WO2023061056A1 - 一种混凝土浮浆增强物及其制备方法和应用 - Google Patents

一种混凝土浮浆增强物及其制备方法和应用 Download PDF

Info

Publication number
WO2023061056A1
WO2023061056A1 PCT/CN2022/114462 CN2022114462W WO2023061056A1 WO 2023061056 A1 WO2023061056 A1 WO 2023061056A1 CN 2022114462 W CN2022114462 W CN 2022114462W WO 2023061056 A1 WO2023061056 A1 WO 2023061056A1
Authority
WO
WIPO (PCT)
Prior art keywords
reinforcement
laitance
concrete
monomer
graft copolymer
Prior art date
Application number
PCT/CN2022/114462
Other languages
English (en)
French (fr)
Inventor
张武军
谢燕华
曹智毅
彭家全
王书传
Original Assignee
信和新材料(苏州)有限公司
信和新材料股份有限公司
中广核工程有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 信和新材料(苏州)有限公司, 信和新材料股份有限公司, 中广核工程有限公司 filed Critical 信和新材料(苏州)有限公司
Priority to GB2215541.0A priority Critical patent/GB2615156A/en
Publication of WO2023061056A1 publication Critical patent/WO2023061056A1/zh

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D183/00Coating compositions based on macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing silicon, with or without sulfur, nitrogen, oxygen, or carbon only; Coating compositions based on derivatives of such polymers
    • C09D183/10Block or graft copolymers containing polysiloxane sequences
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/45Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements
    • C04B41/46Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements with organic materials
    • C04B41/49Compounds having one or more carbon-to-metal or carbon-to-silicon linkages ; Organo-clay compounds; Organo-silicates, i.e. ortho- or polysilicic acid esters ; Organo-phosphorus compounds; Organo-inorganic complexes
    • C04B41/4905Compounds having one or more carbon-to-metal or carbon-to-silicon linkages ; Organo-clay compounds; Organo-silicates, i.e. ortho- or polysilicic acid esters ; Organo-phosphorus compounds; Organo-inorganic complexes containing silicon
    • C04B41/495Compounds having one or more carbon-to-metal or carbon-to-silicon linkages ; Organo-clay compounds; Organo-silicates, i.e. ortho- or polysilicic acid esters ; Organo-phosphorus compounds; Organo-inorganic complexes containing silicon applied to the substrate as oligomers or polymers
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/60After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone of only artificial stone
    • C04B41/61Coating or impregnation
    • C04B41/62Coating or impregnation with organic materials
    • C04B41/64Compounds having one or more carbon-to-metal of carbon-to-silicon linkages
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G77/00Macromolecular compounds obtained by reactions forming a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon in the main chain of the macromolecule
    • C08G77/42Block-or graft-polymers containing polysiloxane sequences
    • C08G77/442Block-or graft-polymers containing polysiloxane sequences containing vinyl polymer sequences

Definitions

  • the application belongs to the technical field of functional polymer materials, and in particular relates to a concrete laitance reinforcement and its preparation method and application.
  • Concrete laitance is a soft layer of material that floats on the surface of the castable material caused by bleeding when the cement hardens.
  • the strength of the laitance is much lower than that of the concrete body.
  • Slurry grinding has high work intensity and low efficiency, which greatly reduces the efficiency of coating construction.
  • it is currently a common solution to treat and strengthen concrete laitance with concrete surface treatment agents or interface agents.
  • thermoplastic copolymer emulsions or silane-based surface treatment agents are generally used for the treatment of concrete surfaces.
  • the small molecular structure of silane can penetrate the surface of the laitance and penetrate into the interior of the concrete, making the laitance denser and enhancing the cohesive strength of the laitance and the body; the copolymer emulsion has excellent permeability and can fully infiltrate the base material of the wall On the surface, make the base layer dense through gluing, improve the interface adhesion, and improve the bonding strength of the wall surface.
  • the concrete surface is hydrophobic, which reduces the interlayer wettability of subsequent coatings, making subsequent coatings prone to poor adhesion, with interlayer adhesion ⁇ 1.5MPa; and copolymers Emulsion is thermoplastic, and its heat resistance is not high. High and low temperature changes will cause thermal creep and shrinkage, which does not meet the use requirements of some high temperature resistant scenarios. For example, coatings used in the nuclear protection field require a temperature resistance of 120°C.
  • the technical problem to be solved in this application is to overcome defects such as low interlayer adhesion and low heat resistance of existing concrete surface treatment agents in the prior art, thereby providing a concrete laitance reinforcement and its preparation method and application.
  • the application provides a concrete laitance reinforcement, including 75-80 parts by mass of the main agent and 20-25 parts by mass of the curing agent;
  • the main agent includes structural units of epoxy silane monomers, silanol monomers, and silicone-acrylic graft copolymers.
  • the mass ratio of the epoxy silane monomer, the silanol monomer, and the silacyl acrylic graft copolymer is 8-30:5-20:100.
  • the silanol monomer is vinyltrimethoxysilane hydrolyzate, vinyltriethoxysilane hydrolyzate, trimethoxymethylsilane hydrolyzate, triethoxymethylsilane hydrolyzate at least one of .
  • the silicone-acrylic graft copolymer is a silicone acrylate graft copolymer emulsion, which can be a commercially available product or can be obtained by self-made;
  • the silicone functional monomer content in the silicone-acrylic graft copolymer is 0.4-2.5wt%, optionally 0.5-1.3wt%;
  • the particle size of the silicone acrylate graft copolymer emulsion is 0.03-0.2 ⁇ m, and optionally, the particle size is 0.05-0.15 ⁇ m;
  • the minimum film forming temperature (MFT) of the silicone acrylate graft copolymer emulsion is 20-30°C.
  • the epoxysilane monomer is ⁇ -(2,3-glycidoxy)propyltrimethoxysilane, ⁇ -(2,3-glycidoxy)propyltriethoxy Silane, ⁇ -(2,3-glycidoxy)propylmethyldimethoxysilane, ⁇ -(2,3-glycidoxy)propylmethyldiethoxysilane, ⁇ -(3 , at least one of 4-epoxycyclohexyl)ethyltrimethoxysilane and ⁇ -(3,4-epoxycyclohexyl)ethyltriethoxysilane.
  • the curing agent is at least one of an alicyclic amine curing agent, a polyamide curing agent, a phenalkamine curing agent or a polythiol curing agent;
  • the specific selection of the curing agent can be conventional commercially available products, for example, the cycloaliphatic amine is Beckocure EH623W or Beckocure EH659W;
  • the polyamide is Aradur435 or Aradur340;
  • the phenalkamine is 5034W
  • the polythiol is QE-340M, Thioplast G4 or GL1830.
  • the application also provides a method for preparing the above-mentioned concrete laitance reinforcement, comprising the steps of:
  • silicone-acrylic graft copolymer silanol monomer, epoxy silane monomer with water, and condense at 50-65°C for 1-2 hours to obtain the main agent;
  • the main agent and curing agent are packaged separately in proportion to obtain the concrete laitance reinforcement.
  • the mass ratio of the silicone-acrylic graft copolymer, silanol monomer, epoxysilane monomer and water is 100:5-20:8-30:50-70.
  • the preparation method of the silanol monomer is as follows: heating the solvent to 55-65°C, adding silane dropwise under the condition of stirring, controlling the dropping time of silane to be 3-4h, at 60-65°C Insulated for 3-4h to obtain the silanol monomer;
  • the solvent is a mixture of ethanol, water, and ammonia, and the mass ratio of the three is (20-35):(80-65):(0.08-0.2);
  • the mass ratio of solvent to silane is 10:(1-5).
  • the preparation method of the silanol monomer is: add measured ethanol/water/ammonia (20-35/80-65/0.08-0.2) to the reaction with stirring, thermocouple and dripping device Heat the kettle to 55-65°C, start adding silane dropwise, control the material to be added within 3-4h, and continue to keep warm at 60-65°C for 3-4h to obtain silanol sol.
  • the present application also provides an application of the above-mentioned concrete laitance reinforcement or the concrete laitance reinforcement prepared by the above-mentioned preparation method.
  • the main agent and the curing agent are mixed evenly in proportion, coated on the concrete surface, and cured at room temperature.
  • the concrete laitance reinforcement provided by the application includes 75-80 parts by mass of main agent and 20-25 parts by mass of curing agent; wherein, the main agent includes epoxy silane monomer, silanol monomer, silicon acrylic Structural unit of branched copolymers.
  • the concrete laitance reinforcement provided by this application is a graft copolymerized epoxy concrete laitance reinforcement containing multifunctional groups.
  • the main agent is a submicron grafted multifunctional resin with a particle size of 0.05-0.2 ⁇ m, and its silanol structural unit It has excellent penetration to the laitance and the interior, and is coupled with the surface OH to enhance the base strength of the laitance and improve the tensile cohesive strength of the laitance on the concrete surface.
  • the construction coating also has good performance when the laitance does not need to be polished.
  • the main agent has good wetting and adhesion to the concrete base and the subsequent coating, so that the adhesion of the supporting protective coating is ⁇ 1.5MPa.
  • the main agent can be cross-linked to obtain a thermosetting
  • the coating film can improve the heat resistance and creep resistance of the reinforcement, improve its heat resistance performance, and can meet the heat resistance requirements of the coating with a temperature resistance of 120°C and 200h.
  • the silanol monomers are vinyltrimethoxysilane, vinyltriethoxysilane hydrolyzate, trimethoxymethylsilane hydrolyzate, triethoxymethyl at least one of silane hydrolyzates.
  • the hydrolyzate has the characteristics of large penetration depth to the floating slurry and good wettability with the floating slurry, and can bring about the effect of reinforcing the cohesive strength of the floating slurry.
  • the concrete laitance reinforcement provided by the application has the advantages of increasing the adhesion between the laitance and the back coating, forming a thermosetting paint film and increasing heat resistance by further limiting the epoxy silane monomer and the silicone acrylic graft copolymer. Effect.
  • the curing agent is at least one of an alicyclic amine curing agent, a polyamide curing agent, a phenalkamine curing agent or a polymercaptan curing agent.
  • Use amines or mercaptans to cure the main agent to form a cross-linked thermosetting coating film improve the heat resistance and temperature resistance and creep of the treatment agent, and meet the high temperature conditions of 120°C and 200h (GB/T1735). Requirements, to further improve the heat resistance of the reinforcement.
  • the laitance does not need to be polished or even polished in actual engineering applications.
  • the reinforcement is sprayed or rolled on the concrete surface and cured at room temperature. It is easy to use.
  • the construction material also has good strength, so that the adhesion of the supporting protective coating is ⁇ 1.5MPa (GB/T5210), which meets the use requirements under the high temperature conditions of 120°C and 200h (GB/T1735).
  • This embodiment provides a preparation method of concrete reinforcement, the specific preparation method is as follows:
  • silanol monomers add 100g of ethanol/water/ammonia (mass ratio 30/70/0.1) to a reactor equipped with stirring, thermocouple and dripping device, raise the temperature to 55°C, and start to drop 30g of vinyl Trimethoxysilane. Control the material addition rate to complete the addition within 3 hours, and control the temperature to 60°C. After the dropwise addition, continue to keep warm at 60°C for 3.5 hours to obtain the silanol sol, which is the silanol monomer.
  • ethanol/water/ammonia mass ratio 30/70/0.1
  • silicone acrylic graft copolymer (RS-996KD, MFT22°C), 10g of silanol monomer, 20g of epoxy silane monomer ⁇ -(2,3-glycidoxy)propyltrimethoxysilane with Mix with 65g of water, and condense at 62°C for 1.5h to obtain the main ingredient;
  • This embodiment provides a preparation method of concrete reinforcement, the specific preparation method is as follows:
  • silanol monomers Add 100g of ethanol/water/ammonia (mass ratio 30/70/0.1) to a reactor equipped with a stirring, thermocouple and dripping device, raise the temperature to 60°C, and start to drop 25 vinyl Trimethoxysilane. Control the material addition rate in 3.5 hours, and control the temperature at 65°C. After the dropwise addition, continue to keep warm at 65°C for 3.5h to obtain silanol sol.
  • silicone acrylic graft copolymer (RS-996KD, MFT22°C), 15g of silanol monomer, 25g of epoxysilane monomer ⁇ -(2,3-glycidyloxy)propyltrimethoxysilane with Mix 55g of water, and condense at 60°C for 2 hours to obtain the main ingredient;
  • This embodiment provides a preparation method of concrete reinforcement, the specific preparation method is as follows:
  • silanol monomers add 100g of ethanol/water/ammonia (mass ratio 30/70/0.1) to a reactor equipped with stirring, thermocouple and dripping device, raise the temperature to 55°C, and start to drop 30g of vinyl Trimethoxysilane. Control the material addition rate to complete the addition within 3 hours, and control the temperature to 60°C. After the dropwise addition, continue to keep warm at 60°C for 4 hours to obtain silanol sol.
  • silicone acrylic graft copolymer (RS-996KD, MFT22°C), 5g of silanol monomer, 30g of epoxy silane monomer ⁇ -(2,3-glycidoxy)propyltrimethoxysilane and Mix with 70g of water, and condense at 50°C for 2 hours to obtain the main ingredient;
  • This embodiment provides a preparation method of concrete reinforcement, the specific preparation method is as follows:
  • silanol monomers Add 100g of ethanol/water/ammonia (mass ratio 30/70/0.1) to a reaction kettle equipped with stirring, thermocouple and dripping device, raise the temperature to 65°C, and start to drop 25g of vinyl Trimethoxysilane. Control the material addition rate to complete the addition within 4 hours, and control the temperature to 65°C. After the dropwise addition, continue to keep warm at 65°C for 3.0h to obtain silanol sol.
  • silicone acrylic graft copolymer (RS-996KD, MFT22°C), 20g of silanol monomer, 8g of epoxysilane monomer ⁇ -(2,3-glycidoxy)propyltrimethoxysilane with Mix 50g of water, and condense at 65°C for 1 hour to obtain the main ingredient;
  • This embodiment provides a preparation method of concrete reinforcement, the specific preparation method is as follows:
  • This embodiment provides a preparation method of concrete reinforcement, the specific preparation method is as follows:
  • Preparation of silanol monomers Add 100g of ethanol/water/ammonia (mass ratio 30/70/0.1) to a reactor equipped with a stirring, thermocouple and dripping device, raise the temperature to 60°C, and start to drop 30g of vinyl Trimethoxysilane. Control the material addition rate to complete the addition within 3 hours, and control the temperature to 60°C. After the dropwise addition, continue to keep warm at 60°C for 3.0h to obtain silanol sol.
  • ethanol/water/ammonia mass ratio 30/70/0.1
  • silicone acrylic graft copolymer (RS-996KD, MFT22°C), 10g of silanol monomer, 20g of epoxy silane monomer ⁇ -(2,3-glycidoxy)propyltrimethoxysilane with Mix with 65g of water, and condense at 62°C for 1.5h to obtain the main ingredient;
  • This embodiment provides a preparation method of concrete reinforcement, the specific preparation method is as follows:
  • silanol monomers add 100g of ethanol/water/ammonia (mass ratio 30/70/0.1) to a reactor equipped with stirring, thermocouple and dripping device, raise the temperature to 55°C, and start to drop 30g of vinyl Triethoxysilane. Control the material addition rate to complete the addition within 3 hours, and control the temperature to 60°C. After the dropwise addition, continue to keep warm at 60°C for 3.5h to obtain silanol sol.
  • silicone acrylic graft copolymer (RS-996KD, MFT22°C), 10g of silanol monomer, 20g of epoxy silane monomer ⁇ -(2,3-glycidoxy)propyltrimethoxysilane with Mix with 65g of water, and condense at 62°C for 1.5h to obtain the main ingredient;
  • This embodiment provides a preparation method of concrete reinforcement, the specific preparation method is as follows:
  • silanol monomers add 100g of ethanol/water/ammonia (mass ratio 30/70/0.1) to a reactor equipped with stirring, thermocouple and dripping device, raise the temperature to 55°C, and start to drop 30g of vinyl Trimethoxysilane. Control the material addition rate to complete the addition within 3 hours, and control the temperature to 60°C. After the dropwise addition, continue to keep warm at 60°C for 3.5h to obtain silanol sol.
  • silicone acrylic graft copolymer (BLJ KD96, MFT 22°C), 10g of silanol monomer, 20g of epoxy silane monomer ⁇ -(2,3-glycidyloxy)propyltrimethoxysilane and Mix with 65g of water, and condense at 62°C for 1.5h to obtain the main ingredient;
  • This embodiment provides a preparation method of concrete reinforcement, the specific preparation method is as follows:
  • silanol monomers add 100g of ethanol/water/ammonia (mass ratio 30/70/0.1) to a reactor equipped with stirring, thermocouple and dripping device, raise the temperature to 55°C, and start to drop 30g of vinyl Trimethoxysilane. Control the material addition rate to complete the addition within 3 hours, and control the temperature to 60°C. After the dropwise addition, continue to keep warm at 60°C for 3.5h to obtain silanol sol.
  • silicone acrylic graft copolymer (RS-996KD, MFT22°C), 10g of silanol monomer, 20g of epoxy silane monomer ⁇ -(2,3-glycidyloxy)propyltriethoxysilane Mix with 65g of water, and condense at 62°C for 1.5h to obtain the main ingredient;
  • This embodiment provides a preparation method of concrete reinforcement, the specific preparation method is as follows:
  • silanol monomers add 100g of ethanol/water/ammonia (mass ratio 30/70/0.1) to a reactor equipped with stirring, thermocouple and dripping device, raise the temperature to 55°C, and start to drop 30g of vinyl Trimethoxysilane. Control the material addition rate to complete the addition within 3 hours, and control the temperature to 60°C. After the dropwise addition, continue to keep warm at 60°C for 3.5h to obtain silanol sol.
  • silicone acrylic graft copolymer (BATF RS-7801, MFT16°C, particle size 0.2-0.3 ⁇ m), 10g of silanol monomer, 20g of epoxy silane monomer ⁇ -(2,3-glycidyloxy ) Propyltrimethoxysilane mixed with 65g of water, and condensed at 65°C for 1.5h to obtain the main ingredient;
  • This comparative example provides a kind of preparation method of concrete reinforcement, and specific preparation method is as follows:
  • silanol monomers add 100g of ethanol/water/ammonia (mass ratio 30/70/0.1) to a reactor equipped with stirring, thermocouple and dripping device, raise the temperature to 55°C, and start to drop 30g of vinyl Trimethoxysilane. Control the material addition rate to complete the addition within 3 hours, and control the temperature to 60°C. After the dropwise addition, continue to keep warm at 60°C for 3.5h to obtain silanol sol.
  • This comparative example provides a kind of preparation method of concrete reinforcement, and specific preparation method is as follows:
  • silanol monomers Add 100g of ethanol/water/ammonia (mass ratio 30/70/0.1) to a reaction kettle equipped with stirring, thermocouple and dripping device, raise the temperature to 55°C, and start adding 30g of orthosilicon dropwise ethyl acetate. Control the material addition rate to complete the addition within 3 hours, and control the temperature to 60°C. After the dropwise addition, continue to keep warm at 60°C for 3.5h to obtain silanol sol.
  • ethanol/water/ammonia mass ratio 30/70/0.1
  • silicone acrylic graft copolymer (RS-996KD, MFT22°C), 10g of silanol monomer, 20g of epoxy silane monomer ⁇ -(2,3-glycidoxy)propyltrimethoxysilane with Mix with 65g of water, and condense at 62°C for 1.5h to obtain the main ingredient;
  • This comparative example provides a kind of preparation method of concrete reinforcement, and specific preparation method is as follows:
  • silanol monomers add 100g of ethanol/water/ammonia (mass ratio 30/70/0.1) to a reactor equipped with stirring, thermocouple and dripping device, raise the temperature to 55°C, and start to drop 30g of vinyl Trimethoxysilane. Control the material addition rate to complete the addition within 3 hours, and control the temperature to 60°C. After the dropwise addition, continue to keep warm at 60°C for 3.5h to obtain silanol sol.
  • silicone acrylic graft copolymer (RS-996KD, MFT22°C), 10g of silanol monomer, 20g of epoxysilane monomer ⁇ -(2,3-glycidoxy)propyltrimethoxysilane with Mix with 65g of water, and condense at 62°C for 1.5h to obtain the main ingredient;
  • the particle size of the main ingredient of the concrete laitance reinforcement prepared in the examples and comparative examples of the present application was tested by a BT-9300ST laser particle size distribution analyzer.
  • the specific composition of the concrete is: GB8076 benchmark concrete pouring block (70x70x20mm), cured for 28 days as required. After simply removing surface pollutants on the surface of the concrete block with 50-grit sandpaper, spray reinforcements on the surface with a spraying amount of 50g/square meter. Then spray the subsequent coating, the spraying amount is 250g/square meter, and the subsequent coating is composed of two-component water-based epoxy coating. After curing at room temperature for 14 days, test the interlayer adhesion according to GB/T5210, and test the temperature resistance (120°C, 200h) performance according to GB/T1735. The specific test results are shown in the table below:
  • Example 1 0.23 1.95 Cracking level 0, blistering level 0, peeling level 0
  • Example 2 0.20 1.80 Cracking level 0, blistering level 0, peeling level 0
  • Example 3 0.17 2.05 Cracking level 0, blistering level 0, peeling level 0
  • Example 4 0.24 2.00 Cracking level 0, blistering level 0, peeling level 0
  • Example 5 0.13 1.45 Cracking level 0, blistering level 0, peeling level 0
  • Example 6 0.20 1.90 Cracking level 0, blistering level 0, peeling level 0
  • Example 7 0.15 2.05 Cracking level 0, blistering level 0, peeling level 0
  • Example 8 0.10 1.70 Cracking level 0, blistering level 0, peeling level 0
  • Example 9 0.18 1.90 Cracking level 0, blistering level 0, peeling level 0
  • Example 10 0.25 1.85 Cracking Level 1, Blistering Level 1, Peeling Level 0 Comparative example 1 0.35 1.60 Cracking level 1, blistering level 2, peeling level 0 Comparative example 2 0.30 1.40 Cracking level 1, blistering level 0, peeling level 1 Comparative example 3 0.18 1.90 Cracking Level 1, Blistering Level 1, Peeling Level 0
  • the graft copolymerized epoxy type concrete laitance reinforcement containing multifunctional groups protected by the application can penetrate into the simply polished concrete surface laitance, increase the strength of the laitance layer, and make it more suitable for subsequent coatings.
  • the layer produces good adhesion ( ⁇ 1.5MPa), and temperature resistance (120 °C, 200h, paint film cracking level 0, blistering level 0, peeling level 0).

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Ceramic Engineering (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Structural Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Wood Science & Technology (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Graft Or Block Polymers (AREA)
  • Epoxy Resins (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)

Abstract

本申请属于功能高分子材料技术领域,具体涉及一种混凝土浮浆增强物及其制备方法和应用。本申请提供的混凝土浮浆增强物是含多官能团的接枝共聚环氧型混凝土浮浆增强物,主剂是粒径在0.05-0.25μm亚微米级接枝多官能树脂,其硅醇结构单元对浮浆和内部具有优异的渗透力,与表面OH耦合增强浮浆基底强度,提高混凝土表面浮浆的拉伸内聚强度,在工程应用中使浮浆不需要打磨干净时施工涂料也具有良好的强度,增强物对混凝土基底和后续涂层都具有良好的润湿附着性,使配套防护涂层的附着力≥1.5MPa,同时,该增强物是交联得到热固型涂膜,提高增强物的耐热性及耐温变蠕动,提高其耐热性能,能够满足120℃、200h的涂层耐温要求。

Description

一种混凝土浮浆增强物及其制备方法和应用
交叉引用
本申请要求在2021年10月15日提交中国国家知识产权局、申请号为202111204874.5、发明名称为“一种混凝土浮浆增强物及其制备方法和应用”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请属于功能高分子材料技术领域,具体涉及一种混凝土浮浆增强物及其制备方法和应用。
背景技术
混凝土浮浆是水泥硬化时泌水造成的在浇注料表面浮起的松软层物质,浮浆的强度大大低于混凝土本体,在工程应用中为了保证混凝土表面施工涂料具有良好的附着力,都需要将浮浆打磨干净。浮浆打磨工作强度高,效率低,极大地降低了涂料施工效率。为了降低浮浆打磨量,甚至无需打磨就可以施工涂料,采用混凝土表面处理剂或界面剂对混凝土浮浆进行处理和强化是目前通行的解决方案。
现有技术中一般采用热塑性的共聚物乳液或硅烷类表面处理剂用于混凝土表面的处理。硅烷的小分子结构可穿透浮浆结性表面,渗透到混凝土内部,使浮浆更加致密,浮浆和本体内聚强度增强;共聚物乳液具有优异的渗透性,能充分浸润墙体基层材料表面,通过胶联使基层密实,提高界面附着力,提高墙体表面的粘接强度。
但是,采用硅烷类表面处理剂处理后,混凝土表面因具有疏水性,降低了后续涂料的层间润湿能力,使后续涂层容易产生附着力不良,层间附着力< 1.5MPa;而共聚物乳液是热塑性的,其耐热性不高,高低温变化会产生热蠕变收缩,不符合一些耐高温场景的使用需求,例如,核防护领域使用的涂料要求耐温120℃。
发明内容
因此,本申请要解决的技术问题在于克服现有技术中的混凝土表面处理剂存在的层间附着力较低,耐热性不高等缺陷,从而提供一种混凝土浮浆增强物及其制备方法和应用。
为此,本申请提供如下技术方案:
本申请提供一种混凝土浮浆增强物,包括主剂75-80质量份和固化剂20-25质量份;
其中,所述主剂包括环氧硅烷类单体,硅醇类单体,硅丙接枝共聚物的结构单元。
可选的,所述环氧硅烷类单体,硅醇类单体,硅丙硅丙接枝共聚物的质量比为8-30:5-20:100。
可选的,所述硅醇类单体为乙烯基三甲氧基硅烷水解物、乙烯基三乙氧基硅烷水解物、三甲氧基甲基硅烷水解物、三乙氧基甲基硅烷水解物中的至少一种。
可选的,所述硅丙接枝共聚物为有机硅丙烯酸酯接枝共聚物乳液,可以为市售产品,也可以通过自制得到;
可选的,所述硅丙接枝共聚物中有机硅功能单体含量为0.4-2.5wt%,可选为0.5-1.3wt%;
可选的,所述有机硅丙烯酸酯接枝共聚物乳液粒径为0.03-0.2μm,可选的, 粒径为0.05-0.15μm;
可选的,所述有机硅丙烯酸酯接枝共聚物乳液最低成膜温度(MFT)为20-30℃。
可选的,所述环氧硅烷类单体为γ-(2,3-环氧丙氧)丙基三甲氧基硅烷、γ-(2,3-环氧丙氧)丙基三乙氧基硅烷、γ-(2,3-环氧丙氧)丙基甲基二甲氧基硅烷、γ-(2,3-环氧丙氧)丙基甲基二乙氧基硅烷、β-(3,4-环氧环己基)乙基三甲氧基硅烷、β-(3,4-环氧环己基)乙基三乙氧基硅烷的至少一种。
可选的,所述固化剂为脂环胺固化剂、聚酰胺固化剂、酚醛胺固化剂或聚硫醇固化剂中的至少一种;
所述固化剂的具体选择可以是常规市售产品,例如,所述脂环胺为Beckocure EH623W或Beckocure EH659W;
所述聚酰胺为Aradur435或Aradur340;
所述酚醛胺为5034W,
所述聚硫醇为QE-340M、Thioplast G4或GL1830。
本申请还提供一种上述混凝土浮浆增强物的制备方法,包括如下步骤:
将硅丙接枝共聚物,硅醇类单体,环氧硅烷类单体与水混合,在50-65℃缩合反应1-2h,得到主剂;
将主剂与固化剂按比例分别包装,即得所述混凝土浮浆增强物。
可选的,所述硅丙接枝共聚物,硅醇类单体,环氧硅烷类单体与水的质量比为100:5-20:8-30:50-70。
可选的,所述硅醇类单体的制备方法为:将溶剂升温至55-65℃,在搅拌 的条件下滴加硅烷,控制硅烷的滴加时间为3-4h,在60-65℃保温3-4h,得所述硅醇单体;
可选的,所述溶剂为乙醇,水,氨的混合物,三者的质量比为(20-35):(80-65):(0.08-0.2);
可选的,溶剂与硅烷的质量比为10:(1-5)。
具体地,所述硅醇类单体的制备方法为:加入计量好的乙醇/水/氨(20-35/80-65/0.08-0.2)于带有搅拌、热电偶和滴液装置的反应釜,升温至55-65℃,开始滴加硅烷,控制物料在3-4h加完,继续在60-65℃保温3-4h,得硅醇溶胶。
本申请还提供一种上述混凝土浮浆增强物或上述制备方法制备得到的混凝土浮浆增强物的应用,施工时将主剂与固化剂按比例混合均匀,涂于混凝土表面,室温固化。
本申请技术方案,具有如下优点:
本申请提供的混凝土浮浆增强物,包括主剂75-80质量份和固化剂20-25质量份;其中,所述主剂包括环氧硅烷类单体,硅醇类单体,硅丙接枝共聚物的结构单元。本申请提供的混凝土浮浆增强物是含多官能团的接枝共聚环氧型混凝土浮浆增强物,主剂是粒径在0.05-0.2μm亚微米级接枝多官能树脂,其硅醇结构单元对浮浆和内部具有优异的渗透力,与表面OH耦合增强浮浆基底强度,提高混凝土表面浮浆的拉伸内聚强度,在工程应用中使浮浆不需要打磨干净时施工涂料也具有良好的强度,主剂对混凝土基底和后续涂层都具有良好的润湿附着性,使配套防护涂层的附着力≥1.5MPa,同时,该主剂与固化剂配合,能够交联得到热固型涂膜,提高增强物的耐热性及耐温变蠕动,提高其耐热性能,能够满足耐温120℃,200h的涂层耐热要求。
本申请提供的混凝土浮浆增强物,所述硅醇类单体为乙烯基三甲氧基硅烷、乙烯基三乙氧基硅烷水解物、三甲氧基甲基硅烷水解物、三乙氧基甲基硅烷水解物中的至少一种。所述水解物具有对浮浆渗透深度大、与浮浆润湿性好特点,能够带来补强浮浆内聚强度效果。
本申请提供的混凝土浮浆增强物,通过对环氧硅烷类单体和硅丙接枝共聚物的进一步限定,具有增加浮浆与后涂层的附着力、形成热固性漆膜增加耐热性的效果。
本申请提供的混凝土浮浆增强物,所述固化剂为脂环胺固化剂、聚酰胺固化剂、酚醛胺固化剂或聚硫醇固化剂中的至少一种。采用胺类或硫醇固化主剂形成交联的热固型涂膜,提高处理剂的耐热性及耐温变蠕动,满足耐温120℃,200h(GB/T1735)的高温条件下的使用要求,更进一步提升增强物的耐热性能。
本申请提供的混凝土浮浆增强物的应用,在实际工程应用中浮浆不需要打磨干净,甚至无需打磨,将所述增强物喷涂或辊涂于混凝土表面上,室温固化即可,使用方便,施工材料也具有良好的强度,使配套防护涂层的附着力≥1.5MPa(GB/T5210),满足耐温120℃,200h(GB/T1735)的高温条件下的使用要求。
具体实施方式
提供下述实施例是为了更好地进一步理解本申请,并不局限于所述最佳实施方式,不对本申请的内容和保护范围构成限制,任何人在本申请的启示下或是将本申请与其他现有技术的特征进行组合而得出的任何与本申请相同或相近似的产品,均落在本申请的保护范围之内。
实施例中未注明具体实验步骤或条件者,按照本领域内的文献所描述的常规实验步骤的操作或条件即可进行。所用试剂或仪器未注明生产厂商者,均为可以通过市购获得的常规试剂产品。
实施例1
本实施例提供一种混凝土增强物的制备方法,具体制备方法如下:
硅醇类单体的制备:加入100g乙醇/水/氨(质量比30/70/0.1)于带有搅拌、热电偶和滴液装置的反应釜,升温至55℃,开始滴加30g乙烯基三甲氧基硅烷。控制物料加入速度在3h加完,温度控制60℃。滴加完后继续60℃保温3.5h,得硅醇溶胶即为硅醇类单体。
将100g硅丙接枝共聚物(RS-996KD,MFT22℃),10g硅醇类单体,20g环氧硅烷类单体γ-(2,3-环氧丙氧)丙基三甲氧基硅烷与65g水混合,在62℃缩合反应1.5h,得到主剂;
将77g主剂与23g固化剂(Beckocure EH623W)按比例分别包装,即得所述混凝土浮浆增强物。
实施例2
本实施例提供一种混凝土增强物的制备方法,具体制备方法如下:
硅醇类单体的制备:加入100g乙醇/水/氨(质量比30/70/0.1)于带有搅拌、热电偶和滴液装置的反应釜,升温至60℃,开始滴加25乙烯基三甲氧基硅烷。控制物料加入速度在3.5h加完,温度控制65℃。滴加完后继续65℃保温3.5h,得硅醇溶胶。
将100g硅丙接枝共聚物(RS-996KD,MFT22℃),15g硅醇类单体,25g环氧硅烷类单体γ-(2,3-环氧丙氧)丙基三甲氧基硅烷与55g水混合,在60℃缩合反应2h,得到主剂;
将78g主剂与22g固化剂(Beckocure EH623W)按比例分别包装,即得所述混凝土浮浆增强物。
实施例3
本实施例提供一种混凝土增强物的制备方法,具体制备方法如下:
硅醇类单体的制备:加入100g乙醇/水/氨(质量比30/70/0.1)于带有搅拌、热电偶和滴液装置的反应釜,升温至55℃,开始滴加30g乙烯基三甲氧基硅烷。控制物料加入速度在3h加完,温度控制60℃。滴加完后继续保温60℃4h,得硅醇溶胶。
将100g硅丙接枝共聚物(RS-996KD,MFT22℃),5g硅醇类单体,30g环氧硅烷类单体γ-(2,3-环氧丙氧)丙基三甲氧基硅烷与70g水混合,在50℃缩合反应2h,得到主剂;
将75g主剂与25g固化剂(Beckocure EH623W)按比例分别包装,即得所述混凝土浮浆增强物。
实施例4
本实施例提供一种混凝土增强物的制备方法,具体制备方法如下:
硅醇类单体的制备:加入100g乙醇/水/氨(质量比30/70/0.1)于带有搅拌、热电偶和滴液装置的反应釜,升温至65℃,开始滴加25g乙烯基三甲氧基硅烷。控制物料加入速度在4h加完,温度控制65℃。滴加完后继续65℃保温3.0h,得硅醇溶胶。
将100g硅丙接枝共聚物(RS-996KD,MFT22℃),20g硅醇类单体,8g环氧硅烷类单体γ-(2,3-环氧丙氧)丙基三甲氧基硅烷与50g水混合,在65℃缩合反应1h,得到主剂;
将80g主剂与20g固化剂(Beckocure EH623W)按比例分别包装,即得所述混凝土浮浆增强物。
实施例5
本实施例提供一种混凝土增强物的制备方法,具体制备方法如下:
将100g硅丙接枝共聚物(RS-996KD,MFT22℃),10g硅醇类单体(Bindzil CC30),20g环氧硅烷类单体γ-(2,3-环氧丙氧)丙基三甲氧基硅烷与65g水混合,在60℃缩合反应1.5h,得到主剂;
将77g主剂与23g固化剂(按Beckocure EH623W)比例分别包装,即得所述混凝土浮浆增强物。
实施例6
本实施例提供一种混凝土增强物的制备方法,具体制备方法如下:
硅醇类单体的制备:加入100g乙醇/水/氨(质量比30/70/0.1)于带有搅拌、热电偶和滴液装置的反应釜,升温至60℃,开始滴加30g乙烯基三甲氧基硅烷。控制物料加入速度在3h加完,温度控制60℃。滴加完后继续60℃保温3.0h,得硅醇溶胶。
将100g硅丙接枝共聚物(RS-996KD,MFT22℃),10g硅醇类单体,20g环氧硅烷类单体γ-(2,3-环氧丙氧)丙基三甲氧基硅烷与65g水混合,在62℃缩合反应1.5h,得到主剂;
将77g主剂与23g固化剂(Aradur435)按比例分别包装,即得所述混凝土浮浆增强物。
实施例7
本实施例提供一种混凝土增强物的制备方法,具体制备方法如下:
硅醇类单体的制备:加入100g乙醇/水/氨(质量比30/70/0.1)于带有搅拌、热电偶和滴液装置的反应釜,升温至55℃,开始滴加30g乙烯基三乙氧基硅烷。控制物料加入速度在3h加完,温度控制60℃。滴加完后继续60℃保温3.5h,得硅醇溶胶。
将100g硅丙接枝共聚物(RS-996KD,MFT22℃),10g硅醇类单体,20g环氧硅烷类单体γ-(2,3-环氧丙氧)丙基三甲氧基硅烷与65g水混合,在62℃缩合反应1.5h,得到主剂;
将77g主剂与23g固化剂(Beckocure EH623W)按比例分别包装,即得所述混凝土浮浆增强物。
实施例8
本实施例提供一种混凝土增强物的制备方法,具体制备方法如下:
硅醇类单体的制备:加入100g乙醇/水/氨(质量比30/70/0.1)于带有搅拌、热电偶和滴液装置的反应釜,升温至55℃,开始滴加30g乙烯基三甲氧基硅烷。控制物料加入速度在3h加完,温度控制60℃。滴加完后继续60℃保温3.5h,得硅醇溶胶。
将100g硅丙接枝共聚物(BLJ KD96,MFT 22℃),10g硅醇类单体,20g环氧硅烷类单体γ-(2,3-环氧丙氧)丙基三甲氧基硅烷与65g水混合,在62℃缩合反应1.5h,得到主剂;
将77g主剂与23g固化剂(Beckocure EH623W)按比例分别包装,即得所述混凝土浮浆增强物。
实施例9
本实施例提供一种混凝土增强物的制备方法,具体制备方法如下:
硅醇类单体的制备:加入100g乙醇/水/氨(质量比30/70/0.1)于带有搅拌、热电偶和滴液装置的反应釜,升温至55℃,开始滴加30g乙烯基三甲氧基硅烷。控制物料加入速度在3h加完,温度控制60℃。滴加完后继续60℃保温3.5h,得硅醇溶胶。
将100g硅丙接枝共聚物(RS-996KD,MFT22℃),10g硅醇类单体,20g 环氧硅烷类单体γ-(2,3-环氧丙氧)丙基三乙氧基硅烷与65g水混合,在62℃缩合反应1.5h,得到主剂;
将77g主剂与23g固化剂(Beckocure EH623W)按比例分别包装,即得所述混凝土浮浆增强物。
实施例10
本实施例提供一种混凝土增强物的制备方法,具体制备方法如下:
硅醇类单体的制备:加入100g乙醇/水/氨(质量比30/70/0.1)于带有搅拌、热电偶和滴液装置的反应釜,升温至55℃,开始滴加30g乙烯基三甲氧基硅烷。控制物料加入速度在3h加完,温度控制60℃。滴加完后继续保温60℃保温3.5h,得硅醇溶胶。
将100g硅丙接枝共聚物(BATF RS-7801,MFT16℃,粒径0.2-0.3μm),10g硅醇类单体,20g环氧硅烷类单体γ-(2,3-环氧丙氧)丙基三甲氧基硅烷与65g水混合,在65℃缩合反应1.5h,得到主剂;
将75g主剂与25g固化剂(Beckocure EH623W)按比例分别包装,即得所述混凝土浮浆增强物。
对比例1
本对比例提供一种混凝土增强物的制备方法,具体制备方法如下:
硅醇类单体的制备:加入100g乙醇/水/氨(质量比30/70/0.1)于带有搅拌、热电偶和滴液装置的反应釜,升温至55℃,开始滴加30g乙烯基三甲氧基硅烷。控制物料加入速度在3h加完,温度控制60℃。滴加完后继续60℃保温3.5h,得硅醇溶胶。
将100g苯丙共聚物(Primal DC-420,MFT29℃),10g硅醇类单体,20g 环氧硅烷类单体γ-(2,3-环氧丙氧)丙基三甲氧基硅烷与65g水混合,在62℃缩合反应1.5h,得到主剂;
将77g主剂与23g固化剂(Beckocure EH623W)按比例分别包装,即得所述混凝土浮浆增强物。
对比例2
本对比例提供一种混凝土增强物的制备方法,具体制备方法如下:
硅醇类单体的制备:加入100g乙醇/水/氨(质量比30/70/0.1)于带有搅拌、热电偶和滴液装置的反应釜,升温至55℃,开始滴加30g正硅酸乙酯。控制物料加入速度在3h加完,温度控制60℃。滴加完后继续60℃保温3.5h,得硅醇溶胶。
将100g硅丙接枝共聚物(RS-996KD,MFT22℃),10g硅醇类单体,20g环氧硅烷类单体γ-(2,3-环氧丙氧)丙基三甲氧基硅烷与65g水混合,在62℃缩合反应1.5h,得到主剂;
将77g主剂与23g固化剂(Beckocure EH623W)按比例分别包装,即得所述混凝土浮浆增强物。
对比例3
本对比例提供一种混凝土增强物的制备方法,具体制备方法如下:
硅醇类单体的制备:加入100g乙醇/水/氨(质量比30/70/0.1)于带有搅拌、热电偶和滴液装置的反应釜,升温至55℃,开始滴加30g乙烯基三甲氧基硅烷。控制物料加入速度在3h加完,温度控制60℃。滴加完后继续60℃保温3.5h,得硅醇溶胶。
将100g硅丙接枝共聚物(RS-996KD,MFT22℃),10g硅醇类单体,20g 环氧硅烷类单体γ-(2,3-环氧丙氧)丙基三甲氧基硅烷与65g水混合,在62℃缩合反应1.5h,得到主剂;
将70g主剂与30g固化剂(Beckocure EH623W)按比例分别包装,即得所述混凝土浮浆增强物。
实验例
将本申请实施例和对比例制备得到的混凝土浮浆增强物的主剂采用BT-9300ST激光粒度分布仪测试其粒径。混凝土的具体组成为:GB8076的基准混凝土浇筑块(70x70x20mm),按要求养护28天。将混凝土块表面用50目砂纸简单去除表面污染物后,喷涂增强物于其表面,喷涂量为50g/平米。然后喷涂后续涂层,喷涂量为250g/平米,后续涂层组成为双组份水性环氧涂料。室温养护14天后,依据GB/T5210测试层间附着力,依据GB/T1735测试耐温(120℃、200h)性能。具体测试结果见下表:
表1
  主剂粒径/D 90 层间附着力/MPa 耐温性能(120℃、200h)
实施例1 0.23 1.95 开裂0级、起泡0级、剥落0级
实施例2 0.20 1.80 开裂0级、起泡0级、剥落0级
实施例3 0.17 2.05 开裂0级、起泡0级、剥落0级
实施例4 0.24 2.00 开裂0级、起泡0级、剥落0级
实施例5 0.13 1.45 开裂0级、起泡0级、剥落0级
实施例6 0.20 1.90 开裂0级、起泡0级、剥落0级
实施例7 0.15 2.05 开裂0级、起泡0级、剥落0级
实施例8 0.10 1.70 开裂0级、起泡0级、剥落0级
实施例9 0.18 1.90 开裂0级、起泡0级、剥落0级
实施例10 0.25 1.85 开裂1级、起泡1级、剥落0级
对比例1 0.35 1.60 开裂1级、起泡2级、剥落0级
对比例2 0.30 1.40 开裂1级、起泡0级、剥落1级
对比例3 0.18 1.90 开裂1级、起泡1级、剥落0级
从表中数据可知:本申请申请保护的含多官能团的接枝共聚环氧型混凝土浮浆增强物可以渗透入简单打磨的混凝土表面浮浆中,增加浮浆层的强度,并使与其后续涂层产生良好附着力(≥1.5MPa),及耐温性能(120℃、200h,漆膜开裂0级、起泡0级、剥落0级)。
显然,上述实施例仅仅是为清楚地说明所作的举例,而并非对实施方式的限定。对于所属领域的普通技术人员来说,在上述说明的基础上还可以做出其它不同形式的变化或变动。这里无需也无法对所有的实施方式予以穷举。而由此所引申出的显而易见的变化或变动仍处于本申请创造的保护范围之中。

Claims (11)

  1. 一种混凝土浮浆增强物,其特征在于,包括主剂75-80质量份和固化剂20-25质量份;
    其中,所述主剂包括环氧硅烷类单体,硅醇类单体,硅丙接枝共聚物;
    所述硅醇类单体为乙烯基三甲氧基硅烷水解物、乙烯基三乙氧基硅烷水解物、三甲氧基甲基硅烷水解物、三乙氧基甲基硅烷水解物中的至少一种;
    所述硅丙接枝共聚物为有机硅丙烯酸酯接枝共聚物乳液;所述有机硅丙烯酸酯接枝共聚物乳液粒径为0.03-0.2μm,所述有机硅丙烯酸酯接枝共聚物乳液最低成膜温度(MFT)为20-30℃。
  2. 根据权利要求1所述的混凝土浮浆增强物,其特征在于,所述环氧硅烷类单体,硅醇类单体,硅丙接枝共聚物的质量比为8-30:5-20:100。
  3. 根据权利要求1或2所述的混凝土浮浆增强物,其特征在于,
    所述硅丙接枝共聚物中有机硅功能单体含量为0.4-2.5wt%。
  4. 根据权利要求1或2所述的混凝土浮浆增强物,其特征在于,所述硅丙接枝共聚物中有机硅功能单体含量为0.5-1.3wt%;
    所述有机硅丙烯酸酯接枝共聚物乳液粒径为0.05-0.15μm。
  5. 根据权利要求1或2所述的混凝土浮浆增强物,其特征在于,所述环氧硅烷类单体为γ-(2,3-环氧丙氧)丙基三甲氧基硅烷、γ-(2,3-环氧丙氧)丙基三乙氧基硅烷、γ-(2,3-环氧丙氧)丙基甲基二甲氧基硅烷、γ-(2,3-环氧丙氧)丙基甲基二乙氧基硅烷、β-(3,4-环氧环己基)乙基三甲氧基硅烷、β-(3,4-环氧环己基)乙基三乙氧基硅烷的至少一种。
  6. 根据权利要求1或2所述的混凝土浮浆增强物,其特征在于,所述固化剂为脂环胺固化剂、聚酰胺固化剂、酚醛胺固化剂或聚硫醇固化剂中的至少一种。
  7. 一种权利要求1-6任一项所述的混凝土浮浆增强物的制备方法,其特征在于,包括如下步骤:
    将硅丙接枝共聚物,硅醇类单体,环氧硅烷类单体与水混合,在50-65℃缩合反应1-2h,得到主剂;
    将主剂与固化剂按比例分别包装,即得所述混凝土浮浆增强物。
  8. 根据权利要求7所述的混凝土浮浆增强物的制备方法,其特征在于,所述硅丙接枝共聚物,硅醇类单体,环氧硅烷类单体与水的质量比为100:5-20:8-30:50-70。
  9. 根据权利要求7所述的混凝土浮浆增强物的制备方法,其特征在于,所述硅醇类单体的制备方法为:将溶剂升温至55-65℃,在搅拌的条件下滴加硅烷,控制硅烷的滴加时间为3-4h,在60-65℃保温3-4h,得所述硅醇单体。
  10. 根据权利要求9所述的混凝土浮浆增强物的制备方法,其特征在于,所述溶剂为乙醇,水,氨的混合物,三者的质量比为(20-35):(80-65):(0.08-0.2)。
  11. 一种权利要求1-6任一项混凝土浮浆增强物或权利要求7-10任一项所述制备方法制备得到的混凝土浮浆增强物的应用,其特征在于,施工时将主剂与固化剂按比例混合均匀,涂于混凝土表面,室温固化。
PCT/CN2022/114462 2021-10-15 2022-08-24 一种混凝土浮浆增强物及其制备方法和应用 WO2023061056A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
GB2215541.0A GB2615156A (en) 2021-10-15 2022-08-24 Concrete laitance reinforcement, preparation method therefor, and application thereof

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202111204874.5 2021-10-15
CN202111204874.5A CN113831839B (zh) 2021-10-15 2021-10-15 一种混凝土浮浆增强物及其制备方法和应用

Publications (1)

Publication Number Publication Date
WO2023061056A1 true WO2023061056A1 (zh) 2023-04-20

Family

ID=78965165

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/114462 WO2023061056A1 (zh) 2021-10-15 2022-08-24 一种混凝土浮浆增强物及其制备方法和应用

Country Status (3)

Country Link
CN (1) CN113831839B (zh)
AR (1) AR127372A1 (zh)
WO (1) WO2023061056A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113831839B (zh) * 2021-10-15 2022-06-10 信和新材料(苏州)有限公司 一种混凝土浮浆增强物及其制备方法和应用
GB2615156A (en) * 2021-10-15 2023-08-02 T&H Novel Mat Suzhou Co Ltd Concrete laitance reinforcement, preparation method therefor, and application thereof

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101982512A (zh) * 2010-09-21 2011-03-02 常州大学 一种硅丙涂料树脂及其制备方法
CN105712657A (zh) * 2015-12-25 2016-06-29 江苏苏博特新材料股份有限公司 水泥混凝土内掺型水性增强剂
US20170327422A1 (en) * 2016-05-12 2017-11-16 Evonik Degussa Gmbh Use of aqueous emulsions based on propylethoxysilane oligomers as an additive in hydraulically setting cement compositions for reduction of shrinkage characteristics
CN108276936A (zh) * 2018-01-24 2018-07-13 广州集泰化工股份有限公司 一种密封胶用底涂液及其制备方法与应用
US20190002349A1 (en) * 2017-06-28 2019-01-03 Gcp Applied Technologies Inc. Early strength enhancing concrete admixture
CN113831839A (zh) * 2021-10-15 2021-12-24 信和新材料(苏州)有限公司 一种混凝土浮浆增强物及其制备方法和应用

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19620668C1 (de) * 1996-05-22 1997-09-11 Feinchemie Gmbh Sebnitz Thermisch härtbarer Mehrkomponenten-Lack
CN101235245B (zh) * 2008-02-02 2010-12-08 厦门大学 一种硅丙涂料的制备方法
CN103626518B (zh) * 2013-12-02 2015-10-07 苏州市建筑科学研究院有限公司 高性能混凝土结构防护用水性有机硅膏体及其制备方法
CN112694854A (zh) * 2020-12-26 2021-04-23 广州市白云化工实业有限公司 密封胶底涂液及其制备方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101982512A (zh) * 2010-09-21 2011-03-02 常州大学 一种硅丙涂料树脂及其制备方法
CN105712657A (zh) * 2015-12-25 2016-06-29 江苏苏博特新材料股份有限公司 水泥混凝土内掺型水性增强剂
US20170327422A1 (en) * 2016-05-12 2017-11-16 Evonik Degussa Gmbh Use of aqueous emulsions based on propylethoxysilane oligomers as an additive in hydraulically setting cement compositions for reduction of shrinkage characteristics
US20190002349A1 (en) * 2017-06-28 2019-01-03 Gcp Applied Technologies Inc. Early strength enhancing concrete admixture
CN108276936A (zh) * 2018-01-24 2018-07-13 广州集泰化工股份有限公司 一种密封胶用底涂液及其制备方法与应用
CN113831839A (zh) * 2021-10-15 2021-12-24 信和新材料(苏州)有限公司 一种混凝土浮浆增强物及其制备方法和应用

Also Published As

Publication number Publication date
CN113831839B (zh) 2022-06-10
CN113831839A (zh) 2021-12-24
AR127372A1 (es) 2024-01-17

Similar Documents

Publication Publication Date Title
WO2023061056A1 (zh) 一种混凝土浮浆增强物及其制备方法和应用
KR100190512B1 (ko) 우수한후막경화성,화학적내성및열쇼크내성을갖는중합체개질코팅조성물
US4435219A (en) Stable inorganic coating composition for adherent, inorganic coatings
KR100227859B1 (ko) 수성도료용 경화성수지조성물
KR0145733B1 (ko) 향상된 화학적 내성을 갖는 수경 시멘트-함유 조성물 제조용 경화가능한 라텍스 조성물
CN109796871B (zh) 一种柔性陶瓷涂料及其制备方法
TWI510574B (zh) 有機無機複合樹脂、含彼之塗料組合物及其應用
RU2741551C2 (ru) Межоперационная грунтовка
JP5206312B2 (ja) 水系塗料
JPWO2003066747A1 (ja) 汚染防止用水性被覆組成物
JP3803171B2 (ja) 複合塗膜およびそれを有する物品
JP2003251269A (ja) 高耐久複層塗膜及びその形成方法並びに外装用建材
JP2637955B2 (ja) 水性被覆用組成物
CN113462261B (zh) 一种半透明封闭型无溶剂环氧底涂复合物
JP2003226835A (ja) 上塗り塗料組成物
CN104893376A (zh) 一种可常温喷涂的瓷膜涂料
JP2004149668A (ja) 水性汚染防止被覆組成物
JP2007146147A (ja) 接着用プライマー組成物及びその使用方法
JPH1171527A (ja) 硬化性重合体水性分散液、その製造方法及び塗料
GB2615156A (en) Concrete laitance reinforcement, preparation method therefor, and application thereof
JP4033762B2 (ja) 被膜積層体の施工方法
JP4352568B2 (ja) 無機質塗装品
WO2015022921A1 (ja) モルタル用水性樹脂分散体、モルタル組成物及びモルタル硬化物
JP2009108124A (ja) 水系塗料
KR100475408B1 (ko) 코팅용조성물

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 202215541

Country of ref document: GB

Kind code of ref document: A

Free format text: PCT FILING DATE = 20220824

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22880003

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE