WO2023060924A1 - 一种薄膜太阳能电池结构及其制备方法 - Google Patents

一种薄膜太阳能电池结构及其制备方法 Download PDF

Info

Publication number
WO2023060924A1
WO2023060924A1 PCT/CN2022/098611 CN2022098611W WO2023060924A1 WO 2023060924 A1 WO2023060924 A1 WO 2023060924A1 CN 2022098611 W CN2022098611 W CN 2022098611W WO 2023060924 A1 WO2023060924 A1 WO 2023060924A1
Authority
WO
WIPO (PCT)
Prior art keywords
sub
cell
lower electrode
electrode
battery
Prior art date
Application number
PCT/CN2022/098611
Other languages
English (en)
French (fr)
Inventor
董超
赵志国
秦校军
李新连
李梦洁
赵东明
熊继光
张赟
黄斌
李芳富
冯笑丹
Original Assignee
中国华能集团清洁能源技术研究院有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中国华能集团清洁能源技术研究院有限公司 filed Critical 中国华能集团清洁能源技术研究院有限公司
Publication of WO2023060924A1 publication Critical patent/WO2023060924A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/042PV modules or arrays of single PV cells
    • H01L31/0445PV modules or arrays of single PV cells including thin film solar cells, e.g. single thin film a-Si, CIS or CdTe solar cells
    • H01L31/046PV modules composed of a plurality of thin film solar cells deposited on the same substrate
    • H01L31/0463PV modules composed of a plurality of thin film solar cells deposited on the same substrate characterised by special patterning methods to connect the PV cells in a module, e.g. laser cutting of the conductive or active layers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0224Electrodes
    • H01L31/022408Electrodes for devices characterised by at least one potential jump barrier or surface barrier
    • H01L31/022425Electrodes for devices characterised by at least one potential jump barrier or surface barrier for solar cells
    • H01L31/022433Particular geometry of the grid contacts
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • H01L31/1884Manufacture of transparent electrodes, e.g. TCO, ITO
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the present application relates to the technical field of photovoltaic power generation, in particular to a thin-film solar cell structure and a preparation method thereof.
  • Thin-film solar cells are very thin, which makes it easier to reduce costs. At the same time, it is not only a high-efficiency energy product, but also a new type of building material, which is easier to perfectly integrate with buildings. Therefore, thin-film solar cells have become the development of the photovoltaic market. New trends and hot spots.
  • the dead zone between adjacent sub-batteries includes the area between the P1 reticle groove and the P3 reticle groove, that is, the three reticle grooves P1, P2, and P3, the P1 reticle groove and the P2 reticle groove.
  • the distance between grooves, and the distance between P2 grooves and P3 grooves because there is no active layer in the dead zone, or the positive and negative electrodes of the active layer in the dead zone are short-circuited, so the dead zone cannot output power generation , thereby affecting the conversion efficiency of thin-film solar cells. How to reduce the dead area of thin-film solar cells has become a technical problem to be solved urgently by those skilled in the art.
  • embodiments of the present application provide a thin-film solar cell structure and a manufacturing method thereof, so as to reduce the dead area of the thin-film solar cell and improve the conversion efficiency of the thin-film solar cell.
  • a thin film solar cell structure comprising:
  • At least one battery assembly located on the surface of the substrate, the battery assembly including M sub-batteries arranged at intervals along a first direction, the first direction being parallel to the surface of the substrate;
  • Each sub-cell includes a lower electrode, an active layer, and an upper electrode arranged in sequence along a direction away from the substrate, and the lower electrode of each sub-cell has a first end and a second end opposite to each other along a second direction, and the upper electrode having third and fourth ends opposite along the second direction, the second direction being parallel to the substrate surface and perpendicular to the first direction;
  • the first end of the lower electrode of the i-th sub-cell is connected to the third end of the upper electrode of the i-1th sub-cell, and the third end of the upper electrode of the i-th sub-cell is connected to the lower electrode of the i+1th sub-cell
  • the first terminal of is connected, 2 ⁇ i ⁇ M-1.
  • the lower electrodes of the i-th sub-battery and the M-th sub-battery include a first lower electrode extending along the second direction, and a second lower electrode extending from one end of the first lower electrode to a third direction , the second lower electrode is the first end of the lower electrode, the end of the first lower electrode away from the second lower electrode is the second end of the lower electrode, and the third direction is parallel to the the surface of the substrate and intersects the second direction;
  • the upper electrodes of the i-th sub-battery and the first sub-battery include a first upper electrode extending along the second direction, and a second upper electrode extending from one end of the first upper electrode toward a fourth direction, and the first upper electrode extends in a fourth direction.
  • the second upper electrode is the third end of the upper electrode, the end of the first upper electrode away from the second upper electrode is the fourth end of the upper electrode, and the fourth direction is parallel to the surface of the substrate, and intersects the second direction;
  • the second lower electrode of the i-th sub-cell is at least partially in contact with the second upper electrode of the i-1-th sub-cell
  • the second upper electrode of the i-th sub-cell is at least partially in contact with the second lower electrode of the i+1-th sub-cell. touch.
  • both the third direction and the fourth direction are perpendicular to the second direction, and the third direction and the fourth direction are antiparallel.
  • the first end of the lower electrode of each sub-battery and the third end of the upper electrode are located on opposite sides of the battery assembly in the second direction, and the first end of the lower electrode of the i-th sub-battery
  • the second end of the lower electrode of the i-1th sub-battery and the second end of the lower electrode of the i+1th sub-battery are located on the same side of the battery assembly in the second direction;
  • the projection of the first lower electrode of the i-th sub-cell is at least partially within the projection range of the second lower electrode of the i+1-th sub-cell, and the projection of the first upper electrode of the i-th sub-cell is at least Some are located within the projected range of the second upper electrode of the i-1th sub-cell.
  • the lower electrode of the first sub-battery extends along the second direction, and in the second direction, the projection of the lower electrode of the first sub-battery is at least partially located on the second lower electrode of the second sub-battery. within the projection range;
  • the upper electrode of the M th sub-cell extends along the second direction, and in the second direction, the upper electrode of the M th sub-cell is at least partially within the projected range of the second upper electrode of the M-1 th sub-cell.
  • the at least one battery assembly includes a plurality of battery assemblies, and the battery assembly further includes: a lower connection electrode and an upper connection electrode, and the lower connection electrode and the upper connection electrode are used to connect the battery assembly to which it belongs. Adjacent battery components are connected in series, or used as the output electrodes of the battery components to which they belong.
  • the lower connecting electrode is located at the second end of the lower electrode of the Mth sub-cell, and is at least partially in contact with the third end of the upper electrode of the Mth sub-cell;
  • the upper connecting electrode is located at the fourth end of the upper electrode of the first sub-cell, and is at least partially in contact with the first end of the lower electrode of the first sub-cell.
  • each sub-cell includes a first charge transport layer, a perovskite light-absorbing layer and a second charge transport layer arranged in sequence along a direction away from the substrate, and each sub-cell also includes: an isolation layer The isolation layer is located at two opposite ends of the active layer along the second direction, and is used for isolating the two opposite ends of the active layer along the second direction from being in contact with the upper electrode.
  • the isolation layer is a metal bismuth layer or a silicon nitride layer.
  • a method for preparing a thin-film solar cell structure comprising:
  • At least one battery assembly is formed on the surface of the substrate, the battery assembly includes M sub-batteries arranged at intervals along the first direction, and each sub-battery includes a lower electrode, an active layer and an active layer arranged in sequence along the direction away from the substrate. an upper electrode, the first direction is parallel to the surface of the substrate;
  • the forming process of the battery assembly includes:
  • the first laser scribing at least includes a laser scribing along a second direction, so as to divide the lower electrode layer into the lower electrodes of each sub-cell, such that The lower electrode of each sub-cell has a first end and a second end opposite along the second direction, the second direction is parallel to the substrate surface and perpendicular to the first direction;
  • the second laser scribing coincides with the laser scribing along the second direction in the first laser scribing, thereby dividing the active layer is the active layer of each sub-battery;
  • the first end of the lower electrode of the i-th sub-cell is connected to the third end of the upper electrode of the i-1th sub-cell, and the third end of the upper electrode of the i-th sub-cell is connected to the lower electrode of the i+1th sub-cell
  • the first terminal of is connected, 2 ⁇ i ⁇ M-1.
  • the first laser scribe line further includes a laser scribe line along a third direction, the third direction is parallel to the surface of the substrate and intersects the second direction, so that the i-th sub-cell and
  • the lower electrode of the Mth sub-cell includes a first lower electrode extending along the second direction, and a second lower electrode extending from one end of the first lower electrode toward the third direction, the second lower electrode is the first end of the lower electrode, and the end of the first lower electrode away from the second lower electrode is the second end of the lower electrode;
  • the third laser scribing includes laser scribing along a fourth direction, the fourth direction is parallel to the substrate surface and intersects with the second direction, so that the ith sub-cell and the first sub-cell
  • the upper electrode includes a first upper electrode extending along the second direction, and a second upper electrode extending from one end of the first upper electrode to the fourth direction, and the second upper electrode is the upper electrode
  • the third end of the first upper electrode, the end of the first upper electrode away from the second upper electrode is the fourth end of the upper electrode;
  • the second lower electrode of the i-th sub-cell is at least partially in contact with the second upper electrode of the i-1-th sub-cell
  • the second upper electrode of the i-th sub-cell is at least partially in contact with the second lower electrode of the i+1-th sub-cell. touch.
  • the at least one battery component includes a plurality of battery components.
  • the method also includes:
  • the method further includes:
  • the lower connection electrode and the upper connection electrode are used to connect the battery components to which they belong in series with adjacent battery components, or serve as output electrodes of the battery components to which they belong.
  • the active layer includes a first charge transport layer, a perovskite light-absorbing layer, and a second charge transport layer arranged in sequence along a direction away from the substrate, and the active layer is formed on the lower electrode of each sub-cell.
  • the process includes:
  • the second charge transport layer is formed on the perovskite light absorbing layer, and the shielding of the first end and the second end of the lower electrode of each sub-battery is removed.
  • the method before forming the upper electrode layer on the active layer of each sub-battery, the method also includes:
  • An isolation layer is formed at opposite ends of the active layer of each sub-cell along the second direction; for any sub-cell, the isolation layer is used to isolate the active layer at its opposite ends along the second direction contact with the upper electrode.
  • the process of forming an upper electrode layer on the active layer of each sub-battery includes:
  • the upper electrode layer is formed on the active layer of each sub-cell by using a mask, wherein the mask of the upper electrode layer corresponds to the first laser scribe line along the second direction
  • the laser scribe position has a shielded part.
  • the thin-film solar cell structure provided in the embodiment of the present application includes: a substrate; at least one cell assembly located on the surface of the substrate, the cell assembly includes M sub-cells arranged at intervals along a first direction, and the first direction is parallel to On the surface of the substrate; each sub-cell includes a lower electrode, an active layer and an upper electrode arranged in sequence along a direction away from the substrate, and the lower electrode of each sub-cell has a first end opposite to the second direction and The second end, the upper electrode has a third end and a fourth end opposite along the second direction, the second direction is parallel to the surface of the substrate and perpendicular to the first direction; wherein, the i-th sub-battery The first end of the lower electrode is connected to the third end of the upper electrode of the i-1th sub-cell, the third end of the upper electrode of the i-th sub-cell is connected to the first end of the lower electrode of the i+1th sub-cell, 2 ⁇ i ⁇ M-1.
  • the series connection of adjacent sub-cells is realized through the three grooves P1, P2, and P3 arranged on both sides of the sub-cells along the first direction.
  • a battery structure that transfers the series connection part of adjacent sub-cells, that is, the upper electrode and lower electrode connection parts of adjacent sub-cells, to one or both ends of the sub-cells along the second direction, so that between adjacent sub-cells
  • There is only one kind of groove in the dead zone which is equivalent to the coincidence of the three grooves P1, P2, and P3 extending along the second direction between adjacent sub-batteries in the prior art, that is, the removal of the grooves in the prior art
  • the two types of grooves between adjacent sub-cells and the distance between adjacent grooves can greatly reduce the dead area of thin-film solar cells, increase the light-receiving area of thin-film solar cells, and improve the conversion efficiency of thin-film solar cells .
  • Fig. 1 is the structural representation of existing thin-film solar cell
  • FIG. 2 is a schematic structural view of a battery module in a thin-film solar cell structure provided by an embodiment of the present application;
  • FIG. 3 is a schematic diagram of the arrangement of the lower electrodes and the upper electrodes of each sub-battery in the battery assembly shown in FIG. 2;
  • FIG. 4 is a schematic diagram of the arrangement of the lower electrodes of each sub-battery in the battery assembly shown in FIG. 2;
  • FIG. 5 is a schematic diagram of the arrangement of the upper electrodes of each sub-battery in the battery assembly shown in FIG. 2;
  • FIG. 6 is a schematic diagram of the arrangement of the lower electrodes and active layers of each sub-battery in the battery assembly shown in FIG. 2;
  • Fig. 7 is a schematic longitudinal cross-sectional view of the sub-battery along the AA' direction in the battery assembly shown in Fig. 2;
  • FIG. 8 is a schematic diagram of the arrangement of isolation layers of each sub-battery in the battery assembly shown in FIG. 2;
  • FIG. 9 is a schematic diagram of a mask plate of the upper electrode layer, and a schematic diagram of the arrangement of the upper electrodes of each sub-cell formed after performing a third laser scribing on the upper electrode layer formed by using the mask plate;
  • FIG. 10 is a schematic diagram of a mask of the isolation layer, and a schematic diagram of the arrangement of the isolation layer formed by using the mask.
  • Figure 1 shows a schematic structural view of an existing thin-film solar cell.
  • the existing thin-film solar cell structure usually includes a glass substrate 01, a conductive layer 02, a hole transport layer 03,
  • the stacked structure composed of the light absorbing layer 04, the electron transport layer 05 and the metal electrode layer 06 is usually divided into multiple sub-cells by using P1, P2, and P3 laser scribe lines, as shown in Figure 1.
  • the P1 groove runs through the hole transport layer 03 and the conductive layer 02 to divide the conductive layer 02 into the lower electrodes of each sub-cell; the P2 groove runs through the electron transport layer 05, the light absorbing layer 04 and the hole transport layer 05.
  • the active layer composed of layer 03 is used to divide the active layer into the active layer of each sub-battery; the P3 groove runs through the stack composed of the metal electrode layer 06, the electron transport layer 05, the light absorbing layer 04 and the hole transport layer 03, Up to the conductive layer 02, to divide the metal electrode layer 06 into the upper electrodes of each sub-cell; wherein, the metal electrode layer 06 fills the P2 groove, that is, the metal electrode layer 06 is deposited on the conductive layer 02 through the P2 groove, It can be seen from the current flow through the groove P2 shown in FIG. 1 that the upper and lower electrodes of adjacent sub-cells are connected in this way, that is, the series connection of adjacent sub-cells is realized.
  • the dead zone between adjacent sub-cells includes grooves P1 to P3
  • the area between the reticle grooves that is, the three reticle grooves P1, P2, and P3, the distance between the P1 reticle groove and the P2 reticle groove, and the distance between the P2 reticle groove and the P3 reticle groove, are due to There is no active layer in the dead zone, or the positive and negative electrodes of the active layer are short-circuited in the dead zone. Therefore, the dead zone part cannot output power generation, thereby affecting the conversion efficiency of thin-film solar cells. How to reduce the dead area of thin-film solar cells has become a technical problem to be solved urgently by those skilled in the art.
  • an embodiment of the present application provides a thin-film solar cell structure
  • the thin-film solar cell structure includes:
  • the substrate is a glass substrate
  • FIG. 2 shows a schematic structural view of the battery assembly 100.
  • the first direction is parallel to the surface of the substrate; 1, 2, 3, 4, 5...i-1, i, i+1...M-1, M marked in Figure 2 are for the battery
  • the sorting of the sub-batteries 10 in the assembly 100 along the first direction it should be noted that the present application does not limit the number of sub-batteries 10 contained in the battery assembly 100, and FIG. 2 only lists all the sub-batteries 10 A case where the battery assembly 100 includes more than five sub-batteries 10;
  • each sub-cell 10 includes a lower electrode 11, an active layer 12, and an upper electrode 13 arranged in sequence along a direction away from the substrate (as shown in the Z direction in FIG. 2 ), and each sub-cell
  • the lower electrode 11 of the battery has a first end and a second end opposite along the second direction
  • the upper electrode 13 has a third end and a fourth end opposite along the second direction
  • the second direction is parallel to the substrate surface, and is perpendicular to the first direction
  • the lower electrode 11 of each sub-battery 10 is a transparent electrode
  • the upper electrode 13 is a metal electrode.
  • FIG. 3 shows the arrangement of the lower electrodes 11 and upper electrodes 13 of each sub-battery 10 in the battery assembly shown in FIG. 2
  • the lower electrode 11 has a first end and a second end opposite along the second direction, as shown in Figure 3, the lower electrode 11 of any sub-battery is along the described
  • the upper electrode 13 has a third end and a fourth end opposite along the second direction, as shown in the upper electrode 13 of any sub-battery in FIG. It is shown by the 3 end and 4 end opposite to each other;
  • the first end of the lower electrode 11 of the i-th sub-battery (as shown in 1 end of the lower electrode 11 of the i-th sub-battery in Figure 3) is connected to the third end of the upper electrode 13 of the i-1th sub-battery (such as Shown in 3 end of the upper electrode 13 of i-1 sub-battery in Fig. 3) connection, the third end of the upper electrode 13 of i-th sub-battery (as shown in 3 end of the upper electrode 13 of i-th sub-battery in Fig.
  • i may be any integer between 2 and M-1.
  • the lower electrodes 11 of the first sub-cell, the second sub-cell and the third sub-cell all extend along the second direction, and have opposite first ends ( As shown in 1 end in Figure 3) and the second end (as shown in 2 end in Figure 3); the upper electrodes 13 of the first sub-battery, the second sub-battery and the third sub-battery all extend along the second direction , has an opposite third end (shown as end 3 in FIG. 3 ) and a fourth end (shown as end 4 in FIG.
  • any three sub-batteries arranged continuously in the first direction they are sequentially set as the first sub-battery, the second sub-battery and the third sub-battery, then the next sub-battery of the second sub-battery
  • the first end of the electrode (shown as end 1 in Figure 3) is connected to the third end of the upper electrode of the first sub-battery (shown as end 3 in Figure 3), and the third end of the upper electrode of the second sub-battery (as shown in Figure 3 at end 3) is connected to the first end of the lower electrode of the third sub-battery (as shown in Figure 3 at end 1), thereby realizing three sub-batteries arranged continuously in the first direction arbitrarily series connection.
  • the first end of the lower electrode of the i-th sub-cell is connected to the third end of the upper electrode of the i-1th sub-cell, and the third end of the upper electrode of the i-th sub-cell is connected to the i-th sub-cell.
  • the way to connect the first end of the lower electrode of the +1 sub-battery is not limited, and it can be in direct contact as shown in Figure 2 and Figure 3, that is, the lower electrode of the i-th sub-battery approaches the i-1th sub-cell through it.
  • the extended part of the battery is in direct contact with the part where the upper electrode of the i-1th sub-battery extends close to the i-th sub-battery, and the upper electrode of the i-th sub-battery passes through the part extending close to the i+1th sub-battery,
  • the lower electrode of the i+1th sub-battery is directly connected to the part extending close to the i-th sub-battery, or it can be connected through indirect contact with other conductors, as long as the upper electrode and the lower electrode of the adjacent sub-battery pass through it.
  • One or both ends of the second direction can be connected.
  • the application does not limit the connection mode of the upper electrode and the lower electrode of the adjacent sub-battery, it can be direct contact or indirect contact, therefore, the specific shape of the upper electrode and the lower electrode of each sub-battery Also do not limit, can be as shown in Figure 2 and Figure 3, that is, except that the lower electrode of the 1st sub-cell and the upper electrode of the Mth sub-cell are elongated, the upper electrodes and lower electrodes of the other sub-cells All are L-shaped, and the upper and lower electrodes of each sub-battery can also be elongated or L-shaped, or even other shapes, as long as the upper and lower electrodes of adjacent sub-batteries pass through one end along the second direction Or both ends can be connected.
  • the first end of its lower electrode and the third end of its upper electrode may be located on opposite sides of the battery assembly in the second direction, that is, the first end of its lower electrode. end and the fourth end of the upper electrode are located on the same side of the battery assembly in the second direction, as shown in Figure 3, at this time, the first end of the lower electrode of the i-th sub-battery and the i-
  • the connection of the third end of the upper electrode of one sub-battery, and the connection of the third end of the upper electrode of the i-th sub-battery with the first end of the lower electrode of the i+1-th sub-battery is located at the On the opposite side in the two directions, that is, at one end of the i-th sub-cell along the second direction, its lower electrode is connected to the upper electrode of the i-1-th sub-cell, and at its end along the second direction On the other end, the upper electrode is connected to the lower electrode of the i+1th sub-
  • the first end of the lower electrode and the third end of the upper electrode may also be located on the same side of the battery assembly in the second direction.
  • the first end of the lower electrode of the i-th sub-battery The connection between one end and the third end of the upper electrode of the i-1th sub-battery, and the connection between the third end of the upper electrode of the i-th sub-battery and the first end of the lower electrode of the i+1th sub-battery are located at the On the same side of the battery assembly in the second direction, that is, at one end of the i-th sub-battery along the second direction, its lower electrode is connected to the upper electrode of the i-1th sub-battery, and its upper electrode It is connected to the lower electrode of the i+1th sub-battery; however, this application does not limit it, and it depends on the situation.
  • the first terminal of the lower electrode of the i-th sub-battery is connected to the lower electrode of the i+1-th sub-battery.
  • the second end of the electrode may be located on the same side of the battery assembly in the second direction. As shown in FIG. The second end of the battery assembly may also be located on the opposite side of the battery assembly in the second direction, which is not limited in the present application and depends on specific circumstances.
  • FIG. 2 is only a schematic structural diagram of the battery assembly 100.
  • the structure of the battery assembly 100 is not limited thereto, as long as the In the battery assembly, each sub-battery is arranged at intervals in sequence along the first direction, and each sub-battery is connected in series with the adjacent sub-battery through one or both ends of the upper electrode and the lower electrode along the second direction.
  • the series connection of adjacent sub-cells is realized through the three grooves P1, P2, and P3 arranged on both sides of the sub-cells along the first direction.
  • a battery structure that transfers the series connection part of adjacent sub-cells, that is, the upper electrode and lower electrode connection parts of adjacent sub-cells, to one or both ends of the sub-cells along the second direction, so that between adjacent sub-cells
  • There is only one kind of groove in the dead zone which is equivalent to the coincidence of the three grooves P1, P2, and P3 extending along the second direction between adjacent sub-batteries in the prior art, that is, the removal of the grooves in the prior art
  • the two types of grooves between adjacent sub-cells and the distance between adjacent grooves can greatly reduce the dead area of thin-film solar cells, increase the light-receiving area of thin-film solar cells, and improve the conversion efficiency of thin-film solar cells .
  • FIG. 4 shows a schematic diagram of the arrangement of the lower electrodes 11 of each sub-battery 10 in the battery assembly shown in FIG. 2, which can be It can be seen that the lower electrodes 11 of the i-th sub-cell (2 ⁇ i ⁇ M-1) and the M-th sub-cell include the first lower electrode 111 extending along the second direction, and the lower electrode 111 of the first lower electrode 111 A second lower electrode 112 with one end extending in the third direction, the second lower electrode 112 is the first end of the lower electrode 11, and the end of the first lower electrode 111 away from the second lower electrode 112 is the first end of the second lower electrode 112.
  • the second end of the lower electrode 11, the third direction is parallel to the substrate surface and intersects with the second direction;
  • FIG. 5 shows a schematic diagram of the arrangement of the upper electrodes 13 of each sub-battery 10 in the battery assembly shown in FIG. 2. It can be seen that the i-th sub-battery (2 ⁇ i ⁇ M-1) and The upper electrode 13 of the first sub-cell includes a first upper electrode 131 extending along the second direction, and a second upper electrode 132 extending from one end of the first upper electrode 131 to a fourth direction.
  • the upper electrode 132 is the third end of the upper electrode 13, the end of the first upper electrode 131 away from the second upper electrode 132 is the fourth end of the upper electrode 13, and the fourth direction is parallel to the upper electrode 13. the surface of the substrate and intersects the second direction;
  • the second lower electrode 112 of the i-th sub-cell is in at least partial contact with the second upper electrode 132 of the i-1-th sub-cell, and the second upper electrode 132 of the i-th sub-cell is in contact with the second lower electrode 132 of the i+1-th sub-cell.
  • the electrodes 112 are at least partially in contact.
  • the first lower electrode 111, active layer 12 and first upper electrode 131 are in sequence along the direction away from the substrate surface.
  • its second lower electrode 112 is at least partially in contact with the second upper electrode 132 of the i-1th sub-cell, thereby realizing the series connection of the i-th sub-cell and the i-1th sub-cell connection
  • its second upper electrode 132 is in at least partial contact with the second lower electrode 112 of the i+1th sub-cell, thereby realizing the series connection between the i-th sub-cell and the i+1th sub-cell, that is, its second lower electrode 112 and
  • the second upper electrode 132 serves as a series connection between the sub-cell and the adjacent sub-cell.
  • the part (second lower electrode 112) of the i-th sub-cell extending toward the third direction through its lower electrode 11 is connected with the upper electrode 13 of the i-1th sub-cell toward the fourth direction.
  • the part (second upper electrode 132) extending in the fourth direction is in contact with, and through the part (second upper electrode 132) extending in the fourth direction of the upper electrode 13, it is in contact with the lower electrode 11 of the i+1th sub-cell in the direction of the fourth direction.
  • the part extending in the third direction (the second lower electrode 112 ) is in contact, that is, the lower electrode 11 or the upper electrode 13 of the i-th sub-cell is connected in series with the adjacent sub-cell through the part extending to the adjacent sub-cell.
  • both the third direction and the fourth direction are perpendicular to the second direction , and the third direction and the fourth direction are antiparallel. Since the second lower electrode 112 of the i-th sub-cell is in at least partial contact with the second upper electrode 132 of the i-1-th sub-cell, the second upper electrode 132 of the i-th sub-cell is in contact with the second lower electrode of the i+1-th sub-cell.
  • each sub-battery is arranged along the first direction, therefore, the third direction is antiparallel to the first direction, and the fourth direction is parallel to the first direction, that is, for the ith
  • its second lower electrode 112 extends from one end of its first lower electrode 111 toward the i-1th sub-cell
  • its second upper electrode 132 extends from one end of its first upper electrode 131 toward the i+th sub-cell. 1 sub-battery extension.
  • the first end of the lower electrode 11 of each sub-battery and the third end of the upper electrode 13 are terminals are located on opposite sides of the battery assembly in the second direction, and the first end of the lower electrode 11 of the i-th sub-battery and the second end of the lower electrode 11 of the i-1th sub-battery, and the i+th sub-battery
  • the second end of the lower electrode 11 of one sub-battery is located on the same side of the battery assembly in the second direction, that is, in this embodiment, the first end of the lower electrode 11 of the i-th sub-battery (the second lower electrode electrode 112) and the fourth end of its upper electrode 13, the second end of the lower electrode 11 of the i-1th sub-cell and the third end (second upper electrode 132) of its upper electrode 13, the i+1th sub-cell
  • the second end of the lower electrode 11 and the third end of the upper electrode 13 are both located on the same side
  • the projection of the first lower electrode 111 of the i-th sub-cell is at least partially within the projection range of the second lower electrode 112 of the i+1-th sub-cell, and the projection of the i-th sub-cell
  • a projection of an upper electrode 131 is at least partially located within the projection range of the second upper electrode 132 of the i-1th sub-cell.
  • the lower electrode 11 of the first sub-battery extends along the second direction, and in the second direction, the first The projection of the lower electrode 11 of the first sub-cell is at least partially within the projection range of the second lower electrode 112 of the second sub-cell;
  • the upper electrode 13 of the Mth subcell extends along the second direction, and in the second direction, the upper electrode 13 of the Mth subcell is at least partially located in the first part of the M-1th subcell. within the projection range of the second upper electrode 132 .
  • the at least one battery assembly includes a plurality of battery assemblies, as shown in Fig. 3-Fig.
  • the connecting electrode 15 is used to connect the battery component to which it belongs in series with an adjacent battery component, or serve as an output electrode of the battery component to which it belongs.
  • electrode lead-out wires (positive and negative electrode lead-out wires) are prepared on the lower connecting electrode 14 and the upper connecting electrode 15 by means of welding or the like, so as to connect the corresponding battery components in series with adjacent battery components, or as The output electrode of the battery pack to which it belongs.
  • the lower connecting electrode 14 is located at the second end of the lower electrode 11 of the Mth sub-battery (as shown at the end 2 in Figure 3) , and at least partially contact with the third end of the upper electrode of the Mth sub-cell (shown as end 3 in Figure 3);
  • the upper connection electrode 15 is located at the fourth end of the upper electrode 13 of the first sub-cell (as shown at the 4 end in Figure 3), and is connected to the lower electrode 11 of the first sub-cell.
  • the first end (shown as end 1 in FIG. 3 ) is at least partially in contact.
  • the upper connecting electrode 15 is connected to the first end of the lower electrode 11 of the first sub-battery, thereby realizing the connection between the first sub-battery and the sub-cells in the adjacent battery assembly.
  • the series connection of batteries, or as an output electrode of the battery assembly; the first sub-battery is connected to the second lower electrode 132 of the second sub-battery through its second upper electrode 112, thereby realizing the connection between the first sub-battery and the second sub-battery
  • the series connection of the second sub-cell; the second upper electrode 132 of the second sub-cell is connected with the second lower electrode 112 of the third sub-cell, thereby realizing the series connection of the second sub-cell and the third sub-cell; and so on, the M-1
  • the second upper electrode 132 of the first sub-battery is connected to the second lower electrode 112 of the Mth sub-battery, thereby realizing the series connection of the M-1th sub-battery and the Mth sub-batter
  • the gap between the second lower electrodes 112 of the sub-cells is to prevent the second upper electrode 132 of the i-th sub-cell from contacting the second lower electrode 112 of the i+1-th sub-cell with the first electrode of the i-th sub-cell.
  • the lower electrodes 111 are in contact to form a short circuit;
  • the active layer 12 of the 1st sub-cell covers at least its lower electrode 11, and the gap between the lower electrode 11 and the second lower electrode 112 of the 2nd sub-cell, to prevent the second upper electrode 132 of the 1st sub-cell from being in contact with the second sub-cell.
  • the second lower electrode 112 of the second sub-battery is in contact with the lower electrode 11 of the first sub-battery to form a short circuit;
  • the active layer 12 of the Mth subcell covers at least its first lower electrode 111, and the gap between its first lower electrode 112 and the lower connecting electrode 14, so as to prevent the upper electrode 13 of the Mth subcell from being in contact with the When the lower connecting electrode 14 is in contact, it contacts with the first lower electrode 111 of the Mth sub-cell to form a short circuit.
  • FIG. 6 shows a schematic diagram of the arrangement of the lower electrode 11 and the active layer 12 of each sub-battery 10 in the battery assembly shown in FIG.
  • the second direction extends, and its length along the second direction is not less than the length of the first lower electrode 111 of the i-th sub-cell along the second direction and the length of the first lower electrode 111 of the i-th sub-cell and the first lower electrode 111 of the i-th sub-cell.
  • Figure 7 is a schematic longitudinal cross-sectional view of the sub-battery along the direction AA' in the battery assembly shown in Figure 2, it can be seen , the active layer 12 of each subcell includes a first charge transport layer 121, a perovskite light absorbing layer 122 and a second charge transport layer 123 arranged in sequence along the direction away from the substrate, that is, the thin film solar cell is calcium Titanium ore solar cell; at this time, the second lower electrode 112 of the i-th sub-cell is in at least partial contact with the second upper electrode 132 of the i-1th sub-cell, and the second upper electrode 132 of the i-th sub-cell is in contact with the i-th sub-cell.
  • the second lower electrode 112 of the +1 sub-cell When the second lower electrode 112 of the +1 sub-cell is at least partially in contact, it will cause the upper electrode 13 of the i-th sub-cell and the i-1-th sub-cell to directly contact the perovskite light-absorbing layer 122 in the active layer 12 from the side, thereby The corrosion of the upper electrode 13 of the i-th sub-cell and the i-1-th sub-cell, and the degradation of the performance of the battery components seriously affect the stability of the perovskite solar cell.
  • each sub-cell further includes: an isolation layer 16 located along the active layer 12 The opposite ends in the second direction are used to isolate the active layer 12 from being in contact with the upper electrode 13 at the opposite ends in the second direction. It can be seen from FIG. 7 that since the active layer 12 of the sub-cell is provided with the isolation layer 16 at opposite ends along the second direction, the second upper electrode 132 of the sub-cell is deposited on the first electrode 132 of the adjacent sub-cell.
  • the lower electrode 112 When the lower electrode 112 is on, it will not directly contact the side of the active layer 12, that is, the upper electrode 13 of the sub-cell will not directly contact the perovskite light-absorbing layer 122, thereby avoiding the perovskite light-absorbing layer of the sub-cell. layer corrodes the upper electrode, improving the stability of perovskite solar cells.
  • Figure 8 further provides a schematic diagram of the arrangement of the isolation layer 16 of each sub-battery in the battery assembly shown in Figure 2. It can be seen from the figure that the isolation layer 16 is located along the active layer 12 of each sub-battery Two opposite ends, and the isolation layer 16 is located on the second lower electrode 112 of the i-th sub-cell and the M-th sub-cell, the first end of the lower electrode 11 of the first sub-cell, and the lower connecting electrode 14 on.
  • FIG. 8 only shows a top view of the active layer 12 and the isolation layers 16 located at opposite ends of the active layer 12 along the second direction on the lower electrode 11 of the third sub-cell. , and so on, a schematic plan view of the active layer 12 and the isolation layers 16 located at opposite ends of the active layer 12 along the second direction on the lower electrode 11 of each sub-battery can be obtained. Moreover, it can be seen from FIG. 8 that the projection of the isolation layer 12 on the second direction may be equal to the projection of the lower electrodes 11 of each sub-battery on the second direction, which is not made in this application. Limited, as the case may be.
  • the first charge transport layer is a hole transport layer
  • the second charge transport layer is an electron transport layer
  • the isolation layer 16 may be a metal bismuth layer or a silicon nitride layer, which is not limited in the present application, as long as the isolation layer 16 can be between the active layer 12 and the upper electrode 13 Just for isolation.
  • the perovskite solar cell structure provided by the embodiment of the present application further avoids the gap between the perovskite light-absorbing layer of each sub-cell and the upper electrode on the basis of reducing the dead area between adjacent sub-cells.
  • Direct contact achieves the purpose of further avoiding corrosion of metal electrodes and improving battery stability under the premise of improving battery conversion efficiency.
  • the embodiment of the present application also provides a method for preparing a thin-film solar cell structure, the method comprising:
  • S1 providing a substrate; optionally, the substrate is a glass substrate;
  • FIG. 2 shows a schematic structural view of the battery assembly 100.
  • the battery assembly 100 includes sequentially arranged M sub-cells 10, each sub-cell 10 includes a lower electrode 11, an active layer 12 and an upper electrode 13 arranged in sequence along a direction away from the substrate (as shown in the Z direction in Figure 2), and the first direction is parallel on the surface of the substrate; 1, 2, 3, 4, 5...i-1, i, i+1...M-1, M marked in Fig. 2 are for each sub-battery 10 in the battery assembly 100 along the The sorting in the first direction, it should be noted that this application does not limit the number of sub-batteries 10 contained in the battery assembly 100, and Fig. 2 only lists that the battery assembly 100 contains more than 5 sub-batteries. A case of battery 10;
  • the forming process of the battery assembly 100 includes:
  • S22 Perform a first laser scribing on the lower electrode layer, the first laser scribing at least includes laser scribing along the second direction, so as to divide the lower electrode layer into lower electrodes of each sub-cell 11, so that the lower electrode 11 of each sub-cell has a first end and a second end opposite to each other along the second direction, and the second direction is parallel to the surface of the substrate and perpendicular to the first direction.
  • the first laser scribe line may be a P1 laser scribe line.
  • the etching depth reaches the surface of the substrate, thereby dividing the lower electrode layer into the lower electrodes 11 of each sub-cell, so that the lower electrode 11 of each sub-cell has a
  • the first end and the second end opposite in the two directions are shown as the end 1 and the end 2 opposite to each other along the second direction of the lower electrode 11 of any sub-battery in FIG. 4 .
  • the width of the P1 laser scribe line may be 70 ⁇ m.
  • the direction is parallel to the surface of the substrate and intersects the second direction, so that the lower electrodes 11 of the i-th sub-cell (2 ⁇ i ⁇ M-1) and the M-th sub-cell include a th The lower electrode 111, and the second lower electrode 112 extending from one end of the first lower electrode 111 to the third direction, the second lower electrode 112 is the first end of the lower electrode 11, the first The end of the lower electrode 111 away from the second lower electrode 112 is the second end of the lower electrode 11 .
  • the P1 laser scribe line 101 when the P1 laser scribe line 101 is performed on the lower electrode layer, the P1 laser scribe line 101 not only includes the laser scribe line along the second direction, but also includes the laser scribe line along the third direction.
  • the laser scribes in the direction, and the etching depth reaches the surface of the substrate, so that the lower electrodes 11 of the i-th sub-cell (2 ⁇ i ⁇ M-1) and the M-th sub-cell include a first lower electrode 11 extending along the second direction.
  • the third direction is perpendicular to the second direction.
  • an active layer 12 is formed on the lower electrode 11 of each battery shown in FIG. 4 .
  • the active layer 12 includes a first charge transport layer 121, a perovskite
  • the light-absorbing layer 122 and the second charge transport layer 123, that is, the thin-film solar cell is a perovskite solar cell.
  • the process of forming the active layer 12 on the lower electrode 11 of each sub-cell includes:
  • S231 Block the first end and the second end of the lower electrode 11 of each sub-battery
  • the first end and the second end of the lower electrode 11 of each sub-battery can be shielded by pasting a high-temperature-resistant tape (such as a polyimide high-temperature-resistant tape), or by preparing a metal mask, wherein , the part that shields the first end and the second end of the lower electrode 11 of each sub-battery is shown in the part circled by the dashed line in FIG. 4 .
  • a high-temperature-resistant tape such as a polyimide high-temperature-resistant tape
  • S232 Form the first charge transport layer 121 on other parts of the lower electrode 11 of each sub-cell except for the shielded part, and remove the shielding of the first end and the second end of the lower electrode 11 of each sub-cell;
  • S234 Perform laser edge cleaning on the part of the perovskite light-absorbing layer 122 corresponding to the first end and the second end of the lower electrode 11 of each sub-cell;
  • the perovskite light-absorbing layer 122 is usually prepared by coating, if the first end and the second end of the lower electrode 11 of each sub-cell are still shielded, it will affect all The coating process of the perovskite light-absorbing layer 122 is carried out. Therefore, in this embodiment, the perovskite light-absorbing layer 122 is first formed on the first charge transport layer 121, and then the perovskite light-absorbing layer 122 is formed. The part of the mineral light-absorbing layer 122 corresponding to the first end and the second end of the lower electrode 11 of each sub-cell is subjected to laser edge cleaning.
  • S236 Form the second charge transport layer 123 on the perovskite light absorbing layer 122, and remove the shielding of the first end and the second end of the lower electrode 11 of each sub-cell.
  • the first charge transport layer 121 and the second charge transport layer 123 are usually prepared by thermal evaporation or magnetron sputtering, so the lower electrodes 11 of each sub-cell The first end and the second end of the shielding method will not affect the preparation of the first charge transport layer 121 and the second charge transport layer 123 .
  • the first charge transport layer is a hole transport layer
  • the second charge transport layer is an electron transport layer
  • S24 Perform a second laser scribing on the active layer, where the second laser scribing coincides with the laser scribing along the second direction in the first laser scribing, so that the active layer
  • the layers are divided into active layers 12 of the individual subcells.
  • the second laser scribe line may be a P2 laser scribe line. As shown in FIG. The laser scribe lines along the second direction in 101 overlap, so as to divide the active layer into the active layer 12 of each sub-cell.
  • S25 forming an upper electrode layer on the active layer 12 of each sub-battery; optionally, the upper electrode layer is a metal electrode layer.
  • S26 Carry out laser scribing for the third time on the upper electrode layer, thereby dividing the upper electrode layer into upper electrodes 13 of each sub-cell, so that the upper electrode 13 of each sub-cell has an opposite direction along the second direction.
  • the third end and the fourth end of the upper electrode 13 of any sub-battery in FIG. 5 are shown in the opposite ends 3 and 4 along the second direction.
  • the process of forming the upper electrode layer on the active layer of each sub-battery includes:
  • the upper electrode layer is formed on the active layer of each sub-cell by using a mask, wherein the mask of the upper electrode layer corresponds to the first laser scribe line along the second direction
  • the laser scribe position has a shielded part.
  • FIG. 9 shows a schematic diagram of the mask plate of the upper electrode layer, and each sub-layer formed after the third laser scribing is performed on the upper electrode layer formed by using the mask plate. Schematic diagram of the arrangement of the upper electrode of the battery. It can be seen from the figure that since the mask plate of the upper electrode layer corresponds to the position of the laser scribe line along the second direction in the first laser scribe line, it has a shielding effect.
  • the toothed part optionally, the width of the covered toothed part may be 70 ⁇ m, therefore, there is no upper electrode at the position corresponding to the laser marking line along the second direction in the first laser marking line layer, while the upper electrode layer is formed at other positions (ie, the white area of the upper electrode layer mask in FIG. 9 ).
  • the third laser scribe line 103 is performed on the upper electrode layer.
  • the third laser scribe line can be P3 laser scribe line.
  • the first laser scribe line The tertiary laser scribing includes laser scribing along a fourth direction, the fourth direction is parallel to the substrate surface and intersects with the second direction, so that the upper electrodes 13 of the ith sub-cell and the first sub-cell It includes a first upper electrode 131 extending along the second direction, and a second upper electrode 132 extending from one end of the first upper electrode 131 to a fourth direction, and the second upper electrode 132 is the upper electrode The third end of the first upper electrode 131, the end of the first upper electrode 131 away from the second upper electrode 132 is the fourth end of the upper electrode.
  • the fourth direction is perpendicular to the second direction.
  • the third laser marking not only includes the laser marking along the second direction, but also the laser marking along the second direction is the same as the first laser marking
  • the laser scribe lines along the second direction in the scribe lines coincide, and also include the laser scribe lines along the fourth direction. This application does not limit it, and it depends on the specific situation.
  • the first end of the lower electrode 11 of the i-th sub-cell (as shown in end 1 of the lower electrode 11 of the i-th sub-cell in Figure 3) and The third end of the upper electrode 13 of the i-1th sub-cell (as shown in 3 end of the upper electrode 13 of the i-1th sub-cell in Figure 3) is connected, the third end of the upper electrode 13 of the i-th sub-cell ( As shown in the 3 end of the upper electrode 13 of the i-th sub-cell in Figure 3) and the first end of the lower electrode 11 of the i+1-th sub-cell (as shown in 1 of the lower electrode 11 of the i+1-th sub-cell in Figure 3 terminal) connection, 2 ⁇ i ⁇ M-1. It should be noted that i may be any integer between 2 and M-1.
  • the series connection of adjacent sub-cells is realized through the three grooves P1, P2, and P3 arranged sequentially along the first direction on both sides of the sub-cells
  • the series connection part of the adjacent sub-cell that is, the connection part of the upper electrode and the lower electrode of the adjacent sub-cell
  • the phase There is only one kind of groove in the dead zone between adjacent sub-batteries, which is equivalent to the coincidence of the three grooves P1, P2, and P3 extending along the second direction between adjacent sub-batteries in the prior art, that is, removing
  • the two types of reticle grooves between adjacent sub-cells and the distance between adjacent reticle grooves in the prior art are improved, thereby greatly reducing the dead zone area of thin-film solar cells, increasing the light-receiving area of thin-film solar cells, and improving the thickness of thin-film solar cells.
  • the first end of the lower electrode of the i-th sub-cell is connected to the third end of the upper electrode of the i-1th sub-cell, and the third end of the upper electrode of the i-th sub-cell is connected to the i-th sub-cell.
  • the connection method of the first end of the lower electrode of the +1 sub-battery is not limited, and it can be in direct contact as shown in Figure 2- Figure 5, that is, the lower electrode of the i-th sub-battery approaches the i-1th sub-cell through it.
  • the extended part of the battery is in direct contact with the part where the upper electrode of the i-1th sub-battery extends close to the i-th sub-battery, and the upper electrode of the i-th sub-battery passes through the part extending close to the i+1th sub-battery,
  • the lower electrode of the i+1th sub-battery is directly connected to the part extending close to the i-th sub-battery, or it can be connected through indirect contact with other conductors, as long as the upper electrode and the lower electrode of the adjacent sub-battery pass through it.
  • One or both ends of the second direction can be connected.
  • the application does not limit the connection mode of the upper electrode and the lower electrode of the adjacent sub-battery, it can be direct contact or indirect contact, therefore, the specific shape of the upper electrode and the lower electrode of each sub-battery Also do not limit, can be as shown in Figure 2 and Figure 3, that is, except that the lower electrode of the 1st sub-cell and the upper electrode of the Mth sub-cell are elongated, the upper electrodes and lower electrodes of the other sub-cells All are L-shaped, and the upper and lower electrodes of each sub-battery can also be elongated or L-shaped, or even other shapes, as long as the upper and lower electrodes of adjacent sub-batteries pass through one end along the second direction Or both ends can be connected.
  • the first end of its lower electrode and the third end of its upper electrode may be located on opposite sides of the battery assembly in the second direction, that is, the first end of its lower electrode. end and the fourth end of the upper electrode are located on the same side of the battery assembly in the second direction, as shown in Figure 3, at this time, the first end of the lower electrode of the i-th sub-battery and the i-
  • the connection of the third end of the upper electrode of one sub-battery, and the connection of the third end of the upper electrode of the i-th sub-battery with the first end of the lower electrode of the i+1-th sub-battery is located at the On the opposite side in the two directions, that is, at one end of the i-th sub-cell along the second direction, its lower electrode is connected to the upper electrode of the i-1-th sub-cell, and at its end along the second direction On the other end, the upper electrode is connected to the lower electrode of the i+1th sub-
  • the first end of the lower electrode and the third end of the upper electrode may also be located on the same side of the battery assembly in the second direction.
  • the first end of the lower electrode of the i-th sub-battery The connection between one end and the third end of the upper electrode of the i-1th sub-battery, and the connection between the third end of the upper electrode of the i-th sub-battery and the first end of the lower electrode of the i+1th sub-battery are located at the On the same side of the battery assembly in the second direction, that is, at one end of the i-th sub-battery along the second direction, its lower electrode is connected to the upper electrode of the i-1th sub-battery, and its upper electrode It is connected to the lower electrode of the i+1th sub-battery; however, this application does not limit it, and it depends on the situation.
  • the first terminal of the lower electrode of the i-th sub-battery is connected to the lower electrode of the i+1-th sub-battery.
  • the second end of the electrode may be located on the same side of the battery assembly in the second direction. As shown in FIG. The second end of the battery assembly may also be located on the opposite side of the battery assembly in the second direction, which is not limited in the present application and depends on specific circumstances.
  • FIG. 2 is only a schematic structural view of the battery assembly 100, and in the thin-film solar cell structure prepared by the method provided in the embodiment of the present application, the structure of the battery assembly 100 is not limited thereto.
  • each sub-battery is arranged at intervals in sequence along the first direction, and each sub-battery is connected in series with the adjacent sub-battery through its upper electrode and lower electrode along one or both ends of the second direction That's it.
  • FIG. 2-FIG. Arranged in sequence along the direction away from the substrate surface, as the main part of the sub-battery for power generation; its second lower electrode 112 is at least partially in contact with the second upper electrode 132 of the i-1th sub-battery, thereby realizing the i-th sub-battery
  • the second upper electrode 132 thereof is at least partially in contact with the second lower electrode 112 of the i+1-th sub-cell, thereby realizing the series connection between the i-th sub-cell and the i+1-th sub-cell , that is, its second lower electrode 112 and its second upper electrode 132 serve as a series connection between the sub-cell and the adjacent sub-cell.
  • the part (second lower electrode 112) of the i-th sub-cell extending toward the third direction through its lower electrode 11 is connected with the upper electrode 13 of the i-1th sub-cell toward the fourth direction.
  • the part (second upper electrode 132) extending in the fourth direction is in contact with, and through the part (second upper electrode 132) extending in the fourth direction of the upper electrode 13, it is in contact with the lower electrode 11 of the i+1th sub-cell in the direction of the fourth direction.
  • the part extending in the third direction (the second lower electrode 112 ) is in contact, that is, the lower electrode 11 or the upper electrode 13 of the i-th sub-cell is connected in series with the adjacent sub-cell through the part extending to the adjacent sub-cell.
  • the second lower electrode 112 of the i-th sub-cell is at least partially in contact with the second upper electrode 132 of the i-1-th sub-cell
  • the second upper electrode 132 of the i-th sub-cell is at least partially in contact with the second lower electrode 112 of the i+1-th sub-cell, and each sub-cell is arranged along the first direction, therefore, the third direction is the same as the second One direction is antiparallel, and the fourth direction is parallel to the first direction, that is, for the i-th sub-cell, its second lower electrode 112 is close to the i-1th sub-cell from one end of its first lower electrode 111 Extending, the second upper electrode 132 extends from one end of the first upper electrode 131 close to the (i+1)th sub-cell.
  • the first end of the lower electrode 11 of each sub-battery and the third end of the upper electrode 13 are terminals are located on opposite sides of the battery assembly in the second direction, and the first end of the lower electrode 11 of the i-th sub-battery and the second end of the lower electrode 11 of the i-1th sub-battery, and the i+th sub-battery
  • the second end of the lower electrode 11 of one sub-battery is located on the same side of the battery assembly in the second direction, that is, in this embodiment, the first end of the lower electrode 11 of the i-th sub-battery (the second lower electrode electrode 112) and the fourth end of its upper electrode 13, the second end of the lower electrode 11 of the i-1th sub-cell and the third end (second upper electrode 132) of its upper electrode 13, the i+1th sub-cell
  • the second end of the lower electrode 11 and the third end of the upper electrode 13 are both located on the same side
  • the projection of the first lower electrode 111 of the i-th sub-cell is at least partially within the projection range of the second lower electrode 112 of the i+1-th sub-cell, and the projection of the i-th sub-cell
  • a projection of an upper electrode 131 is at least partially located within the projection range of the second upper electrode 132 of the i-1th sub-cell.
  • the lower electrode 11 of the first sub-battery extends along the second direction, and in the second direction, the first The projection of the lower electrode 11 of the first sub-cell is at least partially within the projection range of the second lower electrode 112 of the second sub-cell;
  • the upper electrode 13 of the Mth subcell extends along the second direction, and in the second direction, the upper electrode 13 of the Mth subcell is at least partially located in the first part of the M-1th subcell. within the projection range of the second upper electrode 132 .
  • the at least one battery component includes a plurality of battery components, and when the first laser scribing is performed on the lower electrode layer to divide the lower electrode layer into the lower electrodes of each sub-battery, the method further includes include:
  • the method should include:
  • the lower connection electrode 14 and the upper connection electrode 15 are used to connect the battery components to which they belong in series with adjacent battery components, or serve as output electrodes of the battery components to which they belong.
  • electrode lead-out wires positive and negative electrode lead-out wires
  • the lower connecting electrode 14 is located at the second end of the lower electrode 11 of the Mth sub-battery (as shown at the end 2 in Figure 3) , and at least partially contact with the third end of the upper electrode of the Mth sub-cell (shown as end 3 in Figure 3);
  • the upper connection electrode 15 is located at the fourth end of the upper electrode 13 of the first sub-cell (as shown at the 4 end in Figure 3), and is connected to the lower electrode 11 of the first sub-cell.
  • the first end (shown as end 1 in FIG. 3 ) is at least partially in contact.
  • the upper connecting electrode 15 is connected to the first end of the lower electrode 11 of the first sub-battery, thereby realizing the connection between the first sub-battery and the sub-cells in the adjacent battery assembly.
  • the series connection of batteries, or as an output electrode of the battery assembly; the first sub-battery is connected to the second lower electrode 132 of the second sub-battery through its second upper electrode 112, thereby realizing the connection between the first sub-battery and the second sub-battery
  • the series connection of the second sub-cell; the second upper electrode 132 of the second sub-cell is connected with the second lower electrode 112 of the third sub-cell, thereby realizing the series connection of the second sub-cell and the third sub-cell; and so on, the M-1
  • the second upper electrode 132 of the first sub-battery is connected to the second lower electrode 112 of the Mth sub-battery, thereby realizing the series connection of the M-1th sub-battery and the Mth sub-batter
  • the gap between the second lower electrodes 112 of the sub-cells is to prevent the second upper electrode 132 of the i-th sub-cell from contacting the second lower electrode 112 of the i+1-th sub-cell with the first electrode of the i-th sub-cell.
  • the lower electrodes 111 are in contact to form a short circuit;
  • the active layer 12 of the 1st sub-cell covers at least its lower electrode 11, and the gap between the lower electrode 11 and the second lower electrode 112 of the 2nd sub-cell, to prevent the second upper electrode 132 of the 1st sub-cell from being in contact with the second sub-cell.
  • the second lower electrode 112 of the second sub-battery is in contact with the lower electrode 11 of the first sub-battery to form a short circuit;
  • the active layer 12 of the Mth subcell covers at least its first lower electrode 111, and the gap between its first lower electrode 112 and the lower connecting electrode 14, so as to prevent the upper electrode 13 of the Mth subcell from being in contact with the When the lower connecting electrode 14 is in contact, it contacts with the first lower electrode 111 of the Mth sub-cell to form a short circuit.
  • FIG. 6 shows a schematic diagram of the arrangement of the lower electrode 11 and the active layer 12 of each sub-battery 10 in the battery assembly shown in FIG.
  • the second direction extends, and its length along the second direction is not less than the length of the first lower electrode 111 of the i-th sub-cell along the second direction and the length of the first lower electrode 111 of the i-th sub-cell and the first lower electrode 111 of the i-th sub-cell.
  • the active layer 12 of each sub-cell includes a first charge transport layer 121, a perovskite light-absorbing layer 122 and a second charge transport layer 122 arranged in sequence along the direction away from the substrate layer 123, that is, when the thin-film solar cell is a perovskite solar cell
  • the upper electrode 13 of each sub-cell is in direct contact with the perovskite light-absorbing layer 122, the upper electrode 13 of each sub-cell will be corroded, and The degradation of the performance of the battery components seriously affects the stability of the perovskite solar cell. Therefore, on the basis of the above-mentioned embodiments, in one embodiment of the present application, the method forms an upper layer on the active layer of each sub-cell.
  • the electrode layer also include:
  • S5 Form an isolation layer 16 at opposite ends of the active layer 12 of each sub-cell along the second direction; for any sub-cell, the isolation layer 16 is used to isolate the active layer 12 along the second direction Two opposite ends are in contact with the upper electrode 13 .
  • FIG. 10 shows the isolation layer 16 A schematic diagram of the mask plate, and a schematic diagram of the arrangement of the isolation layer formed by using the mask plate. It can be seen from the figure that the isolation layer 16 is vapor-deposited on the active layer 12 of each sub-cell along the second direction. ends.
  • the second upper electrode 132 of the sub-cell is deposited on the first electrode 132 of the adjacent sub-cell.
  • the lower electrode 112 When the lower electrode 112 is on, it will not directly contact the side of the active layer 12, that is, the upper electrode 13 of the sub-cell will not directly contact the perovskite light-absorbing layer 122, thereby avoiding the perovskite light-absorbing layer of the sub-cell. layer corrodes the upper electrode, improving the stability of perovskite solar cells.
  • Figure 8 further provides a schematic diagram of the arrangement of the isolation layer 16 of each sub-battery in the battery assembly shown in Figure 2. It can be seen from the figure that the isolation layer 16 is located along the active layer 12 of each sub-battery Two opposite ends, and the isolation layer 16 is located on the second lower electrode 112 of the i-th sub-cell and the M-th sub-cell, the first end of the lower electrode 11 of the first sub-cell, and the lower connecting electrode 14 on.
  • the width of the isolation layer 16 along the second direction may be 0.4 cm.
  • FIG. 8 only shows a top view of the active layer 12 and the isolation layers 16 located at opposite ends of the active layer 12 along the second direction on the lower electrode 11 of the third sub-cell. , and so on, a schematic plan view of the active layer 12 and the isolation layers 16 located at opposite ends of the active layer 12 along the second direction on the lower electrode 11 of each sub-battery can be obtained. Moreover, it can be seen from FIG. 8 that the projection of the isolation layer 12 on the second direction may be equal to the projection of the lower electrodes 11 of each sub-battery on the second direction, which is not made in this application. Limited, as the case may be.
  • the first charge transport layer is a hole transport layer
  • the second charge transport layer is an electron transport layer
  • the isolation layer 16 may be a metal bismuth layer or a silicon nitride layer, which is not limited in the present application, as long as the isolation layer 16 can be between the active layer 12 and the upper electrode 13 Just for isolation.
  • the perovskite solar cell structure prepared by the method provided in the embodiment of the present application further avoids the perovskite light absorption of each sub-cell on the basis of reducing the dead area between adjacent sub-cells.
  • the direct contact between the layer and the upper electrode realizes the purpose of further avoiding the corrosion of the metal electrode and improving the stability of the battery under the premise of improving the conversion efficiency of the battery.
  • the embodiment of the present application discloses a thin-film solar cell structure and its preparation method.
  • three markings P1, P2, and P3 arranged sequentially along the first direction on both sides of the sub-cell
  • the wire groove realizes the series connection of the adjacent sub-cells.
  • the thin-film solar cell structure transfers the series connection part of the adjacent sub-cells, that is, the connection part of the upper electrode and the lower electrode of the adjacent sub-cells, to the adjacent sub-cells along the second direction, the second direction is perpendicular to the first direction, so that there is only one kind of groove in the dead zone between adjacent sub-batteries, which is equivalent to that between adjacent sub-batteries along the first direction in the prior art.
  • the dead zone area of the thin-film solar cell increases the light-receiving area of the thin-film solar cell and improves the conversion efficiency of the thin-film solar cell.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Manufacturing & Machinery (AREA)
  • Sustainable Energy (AREA)
  • Photovoltaic Devices (AREA)

Abstract

本申请公开了一种薄膜太阳能电池结构及其制备方法,相对于现有薄膜太阳能电池结构,通过子电池两侧沿第一方向依次排布的P1、P2、P3三个刻线槽实现相邻子电池的串联连接,该薄膜太阳能电池结构,将相邻子电池的串联连接部分转移到子电池沿第二方向的一端或两端,第二方向与第一方向垂直,使得相邻子电池之间的死区部分只有一种刻线槽,相当于现有技术中相邻子电池之间沿第二方向延伸的P1、P2、P3三个刻线槽重合,即去除了现有技术中相邻子电池之间的两种刻线槽以及相邻刻线槽之间的间距,从而大大减小薄膜太阳能电池的死区面积,增加薄膜太阳能电池的受光面积,提高薄膜太阳能电池的转换效率。

Description

一种薄膜太阳能电池结构及其制备方法
本申请要求于2021年10月11日提交中国专利局、申请号为202111183050.4、发明名称为“一种薄膜太阳能电池结构及其制备方法”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及光伏发电技术领域,尤其涉及一种薄膜太阳能电池结构及其制备方法。
背景技术
薄膜太阳能电池,顾名思义其厚度很薄,更容易降低成本,同时它既是一种高效能源产品,又是一种新型建筑材料,更容易与建筑完美结合,因此,薄膜太阳能电池已成为光伏市场发展的新趋势和新热点。
现有薄膜太阳能电池通常在各子电池两侧依次进行P1、P2、P3激光刻线,以实现相邻子电池的串联连接,然而,这种激光刻线方式不可避免地在相邻子电池之间产生死区,相邻子电池之间的死区部分包括P1刻线槽至P3刻线槽之间的区域,即P1、P2、P3三个刻线槽、P1刻线槽与P2刻线槽之间的间距、以及P2刻线槽与P3刻线槽之间的间距,由于死区内没有活性层,或死区内活性层正负电极短接,因此,死区部分无法输出发电功率,从而影响薄膜太阳能电池的转换效率。如何减小薄膜太阳能电池的死区面积,成为本领域技术人员亟待解决的技术问题。
发明内容
为解决上述技术问题,本申请实施例提供了一种薄膜太阳能电池结构及其制备方法,以减小薄膜太阳能电池的死区面积,提高薄膜太阳能电池的转换效率。
为实现上述目的,本申请实施例提供了如下技术方案:
一种薄膜太阳能电池结构,包括:
基板;
位于所述基板表面的至少一个电池组件,所述电池组件包括沿第一方向依次间隔排列的M个子电池,所述第一方向平行于所述基板表面;
每一子电池包括沿背离所述基板的方向依次排布的下电极、活性层和上电极,且每一子电池的下电极具有沿第二方向相对的第一端和第二端,上电极具有沿所述第二方向相对的第三端和第四端,所述第二方向平行于所述基板表面,且与所述第一方向垂直;
其中,第i个子电池的下电极的第一端与第i-1个子电池的上电极的第三端连接,第i个子电池的上电极的第三端与第i+1个子电池的下电极的第一端连接,2≤i≤M-1。
可选的,第i个子电池和第M个子电池的下电极包括沿所述第二方向延伸的第一下电极,及由所述第一下电极的一端向第三方向延伸的第二下电极,所述第二下电极为所述下电极的第一端,所述第一下电极背离所述第二下电极的一端为所述下电极的第二端,所述第三方向平行于所述基板表面,且与所述第二方向相交;
第i个子电池和第1个子电池的上电极包括沿所述第二方向延伸的第一上电极,及由所述第一上电极的一端向第四方向延伸的第二上电极,所述第二上电极为所述上电极的第三端,所述第一上电极背离所述第二上电极的一端为所述上电极的第四端,所述第四方向平行于所述基板表面,且与所述第二方向相交;
其中,第i个子电池的第二下电极与第i-1个子电池的第二上电极至少部分接触,第i个子电池的第二上电极与第i+1个子电池的第二下电极至少部分接触。
可选的,所述第三方向和所述第四方向均与所述第二方向垂直,且所述第三方向和所述第四方向反平行。
可选的,每一子电池的下电极的第一端与其上电极的第三端位于所述电池组件在所述第二方向上的相对侧,且第i个子电池的下电极的第一端与第i-1个子电池的下电极的第二端,以及第i+1个子电池的下电极的第二端位于所述电池组件在所述第二方向上的相同侧;
在所述第二方向上,第i个子电池的第一下电极的投影至少部分位于第i+1个子电池的第二下电极的投影范围内,第i个子电池的第一上电极的投影至少部分位于第i-1个子电池的第二上电极的投影范围内。
可选的,第1个子电池的下电极沿所述第二方向延伸,且在所述第二方向上,第1个子电池的下电极的投影至少部分位于第2个子电池的第二下电极的投影范围内;
第M个子电池的上电极沿所述第二方向延伸,且在所述第二方向上,第M个子电池的上电极至少部分位于第M-1个子电池的第二上电极的投影范围内。
可选的,所述至少一个电池组件包括多个电池组件,所述电池组件还包括:下连接电极和上连接电极,所述下连接电极和所述上连接电极用于将其所属电池组件与相邻电池组件串联起来,或作为其所属电池组件的输出电极。
可选的,所述下连接电极位于第M个子电池的下电极的第二端,并与第M个子电池的上电极的第三端至少部分接触;
所述上连接电极位于第1个子电池的上电极的第四端,并与第1个子电池的下电极的第一端至少部分接触。
可选的,每一子电池的活性层包括沿背离所述基板的方向依次排布的第一电荷传输层、钙钛矿吸光层和第二电荷传输层,每一子电池还包括:隔离层,所述隔离层位于所述活性层沿所述第二方向相对的两端,用于隔离所述活性层在其沿所述第二方向相对的两端与所述上电极接触。
可选的,所述隔离层为金属铋层或氮化硅层。
一种薄膜太阳能电池结构的制备方法,包括:
提供一基板;
在所述基板表面形成至少一个电池组件,所述电池组件包括沿第一方向依次间隔排列的M个子电池,每一子电池包括沿背离所述基板的方向依次排布的下电极、活性层和上电极,所述第一方向平行于所述基板表面;
所述电池组件的形成过程包括:
在所述基板表面形成下电极层;
对所述下电极层进行第一次激光刻线,所述第一次激光刻线至少包括 沿第二方向的激光刻线,从而将所述下电极层划分为各子电池的下电极,使得每一子电池的下电极具有沿所述第二方向相对的第一端和第二端,所述第二方向平行于所述基板表面,且与所述第一方向垂直;
在各子电池的下电极上形成活性层;
对所述活性层进行第二次激光刻线,所述第二次激光刻线与所述第一次激光刻线中沿所述第二方向的激光刻线重合,从而将所述活性层划分为各子电池的活性层;
在各子电池的活性层上形成上电极层;
对所述上电极层进行第三次激光刻线,从而将所述上电极层划分为各子电池的上电极,使得每一子电池的上电极具有沿所述第二方向相对的第三端和第四端;
其中,第i个子电池的下电极的第一端与第i-1个子电池的上电极的第三端连接,第i个子电池的上电极的第三端与第i+1个子电池的下电极的第一端连接,2≤i≤M-1。
可选的,所述第一次激光刻线还包括沿第三方向的激光刻线,所述第三方向平行于所述基板表面,且与所述第二方向相交,使得第i个子电池和第M个子电池的下电极包括沿所述第二方向延伸的第一下电极,及由所述第一下电极的一端向所述第三方向延伸的第二下电极,所述第二下电极为所述下电极的第一端,所述第一下电极背离所述第二下电极的一端为所述下电极的第二端;
所述第三次激光刻线包括沿第四方向的激光刻线,所述第四方向平行于所述基板表面,且与所述第二方向相交,使得第i个子电池和第1个子电池的上电极包括沿所述第二方向延伸的第一上电极,及由所述第一上电极的一端向所述第四方向延伸的第二上电极,所述第二上电极为所述上电极的第三端,所述第一上电极背离所述第二上电极的一端为所述上电极的第四端;
其中,第i个子电池的第二下电极与第i-1个子电池的第二上电极至少部分接触,第i个子电池的第二上电极与第i+1个子电池的第二下电极至少部分接触。
可选的,所述至少一个电池组件包括多个电池组件,在对所述下电极 层进行第一次激光刻线,从而将所述下电极层划分为各子电池的下电极时,该方法还包括:
利用所述第一次激光刻线在所述下电极层中划分出下连接电极;
在对所述上电极层进行第三次激光刻线,从而将所述上电极层划分为各子电池的上电极时,该方法还包括:
利用所述第三次激光刻线在所述上电极层中划分出上连接电极;
其中,所述下连接电极和所述上连接电极用于将其所属电池组件与相邻电池组件串联起来,或作为其所属电池组件的输出电极。
可选的,所述活性层包括沿背离所述基板的方向依次排布的第一电荷传输层、钙钛矿吸光层和第二电荷传输层,在各子电池的下电极上形成活性层的过程包括:
对各子电池的下电极的第一端和第二端进行遮挡;
在各子电池的下电极除其被遮挡部分外的其他部分上形成所述第一电荷传输层,并去除对各子电池的下电极的第一端和第二端的遮挡;
在所述第一电荷传输层上形成所述钙钛矿吸光层;
在所述钙钛矿吸光层对应各子电池的下电极的第一端和第二端的部分进行激光清边;
再次对各子电池的下电极的第一端和第二端进行遮挡;
在所述钙钛矿吸光层上形成所述第二电荷传输层,并去除对各子电池的下电极的第一端和第二端的遮挡。
可选的,该方法在各子电池的活性层上形成上电极层之前,还包括:
在各子电池的活性层沿所述第二方向相对的两端形成隔离层;对于任一子电池,所述隔离层用于隔离所述活性层在其沿所述第二方向相对的两端与所述上电极接触。
可选的,在各子电池的活性层上形成上电极层的过程包括:
利用掩膜版的方式,在各子电池的活性层上形成所述上电极层,其中,所述上电极层的掩膜版对应所述第一次激光刻线中沿所述第二方向的激光刻线位置具有遮挡部分。
与现有技术相比,上述技术方案具有以下优点:
本申请实施例所提供的薄膜太阳能电池结构,包括:基板;位于所述 基板表面的至少一个电池组件,所述电池组件包括沿第一方向依次间隔排列的M个子电池,所述第一方向平行于所述基板表面;每一子电池包括沿背离所述基板的方向依次排布的下电极、活性层和上电极,且每一子电池的下电极具有沿第二方向相对的第一端和第二端,上电极具有沿所述第二方向相对的第三端和第四端,所述第二方向平行于所述基板表面,且与所述第一方向垂直;其中,第i个子电池的下电极的第一端与第i-1个子电池的上电极的第三端连接,第i个子电池的上电极的第三端与第i+1个子电池的下电极的第一端连接,2≤i≤M-1。由此可见,相对于现有薄膜太阳能电池结构,通过子电池两侧沿所述第一方向依次排布的P1、P2、P3三个刻线槽实现相邻子电池的串联连接,该薄膜太阳能电池结构,将相邻子电池的串联连接部分,即相邻子电池的上电极和下电极连接部分,转移到子电池沿所述第二方向的一端或两端,使得相邻子电池之间的死区部分只有一种刻线槽,相当于现有技术中相邻子电池之间沿所述第二方向延伸的P1、P2、P3三个刻线槽重合,即去除了现有技术中相邻子电池之间的两种刻线槽以及相邻刻线槽之间的间距,从而大大减小薄膜太阳能电池的死区面积,增加薄膜太阳能电池的受光面积,提高薄膜太阳能电池的转换效率。
附图说明
为了更清楚地说明本申请实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本申请的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1为现有薄膜太阳能电池的结构示意图;
图2为本申请一个实施例所提供的薄膜太阳能电池结构中,电池组件的结构示意图;
图3为图2所示电池组件中,各子电池的下电极和上电极的排布示意图;
图4为图2所示电池组件中,各子电池的下电极的排布示意图;
图5为图2所示电池组件中,各子电池的上电极的排布示意图;
图6为图2所示电池组件中,各子电池的下电极和活性层的排布示意图;
图7为图2所示电池组件中,子电池沿AA’方向的纵向截面示意图;
图8为图2所示电池组件中,各子电池的隔离层的排布示意图;
图9为上电极层的掩膜版的示意图,及对利用该掩膜版形成的上电极层进行第三次激光刻线后形成的各子电池的上电极的排布示意图;
图10为隔离层的掩膜版的示意图,及利用该掩膜版形成的隔离层的排布示意图。
具体实施方式
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
在下面的描述中阐述了很多具体细节以便于充分理解本申请,但是本申请还可以采用其他不同于在此描述的其它方式来实施,本领域技术人员可以在不违背本申请内涵的情况下做类似推广,因此本申请不受下面公开的具体实施例的限制。
其次,本申请结合示意图进行详细描述,在详述本申请实施例时,为便于说明,表示器件结构的剖面图会不依一般比例作局部放大,而且所述示意图只是示例,其在此不应限制本申请保护的范围。此外,在实际制作中应包含长度、宽度及深度的三维空间尺寸。
图1给出了现有薄膜太阳能电池的结构示意图,如图1所示,现有薄膜太阳能电池结构通常包括由下到上依次排布的玻璃基底01、导电层02、空穴传输层03、吸光层04、电子传输层05以及金属电极层06所组成的叠层结构,目前通常采用P1、P2、P3激光刻线将上述叠层结构划分为多个子电池,如图1中子电池n、子电池n+1、子电池n+2等所示,并实现相邻子电池的串联连接。具体的,P1刻线槽贯穿空穴传输层03和导电层02,以将导电层02划分为各子电池的下电极;P2刻线槽贯穿由电子传输层05、 吸光层04和空穴传输层03组成的活性层,以将该活性层划分为各子电池的活性层;P3刻线槽贯穿金属电极层06、电子传输层05、吸光层04和空穴传输层03组成的叠层,直至导电层02,以将金属电极层06划分为各子电池的上电极;其中,金属电极层06填充P2刻线槽,即金属电极层06透过P2刻线槽沉积至导电层02上,从图1所示的穿过P2刻线槽的电流流向可以看出,以此实现相邻子电池的上电极和下电极连接,即相邻子电池的串联连接。
正如背景技术部分所述,这种激光刻线方式不可避免地在相邻子电池之间产生死区,如图1所示,相邻子电池之间的死区部分包括P1刻线槽至P3刻线槽之间的区域,即P1、P2、P3三个刻线槽、P1刻线槽与P2刻线槽之间的间距、以及P2刻线槽与P3刻线槽之间的间距,由于死区内没有活性层,或死区内活性层正负电极短接,因此,死区部分无法输出发电功率,从而影响薄膜太阳能电池的转换效率。如何减小薄膜太阳能电池的死区面积,成为本领域技术人员亟待解决的技术问题。
有鉴于此,本申请实施例提供了一种薄膜太阳能电池结构,该薄膜太阳能电池结构包括:
基板;可选的,所述基板为玻璃基板;
位于所述基板表面的至少一个电池组件100,图2给出了所述电池组件100的一种结构示意图,如图2所示,所述电池组件100包括沿第一方向依次间隔排列的M个子电池10,所述第一方向平行于所述基板表面;图2中标出的1、2、3、4、5…i-1、i、i+1…M-1、M是对所述电池组件100中各子电池10沿所述第一方向的排序,需要说明的是,本申请对所述电池组件100中包含的子电池10的个数并不做限定,图2中只是列举了所述电池组件100包含5个以上子电池10的一种情况;
继续如图2所示,每一子电池10包括沿背离所述基板的方向(如图2中Z方向所示)依次排布的下电极11、活性层12和上电极13,且每一子电池的下电极11具有沿第二方向相对的第一端和第二端,上电极13具有沿所述第二方向相对的第三端和第四端,所述第二方向平行于所述基板表面,且与所述第一方向垂直;可选的,各子电池10的下电极11为透明电极,上电极13为金属电极。
为了更清楚地展示各子电池10的下电极11和上电极13的排布方式,图3给出了图2所示电池组件中,各子电池10的下电极11和上电极13的排布示意图,如图3所示,对于任一子电池,其下电极11具有沿所述第二方向相对的第一端和第二端,如图3中任一子电池的下电极11沿所述第二方向相对的①端和②端所示,其上电极13具有沿所述第二方向相对的第三端和第四端,如图3中任一子电池的上电极13沿所述第二方向相对的③端和④端所示;
其中,第i个子电池的下电极11的第一端(如图3中第i个子电池的下电极11的①端所示)与第i-1个子电池的上电极13的第三端(如图3中第i-1个子电池的上电极13的③端所示)连接,第i个子电池的上电极13的第三端(如图3中第i个子电池的上电极13的③端所示)与第i+1个子电池的下电极11的第一端(如图3中第i+1个子电池的下电极11的①端所示)连接,2≤i≤M-1。需要说明的是,i可以是2到M-1之间的任一整数。
具体的,以图2和图3中第1个子电池、第2个子电池和第3个子电池为例,对本申请实施例所提供的薄膜太阳能电池结构中,在所述第一方向上任意连续排列的三个子电池的串联连接方式进行说明。
结合图2和图3所示,第1个子电池、第2个子电池和第3个子电池的下电极11均沿所述第二方向延伸,在所述第二方向上具有相对的第一端(如图3中①端所示)和第二端(如图3中②端所示);第1个子电池、第2个子电池和第3个子电池的上电极13均沿所述第二方向延伸,在所述第二方向上具有相对的第三端(如图3中③端所示)和第四端(如图3中④端所示),其中,第2个子电池的下电极的第一端(如图3中①端所示)与第1个子电池的上电极的第三端(如图3中③端所示)连接,第2个子电池的上电极的第三端(如图3中③端所示)与第3个子电池的下电极的第一端(如图3中①端所示)连接。
以此类推,对于在所述第一方向上任意连续排列的三个子电池,将其依次设定为第一子电池、第二子电池和第三子电池,则所述第二子电池的下电极的第一端(如图3中①端所示)与第一子电池的上电极的第三端(如图3中③端所示)连接,第二子电池的上电极的第三端(如图3中③端所 示)与第三子电池的下电极的第一端(如图3中①端所示)连接,从而实现在所述第一方向上任意连续排列的三个子电池的串联连接。
需要说明的是,本申请对第i个子电池的下电极的第一端与第i-1个子电池的上电极的第三端连接,以及第i个子电池的上电极的第三端与第i+1个子电池的下电极的第一端连接的方式并不做限定,可以是如图2和图3所示那样直接接触,即第i个子电池的下电极通过其向靠近第i-1个子电池延伸的部分,与第i-1个子电池的上电极向靠近第i个子电池延伸的部分直接接触进行连接,第i个子电池的上电极通过其向靠近第i+1个子电池延伸的部分,与第i+1个子电池的下电极向靠近第i个子电池延伸的部分直接接触进行连接,也可以通过其他导体间接接触进行连接,只要相邻子电池的上电极和下电极通过其沿所述第二方向的一端或两端进行连接即可。
由于本申请对相邻子电池的上电极和下电极的连接方式并不做限定,可以是直接接触,也可以是间接接触,因此,本申请对各子电池的上电极和下电极的具体形状也不做限定,可以是如图2和图3所示那样,即除第1个子电池的下电极和第M个子电池的上电极为长条形以外,其他各子电池的上电极和下电极均为L形,也可以各子电池的上电极和下电极均为长条形或L形,甚至其他形状,只要相邻子电池的上电极和下电极通过其沿所述第二方向的一端或两端进行连接即可。
还需要说明的是,对于任一子电池,其下电极的第一端与其上电极的第三端可以位于所述电池组件在所述第二方向上的相对侧,即其下电极的第一端与其上电极的第四端位于所述电池组件在所述第二方向上的同一侧,正如如图3所示那样,此时,第i个子电池的下电极的第一端与第i-1个子电池的上电极的第三端的连接,和第i个子电池的上电极的第三端与第i+1个子电池的下电极的第一端的连接,位于所述电池组件在所述第二方向上的相对侧,即第i个子电池在其沿所述第二方向上的一端,其下电极与第i-1个子电池的上电极进行连接,在其沿所述第二方向上的另一端,其上电极与第i+1个子电池的下电极进行连接;
对于任一子电池,其下电极的第一端与其上电极的第三端也可以位于所述电池组件在所述第二方向上的同一侧,此时,第i个子电池的下电极的第一端与第i-1个子电池的上电极的第三端的连接,和第i个子电池的上 电极的第三端与第i+1个子电池的下电极的第一端的连接,位于所述电池组件在所述第二方向上的同一侧,即第i个子电池在其沿所述第二方向上的一端,其下电极与第i-1个子电池的上电极进行连接,同时其上电极与第i+1个子电池的下电极进行连接;但本申请对此并不做限定,具体视情况而定。
再需要说明的是,对于相邻两个子电池来说,以第i个子电池和第i+1个子电池为例,第i个子电池的下电极的第一端与第i+1个子电池的下电极的第二端可以位于所述电池组件在所述第二方向上的同一侧,如图3所示那样,第i个子电池的下电极的第一端与第i+1个子电池的下电极的第二端也可以位于所述电池组件在所述第二方向上的相对侧,本申请对此并不做限定,具体视情况而定。
由上述说明可知,图2只是列举了所述电池组件100的一种结构示意图,在本申请实施例所提供的薄膜太阳能电池结构中,所述电池组件100的结构并不限于此,只要所述电池组件中,各子电池沿所述第一方向依次间隔排列,且各子电池通过其上电极和下电极沿所述第二方向的一端或两端与相邻子电池串联连接即可。
由此可见,相对于现有薄膜太阳能电池结构,通过子电池两侧沿所述第一方向依次排布的P1、P2、P3三个刻线槽实现相邻子电池的串联连接,该薄膜太阳能电池结构,将相邻子电池的串联连接部分,即相邻子电池的上电极和下电极连接部分,转移到子电池沿所述第二方向的一端或两端,使得相邻子电池之间的死区部分只有一种刻线槽,相当于现有技术中相邻子电池之间沿所述第二方向延伸的P1、P2、P3三个刻线槽重合,即去除了现有技术中相邻子电池之间的两种刻线槽以及相邻刻线槽之间的间距,从而大大减小薄膜太阳能电池的死区面积,增加薄膜太阳能电池的受光面积,提高薄膜太阳能电池的转换效率。
在上述实施例的基础上,在本申请的一个实施例中,如图4所示,图4给出了图2所示电池组件中,各子电池10的下电极11的排布示意图,可以看出,第i个子电池(2≤i≤M-1)和第M个子电池的下电极11包括沿所述第二方向延伸的第一下电极111,及由所述第一下电极111的一端向第三方向延伸的第二下电极112,所述第二下电极112为所述下电极11 的第一端,所述第一下电极111背离所述第二下电极112的一端为所述下电极11的第二端,所述第三方向平行于所述基板表面,且与所述第二方向相交;
如图5所示,图5给出了图2所示电池组件中,各子电池10的上电极13的排布示意图,可以看出,第i个子电池(2≤i≤M-1)和第1个子电池的上电极13包括沿所述第二方向延伸的第一上电极131,及由所述第一上电极131的一端向第四方向延伸的第二上电极132,所述第二上电极132为所述上电极13的第三端,所述第一上电极131背离所述第二上电极132的一端为所述上电极13的第四端,所述第四方向平行于所述基板表面,且与所述第二方向相交;
其中,第i个子电池的第二下电极112与第i-1个子电池的第二上电极132至少部分接触,第i个子电池的第二上电极132与第i+1个子电池的第二下电极112至少部分接触。
可见,在本实施例中,结合图2-图5所示,对于第i个子电池来说,其第一下电极111、活性层12和第一上电极131沿背离所述基板表面的方向依次排布,作为该子电池发电的主体部分;其第二下电极112与第i-1个子电池的第二上电极132至少部分接触,从而实现第i个子电池与第i-1个子电池的串联连接,其第二上电极132与第i+1个子电池的第二下电极112至少部分接触,从而实现第i个子电池与第i+1个子电池的串联连接,即其第二下电极112与其第二上电极132作为该子电池与相邻子电池的串联部分。
并且,在本实施例中,第i个子电池通过其下电极11向所述第三方向延伸的部分(第二下电极112),与第i-1个子电池的上电极13向所述第四方向延伸的部分(第二上电极132)接触,并通过其上电极13向所述第四方向延伸的部分(第二上电极132),与第i+1个子电池的下电极11向所述第三方向延伸的部分(第二下电极112)接触,即第i个子电池的下电极11或上电极13是通过其向相邻子电池延伸的部分与相邻子电池进行串联连接的。
在上述实施例的基础上,可选的,在本申请的一个实施例中,继续如图4和图5所示,所述第三方向和所述第四方向均与所述第二方向垂直, 且所述第三方向和所述第四方向反平行。由于第i个子电池的第二下电极112与第i-1个子电池的第二上电极132至少部分接触,第i个子电池的第二上电极132与第i+1个子电池的第二下电极112至少部分接触,且各子电池沿所述第一方向排列,因此,所述第三方向与所述第一方向反平行,所述第四方向与所述第一方向平行,即对于第i个子电池来说,其第二下电极112由其第一下电极111的一端向靠近第i-1个子电池延伸,其第二上电极132由其第一上电极131的一端向靠近第i+1个子电池延伸。
需要说明的是,在上述实施例中,结合图2-图5所示,第i个子电池的第二下电极112与第i-1个子电池的第二上电极132在所述基板表面的投影相交叠,以使得第i个子电池的第二下电极112与第i-1个子电池的第二上电极132至少部分接触;第i个子电池的第二上电极132与第i+1个子电池的第二下电极112在所述基板表面的投影相交叠,以使得第i个子电池的第二上电极132与第i+1个子电池的第二下电极112至少部分接触。
在上述实施例的基础上,可选的,在本申请的一个实施例中,继续结合图2-图5所示,每一子电池的下电极11的第一端与其上电极13的第三端位于所述电池组件在所述第二方向上的相对侧,且第i个子电池的下电极11的第一端与第i-1个子电池的下电极11的第二端,以及第i+1个子电池的下电极11的第二端位于所述电池组件在所述第二方向上的相同侧,即在本实施例中,第i个子电池的下电极11的第一端(第二下电极112)及其上电极13的第四端,第i-1个子电池的下电极11的第二端及其上电极13的第三端(第二上电极132),第i+1个子电池的下电极11的第二端及其上电极13的第三端均位于所述电池组件在所述第二方向上的相同侧,使得第i个子电池的第二下电极112与第i-1个子电池的第二上电极132接触;第i个子电池的下电极11的第二端及其上电极13的第三端(第二上电极132),第i-1个子电池的下电极11的第一端及其上电极11的第四端,以及第i+1个子电池的下电极11的第一端(第二下电极112)及其上电极13的第四端均位于所述电池组件在所述第二方向上的相同侧,使得第i个子电池的第二上电极132与第i+1个子电池的第二下电极112接触。
为了使得所述电池组件中各子电池的下电极11和上电极13排布更加紧密,节省占用面积,在上述实施例的基础上,在本申请的一个实施例中, 继续如图2-图5所示,在所述第二方向上,第i个子电池的第一下电极111的投影至少部分位于第i+1个子电池的第二下电极112的投影范围内,第i个子电池的第一上电极131的投影至少部分位于第i-1个子电池的第二上电极132的投影范围内。
在上述实施例的基础上,在本申请的一个实施例中,如图4所示,第1个子电池的下电极11沿所述第二方向延伸,且在所述第二方向上,第1个子电池的下电极11的投影至少部分位于第2个子电池的第二下电极112的投影范围内;
如图5所示,第M个子电池的上电极13沿所述第二方向延伸,且在所述第二方向上,第M个子电池的上电极13至少部分位于第M-1个子电池的第二上电极132的投影范围内。
在实际应用中,所述基板表面的电池组件通常不止一个,且各电池组件之间也需串联连接,以增加输出功率,因此,在上述实施例的基础上,在本申请的一个实施例中,所述至少一个电池组件包括多个电池组件,如图3-图5所示,所述电池组件100还包括:下连接电极14和上连接电极15,所述下连接电极14和所述上连接电极15用于将其所属电池组件与相邻电池组件串联起来,或作为其所属电池组件的输出电极。具体的,通过焊接等方式在所述下连接电极14和所述上连接电极15上制备电极引出线(正负电极引出线),以便于将所属电池组件与相邻电池组件串联起来,或作为所属电池组件的输出电极。
具体的,在本申请的一个实施例中,如图3和图4所示,所述下连接电极14位于第M个子电池的下电极11的第二端(如图3中②端所示),并与第M个子电池的上电极的第三端(如图3中③端所示)至少部分接触;
如图3和图5所示,所述上连接电极15位于第1个子电池的上电极13的第四端(如图3中④端所示),并与第1个子电池的下电极11的第一端(如图3中①端所示)至少部分接触。
结合图3-图5所示,在本实施例中,所述上连接电极15与第1个子电池的下电极11的第一端连接,从而实现第1个子电池与相邻电池组件中的子电池的串联连接,或作为该电池组件的一个输出电极;第1个子电池通过其第二上电极112与第2个子电池的第二下电极132连接,从而实现 第1个子电池与第2个子电池的串联连接;第2个子电池的第二上电极132与第3个子电池的第二下电极112连接,从而实现第2个子电池与第3个子电池的串联连接;以此类推,第M-1个子电池的第二上电极132与第M个子电池的第二下电极112连接,从而实现第M-1个子电池与第M个子电池的串联;第M个子电池的上电极13与所述下连接电极14连接,从而实现第M个子电池与相邻电池组件中的子电池的串联,或作为该电池组件的另一个输出电极。可见,本申请实施例所提供的薄膜太阳能电池结构中,各子电池紧密排布,使得在有限的空间内,实现薄膜太阳能电池的最大功率输出。
需要说明的是,在上述各实施例中,结合图3-图5所示,第i个子电池的活性层12至少覆盖其第一下电极111,及其第一下电极111与第i+1个子电池的第二下电极112之间的间隙,以防止第i个子电池的第二上电极132在与第i+1个子电池的第二下电极112接触时,和第i个子电池的第一下电极111接触而形成短路;
第1个子电池的活性层12至少覆盖其下电极11,及其下电极11与第2个子电池的第二下电极112之间的间隙,以防止第1个子电池的第二上电极132在与第2个子电池的第二下电极112接触时,和第1个子电池的下电极11接触而形成短路;
第M个子电池的活性层12至少覆盖其第一下电极111,及其第一下电极112与所述下连接电极14之间的间隙,以防止第M个子电池的上电极13在与所述下连接电极14接触时,和第M个子电池的第一下电极111接触而形成短路。
可选的,图6给出了图2所示电池组件中,各子电池10的下电极11和活性层12的排布示意图,从图中可以看出,各子电池10的活性层12沿所述第二方向延伸,其沿所述第二方向的长度不小于第i个子电池的第一下电极111沿所述第二方向的长度和第i个子电池的第一下电极111与第i+1个子电池的第二下电极112之间的间隙之和,图6中各子电池的活性层12沿所述第二方向的长度正好等于第i个子电池的第一下电极111沿所述第二方向的长度和第i个子电池的第一下电极111与第i+1个子电池的第二下电极112之间的间隙之和。
在上述任一实施例的基础上,在本申请的一个实施例中,如图7所示,图7为图2所示电池组件中,子电池沿AA’方向的纵向截面示意图,可以看出,每一子电池的活性层12包括沿背离所述基板的方向依次排布的第一电荷传输层121、钙钛矿吸光层122和第二电荷传输层123,即所述薄膜太阳能电池为钙钛矿太阳能电池;此时,在第i个子电池的第二下电极112与第i-1个子电池的第二上电极132至少部分接触,以及第i个子电池的第二上电极132与第i+1个子电池的第二下电极112至少部分接触时,会导致第i个子电池及第i-1个子电池的上电极13与其活性层12中的钙钛矿吸光层122从侧面直接接触,从而造成第i个子电池及第i-1个子电池的上电极13的腐蚀,以及所述电池组件性能的退化,严重影响钙钛矿太阳能电池的稳定性。
有鉴于此,在上述实施例的基础上,在本申请的一个实施例中,如图7所示,每一子电池还包括:隔离层16,所述隔离层16位于所述活性层12沿所述第二方向相对的两端,用于隔离所述活性层12在其沿所述第二方向相对的两端与所述上电极13接触。从图7可以看出,由于子电池的活性层12沿所述第二方向相对的两端设置有所述隔离层16,因此,子电池的第二上电极132沉积至相邻子电池的第二下电极112上时,不会直接与所述活性层12的侧面接触,即子电池的上电极13不会与所述钙钛矿吸光层122直接接触,从而避免子电池的钙钛矿吸光层对其上电极的腐蚀,提高钙钛矿太阳能电池的稳定性。
图8进一步给出了图2所示电池组件中,各子电池的隔离层16的排布示意图,从图中可以看出,所述隔离层16位于各子电池的活性层12沿所述第二方向相对的两端,且所述隔离层16位于第i个子电池和第M个子电池的第二下电极112上,第1个子电池的下电极11的第一端,以及所述下连接电极14上。
需要说明的是,图8中只是列举了在第3个子电池的下电极11上,所述活性层12及位于所述活性层12沿所述第二方向相对的两端的隔离层16的俯视示意图,以此类推,可得到各子电池的下电极11上,所述活性层12及位于所述活性层12沿所述第二方向相对的两端的隔离层16的俯视示意图。并且,从图8中可以看出,所述隔离层12在所述第二方向上的投影 可以等于各子电池的下电极11在所述第二方向上的投影,本申请对此并不做限定,具体视情况而定。
可选的,所述第一电荷传输层为空穴传输层,所述第二电荷传输层为电子传输层,但本申请对此并不做限定,具体视情况而定。
可选的,所述隔离层16可以为金属铋层或氮化硅层,本申请对此并不做限定,只要所述隔离层16能够在所述活性层12与所述上电极13之间起隔离作用即可。
由此可见,本申请实施例所提供的钙钛矿太阳能电池结构,在减小相邻子电池之间死区面积的基础上,进一步避免了各子电池的钙钛矿吸光层与其上电极的直接接触,实现了在提高电池转换效率的前提下,进一步避免金属电极的腐蚀,提高电池稳定性的目的。
此外,本申请实施例还提供了一种薄膜太阳能电池结构的制备方法,该方法包括:
S1:提供一基板;可选的,所述基板为玻璃基板;
S2:在所述基板表面形成至少一个电池组件100,图2给出了所述电池组件100的一种结构示意图,如图2所示,所述电池组件100包括沿第一方向依次间隔排列的M个子电池10,每一子电池10包括沿背离所述基板的方向(如图2中Z方向所示)依次排布的下电极11、活性层12和上电极13,所述第一方向平行于所述基板表面;图2中标出的1、2、3、4、5…i-1、i、i+1…M-1、M是对所述电池组件100中各子电池10沿所述第一方向的排序,需要说明的是,本申请对所述电池组件100中包含的子电池10的个数并不做限定,图2中只是列举了所述电池组件100包含5个以上子电池10的一种情况;
具体的,所述电池组件100的形成过程包括:
S21:在所述基板表面形成下电极层;可选的,所述下电极层为透明电极层;
S22:对所述下电极层进行第一次激光刻线,所述第一次激光刻线至少包括沿第二方向的激光刻线,从而将所述下电极层划分为各子电池的下电极11,使得每一子电池的下电极11具有沿所述第二方向相对的第一端和第二端,所述第二方向平行于所述基板表面,且与所述第一方向垂直。
具体的,所述第一次激光刻线可以是P1激光刻线,如图3和图4所示,对所述下电极层进行P1激光刻线101,所述P1激光刻线101至少包括沿所述第二方向的激光刻线,刻蚀深度直至所述基板表面,从而将所述下电极层划分为各子电池的下电极11,使得每一子电池的下电极11具有沿所述第二方向相对的第一端和第二端,如图4中任一子电池的下电极11沿所述第二方向相对的①端和②端所示。可选的,所述P1激光刻线的宽度可以为70μm。
在上述实施例的基础上,可选的,在本申请的一个实施例中,如图4所示,所述第一次激光刻线还包括沿第三方向的激光刻线,所述第三方向平行于所述基板表面,且与所述第二方向相交,使得第i个子电池(2≤i≤M-1)和第M个子电池的下电极11包括沿所述第二方向延伸的第一下电极111,及由所述第一下电极111的一端向第三方向延伸的第二下电极112,所述第二下电极112为所述下电极11的第一端,所述第一下电极111背离所述第二下电极112的一端为所述下电极11的第二端。
具体的,如图4所示,对所述下电极层进行P1激光刻线101时,所述P1激光刻线101不仅包括沿所述第二方向的激光刻线,还包括沿所述第三方向的激光刻线,刻蚀深度直至所述基板表面,使得第i个子电池(2≤i≤M-1)和第M个子电池的下电极11包括沿所述第二方向延伸的第一下电极111,及由所述第一下电极111的一端向第三方向延伸的第二下电极112,所述第二下电极112为所述下电极11的第一端,所述第一下电极111背离所述第二下电极112的一端为所述下电极11的第二端。
在上述实施例的基础上,可选的,在本申请的一个实施例中,如图4所示,所述第三方向与所述第二方向垂直。
S23:在各子电池的下电极11上形成活性层12。
可选的,在图4所示的各电池的下电极11上,形成活性层12。
在上述实施例的基础上,在本申请的一个实施例中,如图7所示,所述活性层12包括沿背离所述基板的方向依次排布的第一电荷传输层121、钙钛矿吸光层122和第二电荷传输层123,即所述薄膜太阳能电池为钙钛矿太阳能电池,此时,在各子电池的下电极11上形成活性层12的过程包括:
S231:对各子电池的下电极11的第一端和第二端进行遮挡;
具体的,可以通过粘贴耐高温胶带(如聚酰亚胺耐高温胶带),或者通过制备金属掩膜版的方式,对各子电池的下电极11的第一端和第二端进行遮挡,其中,对各子电池的下电极11的第一端和第二端进行遮挡的部分如图4中虚线框圈出的部分所示。
S232:在各子电池的下电极11除其被遮挡部分外的其他部分上形成所述第一电荷传输层121,并去除对各子电池的下电极11的第一端和第二端的遮挡;
S233:在所述第一电荷传输层121上形成所述钙钛矿吸光层122;
S234:在所述钙钛矿吸光层122对应各子电池的下电极11的第一端和第二端的部分进行激光清边;
需要说明的是,由于所述钙钛矿吸光层122通常采用涂布的方式进行制备,如果对各子电池的下电极11的第一端和第二端仍采用遮挡的方式的话,会影响所述钙钛矿吸光层122的涂布工艺的进行,因此,在本实施例中,先在所述第一电荷传输层121上形成所述钙钛矿吸光层122后,再对所述钙钛矿吸光层122对应各子电池的下电极11的第一端和第二端的部分进行激光清边。
S235:再次对各子电池的下电极11的第一端和第二端进行遮挡;
S236:在所述钙钛矿吸光层122上形成所述第二电荷传输层123,并去除对各子电池的下电极11的第一端和第二端的遮挡。
需要说明的是,在上述实施例中,所述第一电荷传输层121和所述第二电荷传输层123通常采用热蒸发或磁控溅射的方法制备,因此对各子电池的下电极11的第一端和第二端采用遮挡的方式,不会影响所述第一电荷传输层121和所述第二电荷传输层123的制备。
可选的,所述第一电荷传输层为空穴传输层,所述第二电荷传输层为电子传输层,但本申请对此并不做限定,具体视情况而定。
S24:对所述活性层进行第二次激光刻线,所述第二次激光刻线与所述第一次激光刻线中沿所述第二方向的激光刻线重合,从而将所述活性层划分为各子电池的活性层12。
具体的,所述第二次激光刻线可以是P2激光刻线,如图6所示,对所 述活性层进行P2激光刻线102,所述P2激光刻线102与所述P1激光刻线101中沿所述第二方向的激光刻线重合,从而将所述活性层划分为各子电池的活性层12。
S25:在各子电池的活性层12上形成上电极层;可选的,所述上电极层为金属电极层。
S26:对所述上电极层进行第三次激光刻线,从而将所述上电极层划分为各子电池的上电极13,使得每一子电池的上电极13具有沿所述第二方向相对的第三端和第四端,如图5中任一子电池的上电极13沿所述第二方向相对的③端和④端所示。
可选的,在本申请的一个实施例中,在各子电池的活性层上形成上电极层的过程包括:
利用掩膜版的方式,在各子电池的活性层上形成所述上电极层,其中,所述上电极层的掩膜版对应所述第一次激光刻线中沿所述第二方向的激光刻线位置具有遮挡部分。具体的,如图9所示,图9给出了所述上电极层的掩膜版的示意图,及对利用该掩膜版形成的上电极层进行第三次激光刻线后形成的各子电池的上电极的排布示意图,从图中可以看出,由于所述上电极层的掩膜版对应所述第一次激光刻线中沿所述第二方向的激光刻线位置具有遮挡的齿状部分,可选的,该遮挡的齿状部分的宽度可以为70μm,因此,在对应所述第一次激光刻线中沿所述第二方向的激光刻线位置处没有所述上电极层,而在其他位置处(即图9中上电极层掩膜版的白色区域)形成所述上电极层。
在此基础上,对所述上电极层进行第三次激光刻线103,具体的,所述第三次激光刻线可以为P3激光刻线,此时,如图5所示,所述第三次激光刻线包括沿第四方向的激光刻线,所述第四方向平行于所述基板表面,且与所述第二方向相交,使得第i个子电池和第1个子电池的上电极13包括沿所述第二方向延伸的第一上电极131,及由所述第一上电极131的一端向第四方向延伸的第二上电极132,所述第二上电极132为所述上电极的第三端,所述第一上电极131背离所述第二上电极132的一端为所述上电极的第四端。
在上述实施例的基础上,可选的,在本申请的一个实施例中,继续如图5所示,所述第四方向与所述第二方向垂直。
当然,在本申请的其他实施例中,也可以像所述第一次激光刻线那样,即在各子电池的活性层12上整面形成所述上电极层,然后对所述上电极层进行第三次激光刻线,此时所述第三次激光刻线不仅包含沿所述第二方向的激光刻线,且该沿所述第二方向的激光刻线与所述第一次激光刻线中沿所述第二方向的激光刻线重合,还包括沿所述第四方向的激光刻线。本申请对此并不做限定,具体视情况而定。
利用本申请实施例所提供的方法制备形成的薄膜太阳能电池结构中,第i个子电池的下电极11的第一端(如图3中第i个子电池的下电极11的①端所示)与第i-1个子电池的上电极13的第三端(如图3中第i-1个子电池的上电极13的③端所示)连接,第i个子电池的上电极13的第三端(如图3中第i个子电池的上电极13的③端所示)与第i+1个子电池的下电极11的第一端(如图3中第i+1个子电池的下电极11的①端所示)连接,2≤i≤M-1。需要说明的是,i可以是2到M-1之间的任一整数。
结合图2-图5所示,相对于现有薄膜太阳能电池结构,通过子电池两侧沿所述第一方向依次排布的P1、P2、P3三个刻线槽实现相邻子电池的串联连接,该薄膜太阳能电池结构,将相邻子电池的串联连接部分,即相邻子电池的上电极和下电极连接部分,转移到子电池沿所述第二方向的一端或两端,使得相邻子电池之间的死区部分只有一种刻线槽,相当于现有技术中相邻子电池之间沿所述第二方向延伸的P1、P2、P3三个刻线槽重合,即去除了现有技术中相邻子电池之间的两种刻线槽以及相邻刻线槽之间的间距,从而大大减小薄膜太阳能电池的死区面积,增加薄膜太阳能电池的受光面积,提高薄膜太阳能电池的转换效率。
需要说明的是,本申请对第i个子电池的下电极的第一端与第i-1个子电池的上电极的第三端连接,以及第i个子电池的上电极的第三端与第i+1个子电池的下电极的第一端连接的方式并不做限定,可以是如图2-图5所示那样直接接触,即第i个子电池的下电极通过其向靠近第i-1个子电池延伸的部分,与第i-1个子电池的上电极向靠近第i个子电池延伸的部分直接接触进行连接,第i个子电池的上电极通过其向靠近第i+1个子电池延伸 的部分,与第i+1个子电池的下电极向靠近第i个子电池延伸的部分直接接触进行连接,也可以通过其他导体间接接触进行连接,只要相邻子电池的上电极和下电极通过其沿所述第二方向的一端或两端进行连接即可。
由于本申请对相邻子电池的上电极和下电极的连接方式并不做限定,可以是直接接触,也可以是间接接触,因此,本申请对各子电池的上电极和下电极的具体形状也不做限定,可以是如图2和图3所示那样,即除第1个子电池的下电极和第M个子电池的上电极为长条形以外,其他各子电池的上电极和下电极均为L形,也可以各子电池的上电极和下电极均为长条形或L形,甚至其他形状,只要相邻子电池的上电极和下电极通过其沿所述第二方向的一端或两端进行连接即可。
还需要说明的是,对于任一子电池,其下电极的第一端与其上电极的第三端可以位于所述电池组件在所述第二方向上的相对侧,即其下电极的第一端与其上电极的第四端位于所述电池组件在所述第二方向上的同一侧,正如如图3所示那样,此时,第i个子电池的下电极的第一端与第i-1个子电池的上电极的第三端的连接,和第i个子电池的上电极的第三端与第i+1个子电池的下电极的第一端的连接,位于所述电池组件在所述第二方向上的相对侧,即第i个子电池在其沿所述第二方向上的一端,其下电极与第i-1个子电池的上电极进行连接,在其沿所述第二方向上的另一端,其上电极与第i+1个子电池的下电极进行连接;
对于任一子电池,其下电极的第一端与其上电极的第三端也可以位于所述电池组件在所述第二方向上的同一侧,此时,第i个子电池的下电极的第一端与第i-1个子电池的上电极的第三端的连接,和第i个子电池的上电极的第三端与第i+1个子电池的下电极的第一端的连接,位于所述电池组件在所述第二方向上的同一侧,即第i个子电池在其沿所述第二方向上的一端,其下电极与第i-1个子电池的上电极进行连接,同时其上电极与第i+1个子电池的下电极进行连接;但本申请对此并不做限定,具体视情况而定。
再需要说明的是,对于相邻两个子电池来说,以第i个子电池和第i+1个子电池为例,第i个子电池的下电极的第一端与第i+1个子电池的下电极的第二端可以位于所述电池组件在所述第二方向上的同一侧,如图3所 示那样,第i个子电池的下电极的第一端与第i+1个子电池的下电极的第二端也可以位于所述电池组件在所述第二方向上的相对侧,本申请对此并不做限定,具体视情况而定。
由上述说明可知,图2只是列举了所述电池组件100的一种结构示意图,在利用本申请实施例所提供的方法制备的薄膜太阳能电池结构中,所述电池组件100的结构并不限于此,只要所述电池组件中,各子电池沿所述第一方向依次间隔排列,且各子电池通过其上电极和下电极沿所述第二方向的一端或两端与相邻子电池串联连接即可。
在上述实施例的基础上,在本申请的一个实施例中,结合图2-图5所示,对于第i个子电池来说,其第一下电极111、活性层12和第一上电极131沿背离所述基板表面的方向依次排布,作为该子电池发电的主体部分;其第二下电极112与第i-1个子电池的第二上电极132至少部分接触,从而实现第i个子电池与第i-1个子电池的串联连接,其第二上电极132与第i+1个子电池的第二下电极112至少部分接触,从而实现第i个子电池与第i+1个子电池的串联连接,即其第二下电极112与其第二上电极132作为该子电池与相邻子电池的串联部分。
并且,在本实施例中,第i个子电池通过其下电极11向所述第三方向延伸的部分(第二下电极112),与第i-1个子电池的上电极13向所述第四方向延伸的部分(第二上电极132)接触,并通过其上电极13向所述第四方向延伸的部分(第二上电极132),与第i+1个子电池的下电极11向所述第三方向延伸的部分(第二下电极112)接触,即第i个子电池的下电极11或上电极13是通过其向相邻子电池延伸的部分与相邻子电池进行串联连接的。
当所述第三方向和所述第四方向均与所述第二方向垂直时,由于第i个子电池的第二下电极112与第i-1个子电池的第二上电极132至少部分接触,第i个子电池的第二上电极132与第i+1个子电池的第二下电极112至少部分接触,且各子电池沿所述第一方向排列,因此,所述第三方向与所述第一方向反平行,所述第四方向与所述第一方向平行,即对于第i个子电池来说,其第二下电极112由其第一下电极111的一端向靠近第i-1个子电池延伸,其第二上电极132由其第一上电极131的一端向靠近第i+1 个子电池延伸。
需要说明的是,在上述实施例中,结合图2-图5所示,第i个子电池的第二下电极112与第i-1个子电池的第二上电极132在所述基板表面的投影相交叠,以使得第i个子电池的第二下电极112与第i-1个子电池的第二上电极132至少部分接触;第i个子电池的第二上电极132与第i+1个子电池的第二下电极112在所述基板表面的投影相交叠,以使得第i个子电池的第二上电极132与第i+1个子电池的第二下电极112至少部分接触。
在上述实施例的基础上,可选的,在本申请的一个实施例中,继续结合图2-图5所示,每一子电池的下电极11的第一端与其上电极13的第三端位于所述电池组件在所述第二方向上的相对侧,且第i个子电池的下电极11的第一端与第i-1个子电池的下电极11的第二端,以及第i+1个子电池的下电极11的第二端位于所述电池组件在所述第二方向上的相同侧,即在本实施例中,第i个子电池的下电极11的第一端(第二下电极112)及其上电极13的第四端,第i-1个子电池的下电极11的第二端及其上电极13的第三端(第二上电极132),第i+1个子电池的下电极11的第二端及其上电极13的第三端均位于所述电池组件在所述第二方向上的相同侧,使得第i个子电池的第二下电极112与第i-1个子电池的第二上电极132接触;第i个子电池的下电极11的第二端及其上电极13的第三端(第二上电极132),第i-1个子电池的下电极11的第一端及其上电极11的第四端,以及第i+1个子电池的下电极11的第一端(第二下电极112)及其上电极13的第四端均位于所述电池组件在所述第二方向上的相同侧,使得第i个子电池的第二上电极132与第i+1个子电池的第二下电极112接触。
为了使得所述电池组件中各子电池的下电极11和上电极13排布更加紧密,节省占用面积,在上述实施例的基础上,在本申请的一个实施例中,继续如图2-图5所示,在所述第二方向上,第i个子电池的第一下电极111的投影至少部分位于第i+1个子电池的第二下电极112的投影范围内,第i个子电池的第一上电极131的投影至少部分位于第i-1个子电池的第二上电极132的投影范围内。
在上述实施例的基础上,在本申请的一个实施例中,如图4所示,第1个子电池的下电极11沿所述第二方向延伸,且在所述第二方向上,第1 个子电池的下电极11的投影至少部分位于第2个子电池的第二下电极112的投影范围内;
如图5所示,第M个子电池的上电极13沿所述第二方向延伸,且在所述第二方向上,第M个子电池的上电极13至少部分位于第M-1个子电池的第二上电极132的投影范围内。
在实际应用中,所述基板表面的电池组件通常不止一个,且各电池组件之间也需串联连接,以增加输出功率,因此,在上述任一实施例的基础上,在本申请的一个实施例中,所述至少一个电池组件包括多个电池组件,在对所述下电极层进行第一次激光刻线,从而将所述下电极层划分为各子电池的下电极时,该方法还包括:
S3:利用所述第一次激光刻线在所述下电极层中划分出下连接电极14;
在对所述上电极层进行第三次激光刻线,从而将所述上电极层划分为各子电池的上电极时,该方法该包括:
S4:利用所述第三次激光刻线在所述上电极层中划分出上连接电极15;
其中,所述下连接电极14和所述上连接电极15用于将其所属电池组件与相邻电池组件串联起来,或作为其所属电池组件的输出电极。具体的,通过焊接等方式在所述下连接电极14和所述上连接电极15上制备电极引出线(正负电极引出线),以便于将所属电池组件与相邻电池组件串联起来,或作为所属电池组件的输出电极。
具体的,在本申请的一个实施例中,如图3和图4所示,所述下连接电极14位于第M个子电池的下电极11的第二端(如图3中②端所示),并与第M个子电池的上电极的第三端(如图3中③端所示)至少部分接触;
如图3和图5所示,所述上连接电极15位于第1个子电池的上电极13的第四端(如图3中④端所示),并与第1个子电池的下电极11的第一端(如图3中①端所示)至少部分接触。
结合图3-图5所示,在本实施例中,所述上连接电极15与第1个子电池的下电极11的第一端连接,从而实现第1个子电池与相邻电池组件中的子电池的串联连接,或作为该电池组件的一个输出电极;第1个子电池 通过其第二上电极112与第2个子电池的第二下电极132连接,从而实现第1个子电池与第2个子电池的串联连接;第2个子电池的第二上电极132与第3个子电池的第二下电极112连接,从而实现第2个子电池与第3个子电池的串联连接;以此类推,第M-1个子电池的第二上电极132与第M个子电池的第二下电极112连接,从而实现第M-1个子电池与第M个子电池的串联;第M个子电池的上电极13与所述下连接电极14连接,从而实现第M个子电池与相邻电池组件中的子电池的串联,或作为该电池组件的另一个输出电极。可见,本申请实施例所提供的薄膜太阳能电池结构中,各子电池紧密排布,使得在有限的空间内,实现薄膜太阳能电池的最大功率输出。
需要说明的是,在上述各实施例中,结合图3-图5所示,第i个子电池的活性层12至少覆盖其第一下电极111,及其第一下电极111与第i+1个子电池的第二下电极112之间的间隙,以防止第i个子电池的第二上电极132在与第i+1个子电池的第二下电极112接触时,和第i个子电池的第一下电极111接触而形成短路;
第1个子电池的活性层12至少覆盖其下电极11,及其下电极11与第2个子电池的第二下电极112之间的间隙,以防止第1个子电池的第二上电极132在与第2个子电池的第二下电极112接触时,和第1个子电池的下电极11接触而形成短路;
第M个子电池的活性层12至少覆盖其第一下电极111,及其第一下电极112与所述下连接电极14之间的间隙,以防止第M个子电池的上电极13在与所述下连接电极14接触时,和第M个子电池的第一下电极111接触而形成短路。
可选的,图6给出了图2所示电池组件中,各子电池10的下电极11和活性层12的排布示意图,从图中可以看出,各子电池10的活性层12沿所述第二方向延伸,其沿所述第二方向的长度不小于第i个子电池的第一下电极111沿所述第二方向的长度和第i个子电池的第一下电极111与第i+1个子电池的第二下电极112之间的间隙之和,图6中各子电池的活性层12沿所述第二方向的长度正好等于第i个子电池的第一下电极111沿所述第二方向的长度和第i个子电池的第一下电极111与第i+1个子电池的 第二下电极112之间的间隙之和。
由前述已知,如图7所示,当每一子电池的活性层12包括沿背离所述基板的方向依次排布的第一电荷传输层121、钙钛矿吸光层122和第二电荷传输层123时,即所述薄膜太阳能电池为钙钛矿太阳能电池时,如果各子电池的上电极13与所述钙钛矿吸光层122直接接触会造成各子电池的上电极13的腐蚀,以及所述电池组件性能的退化,严重影响钙钛矿太阳能电池的稳定性,因此,在上述实施例的基础上,在本申请的一个实施例中,该方法在各子电池的活性层上形成上电极层之前,还包括:
S5:在各子电池的活性层12沿所述第二方向相对的两端形成隔离层16;对于任一子电池,所述隔离层16用于隔离所述活性层12在其沿所述第二方向相对的两端与所述上电极13接触。
具体的,可以利用掩膜版的方式,在各子电池的活性层12沿所述第二方向相对的两端进行所述隔离层16的真空蒸镀,图10给出了所述隔离层16的掩膜版示意图,及利用该掩膜版形成的隔离层的排布示意图,从图中可以看出,所述隔离层16蒸镀在各子电池的活性层12沿所述第二方向的两端。
从图7可以看出,由于子电池的活性层12沿所述第二方向相对的两端设置有所述隔离层16,因此,子电池的第二上电极132沉积至相邻子电池的第二下电极112上时,不会直接与所述活性层12的侧面接触,即子电池的上电极13不会与所述钙钛矿吸光层122直接接触,从而避免子电池的钙钛矿吸光层对其上电极的腐蚀,提高钙钛矿太阳能电池的稳定性。
图8进一步给出了图2所示电池组件中,各子电池的隔离层16的排布示意图,从图中可以看出,所述隔离层16位于各子电池的活性层12沿所述第二方向相对的两端,且所述隔离层16位于第i个子电池和第M个子电池的第二下电极112上,第1个子电池的下电极11的第一端,以及所述下连接电极14上。可选的,所述隔离层16沿所述第二方向的宽度可以为0.4cm。
需要说明的是,图8中只是列举了在第3个子电池的下电极11上,所述活性层12及位于所述活性层12沿所述第二方向相对的两端的隔离层16的俯视示意图,以此类推,可得到各子电池的下电极11上,所述活性层 12及位于所述活性层12沿所述第二方向相对的两端的隔离层16的俯视示意图。并且,从图8中可以看出,所述隔离层12在所述第二方向上的投影可以等于各子电池的下电极11在所述第二方向上的投影,本申请对此并不做限定,具体视情况而定。
可选的,所述第一电荷传输层为空穴传输层,所述第二电荷传输层为电子传输层,但本申请对此并不做限定,具体视情况而定。
可选的,所述隔离层16可以为金属铋层或氮化硅层,本申请对此并不做限定,只要所述隔离层16能够在所述活性层12与所述上电极13之间起隔离作用即可。
由此可见,利用本申请实施例所提供的方法制备形成的钙钛矿太阳能电池结构,在减小相邻子电池之间死区面积的基础上,进一步避免了各子电池的钙钛矿吸光层与其上电极的直接接触,实现了在提高电池转换效率的前提下,进一步避免金属电极的腐蚀,提高电池稳定性的目的。
综上,本申请实施例公开了一种薄膜太阳能电池结构及其制备方法,相对于现有薄膜太阳能电池结构,通过子电池两侧沿第一方向依次排布的P1、P2、P3三个刻线槽实现相邻子电池的串联连接,该薄膜太阳能电池结构,将相邻子电池的串联连接部分,即相邻子电池的上电极和下电极连接部分,转移到相邻子电池沿第二方向的一端或两端,第二方向与第一方向垂直,使得相邻子电池之间的死区部分只有一种刻线槽,相当于现有技术中相邻子电池之间沿所述第二方向延伸的P1、P2、P3三个刻线槽重合,即去除了现有技术中相邻子电池之间的两种刻线槽以及相邻刻线槽之间的间距,从而大大减小薄膜太阳能电池的死区面积,增加薄膜太阳能电池的受光面积,提高薄膜太阳能电池的转换效率。
本说明书中各个部分采用并列和递进相结合的方式描述,每个部分重点说明的都是与其他部分的不同之处,各个部分之间相同相似部分互相参见即可。
对所公开的实施例的上述说明,本说明书中各实施例中记载的特征可以相互替换或组合,使本领域专业技术人员能够实现或使用本申请。对这些实施例的多种修改对本领域的专业技术人员来说将是显而易见的,本文中所定义的一般原理可以在不脱离本申请的精神或范围的情况下,在其它 实施例中实现。因此,本申请将不会被限制于本文所示的实施例,而是要符合与本文所公开的原理和新颖特点相一致的最宽的范围。

Claims (15)

  1. 一种薄膜太阳能电池结构,其特征在于,包括:
    基板;
    位于所述基板表面的至少一个电池组件,所述电池组件包括沿第一方向依次间隔排列的M个子电池,所述第一方向平行于所述基板表面;
    每一子电池包括沿背离所述基板的方向依次排布的下电极、活性层和上电极,且每一子电池的下电极具有沿第二方向相对的第一端和第二端,上电极具有沿所述第二方向相对的第三端和第四端,所述第二方向平行于所述基板表面,且与所述第一方向垂直;
    其中,第i个子电池的下电极的第一端与第i-1个子电池的上电极的第三端连接,第i个子电池的上电极的第三端与第i+1个子电池的下电极的第一端连接,2≤i≤M-1。
  2. 根据权利要求1所述的薄膜太阳能电池结构,其特征在于,第i个子电池和第M个子电池的下电极包括沿所述第二方向延伸的第一下电极,及由所述第一下电极的一端向第三方向延伸的第二下电极,所述第二下电极为所述下电极的第一端,所述第一下电极背离所述第二下电极的一端为所述下电极的第二端,所述第三方向平行于所述基板表面,且与所述第二方向相交;
    第i个子电池和第1个子电池的上电极包括沿所述第二方向延伸的第一上电极,及由所述第一上电极的一端向第四方向延伸的第二上电极,所述第二上电极为所述上电极的第三端,所述第一上电极背离所述第二上电极的一端为所述上电极的第四端,所述第四方向平行于所述基板表面,且与所述第二方向相交;
    其中,第i个子电池的第二下电极与第i-1个子电池的第二上电极至少部分接触,第i个子电池的第二上电极与第i+1个子电池的第二下电极至少部分接触。
  3. 根据权利要求2所述的薄膜太阳能电池结构,其特征在于,所述第三方向和所述第四方向均与所述第二方向垂直,且所述第三方向和所述第四方向反平行。
  4. 根据权利要求3所述的薄膜太阳能电池结构,其特征在于,每一子电池的下电极的第一端与其上电极的第三端位于所述电池组件在所述第二方向上的相对侧,且第i个子电池的下电极的第一端与第i-1个子电池的下电极的第二端,以及第i+1个子电池的下电极的第二端位于所述电池组件在所述第二方向上的相同侧;
    在所述第二方向上,第i个子电池的第一下电极的投影至少部分位于第i+1个子电池的第二下电极的投影范围内,第i个子电池的第一上电极的投影至少部分位于第i-1个子电池的第二上电极的投影范围内。
  5. 根据权利要求4所述的薄膜太阳能电池结构,其特征在于,第1个子电池的下电极沿所述第二方向延伸,且在所述第二方向上,第1个子电池的下电极的投影至少部分位于第2个子电池的第二下电极的投影范围内;
    第M个子电池的上电极沿所述第二方向延伸,且在所述第二方向上,第M个子电池的上电极至少部分位于第M-1个子电池的第二上电极的投影范围内。
  6. 根据权利要求1所述的薄膜太阳能电池结构,其特征在于,所述至少一个电池组件包括多个电池组件,所述电池组件还包括:下连接电极和上连接电极,所述下连接电极和所述上连接电极用于将其所属电池组件与相邻电池组件串联起来,或作为其所属电池组件的输出电极。
  7. 根据权利要求6所述的薄膜太阳能电池结构,其特征在于,所述下连接电极位于第M个子电池的下电极的第二端,并与第M个子电池的上电极的第三端至少部分接触;
    所述上连接电极位于第1个子电池的上电极的第四端,并与第1个子电池的下电极的第一端至少部分接触。
  8. 根据权利要求1-7任一项所述的薄膜太阳能电池结构,其特征在于,每一子电池的活性层包括沿背离所述基板的方向依次排布的第一电荷传输层、钙钛矿吸光层和第二电荷传输层,每一子电池还包括:隔离层,所述隔离层位于所述活性层沿所述第二方向相对的两端,用于隔离所述活性层在其沿所述第二方向相对的两端与所述上电极接触。
  9. 根据权利要求8所述的薄膜太阳能电池结构,其特征在于,所述隔离层为金属铋层或氮化硅层。
  10. 一种薄膜太阳能电池结构的制备方法,其特征在于,包括:
    提供一基板;
    在所述基板表面形成至少一个电池组件,所述电池组件包括沿第一方向依次间隔排列的M个子电池,每一子电池包括沿背离所述基板的方向依次排布的下电极、活性层和上电极,所述第一方向平行于所述基板表面;
    所述电池组件的形成过程包括:
    在所述基板表面形成下电极层;
    对所述下电极层进行第一次激光刻线,所述第一次激光刻线至少包括沿第二方向的激光刻线,从而将所述下电极层划分为各子电池的下电极,使得每一子电池的下电极具有沿所述第二方向相对的第一端和第二端,所述第二方向平行于所述基板表面,且与所述第一方向垂直;
    在各子电池的下电极上形成活性层;
    对所述活性层进行第二次激光刻线,所述第二次激光刻线与所述第一次激光刻线中沿所述第二方向的激光刻线重合,从而将所述活性层划分为各子电池的活性层;
    在各子电池的活性层上形成上电极层;
    对所述上电极层进行第三次激光刻线,从而将所述上电极层划分为各子电池的上电极,使得每一子电池的上电极具有沿所述第二方向相对的第三端和第四端;
    其中,第i个子电池的下电极的第一端与第i-1个子电池的上电极的第 三端连接,第i个子电池的上电极的第三端与第i+1个子电池的下电极的第一端连接,2≤i≤M-1。
  11. 根据权利要求10所述的方法,其特征在于,所述第一次激光刻线还包括沿第三方向的激光刻线,所述第三方向平行于所述基板表面,且与所述第二方向相交,使得第i个子电池和第M个子电池的下电极包括沿所述第二方向延伸的第一下电极,及由所述第一下电极的一端向所述第三方向延伸的第二下电极,所述第二下电极为所述下电极的第一端,所述第一下电极背离所述第二下电极的一端为所述下电极的第二端;
    所述第三次激光刻线包括沿第四方向的激光刻线,所述第四方向平行于所述基板表面,且与所述第二方向相交,使得第i个子电池和第1个子电池的上电极包括沿所述第二方向延伸的第一上电极,及由所述第一上电极的一端向所述第四方向延伸的第二上电极,所述第二上电极为所述上电极的第三端,所述第一上电极背离所述第二上电极的一端为所述上电极的第四端;
    其中,第i个子电池的第二下电极与第i-1个子电池的第二上电极至少部分接触,第i个子电池的第二上电极与第i+1个子电池的第二下电极至少部分接触。
  12. 根据权利要求10所述的方法,其特征在于,所述至少一个电池组件包括多个电池组件,在对所述下电极层进行第一次激光刻线,从而将所述下电极层划分为各子电池的下电极时,该方法还包括:
    利用所述第一次激光刻线在所述下电极层中划分出下连接电极;
    在对所述上电极层进行第三次激光刻线,从而将所述上电极层划分为各子电池的上电极时,该方法还包括:
    利用所述第三次激光刻线在所述上电极层中划分出上连接电极;
    其中,所述下连接电极和所述上连接电极用于将其所属电池组件与相邻电池组件串联起来,或作为其所属电池组件的输出电极。
  13. 根据权利要求10-12任一项所述的方法,其特征在于,所述活性 层包括沿背离所述基板的方向依次排布的第一电荷传输层、钙钛矿吸光层和第二电荷传输层,在各子电池的下电极上形成活性层的过程包括:
    对各子电池的下电极的第一端和第二端进行遮挡;
    在各子电池的下电极除其被遮挡部分外的其他部分上形成所述第一电荷传输层,并去除对各子电池的下电极的第一端和第二端的遮挡;
    在所述第一电荷传输层上形成所述钙钛矿吸光层;
    在所述钙钛矿吸光层对应各子电池的下电极的第一端和第二端的部分进行激光清边;
    再次对各子电池的下电极的第一端和第二端进行遮挡;
    在所述钙钛矿吸光层上形成所述第二电荷传输层,并去除对各子电池的下电极的第一端和第二端的遮挡。
  14. 根据权利要求13所述的方法,其特征在于,该方法在各子电池的活性层上形成上电极层之前,还包括:
    在各子电池的活性层沿所述第二方向相对的两端形成隔离层;对于任一子电池,所述隔离层用于隔离所述活性层在其沿所述第二方向相对的两端与所述上电极接触。
  15. 根据权利要求10所述的方法,其特征在于,在各子电池的活性层上形成上电极层的过程包括:
    利用掩膜版的方式,在各子电池的活性层上形成所述上电极层,其中,所述上电极层的掩膜版对应所述第一次激光刻线中沿所述第二方向的激光刻线位置具有遮挡部分。
PCT/CN2022/098611 2021-10-11 2022-06-14 一种薄膜太阳能电池结构及其制备方法 WO2023060924A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202111183050.4 2021-10-11
CN202111183050.4A CN113745365A (zh) 2021-10-11 2021-10-11 一种薄膜太阳能电池结构及其制备方法

Publications (1)

Publication Number Publication Date
WO2023060924A1 true WO2023060924A1 (zh) 2023-04-20

Family

ID=78726384

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/098611 WO2023060924A1 (zh) 2021-10-11 2022-06-14 一种薄膜太阳能电池结构及其制备方法

Country Status (2)

Country Link
CN (1) CN113745365A (zh)
WO (1) WO2023060924A1 (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113745365A (zh) * 2021-10-11 2021-12-03 华能新能源股份有限公司 一种薄膜太阳能电池结构及其制备方法
CN114156411B (zh) * 2022-02-08 2022-07-12 宁德时代新能源科技股份有限公司 薄膜太阳能电池组件及其制作方法、用电装置
CN116072752A (zh) * 2022-12-22 2023-05-05 华为数字能源技术有限公司 一种薄膜太阳能电池、其制备方法、光伏组件及发电设备

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5935487A (ja) * 1982-08-24 1984-02-27 Sanyo Electric Co Ltd 光半導体装置の製造方法
US4612409A (en) * 1981-11-04 1986-09-16 Kanegafuchi Kagaku Kogyo Kabushiki Kaisha Flexible photovoltaic device
JPS62242371A (ja) * 1986-04-14 1987-10-22 Sanyo Electric Co Ltd 光起電力装置の製造方法
CN113745365A (zh) * 2021-10-11 2021-12-03 华能新能源股份有限公司 一种薄膜太阳能电池结构及其制备方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4612409A (en) * 1981-11-04 1986-09-16 Kanegafuchi Kagaku Kogyo Kabushiki Kaisha Flexible photovoltaic device
JPS5935487A (ja) * 1982-08-24 1984-02-27 Sanyo Electric Co Ltd 光半導体装置の製造方法
JPS62242371A (ja) * 1986-04-14 1987-10-22 Sanyo Electric Co Ltd 光起電力装置の製造方法
CN113745365A (zh) * 2021-10-11 2021-12-03 华能新能源股份有限公司 一种薄膜太阳能电池结构及其制备方法

Also Published As

Publication number Publication date
CN113745365A (zh) 2021-12-03

Similar Documents

Publication Publication Date Title
WO2023060924A1 (zh) 一种薄膜太阳能电池结构及其制备方法
WO2023151209A1 (zh) 薄膜太阳能电池组件及其制作方法、用电装置
JPS62221167A (ja) 多層型薄膜太陽電池
CN110071186B (zh) 一种薄膜光伏组件内联结构及生产工艺
WO2019148774A1 (zh) 薄膜太阳能电池的制备方法
CN211789098U (zh) 晶硅-钙钛矿组件
WO2019148733A1 (zh) 薄膜太阳能电池
WO2023060925A1 (zh) 一种钙钛矿太阳能电池结构
US9818897B2 (en) Device for generating solar power and method for manufacturing same
TW201601363A (zh) 有機薄膜太陽電池之串聯模組及其製作方法
JP2019519939A (ja) 光電池セル、光電池セルアレイ、太陽電池セル、および光電池セル作製方法
CN118139436A (zh) 钙钛矿太阳能电池及其制备方法
WO2024156293A1 (zh) 一种双面异质结主栅结构电池及其制备方法
CN112133830A (zh) 一种2-t钙钛矿叠层太阳能电池模块及其制备方法
CN118382306A (zh) 钙钛矿太阳能电池及制作方法
CN113257928A (zh) 一种降低薄膜太阳能电池死区面积的划线方法
CN109473502B (zh) 一种太阳能电池叠层结构及其制备方法
CN215896419U (zh) 一种薄膜太阳能电池结构
EP4181206A1 (en) Solar cell module, manufacturing method thereof, and photovoltaic module
CN112599678B (zh) 一种金属电极激光刻线方法及基于其制备的钙钛矿电池
TWI808860B (zh) 薄膜光伏結構及其製作方法
CN112993162B (zh) 一种钙钛矿太阳电池器件结构及制备方法
CN218456635U (zh) 钙钛矿太阳能电池串联模组
KR102704024B1 (ko) 페로브스카이트 태양전지 모듈 구조
JPS61265872A (ja) 太陽電池

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22879872

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 22879872

Country of ref document: EP

Kind code of ref document: A1