WO2023061398A1 - 一种阻燃聚碳酸酯合金组合物及其制备方法和应用 - Google Patents

一种阻燃聚碳酸酯合金组合物及其制备方法和应用 Download PDF

Info

Publication number
WO2023061398A1
WO2023061398A1 PCT/CN2022/124808 CN2022124808W WO2023061398A1 WO 2023061398 A1 WO2023061398 A1 WO 2023061398A1 CN 2022124808 W CN2022124808 W CN 2022124808W WO 2023061398 A1 WO2023061398 A1 WO 2023061398A1
Authority
WO
WIPO (PCT)
Prior art keywords
flame
alloy composition
polycarbonate alloy
retardant polycarbonate
retardant
Prior art date
Application number
PCT/CN2022/124808
Other languages
English (en)
French (fr)
Inventor
梁惠强
岑茵
陈平绪
黄险波
艾军伟
张志铭
彭明乐
杨志军
丁超
Original Assignee
金发科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 金发科技股份有限公司 filed Critical 金发科技股份有限公司
Publication of WO2023061398A1 publication Critical patent/WO2023061398A1/zh

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L69/00Compositions of polycarbonates; Compositions of derivatives of polycarbonates
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2201/00Properties
    • C08L2201/02Flame or fire retardant/resistant
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2201/00Properties
    • C08L2201/08Stabilised against heat, light or radiation or oxydation

Definitions

  • the invention belongs to the field of engineering plastics, and in particular relates to a flame-retardant polycarbonate alloy composition and a preparation method and application thereof.
  • Halogen-free flame-retardant polycarbonate ABS alloy composition is a very versatile and widely used material.
  • the polycarbonate composition should have moisture-heat aging stability and improved The thermal deformation temperature, as well as to ensure that the material has sufficient mechanical properties and deformation resistance during working and service.
  • phosphate flame retardants although they have good flame retardant properties and can endow polycarbonate compositions with high flame retardant grades, their molecular structure characteristics are easy to hydrolyze themselves under the combined action of heat and water. , which leads to the hydrolysis/alcoholysis degradation of PC resin. At the same time, the introduction of flame retardant will reduce the heat resistance temperature of PC, which will further lead to the severe degradation of PC resin, which will cause the instantaneous failure of the material, which greatly limits its outdoor use. Industry, new energy industry or traditional industry's material demand upgrades and high-end applications that require materials such as thin-walled materials and service safety.
  • salt inclusions such as CN102292393A
  • CN102292393A salt inclusions
  • the object of the present invention is to overcome the defects or deficiencies in the prior art and provide a flame-retardant polycarbonate alloy composition.
  • the flame-retardant polycarbonate alloy composition provided by the present invention has excellent damp-heat aging stability on the basis of higher flame-retardant grade, better mechanical properties and higher thermal deformation temperature. After that, it still has a high flame retardant grade and good mechanical properties, and has a wide range of application prospects.
  • Another object of the present invention is to provide a preparation method of the above-mentioned flame-retardant polycarbonate alloy composition.
  • Another object of the present invention is to provide the application of the above-mentioned flame-retardant polycarbonate alloy composition in the preparation of outdoor products and new energy products.
  • a flame-retardant polycarbonate alloy composition comprising the following components in parts by weight:
  • the hydrophobic agent is polyphenylsiloxane, and the silicon content in the polyphenylsiloxane is not less than 10%;
  • the residual metal content in the flame retardant polycarbonate alloy composition is not higher than 285ppm.
  • the selection of the toughening agent can endow the flame-retardant polycarbonate alloy composition with better mechanical properties.
  • Phosphate flame retardants are currently commonly used in polycarbonate alloy ABS and have good flame retardant effects, but their addition is generally at 5% to achieve better flame retardant performance, so that at 1.0 The flame retardant grade reaches V-0 under mm; however, the addition of this type of flame retardant greatly increases the risk of deterioration of the stability of damp heat aging, and has a certain influence on the heat distortion temperature, which further increases the difficulty of improving the stability of damp heat aging .
  • Residual metals in the composition generally come from ABS resin synthesis residues, toughener synthesis residues, anti-dripping agent residues, flame retardant residues, etc.
  • Na, Mg, Zn, and K with strong alkalinity can degrade PC resin The risk is very high.
  • the PC resin will quickly break the chain and cause the material to fail.
  • the research of the present invention finds that by adjusting and controlling the residual metal content in the flame-retardant polycarbonate alloy composition, the degradation and degradation by heat and humidity can be reduced to a certain extent. However, only by this method, the improvement effect on the damp heat aging performance is not good.
  • the silicon-based toughening agent in the toughening agent not only has a good toughening effect, but also has Si-O stable chemical bonds in the molecular chain, which not only presents a stable state to heat and water, but also has good low-temperature toughness. It has good weather resistance, and it can cooperate with the thermal decomposition of PC resin during the flame retardant process, thereby having a certain synergistic flame retardant effect, and containing Si-O bonds can promote the charring of PC resin, which has little negative impact on flame retardant and can be greatly improved.
  • Expanding the dosage of phosphate ester flame retardants can not only make the phosphate ester flame retardants have a better flame retardant grade in the case of a small amount of phosphate ester flame retardants, but also solve the problem of the large amount of phosphate ester flame retardants.
  • polyphenylsiloxane which has a certain compatibility with the PC resin matrix, physical isolation of water can be achieved, and the hygroscopic behavior mode during the damp heat aging process can be changed to reduce the hydrolytic degradation of the PC resin in the external environment.
  • the introduction of phenyl can better strengthen the dispersion of phosphate flame retardants in the PC resin matrix.
  • the synergistic effect of phosphate flame retardants, silicon-based toughening agents and hydrophobic agents service stability can be achieved, the heat resistance of the material can be improved, and the hygrothermal performance can be stabilized, so as to obtain high toughness and hygrothermal stability.
  • the flame-retardant polycarbonate alloy composition meets the high-performance requirements of the alloy.
  • the flame-retardant polycarbonate alloy composition provided by the invention has higher flame-retardant grade, higher heat-resistant temperature, and humidity-heat aging stability, and can meet the appearance quality requirements of various processing techniques.
  • the flame-retardant polycarbonate alloy composition provided by the present invention has a flame-retardant rating of 1.0 mm, a V-0 rating, a heat distortion temperature greater than 95° C., and a tensile strength retention rate greater than 50% after 500 hours of humid heat aging.
  • the flame retardant polycarbonate alloy composition includes the following components in parts by weight:
  • the residual metal content in the flame-retardant polycarbonate alloy composition is 25-180 ppm.
  • the average molecular weight of the polycarbonate is 22000-30000, the content of terminal hydroxyl groups is less than 100 ppm, preferably 8-100 ppm; the content of bisphenol A (BPA) is less than 20 ppm, preferably 0.01-20 ppm.
  • BPA bisphenol A
  • the terminal hydroxyl content is determined according to the GB12008.3-1989 standard.
  • Bisphenol A is determined by the following process: through a C18 chromatographic column with a fixed column temperature of 40°C, a mobile phase of acetonitrile:methanol at 9:1 (volume ratio), a fixed flow rate of 1m L/min, and a detection wavelength of 280nm The content was determined by the o-cresol internal standard method.
  • the glue content in the ABS is 10-25%, and the residual metal content is 0.08-0.5%.
  • ABS is one of the main sources of metal residues. By controlling the metal residue content in ABS, the metal residue content in the flame-retardant polycarbonate alloy composition can be conveniently controlled.
  • the phosphate flame retardant is one or more of TPP, BDP, RDP or RDX.
  • the content of phenol in the phosphate flame retardant is 10-50 ppm
  • the content of dimer TPP is 3-10%
  • the pH value is 6.1-6.8.
  • the phenol content is obtained through the following process test: a fixed weight of the flame retardant is dissolved in toluene, diluted to 0.01mol/L, and then passed through a high-performance liquid chromatograph, and the outflow peak area formed at the outflow time t ⁇ 5min is normalized Then get the phenol content.
  • the dimer content is obtained through the following process test: a fixed weight of the flame retardant is dissolved in toluene, diluted to 0.01mol/L, and then passed through a high performance liquid chromatography, and the area of the effluent peak formed at the effluent time t ⁇ 18min is normalized The dimer content was obtained after chemical treatment.
  • the content of silica gel in the silicon-based toughening agent is 5-40%.
  • the silicon-based toughening agent is a silicon-based toughening agent with acrylate as the shell, such as S-2001, S-2100, S-2030, MR-01 and the like.
  • the remaining metal content in the toughening agent is 0.1-3%.
  • the toughening agent is one of the main sources of metal residues, and by controlling the metal residue content in the toughening agent, the metal residue content in the flame-retardant polycarbonate alloy composition can be conveniently controlled.
  • the anti-dripping agent is a fluoropolymer, which may include fibrillation forming or non-fibrillating fluoropolymers, such as polytetrafluoroethylene (PTFE).
  • PTFE polytetrafluoroethylene
  • the polyphenylsiloxane is one or more of SI-30-10, 433 or 437.
  • the silicon content in the polyphenylsiloxane is 8-30%.
  • the preparation method of the above-mentioned flame-retardant polycarbonate alloy composition comprises the following steps: mixing polycarbonate, ABS, phosphate flame retardant, toughening agent, hydrophobic agent and anti-dripping agent, extruding, granulating, That is, the flame-retardant polycarbonate alloy composition is obtained.
  • the preparation method of the flame-retardant polycarbonate alloy composition comprises the steps of: stirring polycarbonate, ABS, phosphate flame retardant, toughening agent, hydrophobic agent and anti-dripping agent in a high mixer mixing, and then melting and extruding in a twin-screw extruder, and granulating to obtain the flame-retardant polycarbonate alloy composition.
  • the stirring and mixing speed is 20-50 rpm; the aspect ratio of the twin-screw extruder is 38-52:1, the temperature of the screw barrel is 220-260°C, and the screw speed is 300 ⁇ 600 rpm/min.
  • the present invention has the following beneficial effects:
  • the flame-retardant polycarbonate alloy composition of the present invention greatly improves the humidity-heat aging stability through the synergistic cooperation of various components and control conditions, especially the optimization of the residual metal content and the addition of a hydrophobic agent, and has a higher flame-retardant grade , better mechanical properties and higher heat distortion temperature, after heat and humidity aging treatment, it still has a higher flame retardant grade and better mechanical properties, and has a wide range of application prospects.
  • ABS 1#, 275, Shanghai Gaoqiao the glue content is 15%, the metal residual content is 0.08%;
  • ABS 2#, PA757, Chimei the glue content is 20%, and the residual metal content is 0.15%;
  • Toughening agent 2# SX005, silicon-based toughening agent, Mitsubishi Rayon, the content of silica gel is 55%, and the residual metal content is 2.2%;
  • Toughening agent 3# EM500, MBS series toughening agent, LG, the residual metal content is 5.3%;
  • Hydrophobic agent 1# Si-30-10, silicon content 26.6%, Japan Fuji Chemical;
  • Hydrophobic agent 2#, 433, silicon content is 12%, Momentive;
  • Residual metal content Weigh the composition particles with a fixed weight, put them into a muffle furnace with a preset temperature of 700°C for 6 hours, take them out and weigh the metal ash, and then measure the residual metal content by ICP.
  • the flammability test is carried out in accordance with the regulations of "Tests for Flammability of Plastic Materials, UL94".
  • the flammability rating is based on the burning rate, time to extinguish, ability to resist dips, and whether the dips are burning.
  • the sample that is used for testing 125mm length 13mm width, the present invention is selected as 1.0mm when testing thickness, according to UL94 regulation, can classify (UL94): HB, V0, V1, V2, 5VA and/or or 5VB.
  • a humid heat aging treatment with a temperature of 85°C and a humidity of 85% in a constant temperature and humidity box for 500 hours, its flame retardancy level is determined according to the same conditions;
  • Tensile strength retention after damp heat aging measure the tensile strength according to ASTM D527-2008, and record it as the tensile strength before damp heat aging; according to ASTM D527-2008, the tensile spline is preset at a temperature of 85°C and a humidity of 85%. Damp heat aging is carried out in a constant temperature and humidity test box. After the aging time of 500h according to the sampling plan, the test sample is taken out, and placed in an environment with a room temperature of 25°C and a humidity of 50% for more than 48h, and then measured according to ASTM D527-2008. The tensile strength is recorded as the tensile strength after damp heat aging. By comparing the tensile strength performance retention rate before and after aging, it is used as the judgment of the damp heat performance. The higher the performance retention rate, the better the damp heat stability.
  • Heat deflection temperature HDT According to ASTM D5364-2010, the fixed load is 1.82MPa, and the temperature of the oil bath is raised for testing. The average value of three test pieces is used as the result. The higher the heat deflection temperature, the better the heat resistance.
  • the preparation process of the flame-retardant polycarbonate alloy composition of each embodiment of the present invention and comparative examples is as follows: after weighing polycarbonate, ABS, flame retardant, toughening agent, hydrophobic agent and anti-dripping agent according to the proportioning Stirring and blending in a high mixer at 40 revolutions/min to obtain a premix, and then melt extruding in a twin-screw extruder, and obtain the flame-retardant polycarbonate alloy composition after the granulation process,
  • the length-to-diameter ratio of the twin-screw extruder is 40:1, the temperature of the screw barrel is 240° C., and the screw speed is 350 revolutions/min.
  • This embodiment provides a series of flame-retardant polycarbonate alloy compositions, the formulations of which are shown in Table 1.
  • This comparative example provides a series of flame-retardant polycarbonate alloy compositions, the formulations of which are shown in Table 2.
  • Example 1 Comparative example 1 Comparative example 2 Comparative example 3 Polycarbonate 1# 82 82 82 82 82 ABS 1# 18 18 18 18 Flame retardant 1# 8 8 8 8 Toughener 1# 3 3 / 3 Toughener 3# / / 3 / Hydrophobic agent 1# 0.5 / / 0.5 anti-dripping agent 0.5 0.5 0.5 0.5 calcium chloride / / / 3
  • the flame-retardant polycarbonate alloy compositions provided by each embodiment of the present invention have higher flame-retardant grades, better mechanical properties, higher thermal temperature and damp heat aging stability, wherein the The overall performance is the best; from the comparison of Examples 1 to 5, it can be seen that the amount of each component has a certain influence on the retention of tensile strength and heat distortion temperature.
  • the thermal deformation temperature of the resin system of polycarbonate and ABS is higher, so the thermal deformation temperature of Example 2 Higher than Example 4, the heat distortion temperature of Example 5 is slightly higher than that of Example 3; except that the tensile strength retention is mainly affected by the hydrophobic agent and the residual metal content, polycarbonate, ABS, flame retardant, toughening
  • the consumption of agent also has certain influence, under the comprehensive regulation and control of each component, the tensile strength retention rate of embodiment 1 is the highest, and the tensile strength retention rate of embodiment 4 and 5 is better than the tensile strength retention rate of embodiment 2 and 3 respectively.
  • Comparative Example 1 has little impact on its initial performance because no hydrophobic agent is added, but it has no protective effect on the stability of damp heat aging. With the infiltration of water at high temperature, the impact and flame retardant grade will be reduced after aging. After 500 hours of aging treatment, the flame retardant grade dropped from V-0 to V-2, and the dripping ignition failure occurred. Due to the increase in the degree of hydrolysis, the hydrolysis product reduced the heat resistance of the material, so the HDT temperature was only 88°C; MBS-based tougheners are the most important, because different types of rubber have a negative impact on the flame retardant grade.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

本发明涉及一种阻燃聚碳酸酯合金组合物及其制备方法和应用。该阻燃聚碳酸酯合金组合物包括聚碳酸酯、ABS、磷酸酯类阻燃剂、硅系增韧剂、疏水剂和抗滴落剂。本发明提供的阻燃聚碳酸酯合金组合物通过金属残存含量的优化和特定的疏水剂的协同配合,可大大提升湿热老化稳定性,具有较高且稳定的阻燃等级,及较高的热变形温度。

Description

一种阻燃聚碳酸酯合金组合物及其制备方法和应用 技术领域
本发明属于工程塑料领域,具体涉及一种阻燃聚碳酸酯合金组合物及其制备方法和应用。
背景技术
无卤阻燃聚碳酸酯ABS合金组合物是非常通用而具有广泛应用的材料,为了满足这种材料在应用中的技术更新变化需求,聚碳酸酯组合物应具备湿热老化稳定性,且具备改善的热变形温度,以及保证材料在工作服役过程中有足够的机械性能和抗形变性能。但是,在聚碳酸酯中加入任何常规的组分均会导致湿热老化稳定性的降低,对材料的耐热也会存在一定的负面影响,如ABS中的一些残留、增韧剂等小分子,阻燃剂的加入也会导致耐热性能的下降,进一步劣化湿热稳定性和耐热性,并且增加增韧剂和阻燃剂的含量来保证阻燃和冲击强度的保持率将进一步劣化湿热老化现象,加速聚碳酸酯树脂的降解,从而大幅度降低材料的耐热抗形变,不能为机械性能的服役安全性提供保证。特别是磷酸酯类阻燃剂,其虽然具有较好的阻燃性能,可赋予聚碳酸酯组合物体系较高的阻燃等级,但其分子结构特点在热和水的共同作用下容易自身水解,从而导致PC树脂的水解/醇解降解,同时由于阻燃剂的引入会降低PC的耐热温度,进一步导致PC树脂的剧烈降解,从而引起材料的瞬间失效,极大的限制了其在户外行业、新能源行业或者传统行业的对材料需求的升级及要求材料薄壁化、服役安全化等高端的应用。
目前,已有报道利用盐夹杂物(例如CN102292393A)来提升老化性能。但类似的研究还非常少。因此,开发一种具有较好湿热老化性能的聚碳酸酯ABS合金材料以扩大其应用范围具有重要的研究意义。
发明内容
本发明的目的在于克服现有技术中的缺陷或不足,提供一种阻燃聚碳酸酯合金组合物。本发明提供的阻燃聚碳酸酯合金组合物在具有较高的阻燃等级和较佳的机械性能和较高的热形变温度的基础上,还具有优异的湿热老化稳定性,经湿热老化处理后仍具有较高的阻燃等级和较佳的机械性能,具有广泛的应用前景。
本发明的另一目的在于提供上述阻燃聚碳酸酯合金组合物的制备方法。
本发明的另一目的在于提供上述阻燃聚碳酸酯合金组合物在制备户外产品、新能源产品中的应用。
为实现上述发明目的,本发明采用如下技术方案:
一种阻燃聚碳酸酯合金组合物,包括如下重量份数的组分:
Figure PCTCN2022124808-appb-000001
所述疏水剂为多苯基硅氧烷,所述多苯基硅氧烷中硅含量不低于10%;
所述阻燃聚碳酸酯合金组合物中金属残存含量不高于285ppm。
本发明中,增韧剂的选用可赋予阻燃聚碳酸酯合金组合物较好的机械性能。磷酸酯类阻燃剂是目前聚碳酸酯合金ABS中常用的且阻燃效果好的阻燃剂,但其添加量一般在5%时,才可达到较好的阻燃性能,使其在1.0mm下阻燃等级达到V-0;但该类阻燃剂的添加,大大增加了湿热老化稳定性劣化的风险,且对热变形温度有一定的影响,进一步增加了提升湿热老化稳定性的难度。
组合物中的残留金属一般来自于ABS树脂合成残留、增韧剂合成残留、抗滴落剂残留、阻燃剂残留等,其中碱性较强的Na、Mg、Zn、K对PC树脂的降解风险很大,虽然在热氧环境、室温常湿环境等没有特别的影响,但在湿热环境下(热、氧、水分的共同作用下),会快速让PC树脂断链导致材料失效,对材料的一些高端应用需求以及户外应用要求收到很大的限制。
本发明研究发现,通过调控阻燃聚碳酸酯合金组合物中金属残存含量,可在一定程度上降低湿热降解劣化。但仅通过该手段,对湿热老化性能的提升效果并不佳。
经进一步研究,增韧剂中的硅系增韧剂不仅具有较好的增韧效果,而且分子链存在Si-O稳定的化学键,不仅对热和水呈现稳定的状态,且对低温韧性好,耐候性好,阻燃过程中可协同PC树脂的热分解,进而具备一定的协效阻燃效果, 且含有Si-O键可以促进PC树脂的成炭,对阻燃的负面影响小,可大大扩展磷酸酯类阻燃剂的添加用量,既可使得磷酸酯类阻燃剂在较小添加量的情况下就具有较好的阻燃等级,又可解决磷酸酯类阻燃剂较大添加量所带来湿热降解劣化风险。另外,通过加入与PC树脂基体具有一定相容性的特定的疏水剂多苯基硅氧烷可实现物理隔绝水,改变湿热老化过程中的吸湿行为模式,降低PC树脂在外界环境下的水解降解;另外,苯基的引入可以更好的加强磷酸酯类阻燃剂在PC树脂基体中的分散。通过金属残存含量的调控,及磷酸酯类阻燃剂、硅系增韧剂和疏水剂的协同作用,可实现服役稳定,提高材料的耐热性及湿热性能稳定,从而得到高韧性湿热稳定的阻燃聚碳酸酯合金组合物,满足合金的高性能化需求。
本发明提供的阻燃聚碳酸酯合金组合物具有较高的阻燃等级,较高的耐热温度,和湿热老化稳定性,可满足各类加工工艺的外观质量要求。具体地,本发明提供的阻燃聚碳酸酯合金组合物的阻燃等级为1.0mm,V-0等级,热变形温度大于95℃,湿热老化500h后拉伸强度保持率大于50%。
优选地,所述阻燃聚碳酸酯合金组合物包括如下重量份数的组分:
Figure PCTCN2022124808-appb-000002
优选地,所述阻燃聚碳酸酯合金组合物中金属残存含量为25~180ppm。
本领域常规的聚碳酸酯、ABS(丙烯腈-丁二烯-苯乙烯共聚物)、磷酸酯类阻燃剂、增韧剂和抗滴落剂均可用于本发明中,其制备方法也为常规的方法。
优选地,所述聚碳酸酯的平均分子量为22000~30000,端羟基含量小于100ppm,优选为为8~100ppm;双酚A(BPA)含量小于20ppm,优选为0.01~20ppm。
端羟基含量按照GB12008.3-1989标准测定得到。
双酚A(BPA)通过如下过程测定得到:通过C18色谱柱并固定柱温为40℃,流动相位乙腈:甲醇为9:1(体积比),流速固定为1m L/min,检测波长为280nm 通过邻甲酚内标法进行含量的测定。
优选地,所述ABS中胶含量为10~25%,金属残存含量为0.08~0.5%。
ABS是金属残存的主要来源之一,通过控制ABS中金属残存含量,可便利地控制阻燃聚碳酸酯合金组合物中的金属残存含量。
优选地,磷酸酯类阻燃剂为TPP、BDP、RDP或RDX中的一种或几种。
更为优选地,所述磷酸酯类阻燃剂中苯酚含量为10~50ppm,二聚体TPP含量为3~10%,pH值为6.1~6.8。
苯酚含量通过如下过程测试得到:将固定重量的阻燃剂溶解到甲苯中后稀释成0.01mol/L后通过高效液相色谱仪,在流出时间t≤5min形成的流出峰面积进行归一化处理后得到苯酚含量。
二聚体含量通过如下过程测试得到:将固定重量的阻燃剂溶解到甲苯中后稀释成0.01mol/L后通过高效液相色谱仪,在流出时间t≥18min形成的流出峰面积进行归一化处理后得到二聚体含量。
优选地,所述硅系增韧剂中硅胶含量为5~40%。
更为优选地,所述硅系增韧剂为以丙烯酸酯类为壳层的硅系增韧剂,例如S-2001、S-2100、S-2030、MR-01等。
优选地,所述增韧剂中金属残存含量为0.1~3%。
增韧剂是金属残存的主要来源之一,通过控制增韧剂中金属残存含量,可便利地控制阻燃聚碳酸酯合金组合物中的金属残存含量。
优选地,所述抗滴落剂为含氟聚合物,该含氟聚合物可包括原纤化形成或非原纤化的含氟聚合物,比如聚四氟乙烯(PTFE)。
优选地,所述多苯基硅氧烷为SI-30-10、433或437中的一种或几种。
优选地,所述多苯基硅氧烷中硅含量为8~30%。
上述阻燃聚碳酸酯合金组合物的制备方法,包括如下步骤:将聚碳酸酯、ABS、磷酸酯类阻燃剂、增韧剂、疏水剂和抗滴落剂混合,挤出,造粒,即得所述阻燃聚碳酸酯合金组合物。
优选地,阻燃聚碳酸酯合金组合物的制备方法,包括如下步骤:将聚碳酸酯、ABS、磷酸酯类阻燃剂、增韧剂、疏水剂和抗滴落剂在高混机中搅拌混合,然后在双螺杆挤出机中熔融挤出,造粒,即得所述阻燃聚碳酸酯合金组合物。
更为优选地,所述搅拌混合的转速为20~50转/min;所述双螺杆挤出机的长径比为38~52:1,螺筒温度为220~260℃,螺杆转速为300~600转/mim。
上述阻燃聚碳酸酯合金组合物在制备户外产品、新能源产品中的应用也在本发明的保护范围内。
与现有技术相比,本发明具有如下有益效果:
本发明的阻燃聚碳酸酯合金组合物通过各组分及控制条件的协同配合,特别是金属残存含量的优化和疏水剂的添加,大大提升了湿热老化稳定性,具有较高的阻燃等级、较佳的机械性能和较高的热变形温度,经湿热老化处理后仍具有较高的阻燃等级和较佳的机械性能,具有广泛的应用前景。
具体实施方式
下面结合实施例进一步阐述本发明。这些实施例仅用于说明本发明而不用于限制本发明的范围。下例实施例中未注明具体条件的实验方法,通常按照本领域常规条件或按照制造厂商建议的条件;所使用的原料、试剂等,如无特殊说明,均为可从常规市场等商业途径得到的原料和试剂。本领域的技术人员在本发明的基础上所做的任何非实质性的变化及替换均属于本发明所要求保护的范围。
本发明各实施例及对比例选用的部分试剂说明如下:
聚碳酸酯1#,S-2000F,上海三菱工程,平均分子量为23000,端羟基含量为47ppm,BPA含量为12ppm;
聚碳酸酯2#,FN1900,日本出光,平均分子量为22000,端羟基含量为87ppm,BPA含量为134ppm;
ABS 1#,275,上海高桥,胶含量为15%,金属残存含量为0.08%;
ABS 2#,PA757,奇美,胶含量为20%,金属残存含量为0.15%;
阻燃剂1#,PX200,日本大八,苯酚含量为13ppm,TPP含量为5%,pH为6.7;
阻燃剂2#,BDP)-1双酚A双(二苯基磷酸酯),万盛,苯酚含量为80ppm,TPP含量为1.2%,pH值为6.2;
增韧剂1#,S-2030,硅系增韧剂,以丙烯酸酯类为壳层,三菱丽阳,硅胶含量为30%,金属残存含量为0.008%;
增韧剂2#,SX005,硅系增韧剂,三菱丽阳,硅胶含量为55%,金属残存 含量为2.2%;
增韧剂3#,EM500,MBS系增韧剂,LG,金属残存含量为5.3%;
抗滴落剂,TS-30X,太平洋
疏水剂1#,SI-30-10,硅含量为26.6%,日本富士化工;
疏水剂2#,433,硅含量为12%,迈图;
氯化钙,阿拉丁。
本发明各实施例及对比例的阻燃聚碳酸酯合金组合物的各项性能的测试方法如下:
金属残存含量:称量固定重量的组合物粒子,放入预设温度为700℃的马弗炉中6h后取出并称量金属灰分重量后,通过ICP测定金属残存含量。
阻燃等级:按照“塑料材料的可燃性测试,UL94”的规程进行可燃性测试。基于燃烧速率、熄灭时间、抵抗低落的能力、以及低落是否正燃烧,来得出阻燃等级。用于测试的样品:125mm长度13mm宽度,本发明在进行测试时厚度选为1.0mm,根据UL94规程,可以将材料阻燃等级分类为(UL94):HB、V0、V1、V2、5VA和/或5VB。同时测定样品经在恒温恒湿箱中设定温度为85℃湿度为85%的湿热老化处理500h后,按照相同的条件测定其阻燃等级;
湿热老化后拉伸强度保持率:按照ASTM D527-2008测定拉伸强度,记为湿热老化前的拉伸强度;根据ASTM D527-2008拉伸样条在预设好温度为85℃湿度为85%的恒温恒湿实验箱中进行湿热老化,按照取样计划500h老化时间后取出测试样条后,放在室温为25℃湿度为50%的环境下进行调节48h以上,然后按照ASTM D527-2008测定拉伸强度,记为湿热老化后的拉伸强度,通过对比老化前后的拉伸强度性能保持率作为湿热性能好坏的判定,性能保持率越高,湿热稳定性越好。
热变形温度HDT:按照ASTM D5364-2010,固定大负荷1.82MPa,油浴升温进行测试,测试3根取平均值作为结果,热变形温度越高,其耐热性越好。
本发明的各实施例及对比例的阻燃聚碳酸酯合金组合物的制备工艺如下:按照配比称取聚碳酸酯、ABS、阻燃剂、增韧剂、疏水剂和抗滴落剂后在高混机中在40转/min下搅拌共混,得到预混料,然后在双螺杆挤出机中进行熔融挤出,造粒工序后即得所述阻燃聚碳酸酯合金组合物,双螺杆挤出机的长径比为40:1, 螺筒温度为240℃,螺杆转速为350转/mim。
实施例1~10
本实施例提供一系列的阻燃聚碳酸酯合金组合物,其配方如表1。
表1实施例1~10提供的阻燃聚碳酸酯合金组合物的配方(份)
Figure PCTCN2022124808-appb-000003
对比例1~3
本对比例提供一系列的阻燃聚碳酸酯合金组合物,其配方如表2。
表2对比例1~3提供的阻燃聚碳酸酯合金组合物的组分(份)
  实施例1 对比例1 对比例2 对比例3
聚碳酸酯1# 82 82 82 82
ABS 1# 18 18 18 18
阻燃剂1# 8 8 8 8
增韧剂1# 3 3 / 3
增韧剂3# / / 3 /
疏水剂1# 0.5 / / 0.5
抗滴落剂 0.5 0.5 0.5 0.5
氯化钙 / / / 3
按上述提及的测试方法对各实施例和对比例的阻燃聚碳酸酯合金组合物的性能进行测定,测试结果如表3。
表3各实施例和对比例的阻燃聚碳酸酯合金组合物的性能测试结果
Figure PCTCN2022124808-appb-000004
Figure PCTCN2022124808-appb-000005
从表3可知,本发明各实施例提供的阻燃聚碳酸酯合金组合物具有较高阻燃等级,较佳的机械性能,较高的热温度和湿热老化稳定性,其中以实施例1的综合性能最佳;从实施例1~5对比可知,各组分的用量对拉伸强度的保持和热变形温度具有一定的影响。具体地,由于聚碳酸酯的热变形性能较佳,在一定范围内聚碳酸酯的用量较大时,聚碳酸酯和ABS的树脂体系的热变形温度较高,故实施例2的热变形温度高于实施例4,,实施例5的热变形温度略高于实施例3;拉伸强度保持率除主要受疏水剂及金属残存含量影响外,聚碳酸酯、ABS、阻燃剂、增韧剂的用量也有一定的影响,在各组分的综合调控下,实施例1的拉伸强度保持率最高,实施例4和5的拉伸强度保持率分别优于实施例2和3的拉伸强度保持率;对比例1由于未添加疏水剂,其初始性能影响很小,但对湿热老化稳定没有保护作用,在高温下随着水的渗入,影响老化后冲击以及阻燃等级降低,经湿热老化处理500h后,阻燃等级从V-0下降到V-2出现滴落引燃失效,由于水解程度增加,水解产物降低材料的耐热性能因此HDT温度仅为88℃;对比例2由于选用的是MBS系增韧剂,由于橡胶种类不同对阻燃等级有负面影响,初始只能做到V-1等级,湿热老化后会进一步下降,且耐热性不如硅系增韧剂,对耐热温度有一定的负面影响;对比例3由于未优化组合物中金属残存含量,初始性能低,且湿热保持率为粉化断裂,样条出现发泡粉化失效,材料丧失了耐热性。
本领域的普通技术人员将会意识到,这里的实施例是为了帮助读者理解本发明的原理,应被理解为本发明的保护范围并不局限于这样的特别陈述和实施例。本领域的普通技术人员可以根据本发明公开的这些技术启示做出各种不脱离本发明实质的其它各种具体变形和组合,这些变形和组合仍然在本发明的保护范围内。

Claims (10)

  1. 一种阻燃聚碳酸酯合金组合物,其特征在于,包括如下重量份数的组分:
    Figure PCTCN2022124808-appb-100001
    所述疏水剂为多苯基硅氧烷,所述多苯基硅氧烷中硅含量不低于10%;
    所述阻燃聚碳酸酯合金组合物中金属残存含量不高于285ppm。
  2. 根据权利要求1所述阻燃聚碳酸酯合金组合物,其特征在于,包括如下重量份数的组分:
    Figure PCTCN2022124808-appb-100002
  3. 根据权利要求1所述阻燃聚碳酸酯合金组合物,其特征在于,所述阻燃聚碳酸酯合金组合物中金属残存含量为25~180ppm。
  4. 根据权利要求1所述阻燃聚碳酸酯合金组合物,其特征在于,所述聚碳酸酯的平均分子量为22000~30000,端羟基含量小于100ppm,双酚A含量小于20ppm;所述ABS中胶含量为10~25%,金属残存含量为0.08~0.5%。
  5. 根据权利要求1所述阻燃聚碳酸酯合金组合物,其特征在于,所述磷酸酯类阻燃剂为TPP、BDP、RDP或RDX中的一种或几种。
  6. 根据权利要求1所述阻燃聚碳酸酯合金组合物,其特征在于,所述硅系增韧剂为丙烯酸酯类为壳层的硅系增韧剂,硅系增韧剂中硅胶含量为5~40%
  7. 根据权利要求1所述阻燃聚碳酸酯合金组合物,其特征在于,所述抗滴落剂为含氟聚合物。
  8. 根据权利要求1所述阻燃聚碳酸酯合金组合物,其特征在于,所述多苯基硅氧烷中硅含量为8~30%。
  9. 权利要求1~8任一所述阻燃聚碳酸酯合金组合物的制备方法,其特征在于,包括如下步骤:将聚碳酸酯、ABS、磷酸酯类阻燃剂、增韧剂、疏水剂和抗滴落剂混合,挤出,造粒,即得所述阻燃聚碳酸酯合金组合物。
  10. 权利要求1~8任一所述阻燃聚碳酸酯合金组合物在制备户外产品、新能源产品中的应用。
PCT/CN2022/124808 2021-10-14 2022-10-12 一种阻燃聚碳酸酯合金组合物及其制备方法和应用 WO2023061398A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202111199949.5 2021-10-14
CN202111199949.5A CN113897045B (zh) 2021-10-14 2021-10-14 一种阻燃聚碳酸酯合金组合物及其制备方法和应用

Publications (1)

Publication Number Publication Date
WO2023061398A1 true WO2023061398A1 (zh) 2023-04-20

Family

ID=79192035

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/124808 WO2023061398A1 (zh) 2021-10-14 2022-10-12 一种阻燃聚碳酸酯合金组合物及其制备方法和应用

Country Status (2)

Country Link
CN (1) CN113897045B (zh)
WO (1) WO2023061398A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114644774B (zh) * 2022-04-08 2023-04-28 江苏俊知技术有限公司 用于生产电缆中聚碳酸酯骨架的组合物及骨架的制造方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001226576A (ja) * 2000-02-10 2001-08-21 Asahi Kasei Corp ポリカーボネート組成物
JP2002371177A (ja) * 2001-06-13 2002-12-26 Ge Plastics Japan Ltd ポリカーボネート系樹脂組成物
CN102834459A (zh) * 2010-03-11 2012-12-19 思迪隆欧洲有限公司 冲击改性的阻燃碳酸酯聚合物组合物
CN104877329A (zh) * 2015-05-27 2015-09-02 金发科技股份有限公司 一种聚碳酸酯组合物及其制备方法
CN107793722A (zh) * 2016-11-22 2018-03-13 金发科技股份有限公司 一种聚碳酸酯组合物及其制备方法
CN108504062A (zh) * 2017-02-28 2018-09-07 汉达精密电子(昆山)有限公司 无卤阻燃pc/abs复合材料及其产品
CN112724627A (zh) * 2019-10-28 2021-04-30 中国石油化工股份有限公司 Pc/abs合金料及其应用

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102875988A (zh) * 2011-07-14 2013-01-16 帝人化成株式会社 外观优异的由芳香族聚碳酸酯树脂组合物构成的成型品
CN111234498A (zh) * 2020-01-19 2020-06-05 上海金山锦湖日丽塑料有限公司 一种耐湿热老化性能优良的pc/abs合金及其制备方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001226576A (ja) * 2000-02-10 2001-08-21 Asahi Kasei Corp ポリカーボネート組成物
JP2002371177A (ja) * 2001-06-13 2002-12-26 Ge Plastics Japan Ltd ポリカーボネート系樹脂組成物
CN102834459A (zh) * 2010-03-11 2012-12-19 思迪隆欧洲有限公司 冲击改性的阻燃碳酸酯聚合物组合物
CN104877329A (zh) * 2015-05-27 2015-09-02 金发科技股份有限公司 一种聚碳酸酯组合物及其制备方法
CN107793722A (zh) * 2016-11-22 2018-03-13 金发科技股份有限公司 一种聚碳酸酯组合物及其制备方法
CN108504062A (zh) * 2017-02-28 2018-09-07 汉达精密电子(昆山)有限公司 无卤阻燃pc/abs复合材料及其产品
CN112724627A (zh) * 2019-10-28 2021-04-30 中国石油化工股份有限公司 Pc/abs合金料及其应用

Also Published As

Publication number Publication date
CN113897045B (zh) 2023-05-09
CN113897045A (zh) 2022-01-07

Similar Documents

Publication Publication Date Title
EP1680466B1 (en) Halogen-free flame retardant polycarbonate compositions
CN103788615B (zh) 一种高光低挥发阻燃聚碳酸酯组合物及其制备方法和应用
CN106810842B (zh) 一种耐候阻燃可用于室外灯罩的光扩散pc及其制备方法
US8663509B2 (en) Fire retardant formulations
WO2016197907A1 (zh) 一种聚碳酸酯组合物及其制备方法
WO2016188476A2 (zh) 一种聚碳酸酯组合物及其制备方法
WO2023061425A1 (zh) 一种稳定的阻燃聚碳酸酯合金组合物及其制备方法和应用
WO2016188474A1 (zh) 一种聚碳酸酯组合物及其制备方法
WO2023061398A1 (zh) 一种阻燃聚碳酸酯合金组合物及其制备方法和应用
WO2016202160A1 (zh) 一种聚碳酸酯组合物及其制备方法
WO2023020413A1 (zh) 一种高韧性的阻燃聚碳酸酯合金组合物及其制备方法和应用
CN104448753A (zh) 一种pc与abs共混阻燃材料
WO2018099218A1 (zh) 一种聚碳酸酯组合物及其制备方法
WO2023061493A1 (zh) 一种阻燃pc/abs合金组合物及其制备方法和应用
JP4674254B2 (ja) ゴム変性スチレン系難燃樹脂組成物
WO2024082522A1 (zh) 一种缓燃聚碳酸酯复合材料及其制备方法和应用
CN109575561A (zh) 低烟密度无卤阻燃pc/pbt合金材料及其制备方法
CN109486158A (zh) 一种超高耐热无卤阻燃pc/abs复合材料及其制备方法
CN109135235B (zh) 一种聚碳酸酯组合物及其制备方法与应用
CN101824203A (zh) 固体缩聚型磷酸酯阻燃abs/pc合金及其制备方法
TWI792048B (zh) 一種高流動性阻燃聚碳酸酯材料及其製品
WO2023066161A1 (zh) 一种耐湿热的阻燃聚碳酸酯合金组合物及其制备方法和应用
CN115651385B (zh) 一种具有稳定收缩率的聚碳酸酯复合材料及其制备方法和应用
JP2019526682A (ja) 難燃性透明ポリカーボネート組成物
CN118271819A (zh) 一种具有良好颜色稳定性的聚碳酸酯合金材料及其制备方法和应用

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22880334

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE