 mm, par exemple 0,25 mm.
Le réservoir de l’électrode contient de préférence un catalyseur, le terme « catalyseur » est utilisé dans son acception d’entité catalytique pour désigner un ou plusieurs composés permettant, seuls ou en association, de catalyser, accélérer et/ou favoriser la réaction électrochimique ayant lieu à l’électrode. Dans le contexte des biopiles il peut s’agir d’un composé enzymatique, tel qu’une enzyme et/ou un cofacteur enzymatique, d’un composé absorbant les espèces nuisibles, d’un orienteur (un composé permettant d’orienter l’enzyme quand elle s’approche du matériau conducteur pour faciliter le transfert d’électron) et/ou d’un médiateur rédox. Lorsque des protéines ou des dérivés protéiniques ayant une fonction enzymatique sont utilisés, ces composés enzymatiques comprennent les protéines natives ainsi que leurs dérivés, mutants et/ou équivalents fonctionnels. Ce terme s’étend en particulier aux protéines qui ne diffèrent pas de manière substantielle au niveau de la structure et/ou de l’activité enzymatique. Le composé enzymatique peut être une combinaison, ou association, d’enzymes, celles- ci pouvant catalyser la même réaction ou des réactions différentes. Lorsque l’électrode est une bioanode et/ou le substrat de la réaction est du glucose, l’enzyme peut être une glucose oxydase (GOX), de préférence avec son cofacteur Flavine Adénine Dinucléotide (FAD) ou une déshydrogénase telle la Flavine Adénine Dinucléotide - Glucose DésHydrogénase (FAD-GDH) (EC 1.1.5.9). Dans la mesure où l’utilisation de la GOx implique la production d’eau oxygénée (espèce nuisible) un composé contenu dans le réservoir de l’anode peut être une catalase.
Lorsque l’électrode est une bioanode et/ou le substrat est de l’oxygène O2, l’enzyme peut être une enzyme réduisant l’oxygène, et plus particulièrement la bilirubine oxydase (BOD) (numéro CAS 80619-01-8 ; avril 2018), une polyphénol oxydase (PPG), ou une laccase (LAC), qui peut avantageusement être associé à un orienteur une protoporphyrine IX, comme de l’hémine.
Lorsque le substrat de la réaction est de l’oxygène O? et du glucose, le réservoir de l’électrode peut contenir une enzyme réduisant l’oxygène, et plus particulièrement une glucose oxydase (par ex. d’Aspergillus Niger), en association avec une enzyme réduisant le peroxyde d’hydrogène en eau, telle qu’une peroxydase (par exemple, la peroxydase du raifort, «horseradish»). Cette combinaison d’enzyme peut être avantageusement associée à un médiateur rédox tel que l’ABTS.
Les termes de biocathode et de bioanode réfèrent à la présence de matériel biologique, par exemple une enzyme, dans leur structure ou à proximité de celle-ci.
Lorsqu’un médiateur rédox est utilisé il peut également comprendre une molécule, notamment aromatique, agissant en tant que médiateur redox ou orienteur, telle que la 1 ,4-naphtoquinone, pour améliorer les échanges électroniques. Des molécules choisies dans le groupe formé par la 9,10-phénanthrènequinone, la 1 ,10-phénanthroline-5,6- dione, la 9,10-anthraquinone, le phénanthrène, la 1 ,10-phénanthroline, la 5-méthyl-1 ,10- phénanthroline, le pyrène, le 1-aminopyrène, l’acide pyrène-1 -butyrique, l’ABTS, les protoporphyrine IX telle que l’hémine, et les mélanges de deux ou plus de ceux-ci peuvent également être considérées. L’utilisation de tels composés se révèlent particulièrement avantageuse dans le cas de systèmes enzymatiques comprenant une FAD-GDH ou une GOx.
Le catalyseur, en particulier lorsque celui-ci est une enzyme, est de manière avantageuse placée dans le réservoir sous forme solide, en particulier de la poudre. Cette forme permet non seulement une fabrication simple et aisée mais permet d’obtenir une électrode qui peut être stockée et entreposée avant son utilisation et aisément fournir une concentration d’élevé de catalyseur.
Selon un aspect particulièrement préféré, la concentration de catalyseur, en particulier d’une enzyme, lorsque diluée en milieu liquide tel que l’eau, est élevée. En particulier cette concentration peut être de 0,01 g/mL à 1 g/mL, de préférence de 0.05g/ml_ à 0,5 g/mL, par exemple être aux environs de 0,2 ± 0,1 . Alternativement ou additionnellement, cette concentration peut être de 0,5 mM à 5 mM, de préférence de 1 mM à 3 mM, par exemple aux environs de 2,5 mM ± 0,1 .
Lorsque le matériau conducteur formant, au moins en partie, le réservoir, et étant perméable et poreux, et/ou comprenant des nanotubes de carbone est un agglomérat solide, il peut être avantageusement combiné (« fonctionnalisé »)à un composé enzymatique où à une formant part d’un système enzymatique. En particulier un composé comme un orienteur ou un médiateur redox (cf. supra) peut-être mélangé au matériau conducteur. Le mélange peut -être effectué lors de la fabrication du matériau ou adsorbé sur celui-ci, par exemple par drop casting.
Cependant, selon un aspect particulièrement avantageux de l’invention, le matériau conducteur de l’électrode selon l’invention, n’est pas fonctionnalisé par un orienteur ou un médiateur redox. Par exemple il n’est pas fonctionnalisé par l’ABTS et/ou par un des composés ci-dessus mentionné. Si un orienteur ou un médiateur redox est présent, il peut être disposé directement dans le réservoir, par exemple sous forme solide, telle qu’une poudre, sans devoir être associé, ou lié, avec le matériau conducteur. Cette simplicité d’utilisation est très avantageuse puisqu’elle permet de se dispenser d’une étape de fabrication.
L’électrode selon l’invention peut également comprendre un collecteur de courant. Celui-ci peut être sous forme de couches, de languettes, de films et/ou de fils. Il présente avantageusement une faible épaisseur, une haute conductivité thermique et/ou électrique et peut comprendre, ou être (substantiellement) constitué de, graphite hautement orienté et de préférence flexible. Ainsi on peut également utiliser une feuille, ou une languette, en graphite pyrolytique (pyrolytic graphite sheet). L’utilisation du graphite est avantageuse du fait qu’il combine stabilité, légèreté et conductivité électrique et thermique. Son épaisseur peut être choisie comme allant de 10 à 500 pm, de préférence de 17 à 300 pm, et avantageusement de 40 à 2000pm. Sa conductivité thermique (dans le plan longitudinal de l’électrode) peut-être de 100 à 1000 W/(m.K), de préférence de 100 à 1950 W/(m.K) et avantageusement 100 à 1350 W/(m.K). Cette couche peut également présenter une conductivité électrique supérieure à 5 000 S/cm, de préférence supérieure ou égale à 8000 S/cm, par exemple aux alentours de 10 000 S/cm. Elle peut cependant présenter une conductivité supérieure, par exemple aux environs de 20 000 S/cm, en particulier si l’épaisseur de la couche est inférieure à 40 pm. Cette couche peut également présenter une résistance à la chaleur, par exemple une résistance à une température de plus de 200°C, avantageusement de plus de 300°C, par exemple d’environ 400°C. Un autre objet de l’invention est une pile, et en particulier une biopile, notamment de type pile à combustible, comprenant une électrode selon l’invention. La biopile peut comprendre une cellule électrochimique, ladite cellule électrochimique comprenant une anode et une cathode. L’anode ou la cathode, et avantageusement les deux, sont avantageusement une électrode selon l’invention. Ladite biopile peut comprendre, en outre, des moyens de mise en circuit électrique de ladite biopile avec un récepteur électrique, lesdits moyens de mise en circuit électrique permettant la circulation du courant entre l’anode et la cathode.
Le terme « pile » est utilisé dans son sens le plus large. Ainsi par « pile » on comprend, entre autres, un dispositif n’ayant qu’une seule cellule électrochimique et/ou un dispositif rechargeable ou non. Une pile comprenant un empilement de plusieurs cellules électrochimiques est envisagée pour obtenir le voltage requis.
De manière avantageuse la pile selon l’invention peut être de forme variée et/ou de petite dimension. Notamment elle peut n’occuper qu’un volume inférieur ou égal à 2 cm3, de préférence inférieur ou égale à 1 cm3, voire inférieur ou égal à 0,75 cm3. Elle peut notamment être conçue pour pouvoir remplacer les piles de « types boutons ». La distance entre les électrodes est aisément adaptée par l’homme de métier mais il est noté que cette distance peut varier de 1 à 10mm sans que cette variation ait des conséquences sur les performances de la pile.
La pile selon l’invention peut comprendre des moyens de mise en circuit comme des bornes (par exemple au moins une borne positive et au moins une borne négative) qui peuvent connecter les collecteurs de courant avec l’extérieur de la biopile. De telles bornes permettent de laisser entrer ou sortir du courant électrique. Ces bornes peuvent être une portion des moyens de mise en circuit qui sont dimensionnées et positionnées de manière adaptées.
La pile selon l’invention peut comprendre une membrane séparatrice et poreuse, électriquement isolante, et perméable au milieu liquide, qui est placée entre l’anode d’une part et la cathode d’autre part. Cette membrane, permet le passage notamment des espèces ioniques et, avantageusement, des substrats entre l’anode et la cathode.
Pour certaines utilisations, la pile selon l’invention peut avantageusement comprendre un revêtement externe qui peut être un support, une couche, ou un film, protecteur qui recouvre en partie la ou les cellules électrochimiques du dispositif. Celui- ci est de préférence flexible, adhésif, non toxique, chimiquement stable, électriquement isolant, peu sensible aux radiations et/ou a une gamme de température de service large (par exemple de -150°C à 200°C, voire aux environs de 260°C). Ce revêtement, ou film protecteur externe, peut comprendre, ou être (substantiellement) constitué d’un tissu en fibres de verre imprégné d’un matériau relativement inerte comme un matériau polymérique perfluoré de type PTFE (polytétrafluoroéthylène) ou un matériau à base de silicone. Le PTFE peut être du Teflon® de Du Pont de Nemours, du Fluon® de Asahi Glass, de Hostaflon ® de Dyneon. Le film ou revêtement est de préférence imprégné de plus de 50% en poids dudit matériau, avantageusement de 50 à 70%, de préférence de 57 à 64 % par rapport au poids total du film. Son épaisseur peut être de quelque dixièmes, voire centièmes de millimètres. Par exemple, elle peut être choisie dans une gamme allant de 0,03 à 0,50 mm, de préférence de 0,05 à 0,30 mm et de préférence de 0,06 à 0,14 mm, par exemple être de 0,07 mm. Selon un aspect préféré de l’invention, le revêtement, ou film protecteur, comprend une couche adhésive, de préférence résistante à l’eau, lui permettant d’adhérer à la surface externe de la, ou les, cellule(s) électrochimique(s) de la biopile selon l’invention. Un autre matériau pouvant être utilisé en tant que revêtement externe peut être de type ruban adhésif non-tissé comprenant une couche de fibres de synthétiques (par exemple un mélange polyester/rayonne) et une couche adhésive (par exemple à base d’acrylate). Ce type de matériau généralement à usage médical convient bien en tant que revêtement externe.
Selon un aspect particulier, ce film protecteur peut être apposé directement sur une face d’une électrode ou de la cellule. Selon un autre aspect préféré, ce revêtement externe, qui est de préférence flexible et isolant, comprend une ou plusieurs ouvertures positionnée(s) et dimensionnée(s) de manière à permettre notamment l’accès d’un liquide à l’anode et/ou la cathode. Cette ouverture peut être prédécoupée dans le revêtement. Additionnellement, ou alternativement, cette ouverture peut être constituée par le fait que le revêtement n’entoure pas totalement la biopile comprenant la, ou les, cellule(s) électrochimique(s) mais laisse une ouverture donnant accès à ces éléments.
Ainsi la pile selon l’invention peut avantageusement comprendre un revêtement externe, de préférence flexible, isolant et/ou imperméable au liquide comprenant des ouvertures positionnées et dimensionnées de manière à permettre l’accès d’un fluide et en particulier d’un liquide, par exemple un liquide aqueux.
Selon un aspect de l’invention, la cellule électrochimique peut comprendre une série de couches, de préférence minces, flexibles et/ou mécaniquement robustes, formant un empilement multicouches (ou multi-lamellaire) de préférence autoportant. La forme et/ou la dimension de ces couches, et notamment la présence d’au moins une ouverture et/ou d’évidement, sont avantageusement déterminées de manière à constituer, ou permettre, une connexion électrique, une entrée pour les substrats. Ces couches comprennent l’anode, les cathodes, d’éventuelles couches séparatrices et les moyens de mise en circuit, tels que décrit dans la présente demande.
Un objet de l’invention est également une méthode de fabrication d’une électrode telle que décrite dans la présente demande. Cette méthode comprend le positionnement et la solidarisation des éléments constitutifs de ladite électrode. Cette méthode peut comprendre l’utilisation d’au moins un matériau (en particulier sous forme de feuille) et d’une colle telle que décrite précédemment et comprend l’étape de positionner sur ce matériau, une paroi, continue ou non, de colle pour former une cavité puis d’obturer cette cavité au moyen d’un matériau conducteur perméable et poreux, et/ou comprenant des nanotubes de carbone, pour former, au moins en partie, un réservoir. Cette méthode peut également comprendre au moins l’une des étapes suivantes :
- le remplissage du réservoir par un catalyseur tel qu’une enzyme ; et
- le positionnement d’un collecteur de courant.
Préférablement le positionnement est une superposition desdits éléments.
L’invention porte également sur une biopile telle que décrite dans la présente demande et comprenant, en outre, un liquide aqueux, ledit liquide comprenant éventuellement un biocombustible. Le combustible peut cependant être déjà présent dans le dispositif sous une forme sèche et/ou solide et/ou non-solubilisée et/ou pouvant migrer vers les sites enzymatiques comme décrit dans les publications brevet FR1855014 et WO2019234573.
Lorsque le liquide aqueux est ajouté, il diffuse à l’intérieur du réservoir et le catalyseur (notamment l’enzyme) présent dans le réservoir est dissout dans le liquide ce qui permet aux échanges électrochimiques d’avoir lieu. Alternativement ou additionnellement, le liquide ajouté comprend le biocombustible. Celui-ci peut être, par exemple, un liquide physiologique tel que du sang, de l’urine ou de la salive ou une boisson alcoolisée ou au glucose.
Un objet de l’invention est également un procédé d’activation de l’électrode comprenant la mise en présence d’une électrode telle que décrite dans la présente demande avec un liquide, de préférence un liquide aqueux, éventuellement comprenant un combustible tel qu’un sucre (par exemple du glucose, fructose, saccharose et/ou lactose etc.), de l’amidon et/ou de l’éthanol.
Un autre objet de l’invention est un appareil comprenant une biopile selon l’invention, et un récepteur électrique (c’est-à-dire à un appareil qui utilise (reçoit) du courant électrique), ladite biopile étant connectée électriquement audit récepteur électrique. Un tel appareil peut être un test, en particulier un test du liquide biologique : par exemple un test de grossesse ou un test de glycémie. Il peut être également un appareil pour émettre un signal d’alerte, par exemple lorsque la biopile est en association avec une diode. Au vu de son cout très faible, un dispositif d’alerte pour changement des couches de protection (par exemple pour fuites urinaires) est envisagé. L’appareil peut également être sous forme de patch pour la peau l’alimentation de la biopile se faisant par la transpiration qui contient du lactate et de l’oxygène. En particulier, en raison de la présence de glucose et d'oxygène dans les fluides extracellulaires (sang et liquide interstitiel), des piles enzymatiques selon l’invention peuvent être utilisées dans des dispositifs implantables y inclus des dispositif pour alimenter dans le corps humain, des dispositifs médicaux implantés tels que les électrodes de stimulation, les stimulateurs cardiaques, les pompes, les capteurs et implants bioniques etc... Une pile selon l’invention peut également être utilisés dans un appareil de localisation GPS qui peuvent être utilisés pour la pour la cartographie de déplacement des espèces animales en voie de disparition (tigres, éléphants, etc.).
Alternativement ou additionnellement la biopile (et/ou le dispositif) selon l’invention peut être incorporé dans un appareil électronique à affichage électronique et/ou à émission de lumière.
Plus généralement l’appareil selon l’invention est de type fonctionnant avec des piles de type boutons utilisant des dérivés métalliques, tels qu’un appareil de test au point de service (POCT), l'Internet des objets (loT) ou un capteur environnemental.
Un tel appareil selon l’invention peut être avantageusement jetable, biodégradable et/ou à utilisation unique.
Un autre objet de l’invention est un kit pour la fabrication d’une biopile telle que décrite dans la présente demande et qui comprend une biopile telle que décrite dans la présente demande, associé à des indications de mode d’emploi.
Un autre objet de l’invention est une utilisation d’une biopile selon l’invention pour la génération d’un courant électrique.
Un autre objet de l’invention une cellule électrochimique telle que décrite précédemment.
Un autre objet de l’invention est l’utilisation d’une électrode selon l’invention dans la fabrication de piles, de biopiles, de dispositifs et d’appareils tels que décrit dans la présente demande.
Selon un autre aspect de l’invention, l’électrode à réservoir interne peut être utilisée pour d’autres réactions chimiques que des réactions utilisant des composés biochimiques telles que des enzymes. Une électrode selon l’invention peut être utilisée pour effectuer des réactions non enzymatiques telles que la production d’hydrogène par réduction des protons en milieu aqueux ou la réduction électrochimique de CO2. Les catalyseurs ou médiateurs de la réaction peuvent être des composés organiques ou métalloorganiques solubles ou partiellement solubles en milieu aqueux qui seront piégés comme les enzymes dans la (micro)cavité. Par exemple, la porphyrine de fer 5,10,15,20 tétrakis(4-sulfonatophényl) pourra être utilisée pour la réduction électrochimique du CO2 et un complexe de rhodium : [Rhlll(tpy)(CH3CN)CI2](CF3SO3)pour l’électrogénération de H2. Brève description des figures
L'invention sera mieux comprise à la lecture de la description qui va suivre donnée uniquement à titre d'exemple et faite en se référant aux dessins annexés dans lesquels :
[Fig. 1] La figure 1 est une vue éclatée en perspective d’un exemple de configuration d’une bioélectrode selon l’invention.
[Fig. 2] La figure 2 est une vue schématique en transparence et en perspective de la bioélectrode de la figure 1.
[Fig. 3] La figure 3 est une vue photographique de dessus d’une électrode telle que représentée dans les figures 1 et 2 en cours de fabrication.
[Fig. 4] La figure 4 est une vue photographique de dessus d’une étape de fabrication d’une électrode telle que représentée dans les figures 1 et 2, subséquente à l’étape de la figure 3.
[Fig. 5] La figure 5 est une vue photographique de dessus d’une étape de fabrication d’une électrode telle que représentée dans les figures 1 et 2, subséquente à l’étape de la figure 4.
[Fig.6] La figure 6 est une vue par microscopie laser d’une coupe transversale d’une électrode selon l’exemple 2.
[Fig. 7] La figure 7 est un diagramme de voltammétrie cyclique de la bioanode de l’exemple 1 , avec et sans présence de glucose
[Fig. 8] La figure 8 est un diagramme de voltammétrie cyclique de la biocathode de l’exemple 2, avec et sans présence d’oxygène.
[Fig. 9] La figure 9 montre l’évolution du courant catalytique à 0.3V en fonction du temps en maintenant un bullage d’O? de l’électrode de l’exemple 3.
[Fig. 10] La figure 10 montre un schéma de la biopile de l’exemple 4.
[Fig. 11] La figure 11 montre la courbe de polarisation/puissance de la biopile à cavité de l’exemple 4 et la puissance obtenue lors de décharge 10 s dans un tampon phosphate pH 6.5 en présence de 100mM glucose saturé en O2.
[Fig. 12] La figure 12 montre l’évolution de la puissance maximum (obtenue par voltammétrie linéaire à balayage à 0.2 mv/s) en fonction du temps en milieu tampon phosphate (pH 6.5) contenant 100mM glucose et saturé en C de la biopile de l’exemple 4.
[Fig. 13] La figure 13A représente la courbe de détection de H2O2 par HRP - courant de réduction catalytique vs [H2O2] @ -0.2V vs Ag/AgCI (Argon saturé) de l’exemple 5. La figure 13B est un agrandissement d’une portion de la courbe de la Figure 13A. [Fig. 14] La figure 14 est une représentation du fonctionnement d’une électrode à cavité bi-enzymatique GOx-HRP-ABTS selon l’exemple 6 de l’invention.
[Fig. 15] La figure 15A permets d’observer la détection indirecte de H2O2 produit la GOx par injections successives de glucose - réduction catalytique de H2O2 par la HRP @ 0V vs Ag/AgCI ; PB 7.4- air ambiant) - La figure 15B représente la courbe d’étalonnage établie à partir de la Fig. 3(A) - courant catalytique de réduction de H2O2 par HRP en fonction de la concentration en glucose en solution.
Exemples de réalisation
Protocole
Une configuration de base d’électrodes selon l’invention est exemplifiée en Figure 1 (vue explosée) et Figure 2. Selon cet exemple, l’électrode 10 comprend un réservoir 12. Le réservoir 12 est ici constitué d’un disque 14 de Buckypaper sur la périphérie duquel est disposé une ligne de colle circulaire 16 définissant une cavité interne 18. Cette cavité interne 18 et la ligne de colle 16 sont recouverte d’un autre disque de Buckypaper 15, recouvrant la cavité 18 et cette ligne de colle 16 et définissant ainsi le réservoir 12. Ainsi la Fig. 3 montre une vue de dessus d’un disque 14 de Buckypaper de 12 mm de diamètre sur la périphérie duquel est disposé une ligne de colle circulaire 16 définissant une cavité interne 18 circulaire de 7 mm de diamètre. Un fil électrique 20 est disposé dans/sur la colle et une enzyme en poudre 22 est disposée dans la cavité 18 (Figure 4). Cette poudre d’enzyme 22 et la cavité 18 la contenant sont alors recouverts d’une feuille de Buckypaper 15, qui, adhérant à la colle 16, obture la cavité interne 18 et la transforme en réservoir 12.
Liste des matériaux utilisés dans les exemples.
- Nanotubes de carbone multiparois (CNTS) de la société Nanocyl NC7000TM ; Nanocyl SA, Rue de l’essor, B-5060 Sambreville, Belgique.
- Buckypapers commercial : NTL Composites de référence NTL-12217, 60g. sm MWCNT Blend, nanotechlabs, 409 W. Maples ST, Yadkinville, NC 27055,
- Colle carbone : LOCTITE EDAG 423SS E&C ; Henkel France S.A.S, 161 Rue de Silly, 92100 Boulogne-Billancourt, France.
- Enzymes :
- Bilirubine Oxydase (BOD) de Myrothecium verrucaria ; Amano 3 d'Amano Enzyme Inc., U.S.A.
Glucose déshydrogénase FAD dépendante d'aspergillus sp ; Sekisui Diagnostics, ltd, UK.
- Médiateurs, orienteur :
PQ : Phénanthrène quinone ; CAS 84-11-7 de Fluka AG PLQ : 1 , 10-Phenatroline-5 ,6 dione ; CAS 27318-90-7 de Sigma Aldrich
1 , 4 NQ : 1 , 4 Naphthoquinone ; CAS 130-15-4 de Sigma Aldrich Hémine : BioXtra porcine, CAS 16009-13-5 de Sigma Aldrich.
Préparation et mise en forme de Buckypaoer à partir de nanotubes de carbones
Les nanotubes de carbones (CNTs) (NC7000) sont dispersés dans du DMF (ratio 1/1 masse(mg)/volume(mL) et soumis à un bain à ultrasons pendant 1 h30. Le bain à ultra-sons utilisé est un Fisher Scientific FB15050. La fréquence ultrasonique est de 37 kHz pour une puissance efficace de 80 W RMS. La dispersion est alors filtrée sur Buchner sous vide, (filtre PTFE 0.45pm) jusqu’à évaporation du solvant pendant une période minimale de 3h. Le film solide est alors rincé à l’eau (H2O), séché sous vide, puis séché à air ambiant une nuit sous compression. Le buckypaper (A) peut être taillé à la dimension souhaitée à l’aide d’un emporte-pièce, par exemple sous forme de disque de 12 mm de diamètre. Son épaisseur est d’environ 200-250 pm.
Exemple 1 Anode : catalyse-oxydation du glucose
Une électrode a été fabriquée selon le protocole décrit ci-dessus. Les buckypapers (A) et (B) ont été fonctionnalisés par dépôt-goutte (drop-casting) de 200 pL de PLQ/CH2CI2 5mM). Le buckypaper commercial (B) est un buckypaper composite comprenant un liant permettant de donner une certaine flexibilité à l’électrode.
Le matériau espaceur est de la colle carbone LOCTITE EDAG 423SS E&C, et l’enzyme en poudre déposée dans la cavité est la FAD-GDH 4 mg. L’anode est placée dans un bêcher contenant une solution tampon phosphate à pH 7 puis dans une solution contenant du glucose (100 mmole. L'1) solution en présence du même tampon phosphate.
Couplée à une électrode de référence Ag/AgCI (Saturation de KG) et à une contre électrode de Pt (vitesse de balayage 1 mV.s'1 ), un enregistrement de voltammétrie cyclique (Figure 7) montre qu’en présence de glucose, un courant catalytique anodique dû à l’oxydation du glucose via la connexion électrique de l’enzyme apparait. La connexion électrique de l’enzyme est assurée par le médiateur rédox (PLQ) adsorbé sur la surface des nanotubes de carbone, qui permet le transfert d’électron indirect avec l’enzyme.
Exemple 2 Cathode : catalyse-réduction de l’oxygène
Une électrode a été fabriquée selon le protocole généralement décrit ci-dessus. Cependant seul le buckypaper (BP(A)) a été fonctionnalisé par de l’hémine (0,6 mM). De plus la fonctionnalisation a été effectuée lors de la fabrication du buckypaper A. Les nanotubes ont été dispersés dans du DMF dans un ratio de 1/1 en masse (mg/mL). Dans cette solution, l’Hémine a été ajoutée en quantité nécessaire pour obtenir une concentration de 0,6 mM (ou 0,6 mmole. L-1 ). Cette solution nanotube/hémine/DMF est alors filtrée sur Buchner selon la méthode décrite précédemment.
La Figure 6 est une vue par microscopie laser d’une coupe transversale de cette électrode. La cavité C, de hauteurs ©, ® et ®, est visible entre l’épaisseur ® de buckypaper A (B (A)) et l’épaisseur ® du buckypaper B (BP (B)). L’enzyme BOD présente dans la cavité n’apparait pas du fait du contraste utilisé. Les dimensions ®, ® , ®, ® et ® de buckypaper A (B (A)) et de cette électrode sont données au tableau 1 en référence avec la figure 6.
[Tableau 1]
Figure imgf000020_0001
Le matériau espaceur est de la colle carbone LOCTITE EDAG 423SS E&C, et l’enzyme en poudre déposée dans la cavité est de la BOD en quantité de 2 mg. L’anode est placée dans un bêcher contenant une solution tampon phosphate à pH 7,4 puis dans une solution avec bullage d’oxygène en présence du même tampon phosphate.
Couplée à une électrode de référence Ag/AgCI (Saturation de KG) et une contre électrode de platine (vitesse de balayage 1 mV.s'1 ). Un enregistrement de voltammétrie cyclique (Figure 8) montre l’apparition d’un fort courant cathodique qui reflète la connexion de l’enzyme par transfert direct d’électron avec les feuilles de nanotubes de carbone : BP(A)+hémine/colle LoctiteZBP(B) - tampon phosphate pH 7.4 bullage O2.
Exemple 3 : Stabilité d’une biocathode selon l’invention
La cathode de l’exemple 2 a été reproduite avec des dimensions accrues (diamètre externe 30 mm, diamètre interne 13 mm) et les mêmes quantités d’hémine et de BOD que dans l’exemple 2 de manière à observer sa stabilité via l’enregistrement du courant catalytique à 0.3 V dans un tampon phosphate pH 6.5 (Figure 9) en maintenant un bullage de O2. La performance de l’électrode apparaît être, dans une certaine mesure, dépendante de la surface conductrice disponible. A quantité d’enzyme identique, il est donc possible d’augmenter le courant électro-enzymatique en augmentant la surface de l’électrode.
Il apparait une diminution de l’activité électrocatalytique durant les 10-15 premiers jours puis une stabilisation de ce courant jusqu’à 5 semaines. Ceci est assez remarquable car les biocathodes basées sur la bilirubine oxydase (BOD), en général, ont leur activité qui disparaît après quelques jours voire une semaine.
Exemple 4 : Biopile à base de deux électrodes à réservoir selon l’invention.
Une biopile (30) selon l’invention a été réalisée selon le schéma de la Figure 10 en utilisation une bioanode selon l’exemple 1 et une biocathode selon l’exemple 2. Leurs compositions respectives sont résumées dans le tableau 2 ci-dessous : [Tableau 2]
Figure imgf000021_0001
Ces deux électrodes sont placées dans un bêcher contenant un tampon phosphate saturé d’O? (24) et contenant une concentration de glucose de 100mM, à un pH 6, 5-7, 4, sous agitation par barreau magnétique. La distance Ad entre les deux électrodes est de 5mm.
La puissance obtenue lors de décharge 10 s dans un tampon phosphate pH 6.5 en présence de 100mM glucose saturé en C .est enregistrée (Figure 11 ) et montre une puissance maximale de la biopile de 807 pW, soit 1 ,048 mW/cm2 en tenant compte de la surface électroactive par électrode (0,769 cm2).
La stabilité de la biopile est illustrée via l’évolution de sa puissance maximum (obtenue par voltammétrie linéaire à balayage à 0.2 mv/s) en fonction du temps en milieu tampon phosphate (pH 6.5) contenantlOOmM glucose et saturé en O2 (Figure 12). Il apparaît une augmentation de la puissance après une semaine certainement due à l’amélioration de la perméabilité du buckypaper commercial avec le temps ; ceci entraine un apport plus conséquent de substrats à l’enzyme et donc augmente le courant catalytique. Aucune diminution n’est observée après 15 jours contrairement aux biopiles classiques, illustrant ainsi les avantages de l’invention.
Exemple 5: Bioélectrode HRP/ABTS
Une électrode est réalisée sur le principe des exemples précédents. Afin de réaliser une électrode bi-enzymatique, deux feuilles de buckypaper (A), obtenues selon le protocole suscité, sont solidarisées avec de la colle carbone LOCTITE EDAG 423SS E&C comme matériau espaceur de manière à former un réservoir. Ce réservoir est rempli de l’enzyme et du médiateur suivants :
Enzyme HRP: Peroxydase d'horseradish ; CAS 9003-99-0 ; Sigma Aldrich
Médiateur redox (ABTS) : Acide 2,2'-azino-bis(3-éthylbenzothiazoline-6-sulphonique ; CAS 30931-67-0 ; Fluka
L’enzyme HRP (2mg) et le médiateur ABTS (1 mg) sont simplement déposés sous forme de poudre lors de la fabrication de l’électrode. . Un tampon phosphate à pH 7.4 est utilisé lors du fonctionnement de l’électrode.
Une courbe de détection par chronoamperométrie sous argon à -0.2V vs Ag/AgCI dans PB à pH 7.4 permet d’enregistrer la réponse du courant catalytique de réduction de H2O2 par la HRP en fonction de la concentration de H2O2 en solution. Cette courbe est représentée en figure 13A et B (agrandissement partielle). La HRP en solution dans le réservoir fonctionne et le transfert électronique via ABTS est assuré.
Exemple 6 : Bioélectrode à cavité bi-enzymatiques GOx-HRP-ABTS
Une électrode est réalisée sur le principe des exemples précédents. Afin de réaliser une électrode bi-enzymatique, deux feuilles de buckypaper (A), obtenues selon le protocole suscité, sont solidarisées avec de la colle carbone LOCTITE EDAG 423SS E&C comme matériau espaceur de manière à former un réservoir. Ce réservoir est rempli des deux enzymes et du médiateur suivants :
Enzyme n°1 (GOx) : Glucose Oxydase d'Aspergillus niger ; CAS 9001-37-0 ; Sigma Aldrich.
Enzyme n°2 (HRP) : Peroxydase de raifort (horseradish) ; CAS 9003-99-0 ; Sigma Aldrich.
Médiateur redox (ABTS) : Acide 2,2'-azino-bis(3-éthylbenzothiazoline-6-sulphonique ; CAS 30931-67-0 ; Fluka. Une électrode contenant 1 .5 mg de GOx, 1 .5 mg de HRP et 1 mg de ABTS a été réalisée. Les enzymes et le médiateur sont simplement déposés sous forme de poudre lors de la fabrication de l’électrode. Un tampon phosphate à pH 7.4 est utilisé lors du fonctionnement de l’électrode. Le glucose est injecté dans le tampon aqueux dans lequel est plongée l’électrode à cavité, il diffuse à travers les buckypapers et entre dans la cavité où il est oxydé par l’enzyme GOx.
La GOx catalyse la réduction du dioxygène O2 en peroxyde d’hydrogène H2O2 en présence de glucose suivant la réaction :
Figure imgf000023_0001
HRP : La HRP réduit le peroxyde d’hydrogène H2O2 en eau H2O.
ABTS : L’ABTS est un médiateur redox qui permet le transfert d’électrons de la HRP vers le collecteur de courant buckypaper(A)
H2O2 + 2ABTS + 2H*
Figure imgf000023_0002
H,0 + 2 ABTS-radical-cation + H,0
Une courbe de détection par chronoamperométrie (air ambiant) à 0V vs Ag/AgCI dans PB à pH 7.4 (Figure 15A) permet d’enregistrer la réponse du courant catalytique de réduction de H2O2 par la HRP en fonction de la concentration de glucose en solution. Indirectement, cela traduit la première réaction de catalyse de la GOx.
A chaque injection de glucose, une évolution en palier de la réponse en courant de la HRP est observée. Cela établit les réactions successives de la production de H2O2 par la GOx (en présence O2 dissous en solution) et de la réduction de H2O2 par HRP ; la connexion électrique étant assurée par l’ABTS.
L’originalité de cette électrode à cascade enzymatique telle qu’exemplifiée dans l’exemple 6 est son fonctionnement simple sans étape de fonctionnalisation des surfaces par des médiateurs spécifiques. Les enzymes et le médiateur sont simplement déposés sous forme de poudre lors de la fabrication de l’électrode et peuvent être considérés comme fonctionnant en solution dans la cavité. Liste des références documentaires
1. P. Cinquin, C. Gondran, F. Giroud, S. Mazabrard, A. Pellissier, F. Boucher, J.-P. Alcaraz, K. Gorgy, F. Lenouvel, S. Mathé, P. Porcu, S. Cosnier ; 2010 « A Glucose BioFuel Cell Implanted in Rats » PLoS ONE Vol. 5, Issue 5, (2010) e10476. 2. J. L. Hammond, A. J. Gross, F. Giroud, C. Travelet, R. Borsali, S. Cosnier. “Solubilized enzymatic fuel cell (SEFC) for quasi-continuous operation exploiting carbohydrate block copolymer glyconanoparticle mediators." ACS Energy Lett. ,4 (2019)142-148. DOI: 10.1021 Zacsenergylett.8b01972.
3. Zehua Li, Zepeng Kang, Bo Wu, Zhiguang Zhu. “A MXene-based slurry bioanode with potential application in implantable enzymatic biofuel cells.’’ J. Power Sources 506 (2021) 230206.

Claims

- 23 - Revendications
1. Une électrode (10) comprenant :
- un matériau électroniquement conducteur formant, au moins en partie, un réservoir (12), ledit matériau étant perméable et poreux ;
- un composé enzymatique (22) placé dans le réservoir ; et
- éventuellement, un collecteur de courant (20).
2. L’électrode (10) selon la revendication 1 , où entre 40 et 60% de la surface interne dudit réservoir (12) est constitué par ledit matériau électroniquement conducteur.
3. L’électrode (10) selon la revendication 1 ou 2, où ledit matériau conducteur est également hydrophile.
4. L’électrode (10) selon l’une quelconque des revendications 1 à 3, où ledit matériau comprend des nanotubes de carbone et avantageusement des nanotubes de carbone multiparois.
5. L’électrode (10) selon la revendication 3, où ledit matériau comprend les nanotubes de carbone présentent un diamètre moyen de allant de 10 nm à 30 nm.
6. L’électrode (10) selon l’une quelconque des revendications 1 à 5, où ledit matériau est sous forme d’au moins une feuille (15), de préférence de feuilles ayant une épaisseur allant de 50 à 500 pm.
7. L’électrode (10) selon l’une quelconque des revendications 1 à 6, où ledit réservoir (12) comprend des feuilles de matériaux conducteurs (15, 14) liées entre elles par une colle (16).
8. L’électrode (10) selon l’une quelconque des revendications 1 à 7, où le réservoir comprend une couche de colle (16) ayant une épaisseur, ladite épaisseur constituant une partie du réservoir (12) et pouvant définir la hauteur du réservoir (12).
9. L’électrode (10) selon l’une quelconque des revendications 1 ou 7, où ledit réservoir (12) a un volume interne total allant de 10 pL à 500 pL, de préférence de 10 pL à 100pL et avantageusement de 10pL à 50pL.
10. L’électrode (10) selon l’une quelconque des revendications 1 ou 7, où ledit composé enzymatique (22) est sous forme de poudre.
11 . L’électrode (10) selon l’une quelconque des revendications 1 ou 10, où ledit composé enzymatique (22) comprend deux enzymes dont une GOx.
12. L’électrode (10) selon l’une quelconque des revendications 1 à 11 , comprenant en outre au moins un médiateur redox, de préférence choisi dans le groupe constitué la 1 ,4-naphtoquinone, la 9,10-phénanthrènequinone, la 1 ,10-phénanthroline-5,6-dione, la 9,10-anthraquinone, le phénanthrène, la 1 ,10-phénanthroline, la 5-méthyl-1 ,10- phénanthroline, le pyrène, le 1-aminopyrène, l’acide pyrène-1 -butyrique, l’ABTS, les protoporphyrines IX, par exemple l’hémine, et les mélanges de deux ou plus de ces composés
13. L’électrode (10) selon l’une quelconque des revendications 1 à 12, ou le matériau électroniquement conducteur n’est pas fonctionnalisé par un médiateur redox.
14. Une biopile (30) comprenant au moins une électrode (10) telle que décrite dans l’une quelconque des revendications 1 à 13.
15. Utilisation d’une électrode (10) telle que décrite aux revendications 1 à 13 pour la fabrication de biopiles (30) et de préférence de biopiles à usage unique et/ou biodégradables, et en particulier de biopiles pour dispositifs médicaux implantés tels que stimulateurs cardiaques, les pompes, les capteurs et implants bioniques.
PCT/EP2022/078570 2021-10-14 2022-10-13 Électrode enzymatique à réservoir intégré WO2023062155A2 (fr)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN202280074622.1A CN118216020A (zh) 2021-10-14 2022-10-13 具有集成储存器的酶电极
EP22803196.9A EP4416776A2 (fr) 2021-10-14 2022-10-13 Électrode enzymatique à réservoir intégré

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FRFR2110940 2021-10-14
FR2110940A FR3128320A1 (fr) 2021-10-14 2021-10-14 Electrode enzymatique à réservoir intégré

Publications (2)

Publication Number Publication Date
WO2023062155A2 true WO2023062155A2 (fr) 2023-04-20
WO2023062155A3 WO2023062155A3 (fr) 2023-06-01

Family

ID=79831508

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2022/078570 WO2023062155A2 (fr) 2021-10-14 2022-10-13 Électrode enzymatique à réservoir intégré

Country Status (4)

Country Link
EP (1) EP4416776A2 (fr)
CN (1) CN118216020A (fr)
FR (1) FR3128320A1 (fr)
WO (1) WO2023062155A2 (fr)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019234573A1 (fr) 2018-06-08 2019-12-12 Centre National De La Recherche Scientifique Biopile a reservoir de combustible
FR3103325A1 (fr) 2019-11-15 2021-05-21 Centre National De La Recherche Scientifique Dispositif de production d’énergie comprenant un réservoir

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019234573A1 (fr) 2018-06-08 2019-12-12 Centre National De La Recherche Scientifique Biopile a reservoir de combustible
FR3103325A1 (fr) 2019-11-15 2021-05-21 Centre National De La Recherche Scientifique Dispositif de production d’énergie comprenant un réservoir

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
CAS , no. 30931-67-0
J. L. HAMMONDA. J. GROSSF. GIROUDC. TRAVELETR. BORSALIS. COSNIER: "Solubilized enzymatic fuel cell (SEFC) for quasi-continuous opération exploiting carbohydrate block copolymer glyconanoparticle mediators", ACS ENERGY LETT., vol. 4, 2019, pages 142 - 148
P. CINQUINC. GONDRANF. GIROUDS. MAZABRARDA. PELLISSIERF. BOUCHERJ.-P. ALCARAZK. GORGYF. LENOUVELS. MATHÉ: "A Glucose BioFuel Cell Implanted in Rats", PLOS ONE, vol. 5, 2010, pages e10476
ZEHUA LIZEPENG KANGBO WUZHIGUANG ZHU: "A MXene-based slurry bioanode with potential application in implantable enzymatic biofuel cells", J. POWER SOURCES, vol. 506, 2021, pages 230206, XP086717413, DOI: 10.1016/j.jpowsour.2021.230206

Also Published As

Publication number Publication date
CN118216020A (zh) 2024-06-18
WO2023062155A3 (fr) 2023-06-01
FR3128320A1 (fr) 2023-04-21
EP4416776A2 (fr) 2024-08-21

Similar Documents

Publication Publication Date Title
Gross et al. A high power buckypaper biofuel cell: exploiting 1, 10-phenanthroline-5, 6-dione with FAD-dependent dehydrogenase for catalytically-powerful glucose oxidation
EP3804013B1 (fr) Biopile a reservoir de combustible
EP2965335B1 (fr) Supercondensateur electrochimique biocompatible
EP4111518A1 (fr) Biopile bi-cathodique à combustible
WO2010041511A1 (fr) Pile à combustible et électrode à enzyme
CA2943392C (fr) Reacteur implantable biocompatible
Hammond et al. Solubilized Enzymatic Fuel Cell (SEFC) for quasi-continuous operation exploiting carbohydrate block copolymer glyconanoparticle mediators
FR3103325A1 (fr) Dispositif de production d’énergie comprenant un réservoir
Huang et al. Recent advances in enzymatic biofuel cells enabled by innovative materials and techniques
US9257709B2 (en) Paper-based fuel cell
WO2023062155A2 (fr) Électrode enzymatique à réservoir intégré
EP3728700A1 (fr) Dispositif implantable de production d'hydrogene
WO2018185417A1 (fr) Pile à biocombustible
JP5481822B2 (ja) 酵素電極及び該酵素電極を用いた燃料電池
Konwar et al. Flexible biofuel cells: an overview
Gross et al. 1. Buckypapers for bioelectrochemical applications
Chen Bioelectrocatalytic oxidation and reduction of different substrates using carbon nanostructured electrodes

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22803196

Country of ref document: EP

Kind code of ref document: A2

WWE Wipo information: entry into national phase

Ref document number: 18700814

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 202280074622.1

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 2022803196

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2022803196

Country of ref document: EP

Effective date: 20240514