WO2023061251A1 - 电源变换器的预偏置控制方法及装置 - Google Patents

电源变换器的预偏置控制方法及装置 Download PDF

Info

Publication number
WO2023061251A1
WO2023061251A1 PCT/CN2022/123243 CN2022123243W WO2023061251A1 WO 2023061251 A1 WO2023061251 A1 WO 2023061251A1 CN 2022123243 W CN2022123243 W CN 2022123243W WO 2023061251 A1 WO2023061251 A1 WO 2023061251A1
Authority
WO
WIPO (PCT)
Prior art keywords
duty cycle
power converter
tube
drive
rectifier
Prior art date
Application number
PCT/CN2022/123243
Other languages
English (en)
French (fr)
Inventor
高云
Original Assignee
中兴通讯股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中兴通讯股份有限公司 filed Critical 中兴通讯股份有限公司
Publication of WO2023061251A1 publication Critical patent/WO2023061251A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/08Circuits specially adapted for the generation of control voltages for semiconductor devices incorporated in static converters
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/36Means for starting or stopping converters
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/22Conversion of dc power input into dc power output with intermediate conversion into ac
    • H02M3/24Conversion of dc power input into dc power output with intermediate conversion into ac by static converters
    • H02M3/28Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac
    • H02M3/325Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal
    • H02M3/335Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B70/00Technologies for an efficient end-user side electric power management and consumption
    • Y02B70/10Technologies improving the efficiency by using switched-mode power supplies [SMPS], i.e. efficient power electronics conversion e.g. power factor correction or reduction of losses in power supplies or efficient standby modes

Definitions

  • Embodiments of the present disclosure relate to the communication field, and in particular, to a pre-bias control method and device for a power converter.
  • the MOSFET Metal Semiconductor Oxide Insulated Gate Field Effect Transistor
  • the MOSFET is a bidirectional conduction device, compared with the diode rectification, when the MOSFET is used to realize synchronous rectification, the current of the rectification circuit can flow in the opposite direction.
  • the driving duty cycle of the rectifier tube gradually expands from small to large, and the driving signals of the rectifier tube and the freewheeling tube are complementary, so the duty cycle of the freewheeling tube It is from big to small.
  • the duty cycle of the freewheeling tube is much larger than that of the rectifier tube, which will cause the pre-bias voltage on the output capacitor to discharge through the freewheeling tube, and then excessive reverse current will appear.
  • the current causes the output voltage of the synchronous rectification converter to fail to be established, which affects the power supply reliability of the subsequent equipment.
  • a commonly used solution to the pre-bias start-up of the power converter is: directly turn off the drive of the freewheeling tube during the start-up phase of the power converter, and let the power converter enter the diode rectification state until the output voltage reaches the pre-bias voltage point or above , when entering the synchronous rectification state from the diode rectification state, the output voltage will drop and even fail to start.
  • Embodiments of the present disclosure provide a pre-bias control method and device for a power converter, to at least solve the problem of output voltage drops when the power converter in the related art enters a synchronous rectification state from a diode rectification state when the power converter is pre-biased. Pit, even the problem of boot failure.
  • a pre-bias control method of a power converter including:
  • the duty ratio of the rectifier tube is adjusted with a preset adjustment step, and the drive of the freewheel tube is controlled to cooperate with the drive of the rectifier tube;
  • the adjusted duty cycle When the adjusted duty cycle reaches the target duty cycle, switch to the power supply slow start circuit, and start the power converter slowly through the power supply slow start circuit, wherein the target duty cycle is Determined according to input voltage and pre-bias voltage.
  • a pre-bias control device for a power converter including:
  • the control module is configured to adjust the duty cycle of the rectifier tube with a preset adjustment step during the slow start process of the power converter, and control the driving of the freewheeling tube to cooperate with the driving of the rectifying tube;
  • the slow start module is configured to switch to a power supply slow start circuit when the adjusted duty cycle reaches a predetermined target duty cycle, and to start the power converter slowly through the power supply slow start circuit, Wherein, the target duty cycle is determined according to the input voltage and the pre-bias voltage.
  • a computer-readable storage medium where a computer program is stored in the storage medium, wherein the computer program is set to execute any one of the above method embodiments when running in the steps.
  • an electronic device including a memory and a processor, wherein a computer program is stored in the memory, and the processor is configured to run the computer program to perform any of the above Steps in the method examples.
  • FIG. 1 is a block diagram of a hardware structure of a mobile terminal according to a pre-bias control method for a power converter according to an embodiment of the present disclosure
  • FIG. 2 is a flowchart of a pre-bias control method for a power converter according to an embodiment of the present disclosure
  • FIG. 3 is a flowchart of a method for controlling a pre-bias voltage of a power converter according to an embodiment of the present disclosure
  • FIG. 4 is a schematic diagram of pre-bias voltage control of a buck circuit according to an embodiment of the present disclosure
  • FIG. 5 is a schematic diagram of a basic waveform of an inductor current according to a buck circuit pre-bias control method according to an embodiment of the present disclosure
  • FIG. 6 is a schematic diagram of a buck circuit pre-bias voltage control output voltage according to an embodiment of the present disclosure
  • FIG. 7 is a schematic diagram of pre-bias voltage control of a forward circuit according to an embodiment of the present disclosure.
  • FIG. 8 is a block diagram of a power supply device using pre-bias voltage control according to an embodiment of the present disclosure
  • FIG. 9 is a block diagram of a pre-bias control device for a power converter according to an embodiment of the disclosure.
  • Fig. 1 is a block diagram of the hardware structure of the mobile terminal according to the pre-bias control method of the power converter according to the embodiment of the present disclosure.
  • the mobile terminal may include one or more (Fig. 1 only shows one) a processor 102 (the processor 102 may include but not limited to a processing device such as a microprocessor MCU or a programmable logic device FPGA) and a memory 104 for storing data, wherein the above-mentioned mobile terminal can also be
  • a transmission device 106 for communication functions and an input and output device 108 are included.
  • FIG. 1 is only for illustration, and it does not limit the structure of the above mobile terminal.
  • the mobile terminal may also include more or fewer components than those shown in FIG. 1 , or have a different configuration from that shown in FIG. 1 .
  • the memory 104 can be used to store computer programs, for example, software programs and modules of application software, such as the computer program corresponding to the pre-bias control method of the power converter in the embodiment of the present disclosure, the processor 102 runs the stored in the memory 104 Computer programs, so as to execute various functional applications and business chain address pool slicing processing, that is, to realize the above-mentioned method.
  • the memory 104 may include high-speed random access memory, and may also include non-volatile memory, such as one or more magnetic storage devices, flash memory, or other non-volatile solid-state memory.
  • the memory 104 may further include a memory that is remotely located relative to the processor 102, and these remote memories may be connected to the mobile terminal through a network. Examples of the aforementioned networks include, but are not limited to, the Internet, intranets, local area networks, mobile communication networks, and combinations thereof.
  • the transmission device 106 is used to receive or transmit data via a network.
  • the specific example of the above network may include a wireless network provided by the communication provider of the mobile terminal.
  • the transmission device 106 includes a network interface controller (NIC for short), which can be connected to other network devices through a base station so as to communicate with the Internet.
  • the transmission device 106 may be a radio frequency (Radio Frequency, referred to as RF) module, which is used to communicate with the Internet in a wireless manner.
  • RF Radio Frequency
  • FIG. 2 is a flowchart of a pre-bias control method of a power converter according to an embodiment of the present disclosure. As shown in Figure 2, the process includes at least, but not limited to the following steps:
  • Step S202 during the slow startup process of the power converter, adjust the duty cycle of the rectifier with a preset adjustment step, and control the drive of the freewheeling tube to cooperate with the drive of the rectifier;
  • Step S204 when the adjusted duty cycle reaches the target duty cycle, switch to the power supply slow start circuit, and start the power converter through the power supply slow start circuit, wherein the target duty cycle is based on the input
  • the voltage and the pre-bias voltage are determined.
  • the circuit topology needs to be considered. There are certain differences in the calculation methods of different circuit topologies, so we will not list all the topologies here.
  • the above-mentioned step SD204 may specifically include: when the adjusted duty ratio reaches the target duty ratio, giving a loop control signal to the control circuit to complete the slow startup of the power converter, wherein the The loop control signal is used to control the duty cycle of the rectifier.
  • step S202 may specifically include: repeating the following steps until the duty ratio of the rectifier tube reaches the target duty ratio:
  • IL2(+) (Vin-Vo)*mDo2*Tsw/L;
  • Vin is the input voltage
  • Vo is the pre-bias voltage
  • Ns/Np is the coil turns ratio between the secondary side and the primary side of the transformer
  • mDo1 and mDo2 are the preset step sizes
  • Fsw is the switching frequency
  • L is the inductance of the inductor
  • Do1, Do2 are the initial duty cycle.
  • the input voltage, the pre-bias voltage, and the coil turn ratio between the secondary side and the primary side of the transformer are obtained, and the ratio of the pre-bias voltage to the input voltage and the transformer
  • the product of the coil turns ratio of the secondary side and the primary side is determined as the target duty cycle;
  • the input voltage and the pre-bias voltage are obtained, and the ratio of the pre-bias voltage to the input voltage is determined as the target duty cycle empty ratio.
  • the embodiment of the present disclosure can solve the problem that the power converter using synchronous rectification has an uncontrollable reverse current during the slow start-up process, resulting in the failure of the output voltage of the power converter to be established.
  • the pre-bias control scheme of this embodiment the During the slow start-up process of the converter, the duty ratio of the rectifier tube is adjusted with the preset adjustment step, and the drive of the rectifier tube is controlled to cooperate with the drive of the rectifier tube.
  • the time interval between the opening of the current tube is controlled, and the increase of the current of the output inductor is equal to the decrease, which can prevent the reverse discharge of energy from the output capacitor to the inside of the power converter when the synchronous rectification power converter is used in the case of pre-bias start-up, thereby This causes the output voltage to drop and even fail to start the machine.
  • Fig. 3 is a flowchart of a pre-bias voltage control method for a power converter according to an embodiment of the present disclosure, as shown in Fig. 3 , including the following steps:
  • the algorithm here refers to the size of the initial duty cycle of the slow start circuit, the step size of the duty cycle increase and the number of times the entire duty cycle expands to the pre-bias point, for example: such as the output duty cycle is D0, adjust the step size, and the final duty ratio is D (corresponding to the switching frequency reaches Fsw when the converter is working normally), and there can also be other different initial duty ratios and different step sizes; calculate the initial rectification to be output Under the tube driving duty cycle D0, the magnitude of the change difference of the positive ripple current of the output inductor;
  • the slow start function circuit outputs a driving signal
  • the following takes the buck circuit as an example to describe in detail one of the pre-bias start-up methods under the control of the slow-start algorithm of the technical solution.
  • FIG. 4 is a schematic diagram of the pre-bias voltage control of the buck circuit according to an embodiment of the present disclosure.
  • the input voltage is Vin
  • the output voltage pre-bias point that is, corresponding to the above-mentioned pre-bias Voltage
  • the switching frequency is Fsw
  • the duty ratio D Vo/Vin required by the buck circuit
  • the turn-on time of the rectifier is Fsw*D;
  • FIG. 5 is a schematic diagram of the basic waveform of the inductor current according to the buck circuit pre-bias control method according to an embodiment of the present disclosure.
  • FIG. 6 is a schematic diagram of the output voltage controlled by the pre-bias voltage of the buck circuit according to an embodiment of the disclosure. The basic waveform of the start-up of the output voltage controlled by the pre-bias of the buck circuit is shown in FIG. 6 .
  • the driving duty cycle of the main tube and the rectifier tube increases with a step size of 2*D0 (in actual work, it is necessary to consider the dead time before the rectifier tube is turned on again and the freewheeling tube is turned off), and the negative current of the detected inductor is also It needs to be increased according to the corresponding step size; the next step is to increase the duty cycle of the supervisor and the rectifier tube with a step size of 3*D0. , the negative current of the detected inductance also needs to be increased according to the corresponding step size; repeat the above steps until the output voltage reaches the pre-bias voltage, and then assign the loop output value at this time to the control loop of the power supply, and the loop closed loop cuts in Complete the entire slow start process.
  • the embodiment of the forward circuit is non-linear, the second step size is 2*D0, the third step size is 3*D0; the step size of the buck circuit is fixed as D0.
  • FIG. 8 is a block diagram of a power supply device using pre-bias voltage control according to an embodiment of the present disclosure. As shown in FIG. 8 , it includes three parts: a power circuit, a driving circuit and a control circuit.
  • the control circuit samples the input voltage, output voltage and output inductor current, and outputs the driving signal according to the above-mentioned pre-bias voltage control method; the driving circuit drives the power tube of the power circuit; the power circuit receives the driving signal of the driving circuit, and completes different input, Output voltage and current conversion.
  • FIG. 9 is a block diagram of a pre-bias control device for a power converter according to an embodiment of the present disclosure, as shown in FIG. 9 ,include:
  • the control module 92 is configured to adjust the duty cycle of the rectifier tube with a preset adjustment step during the slow start process of the power converter, and control the driving of the freewheeling tube to cooperate with the drive of the rectifying tube;
  • the slow start module 94 is configured to switch to a power supply slow start circuit when the adjusted duty cycle reaches a predetermined target duty cycle, and to start the power converter slowly through the power supply slow start circuit, wherein the The target duty cycle is determined based on the input voltage and the pre-bias voltage.
  • control module 92 is also configured to:
  • the drive of the freewheel tube is turned off, including:
  • control module 92 is further configured to:
  • IL2(+) (Vin-Vo)*mDo2*Tsw/L;
  • Vin is the input voltage
  • Vo is the pre-bias voltage
  • Ns/Np is the coil turns ratio between the secondary side and the primary side of the transformer
  • mDo1 and mDo2 are the preset step sizes
  • Fsw is the switching frequency
  • L is the inductance of the inductor
  • Do1, Do2 are the initial duty cycle.
  • control module 92 is also configured to:
  • the input voltage and the pre-bias voltage are obtained, and the ratio of the pre-bias voltage to the input voltage is determined as the target duty cycle.
  • the above-mentioned slow start module 94 is also set to:
  • a loop control signal is given to the control circuit to complete the soft start of the power converter, wherein the loop control signal is used to control the duty of the rectifier tube than the size.
  • Embodiments of the present disclosure also provide a computer-readable storage medium, in which a computer program is stored, wherein the computer program is configured to execute the steps in any one of the above method embodiments when running.
  • the above-mentioned computer-readable storage medium may include but not limited to: U disk, read-only memory (Read-Only Memory, referred to as ROM), random access memory (Random Access Memory, referred to as RAM) , mobile hard disk, magnetic disk or optical disk and other media that can store computer programs.
  • ROM read-only memory
  • RAM random access memory
  • mobile hard disk magnetic disk or optical disk and other media that can store computer programs.
  • Embodiments of the present disclosure also provide an electronic device, including a memory and a processor, where a computer program is stored in the memory, and the processor is configured to run the computer program to execute the steps in any one of the above method embodiments.
  • the electronic device may further include a transmission device and an input and output device, wherein the transmission device is connected to the processor, and the input and output device is connected to the processor.
  • each module or each step of the above-mentioned disclosure can be realized by a general-purpose computing device, and they can be concentrated on a single computing device, or distributed in a network composed of multiple computing devices In fact, they can be implemented in program code executable by a computing device, and thus, they can be stored in a storage device to be executed by a computing device, and in some cases, can be executed in an order different from that shown here. Or described steps, or they are fabricated into individual integrated circuit modules, or multiple modules or steps among them are fabricated into a single integrated circuit module for implementation. As such, the present disclosure is not limited to any specific combination of hardware and software.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Dc-Dc Converters (AREA)

Abstract

一种电源变换器的预偏置控制方法及装置,预偏置控制方法包括:在电源变换器的开机缓启动过程中,以预设调节步长调整整流管的占空比,控制续流管驱动与整流管驱动相配合;在调整后的占空比达到预先确定的目标占空比的情况下,通过电源缓启动电路对电源变换器进行开机缓启动,直至电源变换器的输出电压达到电源变换器正常工作时的输出电压,其中,目标占空比是根据输入电压与预偏置电压确定的,可以解决相关技术中电源变换器预偏置启动时,进入同步整流状态导致输出电压出现跌坑,甚至启机失败的问题,确保电源变换器成功启动。

Description

电源变换器的预偏置控制方法及装置
相关申请的交叉引用
本公开基于2021年10月14日提交的发明名称为“电源变换器的预偏置控制方法及装置”的中国专利申请CN202111198589.7,并且要求该专利申请的优先权,通过引用将其所公开的内容全部并入本公开。
技术领域
本公开实施例涉及通信领域,具体而言,涉及一种电源变换器的预偏置控制方法及装置。
背景技术
在电源变换器中采用MOSFET(金属半导体氧化物绝缘栅极场效应管)替代二极管完成同步整流功能,以此来提高电源转换器的转换效率。但由于MOSFET是双向导通器件,相对于二极管整流,采用MOSFET实现同步整流时,整流电路的电流可以反向流动。
采用同步整流的电源变换器在开机的缓启动过程当中,整流管驱动占空比由小变大逐渐展开,而整流管和续流管的驱动信号是互补关系,则续流管的占空比是从大变小。此时如果在输出侧加偏置电压,则会出现因为续流管的占空比远大于整流管,导致输出电容上的预偏置电压会通过续流管放电,进而出现过大的反向电流,造成同步整流变换器的输出电压建立失败,影响后级设备的供电可靠性。
相关技术中,常用的解决电源变换器预偏置启动的方案为:在电源变换器启动阶段直接关闭续流管驱动,让电源变换器进入二极管整流状态,直到输出电压到达预偏置电压点以上,从二极管整流状态进入同步整流状态时会导致输出电压出现跌坑,甚至启机失败。
针对相关技术中电源变换器预偏置启动时,从二极管整流状态进入同步整流状态时会导致输出电压出现跌坑,甚至启机失败的问题,尚未提出解决方案。
发明内容
本公开实施例提供了一种电源变换器的预偏置控制方法及装置,以至少解决相关技术中电源变换器预偏置启动时,从二极管整流状态进入同步整流状态时会导致输出电压出现跌坑,甚至启机失败的问题。
根据本公开的一个实施例,提供了一种电源变换器的预偏置控制方法,包括:
在电源变换器的开机缓启动过程中,以预设调节步长调整整流管的占空比,控制续流管驱动与所述整流管驱动相配合;
在调整后的占空比达到目标占空比的情况下,切换为电源缓启动电路,通过所述电源缓启动电路对所述电源变换器进行开机缓启动,其中,所述目标占空比是根据输入电压与预偏置 电压确定的。
根据本公开的另一个实施例,提供了一种电源变换器的预偏置控制装置,包括:
控制模块,设置为在电源变换器的开机缓启动过程中,以预设调节步长调整整流管的占空比,控制续流管驱动与所述整流管驱动相配合;
缓启动模块,设置为在调整后的占空比达到预先确定的目标占空比的情况下,切换为电源缓启动电路,通过所述电源缓启动电路对所述电源变换器进行开机缓启动,其中,所述目标占空比是根据输入电压与预偏置电压确定的。
根据本公开的又一个实施例,还提供了一种计算机可读的存储介质,所述存储介质中存储有计算机程序,其中,所述计算机程序被设置为运行时执行上述任一项方法实施例中的步骤。
根据本公开的又一个实施例,还提供了一种电子装置,包括存储器和处理器,所述存储器中存储有计算机程序,所述处理器被设置为运行所述计算机程序以执行上述任一项方法实施例中的步骤。
附图说明
图1是本公开实施例的电源变换器的预偏置控制方法的移动终端的硬件结构框图;
图2是根据本公开实施例的电源变换器的预偏置控制方法的流程图;
图3是根据本公开实施例的电源变换器的预偏置电压控制方法的流程图;
图4是根据本公开实施例buck电路的预偏置电压控制示意图;
图5是根据本公开实施例buck电路预偏置控制方法的电感电流基本波形的示意图;
图6是根据本公开实施例buck电路预偏置电压控制输出电压的示意图;
图7是根据本公开实施例正激电路的预偏置电压控制的示意图;
图8是根据本公开实施例的采用预偏置电压控制的电源装置的框图;
图9是根据本公开实施例的电源变换器的预偏置控制装置的框图。
具体实施方式
下文中将参考附图并结合实施例来详细说明本公开的实施例。
需要说明的是,本公开的说明书和权利要求书及上述附图中的术语“第一”、“第二”等是用于区别类似的对象,而不必用于描述特定的顺序或先后次序。
本公开实施例中所提供的方法实施例可以在移动终端、计算机终端或者类似的运算装置中执行。以运行在移动终端上为例,图1是本公开实施例的电源变换器的预偏置控制方法的移动终端的硬件结构框图,如图1所示,移动终端可以包括一个或多个(图1中仅示出一个)处理器102(处理器102可以包括但不限于微处理器MCU或可编程逻辑器件FPGA等的处理装置)和用于存储数据的存储器104,其中,上述移动终端还可以包括用于通信功能的传输设备106以及输入输出设备108。本领域普通技术人员可以理解,图1所示的结构仅为示意,其并不对上述移动终端的结构造成限定。例如,移动终端还可包括比图1中所示更多或者更少的组件,或者具有与图1所示不同的配置。
存储器104可用于存储计算机程序,例如,应用软件的软件程序以及模块,如本公开实 施例中的电源变换器的预偏置控制方法对应的计算机程序,处理器102通过运行存储在存储器104内的计算机程序,从而执行各种功能应用以及业务链地址池切片处理,即实现上述的方法。存储器104可包括高速随机存储器,还可包括非易失性存储器,如一个或者多个磁性存储装置、闪存、或者其他非易失性固态存储器。在一些实例中,存储器104可进一步包括相对于处理器102远程设置的存储器,这些远程存储器可以通过网络连接至移动终端。上述网络的实例包括但不限于互联网、企业内部网、局域网、移动通信网及其组合。
传输装置106用于经由一个网络接收或者发送数据。上述的网络具体实例可包括移动终端的通信供应商提供的无线网络。在一个实例中,传输装置106包括一个网络适配器(Network Interface Controller,简称为NIC),其可通过基站与其他网络设备相连从而可与互联网进行通讯。在一个实例中,传输装置106可以为射频(Radio Frequency,简称为RF)模块,其用于通过无线方式与互联网进行通讯。
在本实施例中提供了一种运行于上述移动终端或网络架构的电源变换器的预偏置控制方法,图2是根据本公开实施例的电源变换器的预偏置控制方法的流程图,如图2所示,该流程至少包括,但不限于如下步骤:
步骤S202,在电源变换器的开机缓启动过程中,以预设调节步长调整整流管的占空比,控制续流管驱动与整流管驱动相配合;
步骤S204,在调整后的占空比达到目标占空比的情况下,切换为电源缓启动电路,通过电源缓启动电路对电源变换器进行开机缓启动,其中,该目标占空比是根据输入电压与预偏置电压确定的,具体确定目标占空比时,还需要考虑电路拓扑,不同电路拓扑计算的方式存在一定的不同,在此不一一针对各种拓扑结构进行列举。
本实施例中,上述步骤SD204具体可以包括:在调整后的占空比达到目标占空比的情况下,将环路控制信号赋予控制电路,以完成电源变换器的开机缓启动,其中,该环路控制信号用于控制整流管的占空比的大小。
通过上述步骤S202至S204,可以解决相关技术中电源变换器预偏置启动时,同步整流状态时会导致输出电压出现跌坑,甚至启机失败的问题,避免输出电压出现跌坑,确保电源变换器成功启动。
本实施例中,上述步骤S202具体可以包括:重复以下步骤,直到整流管的占空比达到目标占空比:
以预设调节步长调整整流管的占空比;
控制整流管基于调整后的占空比驱动,驱动完成后关闭整流管驱动,并开启续流管驱动;
在电感的负向纹波电流的变化差值等于正向纹波电流的变化差值的情况下,关闭续流管驱动;进一步的,确定电感的正向纹波电流的变化差值;检测电感的负向纹波电流的变化差值;在负向纹波电流的变化差值等于正向纹波电流的变化差值的情况下,关闭续流管驱动。
在一可选的实施例中,上述确定电感的正向纹波电流的变化差值,具体可以包括:对于隔离的电源变换器,获取输入电压、开关频率、变压器副边与原边的线圈匝数比、预偏置电压以及预先确定的整流管的初始占空比;基于以下公式确定正向纹波电流的变化差值:IL1(+)=(Vin*Ns/Np-Vo)*mDo1*Tsw/L,Tsw=1/Fsw;
对于非隔离的电源变换器,获取输入电压、开关频率、预偏置电压以及预先确定的整流管的初始占空比;基于以下公式根据输入电压、开关频率、初始占空比以及预偏置电压确定正向纹波电流的变化差值:IL2(+)=(Vin-Vo)*mDo2*Tsw/L;
其中,Vin为输入电压,Vo为预偏置电压,Ns/Np为变压器副边与原边的线圈匝数比,mDo1、mDo2为预设步长,Fsw为开关频率,L为电感的感量,Do1、Do2为初始占空比。
进一步的,对于隔离的电源变换器,可以根据输入电压、预偏置电压以及变压器副边与原边的线圈匝数比确定初始占空比:D01=Vo*Np/(Ns*Vin*n),其中,n为重复的次数(或重复的步长数量);
对于非隔离的电源变换器,可以根据输入电压、预偏置电压确定初始占空比:D02=Vo/(Vin*n),其中n为重复的次数(或重复的步长数量)。
在另一可选的实施例中,对于隔离的电源变换器,获取输入电压、预偏置电压以及变压器副边与原边的线圈匝数比,将预偏置电压与输入电压的比值与变压器副边与原边的线圈匝数比的乘积确定为目标占空比;对于非隔离的电源变换器,获取输入电压、预偏置电压,将预偏置电压与输入电压的比值确定为目标占空比。
本公开实施例可以解决采用同步整流的电源变换器在开机缓启动过程出现不可控的反向电流,导致电源变换器输出电压建立失败的问题,采用本实施例的预偏置控制方案,在电源变换器的开机缓启动过程中,以预设调节步长调整整流管的占空比,控制续流管驱动与整流管驱动相配合,通过调整整流管,根据整流管开通的时间间隔,对续流管开通的时间间隔进行控制,输出电感的电流增加量等于减少量,可以防止采用同步整流电源变换器在预偏置启机情况下从输出电容往电源变换器内部反向泄放能量,从而导致输出电压出现跌坑,甚至启机失败的问题。
图3是根据本公开实施例的电源变换器的预偏置电压控制方法的流程图,如图3所示,包括如下步骤:
S301,根据输入电压,预偏置电压,正常工作时的开关频率,变压器原边和副边的匝比(对于隔离的电源变换器而言),算到达输出电压预偏置点所需的目标占空比D。
S302,计算即将要输出的初始整流管驱动占空比D0下,输出电感正向纹波电流变化差值的大小。根据预先设定的算法,这里的算法指,缓启动电路初始占空比的大小,占空比增加 的步长以及整个占空比展开到预偏置点的次数,比如:比如输出占空比为D0,调节步长,最终占空比为D(对应开关频率达到变换器正常工作时的Fsw),也可以有其他不同的初始占空比及不同的步长;计算即将要输出的初始整流管驱动占空比D0下,输出电感正向纹波电流变化差值的大小;
S303,缓启动功能电路输出驱动信号;
S304,检测电感的输出电流,如果输出电感负向纹波电流变化值与正向纹波电流变化的差值相同时,则关闭续流管驱动。
S305,整流管驱动占空比按照预设步长增加,重复以上步骤,次数先设定的算法决定,直至占空比达到目标占空比D。
S306,将此时的环路控制信号即环路运放的输出电压值或者相对应的数字量(对于数字电源而言)赋予电源的控制电路,其中,环路控制信号用于控制占空比的大小,完成闭环控制的切入。
下面以buck电路为例详细说明该技术方案其中一种缓启动算法控制下的预偏置启动方法。
图4是根据本公开实施例buck电路的预偏置电压控制示意图,如图4所示,buck变换器正常工作时,输入电压为Vin,输出电压预偏置点(即对应上述的预偏置电压)为Vo,开关频率为Fsw,那么,在电源到达预偏置电压Vo时,buck电路所需要的占空比D=Vo/Vin,整流管开通时间为Fsw*D;
图5是根据本公开实施例buck电路预偏置控制方法的电感电流基本波形的示意图,如图5所示,根据预先设定的缓启动算法,缓启动电路输出的一个整流管驱动的占空比D0=Vo/(Vin*n),那么电感的正向电流纹波为:(Vin-Vo)*Do*Tsw/L;检测输出电感的负向电流纹波,至负向电流纹波等于(Vin-Vo)*Do*Tsw/L时,关闭续流管驱动。驱动占空比以D0为步长增加(实际工作时需要考虑整流管再次开通前和续流管关断需要留有死区时间);此时检测输出电感的负向电流纹波,至负向电流纹波等于(Vin-Vo)*2*Do*Tsw/L时,关闭续流管驱动;重复以上步骤,直至完成输出电压,到达预偏置电压,然后将此时的环路输出值赋予电源的控制环路,环路闭环切入完成整个缓启动过程。图6是根据本公开实施例buck电路预偏置电压控制输出电压的示意图,buck电路预偏置控制输出电压启动的基本波形如图6所示。
下面以正激电路为例,详细说明该技术方案的预偏置电压控制方法。
图7是根据本公开实施例正激电路的预偏置电压控制的示意图,如图7所示,正激变换器正常工作时,输入电压为Vin,输出电压预偏置点为Vo,开关频率为Fsw,Tsw=1/Fsw。在 电源达到预偏置电压点Vo时(不考虑导线电阻、二极管导通压降等寄生参数),正激变换器的整流管所需要的占空比D=Vo*Np/(Ns*Vin);Np/Ns为变压器的原边与副边的线圈匝数比,缓启动电路输出的第一个整流管驱动的占空比D0=Vo*Np/(Ns*Vin*n),n重复的次数,那么电感的正向纹波电流的变化差值为:(Vin*Ns/Np-Vo)*Do*Tsw/L;检测输出电感的负向纹波电流,至负向电流纹波等于(Vin*Ns/Np-Vo)*Do*Tsw/L时,关闭续流管驱动。主管和整流管驱动占空比以2*D0为步长增加,(实际工作时需要考虑整流管再次开通前和续流管关断需要留有死区时间),检测的电感的负向电流也需要按照相应步长增加;下一步主管和整流管驱动占空比以3*D0为步长增加,(实际工作时需要考虑整流管再次开通前和续流管关断需要留有死区时间),检测的电感的负向电流也需要按照相应步长增加;重复以上步骤,直至完成输出电压到达预偏置电压,然后将此时的环路输出值赋予电源的控制环路,环路闭环切入完成整个缓启动过程。正激电路的实施例是非线性的,第二步长是2*D0,第三步步长是3*D0;buck电路步长固定为D0。
图8是根据本公开实施例的采用预偏置电压控制的电源装置的框图,如图8所示,包含功率电路、驱动电路和控制电路三部分。控制电路采样输入电压,输出电压和输出电感电流,根据上述提及的预偏置电压控制方法输出驱动信号;驱动电路驱动功率电路的功率管;功率电路接收驱动电路的驱动信号,完成不同输入、输出电压及电流转换。
根据本公开的另一个实施例,还提供了一种电源变换器的预偏置控制装置,图9是根据本公开实施例的电源变换器的预偏置控制装置的框图,如图9所示,包括:
控制模块92,设置为在电源变换器的开机缓启动过程中,以预设调节步长调整整流管的占空比,控制续流管驱动与整流管驱动相配合;
缓启动模块94,设置为在调整后的占空比达到预先确定的目标占空比的情况下,切换为电源缓启动电路,通过电源缓启动电路对电源变换器进行开机缓启动,其中,该目标占空比是根据输入电压与预偏置电压确定的。
在一示例性实施例中,上述控制模块92,还设置为:
重复以下步骤,直到整流管的占空比达到目标占空比:
以预设调节步长调整整流管的占空比;
控制整流管基于调整后的占空比驱动,驱动完成后关闭整流管驱动,并开启续流管驱动;
在电感的负向纹波电流的变化差值等于正向纹波电流的变化差值的情况下,关闭续流管驱动。
在一示例性实施例中,在电感的负向纹波电流的变化差值等于正向纹波电流的变化差值 的情况下,关闭续流管驱动,包括:
确定电感的正向纹波电流的变化差值;
检测电感的负向纹波电流的变化差值;
在负向纹波电流的变化差值等于正向纹波电流的变化差值的情况下,关闭续流管驱动。
在一示例性实施例中,上述的控制模块92,还设置为:
对于隔离的电源变换器,获取输入电压、开关频率、变压器副边与原边的线圈匝数比、预偏置电压以及预先确定的整流管的初始占空比;基于以下公式确定正向纹波电流的变化差值:IL1(+)=(Vin*Ns/Np-Vo)*mDo1*Tsw/L,Tsw=1/Fsw;
对于非隔离的电源变换器,获取输入电压、开关频率、预偏置电压以及预先确定的整流管的初始占空比;基于以下公式根据输入电压、开关频率、初始占空比以及预偏置电压确定正向纹波电流的变化差值:IL2(+)=(Vin-Vo)*mDo2*Tsw/L;
其中,Vin为输入电压,Vo为预偏置电压,Ns/Np为变压器副边与原边的线圈匝数比,mDo1、mDo2为预设步长,Fsw为开关频率,L为电感的感量,Do1、Do2为初始占空比。
在一示例性实施例中,上述控制模块92,还设置为:
对于隔离的电源变换器,获取输入电压、预偏置电压以及变压器副边与原边的线圈匝数比,将预偏置电压与输入电压的比值与变压器副边与原边的线圈匝数比的乘积确定为目标占空比;
对于非隔离的电源变换器,获取输入电压、预偏置电压,将预偏置电压与输入电压的比值确定为目标占空比。
在一示例性实施例中,上述缓启动模块94,还设置为:
在调整后的占空比达到目标占空比的情况下,将环路控制信号赋予控制电路,以完成电源变换器的开机缓启动,其中,该环路控制信号用于控制整流管的占空比的大小。
本公开的实施例还提供了一种计算机可读存储介质,该计算机可读存储介质中存储有计算机程序,其中,该计算机程序被设置为运行时执行上述任一项方法实施例中的步骤。
在一个示例性实施例中,上述计算机可读存储介质可以包括但不限于:U盘、只读存储器(Read-Only Memory,简称为ROM)、随机存取存储器(Random Access Memory,简称为RAM)、移动硬盘、磁碟或者光盘等各种可以存储计算机程序的介质。
本公开的实施例还提供了一种电子装置,包括存储器和处理器,该存储器中存储有计算机程序,该处理器被设置为运行计算机程序以执行上述任一项方法实施例中的步骤。
在一个示例性实施例中,上述电子装置还可以包括传输设备以及输入输出设备,其中,该传输设备和上述处理器连接,该输入输出设备和上述处理器连接。
本实施例中的具体示例可以参考上述实施例及示例性实施方式中所描述的示例,本实施例在此不再赘述。
显然,本领域的技术人员应该明白,上述的本公开的各模块或各步骤可以用通用的计算装置来实现,它们可以集中在单个的计算装置上,或者分布在多个计算装置所组成的网络上,它们可以用计算装置可执行的程序代码来实现,从而,可以将它们存储在存储装置中由计算装置来执行,并且在某些情况下,可以以不同于此处的顺序执行所示出或描述的步骤,或者将它们分别制作成各个集成电路模块,或者将它们中的多个模块或步骤制作成单个集成电路模块来实现。这样,本公开不限制于任何特定的硬件和软件结合。
以上所述仅为本公开的优选实施例而已,并不用于限制本公开,对于本领域的技术人员来说,本公开可以有各种更改和变化。凡在本公开的原则之内,所作的任何修改、等同替换、改进等,均应包含在本公开的保护范围之内。

Claims (10)

  1. 一种电源变换器的预偏置控制方法,包括:
    在电源变换器的开机缓启动过程中,以预设调节步长调整整流管的占空比,控制续流管驱动与所述整流管驱动相配合;
    在调整后的占空比达到目标占空比的情况下,切换为电源缓启动电路,通过所述电源缓启动电路对所述电源变换器进行开机缓启动,其中,所述目标占空比是根据输入电压与预偏置电压确定的。
  2. 根据权利要求1所述的方法,其中,所述以预设调节步长调整整流管的占空比,控制续流管驱动与所述整流管驱动相配合,包括:
    重复以下步骤,直到所述整流管的占空比达到所述目标占空比:
    以预设调节步长调整所述整流管的占空比;
    控制所述整流管基于所述调整后的占空比驱动,驱动完成后关闭所述整流管驱动,并开启所述续流管驱动;
    在电感的负向纹波电流的变化差值等于正向纹波电流的变化差值的情况下,关闭所述续流管驱动。
  3. 根据权利要求2所述的方法,其中,所述在电感的负向纹波电流的变化差值等于正向纹波电流的变化差值的情况下,关闭所述续流管驱动,包括:
    确定所述电感的正向纹波电流的变化差值;
    检测所述电感的负向纹波电流的变化差值;
    在所述负向纹波电流的变化差值等于所述正向纹波电流的变化差值的情况下,关闭所述续流管驱动。
  4. 根据权利要求3所述的方法,其中,所述确定所述电感的正向纹波电流的变化差值,包括:
    对于隔离的电源变换器,获取输入电压、开关频率、变压器副边与原边的线圈匝数比、所述预偏置电压以及预先确定的所述整流管的初始占空比;基于以下公式确定所述正向纹波电流的变化差值:IL1(+)=(Vin*Ns/Np-Vo)*mDo1*Tsw/L,Tsw=1/Fsw;
    对于非隔离的电源变换器,获取输入电压、开关频率、所述预偏置电压以及预先确定的所述整流管的初始占空比;基于以下公式根据所述输入电压、所述开关频率、所述初始占空比以及所述预偏置电压确定所述正向纹波电流的变化差值:IL2(+)=(Vin-Vo)*mDo2*Tsw/L;
    其中,Vin为所述输入电压,Vo为所述预偏置电压,Ns/Np为所述变压器副边与原边的 线圈匝数比,mDo1、mDo2为所述预设步长,Fsw为所述开关频率,L为电感的感量,Do1、Do2为所述初始占空比。
  5. 根据权利要求1所述的方法,其中,所述方法还包括:
    对于隔离的电源变换器,获取输入电压、所述预偏置电压以及变压器副边与原边的线圈匝数比,将所述预偏置电压与所述输入电压的比值与所述变压器副边与原边的线圈匝数比的乘积确定为所述目标占空比;
    对于非隔离的电源变换器,获取输入电压、所述预偏置电压,将所述预偏置电压与所述输入电压的比值确定为所述目标占空比。
  6. 根据权利要求1至5中任一项所述的方法,其中,所述在调整后的占空比达到目标占空比的情况下,切换为电源缓启动电路,通过所述电源缓启动电路对所述电源变换器进行开机缓启动,包括:
    在所述调整后的占空比达到所述目标占空比的情况下,将环路控制信号赋予控制电路,以通过所述电源缓启动电路完成所述电源变换器的开机缓启动,其中,所述环路控制信号用于控制所述整流管的占空比的大小。
  7. 一种电源变换器的预偏置控制装置,其中,包括:
    控制模块,设置为在电源变换器的开机缓启动过程中,以预设调节步长调整整流管的占空比,控制续流管驱动与所述整流管驱动相配合;
    缓启动模块,设置为在调整后的占空比达到预先确定的目标占空比的情况下,切换为电源缓启动电路,通过所述电源缓启动电路对所述电源变换器进行开机缓启动,其中,所述目标占空比是根据输入电压与预偏置电压确定的。
  8. 根据权利要求7所述的装置,其中,所述控制模块,还设置为:
    重复以下步骤,直到所述整流管的占空比达到所述目标占空比:
    以预设调节步长调整所述整流管的占空比;
    控制所述整流管基于所述调整后的占空比驱动,驱动完成后关闭所述整流管驱动,并开启所述续流管驱动;
    在电感的负向纹波电流的变化差值等于正向纹波电流的变化差值的情况下,关闭所述续流管驱动。
  9. 一种计算机可读的存储介质,所述存储介质中存储有计算机程序,其中,所述计算机程序被设置为运行时执行所述权利要求1至6任一项中所述的方法。
  10. 一种电子装置,包括存储器和处理器,所述存储器中存储有计算机程序,所述处理器被设置为运行所述计算机程序以执行所述权利要求1至6任一项中所述的方法。
PCT/CN2022/123243 2021-10-14 2022-09-30 电源变换器的预偏置控制方法及装置 WO2023061251A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202111198589.7A CN115987061A (zh) 2021-10-14 2021-10-14 电源变换器的预偏置控制方法及装置
CN202111198589.7 2021-10-14

Publications (1)

Publication Number Publication Date
WO2023061251A1 true WO2023061251A1 (zh) 2023-04-20

Family

ID=85964806

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/123243 WO2023061251A1 (zh) 2021-10-14 2022-09-30 电源变换器的预偏置控制方法及装置

Country Status (2)

Country Link
CN (1) CN115987061A (zh)
WO (1) WO2023061251A1 (zh)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101860187A (zh) * 2010-05-27 2010-10-13 艾默生网络能源有限公司 一种同步整流变换器的软启动方法及装置
CN102832800A (zh) * 2012-09-19 2012-12-19 北京新雷能科技股份有限公司 一种同步整流变换器
CN109120144A (zh) * 2018-08-29 2019-01-01 电子科技大学 一种dc-dc变换器的软启动控制方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101860187A (zh) * 2010-05-27 2010-10-13 艾默生网络能源有限公司 一种同步整流变换器的软启动方法及装置
CN102832800A (zh) * 2012-09-19 2012-12-19 北京新雷能科技股份有限公司 一种同步整流变换器
CN109120144A (zh) * 2018-08-29 2019-01-01 电子科技大学 一种dc-dc变换器的软启动控制方法

Also Published As

Publication number Publication date
CN115987061A (zh) 2023-04-18

Similar Documents

Publication Publication Date Title
US10291141B1 (en) Flyback converter
US11152866B2 (en) Active clamping flyback circuit and control method thereof
US9054592B2 (en) Synchronous rectifying control method and circuit for isolated switching power supply
US8456868B2 (en) Controller for a resonant switched-mode power converter
US10250145B2 (en) Device for avoiding hard switching in resonant converter and related method
US11201554B2 (en) Flyback power converter and ZVS control circuit and control method thereof
US9748853B1 (en) Semi-dual-active-bridge converter system and methods thereof
US8981740B2 (en) Switching circuit
US10523127B1 (en) Output clamped flyback converter
CN111628632B (zh) 返驰式电源供应电路及其零电压切换控制电路与控制方法
TWI649948B (zh) 具有主動式突波吸收器的控制模組及相關的返馳式電源轉換裝置
US20130182463A1 (en) Valley-detection device for quasi-resonance switching and method using the same
US20110254537A1 (en) Method and Apparatus for Detecting CCM Operation of a Magnetic Device
US10554139B2 (en) Synchronous rectifier applied to a secondary side of a power converter and operational method thereof
CN113726166B (zh) 反激变换器及其控制方法
WO2023061251A1 (zh) 电源变换器的预偏置控制方法及装置
CN113472213A (zh) 一种反激变换器
US10116236B2 (en) Isolated switching mode power supply with message control between SR and primary side, and control method thereof
US9071157B2 (en) High-voltage (HV) startup device
JP2017208961A (ja) ダブルエンド絶縁型のスイッチング電源装置及びその制御方法
JP6485366B2 (ja) 位相シフト方式フルブリッジ型電源回路
CN114389461B (zh) 一种反激准谐振系统的控制方法及相关组件
US20230344341A1 (en) Power supply circuit and light-emitting diode (led) driving system using power supply circuit
WO2022260871A1 (en) Isolated discontinuous current mode and boundary current mode buck converters
JP6775365B2 (ja) 絶縁型スイッチング電源装置、および電源制御装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22880190

Country of ref document: EP

Kind code of ref document: A1