WO2020237854A1 - 一种光伏电池阵列及光伏组件 - Google Patents

一种光伏电池阵列及光伏组件 Download PDF

Info

Publication number
WO2020237854A1
WO2020237854A1 PCT/CN2019/102127 CN2019102127W WO2020237854A1 WO 2020237854 A1 WO2020237854 A1 WO 2020237854A1 CN 2019102127 W CN2019102127 W CN 2019102127W WO 2020237854 A1 WO2020237854 A1 WO 2020237854A1
Authority
WO
WIPO (PCT)
Prior art keywords
cell array
photovoltaic cell
photovoltaic
flexible metal
metal conductive
Prior art date
Application number
PCT/CN2019/102127
Other languages
English (en)
French (fr)
Inventor
王娟
郭志球
孙长振
金浩
Original Assignee
浙江晶科能源有限公司
晶科能源有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN201910454083.4A external-priority patent/CN110061081B/zh
Priority claimed from CN201920785516.XU external-priority patent/CN209607753U/zh
Application filed by 浙江晶科能源有限公司, 晶科能源有限公司 filed Critical 浙江晶科能源有限公司
Priority to JP2020531984A priority Critical patent/JP7209720B2/ja
Priority to US16/766,295 priority patent/US20210408314A1/en
Priority to AU2019382301A priority patent/AU2019382301B2/en
Priority to EP19883328.7A priority patent/EP3790060A1/en
Publication of WO2020237854A1 publication Critical patent/WO2020237854A1/zh
Priority to US18/110,132 priority patent/US20230223489A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/06Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers
    • H01L31/068Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers the potential barriers being only of the PN homojunction type, e.g. bulk silicon PN homojunction solar cells or thin film polycrystalline silicon PN homojunction solar cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/042PV modules or arrays of single PV cells
    • H01L31/05Electrical interconnection means between PV cells inside the PV module, e.g. series connection of PV cells
    • H01L31/0504Electrical interconnection means between PV cells inside the PV module, e.g. series connection of PV cells specially adapted for series or parallel connection of solar cells in a module
    • H01L31/0512Electrical interconnection means between PV cells inside the PV module, e.g. series connection of PV cells specially adapted for series or parallel connection of solar cells in a module made of a particular material or composition of materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0224Electrodes
    • H01L31/022408Electrodes for devices characterised by at least one potential jump barrier or surface barrier
    • H01L31/022425Electrodes for devices characterised by at least one potential jump barrier or surface barrier for solar cells
    • H01L31/022433Particular geometry of the grid contacts
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/042PV modules or arrays of single PV cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/042PV modules or arrays of single PV cells
    • H01L31/043Mechanically stacked PV cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/042PV modules or arrays of single PV cells
    • H01L31/05Electrical interconnection means between PV cells inside the PV module, e.g. series connection of PV cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/042PV modules or arrays of single PV cells
    • H01L31/05Electrical interconnection means between PV cells inside the PV module, e.g. series connection of PV cells
    • H01L31/0504Electrical interconnection means between PV cells inside the PV module, e.g. series connection of PV cells specially adapted for series or parallel connection of solar cells in a module
    • H01L31/0508Electrical interconnection means between PV cells inside the PV module, e.g. series connection of PV cells specially adapted for series or parallel connection of solar cells in a module the interconnection means having a particular shape
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02SGENERATION OF ELECTRIC POWER BY CONVERSION OF INFRARED RADIATION, VISIBLE LIGHT OR ULTRAVIOLET LIGHT, e.g. USING PHOTOVOLTAIC [PV] MODULES
    • H02S30/00Structural details of PV modules other than those related to light conversion
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/547Monocrystalline silicon PV cells

Definitions

  • This application relates to the technical field of solar cells, in particular to a photovoltaic cell array and photovoltaic modules.
  • photovoltaic companies have introduced a variety of photovoltaic module manufacturing technologies, such as shingling technology, by dividing square (quasi-square) cells into more and smaller rectangular (quasi-rectangular) cells.
  • the front and rear electrodes of two adjacent sliced cells are overlapped by conductive glue to form a series circuit.
  • the current between adjacent cells is transmitted perpendicular to the surface of the cell.
  • the current inside the module is smaller and the light-receiving area inside the module is larger, thereby improving Component power and efficiency.
  • the purpose of this application is to provide a photovoltaic cell array and photovoltaic module to increase the output power of the photovoltaic cell array and photovoltaic module and reduce the manufacturing cost of the module.
  • the present application provides a photovoltaic cell array, including a plurality of cells and flexible metal conductive strips. Segmented electrodes are distributed on the upper surface of the cell and the lower surface of the cell, and the flexible metal conductive strip is connected to the phase. The segmented electrodes on the lower surface of the first cell and the segmented electrodes on the upper surface of the second cell are adjacent to the two cells, and the photovoltaic cell array is in the normal direction of the upper surface of the cell It has a laminated structure, wherein the connection areas between the flexible metal conductive strip and the segment electrodes are located in areas outside the laminated area in the laminated structure.
  • the number of the segment electrodes on the upper surface of the battery sheet and the number on the lower surface of the battery sheet are both 4 to 9, including The endpoint value, wherein the first side is the longer side of the rectangular cell.
  • the segmented electrodes are evenly distributed on the upper surface of the battery sheet and the lower surface of the battery sheet.
  • the width of the segment electrode ranges from 0.5 mm to 5 mm, including the endpoint value.
  • the length of the segment electrode ranges from 1 millimeter to 15 millimeters, including the endpoint value.
  • the thickness of the flexible metal conductive strip is less than 200 microns.
  • the laminated structure is laminated along the first side of two adjacent battery sheets, wherein the first side is the longer side of the battery sheet.
  • the included angle between the segmented electrode and the first side of the battery sheet is an acute angle.
  • the width of the laminated area in the laminated structure is less than 2 mm.
  • the application also provides a photovoltaic module, including any one of the photovoltaic cell arrays described above.
  • the photovoltaic cell array and photovoltaic module provided by the present application include a plurality of cells and flexible metal conductive strips. Segmented electrodes are distributed on the upper surface of the cell and the lower surface of the cell, and the flexible metal conductive strips are connected to adjacent The segmented electrodes on the lower surface of the first battery sheet and the segmented electrodes on the upper surface of the second battery sheet of the two solar cells, and the photovoltaic cell array has in the normal direction of the upper surface of the battery sheet
  • the laminated structure, wherein the connection area between the flexible metal conductive strip and the segment electrode is located in an area outside the laminated area in the laminated structure.
  • two adjacent cells are connected by flexible metal conductive strips.
  • the flexible metal conductive strip consumes less power, so the output power of the photovoltaic cell array can be increased.
  • the output power of the photovoltaic cell array can be increased.
  • two adjacent cells in the photovoltaic cell array have a laminated structure in the normal direction of the upper surface of the cell. When the length of the photovoltaic cell array is fixed, the number of cells can be increased. In turn, the area that receives light is increased and the output power of the photovoltaic cell array is increased.
  • Figure 1 is a cross-sectional view of two adjacent cells in the photovoltaic cell array of the application in the direction of the short sides of the cells;
  • Figures 2 to 6 are schematic diagrams of the distribution patterns of the thin metal grid lines on the surface of the cell
  • Fig. 7 is a schematic diagram of the distribution when the segmented electrodes are parallel to the long sides of the battery sheet
  • Fig. 8 is a schematic structural diagram of a photovoltaic module provided by an embodiment of the application.
  • conductive glue is used to overlap the front and rear electrodes of two adjacent cells to form a series circuit.
  • the output power of photovoltaic modules can be increased to a certain extent, due to the packaging of the modules
  • the large loss makes the internal power consumption of the photovoltaic module still large, and additional processes and equipment such as conductive glue, curing, and terminal welding are added.
  • the process technology is relatively complicated and the production cost is high.
  • Figure 1 is a cross-sectional view of two adjacent cells in the photovoltaic cell array of the application in the direction of the short side of the cell.
  • the photovoltaic cell array includes multiple The battery sheet 1 and the flexible metal conductive strip 2 have segmented electrodes 4 distributed on the upper surface of the battery sheet and the lower surface of the battery sheet.
  • the flexible metal conductive strip 2 is connected to the first battery sheet of the two adjacent battery sheets 1
  • the segmented electrode 4 on the surface and the segmented electrode 4 on the upper surface of the second battery sheet, and the photovoltaic cell array has a laminated structure in the normal direction of the upper surface of the battery sheet 1, wherein the flexible
  • the connection areas between the metal conductive strips and the segment electrodes are all located in areas outside the laminated area in the laminated structure.
  • the flexible metal conductive strip 2 is used to connect the segmented electrode 4 on the lower surface of the first battery slice and the segmented electrode 4 on the upper surface of the second battery slice in two adjacent battery slices 1.
  • the purpose of the flexible metal conductive strip The resistance of 2 is small. When the photovoltaic cell array receives light to generate current, the power loss of the flexible metal conductive strip 2 is small, thereby increasing the output power of the photovoltaic cell array.
  • the width of the flexible metal conductive strip 2 is equal to the width of the segment electrode 4.
  • the flexible metal conductive strip may be a welding tape or a flexible conductive strip formed of other metal materials.
  • the purpose of setting the photovoltaic cell array to have a stacked structure in the normal direction of the upper surface of the cell is that when the length of the photovoltaic cell array is constant, the cell 1 is stacked to increase the number of cells in the photovoltaic cell array. The number of 1, thereby increasing the area receiving light, so that the output power of the photovoltaic cell array is improved.
  • connection area between the flexible metal conductive strip and the segmented electrode is located in the area outside the laminated area in the laminated structure.
  • the purpose is to facilitate rework when there is a problem at the connection area, such as the connection is not strong, and rework is required deal with.
  • the cell 1 in this embodiment is a rectangular (quasi-rectangular) cell, and the ratio of the long side to the short side of the cell 1 ranges from 4 to 20, inclusive.
  • the battery slice 1 in this embodiment can be obtained by, but not limited to, cutting square (quasi-square) battery slices or other rectangular (quasi-rectangular) battery slices.
  • the function of the segmented electrode 4 is to collect the current generated by the battery, and then transmit it to the flexible metal conductive strip 2.
  • the upper and lower surfaces of the double-sided battery are distributed with metal thin grid lines.
  • Electrode 4 is connected to thin metal grid lines to collect current; for single-sided solar cells, there are metal thin grid lines distributed on the upper surface of the single-sided solar cell, and there are no metal thin grid lines on the lower surface of the single-sided solar cell, but aluminum back.
  • the segmented electrode 4 located on the upper surface of the single-sided cell is connected to the thin metal grid line, and the segmented electrode 4 located on the lower surface of the single-sided cell is directly connected to the aluminum back field.
  • the arrangement of the metal thin grid lines on the upper surface of the double-sided solar cell, the lower surface of the double-sided solar cell, and the upper surface of the single-sided solar cell is not specifically limited. It depends on the situation. Referring to Figures 2 to 6, Figures 2-6 list the distribution patterns of five metal thin grid lines 3 on the surface of the cell. Preferably, for the double-sided solar cell, the arrangement of the thin metal grid lines 3 on the upper surface and the lower surface is the same to simplify the production process and improve the production efficiency.
  • the upper surface of the second battery slice is the positive electrode.
  • the second battery slice is The surface is the negative electrode.
  • the segmented electrode 4 is distributed along its length direction parallel to the long side of the battery sheet 1. Please refer to FIG. 7, but this application does not specifically limit this.
  • the segmented electrode 4 is distributed along its length direction perpendicular to the long side of the battery sheet 1.
  • the segmented electrode 4 and the first side of the battery sheet The included angle is an acute angle, and the first side is the long side of the cell 1. It is understandable that since the flexible metal conductive strip 2 is connected to the segmented electrode 4 of the adjacent battery sheet 1, the positional relationship between the segmented electrode 4 and the long side of the battery sheet 1 is the length of the flexible metal conductive strip 2 and the battery sheet 1. The positional relationship of the sides, for example, when the segmented electrode 4 is distributed perpendicular to the long side of the battery sheet 1 along its length direction, the flexible metal conductive strip 2 is also perpendicular to the long side of the battery sheet 1.
  • segmented electrode 4 transfers the collected current to the flexible metal conductive strip 2, and the direction of current flow is parallel to the battery sheet. 1 surface.
  • the photovoltaic cell array provided by this embodiment includes a plurality of cell sheets 1 and flexible metal conductive strips 2, segmented electrodes 4 are distributed on the upper surface of the cell sheet and the lower surface of the cell sheet, and the flexible metal conductive strips 2 are connected to The segmented electrodes 4 on the lower surface of the first battery sheet and the segmented electrodes 4 on the upper surface of the second battery sheet in the two adjacent solar cells 1, and the photovoltaic cell array is on the upper surface of the battery sheet.
  • the photovoltaic cell array of this embodiment two adjacent cells 1 are connected by a flexible metal conductive strip 2. Because the flexible metal conductive strip 2 has low resistance and low cost, and the flexible metal conductive strip 2 consumes less power, it can improve photovoltaic The output power of the battery array and reduce the manufacturing cost of the module. On the other hand, the two adjacent cells 1 in the photovoltaic cell array have a laminated structure in the normal direction of the upper surface of the cell.
  • the number of cells 1 can be increased, thereby increasing the area receiving light, and increasing the output power of the photovoltaic cell array; at the same time, due to the use of conductive glue in the prior art, the production process also needs to increase curing, terminal welding and other processes and corresponding equipment Therefore, the process is more complicated and the production cost is higher.
  • the welding wire is used, which simplifies the production process and reduces the production cost.
  • the number of segment electrodes 4 is not specifically limited in this embodiment.
  • the number of segment electrodes 4 may be 1 to 12, including the endpoint value.
  • the number of the segment electrodes 4 on the upper surface of the battery sheet and the number of the lower surface of the battery sheet are both 4 to 9 , Including the endpoint value, where the first side is the longer side of the cell 1 in the rectangle, so as to avoid too few segmented electrodes 4, because too few segmented electrodes will cause problems that cannot be collected.
  • the entire current, resulting in partial current waste, cannot effectively increase the output power of the photovoltaic cell array, while avoiding too many segmented electrodes 4, because the segmented electrodes 4 need to be connected to the flexible metal conductive strip 2, which will block the cell 1.
  • the area of the solar cell 1 receiving light is reduced, so that the output power of the photovoltaic cell array is reduced.
  • the segmented electrodes 4 are present on both the upper surface of the battery sheet and the lower surface of the battery sheet. Evenly distributed.
  • the width of the segment electrode 4 ranges from 0.5 mm to 5 mm, including the endpoint value, so as to prevent the width of the segment electrode 4 from being too narrow, because The flexible metal conductive strip 2 needs to be welded with the segmented electrode 4. If the width of the segmented electrode 4 is too narrow, the welding of the flexible metal conductive strip 2 and the segmented electrode 4 is not strong, and at the same time, avoid the width of the segmented electrode 4 from being too wide. After the flexible metal conductive strip 2 and the segmented electrode 4 are welded, the area where the segmented electrode 4 is located cannot receive light and generate electricity, which reduces the effective area of the cell 1 and reduces the overall output power of the photovoltaic cell array.
  • the length of the segment electrode 4 ranges from 1 mm to 15 mm, including the endpoint value, to avoid the length of the segment electrode 4 being too short, because The flexible metal conductive strip 2 needs to be welded with the segmented electrode 4. If the length of the segmented electrode 4 is too short, the contact area between the flexible metal conductive strip 2 and the segmented electrode 4 will be small, which will lead to weak welding and avoid segmentation. The length of the electrode 4 is too long, because the area where the segmented electrode 4 is located cannot receive light to generate current. If the segmented electrode 4 is too long, it will cause a larger area of the cell 1 to shield the cell 1 and increase the power generation efficiency of the cell 1. Decrease, resulting in a decrease in the overall output power of the photovoltaic cell array.
  • the thickness of the flexible metal conductive strip 2 is less than 200 microns, which prevents the flexible metal conductive strip 2 from being too thick because two adjacent battery sheets 1
  • the flexible metal conductive strip 2 is laminated and connected.
  • the distance between two adjacent battery sheets 1 is the thickness of the flexible metal conductive strip 2.
  • the thickness of the flexible metal conductive strip 2 is large, the distance between the two adjacent battery sheets 1
  • the spacing is also large, resulting in a higher overall height of the photovoltaic cell array, which affects the use of the photovoltaic cell array. If the overall height of the photovoltaic cell array is high, the photovoltaic cell array is made into a photovoltaic module during the lamination process. It is easy to cause fragmentation of the cell 1 in the photovoltaic cell array, reduce the qualification rate of the product, and increase the production cost.
  • the laminated structure is laminated along the first side of two adjacent battery sheets 1, wherein the first side is the longer side of the battery sheet 1. .
  • the thin metal grid lines 3 are arranged parallel to the short sides of the battery sheet 1, and the laminated structure is stacked along the first side of two adjacent battery sheets 1, that is, the two adjacent battery sheets 1 are along the line of the battery sheet 1. The long side is stacked.
  • the thin metal grid line 3 on the surface of the cell 1 is responsible for carrying the current in the cell 1 and transporting it out of the cell 1.
  • the current flowing in the thin metal grid line 3 is the cell. 1.
  • the width of the laminated area in the laminated structure is less than 2 mm to avoid excessive width of the laminated area in the photovoltaic cell array laminated structure, because the laminated area cannot receive light, that is, the laminated area
  • the existence of the solar cell 1 reduces the effective area of the solar cell 1 and reduces the overall output power of the photovoltaic cell array.
  • the length of the flexible metal conductive strip 2 connecting two adjacent battery sheets 1 is less than half the length of the short side of the battery sheet 1.
  • FIG. 8 is a schematic structural diagram of a photovoltaic module provided by an embodiment of the application.
  • the photovoltaic module includes a glass substrate 5, an EVA film layer 6, Any photovoltaic cell array 7, EVA film layer 8, and back sheet 9 disclosed in the above embodiments.
  • the photovoltaic cell array in the photovoltaic module provided by this embodiment includes a plurality of cells 1 and flexible metal conductive strips 2, segmented electrodes 4 are distributed on the upper surface of the cell and the lower surface of the cell, and the flexible metal conductive strips 2 are connected
  • Two adjacent cells 1 in the photovoltaic cell array are connected by a flexible metal conductive strip 2.
  • the flexible metal conductive strip 2 has low resistance and low cost, and the flexible metal conductive strip 2 consumes less power, it can increase the output of the photovoltaic cell array
  • the two adjacent cells 1 in the photovoltaic cell array have a laminated structure in the normal direction of the upper surface of the cell.
  • the cell can be increased. The number of 1, thereby increasing the area that receives light and increasing the output power of the photovoltaic cell array.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Sustainable Development (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Chemical & Material Sciences (AREA)
  • Sustainable Energy (AREA)
  • Photovoltaic Devices (AREA)

Abstract

一种光伏电池阵列及光伏组件,包括多个电池片和柔性金属导电条,电池片上表面和电池片下表面均分布有分段电极,柔性金属导电条连接于相邻两个电池片中第一电池片下表面的分段电极和第二电池片上表面的分段电极,且光伏电池阵列在电池片上表面的法线方向上具有层叠结构,其中,柔性金属导电条与分段电极的连接区域均位于层叠结构中层叠区域以外的区域。可见,相邻两片电池片由柔性金属导电条相连,由于柔性金属导电条的电阻小,所以消耗的功率少,提高光伏电池阵列的输出功率,且光伏电池阵列具有层叠结构,在光伏电池阵列的长度一定时,增加电池片的数量,进而增加光伏电池阵列的输出功率。

Description

一种光伏电池阵列及光伏组件
本申请要求于2019年05月28日提交中国专利局、申请号为201910454083.4、发明名称为“一种光伏电池阵列及光伏组件”以及申请号为201920785516.X、实用新型名称为“一种光伏电池阵列及光伏组件”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及太阳电池技术领域,特别是涉及一种光伏电池阵列及光伏组件。
背景技术
随着社会的快速发展,所需的能源与日俱增,但是化石能源数量有限,不足以长久地供应社会发展的需求,并且消耗化石能源,还会带来严重的环境污染,因此,需要一种新能源来代替化石能源,促进社会的和谐发展。太阳能是一种储量无限、使用免费、使用过程中不产生任何污染物的可再生能源,光伏行业近年来发展迅速。
减少光伏组件内部功率损耗,增加光伏组件的输出功率一直是光伏企业追求的目标,以满足行业发展和客户的需求。为了提升光伏组件的输出功率,光伏企业推出了多种光伏组件的制作技术,例如叠瓦技术,通过将正方形(准正方形)电池片分切为更多更小的长方形(准长方形)电池片,并通过导电胶将相邻两片切片电池片的前后电极相互重叠形成串联电路,相邻电池片间的电流垂直于电池片表面传输,组件内部电流更小,组件内部受光面积更大,从而提升组件功率和效率。
与常规组件相比,叠瓦光伏组件的输出功率虽有所提升,但是额外增加了导电胶、固化、端子焊接等工序和设备,工艺技术比较复杂,生产成本高,同时导电胶的电阻较大,叠瓦光伏组件的内部损耗仍然较大。
发明内容
本申请的目的是提供一种光伏电池阵列及光伏组件,以提高光伏电池 阵列和光伏组件的输出功率,降低组件制造成本。
为解决上述技术问题,本申请提供一种光伏电池阵列,包括多个电池片和柔性金属导电条,电池片上表面和电池片下表面均分布有分段电极,所述柔性金属导电条连接于相邻两个所述电池片中第一电池片下表面的所述分段电极和第二电池片上表面的所述分段电极,且所述光伏电池阵列在所述电池片上表面的法线方向上具有层叠结构,其中,所述柔性金属导电条与所述分段电极的连接区域均位于所述层叠结构中层叠区域以外的区域。
可选的,当所述分段电极垂直于所述电池片的第一边时,所述分段电极位于所述电池片上表面和所述电池片下表面的数量均为4至9个,包括端点值,其中,所述第一边为矩形所述电池片中较长的边。
可选的,所述分段电极在所述电池片上表面和所述电池片下表面均呈均匀分布。
可选的,所述分段电极的宽度取值范围为0.5毫米至5毫米,包括端点值。
可选的,所述分段电极的长度取值范围为1毫米至15毫米,包括端点值。
可选的,所述柔性金属导电条的厚度小于200微米。
可选的,所述层叠结构沿相邻两个所述电池片的第一边层叠,其中,所述第一边为所述电池片中较长的边。
可选的,所述分段电极与所述电池片的第一边的夹角为锐角。
可选的,所述层叠结构中层叠区域的宽度小于2毫米。
本申请还提供一种光伏组件,包括上述任一种所述的光伏电池阵列。
本申请所提供的一种光伏电池阵列及光伏组件,包括多个电池片和柔性金属导电条,电池片上表面和电池片下表面均分布有分段电极,所述柔性金属导电条连接于相邻两个所述电池片中第一电池片下表面的所述分段电极和第二电池片上表面的所述分段电极,且所述光伏电池阵列在所述电池片上表面的法线方向上具有层叠结构,其中,所述柔性金属导电条与所述分段电极的连接区域均位于所述层叠结构中层叠区域以外的区域。本申 请的光伏电池阵列中相邻两片电池片由柔性金属导电条相连,由于柔性金属导电条的成本低、电阻小,柔性金属导电条消耗的功率少,所以可以提高光伏电池阵列的输出功率,降低组件的制造成本,另一方面,光伏电池阵列中相邻两片电池片在电池片上表面的法线方向上具有层叠结构,在光伏电池阵列的长度一定时,可以增加电池片的数量,进而增加接收光照的面积,增加光伏电池阵列的输出功率。
附图说明
为了更清楚的说明本申请实施例或现有技术的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单的介绍,显而易见地,下面描述中的附图仅仅是本申请的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1为本申请光伏电池阵列中相邻两片电池片在电池片短边方向的截面图;
图2至图6列为金属细栅线在电池片表面的分布样式示意图;
图7为分段电极与电池片的长边平行时的分布示意图;
图8为本申请实施例所提供的光伏组件的结构示意图。
具体实施方式
为了使本技术领域的人员更好地理解本申请方案,下面结合附图和具体实施方式对本申请作进一步的详细说明。显然,所描述的实施例仅仅是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
在下面的描述中阐述了很多具体细节以便于充分理解本发明,但是本发明还可以采用其他不同于在此描述的其它方式来实施,本领域技术人员可以在不违背本发明内涵的情况下做类似推广,因此本发明不受下面公开的具体实施例的限制。
正如背景技术部分所述,现有技术中采用导电胶将电池片相邻两片电池片的前后电极相互重叠形成串联电路,虽然可以在一定程度上提升光伏组件的输出功率,但是由于组件的封装损失较大,使得光伏组件内部消耗的功率仍然较大,并且额外增加了导电胶、固化、端子焊接等工序和设备,工艺技术比较复杂,生产成本高。
有鉴于此,本申请提供了一种光伏电池阵列,请参考图1,图1为本申请光伏电池阵列中相邻两片电池片在电池片短边方向的截面图,光伏电池阵列包括多个电池片1和柔性金属导电条2,电池片上表面和电池片下表面均分布有分段电极4,所述柔性金属导电条2连接于相邻两个所述电池片1中第一电池片下表面的所述分段电极4和第二电池片上表面的所述分段电极4,且所述光伏电池阵列在所述电池片1上表面的法线方向上具有层叠结构,其中,所述柔性金属导电条与所述分段电极的连接区域均位于所述层叠结构中层叠区域以外的区域。
本实施例中采用柔性金属导电条2连接于相邻两个电池片1中第一电池片下表面的分段电极4和第二电池片上表面的分段电极4的目的是,柔性金属导电条2的电阻小,当光伏电池阵列接受光照产生电流后,柔性金属导电条2损耗的功率小,从而提高光伏电池阵列的输出功率。其中,柔性金属导电条2的宽度等于分段电极4的宽度。
具体的,柔性金属导电条可以焊带,或者为其他金属材料形成的柔性导电条。
进一步地,本实施例中设置光伏电池阵列在电池片上表面的法线方向上具有层叠结构的目的是,当光伏电池阵列的长度一定时,电池片1层叠设置,可以增加光伏电池阵列中电池片1的数量,从而增加接受光照的面积,使得光伏电池阵列的输出功率提高。
进一步地,本实施例中柔性金属导电条与分段电极的连接区域均位于层叠结构中层叠区域以外的区域的目的是,当连接区域处出现问题,如连接不牢固,需要返工时,便于返工处理。
需要指出的是,本实施例中的电池片1为矩形(准矩形)电池片,电池片1的长边与短边的比值的范围为4至20,包括端点值。
需要说明的是,本实施例中的电池片1可以通过但不限于分切正方形(准正方形)电池片或其他矩形(准矩形)电池片获得。
分段电极4的作用是收集电池片产生的电流,进而传递至柔性金属导电条2,对于双面电池片而言,双面电池片的上、下表面均分布有金属细栅线,分段电极4连接金属细栅线以收集电流;对于单面电池片而言,单面电池片的上表面分布有金属细栅线,单面电池的下表面不存在金属细栅线,而是铝背场,位于单面电池片上表面的分段电极4连接金属细栅线,位于单面电池片下表面的分段电极4直接与铝背场相连。
还需要说明的是,本实施例中对金属细栅线在双面电池片上表面、双面电池片下表面以及单面电池片上表面的排布方式不做具体限定,可视情况而定,请参考图2至图6,图2-6列举出了五种金属细栅线3在电池片表面的分布样式。优选地,对于双面电池片,金属细栅线3在上表面和下表面的排布方式相同,以简化生产工艺,提高生产效率。
可以理解的是,当相邻两个电池片1中第一电池片下表面为负极时,第二电池片上表面为正极,同理,当第一电池片下表面为正极时,第二电池片上表面便为负极。
具体的,在本申请的一个实施例中,分段电极4沿其长度方向平行于电池片1的长边分布,请参考图7所示,但是本申请对此并不做具体限定,在本申请的另一实施例中,分段电极4沿其长度方向垂直于电池片1的长边分布,在本申请的其他实施例中,所述分段电极4与所述电池片的第一边的夹角为锐角,第一边为电池片1的长边。可以理解的是,由于柔性金属导电条2连接相邻电池片1的分段电极4,分段电极4与电池片1长边之间的位置关系即为柔性金属导电条2与电池片1长边的位置关系,例如,当分段电极4沿其长度方向垂直于电池片1的长边分布时,柔性金属导电条2同样垂直于电池片1的长边。
还可以理解的是,无论分段电极4与电池片1的边形成的角度为多少度,分段电极4将收集的电流传递至柔性金属导电条2,电流的流经方向均平行于电池片1的表面。
本实施例所提供的一种光伏电池阵列,包括多个电池片1和柔性金属导电条2,电池片上表面和电池片下表面均分布有分段电极4,所述柔性金属导电条2连接于相邻两个所述电池片1中第一电池片下表面的所述分段电极4和第二电池片上表面的所述分段电极4,且所述光伏电池阵列在所述电池片上表面的法线方向上具有层叠结构,其中所述柔性金属导电条与所述分段电极的连接区域均位于所述层叠结构中层叠区域以外的区域。本实施例的光伏电池阵列中相邻两片电池片1由柔性金属导电条2相连,由于柔性金属导电条2的电阻小、成本低,柔性金属导电条2消耗的功率少,所以可以提高光伏电池阵列的输出功率,并且降低组件的制造成本,另一方面,光伏电池阵列中相邻两片电池片1在电池片上表面的法线方向上具有层叠结构,在光伏电池阵列的长度一定时,可以增加电池片1的数量,进而增加接收光照的面积,增加光伏电池阵列的输出功率;同时,现有技术中由于导电胶的使用,制作过程还需要增加固化、端子焊接等工序和相应的设备,使得工艺比较复杂,生产成本较高,而本实施例中采用焊线,简化了生产工艺,又降低了生产成本。
进一步地,在本申请的一个实施例中,当分段电极4沿其长度方向垂直于电池片1的长边分布时,本实施例对分段电极4的数量不做具体限定。
可选的,在上述实施例的基础上,在本申请的一个实施例中,分段电极4数量可以为1至12个,包括端点值。
优选地,当所述分段电极4垂直于所述电池片1的第一边时,所述分段电极4位于所述电池片上表面和所述电池片下表面的数量均为4至9个,包括端点值,其中,所述第一边为矩形所述电池片1中较长的边,避免分段电极4的数量太少,因为分段电极的数量太少会出现不能收集电池片的全部电流,造成部分电流浪费,不能有效提高光伏电池阵列的输出功率,同时避免分段电极4的数量太多,因为分段电极4需要与柔性金属导电条2相连,造成对电池片1遮挡,减小电池片1接收光照的面积,从而使得光伏电池阵列的输出功率降低。
在上述实施例的基础上,在本申请的一个实施例中,当分段电极4的数量为多个时,所述分段电极4在所述电池片上表面和所述电池片下表面 均呈均匀分布。
在上述实施例的基础上,在本申请的一个实施例中,所述分段电极4的宽度取值范围为0.5毫米至5毫米,包括端点值,避免分段电极4的宽度太窄,因为柔性金属导电条2需要与分段电极4进行焊接,若分段电极4的宽度太窄,柔性金属导电条2与分段电极4的焊接不牢固,同时避免分段电极4的宽度太宽,柔性金属导电条2与分段电极4焊接后,分段电极4所在的区域不能接收光照而发电,减小电池片1的有效面积,导致光伏电池阵列整体输出功率降低。
在上述实施例的基础上,在本申请的一个实施例中,所述分段电极4的长度取值范围为1毫米至15毫米,包括端点值,避免分段电极4的长度太短,因为柔性金属导电条2需要与分段电极4进行焊接,若分段电极4的长度太短,使得柔性金属导电条2与分段电极4的接触面积小,进而导致焊接不牢固,同时避免分段电极4的长度太长,因为分段电极4所在的区域不能接受光照而产生电流,若分段电极4太长,就会对电池片1造成更大面积的遮挡,使电池片1的发电效率减小,从而导致光伏电池阵列整体输出功率降低。
在上述任一实施例的基础上,在本申请的一个实施例中,所述柔性金属导电条2的厚度小于200微米,避免柔性金属导电条2的厚度过大,因为相邻两片电池片1通过柔性金属导电条2进行层叠连接,相邻两片电池片1的间距即为柔性金属导电条2的厚度,当柔性金属导电条2的厚度较大时,相邻两片电池片1的间距也较大,导致光伏电池阵列的整体高度较高,影响光伏电池阵列的使用,并且若光伏电池阵列的整体高度较高,将光伏电池阵列制成光伏组件的过程中,进行层压时,容易导致光伏电池阵列中的电池片1发生碎片,降低产品的合格率,提升生产成本。
优选地,在本申请的一个实施例中,所述层叠结构沿相邻两个所述电池片1的第一边层叠,其中,所述第一边为所述电池片1中较长的边。优选地,金属细栅线3按照平行于电池片1的短边排布,层叠结构沿相邻两个电池片1的第一边层叠,即相邻两片电池片1沿着电池片1的长边进行层叠,电池片1表面的金属细栅线3负责承载电池片1内的电流,并将其 运输出电池片1外部,金属细栅线3中的电流流过的距离即为电池片1短边的距离,电流流过的距离越短,电池片1内部消耗的功率越少,所以光伏电池阵列输出的功率越大;另外,相邻两片电池片1沿着电池片1的长边进行层叠,在制作光伏组件时不需对现有的生产设备进行改进,工艺流程简单。
优选地,在本申请的一个实施例中,所述层叠结构中层叠区域的宽度小于2毫米,避免光伏电池阵列层叠结构中的层叠区域的宽度过大,因为层叠区域不能接受光照,即层叠区域的存在使得电池片1的有效面积减小,导致光伏电池阵列的整体输出功率减小。
优选地,当电池片1按照电池片1的长边进行层叠时,连接相邻两片电池片1的柔性金属导电条2的长度小于电池片1短边长度的二分之一。
本申请还提供一种光伏组件,请参考图8,图8为本申请实施例所提供的光伏组件的结构示意图,光伏组件包括由上至下依次层叠的玻璃基板5、EVA胶膜层6、上述实施例公开的任一种光伏电池阵列7、EVA胶膜层8、背板9。
本实施例所提供的光伏组件中的光伏电池阵列包括多个电池片1和柔性金属导电条2,电池片上表面和电池片下表面均分布有分段电极4,所述柔性金属导电条2连接于相邻两个所述电池片1中第一电池片下表面的所述分段电极4和第二电池片上表面的所述分段电极4,且所述光伏电池阵列在所述电池片上表面的法线方向上具有层叠结构,其中所述柔性金属导电条与所述分段电极的连接区域均位于所述层叠结构中层叠区域以外的区域。光伏电池阵列中相邻两片电池片1由柔性金属导电条2相连,由于柔性金属导电条2的电阻小、成本低,柔性金属导电条2消耗的功率少,所以可以提高光伏电池阵列的输出功率,并且降低组件的制作成本,另一方面,光伏电池阵列中相邻两片电池片1在电池片上表面的法线方向上具有层叠结构,在光伏电池阵列的长度一定时,可以增加电池片1的数量,进而增加接收光照的面积,增加光伏电池阵列的输出功率。
本说明书中各个实施例采用递进的方式描述,每个实施例重点说明的都是与其它实施例的不同之处,各个实施例之间相同或相似部分互相参见即可。对于实施例公开的装置而言,由于其与实施例公开的方法相对应,所以描述的比较简单,相关之处参见方法部分说明即可。
以上对本申请所提供的光伏电池阵列及光伏电池进行了详细介绍。本文中应用了具体个例对本申请的原理及实施方式进行了阐述,以上实施例的说明只是用于帮助理解本申请的方法及其核心思想。应当指出,对于本技术领域的普通技术人员来说,在不脱离本申请原理的前提下,还可以对本申请进行若干改进和修饰,这些改进和修饰也落入本申请权利要求的保护范围内。

Claims (10)

  1. 一种光伏电池阵列,其特征在于,包括多个电池片和柔性金属导电条,电池片上表面和电池片下表面均分布有分段电极,所述柔性金属导电条连接于相邻两个所述电池片中第一电池片下表面的所述分段电极和第二电池片上表面的所述分段电极,且所述光伏电池阵列在所述电池片上表面的法线方向上具有层叠结构,其中,所述柔性金属导电条与所述分段电极的连接区域均位于所述层叠结构中层叠区域以外的区域。
  2. 如权利要求1所述的光伏电池阵列,其特征在于,当所述分段电极垂直于所述电池片的第一边时,所述分段电极位于所述电池片上表面和所述电池片下表面的数量均为4至9个,包括端点值,其中,所述第一边为矩形所述电池片中较长的边。
  3. 如权利要求2所述的光伏电池阵列,其特征在于,所述分段电极在所述电池片上表面和所述电池片下表面均呈均匀分布。
  4. 如权利要求3所述的光伏电池阵列,其特征在于,所述分段电极的宽度取值范围为0.5毫米至5毫米,包括端点值。
  5. 如权利要求4所述的光伏电池阵列,其特征在于,所述分段电极的长度取值范围为1毫米至15毫米,包括端点值。
  6. 如权利要求1所述的光伏电池阵列,其特征在于,所述柔性金属导电条的厚度小于200微米。
  7. 如权利要求1所述的光伏电池阵列,其特征在于,所述层叠结构沿相邻两个所述电池片的第一边层叠,其中,所述第一边为矩形所述电池片中较长的边。
  8. 如权利要求1所述的光伏电池阵列,其特征在于,所述分段电极与所述电池片的第一边的夹角为锐角。
  9. 如权利要求1至8任一项所述的光伏电池阵列,其特征在于,所述层叠结构中层叠区域的宽度小于2毫米。
  10. 一种光伏组件,其特征在于,包括如权利要求1至9任一项所述的光伏电池阵列。
PCT/CN2019/102127 2019-05-28 2019-08-23 一种光伏电池阵列及光伏组件 WO2020237854A1 (zh)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2020531984A JP7209720B2 (ja) 2019-05-28 2019-08-23 太陽電池アレイ及び太陽光発電モジュール
US16/766,295 US20210408314A1 (en) 2019-05-28 2019-08-23 Photovoltaic cell array and photovoltaic module
AU2019382301A AU2019382301B2 (en) 2019-05-28 2019-08-23 Photovoltaic cell array and photovoltaic module
EP19883328.7A EP3790060A1 (en) 2019-05-28 2019-08-23 Photovoltaic cell array and photovoltaic assembly
US18/110,132 US20230223489A1 (en) 2019-05-28 2023-02-15 Photovoltaic cell array and photovoltaic module

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
CN201910454083.4A CN110061081B (zh) 2019-05-28 2019-05-28 一种光伏电池阵列及光伏组件
CN201920785516.X 2019-05-28
CN201920785516.XU CN209607753U (zh) 2019-05-28 2019-05-28 一种光伏电池阵列及光伏组件
CN201910454083.4 2019-05-28

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US16/766,295 A-371-Of-International US20210408314A1 (en) 2019-05-28 2019-08-23 Photovoltaic cell array and photovoltaic module
US18/110,132 Continuation US20230223489A1 (en) 2019-05-28 2023-02-15 Photovoltaic cell array and photovoltaic module

Publications (1)

Publication Number Publication Date
WO2020237854A1 true WO2020237854A1 (zh) 2020-12-03

Family

ID=73553115

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/102127 WO2020237854A1 (zh) 2019-05-28 2019-08-23 一种光伏电池阵列及光伏组件

Country Status (6)

Country Link
US (2) US20210408314A1 (zh)
EP (1) EP3790060A1 (zh)
JP (1) JP7209720B2 (zh)
AU (1) AU2019382301B2 (zh)
MA (1) MA52265A (zh)
WO (1) WO2020237854A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115377232A (zh) * 2022-10-24 2022-11-22 浙江晶科能源有限公司 太阳能电池及光伏组件

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115241294B (zh) * 2022-07-21 2024-05-17 常州时创能源股份有限公司 一种光伏叠瓦组件及其制备方法
WO2024080261A1 (ja) * 2022-10-11 2024-04-18 出光興産株式会社 光電変換モジュール及び光電変換モジュールの製造方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103180966A (zh) * 2010-09-07 2013-06-26 陶氏环球技术有限责任公司 改进的光伏电池组件
CN104600141A (zh) * 2015-02-06 2015-05-06 保利协鑫(苏州)新能源运营管理有限公司 太阳能电池组件
CN204407339U (zh) * 2015-02-06 2015-06-17 保利协鑫(苏州)新能源运营管理有限公司 太阳能电池组件
CN104882504A (zh) * 2015-06-17 2015-09-02 浙江晶科能源有限公司 一种太阳能组件结构
CN109599454A (zh) * 2018-12-29 2019-04-09 苏州腾晖光伏技术有限公司 一种太阳能电池背面结构设计
CN110061081A (zh) * 2019-05-28 2019-07-26 浙江晶科能源有限公司 一种光伏电池阵列及光伏组件

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ATE543219T1 (de) * 2006-06-13 2012-02-15 Miasole Fotovoltaikmodul mit integrierter stromabnahme und zwischenverbindung
KR20120081417A (ko) * 2011-01-11 2012-07-19 엘지전자 주식회사 태양전지 및 그 제조방법
US20140124014A1 (en) * 2012-11-08 2014-05-08 Cogenra Solar, Inc. High efficiency configuration for solar cell string
JP6697456B2 (ja) 2015-06-17 2020-05-20 株式会社カネカ 結晶シリコン太陽電池モジュールおよびその製造方法
CN105932084B (zh) * 2016-05-06 2018-04-03 协鑫集成科技股份有限公司 太阳能电池组件及其制备方法
CN109463014A (zh) 2016-06-28 2019-03-12 京瓷株式会社 太阳能电池模块
KR101879374B1 (ko) 2017-02-22 2018-08-17 주식회사 탑선 태양전지모듈
DE102018105472A1 (de) * 2018-03-09 2019-09-12 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Verfahren zur Herstellung einer photovoltaischen Solarzelle, photovoltaische Solarzelle und Photovoltaikmodul
CN208271927U (zh) * 2018-06-06 2018-12-21 君泰创新(北京)科技有限公司 带导电线的薄膜、双面发电太阳能电池串及电池组件
KR102001230B1 (ko) * 2018-06-28 2019-07-17 주식회사 탑선 태양전지모듈
WO2020054129A1 (ja) * 2018-09-11 2020-03-19 株式会社カネカ 太陽電池デバイスおよび太陽電池モジュール
JP2022002230A (ja) * 2018-09-21 2022-01-06 株式会社カネカ 太陽電池セル、太陽電池デバイスおよび太陽電池モジュール
KR20200084732A (ko) * 2019-01-03 2020-07-13 엘지전자 주식회사 태양 전지 패널

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103180966A (zh) * 2010-09-07 2013-06-26 陶氏环球技术有限责任公司 改进的光伏电池组件
CN104600141A (zh) * 2015-02-06 2015-05-06 保利协鑫(苏州)新能源运营管理有限公司 太阳能电池组件
CN204407339U (zh) * 2015-02-06 2015-06-17 保利协鑫(苏州)新能源运营管理有限公司 太阳能电池组件
CN104882504A (zh) * 2015-06-17 2015-09-02 浙江晶科能源有限公司 一种太阳能组件结构
CN109599454A (zh) * 2018-12-29 2019-04-09 苏州腾晖光伏技术有限公司 一种太阳能电池背面结构设计
CN110061081A (zh) * 2019-05-28 2019-07-26 浙江晶科能源有限公司 一种光伏电池阵列及光伏组件

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3790060A4

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115377232A (zh) * 2022-10-24 2022-11-22 浙江晶科能源有限公司 太阳能电池及光伏组件
CN115377232B (zh) * 2022-10-24 2023-10-27 浙江晶科能源有限公司 太阳能电池及光伏组件

Also Published As

Publication number Publication date
AU2019382301B2 (en) 2021-07-08
EP3790060A4 (en) 2021-03-10
MA52265A (fr) 2021-04-14
AU2019382301A1 (en) 2020-12-17
JP7209720B2 (ja) 2023-01-20
JP2021528835A (ja) 2021-10-21
EP3790060A1 (en) 2021-03-10
US20230223489A1 (en) 2023-07-13
US20210408314A1 (en) 2021-12-30

Similar Documents

Publication Publication Date Title
WO2020237854A1 (zh) 一种光伏电池阵列及光伏组件
EP3595015A1 (en) Solar shingle assembly employing center-converging fingers converging toward electrode
CN210156385U (zh) 硅基异质结太阳电池叠瓦光伏组件
CN204857754U (zh) 一种太阳能电池组件
WO2020052694A2 (zh) 叠瓦组件和叠瓦组件的制造方法
WO2021008573A1 (zh) 一种抗热斑单板块光伏组件
WO2020052693A2 (zh) 叠瓦组件、太阳能电池片和叠瓦组件的制造方法
CN110061081B (zh) 一种光伏电池阵列及光伏组件
CN210272399U (zh) 条形太阳电池片、太阳电池和光伏组件
CN204834651U (zh) 一种低温串接的太阳能电池组件
WO2023179646A1 (zh) 光伏组件、光伏系统以及光伏组件的制造方法
US11862744B1 (en) Photovoltaic module and method for preparing the photovoltaic module
CN206040652U (zh) 一种太阳能电池双玻组件
CN214152914U (zh) 一种双面太阳能电池片和光伏组件
CN107819051B (zh) 太阳能电池组件
CN207425873U (zh) 一种双面光伏电池组件
CN118073453A (zh) 一种光伏电池阵列及光伏组件
CN111200028A (zh) 一种光伏组件、太阳能电池及光伏系统
EP3355363B1 (en) Solar cell module
CN112038423A (zh) 一种具有镂空式栅线的叠瓦电池片结构
CN206558522U (zh) 一种高抗机械载荷太阳能电池组件
CN106129161B (zh) 一种太阳能电池组件
CN218385238U (zh) 一种光伏电池组件
CN219873547U (zh) 一种复合电极结构
CN220774388U (zh) 一种光伏组件

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2020531984

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2019883328

Country of ref document: EP

Effective date: 20200519

ENP Entry into the national phase

Ref document number: 2019382301

Country of ref document: AU

Date of ref document: 20190823

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19883328

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE