WO2023061444A1 - 微机电结构及其mems麦克风 - Google Patents

微机电结构及其mems麦克风 Download PDF

Info

Publication number
WO2023061444A1
WO2023061444A1 PCT/CN2022/125097 CN2022125097W WO2023061444A1 WO 2023061444 A1 WO2023061444 A1 WO 2023061444A1 CN 2022125097 W CN2022125097 W CN 2022125097W WO 2023061444 A1 WO2023061444 A1 WO 2023061444A1
Authority
WO
WIPO (PCT)
Prior art keywords
back plate
diaphragm
hole
substrate
micro
Prior art date
Application number
PCT/CN2022/125097
Other languages
English (en)
French (fr)
Inventor
荣根兰
孙恺
孟燕子
胡维
Original Assignee
苏州敏芯微电子技术股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 苏州敏芯微电子技术股份有限公司 filed Critical 苏州敏芯微电子技术股份有限公司
Publication of WO2023061444A1 publication Critical patent/WO2023061444A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R19/00Electrostatic transducers
    • H04R19/04Microphones

Definitions

  • the present application relates to the technical field of semiconductor device manufacturing, and in particular to a micro-electromechanical structure and a MEMS microphone thereof.
  • the vent hole on the diaphragm is usually changed to a vent groove structure, which usually leads to failure of ESD reliability, because during the ESD discharge process, Air ionization produces blasting, and the airflow is mainly concentrated in the middle area of the diaphragm through the sound hole, and there is no vent channel in the central area to vent the air in time, resulting in the failure of the diaphragm membrane.
  • the purpose of this application is to provide a micro-electromechanical structure and its MEMS microphone.
  • a microelectromechanical structure including:
  • the diaphragm is located on one side of the back plate, and forms a variable capacitance with the back plate, and the diaphragm includes a plurality of first through holes and air leakage structures respectively corresponding to the first through holes;
  • the diaphragm further includes one or more second through holes penetrating through the diaphragm.
  • each connecting column also includes: a plurality of connecting columns, one end of each connecting column is fixedly connected to the back plate, and the other end is connected to the air leakage structure, wherein the air leakage structure is separated from the diaphragm, The gap between the air leakage structure and the first through hole is used to assist gas circulation.
  • the connecting column includes a supporting column and a side part arranged around the supporting column, wherein each supporting column is correspondingly arranged with one of the air leakage structures, and one end of each supporting column is connected to the back of the supporting column.
  • the other end of the pole plate is fixedly connected to the gas release structure, and one end of each side part corresponds to the side part where the gas release structure is fixed and the other end is fixedly connected to the back plate;
  • the inner surface of the side portion is in contact with the corresponding outer surface of the support column.
  • the connecting column includes a bottom fixedly connected to the back plate and a side part surrounding the bottom and connected to the bottom, the bottom and the side part forming a cavity.
  • a sound inlet hole corresponding to the first through hole is provided on the back plate;
  • the projection of the first through hole is partially overlapped with the projection of the sound hole.
  • the first through hole is polygonal, and on a plane perpendicular to the thickness direction of the diaphragm, the projection of a part of the polygonal ring-shaped edge region overlaps with the projection of the back plate, and A portion of the projection overlaps with the projection of the acoustic hole.
  • the shape of the air leakage structure includes a cylinder or a polygonal prism, wherein the shape of the air leakage structure matches the shape of the first through hole.
  • the air release structure includes at least one groove and/or at least one air release groove, the at least one groove extends radially inward from the cylindrical surface of the air release structure, and the at least one groove runs through the top surface and the bottom surface of the deflated structure;
  • the at least one air release groove runs through the top surface and the bottom surface of the air release structure.
  • a first support structure located between the diaphragm and the substrate
  • the second supporting structure is located between the back plate and the diaphragm.
  • a first support structure located between the back plate and the substrate
  • the second support structure is located between the diaphragm and the back plate.
  • the back plate includes: a first back plate and a second back plate, and the diaphragm is located between the first back plate and the second back plate.
  • a third support structure located between the substrate and the second back plate
  • a first support structure located between the diaphragm and the second back plate;
  • the second support structure is located between the first back plate and the diaphragm.
  • first back plate and the second back plate respectively include sound inlet holes.
  • the diaphragm includes: a first diaphragm and a second diaphragm, and the back plate is located between the first diaphragm and the second diaphragm.
  • a third support structure located between the substrate and the first diaphragm
  • a first support structure located between the first diaphragm and the back plate;
  • the second support structure is located between the back plate and the second diaphragm.
  • the second through holes are distributed in a circular area with the center of the diaphragm as the center and half the distance from the center to the edge as the radius.
  • the shapes of the first through hole and the second through hole are circular or polygonal.
  • the first through hole is located in the peripheral area of the diaphragm.
  • a MEMS microphone including the above-mentioned micro-electromechanical structure.
  • the microelectromechanical structure and MEMS microphone provided by the present application can leak a large amount of air through the second through hole, and further improve the air leakage of the diaphragm and the back plate under the condition of high external sound pressure through the first through hole and the air leak structure. Capability, so as to achieve the purpose of improving the ESD reliability of micro-electromechanical structures, reducing costs and being used in mass production.
  • the micro-electromechanical structure and its MEMS microphone provided by this application can leak a large amount of air through the second through hole, and further improve the external sound pressure of the diaphragm and the back plate through the first through hole and the air leak structure.
  • the venting ability under certain circumstances, so as to achieve the purpose of improving the ESD reliability of the micro-electromechanical structure, reducing the cost and being used in mass production.
  • Fig. 1a is a partial perspective view of a micro-electromechanical structure having a connecting post in the first form in Embodiment 1 of the present application;
  • Figure 1b is an enlarged schematic view of the connecting column in Figure 1a;
  • Fig. 1c is a partial perspective view of a micro-electromechanical structure with a connecting column in a second mode in Embodiment 1 of the present application;
  • Figure 1d is an enlarged schematic view of the connecting column in Figure 1c;
  • Fig. 1e is a partial perspective view of the micro-electromechanical structure with the connecting column in the third mode in Embodiment 1 of the present application;
  • Figure 1f is an enlarged schematic view of the connecting column in Figure 1e;
  • Fig. 1g is a bottom view of the microelectromechanical structure with the first through hole of the polygonal structure in Embodiment 1 of the present application without the substrate and the first support structure;
  • Fig. 1h is a schematic diagram of a leaking structure composed of a cylinder and one or more grooves in Embodiment 1 of the present application;
  • Fig. 1i is a schematic diagram of an air release structure composed of a cylinder and one or more air release grooves in Embodiment 1 of the present application;
  • Fig. 2 is a partial perspective view of the MEMS structure in Embodiment 2 of the present application.
  • Fig. 3 is a partial perspective view of the MEMS structure in Embodiment 3 of the present application.
  • Fig. 4 is a partial perspective view of the MEMS structure in Embodiment 4 of the present application.
  • Fig. 5 is a partial perspective view of the MEMS structure in Embodiment 5 of the present application.
  • Fig. 6 is a partial perspective view of the MEMS structure in Embodiment 6 of the present application.
  • Fig. 7 shows a structural diagram of a MEMS microphone according to the present application.
  • FIG. 1a shows a partial perspective view of the MEMS structure of Embodiment 1 of the present application
  • FIG. 1b shows an enlarged schematic diagram of a partial structure of the connecting column 140 in the first manner in FIG. 1b.
  • the MEMS structure 100 includes: a diaphragm 110 , a first back plate 120 , an outgassing structure 130 and a connection post 140 .
  • the diaphragm 110 has a plurality of air leakage channels 1101 , and the diaphragm 110 and the first back plate 120 form a variable capacitance.
  • the air leakage channel 1101 includes a second through hole located at the center of the diaphragm 110 and a first through hole located around the diaphragm 110, the number of the second through hole and the first through hole are both one or more, and the air leakage structure 130 The number is one or more, and each air leakage structure 130 is respectively located in a corresponding first through hole to be separated from the diaphragm 110 , wherein the gap between the air leakage structure 130 and the first through hole is used for gas circulation.
  • the second through hole includes one or more, distributed in a circular area with the center of the diaphragm 110 as the center and half the distance from the center to the edge as the radius, the cross section of the second through hole
  • the shape is, for example, a circle or a polygon.
  • the radius of the circle is 0 to 50um, and the side length of the polygon is 0 to 50um.
  • a plurality of second through holes are distributed in a ring shape.
  • the first through holes include one or more, distributed in the peripheral area of the diaphragm 110 . Since a plurality of first through holes are formed on the diaphragm 110 , in order to ensure the reliability of the diaphragm 110 , the thickness of the diaphragm 110 is, for example, 0.8 to 2 um.
  • the number of connecting columns 140 is one or more, one end of each connecting column 140 is fixedly connected to the first back plate 120, and the other end is fixedly connected to the corresponding gas leaking structure 130, preferably, the center of each gas leaking structure 130 is connected to the Corresponding connecting posts 140 are connected.
  • the material of the vibrating membrane 110 includes polysilicon
  • the material of the connecting pillar 140 includes silicon nitride or silicon oxide
  • the thickness of the outgassing structure 130 includes 0.3 to 3 ⁇ m.
  • the embodiment of the present application is not limited thereto, and those skilled in the art can make other settings for the materials of the diaphragm 110 and the connecting post 140 and the thickness of the air-dissipating structure 130 as required.
  • the MEMS structure further includes: two pads 160 , a substrate 101 , a first support structure 102 and a second support structure 103 .
  • Each pad 160 is located on the first back plate 120 , one of the pads is electrically connected to the first back plate 120 , and the other is electrically connected to the diaphragm 110 .
  • the first support structure 102 is the part left on the substrate 101 after the release of the first sacrificial layer.
  • the first support structure 102 is located on the peripheral edge of the substrate 101.
  • the diaphragm 110 above 102 is supported on the substrate 101 .
  • a microphone back cavity 1011 is formed between the substrate 101 and the diaphragm 110 .
  • the second support structure 103 is the part left on the diaphragm 110 after the release of the second sacrificial layer, the position of the second support structure 103 corresponds to the first support structure 102, and the second support structure 103 is located on the peripheral edge of the diaphragm 110
  • the first back plate 120 located above the second support structure 103 is supported on the substrate 101 and the diaphragm 110 by means of fully fixed support on the peripheral edge, so that the first back plate 120 is not connected to the second support structure 103
  • There is a preset distance between the contacted portion and the vibrating membrane 110 There is a preset distance between the contacted portion and the vibrating membrane 110 .
  • the material of the first support structure 102 and the second support structure 103 includes silicon oxide.
  • the embodiment of the present application is not limited thereto, and those skilled in the art can adjust the materials of the first support structure 102 and the second support structure 103 as well as the support between the substrate 101, diaphragm 110, and first back plate 120 as needed. Fixed way to make other settings.
  • the first back plate 120 includes a first lower back plate 121 and a first upper back plate 122, the first lower back plate 121 is fixed on the second support structure 103, and connected to the connecting column 140 connected, the first upper back plate 122 is located on the first lower back plate 121 .
  • the size of the first upper back plate 122 is smaller than that of the first lower back plate 121 , and the first upper back plate 122 corresponds to the part of the first back plate 120 not in contact with the second supporting structure 103 .
  • the material of the first lower back plate 121 is a non-conductive material, for example, silicon nitride
  • the material of the first upper back plate 122 is a conductive material, for example, polysilicon.
  • the first back plate 120 has a plurality of first sound inlet holes 1201, and each first sound inlet hole 1201 passes through the first lower back plate 121 and the first upper back plate 122, for allowing the sound signal to pass through multiple
  • the sound inlet hole 1201 reaches the diaphragm 110 .
  • the embodiment of the present application is not limited thereto, and those skilled in the art may make other settings for the structure and material of the first back plate 120 as required.
  • the connecting column 140 may have various forms. Exemplarily, as shown in FIG. 1 a and FIG. 1 b , the connecting column 140 is a solid columnar structure.
  • FIG. 1 c and FIG. 1 d it is a partial perspective view of the MEMS structure with the connection post 140 of the second structure and a partial enlarged view of the connection post 140 .
  • the connection column 140 also includes a support column 141, wherein each support column 141 is arranged correspondingly to a deflation structure 130, one end of each support column 141 is fixedly connected to the first back plate 120, and the other end is fixedly connected to the deflation structure 130;
  • the connecting column 140 also includes a side part 142 that is fixedly connected to the air release structure 130 corresponding to one end and fixedly connected to the first back plate 120 at the other end.
  • the side part 142 is arranged around the supporting column 141.
  • the outer surface of the post 141 is conformed. Specifically, one end of the support column 141 is fixedly connected to the first lower back plate 121 , and one end of the side portion 142 is fixedly connected to the first lower back plate 121 .
  • the side portion 142 is covered on the outer surface of the support column 141, and the side portion 142 is supported by the support column 141, thereby improving the strength of the connection column 140 and reducing the failure probability of the connection column 140.
  • the side part 142 , the vent structure 130 and the diaphragm 110 are made of the same material, and the support column 141 is made of the same material as the second support structure 103 .
  • FIG. 1e and Figure 1f it is a partial perspective view of the MEMS structure of the connecting post 140 with the second structure and a partial enlarged view of the connecting post 140.
  • the connecting post 140 also includes a fixed connection with the first back plate 120.
  • the bottom 143 and the side 142 disposed around the bottom 143 and connected to the bottom 143 , the bottom 143 and the side 142 form a cavity.
  • connection column 140 further includes a bottom 143 fixedly connected to the first back plate 120 and a side 142 arranged around the bottom 143 and connected to the bottom 143.
  • the bottom 143 and the side 142 form a cavity to reduce The weight of the connecting column 140 is reduced, thereby reducing the pressure on the first back plate 120, and the other side of the cavity is a non-closed structure, so that the air pressure of the gas introduced into the microphone assembly is relatively large, and the cavity can share a part Air pressure, to avoid damage to the diaphragm 110 caused by a large impact force on the diaphragm 110 .
  • the bottom 143 and the side 142 are formed with the same material and preparation as the diaphragm 110 . Specifically, one end of the bottom 143 is fixedly connected to the first lower back plate 121 .
  • the first back plate 120 is provided with a sound inlet hole 1201 corresponding to the first through hole;
  • the projection of the first through hole partially overlaps with the projection of the corresponding sound inlet hole 1201 .
  • the first through hole is a polygonal structure.
  • the projection of a part of the edge region of the polygonal structure overlaps with the projection of the first back plate 120, and the projection of the other part overlaps with the projection of the first back plate 120.
  • the projections of the sound inlet holes 1201 overlap.
  • the diaphragm 110 when the diaphragm 110 is deformed under loud sound pressure, the diaphragm 110 is deformed, and part of the edge of the first through hole of the diaphragm 110 covers the first back plate 120, and the other part covers the sound inlet.
  • the diaphragm 110 On the hole 1201, compared with the circular regular boundary, when the air pressure is large and the deformation zone 1012 of the diaphragm 110 is greatly deformed, the diaphragm 110 does not completely cover the sound inlet hole 1201, and can still pass through the sound inlet hole 1201 to balance the sound pressure of the front and rear chambers to reduce product failure rate.
  • FIG. 1g it is a bottom view of a microelectromechanical structure with a first through hole having a polygonal structure.
  • the six sides of the first through hole are all arc-shaped, and the plane perpendicular to the thickness direction of the diaphragm 110 Above, part of the projection of the arc overlaps the projection of the sound inlet hole 1201 , and the other part overlaps the projection of the first back plate 120 .
  • the MEMS structure further includes a plurality of protrusion structures (not shown in FIG. 1 a ), located on the side of the first back plate 120 facing the diaphragm 110, for preventing the diaphragm 110 from contacting with the diaphragm 110.
  • the first back plate 120 is adhered.
  • the air release structure 130 includes an air release structure that is a cylinder, a polygonal column, or a fan-shaped cylinder. In some preferred embodiments, the shape of the air release structure 130 matches the first through hole. The cylindrical leaking structure 130 will be described in detail.
  • the outgassing structure 130 is a complete cylinder with a radius ranging from 0 to 100 ⁇ m.
  • the air leakage structure 130 is placed in the first through hole of the diaphragm 110. As shown in FIG. 0 to 5 ⁇ m is included, and the perimeter of the annular leak channel is in the range of 10 to 100 ⁇ m.
  • the outgassing structure 130 is a polygonal prism
  • the side length of the polygonal prism ranges from 0 to 100 ⁇ m.
  • the angle of the fan-shaped cylinder is 0 to 360 degrees.
  • the embodiment of the present application is not limited thereto, and those skilled in the art may make other settings for parameters such as the size of the air leakage structure 130 and the width of the gap as required.
  • the gap between the air release structure 130 and the first through hole can also be a polygonal long groove or an arc-shaped long groove, the groove width is, for example, 0 to 5 um, and the circumference is 10 to 100 um.
  • the leaking structure 130 may also consist of a cylinder and one or more grooves 1301, as shown in FIG. 1h.
  • the groove 1301 extends radially inward from the cylindrical surface of the air release structure 130 , and the groove 1301 runs through the top surface and the bottom surface of the air release structure 130 .
  • the number of the grooves 1301 is multiple, and the openings of the multiple grooves 1301 are evenly distributed along the outer periphery of the air leakage structure 130, and the air leakage structure 130 is placed in the first through hole of the diaphragm 110
  • the gap between the air release structure 130 and the first through hole is in the shape of a ring, and the gap communicates with the groove 1301 to serve as a gas release channel, and the width of the groove 1301 can be consistent with the width of the gap.
  • the air release structure 130 can also be composed of a cylinder and one or more air release grooves 1302. As shown in FIG. bottom surface.
  • the air release structure 130 may also be composed of a cylinder, one or more grooves 1301 and one or more air release grooves 1302 .
  • the micro-electro-mechanical structure 100 includes: a diaphragm 110, a first back plate 120, an outgassing structure 130, a connecting column 140, a pad 160, a substrate 101, a first A support structure 102 , a second support structure 103 , and a protruding structure 106 .
  • the difference between the MEMS structure 100 of this embodiment and the first embodiment is that in the MEMS structure 100 of the second embodiment, the first support structure 102 is located between the back plate 120 and the substrate 101, and the second support structure 103 is located between the vibration Between the film 110 and the back plate 120 , a microphone back cavity 1011 is formed between the substrate 101 and the back plate 120 .
  • the first support structure 102 is the part left on the substrate 101 after the release of the first sacrificial layer.
  • the first support structure 102 is located on the peripheral edge of the substrate 101.
  • the back plate 120 above 102 is supported on the substrate 101 .
  • the second support structure 103 is the part left on the back plate 120 after the release of the second sacrificial layer, the position of the second support structure 103 corresponds to the first support structure 102, and the second support structure 103 is located on the On the peripheral edge, the diaphragm 110 located above the second support structure 103 is supported on the substrate 101 and the back plate 120 in a manner of fully fixing the periphery, so that the first back plate 120 is not connected to the second support structure 103 There is a preset distance between the contacted portion and the vibrating membrane 110 .
  • the material of the first support structure 102 and the second support structure 103 includes silicon oxide.
  • the embodiment of the present application is not limited thereto, and those skilled in the art can adjust the materials of the first support structure 102 and the second support structure 103 as well as the support between the substrate 101, diaphragm 110, and first back plate 120 as needed. Fixed way to make other settings.
  • the first back plate 120 includes a first lower back plate 121 and a first upper back plate 122, the first upper back plate 122 is fixed on the second supporting structure 103, and connected to the connecting column 140 connected, the first upper back plate 122 is located on the first lower back plate 121 .
  • the size of the first upper back plate 122 is smaller than that of the first lower back plate 121 , and the first upper back plate 122 corresponds to the part of the first back plate 120 not in contact with the second supporting structure 103 .
  • the material of the first lower back plate 121 includes silicon nitride
  • the material of the first upper back plate 122 includes polysilicon.
  • the first back plate 120 has a plurality of first sound inlet holes 1201, and each first sound inlet hole 1201 passes through the first lower back plate 121 and the first upper back plate 122, for allowing the sound signal to pass through multiple
  • the sound inlet hole 1201 reaches the diaphragm 110 .
  • the embodiment of the present application is not limited thereto, and those skilled in the art may make other settings for the structure and material of the first back plate 120 as required.
  • the connecting column 140 also includes a supporting column 141, one end of the supporting column 141 is fixedly connected to the first upper back plate 122, and one end of the side portion 142 is fixedly connected to the first upper back plate 122, each
  • the support column 141 is set correspondingly to a deflated structure 130, the other end of the support column 141 is fixedly connected to the first lower back plate 121, the other end of the side part 142 is fixedly connected to the first lower back plate 121, and the side part 142 surrounds the support
  • the column 141 is provided, and the inner surface of the side part 142 is attached to the outer surface of the corresponding support column 141 .
  • the side portion 142 is covered on the outer surface of the support column 141 , and the side portion 142 is supported by the support column 141 , thereby improving the strength of the connection column 140 and reducing the failure probability of the connection column 140 .
  • the side part 142 , the vent structure 130 and the diaphragm 110 are made of the same material, and the support column 141 is made of the same material as the second support structure 103 .
  • the connecting column 140 further includes a bottom 143 fixedly connected to the back plate 120 and a side portion 142 arranged around the bottom 143 and connected to the bottom 143 , one end of the bottom 143 is connected to the first upper back plate 122 Fixed connection, the bottom 143 and the side 142 form a cavity, the connecting column 140 also includes a bottom 143 fixedly connected with the back plate 120 and a side 142 arranged around the bottom 143 and connected to the bottom 143, the bottom 143 and the side 142 A cavity is formed to reduce the weight of the connecting column 140, thereby reducing the pressure on the back plate 120.
  • the other side of the cavity is a non-closed structure, so that the air pressure of the gas introduced into the microphone assembly is relatively large, and the cavity Part of the air pressure can be shared to avoid damage to the diaphragm 110 caused by a large impact force on the diaphragm 110 .
  • the bottom 143 and the side 142 are formed with the same material and preparation as the diaphragm 110 .
  • the connecting column 140 can also be a solid columnar structure as shown in FIG. 1a and FIG. 1b , and other technical details can refer to the MEMS structure in Embodiment 1, which will not be repeated here.
  • FIG. 3 shows a partial perspective view of the micro-electro-mechanical structure of the third embodiment of the present application.
  • the micro-electro-mechanical structure 100 includes: a diaphragm 110, a first back plate 120, a vent structure 130, a connecting column 140, a pad 160, and a substrate 101.
  • the first support structure 102 and the second support structure 103 preferably, further include a second back plate 220 , a third support structure 105 , and a protruding structure 106 .
  • the difference between the MEMS structure 100 of this embodiment and Embodiment 1 is that the MEMS structure 100 of Embodiment 2 is a double-back plate structure, and the similarities will not be repeated here, only the differences will be described.
  • the first support structure 102 and the substrate 101 further includes: a second back plate 220 and a third support structure 105 .
  • the third support structure 105 is the part left on the substrate 101 after the release of the third sacrificial layer.
  • the third support structure 105 is located on the peripheral edge of the substrate 101.
  • the second back plate 220 above 105 is supported on the substrate 101 .
  • the first support structure 102 is the part left on the second back plate 220 after the release of the first sacrificial layer.
  • the first support structure 102 is located on the peripheral edge of the second back plate 220, and the peripheral edge is fully fixed.
  • the diaphragm 110 located above the first support structure 102 is supported on the second back plate 220 , so that the portion of the second back plate 220 not in contact with the first support structure 102 is separated from the diaphragm 110 by a preset distance.
  • the second support structure 103 is the part left on the diaphragm 110 after the release of the second sacrificial layer, the position of the second support structure 103 corresponds to the first support structure 102, and the second support structure 103 is located on the peripheral edge of the diaphragm 110 Above, the first back plate 120 located above the second support structure 103 is supported on the diaphragm 110 by means of fully fixed support on the peripheral edge, so that the part of the first back plate 120 that is not in contact with the second support structure 103 and The vibrating membranes 110 are separated by a preset distance.
  • the second back pole plate 220 includes a second lower back pole plate 221 and a second upper back pole plate 222, the second lower back pole plate 221 is fixed on the third support structure 105, and the second upper back pole plate 222 is located on the second lower back pole plate 222. on the back plate 221.
  • the size of the second upper back plate 222 is equal to that of the second lower back plate 221 .
  • the material of the second lower back plate 221 includes silicon nitride
  • the material of the second upper back plate 222 includes polysilicon.
  • the second back plate 220 has a plurality of second sound inlet holes 2201, and each second sound inlet hole 2201 passes through the second lower back plate 221 and the second upper back plate 222, for allowing sound signals to pass through multiple
  • the second sound inlet hole 2201 reaches the diaphragm 110 .
  • the embodiment of the present application is not limited thereto, and those skilled in the art may make other settings for the structure and material of the first back plate 120 as required.
  • the diaphragm 110 is located between the first back plate 120 and the second back plate 220, and in the movable area of the diaphragm 110, a plurality of leak channels 1101 are formed, wherein the leak channels 1101 include The second through hole at the center of the diaphragm 110 and the first through hole located at the periphery of the diaphragm 110, the second through hole is used for quick deflation, and the first through hole is used for auxiliary deflation.
  • the first through hole there are The outgassing structure 130 , the outgassing structure 130 is connected to the first back plate 120 through the connection post 140 .
  • FIG. 4 shows a partial perspective view of a MEMS structure according to Embodiment 4 of the present application.
  • the outgassing structure 130 is connected to the second back plate 220 through the connection post 140 .
  • the MEMS structure 100 includes a first back plate 120 and a second back plate 220 , and the diaphragm 110 is located between the first back plate 120 and the second back plate 220 .
  • a leaking channel 1101 is formed, and the leaking channel 1101 includes a second through hole located in the central area of the vibrating membrane 110, and a first through hole located in the peripheral area of the vibrating membrane, the second through hole is used for quick deflation, the second A through hole and the air release structure 130 located in the first through hole are used to assist air release.
  • the outgassing structure 130 is connected to the second back plate 220 through the connecting column 140 .
  • FIG. 5 shows a partial perspective view of the MEMS structure according to Embodiment 5 of the present application.
  • the outgassing structure 130 is connected to the first back plate 120 and/or the second back plate 220 through the connection post 140 .
  • the MEMS structure 100 is in a plurality of first through holes around the vibrating membrane 110 , and the air leakage structure 130 is connected to the first back plate 120 or the second back plate 220 through the connection post 140 .
  • the shapes of the plurality of leaking structures 130 and the connecting columns 140 are not limited to cylinders or polygonal prisms, and those skilled in the art can make other configurations as required.
  • FIG. 6 shows a partial perspective view of the MEMS structure according to Embodiment 5 of the present application.
  • the MEMS structure 100 of this embodiment includes two diaphragms 110, namely the first diaphragm 111 and the second diaphragm 112, wherein the third support The structure 105 is located between the first diaphragm 111 and the substrate 101, and the first support structure 102 is located between the first diaphragm 111 and the first back pole.
  • the second support structure 103 is located between the first back plate 120 and the second diaphragm 112
  • the third support structure 105 is the part left on the substrate 101 after the third sacrificial layer is released, and the third The supporting structure 105 is located on the peripheral edge of the substrate 101 , and the first diaphragm 111 located above the third supporting structure 105 is supported on the substrate 101 in a manner of fully fixing the peripheral edge.
  • the first support structure 102 is the part left on the first diaphragm 111 after the release of the first sacrificial layer.
  • the first support structure 102 is located on the peripheral edge of the first diaphragm 111.
  • the first back plate 120 above the first support structure 102 is supported on the first diaphragm 111, so that the part of the first diaphragm 111 that is not in contact with the first support structure 102 and the first back plate 120 are at a preset distance distance.
  • the second support structure 103 is the part left on the first back plate 120 after the release of the second sacrificial layer. The position of the second support structure 103 corresponds to that of the first support structure 102.
  • the second diaphragm 112 located above the second support structure 103 is supported on the first back pole plate 120 in a manner of fully fixing the periphery edge, so that the first back pole plate 120 is not connected to the first back pole plate 120.
  • the first back plate 120 includes a first lower back plate 121 and a first upper back plate 122, the first lower back plate 121 is fixed on the second support structure 103, and connected to the connecting column 140 connected, the first upper back plate 122 is located on the first lower back plate 121 .
  • the size of the first upper back plate 122 is smaller than that of the first lower back plate 121 , and the first upper back plate 122 corresponds to the part of the first back plate 120 not in contact with the second supporting structure 103 .
  • the material of the first lower back plate 121 is a non-conductive material, for example, silicon nitride
  • the material of the first upper back plate 122 is a conductive material, for example, polysilicon.
  • the first back plate 120 has a plurality of first sound inlet holes 1201, and each first sound inlet hole 1201 passes through the first lower back plate 121 and the first upper back plate 122, for allowing the sound signal to pass through multiple
  • the sound inlet hole 1201 reaches the diaphragm 110 .
  • the embodiment of the present application is not limited thereto, and those skilled in the art may make other settings for the structure and material of the first back plate 120 as required.
  • the first back plate 120 is located between the first diaphragm 111 and the second diaphragm 112, and a plurality of air leakage channels are formed in the movable areas of the first diaphragm 111 and the second diaphragm 112 1101, wherein the vent channel 1101 includes a second through hole located at the center of the first diaphragm 111 and the second diaphragm 112 and a first through hole located at the periphery of the first diaphragm 111 and the second diaphragm 112, the second through hole For quick deflation, the first through hole is used for auxiliary deflation.
  • first through hole of the first diaphragm 111 and the second diaphragm 112 are respectively provided with a first deflation structure 131 and a second deflation structure 132, wherein , one end of the first air leakage structure 131 is connected to the first lower back plate 121 of the first back plate 120 via the connection post 140 , and one end of the second air release structure 132 is connected to the first lower back plate 120 of the first back plate 120 via the connection post 140 .
  • the upper back plate 122 is connected.
  • FIG. 7 shows a schematic structural diagram of a MEMS microphone according to an embodiment of the present application.
  • the MEMS microphone includes: a micro-electromechanical structure 100 , a chip structure 230 , a substrate 240 , and a housing 250 .
  • the substrate 240 and the shell 250 are used as the packaging structure of the device.
  • the MEMS structure 100 of the embodiment of the present application can be selected from the four embodiments listed above, the chip structure 230 is, for example, an ASIC chip, and the substrate 240 is, for example, a lead frame or a PCB circuit board.
  • the microelectromechanical structure 100 and the chip structure 230 are electrically connected through the pad 160, the substrate 240 and the housing 250 of the package structure are used to form an accommodating cavity of the package structure, and the microelectromechanical structure 100 and the chip structure 230 are located in the accommodating cavity.
  • the micro-electro-mechanical structure 100 in this embodiment can be any one of the above-mentioned embodiments 1 to 6.
  • the second through hole is used as a fast gas release channel, so that during the ESD discharge process, the atmospheric pressure can leak a large amount of gas through the second through hole, thereby achieving the purpose of improving ESD reliability.
  • the second through-holes are distributed in a circular area with the center of the diaphragm as the center and half the distance from the center to the edge as the radius, so that during the ESD discharge process, even if air ionization causes explosion, the airflow mainly passes through the The sound hole is concentrated in the middle area of the diaphragm, but due to the existence of the second through hole, the airflow can quickly flow through the second through hole, reducing the risk of diaphragm wear and improving the yield and reliability of the device .
  • a first through hole is formed on the periphery of the second through hole, and a vent structure separated from the diaphragm is provided in the first through hole, so that there is a gap between the vent structure and the first through hole, and the gap is used as an auxiliary Leakage channel, when the external sound pressure is low, the gas acting on the diaphragm can be assisted to be discharged through the gap.
  • the gap becomes larger, which speeds up the discharge speed of gas through the gap, so that the air leakage of the MEMS structure can adapt to different external sound pressures, thereby improving the ESD reliability while ensuring the low-frequency response characteristics and sensitivity of the MEMS structure.
  • the gap between the gas leaking structure and the first through hole is distributed more uniformly, so that the gas is The dispersion is more uniform when passing through the gap, which further improves the problem of ESD reliability.
  • vent structure By setting grooves and/or vent grooves in the vent structure, not only the length of the vent channel is increased, but also the rigidity of the vent structure is reduced, so that the vent structure is more likely to deform under the condition of high external sound pressure .
  • the edges of the deflated structure are all free ends and the force is uniform, which is more conducive to The air release structure expands the air release channel through deformation, thereby further improving the problem of ESD reliability.
  • the micro-electromechanical structure and MEMS microphone provided by the application can leak a large amount of air through the second through hole, and further improve the air leaking ability of the diaphragm and the back plate under the condition of high external sound pressure through the air leaking structure, thereby improving the micro-electromechanical structure. ESD reliability of electromechanical structures, cost reduction for mass production purposes.

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Acoustics & Sound (AREA)
  • Signal Processing (AREA)
  • Electrostatic, Electromagnetic, Magneto- Strictive, And Variable-Resistance Transducers (AREA)
  • Micromachines (AREA)

Abstract

公开一种微机电结构及其MEMS麦克风,微机电结构包括背极板;振膜,位于所述背极板的一侧,与所述背极板构成可变电容,所述振膜包括多个第一通孔以及分别与所述第一通孔对应的泄气结构,其中,所述振膜还包括一个或多个贯穿所述振膜的第二通孔。本申请提供的微机电结构及其微机电结构,通过在振膜中心区域形成第二通孔,以及在第二通孔的四周形成第一通孔和泄气结构,这样在ESD放电过程中,大气压可以通过第二通孔快速泄气,而四周的第一通孔和泄气结构也能够帮助泄气,从而达到提升ESD可靠性的目的。

Description

微机电结构及其MEMS麦克风 技术领域
本申请涉及半导体器件制造技术领域,尤其涉及一种微机电结构及其MEMS麦克风。
背景技术
在传统麦克风结构中,为了提升产品的ESD可靠性,通常会从封装角度上做改善,比如在PCB上通过埋容、埋阻改变ESD过程中放电通路,这会在一定程度上增加很多成本,另外,会从MEMS角度上做改善,在振膜上设置多孔泄气结构,例如申请号为202021770513.8的实用新型专利中,公开了在振膜上的通孔中设置与振膜分离的可动结构用于泄气,但是这样会导致产品低频频响较差;为了改善频响性能,通常是将振膜上的泄气孔改为泄气槽结构,这通常会导致ESD可靠性失效,因为ESD放电过程中,空气电离产生爆破,气流主要是通过音孔集中做用在振膜中间区域,而中心区域没有泄气通道及时泄气,从而导致振膜膜破失效。
本申请提供了一种微机电结构及其MEMS麦克风,在申请号为202021770513.8的实用新型专利的基础上对其进行了改进。
技术问题
本申请的目的在于提供一种微机电结构及其MEMS麦克风,通过在振膜中心区域形成第二通孔,这样在ESD放电过程中,大气压可以通过第二通孔快速泄气,从而达到提升ESD可靠性的目的。
技术解决方案
第一方面,提供一种微机电结构,包括:
背极板;
振膜,位于所述背极板的一侧,与所述背极板构成可变电容,所述振膜包括多个第一通孔以及分别与所述第一通孔对应的泄气结构;
其中,所述振膜还包括一个或多个贯穿所述振膜的第二通孔。
进一步地,还包括:多个连接柱,每个所述连接柱的一端与所述背极板固 定连接,另一端与所述泄气结构连接,其中,所述泄气结构与所述振膜分离,所述泄气结构与所述第一通孔之间的间隙用于辅助气体流通。
进一步地,所述连接柱包括支撑柱以及环绕所述支撑柱设置的侧部,其中,每一所述支撑柱与一个所述泄气结构对应设置,每一所述支撑柱的一端与所述背极板固定连接另一端与所述泄气结构固定连接,每一所述侧部的一端对应的所述泄气结构固定且另一端与所述背极板固定连接的侧部;
所述侧部的内表面与对应的所述支撑柱的外表面贴合。
进一步地,所述连接柱包括与所述背极板固定连接的底部以及环绕所述底部设置的且与所述底部连接的侧部,所述底部与所述侧部形成空腔。
进一步地,所述背极板上设置有与所述第一通孔对应的进声孔;
在垂直于所述振膜的厚度方向的平面上,所述第一通孔的投影对应的所述声孔的投影部分重叠。
进一步地,所述第一通孔为多边形,在垂直于所述振膜的厚度方向的平面上,所述多边形环状的边缘区域的其中一部分的投影与所述背极板的投影重叠,另一部分的投影与所述声孔的投影重叠。
进一步地,所述泄气结构的形状包括圆柱或多棱柱,其中,所述泄气结构的形状与所述第一通孔的形状相匹配。
进一步地,所述泄气结构上包括至少一个凹槽和/或至少一个泄气槽,所述至少一个凹槽自所述泄气结构的柱面沿径向向内延伸,并且所述至少一个凹槽贯穿所述泄气结构的顶面与底面;
所述至少一个泄气槽贯穿所述泄气结构的顶面与底面。
进一步地,还包括:
衬底,具有贯穿所述衬底的背腔;
第一支撑结构,位于所述振膜与所述衬底之间;
第二支撑结构,位于所述背极板与所述振膜之间。
进一步地,还包括:
衬底,具有贯穿所述衬底的背腔;
第一支撑结构,位于所述背极板与所述衬底之间;
第二支撑结构,位于所述振膜与所述背极板之间。
进一步地,所述背极板包括:第一背极板和第二背极板,所述振膜位于所述第一背极板和所述第二背极板之间。
进一步地,还包括:
衬底,具有贯穿所述衬底的背腔;
第三支撑结构,位于所述衬底与所述第二背极板之间;
第一支撑结构,位于所述振膜与所述第二背极板之间;
第二支撑结构,位于所述第一背极板与所述振膜之间。
进一步地,所述第一背极板和所述第二背极板分别包括进声孔。
进一步地,所述振膜包括:第一振膜和第二振膜,所述背极板位于所述第一振膜以及所述第二振膜之间。
进一步地,还包括:
衬底,具有贯穿所述衬底的背腔;
第三支撑结构,位于所述衬底与所述第一振膜之间;
第一支撑结构,位于所述第一振膜与所述背极板之间;
第二支撑结构,位于所述背极板与所述第二振膜之间。
进一步地,所述第二通孔分布在以所述振膜的中心为圆心,以中心至边缘二分之一距离为半径的圆区域内。
进一步地,所述第一通孔和所述第二通孔的形状为圆形或多边形。
进一步地,所述第一通孔位于所述振膜的周边区域。
第二方面,提供一种MEMS麦克风,包括如前所述的微机电结构。
因此,本申请提供的微机电结构及其MEMS麦克风可以通过第二通孔大量泄气,并进一步通过第一通孔和泄气结构提高振膜和背极板在外界声压较高的情况下的泄气能力,从而达到提高微机电结构的ESD可靠性、降低成本从而用于大量生产的目的。
有益效果
相较于现有技术,本申请提供的微机电结构及其MEMS麦克风可以通过第二通孔大量泄气,并进一步通过第一通孔和泄气结构提高振膜和背极板在外界声压较高的情况下的泄气能力,从而达到提高微机电结构的ESD可靠性、降低成本从而用于大量生产的目的。
附图说明
图1a是本申请实施例一中具有第一种方式的连接柱的微机电结构的部分立体图;
图1b是图1a中的连接柱的放大示意图;
图1c是本申请实施例一中具有第二种方式的连接柱的微机电结构的部分立体图;
图1d是图1c中的连接柱的放大示意图;
图1e是本申请实施例一中具有第三种方式的连接柱的微机电结构的部分立体图;
图1f是图1e中的连接柱的放大示意图;
图1g是本申请实施例一中具有多边形结构的第一通孔的微机电结构去除掉衬底以及第一支撑结构的仰视图;
图1h是本申请实施例一中由一个圆柱体与一个或多个凹槽组成的泄气结构的示意图;
图1i是本申请实施例一中由一个圆柱体与一个或多个泄气槽组成的泄气结构的示意图;
图2是本申请实施例二中的微机电结构的部分立体图;
图3是本申请实施例三中的微机电结构的部分立体图;
图4是本申请实施例四中的微机电结构的部分立体图;
图5是本申请实施例五中的微机电结构的部分立体图;
图6是本申请实施例六中的微机电结构的部分立体图;
图7示出了根据本申请的MEMS麦克风的结构图。
本发明的实施方式
本申请提供一种MEMS麦克风及其微机电结构,为使本申请的目的、技术方案及效果更加清楚、明确,以下参照附图并举实施例对本申请进一步详细说明。应当理解,此处所描述的具体实施例仅用以解释本申请,并不用于限定本申请。
实施例一
图1a示出了本申请实施例一的微机电结构的部分立体图,图1b示出了图1b中第一种方式的连接柱140的局部结构的放大示意图。
如图1a和图1b所示,本申请实施例一的微机电结构100包括:振膜110、第一背极板120、泄气结构130以及连接柱140。振膜110具有多个泄气通道1101,振膜110与第一背极板120构成可变电容。其中,泄气通道1101包括位于振膜110中心的第二通孔以及位于振膜110四周的第一通孔,第二通孔和第一通孔的数量均为一个或多个,泄气结构130的数量为一个或多个,每个泄气结构130分别位于相应的第一通孔中以与振膜110分离,其中,泄气结构130与第一通孔之间的间隙用于气体流通。
在该实施例中,第二通孔包括一个或多个,分布在以振膜110的中心为圆心,以中心至边缘二分之一距离为半径的圆形区域内,第二通孔的截面形状例如为圆形或多边形。圆形的半径为0至50um,多边形的边长为0至50um。多个第二通孔呈环形分布。第一通孔包括一个或多个,分布在振膜110的周边区域。由于振膜110上形成有多个第一通孔,为了保证振膜110的可靠性,振膜110的厚度例如为0.8至2um。
连接柱140的数量为一个或多个,每个连接柱140的一端与第一背极板120固定连接,另一端与相应的泄气结构130固定连接,优选地,每个泄气结构130的中心与相应的连接柱140连接。其中,振膜110的材料包括多晶硅,连接柱140的材料包括氮化硅或氧化硅,泄气结构130的厚度范围包括0.3至3μm。然而本申请实施例并不限于此,本领域技术人员可以根据需要对振膜110与连接柱140的材料以及泄气结构130的厚度进行其他设置。
在本实施例中,微机电结构还包括:两个焊盘160、衬底101、第一支撑结构102以及第二支撑结构103。每个焊盘160位于第一背极板120上,其中一个焊盘与第一背极板120电连接,另一个与振膜110电连接。第一支撑结构102为第一牺牲层释放之后在衬底101上留下来的部分,第一支撑结构102位于衬底101的周边缘上,采用周边缘全固支的方式将位于第一支撑结构102上方的振膜110支撑在衬底101上。
其中,衬底101与振膜110之间形成麦克风背腔1011。第二支撑结构103为第二牺牲层释放之后在振膜110上留下来的部分,第二支撑结构103的位置 与第一支撑结构102相对应,第二支撑结构103位于振膜110的周边缘上,采用周边缘全固支的方式将位于第二支撑结构103上方的第一背极板120支撑在衬底101和振膜110上,使得第一背极板120未与第二支撑结构103接触的部分和振膜110之间间隔预设距离。其中,第一支撑结构102与第二支撑结构103的材料包括氧化硅。然而本申请实施例并不限于此,本领域技术人员可以根据需要对第一支撑结构102与第二支撑结构103的材料以及衬底101、振膜110、第一背极板120之间的支撑固定方式进行其他设置。
在本实施例中,第一背极板120包括第一下背极板121与第一上背极板122,第一下背极板121固定在第二支撑结构103上,并与连接柱140相连,第一上背极板122位于第一下背极板121上。其中,第一上背极板122的尺寸小于第一下背极板121,且第一上背极板122对应于第一背极板120未与第二支撑结构103接触的部分。其中,第一下背极板121的材料为非导电材料,示例性地,可以为氮化硅,第一上背极板122的材料为导电材料,示例性地,可以为多晶硅。第一背极板120具有多个第一进声孔1201,每个第一进声孔1201穿过第一下背极板121与第一上背极板122,用于让声音信号通过多个进声孔1201到达振膜110上。然而本申请实施例并不限于此,本领域技术人员可以根据需要对第一背极板120的结构与材料进行其他设置。
在本实施例中,连接柱140的形式可以有多种,示例性地,如图1a和图1b所示,连接柱140为实心的柱状结构。
如图1c和图1d所示,为具有第二种结构的连接柱140的微机电结构的部分立体图以及连接柱140的局部放大图。
连接柱140还包括支撑柱141,其中,每一支撑柱141与一个泄气结构130对应设置,每一支撑柱141的一端与第一背极板120固定连接,另一端与泄气结构130固定连接;连接柱140还包括与一端对应的泄气结构130固定连接且另一端与第一背极板120固定连接的侧部142,侧部142环绕支撑柱141设置,侧部142的内表面与对应的支撑柱141的外表面贴合。具体地,支撑柱141的一端与第一下背极板121固定连接,侧部142的一端与第一下背极板121固定连接。
在本实施例中,侧部142包覆在支撑柱141的外表面,通过支撑柱141实 现了对侧部142的支撑,从而提高了连接柱140的强度,降低了连接柱140失效的概率。进一步地,侧部142、泄气结构130与振膜110采用相同的材料制备形成,支撑柱141与第二支撑结构103采用相同的材料制备而成。
如图1e和图1f所示,为具有第二种结构的连接柱140的微机电结构的部分立体图以及连接柱140的局部放大图,连接柱140还包括与第一背极板120固定连接的底部143以及环绕底部143设置的且与底部143连接的侧部142,底部143与侧部142形成空腔。
在本实施例中,连接柱140还包括与第一背极板120固定连接的底部143以及环绕底部143设置的且与底部143连接的侧部142,底部143与侧部142形成空腔,减轻了连接柱140的重量,从而减少了对第一背极板120的压力,空腔的另一侧为非封闭结构,从而在传入麦克风组件的气体的气压较大了,空腔能够分担一部分气压,避免对振膜110造成较大的冲击力从而导致的振膜110的损坏。进一步地,底部143和侧部142与振膜110采用相同的材料以及制备形成。具体地,底部143的一端与第一下背极板121固定连接。
进一步地,第一背极板120上设置有与第一通孔对应的进声孔1201;
在垂直于振膜110的厚度方向的平面上,第一通孔的投影与对应的进声孔1201的投影部分重叠。
进一步地,第一通孔为多边形结构,在垂直于振膜110的厚度方向的平面上,多边形结构的边缘区域的其中一部分的投影与第一背极板120的投影重叠,另一部分的投影与进声孔1201的投影重叠。
在本实施例中,当振膜110在大声压下变形时,振膜110发生形变,振膜110的第一通孔的边缘一部分覆盖在第一背极板120上,另一部分覆盖在进声孔1201上,这样相比于圆形规则的边界,当气压较大使得振膜110的变形区1012出现较大形变时,振膜110没有完全覆盖住进声孔1201,仍可通过进声孔1201来平衡前后腔的声压,降低产品失效率。
示例性地,如图1g所示为具有多边形结构的第一通孔的微机电结构的仰视图,第一通孔的6条边均为弧形,在垂直于振膜110的厚度方向的平面上,弧形的投影一部分与进声孔1201的投影重叠,另一部分与第一背极板120的投影重叠。
在一些优选的实施例中,微机电结构包括还包括多个凸起结构(图1a中未示出),位于第一背极板120朝向振膜110的一侧,用于防止振膜110与第一背极板120粘连。泄气结构130包括呈圆柱、多棱柱或扇形柱体的泄气结构,在一些优选的实施例中,泄气结构130的形状与第一通孔相匹配,下面将根据图1a、图1h、图1i对呈圆柱的泄气结构130进行详细说明。
泄气结构130为一个完整的圆柱体,圆柱的半径范围包括0至100μm。该泄气结构130置于振膜110的第一通孔中,如图1b所示,泄气结构130与第一通孔之间的间隙呈圆环状,该间隙可以作为泄气通道,间隙宽度的范围包括0至5μm,圆环状的泄气通道周长范围包括10至100μm。在一些其他实施例中,例如在泄气结构130为呈多棱柱的情况下,多棱柱的边长范围包括0至100μm。在一些其他实施例中,例如在泄气结构130为扇形柱体的情况下,扇形柱体的角度为0至360度。
然而本申请实施例并不限于此,本领域技术人员可以根据需要对泄气结构130的尺寸以及间隙的宽度等参数进行其他设置。
泄气结构130与第一通孔之间的间隙还可以为多边形长槽或圆弧形长槽,槽宽例如为0至5um,周长为10至100um。
在其他实施例中,泄气结构130还可以由一个圆柱体与一个或多个凹槽1301组成,如图1h所示。凹槽1301自泄气结构130的柱面沿径向向内延伸,并且凹槽1301贯穿泄气结构130的顶面与底面。
在一些优选的实施例中,凹槽1301的数量为多个,多个凹槽1301的开口沿泄气结构130的外周边沿均匀分布,将该泄气结构130置于振膜110的第一通孔中,泄气结构130与第一通孔之间的间隙呈圆环状,该间隙与凹槽1301连通可以共同作为泄气通道,凹槽1301的宽度可以与间隙宽度一致。
在其他实施例中,泄气结构130还可以由一个圆柱体与一个或多个泄气槽1302组成,如图1i所示,泄气槽1302例如围绕泄气结构130的中心并贯穿泄气结构130的顶面与底面。或者泄气结构130还可以由一个圆柱体分别与一个或多个凹槽1301以及一个或多个泄气槽1302组成。
实施例二
图2示出了本申请的微机电结构的部分剖面图,微机电结构100包括:振 膜110、第一背极板120、泄气结构130、连接柱140、焊盘160、衬底101、第一支撑结构102以及第二支撑结构103,以及凸起结构106。本实施例的微机电结构100与实施例一的不同之处在于实施例二的微机电结构100中第一支撑结构102位于背极板120与衬底101之间,第二支撑结构103位于振膜110与背极板120之间,其中,衬底101与背极板120之间形成麦克风背腔1011。第一支撑结构102为第一牺牲层释放之后在衬底101上留下来的部分,第一支撑结构102位于衬底101的周边缘上,采用周边缘全固支的方式将位于第一支撑结构102上方的背极板120支撑在衬底101上。第二支撑结构103为第二牺牲层释放之后在背极板120上留下来的部分,第二支撑结构103的位置与第一支撑结构102相对应,第二支撑结构103位于背极板120的周边缘上,采用周边缘全固支的方式将位于第二支撑结构103上方的振膜110支撑在衬底101和背极板120上,使得第一背极板120未与第二支撑结构103接触的部分和振膜110之间间隔预设距离。其中,第一支撑结构102与第二支撑结构103的材料包括氧化硅。然而本申请实施例并不限于此,本领域技术人员可以根据需要对第一支撑结构102与第二支撑结构103的材料以及衬底101、振膜110、第一背极板120之间的支撑固定方式进行其他设置。
在本实施例中,第一背极板120包括第一下背极板121以及第一上背极板122,第一上背极板122固定在第二支撑结构103上,并与连接柱140相连,第一上背极板122位于第一下背极板121上。其中,第一上背极板122的尺寸小于第一下背极板121,且第一上背极板122对应于第一背极板120未与第二支撑结构103接触的部分。其中,第一下背极板121的材料包括氮化硅,第一上背极板122的材料包括多晶硅。第一背极板120具有多个第一进声孔1201,每个第一进声孔1201穿过第一下背极板121与第一上背极板122,用于让声音信号通过多个进声孔1201到达振膜110上。然而本申请实施例并不限于此,本领域技术人员可以根据需要对第一背极板120的结构与材料进行其他设置。
参照图1c,对于连接柱140还包括支撑柱141的情况,支撑柱141的一端与第一上背极板122固定连接,侧部142的一端与第一上背极板122固定连接,每一支撑柱141与一个泄气结构130对应设置,支撑柱141的另一端与第一下背极板121固定连接,侧部142的另一端与第一下背极板121固定连接, 侧部142环绕支撑柱141设置,侧部142的内表面与对应的支撑柱141的外表面贴合。
在本实施例中,侧部142包覆在支撑柱141的外表面,通过支撑柱141实现了对侧部142的支撑,从而提高了连接柱140的强度,降低了连接柱140失效的概率。进一步地,侧部142、泄气结构130与振膜110采用相同的材料制备形成,支撑柱141与第二支撑结构103采用相同的材料制备而成。
参照图1e,对于连接柱140还包括与背极板120固定连接的底部143以及环绕底部143设置的且与底部143连接的侧部142的情况,底部143的一端与第一上背极板122固定连接,底部143与侧部142形成空腔,连接柱140还包括与背极板120固定连接的底部143以及环绕底部143设置的且与底部143连接的侧部142,底部143与侧部142形成空腔,减轻了连接柱140的重量,从而减少了对背极板120的压力,空腔的另一侧为非封闭结构,从而在传入麦克风组件的气体的气压较大了,空腔能够分担一部分气压,避免对振膜110造成较大的冲击力从而导致的振膜110的损坏。进一步地,底部143和侧部142与振膜110采用相同的材料以及制备形成。
在本实施例中,连接柱140也可以为如图1a和图1b所示的实心的柱状结构,并且其他技术细节可以参照实施例一中的微机电结构,在此不再赘述。
实施例三
图3示出了本申请实施例三的微机电结构的部分立体图,微机电结构100包括:振膜110、第一背极板120、泄气结构130、连接柱140、焊盘160、衬底101、第一支撑结构102以及第二支撑结构103,优选地,还包括第二背极板220,第三支撑结构105,以及凸起结构106。本实施例的微机电结构100与实施例一的不同之处在于实施例二的微机电结构100为双背极板结构,此处不再赘述相同之处,仅对不同之处进行描述。
本实施例的微机电结构100中,在第一支撑结构102与衬底101之间,还包括:第二背极板220和第三支撑结构105。
第三支撑结构105为第三牺牲层释放之后在衬底101上留下来的部分,第三支撑结构105位于衬底101的周边缘上,采用周边缘全固支的方式将位于第三支撑结构105上方的第二背极板220支撑在衬底101上。第一支撑结构102 为第一牺牲层释放之后在第二背极板220上留下来的部分,第一支撑结构102位于第二背极板220的周边缘上,采用周边缘全固支的方式将位于第一支撑结构102上方的振膜110支撑在第二背极板220上,使得第二背极板220未与第一支撑结构102接触的部分和振膜110之间间隔预设距离。第二支撑结构103为第二牺牲层释放之后在振膜110上留下来的部分,第二支撑结构103的位置与第一支撑结构102相对应,第二支撑结构103位于振膜110的周边缘上,采用周边缘全固支的方式将位于第二支撑结构103上方的第一背极板120支撑在振膜110上,使得第一背极板120未与第二支撑结构103接触的部分和振膜110之间间隔预设距离。
第二背极板220包括第二下背极板221和第二上背极板222,第二下背极板221固定在第三支撑结构105上,第二上背极板222位于第二下背极板221上。其中,第二上背极板222的尺寸等于第二下背极板221。其中,第二下背极板221的材料包括氮化硅,第二上背极板222的材料包括多晶硅。第二背极板220具有多个第二进声孔2201,每个第二进声孔2201穿过第二下背极板221与第二上背极板222,用于让声音信号通过多个第二进声孔2201到达振膜110上。然而本申请实施例并不限于此,本领域技术人员可以根据需要对第一背极板120的结构与材料进行其他设置。
在该实施例中,振膜110位于第一背极板120与第二背极板220之间,在振膜110的可动区域,形成有多个泄气通道1101,其中,泄气通道1101包括位于振膜110中心的第二通孔和位于振膜110周边的第一通孔,第二通孔用于快速泄气,第一通孔用于辅助泄气,此外,在第一通孔中,还具有泄气结构130,泄气结构130经由连接柱140与第一背极板120连接。
实施例四
图4示出了根据本申请实施例四的微机电结构的部分立体图。与实施例三的微机电结构相比,实施例四的微机电结构中泄气结构130通过连接柱140与第二背极板220连接。
参考图4,在本实施例中,微机电结构100包括第一背极板120和第二背极板220,振膜110位于第一背极板120和第二背极板220支间。在振膜110上,形成有泄气通道1101,泄气通道1101包括位于振膜110中心区域的第二 通孔,以及位于振膜周边区域的第一通孔,第二通孔用于快速泄气,第一通孔以及位于第一通孔中的泄气结构130用于辅助泄气。其中,泄气结构130通过连接柱140与第二背极板220连接。
实施例五
图5示出了根据本申请实施例五的微机电结构的部分立体图。与实施例三和实施例四的微机电结构相比,本实施例的微机电结构中泄气结构130通过连接柱140与第一背极板120和/或第二背极板220连接。
在本实施例中,微机电结构100在振膜110周边的多个第一通孔中,泄气结构130通过连接柱140与第一背极板120或第二背极板220连接。多个泄气结构130与连接柱140的形状不限于圆柱形或多边棱柱形,本领域的技术人员可以根据需要进行其他设置。
实施例6
图6示出了根据本申请实施例五的微机电结构的部分立体图。与实施例一和实施例二的微机电结构相比,本实施的微机电结构100中,包括两个振膜110,分别为第一振膜111以及第二振膜112,其中,第三支撑结构105位于第一振膜111与衬底101之间,第一支撑结构102位于第一振膜111与第一背极
板120之间,第二支撑结构103位于第一背极板120与第二振膜112之间,第三支撑结构105为第三牺牲层释放之后在衬底101上留下来的部分,第三支撑结构105位于衬底101的周边缘上,采用周边缘全固支的方式将位于第三支撑结构105上方的第一振膜111支撑在衬底101上。第一支撑结构102为第一牺牲层释放之后在第一振膜111上留下来的部分,第一支撑结构102位于第一振膜111的周边缘上,采用周边缘全固支的方式将位于第一支撑结构102上方的第一背极板120支撑在第一振膜111上,使得第一振膜111未与第一支撑结构102接触的部分和第一背极板120之间间隔预设距离。第二支撑结构103为第二牺牲层释放之后在第一背极板120上留下来的部分,第二支撑结构103的位置与第一支撑结构102相对应,第二支撑结构103位于第一背极板120的周边缘上,采用周边缘全固支的方式将位于第二支撑结构103上方的第二振膜112支撑在第一背极板120上,使得第一背极板120未与第二支撑结构103接触的部分和第二振膜112之间间隔预设距离。
在本实施例中,第一背极板120包括第一下背极板121与第一上背极板122,第一下背极板121固定在第二支撑结构103上,并与连接柱140相连,第一上背极板122位于第一下背极板121上。其中,第一上背极板122的尺寸小于第一下背极板121,且第一上背极板122对应于第一背极板120未与第二支撑结构103接触的部分。其中,第一下背极板121的材料为非导电材料,示例性地,可以为氮化硅,第一上背极板122的材料为导电材料,示例性地,可以为多晶硅。第一背极板120具有多个第一进声孔1201,每个第一进声孔1201穿过第一下背极板121与第一上背极板122,用于让声音信号通过多个进声孔1201到达振膜110上。然而本申请实施例并不限于此,本领域技术人员可以根据需要对第一背极板120的结构与材料进行其他设置。
在该实施例中,第一背极板120位于第一振膜111与第二振膜112之间,在第一振膜111以及第二振膜112的可动区域,形成有多个泄气通道1101,其中,泄气通道1101包括位于第一振膜111以及第二振膜112中心的第二通孔和位于第一振膜111以及第二振膜112周边的第一通孔,第二通孔用于快速泄气,第一通孔用于辅助泄气,此外,在第一振膜111以及第二振膜112的第一通孔中分别设置有第一泄气结构131,第二泄气结构132,其中,第一泄气结构131的一端经由连接柱140与第一背极板120的第一下背极板121连接,第二泄气结构132的一端经由连接柱140与第一背极板120的第一上背极板122连接。
实施例七
图7示出了本申请实施例的MEMS麦克风的结构示意图。
如图7所示,该MEMS麦克风包括:微机电结构100、芯片结构230、基板240、外壳250。其中,基板240与外壳250作为该器件的封装结构。本申请施例的微机电结构100可以在上述所列举的四个实施例中进行选择,芯片结构230例如为ASIC芯片,基板240例如为引线框架或PCB电路板。
在本实施例中,微机电结构100与芯片结构230通过焊盘160电连接,封装结构的基板240与外壳250用于形成封装结构的容置腔,微机电结构100与芯片结构230位于容置腔内。
本实施例中的微机电结构100可以为以上实施例一至实施例六中的任一 微机电结构,根据本申请实施例提供的微机电结构及其MEMS麦克风,通过在振膜上形成第二通孔,将第二通孔作为快速泄气通道,从而使得在ESD放电过程中,大气压可以通过第二通孔大量泄气,从而达到提升ESD可靠性的目的。
进一步地,第二通孔分布在以振膜的中心为圆心,以中心至边缘二分之一距离为半径的圆区域内,这样在ESD放电过程中,即使空气电离产生爆破,气流主要通过进声孔集中作用在振膜中间区域,但由于第二通孔的存在,使得气流可以快速的经由第二通孔流过,降低了振膜磨破的风险,提高了器件的良率和可靠性。
进一步地,在第二通孔的周边形成第一通孔,并在第一通孔中设置与振膜分离的泄气结构,使得泄气结构与第一通孔之间存在间隙,并将间隙作为辅助泄气通道,在外界声压较低的情况下,作用于振膜的气体可经过间隙辅助排出,在外界声压较高的情况下,泄气结构发生形变,使得泄气结构与第一通孔之间的间隙变大,加快了气体经间隙排出的速度,从而使得微机电结构的泄气量适应于不同外界声压,进而在保障微机电结构的低频响应特性与灵敏度的同时,提高了ESD可靠性。
进一步的,通过将泄气结构设置成圆柱体或者多棱柱体,并将泄气结构的形状与第一通孔匹配,使得泄气结构与第一通孔之间的间隙分布得更加均匀,从而使气体在经过间隙时分散得更加均匀,进一步改善了ESD可靠性的问题。
进一步的,通过在泄气结构中设置凹槽和/或泄气槽,不但增加了泄气通道的长度,而且降低了泄气结构的刚性,使得泄气结构在外界声压较高的情况下,更容易发生形变。
进一步的,通过将泄气结构的中心与连接柱连接,经由连接柱与第一背极板和/或第二背极板连接,使得泄气结构的边缘均为自由端且受力均匀,更加有利于泄气结构通过形变扩大泄气通道,从而进一步改善了ESD可靠性的问题。
因此,本申请提供的微机电结构及其MEMS麦克风可以通过第二通孔大量泄气,并进一步通过泄气结构提高振膜和背极板在外界声压较高的情况下的泄气能力,从而提高微机电结构的ESD可靠性、降低成本从而用于大量生产 的目的。
在以上的描述中,对于各层的构图、蚀刻等技术细节并没有做出详细的说明。但是本领域技术人员应当理解,可以通过各种技术手段,来形成所需形状的层、区域等。另外,为了形成同一结构,本领域技术人员还可以设计出与以上描述的方法并不完全相同的方法。另外,尽管在以上分别描述了各实施例,但是这并不意味着各个实施例中的措施不能有利地结合使用。
以上对本申请的实施例进行了描述。但是,这些实施例仅仅是为了说明的目的,而并非为了限制本申请的范围。本申请的范围由所附权利要求及其等价物限定。不脱离本申请的范围,本领域技术人员可以做出多种替代和修改,这些替代和修改都应落在本申请的范围之内。

Claims (19)

  1. 一种微机电结构,其特征在于,包括:
    背极板;
    振膜,位于所述背极板的一侧,与所述背极板构成可变电容,所述振膜包括多个第一通孔以及分别与所述第一通孔对应的泄气结构;
    其中,所述振膜还包括一个或多个贯穿所述振膜的第二通孔。
  2. 根据权利要求1所述的微机电结构,其特征在于,还包括:多个连接柱,每个所述连接柱的一端与所述背极板固定连接,另一端与所述泄气结构连接,其中,所述泄气结构与所述振膜分离,所述泄气结构与所述第一通孔之间的间隙用于辅助气体流通。
  3. 根据权利要求2所述的微机电结构,其特征在于,所述连接柱包括支撑柱以及环绕所述支撑柱设置的侧部,其中,每一所述支撑柱与一个所述泄气结构对应设置,每一所述支撑柱的一端与所述背极板固定连接,另一端与所述泄气结构固定连接,每一所述侧部的一端对应的所述泄气结构固定且另一端与所述背极板固定连接的侧部;
    所述侧部的内表面与对应的所述支撑柱的外表面贴合。
  4. 如权利要求2所述的微机电结构,其特征在于,所述连接柱包括与所述背极板固定连接的底部以及环绕所述底部设置的且与所述底部连接的侧部,所述底部与所述侧部形成空腔。
  5. 如权利要求1所述的微机电结构,其特征在于,所述背极板上设置有与所述第一通孔对应的进声孔;
    在垂直于所述振膜的厚度方向的平面上,所述第一通孔的投影对应的所述声孔的投影部分重叠。
  6. 如权利要求5所述的微机电结构,其特征在于,所述第一通孔为多边形,在垂直于所述振膜的厚度方向的平面上,所述多边形环状的边缘区域的其中一部分的投影与所述背极板的投影重叠,另一部分的投影与所述声孔的投影重叠。
  7. 根据权利要求1所述的微机电结构,其特征在于,所述泄气结构的形状包括圆柱或多棱柱,其中,所述泄气结构的形状与所述第一通孔的形状相匹 配。
  8. 根据权利要求7所述的微机电结构,其特征在于,所述泄气结构上包括至少一个凹槽和/或至少一个泄气槽,所述至少一个凹槽自所述泄气结构的柱面沿径向向内延伸,并且所述至少一个凹槽贯穿所述泄气结构的顶面与底面;
    所述至少一个泄气槽贯穿所述泄气结构的顶面与底面。
  9. 根据权利要求1所述的微机电结构,其特征在于,还包括:
    衬底,具有贯穿所述衬底的背腔;
    第一支撑结构,位于所述振膜与所述衬底之间;
    第二支撑结构,位于所述背极板与所述振膜之间。
  10. 根据权利要求1所述的微机电结构,其特征在于,还包括:
    衬底,具有贯穿所述衬底的背腔;
    第一支撑结构,位于所述背极板与所述衬底之间;
    第二支撑结构,位于所述振膜与所述背极板之间。
  11. 根据权利要求1所述的微机电结构,其特征在于,所述背极板包括:第一背极板和第二背极板,所述振膜位于所述第一背极板和所述第二背极板之间。
  12. 根据权利要求11所述的微机电结构,其特征在于,还包括:
    衬底,具有贯穿所述衬底的背腔;
    第三支撑结构,位于所述衬底与所述第二背极板之间;
    第一支撑结构,位于所述振膜与所述第二背极板之间;
    第二支撑结构,位于所述第一背极板与所述振膜之间。
  13. 根据权利要求11所述的微机电结构,其特征在于,所述第一背极板和所述第二背极板分别包括进声孔。
  14. 如权利要求1所述的微机电结构,其特征在于,所述振膜包括:第一振膜和第二振膜,所述背极板位于所述第一振膜以及所述第二振膜之间。
  15. 如权利要求14所述的微机电结构,其特征在于,还包括:
    衬底,具有贯穿所述衬底的背腔;
    第三支撑结构,位于所述衬底与所述第一振膜之间;
    第一支撑结构,位于所述第一振膜与所述背极板之间;
    第二支撑结构,位于所述背极板与所述第二振膜之间。
  16. 根据权利要求1所述的微机电结构,其特征在于,所述第二通孔分布在以所述振膜的中心为圆心,以中心至边缘二分之一距离为半径的圆区域内。
  17. 根据权利要求1所述的微机电结构,其特征在于,所述第一通孔和所述第二通孔的形状为圆形或多边形。
  18. 根据权利要求17所述的微机电结构,其特征在于,所述第一通孔位于所述振膜的周边区域。
  19. 一种MEMS麦克风,其特征在于,包括如权利要求1至18任一项所述的微机电结构。
PCT/CN2022/125097 2021-10-15 2022-10-13 微机电结构及其mems麦克风 WO2023061444A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202122493606.1 2021-10-15
CN202122493606.1U CN215935099U (zh) 2021-10-15 2021-10-15 微机电结构及其mems麦克风

Publications (1)

Publication Number Publication Date
WO2023061444A1 true WO2023061444A1 (zh) 2023-04-20

Family

ID=80405048

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/125097 WO2023061444A1 (zh) 2021-10-15 2022-10-13 微机电结构及其mems麦克风

Country Status (2)

Country Link
CN (1) CN215935099U (zh)
WO (1) WO2023061444A1 (zh)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN215935099U (zh) * 2021-10-15 2022-03-01 苏州敏芯微电子技术股份有限公司 微机电结构及其mems麦克风
CN114520947B (zh) * 2022-04-20 2022-07-08 苏州敏芯微电子技术股份有限公司 一种麦克风组件及电子设备
CN115334431B (zh) * 2022-10-13 2022-12-20 苏州敏芯微电子技术股份有限公司 麦克风组件、封装结构及电子设备
CN115334434B (zh) * 2022-10-13 2022-12-20 苏州敏芯微电子技术股份有限公司 麦克风组件及电子设备
CN115334389B (zh) * 2022-10-13 2022-12-30 苏州敏芯微电子技术股份有限公司 一种麦克风组件及电子设备

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006352785A (ja) * 2005-06-20 2006-12-28 Azden Corp 仕込みマイクロホン
CN107835477A (zh) * 2017-11-24 2018-03-23 歌尔股份有限公司 一种mems麦克风
CN108584863A (zh) * 2018-04-20 2018-09-28 杭州士兰集成电路有限公司 Mems器件及其制造方法
CN212435925U (zh) * 2020-08-21 2021-01-29 苏州敏芯微电子技术股份有限公司 Mems麦克风及其微机电结构
CN213754954U (zh) * 2020-12-22 2021-07-20 苏州敏芯微电子技术股份有限公司 Mems麦克风、微机电结构
CN213991017U (zh) * 2020-12-22 2021-08-17 苏州敏芯微电子技术股份有限公司 Mems麦克风、微机电结构
CN215935099U (zh) * 2021-10-15 2022-03-01 苏州敏芯微电子技术股份有限公司 微机电结构及其mems麦克风

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006352785A (ja) * 2005-06-20 2006-12-28 Azden Corp 仕込みマイクロホン
CN107835477A (zh) * 2017-11-24 2018-03-23 歌尔股份有限公司 一种mems麦克风
CN108584863A (zh) * 2018-04-20 2018-09-28 杭州士兰集成电路有限公司 Mems器件及其制造方法
CN212435925U (zh) * 2020-08-21 2021-01-29 苏州敏芯微电子技术股份有限公司 Mems麦克风及其微机电结构
CN213754954U (zh) * 2020-12-22 2021-07-20 苏州敏芯微电子技术股份有限公司 Mems麦克风、微机电结构
CN213991017U (zh) * 2020-12-22 2021-08-17 苏州敏芯微电子技术股份有限公司 Mems麦克风、微机电结构
CN215935099U (zh) * 2021-10-15 2022-03-01 苏州敏芯微电子技术股份有限公司 微机电结构及其mems麦克风

Also Published As

Publication number Publication date
CN215935099U (zh) 2022-03-01

Similar Documents

Publication Publication Date Title
WO2023061444A1 (zh) 微机电结构及其mems麦克风
US11553282B2 (en) Differential condenser microphone with double vibrating membranes
US20080123876A1 (en) Electrostatic pressure transducer and manufacturing method therefor
US10433068B2 (en) MEMS acoustic transducer with combfingered electrodes and corresponding manufacturing process
KR20180036662A (ko) Mems 트랜스듀서를 위한 시스템 및 방법
CN215453273U (zh) 一种麦克风组件及电子设备
CN212435925U (zh) Mems麦克风及其微机电结构
KR20120061422A (ko) 멤스 음향 센서
CN216752032U (zh) 一种振膜、微机电结构、麦克风以及终端
TW201808782A (zh) Mems裝置及製程
US10623852B2 (en) MEMS devices and processes
WO2007085017A1 (en) Support apparatus for condenser microphone diaphragm
CN216752031U (zh) 振膜及mems器件
CN114598979B (zh) 一种双振膜mems麦克风及其制造方法
JP2012028900A (ja) コンデンサマイクロホン
CN114513730A (zh) 麦克风组件及电子设备
CN214851819U (zh) 微机电结构、麦克风和终端
CN216852338U (zh) 一种mems麦克风
KR101893486B1 (ko) 강성 백플레이트 구조의 마이크로폰 및 그 마이크로폰 제조 방법
CN214281654U (zh) Mems麦克风及其微机电结构
TWI754969B (zh) 微機電麥克風結構與其製造方法
CN217335832U (zh) 一种微机电结构、麦克风以及终端
US11649161B2 (en) Diaphragm assembly with non-uniform pillar distribution
CN114079844A (zh) Mems麦克风及其微机电结构
CN217335889U (zh) 微机电结构、麦克风和终端

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22880380

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2022880380

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2022880380

Country of ref document: EP

Effective date: 20240515