WO2023060925A1 - 一种钙钛矿太阳能电池结构 - Google Patents

一种钙钛矿太阳能电池结构 Download PDF

Info

Publication number
WO2023060925A1
WO2023060925A1 PCT/CN2022/098612 CN2022098612W WO2023060925A1 WO 2023060925 A1 WO2023060925 A1 WO 2023060925A1 CN 2022098612 W CN2022098612 W CN 2022098612W WO 2023060925 A1 WO2023060925 A1 WO 2023060925A1
Authority
WO
WIPO (PCT)
Prior art keywords
groove
layer
grooves
reticle
transport layer
Prior art date
Application number
PCT/CN2022/098612
Other languages
English (en)
French (fr)
Inventor
董超
秦校军
李梦洁
赵志国
赵东明
夏渊
张赟
李新连
李芳富
冯笑丹
熊继光
Original Assignee
中国华能集团清洁能源技术研究院有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中国华能集团清洁能源技术研究院有限公司 filed Critical 中国华能集团清洁能源技术研究院有限公司
Publication of WO2023060925A1 publication Critical patent/WO2023060925A1/zh

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/549Organic PV cells

Definitions

  • the present application relates to the technical field of photovoltaic power generation, in particular to a perovskite solar cell structure.
  • perovskite solar cells have attracted widespread attention due to their low cost, high efficiency, good flexibility and large-area printing.
  • the perovskite solar cell structure usually includes a stacked glass substrate, a conductive layer, a hole transport layer, a perovskite light absorbing layer, an electron transport layer, and a metal electrode layer.
  • the principle of power generation is based on the photovoltaic phenomenon of the PN junction. Specifically, After the perovskite light-absorbing layer is irradiated by light, it will be excited to form electron-hole pairs, in which negatively charged free electrons enter the metal electrode layer through the electron transport layer, and positively charged holes enter the conductive layer through the hole transport layer. And through the combination of external circuit and electrons, a current loop is formed to complete the transmission of electric energy.
  • perovskite solar cells usually use the P1, P2, P3 laser scribing method commonly used in thin film solar cells to realize the series-parallel connection of sub-cells.
  • the P2 scribed groove runs through the electron transport layer, perovskite light-absorbing layer and holes. The transmission layer, until the conductive layer, and the P2 groove is filled with the metal electrode layer to realize the series-parallel connection between the sub-batteries.
  • the metal electrode layer filled in the P2 groove will directly contact the perovskite light-absorbing layer, which will cause corrosion of the metal electrode and degradation of device performance, seriously affecting the stability of the perovskite solar cell. Therefore, there is an urgent need for a perovskite solar cell structure to avoid the corrosion of the metal electrode and the degradation of device performance due to the direct contact between the metal electrode layer and the perovskite light-absorbing layer.
  • the embodiment of the present application provides a perovskite solar cell structure to avoid corrosion of the metal electrode and degradation of device performance due to direct contact between the metal electrode layer and the perovskite light-absorbing layer.
  • a perovskite solar cell structure comprising: a glass substrate and a laminated structure located on the surface of the glass substrate, the laminated structure has multiple sets of scribed grooves, each set of scribed grooves at least includes a first scribed groove and A second scribe groove nested in the first scribe groove; wherein, the laminated structure sequentially includes in a direction away from the glass substrate:
  • a metal electrode layer located on the surface of the second charge transport layer, and the metal electrode layer fills each of the second line grooves.
  • each set of reticle grooves further includes: a third reticle groove, the third reticle groove runs through the stack composed of the conductive layer and the first charge transport layer, and is covered by the perovskite Light absorbing layer filling;
  • the third scoring grooves are located on the same side of the first scoring grooves.
  • each group of grooves further includes: a third groove, the third groove penetrates through the conductive layer and is filled by the first charge transport layer;
  • the third reticle grooves are located on the same side of the first reticle grooves.
  • each group of reticle grooves further includes: a fourth reticle groove, the fourth reticle groove runs through the metal electrode layer, the second charge transport layer, the perovskite light-absorbing layer and the a stack of first charge transport layers up to said conductive layer;
  • the fourth reticle grooves are located on the side of the first reticle grooves away from the third reticle grooves.
  • the distance between the first groove and the third groove is equal to the distance between the first groove and the fourth groove.
  • the distance between the first reticle groove and the third reticle groove, and the distance between the first reticle groove and the fourth reticle groove are taken as values The range is 30 ⁇ m-50 ⁇ m inclusive.
  • the width of the first reticle groove ranges from 60 ⁇ m to 80 ⁇ m, including endpoints;
  • the width of the second reticle groove ranges from 30 ⁇ m to 40 ⁇ m, including the endpoint values
  • the width of the third reticle groove ranges from 30 ⁇ m to 50 ⁇ m, including the endpoint values
  • the width of the fourth reticle groove ranges from 30 ⁇ m to 50 ⁇ m, including endpoints.
  • the thickness of the perovskite light-absorbing layer ranges from 500 nm to 800 nm, including endpoints.
  • the first charge transport layer is a hole transport layer
  • the hole transport layer is a nickel oxide layer
  • its thickness ranges from 20nm to 50nm, inclusive;
  • the second charge transport layer is an electron transport layer
  • the electron transport layer is a fullerene C60 layer
  • its thickness ranges from 50nm to 70nm, inclusive.
  • the metal electrode layer is a copper layer, an aluminum layer, a silver layer or a gold layer, and its thickness ranges from 100nm to 300nm, inclusive.
  • the perovskite solar cell structure provided in the embodiment of the present application includes: a glass substrate and a laminated structure located on the surface of the glass substrate, the laminated structure sequentially includes a conductive layer, a first Charge transport layer, perovskite light absorbing layer, second charge transport layer and metal electrode layer, and the laminated structure has multiple sets of grooves, each set of grooves at least includes the first groove and nested in the The second grooves in the first grooves; wherein, each of the first grooves runs through the stack composed of the first charge transport layer and the perovskite light-absorbing layer, and is covered by the first groove The second charge transport layer is filled; the second line groove nested in the first line groove runs through the second charge transport layer until the conductive layer is filled with the metal electrode layer, and the second line groove is filled with the metal electrode layer.
  • the sidewalls of the scribed grooves and the sidewalls of the second scribed grooves are isolated by the filled second charge transport layer, that is, by using the first scribed grooves and the
  • the combination of the second reticle groove replaces the P2 reticle groove in the traditional perovskite solar cell structure, so that the metal electrode layer filled in the second reticle groove and the perovskite light-absorbing layer are no longer in direct contact, Instead, it is isolated by the second charge transport layer filled in the first reticle groove, thereby avoiding the corrosion of the metal electrode and the degradation of the device performance due to the direct contact between the metal electrode layer and the perovskite light absorbing layer. It is beneficial to improve the stability of perovskite solar cells.
  • Figure 1 is a schematic diagram of the structure of a traditional perovskite solar cell
  • Fig. 2 is the schematic diagram of the perovskite solar cell structure provided by one embodiment of the present application.
  • FIG. 3 is a schematic diagram of a structure of a perovskite solar cell provided by another embodiment of the present application.
  • FIG 1 shows a schematic diagram of a traditional perovskite solar cell structure, as shown in Figure 1, a perovskite solar cell structure usually includes a laminated glass substrate 01, a conductive layer 02, a hole transport layer 03, and a perovskite light-absorbing layer 04.
  • the electron transport layer 05 and the metal electrode layer 06 wherein, the P1 groove runs through the hole transport layer 03 and the conductive layer 02, so as to divide the conductive layer 02 into a kind of electrode of each sub-cell; the P2 groove runs through the electron The stack composed of the transport layer 05, the perovskite light absorbing layer 04 and the hole transport layer 03, until the conductive layer 02, to divide the stack composed of the electron transport layer 05, the perovskite light absorbing layer 04 and the hole transport layer 03 It is the core structure of each sub-battery, and the metal electrode layer 06 fills the P2 scribed groove, that is, the metal electrode layer 06 is deposited to the conductive layer 02 through the P2 scribed groove, and the current passing through the P2 scribed groove shown in Figure 1 It can be seen from the flow direction that the series-parallel connection between the sub-cells is realized; the P3 groove runs through the stack composed of the metal electrode layer 06, the electron transport layer 05, the perovskite light-absorbing layer 04
  • the metal electrode layer 06 filled in the groove of P2 will be in direct contact with the perovskite light-absorbing layer 04, which will cause corrosion of the metal electrode and degradation of device performance, seriously affecting the performance of the perovskite solar cell. stability. Therefore, there is an urgent need for a perovskite solar cell structure to avoid corrosion of the metal electrode and degradation of device performance due to direct contact between the metal electrode layer 06 and the perovskite light-absorbing layer 04 .
  • the embodiment of the present application provides a perovskite solar cell structure, including: a glass substrate and a stacked structure located on the surface of the glass substrate, and the stacked structure is along the direction away from the glass substrate.
  • the direction includes a conductive layer, a first charge transport layer, a perovskite light absorbing layer, a second charge transport layer and a metal electrode layer in sequence, and the laminated structure has multiple sets of grooves, and each set of grooves includes at least the first Scribing grooves and second scribing grooves nested in the first scribing grooves; wherein, each of the first scribing grooves runs through the first charge transport layer and the perovskite light-absorbing layer stacked, and filled by the second charge transport layer; the second line groove nested in the first line groove penetrates through the second charge transport layer until the conductive layer, and is filled by the The metal electrode layer is filled, and the sidewalls of the first groove and the sidewall of the second groove are separated
  • the perovskite solar cell structure uses the combination of the first groove and the second groove nested in the first groove to replace the traditional perovskite
  • the P2 grooves in the mine solar cell structure because the sidewalls of the first grooves and the sidewalls of the second grooves are separated by the filled second charge transport layer, therefore, the filling of the first grooves
  • the metal electrode layer in the second reticle groove and the perovskite light-absorbing layer are no longer in direct contact, but are isolated by the second charge transport layer filled in the first reticle groove, thereby avoiding
  • the corrosion of metal electrodes and the degradation of device performance caused by direct contact with the perovskite light-absorbing layer are conducive to improving the stability of perovskite solar cells.
  • the embodiment of the present application provides a perovskite solar cell structure.
  • the layer structure 20 has multiple sets of score grooves 30, each set of score grooves 30 at least includes a first score groove 31 and a second score groove 32 nested in the first score groove 31; wherein, the The laminated structure 20 sequentially includes along the direction away from the glass substrate 10:
  • the second groove 32 in the groove 31 runs through the second charge transport layer 24 until the conductive layer 21, the sidewall of the first groove 31 and the sidewall of the second groove 32 are covered by The filled second charge transport layer 24 isolates;
  • the metal electrode layer 25 is located on the surface of the second charge transport layer 24 , and the metal electrode layer 25 fills each of the second line grooves 32 .
  • the first reticle groove 31 runs through the laminate composed of the first charge transport layer 22 and the perovskite light-absorbing layer 23 , that is, the sidewall of the first reticle groove 31 is in contact with the perovskite light-absorbing layer 23;
  • the second reticle groove 32 is nested in the first reticle groove 31, that is, the second The width of the reticle groove 32 is smaller than the width of the first reticle groove 32, and the side walls of the first reticle groove 31 and the side walls of the second reticle groove 32 are filled with the second charge transport layer 24 isolation, so that the metal electrode layer 25 filled in the second reticle groove 32 is not in direct contact with the sidewall of the first reticle groove 31, that is, it is not in direct contact with the perovskite layer 23, but It is isolated by the second charge transport layer 24 filled in the first reticle groove 31, thereby avoiding the corrosion of the metal electrode and the degradation
  • the stacked structure 20 is divided into different sub-cells by each set of grooves 30 , for example, sub-cell n, sub-cell n+1, and sub-cell n+ in FIG. 2 . 2 and so on.
  • the second groove 32 nested in the first groove 31 runs through the second charge transport layer 24 until the conductive layer 21, that is, the second groove 32 penetrates the first groove 32.
  • the charge transport layer 22, the perovskite light absorbing layer 23 and the second charge transport layer 24 are stacked, so that the first charge transport layer 22, the perovskite light absorbing layer 23 and the second charge transport layer
  • the stack composed of two charge transport layers 24 is divided into the core structure of each sub-battery; and, the second groove 32 is filled by the metal electrode layer 25, that is, the metal electrode layer 25 penetrates through the first
  • the second groove 32 is deposited on the conductive layer 21 , and it can be seen from the flow direction of the current passing through the second groove 32 in FIG. 2 , so as to realize the series-parallel connection between the sub-batteries.
  • the present application does not limit the form in which the conductive layer 21 is divided into one electrode of each sub-battery, and the form in which the metal electrode layer 25 is divided into another electrode of each sub-battery. As long as each sub-battery can work normally.
  • first charge transport layer 22 and the second charge transport layer 24 are for transporting electrons or holes formed by excitation of the perovskite light absorbing layer 23 .
  • the first charge transport layer 22 is a hole transport layer
  • the second charge transport layer 24 is an electron transport layer.
  • Layer 22 (hole transport layer) enters the conductive layer 21 and recombines with electrons through an external circuit to form a current loop.
  • the conductive layer 21 is the positive pole of each sub-battery
  • the metal electrode layer 25 is the negative pole of each sub-battery.
  • the current flow through the second groove 32 is as shown in FIG. indicated by the middle arrow.
  • the first charge transport layer 22 is an electron transport layer
  • the second charge transport layer 24 is a hole transport layer
  • the layer 23 is excited to form electron-hole pairs
  • negatively charged free electrons enter the conductive layer 21 through the first charge transport layer 22 (electron transport layer)
  • positively charged holes pass through the second charge transport layer.
  • Layer 24 hole transport layer
  • the metal electrode layer 25 is the positive pole of the sub-battery
  • the conductive layer 21 is the negative pole of each sub-battery
  • the current flowing through the second groove 32 is the same as that shown in FIG. Arrows indicate the opposite.
  • the perovskite solar cell structure provided in the embodiment of the present application is replaced by a combination of the first reticle groove 31 and the second reticle groove 32 nested in the first reticle groove 31
  • the P2 grooves in the traditional perovskite solar cell structure because the sidewalls of the first groove 31 and the sidewalls of the second groove 32 are isolated by the filled second charge transport layer 24, therefore , the metal electrode layer 25 filled in the second reticle groove 32 and the perovskite light-absorbing layer 23 are no longer in direct contact, but are filled by the second charge transport in the first reticle groove 31 layer 24, thereby avoiding metal electrode corrosion and device performance degradation caused by direct contact between the metal electrode layer 25 and the perovskite light-absorbing layer 23, which is conducive to improving the stability of the perovskite solar cell.
  • the groove 33 runs through the laminate composed of the conductive layer 21 and the first charge transport layer 22, and is filled by the perovskite light absorbing layer 23, thereby dividing the conductive layer 21 into a kind of electrode of each sub-cell ;
  • the third reticle groove 33 is located on the same side of the first reticle groove 31, that is, in each group of reticle grooves 30, all according to the third reticle groove 33.
  • the sequence of the first reticle groove 31 is arranged, or both are arranged in the order of the first reticle groove 31 and the third reticle groove 33, so that each sub-battery can be connected in series and parallel.
  • each set of scoring grooves 30 further includes: a third scoring groove 33, and the third scoring groove 33 only penetrates through the conductive layer 21, and is filled with the first charge transport layer 22, thereby also dividing the conductive layer 21 into a kind of electrode of each sub-battery;
  • the third reticle groove 33 is located on the same side of the first reticle groove 31, that is, in each group of reticle grooves 30, all according to the third reticle groove.
  • the grooves 33 and the first grooves 31 are arranged in sequence, or both are arranged in the order of the first grooves 31 and the third grooves 33, so that the sub-batteries can be connected in series and parallel.
  • the third groove 33 no matter whether the third groove 33 only penetrates the conductive layer 21 and is filled by the first charge transport layer 22, or it penetrates the conductive layer 21 and the first charge transport layer
  • the stacked layer composed of the transmission layer 22 and filled with the perovskite light-absorbing layer 23 is to divide the conductive layer 21 into an electrode layer array of each sub-cell through the third groove 33 .
  • Each group of reticle grooves 30 also includes: a fourth reticle groove 34, the fourth reticle groove 34 runs through the metal electrode layer 25, the second charge transport layer 24, the perovskite light absorbing layer 23 and The first charge transport layer 22 is stacked up to the conductive layer 21 to divide the metal electrode layer 25 into another electrode layer array for each sub-battery.
  • the fourth reticle groove 34 is located on the side of the first reticle groove 31 away from the third reticle groove 33, that is, the first reticle groove 31 is located between the third groove 33 and the fourth groove 34, that is, in each group of grooves 30, according to the third groove 33, the first groove 31 and the first groove
  • the four scoring grooves 34 are arranged in sequence, or all are arranged in the order of the fourth scoring groove 34 , the first scoring groove 31 and the third scoring groove 33 , so that the sub-batteries can be connected in series and parallel.
  • perovskite solar cells usually use the P1, P2, and P3 laser scribing processes commonly used in thin-film solar cells to form each set of scribed grooves.
  • the third scribed groove 33 runs through
  • the laminate composed of the conductive layer 21 and the first charge transport layer 22 is taken as an example to illustrate how to form the perovskite solar cell structure provided in the embodiment of the present application.
  • the conductive layer 21 and the first charge transport layer 22 are sequentially formed on the glass substrate 10, and the third grooves 33 are formed by using P1 laser marking, and the depth of the marking runs through the conductive layer 22. layer 21 and the stack of said first charge transport layer 22;
  • the perovskite light-absorbing layer 23 is formed on the surface of the first charge transport layer 22, and the perovskite light-absorbing layer 23 fills each of the third grooves 33, and the first P2 laser engraving Lines form each of the first reticle grooves 31, and the depth of the reticle runs through the stack composed of the first charge transport layer 22 and the perovskite light-absorbing layer 23 until the conductive layer 21;
  • the second charge transport layer 24 is formed on the surface of the perovskite light absorbing layer 23, and the second charge transport layer 24 fills each of the first grooves 31, and the second P2 laser engraving Lines form each of the second grooves 32, the position of the grooves is in each of the first grooves 31, the depth of the grooves penetrates through the second charge transport layer 24, until the conductive layer 21, and the second The width of the second P2 laser scribe line is less than the width of the first P2 laser scribe line, that is, the width of the second scribe line groove 32 is less than the width of the first scribe line groove 31. At this time, each of the first scribe line Both sides of the wire groove 31 are filled with the second charge transport layer 24;
  • the metal electrode layer 25 is formed on the surface of the second charge transport layer 24, and then a P3 laser is used to scribe to form each of the fourth scribe grooves 34, and the depth of the scribe line runs through the metal electrode layer 25, the A stack of the second charge transport layer 24, the perovskite light absorbing layer 23 and the first charge transport layer 22 until the conductive layer 21;
  • the third scoring groove 33 , the first scoring groove 31 and the fourth scoring groove 34 are arranged in sequence.
  • the perovskite solar cell structure provided by the embodiment of the present application by repeating the P2 laser scribing twice, that is, the first P2 laser scribing is wide, and the second P2 laser scribing is narrow, so that Each of the first scribe grooves 31 and the second scribe grooves 32 nested in the first scribe grooves 31 are formed, but the present application is not limited to this, and each of the scribe grooves can also be formed in other ways.
  • the first scribing groove 31 and the second scribing groove 32 nested in the first scribing groove 31 obtain the perovskite solar cell structure provided in the embodiment of the present application, depending on the specific circumstances.
  • each group of reticle grooves 30 in each group of reticle grooves 30, the first reticle groove 31 and the third reticle groove 33 The spacing is equal to the spacing between the first scoring groove 31 and the fourth scoring groove 34 .
  • the distance between the first reticle groove 31 and the third reticle groove 33, and the distance between the first reticle groove 31 and the fourth reticle groove 34 can range in value from 30 ⁇ m to 50 ⁇ m, including the endpoint value, but the present application defines the spacing between the first reticle groove 31 and the third reticle groove 33 , and the first reticle groove 31 and the third reticle groove 33
  • the specific value of the distance between the fourth scoring grooves 34 is not limited, and it depends on the situation.
  • the distance between the first reticle groove 31 and the third reticle groove 33 is the same as the distance between the first reticle groove 31 and the third reticle groove 33.
  • the pitches of the fourth scoring grooves 34 can also be unequal;
  • the spacing of the fourth reticle groove 34 is equal; in some groups of reticle grooves 30, the distance between the first reticle groove 31 and the third reticle groove 33 is the same as that of the first reticle groove 31 and the first reticle groove 31.
  • the pitch of the fourth reticle groove 34 is not equal; even in some groups of reticle grooves 30, the distance between the first reticle groove 31 and the third reticle groove 33, and/or the first reticle groove
  • the distance between the groove 31 and the fourth scoring groove 34 is zero, which is not limited in the present application and depends on the specific situation.
  • the width of the first reticle groove 31 ranges from 60 ⁇ m to 80 ⁇ m, including the endpoint values;
  • the width of the second reticle groove 32 ranges from 30 ⁇ m to 40 ⁇ m, including the endpoint values;
  • the width of the third scribe groove 33 ranges from 30 ⁇ m to 50 ⁇ m, including the endpoint values;
  • the width of the fourth line groove 34 ranges from 30 ⁇ m to 50 ⁇ m, including the endpoints.
  • the specific determination of the width of the first reticle groove 31, the width of the second reticle groove 32, the width of the third reticle groove 33 and the width of the fourth reticle groove 34 in the present application Values are not limited, depending on the situation.
  • the thickness of the perovskite light-absorbing layer 23 ranges from 500 nm to 800 nm, inclusive.
  • the present application does not limit the specific value of the thickness of the perovskite light-absorbing layer 23 , which depends on the specific circumstances.
  • the perovskite light-absorbing layer 23 can be formed on the surface of the first charge transport layer 22 by slit coating, but this application does not limit it, and it depends on the situation.
  • the first charge transport layer 22 is a hole transport layer
  • the hole transport layer is a nickel oxide layer
  • its thickness range can be 20nm-50nm, including the endpoint value; however, this application does not limit the specific value of the thickness of the nickel oxide layer as the hole transport layer, which depends on the situation.
  • the second charge transport layer 24 is an electron transport layer
  • the electron transport layer is a fullerene C60 layer
  • its thickness ranges from 50nm to 70nm, inclusive.
  • this application does not limit the specific value of the thickness of the fullerene C60 layer as the electron transport layer, which depends on the specific circumstances.
  • the nickel oxide layer as a hole transport layer can be formed on the surface of the conductive layer 21 by magnetron sputtering, but this application is not limited to this, depending on the situation depends.
  • the fullerene C60 layer as an electron transport layer can be formed on the surface of the perovskite light-absorbing layer 23 by vacuum evaporation, but this application does not limit it, and it depends on the situation.
  • the metal electrode layer 25 is a copper layer, an aluminum layer, a silver layer or a gold layer, and its thickness ranges from 100nm to 300nm, including endpoint value.
  • the present application does not limit the specific value of the thickness of the metal electrode layer 25, which depends on the specific circumstances.
  • the metal electrode layer 25 can be formed on the surface of the second charge transport layer 24 by vacuum evaporation, but this application does not limit it, and it depends on the specific circumstances.
  • the glass substrate 10 is ITO glass or FTO glass, but this application does not limit it, and it depends on the situation.
  • the first reticle groove 31, the second reticle groove 32, the third reticle groove 33 and the fourth reticle groove 34 can pass through
  • the nanosecond laser is formed by laser scribing.
  • the pulse duration can be 0.1ns-100ns, but the application does not discuss the method of scribing to form the above-mentioned scribing grooves, and the above-mentioned scribing grooves.
  • the conditions of the scoring process of the scoring groove are not limited, and it depends on the specific situation.
  • the conductive layer 21 may be a transparent conductive layer, but this application does not limit it, and it depends on the specific circumstances.
  • the embodiment of the present application provides a perovskite solar cell structure, including: a glass substrate and a laminated structure located on the surface of the glass substrate, the laminated structure sequentially includes conductive layer, a first charge transport layer, a perovskite light-absorbing layer, a second charge transport layer and a metal electrode layer, and the laminated structure has multiple sets of line grooves, each set of line grooves at least includes the first line groove and second scribed grooves nested in the first scribed grooves; wherein, each of the first scribed grooves runs through the stack composed of the first charge transport layer and the perovskite light-absorbing layer, and Filled by the second charge transport layer; the second line groove nested in the first line groove runs through the second charge transport layer until the conductive layer, and is filled by the metal electrode layer , the sidewall of the first reticle groove and the sidewall of the second reticle groove are separated by the filled second charge transport layer, that is, the metal electrode layer filled in the second reticle groove and

Landscapes

  • Photovoltaic Devices (AREA)

Abstract

本申请公开了一种钙钛矿太阳能电池结构,该电池结构包括由依次排布的导电层、第一电荷传输层、钙钛矿吸光层、第二电荷传输层和金属电极层组成的叠层结构,该叠层结构具有多组刻线槽,每组刻线槽至少包括第一刻线槽和嵌套于第一刻线槽内的第二刻线槽;其中,各第一刻线槽贯穿第一电荷传输层和钙钛矿吸光层组成的叠层,并被第二电荷传输层填充;嵌套于第一刻线槽内的第二刻线槽贯穿第二电荷传输层,直至导电层,并被金属电极层填充,第一刻线槽的侧壁和第二刻线槽的侧壁被填充的第二电荷传输层隔离,从而避免由于金属电极层与钙钛矿吸光层直接接触而造成的金属电极的腐蚀以及器件性能的退化,提高钙钛矿太阳能电池的稳定性。

Description

一种钙钛矿太阳能电池结构
本申请要求于2021年10月11日提交中国专利局、申请号为202122446302.X、发明名称为“一种钙钛矿太阳能电池结构”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及光伏发电技术领域,尤其涉及一种钙钛矿太阳能电池结构。
背景技术
近几十年来,各种材料的太阳能电池层出不穷。钙钛矿太阳能电池作为一种新型光伏发电技术,凭借其成本低、效率高、柔性好及可大面积印刷等特点,受到了人们的广泛关注。
钙钛矿太阳能电池结构通常包括层叠的玻璃基底、导电层、空穴传输层、钙钛矿吸光层、电子传输层以及金属电极层,其发电原理是基于PN结的光生伏特现象,具体的,由光照射钙钛矿吸光层后,会激发形成电子-空穴对,其中,带负电的自由电子经过电子传输层进入金属电极层,带正电的空穴经过空穴传输层进入导电层,并通过外电路与电子复合,形成电流回路,从而完成电能的传输。
目前钙钛矿太阳能电池通常采用薄膜太阳能电池常用的P1、P2、P3激光刻线方式来实现子电池的串并联连接,其中,P2刻线槽贯穿电子传输层、钙钛矿吸光层和空穴传输层,直至导电层,且该P2刻线槽被金属电极层所填充,以实现子电池之间的串并联。然而,填充在P2刻线槽内的金属电极层会与钙钛矿吸光层直接接触,从而造成金属电极的腐蚀以及器件性能的退化,严重影响钙钛矿太阳能电池的稳定性。因此,亟需一种钙钛矿 太阳能电池结构,以避免由于金属电极层与钙钛矿吸光层直接接触而造成的金属电极的腐蚀以及器件性能的退化。
本申请内容
为解决上述技术问题,本申请实施例提供了一种钙钛矿太阳能电池结构,以避免由于金属电极层与钙钛矿吸光层直接接触而造成的金属电极的腐蚀以及器件性能的退化。
为实现上述目的,本申请实施例提供了如下技术方案:
一种钙钛矿太阳能电池结构,包括:玻璃基底和位于所述玻璃基底表面的叠层结构,所述叠层结构具有多组刻线槽,每组刻线槽至少包括第一刻线槽和嵌套于所述第一刻线槽内的第二刻线槽;其中,所述叠层结构沿背离所述玻璃基底的方向依次包括:
层叠的导电层、第一电荷传输层和钙钛矿吸光层,其中,各所述第一刻线槽贯穿所述第一电荷传输层和所述钙钛矿吸光层组成的叠层;
位于所述钙钛矿吸光层表面的第二电荷传输层,且所述第二电荷传输层填充各所述第一刻线槽,其中,嵌套于所述第一刻线槽内的第二刻线槽贯穿所述第二电荷传输层,直至所述导电层,所述第一刻线槽的侧壁和所述第二刻线槽的侧壁被填充的第二电荷传输层隔离;
位于所述第二电荷传输层表面的金属电极层,且所述金属电极层填充各所述第二刻线槽。
可选的,每组刻线槽还包括:第三刻线槽,所述第三刻线槽贯穿所述导电层和所述第一电荷传输层组成的叠层,并被所述钙钛矿吸光层填充;
其中,在各组刻线槽中,所述第三刻线槽均位于所述第一刻线槽的同一侧。
可选的,每组刻线槽还包括:第三刻线槽,所述第三刻线槽贯穿所述导电层,并被所述第一电荷传输层填充;
其中,在各组刻线槽中,所述第三刻线槽均位于所述第一刻线槽的同 一侧。
可选的,每组刻线槽还包括:第四刻线槽,所述第四刻线槽贯穿所述金属电极层、所述第二电荷传输层、所述钙钛矿吸光层和所述第一电荷传输层组成的叠层,直至所述导电层;
其中,在各组刻线槽中,所述第四刻线槽均位于所述第一刻线槽背离所述第三刻线槽的一侧。
可选的,在每组刻线槽中,所述第一刻线槽和所述第三刻线槽的间距,与所述第一刻线槽和所述第四刻线槽的间距相等。
可选的,在每组刻线槽中,所述第一刻线槽和所述第三刻线槽的间距,以及所述第一刻线槽和所述第四刻线槽的间距取值范围为30μm-50μm,包括端点值。
可选的,所述第一刻线槽的宽度取值范围为60μm-80μm,包括端点值;
所述第二刻线槽的宽度取值范围为30μm-40μm,包括端点值;
所述第三刻线槽的宽度取值范围为30μm-50μm,包括端点值;
所述第四刻线槽的宽度取值范围为30μm-50μm,包括端点值。
可选的,所述钙钛矿吸光层的厚度取值范围为500nm-800nm,包括端点值。
可选的,所述第一电荷传输层为空穴传输层,该空穴传输层为氧化镍层,其厚度取值范围为20nm-50nm,包括端点值;
所述第二电荷传输层为电子传输层,该电子传输层为富勒烯C60层,其厚度取值范围为50nm-70nm,包括端点值。
可选的,所述金属电极层为铜层、铝层、银层或金层,其厚度取值范围为100nm-300nm,包括端点值。
与现有技术相比,上述技术方案具有以下优点:
本申请实施例所提供的钙钛矿太阳能电池结构,包括:玻璃基底和位于所述玻璃基底表面的叠层结构,所述叠层结构沿背离所述玻璃基底的方 向依次包括导电层、第一电荷传输层、钙钛矿吸光层、第二电荷传输层和金属电极层,且所述叠层结构具有多组刻线槽,每组刻线槽至少包括第一刻线槽和嵌套于所述第一刻线槽内的第二刻线槽;其中,各所述第一刻线槽贯穿所述第一电荷传输层和所述钙钛矿吸光层组成的叠层,并被所述第二电荷传输层填充;嵌套于所述第一刻线槽内的第二刻线槽贯穿所述第二电荷传输层,直至所述导电层,并被所述金属电极层填充,所述第一刻线槽的侧壁和所述第二刻线槽的侧壁被填充的第二电荷传输层隔离,即利用所述第一刻线槽和嵌套于所述第一刻线槽内的第二刻线槽的组合代替传统钙钛矿太阳能电池结构中的P2刻线槽,使得填充在所述第二刻线槽内的金属电极层和所述钙钛矿吸光层不再直接接触,而是被填充在所述第一刻线槽内的第二电荷传输层所隔离,从而避免由于金属电极层与钙钛矿吸光层直接接触而造成的金属电极的腐蚀以及器件性能的退化,有利于提高钙钛矿太阳能电池的稳定性。
附图说明
为了更清楚地说明本申请实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本申请的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1为传统钙钛矿太阳能电池结构的示意图;
图2为本申请一个实施例所提供的钙钛矿太阳能电池结构的示意图;
图3为本申请另一个实施例所提供的钙钛矿太阳能电池结构的示意图。
具体实施方式
图1给出了传统钙钛矿太阳能电池结构的示意图,如图1所示,钙钛 矿太阳能电池结构通常包括层叠的玻璃基底01、导电层02、空穴传输层03、钙钛矿吸光层04、电子传输层05以及金属电极层06,其中,P1刻线槽贯穿空穴传输层03和导电层02,以将导电层02划分为各子电池的一种电极;P2刻线槽贯穿电子传输层05、钙钛矿吸光层04和空穴传输层03组成的叠层,直至导电层02,以将电子传输层05、钙钛矿吸光层04和空穴传输层03组成的叠层划分为各子电池的核心结构,且金属电极层06填充P2刻线槽,即金属电极层06透过P2刻线槽沉积至导电层02,从图1所示的穿过P2刻线槽的电流流向可以看出,以此实现各子电池之间的串并联;P3刻线槽贯穿金属电极层06、电子传输层05、钙钛矿吸光层04和空穴传输层03组成的叠层,直至导电层02,以将金属电极层06划分为各子电池的另一种电极;其中,各子电池例如图1中子电池n、子电池n+1、子电池n+2等所示。
正如背景技术部分所述,填充在P2刻线槽内的金属电极层06会与钙钛矿吸光层04直接接触,从而造成金属电极的腐蚀以及器件性能的退化,严重影响钙钛矿太阳能电池的稳定性。因此,亟需一种钙钛矿太阳能电池结构,以避免由于金属电极层06与钙钛矿吸光层04直接接触而造成的金属电极的腐蚀以及器件性能的退化。
基于上述研究的基础上,本申请实施例提供了一种钙钛矿太阳能电池结构,包括:玻璃基底和位于所述玻璃基底表面的叠层结构,所述叠层结构沿背离所述玻璃基底的方向依次包括导电层、第一电荷传输层、钙钛矿吸光层、第二电荷传输层和金属电极层,且所述叠层结构具有多组刻线槽,每组刻线槽至少包括第一刻线槽和嵌套于所述第一刻线槽内的第二刻线槽;其中,各所述第一刻线槽贯穿所述第一电荷传输层和所述钙钛矿吸光层组成的叠层,并被所述第二电荷传输层填充;嵌套于所述第一刻线槽内的第二刻线槽贯穿所述第二电荷传输层,直至所述导电层,并被所述金属电极层填充,所述第一刻线槽的侧壁和所述第二刻线槽的侧壁被填充的第二电荷传输层隔离。
由此可见,本申请实施例所提供的钙钛矿太阳能电池结构,利用所述第一刻线槽和嵌套于所述第一刻线槽内的第二刻线槽的组合代替传统钙钛矿太阳能电池结构中的P2刻线槽,由于所述第一刻线槽的侧壁和所述第二刻线槽的侧壁被填充的第二电荷传输层隔离,因此,填充在所述第二刻线槽内的金属电极层和所述钙钛矿吸光层不再直接接触,而是被填充在所述第一刻线槽内的第二电荷传输层所隔离,从而避免由于金属电极层与钙钛矿吸光层直接接触而造成的金属电极的腐蚀以及器件性能的退化,有利于提高钙钛矿太阳能电池的稳定性。
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
在下面的描述中阐述了很多具体细节以便于充分理解本申请,但是本申请还可以采用其他不同于在此描述的其它方式来实施,本领域技术人员可以在不违背本申请内涵的情况下做类似推广,因此本申请不受下面公开的具体实施例的限制。
其次,本申请结合示意图进行详细描述,在详述本申请实施例时,为便于说明,表示器件结构的剖面图会不依一般比例作局部放大,而且所述示意图只是示例,其在此不应限制本申请保护的范围。此外,在实际制作中应包含长度、宽度及深度的三维空间尺寸。
本申请实施例提供了一种钙钛矿太阳能电池结构,如图2所示,所述钙钛矿太阳能电池结构包括:玻璃基底10和位于所述玻璃基底表面的叠层结构20,所述叠层结构20具有多组刻线槽30,每组刻线槽30至少包括第一刻线槽31和嵌套于所述第一刻线槽31内的第二刻线槽32;其中,所述叠层结构20沿背离所述玻璃基底10的方向依次包括:
层叠的导电层21、第一电荷传输层22和钙钛矿吸光层23,其中,各 所述第一刻线槽31贯穿所述第一电荷传输层22和所述钙钛矿吸光层23组成的叠层;
位于所述钙钛矿吸光层23表面的第二电荷传输层24,且所述第二电荷传输层24填充各所述第一刻线槽31,其中,嵌套于所述第一刻线槽31内的第二刻线槽32贯穿所述第二电荷传输层24,直至所述导电层21,所述第一刻线槽31的侧壁和所述第二刻线槽32的侧壁被填充的第二电荷传输层24隔离;
位于所述第二电荷传输层24表面的金属电极层25,且所述金属电极层25填充各所述第二刻线槽32。
需要说明的是,如图2所示,在每组刻线槽30中,所述第一刻线槽31贯穿所述第一电荷传输层22和所述钙钛矿吸光层23组成的叠层,即所述第一刻线槽31的侧壁与所述钙钛矿吸光层23接触;所述第二刻线槽32嵌套于所述第一刻线槽31内,即所述第二刻线槽32的宽度小于所述第一刻线槽32的宽度,且所述第一刻线槽31的侧壁和所述第二刻线槽32的侧壁被填充的第二电荷传输层24隔离,使得填充在所述第二刻线槽32内的金属电极层25和所述第一刻线槽31的侧壁不直接接触,即和所述钙钛矿层23不直接接触,而是被填充在所述第一刻线槽31内的第二电荷传输层24隔离,从而避免由于金属电极层25与钙钛矿吸光层23直接接触而造成的金属电极的腐蚀以及器件性能的退化,有利于提高钙钛矿太阳能电池的稳定性。
还需要说明的是,如图2所示,所述叠层结构20被各组刻线槽30划分为不同的子电池,例如图2中子电池n、子电池n+1、子电池n+2等所示。嵌套于所述第一刻线槽31内的第二刻线槽32贯穿所述第二电荷传输层24,直至所述导电层21,即所述第二刻线槽32贯穿所述第一电荷传输层22、所述钙钛矿吸光层23和所述第二电荷传输层24组成的叠层,从而将所述第一电荷传输层22、所述钙钛矿吸光层23和所述第二电荷传输层24组成的叠层划分为各子电池的核心结构;并且,所述第二刻线槽32被 所述金属电极层25所填充,即所述金属电极层25透过所述第二刻线槽32沉积至所述导电层21,从图2中穿过所述第二刻线槽32的电流流向可以看出,以此实现各子电池之间的串并联。
再需要说明的是,本申请对所述导电层21被划分为各子电池一种电极的形式,以及所述金属电极层25被划分为各子电池另一种电极的形式均不做限定,只要使得各子电池能够正常工作即可。
另外,所述第一电荷传输层22和所述第二电荷传输层24为传输由所述钙钛矿吸光层23激发形成的电子或空穴的。可选的,在本申请的一个实施例中,所述第一电荷传输层22为空穴传输层,所述第二电荷传输层24为电子传输层,当光照射所述钙钛矿吸光层23激发形成电子-空穴对后,带负电的自由电子经过所述第二电荷传输层24(电子传输层)进入所述金属电极层25,带正电的空穴经过所述第一电荷传输层22(空穴传输层)进入所述导电层21,并通过外电路与电子复合,形成电流回路。此时,如图2所示,所述导电层21为各子电池的正极,所述金属电极层25为各子电池的负极,穿过所述第二刻线槽32的电流流向如图2中箭头所示。
可选的,在本申请的另一个实施例中,所述第一电荷传输层22为电子传输层,所述第二电荷传输层24为空穴传输层,当光照射所述钙钛矿吸光层23激发形成电子-空穴对后,带负电的自由电子经过所述第一电荷传输层22(电子传输层)进入所述导电层21,带正电的空穴经过所述第二电荷传输层24(空穴传输层)进入所述金属电极层25,并通过外电路与电子复合,形成电流回路。此时,与图2所示相反,所述金属电极层25为子电池的正极,所述导电层21为各子电池的负极,穿过所述第二刻线槽32的电流流向与图2中箭头所示相反。
由此可见,本申请实施例所提供的钙钛矿太阳能电池结构,利用所述第一刻线槽31和嵌套于所述第一刻线槽31内的第二刻线槽32的组合代替传统钙钛矿太阳能电池结构中的P2刻线槽,由于所述第一刻线槽31的侧壁和所述第二刻线槽32的侧壁被填充的第二电荷传输层24隔离,因此, 填充在所述第二刻线槽32内的金属电极层25和所述钙钛矿吸光层23不再直接接触,而是被填充在所述第一刻线槽31内的第二电荷传输层24所隔离,从而避免由于金属电极层25与钙钛矿吸光层23直接接触而造成的金属电极的腐蚀以及器件性能的退化,有利于提高钙钛矿太阳能电池的稳定性。
在上述实施例的基础上,可选的,在本申请的一个实施例中,继续如图2所示,每组刻线槽30还包括:第三刻线槽33,所述第三刻线槽33贯穿所述导电层21和所述第一电荷传输层22组成的叠层,并被所述钙钛矿吸光层23填充,从而将所述导电层21划分为各子电池的一种电极;
其中,在各组刻线槽30中,所述第三刻线槽33均位于所述第一刻线槽31的同一侧,即在各组刻线槽30中,均按照第三刻线槽33、第一刻线槽31的顺序排列,或均按照第一刻线槽31、第三刻线槽33的顺序排列,以使得各子电池能够实现串并联。
可选的,在本申请的另一个实施例中,如图3所示,每组刻线槽30还包括:第三刻线槽33,所述第三刻线槽33只贯穿所述导电层21,并被所述第一电荷传输层22填充,从而也将所述导电层21划分为各子电池的一种电极;
其中,在各组刻线槽30中,所述第三刻线槽33均位于所述第一刻线槽31的同一侧,也即在各组刻线槽30中,均按照第三刻线槽33、第一刻线槽31的顺序排列,或均按照第一刻线槽31、第三刻线槽33的顺序排列,以使得各子电池能够实现串并联。
在前述两个实施例中,无论所述第三刻线槽33只贯穿所述导电层21,并被所述第一电荷传输层22填充,还是贯穿所述导电层21和所述第一电荷传输层22组成的叠层,并被所述钙钛矿吸光层23填充,均为了通过所述第三刻线槽33将所述导电层21划分为各子电池的一种电极层阵列。
进一步地,为了将所述金属电极层25划分为各子电池的另一种电极,在上述任一实施例的基础上,在本申请的一个实施例中,如图2或图3所 示,每组刻线槽30还包括:第四刻线槽34,所述第四刻线槽34贯穿所述金属电极层25、所述第二电荷传输层24、所述钙钛矿吸光层23和所述第一电荷传输层22组成的叠层,直至所述导电层21,以将所述金属电极层25划分为各子电池的另一种电极层阵列。
其中,在各组刻线槽30中,所述第四刻线槽34均位于所述第一刻线槽31背离所述第三刻线槽33的一侧,即所述第一刻线槽31位于所述第三刻线槽33和所述第四刻线槽34之间,也即在各组刻线槽30中,均按照第三刻线槽33、第一刻线槽31和第四刻线槽34的顺序排列,或均按照第四刻线槽34、第一刻线槽31和第三刻线槽33的顺序排列,以使得各子电池能够实现串并联。
考虑到在实际应用中,钙钛矿太阳能电池通常采用薄膜太阳能电池常用的P1、P2、P3激光刻线工序,来形成各组刻线槽,具体的,以所述第三刻线槽33贯穿所述导电层21和所述第一电荷传输层22组成的叠层为例,对如何形成本申请实施例所提供的钙钛矿太阳能电池结构进行说明。
首先,在所述玻璃基底10上依次形成所述导电层21和所述第一电荷传输层22,并利用P1激光刻线形成各所述第三刻线槽33,刻线深度贯穿所述导电层21和所述第一电荷传输层22组成的叠层;
其次,在所述第一电荷传输层22表面形成所述钙钛矿吸光层23,且所述钙钛矿吸光层23填充各所述第三刻线槽33,并利用第一次P2激光刻线形成各所述第一刻线槽31,刻线深度贯穿所述第一电荷传输层22和所述钙钛矿吸光层23组成的叠层,直至所述导电层21;
然后,在所述钙钛矿吸光层23表面形成所述第二电荷传输层24,且所述第二电荷传输层24填充各所述第一刻线槽31,并利用第二次P2激光刻线形成各所述第二刻线槽32,刻线位置处于各所述第一刻线槽31内,刻线深度贯穿所述第二电荷传输层24,直至所述导电层21,且第二次P2激光刻线的宽度小于第一次P2激光刻线的宽度,即所述第二刻线槽32的宽度小于所述第一刻线槽31的宽度,此时,各所述第一刻线槽31内部两 侧均为填充的所述第二电荷传输层24;
最后,在所述第二电荷传输层24表面形成所述金属电极层25,然后利用P3激光刻线形成各所述第四刻线槽34,刻线深度贯穿所述金属电极层25、所述第二电荷传输层24、所述钙钛矿吸光层23和所述第一电荷传输层22组成的叠层,直至所述导电层21;
其中,在各组刻线槽中,所述第三刻线槽33、所述第一刻线槽31和所述第四刻线槽34依次排列。
可见,在形成本申请实施例所提供的钙钛矿太阳能电池结构时,通过两次重复P2激光刻线,即第一次P2激光刻线刻宽,第二次P2激光刻线刻窄,从而形成各所述第一刻线槽31和嵌套于所述第一刻线槽31内的第二刻线槽32,但本申请对此并不做限定,也可以通过其他方式形成各所述第一刻线槽31和嵌套于所述第一刻线槽31内的第二刻线槽32,得到本申请实施例所提供的钙钛矿太阳能电池结构,具体视情况而定。
在上述任一实施例的基础上,可选的,在本申请的一个实施例中,在每组刻线槽30中,所述第一刻线槽31和所述第三刻线槽33的间距,与所述第一刻线槽31和所述第四刻线槽34的间距相等。可选的,在每组刻线槽30中,所述第一刻线槽31和所述第三刻线槽33的间距,以及所述第一刻线槽31和所述第四刻线槽34的间距取值范围可以为30μm-50μm,包括端点值,但本申请对所述第一刻线槽31和所述第三刻线槽33的间距,以及所述第一刻线槽31和所述第四刻线槽34的间距具体取值并不做限定,具体视情况而定。
当然,在本申请的其他实施例中,在每组刻线槽30中,所述第一刻线槽31和所述第三刻线槽33的间距,与所述第一刻线槽31和所述第四刻线槽34的间距也可以不相等;
还可以在各组刻线槽30中,有些组刻线槽30内,所述第一刻线槽31和所述第三刻线槽33的间距,与所述第一刻线槽31和所述第四刻线槽34的间距相等;有些组刻线槽30内,所述第一刻线槽31和所述第三刻线槽 33的间距,与所述第一刻线槽31和所述第四刻线槽34的间距不相等;甚至有些组刻线槽30内,所述第一刻线槽31和所述第三刻线槽33的间距,和/或所述第一刻线槽31和所述第四刻线槽34的间距为零,本申请对此均不做限定,具体视情况而定。
在上述任一实施例的基础上,在本申请的一个实施例中,所述第一刻线槽31的宽度取值范围为60μm-80μm,包括端点值;
所述第二刻线槽32的宽度取值范围为30μm-40μm,包括端点值;
所述第三刻线槽33的宽度取值范围为30μm-50μm,包括端点值;
所述第四刻线槽34的宽度取值范围为30μm-50μm,包括端点值。
但本申请对所述第一刻线槽31的宽度、所述第二刻线槽32的宽度、所述第三刻线槽33的宽度以及所述第四刻线槽34的宽度的具体取值均不做限定,具体视情况而定。
在上述任一实施例的基础上,在本申请的一个实施例中,所述钙钛矿吸光层23的厚度取值范围为500nm-800nm,包括端点值。但本申请对所述钙钛矿吸光层23的厚度的具体取值并不做限定,具体视情况而定。
需要说明的是,所述钙钛矿吸光层23可以在所述第一电荷传输层22表面通过狭缝涂布的方式而形成,但本申请对此并不做限定,具体视情况而定。
在上述任一实施例的基础上,在本申请的一个实施例中,所述第一电荷传输层22为空穴传输层,该空穴传输层为氧化镍层,其厚度取值范围可以为20nm-50nm,包括端点值;但本申请对氧化镍层作为空穴传输层其厚度的具体取值并不做限定,具体视情况而定。
所述第二电荷传输层24为电子传输层,该电子传输层为富勒烯C60层,其厚度取值范围可以为50nm-70nm,包括端点值。但本申请对富勒烯C60层作为电子传输层其厚度的具体取值并不做限定,具体视情况而定。
需要说明的是,在本实施例中,氧化镍层作为空穴传输层可以在所述导电层21表面通过磁控溅射的方式而形成,但本申请对此并不做限定,具 体视情况而定。
富勒烯C60层作为电子传输层可以在所述钙钛矿吸光层23表面通过真空蒸镀的方式而形成,但本申请对此并不做限定,具体视情况而定。
在上述任一实施例的基础上,在本申请的一个实施例中,所述金属电极层25为铜层、铝层、银层或金层,其厚度取值范围可以为100nm-300nm,包括端点值。但本申请对所述金属电极层25的厚度的具体取值并不做限定,具体视情况而定。
需要说明的是,所述金属电极层25可以在所述第二电荷传输层24表面通过真空蒸镀的方式而形成,但本申请对此并不做限定,具体视情况而定。
在上述任一实施例的基础上,在本申请的一个实施例中,所述玻璃基底10为ITO玻璃或FTO玻璃,但本申请对此并不做限定,具体视情况而定。
需要说明的是,在上述各实施例中,所述第一刻线槽31、所述第二刻线槽32、所述第三刻线槽33和所述第四刻线槽34均可以通过纳秒激光器进行激光刻线而形成,在激光刻线的过程中,脉冲持续时间可以为0.1ns-100ns,但本申请对通过何种方式进行刻线而形成上述各刻线槽,以及上述各刻线槽刻线过程的条件均不做限定,具体视情况而定。
还需要说明的是,在上述各实施例中,所述导电层21可以为透明导电层,但本申请对此并不做限定,具体视情况而定。
综上,本申请实施例提供了一种钙钛矿太阳能电池结构,包括:玻璃基底和位于所述玻璃基底表面的叠层结构,所述叠层结构沿背离所述玻璃基底的方向依次包括导电层、第一电荷传输层、钙钛矿吸光层、第二电荷传输层和金属电极层,且所述叠层结构具有多组刻线槽,每组刻线槽至少包括第一刻线槽和嵌套于所述第一刻线槽内的第二刻线槽;其中,各所述第一刻线槽贯穿所述第一电荷传输层和所述钙钛矿吸光层组成的叠层,并被所述第二电荷传输层填充;嵌套于所述第一刻线槽内的第二刻线槽贯穿 所述第二电荷传输层,直至所述导电层,并被所述金属电极层填充,所述第一刻线槽的侧壁和所述第二刻线槽的侧壁被填充的第二电荷传输层隔离,即填充在所述第二刻线槽内的金属电极层和所述钙钛矿吸光层不再直接接触,而是被填充在所述第一刻线槽内的第二电荷传输层所隔离,从而避免由于金属电极层与钙钛矿吸光层直接接触而造成的金属电极的腐蚀以及器件性能的退化,有利于提高钙钛矿太阳能电池的稳定性。
本说明书中各个部分采用并列和递进相结合的方式描述,每个部分重点说明的都是与其他部分的不同之处,各个部分之间相同相似部分互相参见即可。
对所公开的实施例的上述说明,本说明书中各实施例中记载的特征可以相互替换或组合,使本领域专业技术人员能够实现或使用本申请。对这些实施例的多种修改对本领域的专业技术人员来说将是显而易见的,本文中所定义的一般原理可以在不脱离本申请的精神或范围的情况下,在其它实施例中实现。因此,本申请将不会被限制于本文所示的实施例,而是要符合与本文所公开的原理和新颖特点相一致的最宽的范围。

Claims (10)

  1. 一种钙钛矿太阳能电池结构,其特征在于,包括:玻璃基底和位于所述玻璃基底表面的叠层结构,所述叠层结构具有多组刻线槽,每组刻线槽至少包括第一刻线槽和嵌套于所述第一刻线槽内的第二刻线槽;其中,所述叠层结构沿背离所述玻璃基底的方向依次包括:
    层叠的导电层、第一电荷传输层和钙钛矿吸光层,其中,各所述第一刻线槽贯穿所述第一电荷传输层和所述钙钛矿吸光层组成的叠层;
    位于所述钙钛矿吸光层表面的第二电荷传输层,且所述第二电荷传输层填充各所述第一刻线槽,其中,嵌套于所述第一刻线槽内的第二刻线槽贯穿所述第二电荷传输层,直至所述导电层,所述第一刻线槽的侧壁和所述第二刻线槽的侧壁被填充的第二电荷传输层隔离;
    位于所述第二电荷传输层表面的金属电极层,且所述金属电极层填充各所述第二刻线槽。
  2. 根据权利要求1所述的钙钛矿太阳能电池结构,其特征在于,每组刻线槽还包括:第三刻线槽,所述第三刻线槽贯穿所述导电层和所述第一电荷传输层组成的叠层,并被所述钙钛矿吸光层填充;
    其中,在各组刻线槽中,所述第三刻线槽均位于所述第一刻线槽的同一侧。
  3. 根据权利要求1所述的钙钛矿太阳能电池结构,其特征在于,每组刻线槽还包括:第三刻线槽,所述第三刻线槽贯穿所述导电层,并被所述第一电荷传输层填充;
    其中,在各组刻线槽中,所述第三刻线槽均位于所述第一刻线槽的同一侧。
  4. 根据权利要求2或3所述的钙钛矿太阳能电池结构,其特征在于,每组刻线槽还包括:第四刻线槽,所述第四刻线槽贯穿所述金属电极层、所述第二电荷传输层、所述钙钛矿吸光层和所述第一电荷传输层组成的叠 层,直至所述导电层;
    其中,在各组刻线槽中,所述第四刻线槽均位于所述第一刻线槽背离所述第三刻线槽的一侧。
  5. 根据权利要求4所述的钙钛矿太阳能电池结构,其特征在于,在每组刻线槽中,所述第一刻线槽和所述第三刻线槽的间距,与所述第一刻线槽和所述第四刻线槽的间距相等。
  6. 根据权利要求5所述的钙钛矿太阳能电池结构,其特征在于,在每组刻线槽中,所述第一刻线槽和所述第三刻线槽的间距,以及所述第一刻线槽和所述第四刻线槽的间距取值范围为30μm-50μm,包括端点值。
  7. 根据权利要求4所述的钙钛矿太阳能电池结构,其特征在于,所述第一刻线槽的宽度取值范围为60μm-80μm,包括端点值;
    所述第二刻线槽的宽度取值范围为30μm-40μm,包括端点值;
    所述第三刻线槽的宽度取值范围为30μm-50μm,包括端点值;
    所述第四刻线槽的宽度取值范围为30μm-50μm,包括端点值。
  8. 根据权利要求1所述的钙钛矿太阳能电池结构,其特征在于,所述钙钛矿吸光层的厚度取值范围为500nm-800nm,包括端点值。
  9. 根据权利要求1所述的钙钛矿太阳能电池结构,其特征在于,所述第一电荷传输层为空穴传输层,该空穴传输层为氧化镍层,其厚度取值范围为20nm-50nm,包括端点值;
    所述第二电荷传输层为电子传输层,该电子传输层为富勒烯C60层,其厚度取值范围为50nm-70nm,包括端点值。
  10. 根据权利要求1所述的钙钛矿太阳能电池结构,其特征在于,所述金属电极层为铜层、铝层、银层或金层,其厚度取值范围为100nm-300nm,包括端点值。
PCT/CN2022/098612 2021-10-11 2022-06-14 一种钙钛矿太阳能电池结构 WO2023060925A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202122446302.XU CN216120354U (zh) 2021-10-11 2021-10-11 一种钙钛矿太阳能电池结构
CN202122446302.X 2021-10-11

Publications (1)

Publication Number Publication Date
WO2023060925A1 true WO2023060925A1 (zh) 2023-04-20

Family

ID=80692317

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/098612 WO2023060925A1 (zh) 2021-10-11 2022-06-14 一种钙钛矿太阳能电池结构

Country Status (2)

Country Link
CN (1) CN216120354U (zh)
WO (1) WO2023060925A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116600580A (zh) * 2023-07-13 2023-08-15 北京曜能科技有限公司 太阳能电池及其制备方法、太阳能电池组件

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN216120354U (zh) * 2021-10-11 2022-03-22 华能新能源股份有限公司 一种钙钛矿太阳能电池结构

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106910827A (zh) * 2017-02-22 2017-06-30 苏州黎元新能源科技有限公司 一种钙钛矿太阳能电池模块及其制备方法
US20190006540A1 (en) * 2017-06-30 2019-01-03 Panasonic Corporation Solar cell
US20210005832A1 (en) * 2018-03-19 2021-01-07 Lg Electronics Inc. Tandem solar cell manufacturing method
CN112599677A (zh) * 2020-12-15 2021-04-02 华能新能源股份有限公司 一种表面沉积保护层的金属电极及其制备方法和应用
CN216120354U (zh) * 2021-10-11 2022-03-22 华能新能源股份有限公司 一种钙钛矿太阳能电池结构

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106910827A (zh) * 2017-02-22 2017-06-30 苏州黎元新能源科技有限公司 一种钙钛矿太阳能电池模块及其制备方法
US20190006540A1 (en) * 2017-06-30 2019-01-03 Panasonic Corporation Solar cell
US20210005832A1 (en) * 2018-03-19 2021-01-07 Lg Electronics Inc. Tandem solar cell manufacturing method
CN112599677A (zh) * 2020-12-15 2021-04-02 华能新能源股份有限公司 一种表面沉积保护层的金属电极及其制备方法和应用
CN216120354U (zh) * 2021-10-11 2022-03-22 华能新能源股份有限公司 一种钙钛矿太阳能电池结构

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116600580A (zh) * 2023-07-13 2023-08-15 北京曜能科技有限公司 太阳能电池及其制备方法、太阳能电池组件
CN116600580B (zh) * 2023-07-13 2023-11-24 北京曜能科技有限公司 太阳能电池及其制备方法、太阳能电池组件

Also Published As

Publication number Publication date
CN216120354U (zh) 2022-03-22

Similar Documents

Publication Publication Date Title
WO2023060925A1 (zh) 一种钙钛矿太阳能电池结构
WO2023151209A1 (zh) 薄膜太阳能电池组件及其制作方法、用电装置
CN108461551A (zh) 一种太阳能电池片及叠片双玻太阳能电池组件
CN101803038B (zh) 薄膜太阳能电池元件及其制造方法
JP2010045332A (ja) 薄膜形太陽電池及びその製造方法
WO2023060924A1 (zh) 一种薄膜太阳能电池结构及其制备方法
JP2014216652A (ja) 太陽電池
WO2023020515A1 (zh) 异质结太阳能电池及其制作方法、异质结光伏组件
CN110729377A (zh) 一种双面发电异质结太阳能电池的制备方法及其叠瓦模组
CN110071186B (zh) 一种薄膜光伏组件内联结构及生产工艺
CN110890464A (zh) 太阳能电池及其制备方法
WO2020237854A1 (zh) 一种光伏电池阵列及光伏组件
JP2012530377A (ja) 太陽電池及びその製造方法
CN103390660A (zh) 晶体硅太阳能电池及其制作方法
KR101166456B1 (ko) 태양전지 및 그 제조방법
WO2023098038A1 (zh) 一种钙钛矿太阳能电池的柱状电极结构的制备方法
CN213519994U (zh) 一种薄膜太阳能电池
CN111540803B (zh) 一种太阳能电池组件及其制作方法
WO2011093431A1 (ja) 光電変換装置およびその製造方法
CN103390679A (zh) 薄膜太阳能电池及其制作方法
CN113380950A (zh) 一种背接触钙钛矿太阳能电池及其制备方法
CN104254926B (zh) 光伏装置
CN112614941A (zh) 一种降低死区面积的激光划线方法及其钙钛矿电池结构
CN219873547U (zh) 一种复合电极结构
CN217768381U (zh) 一种钙钛矿-hbc叠层双面电池结构