WO2023058730A1 - Sap-flow activator for fruit tree - Google Patents

Sap-flow activator for fruit tree Download PDF

Info

Publication number
WO2023058730A1
WO2023058730A1 PCT/JP2022/037512 JP2022037512W WO2023058730A1 WO 2023058730 A1 WO2023058730 A1 WO 2023058730A1 JP 2022037512 W JP2022037512 W JP 2022037512W WO 2023058730 A1 WO2023058730 A1 WO 2023058730A1
Authority
WO
WIPO (PCT)
Prior art keywords
humic acid
less
mass
fruit trees
sap flow
Prior art date
Application number
PCT/JP2022/037512
Other languages
French (fr)
Japanese (ja)
Inventor
藤樹 飯野
一馬 本田
峻 大川
一洋 西岡
Original Assignee
デンカ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by デンカ株式会社 filed Critical デンカ株式会社
Priority to JP2023552947A priority Critical patent/JPWO2023058730A1/ja
Publication of WO2023058730A1 publication Critical patent/WO2023058730A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01GHORTICULTURE; CULTIVATION OF VEGETABLES, FLOWERS, RICE, FRUIT, VINES, HOPS OR SEAWEED; FORESTRY; WATERING
    • A01G7/00Botany in general
    • A01G7/06Treatment of growing trees or plants, e.g. for preventing decay of wood, for tingeing flowers or wood, for prolonging the life of plants
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01NPRESERVATION OF BODIES OF HUMANS OR ANIMALS OR PLANTS OR PARTS THEREOF; BIOCIDES, e.g. AS DISINFECTANTS, AS PESTICIDES OR AS HERBICIDES; PEST REPELLANTS OR ATTRACTANTS; PLANT GROWTH REGULATORS
    • A01N61/00Biocides, pest repellants or attractants, or plant growth regulators containing substances of unknown or undetermined composition, e.g. substances characterised only by the mode of action
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01PBIOCIDAL, PEST REPELLANT, PEST ATTRACTANT OR PLANT GROWTH REGULATORY ACTIVITY OF CHEMICAL COMPOUNDS OR PREPARATIONS
    • A01P21/00Plant growth regulators

Definitions

  • the present invention relates to a sap flow activator for fruit trees.
  • Sap flow refers to the flow of liquid (sap) within a plant.
  • sap flow for example, the water transpiration rate of plants can be assessed.
  • Patent Document 1 proposes a proposal for methods of measuring sap flow.
  • the present invention relates to the following inventions.
  • a sap flow activator for fruit trees containing humic acid as an active ingredient [2] The sap flow activator for fruit trees according to [1], which has a melanic index of 2.0 or more. [3] The sap flow activator for fruit trees according to [1] or [2], wherein the humic acid has a mass average molecular weight of 100 to 6,000. [4] The sap flow activity for fruit trees according to any one of [1] to [3], wherein the active ingredient is a humic acid extract, and the total organic carbon concentration of the humic acid extract is 15,000 mg/L or more. agent.
  • a novel sap flow activator for fruit trees can be provided.
  • FIG. 4 is a graph showing the results of measuring the number of fruits (pieces) per fruit tree to which humic acid was applied.
  • A is a graph showing the results of measuring the total number of harvested fruits obtained from fruit trees to which humic acid was applied
  • (B) is the total weight of fruits obtained from fruit trees to which humic acid was applied ( kg)
  • (C) is a graph showing the results of measuring the weight (kg) per fruit obtained from a fruit tree to which humic acid was applied
  • (D) 1 is a graph showing the results of measuring the sugar content Brix of fruits obtained from fruit trees to which humic acid was applied.
  • FIG. 3 is a graph showing solar irradiance during a test period; It is a graph which shows the temperature, humidity, and saturation during a test period. 10 is a graph showing the results of sap flow measurements during the test period; Fig. 3 is a graph showing the measurement results of sap flow per leaf area during the test period.
  • the mass may also be referred to as weight.
  • a numerical range indicated using "-" indicates a range that includes the numerical values before and after "-" as the minimum and maximum values, respectively. Unless otherwise specified, the units of numerical values before and after "-" are the same.
  • the upper limit value or lower limit value of the numerical range at one step may be replaced with the upper limit value or lower limit value of the numerical range at another step.
  • the upper or lower limits of the numerical ranges may be replaced with the values shown in the examples. The upper and lower limits described individually can be combined arbitrarily.
  • the sap flow activator for fruit trees contains humic acid as an active ingredient. Sap flow activation means activating uptake of nutrients and water in fruit trees.
  • Fruit trees refer to herbaceous and woody plants whose fruits are edible.
  • the fruit trees may be deciduous or evergreen fruit trees.
  • the fruit tree may be, for example, a fruit tree of the Rosaceae, Persimmon, Moraceae, Pomegranate, Ericaceae, Rosaceae, Vine, Fagaceae, Actinidia or Rutaceae families.
  • Fruit trees belonging to the family Rosaceae include those belonging to the genus Prunus, Plum, Pear, Loquat, or Apple.
  • the Rosaceae fruit tree may be, for example, a pear or a grape.
  • Fruit trees belonging to the Rutaceae family include fruit trees belonging to the genus Citrus, Kumquat, or Trifoliaceae.
  • the fruit tree of the Rutaceae family may be, for example, mandarin oranges.
  • An example of a fruit tree is Le Lectier, which is a variety of pear belonging to the genus Pear of the family Rosaceae
  • Human acid as used herein includes humic acid and fulvic acid.
  • Humic acid includes one or more selected from the group consisting of humic acid and humic acid salts.
  • humic acid examples include natural humic acid produced naturally in peat and weathered coal, artificial humic acid artificially produced by nitric acid oxidation of lignite, and natural humic acid or artificial humic acid containing sodium, potassium, Examples include humic acid salts neutralized with alkaline substances such as ammonia, calcium and magnesium.
  • Humic acids include fulvic acid, humic acid, nitrohumic acid, ammonium humate, calcium humate, magnesium humate, ammonium nitrohumate, calcium nitrohumate and magnesium nitrohumate, potassium humate, potassium nitrohumate and the like.
  • the active ingredient may be a humic acid extract.
  • the humic acid extract may be an extract obtained by extracting nitric oxide from young coal with an extraction solvent containing water and, if necessary, alkali.
  • Young coal is coal that has a lower carbon content than bituminous coal, etc., and is defined as having a carbon content of 83% by mass or less. Young coal includes, for example, peat, lignite, lignite, sub-bituminous coal, and the like. Young coal may be used singly or in combination of two or more. Humic acid may be derived from brown coal for its sap flow activation effect.
  • Nitric oxide of young coal is obtained by oxidative decomposition of young coal with nitric acid.
  • Concentrated nitric acid is preferred as the nitric acid. From the viewpoint of safety and reactivity, it is preferable to use nitric acid with a concentration of 40 to 60% by mass.
  • the amount of nitric acid (HNO 3 ) to be added during oxidative decomposition may be 10 parts by mass or more, or 20 parts by mass or more with respect to 20 parts by mass of young coal. It may be no more than 150 parts by mass, no more than 100 parts by mass, no more than 50 parts by mass, no more than 36 parts by mass, or no more than 20 parts by mass.
  • the amount of nitric acid (HNO 3 ) mixed may be 10 to 20 parts by mass, or 20 to 36 parts by mass, with respect to 20 parts by mass of young coal.
  • the blending amount of nitric acid is a value converted to 100% nitric acid (100% HNO 3 ).
  • the temperature during oxidative decomposition may be, for example, 70 to 95°C.
  • heating to 70 to 95° C. in a hot water bath or the like facilitates rapid progress of the oxidation reaction.
  • the reaction time may be, for example, 20 minutes or more, 0.5 hours or more, or 1 hour or more, and may be 6 hours or less, 4 hours or less, or 1 hour or less.
  • the humic acid extract is prepared as a liquid by, for example, stirring nitric oxide of young coal (hereinafter referred to as crude humic acid) and an extraction solvent containing water and alkali, and then performing a solid-liquid separation step. can get.
  • the alkali includes hydroxide, ammonia, and the like.
  • Hydroxides include alkali metal hydroxides, ammonium hydroxide and the like.
  • an alkali metal hydroxide is preferable.
  • alkali metal hydroxides include potassium hydroxide and sodium hydroxide.
  • the hydroxide one or more of potassium hydroxide, sodium hydroxide, and ammonium hydroxide (ammonia water) are preferable.
  • the pH of the extraction solvent may be 0.5-7.0, 0.5-4.0 or 1.0-3.0.
  • the temperature (extraction temperature) at which the humic acid crude product is extracted with an extraction solvent may be, for example, 40 to 90°C from the viewpoint of further suppressing freezing and quality deterioration of the extract.
  • the time for extracting the humic acid crude product with the extraction solvent may be, for example, 0.5 hours or longer, 24 hours or shorter, or 1 hour or shorter.
  • the solid-liquid ratio is defined as the amount of extraction solvent relative to the amount of raw young coal used to prepare the humic acid crude product. For example, when 100 g (100 mL) of extraction solvent (water) is added to a crude product prepared from 20 g of young coal, the solid-liquid ratio (extraction solvent/young coal) is 5.
  • the solid-liquid ratio may be 3 or more, 4 or more, 5 or more, 6 or more, 7 or more, 8 or more, 9 or more, or 10 or more, and 15 or less, 13 or less, 11 or less, 9 or less, 7 or less, or 6 or less.
  • the solid-liquid ratio can be adjusted by adding water.
  • the solid-liquid ratio may be adjusted so as to achieve the desired solid-liquid ratio after adjusting the pH.
  • the solid-liquid separation method may be centrifugation, filter press, or the like.
  • the total organic carbon concentration (TOC) of the humic acid extract is 15,000 mg/L or more, 15,300 mg/L or more, 15,500 mg/L or more, 16,000 mg/L or more, 16,500 mg/L or more, 17, 000 mg/L or more, 17,500 mg/L or more, 18,000 mg/L or more, 18,500 mg/L or more, 19,000 mg/L or more, 19,500 mg/L or more, 20,000 mg/L or more, or 20, It may be 500 mg/L or more.
  • the TOC of the humic acid extract is 75,000 mg/L or less, 70,000 mg/L or less, 65,000 mg/L or less, 60,000 mg/L or less, 55,000 mg/L or less, 50,000 mg/L or less, 45,000 mg/L or less, 40,000 mg/L or less, 35,000 mg/L or less, 30,000 mg/L or less, 25,000 mg/L or less, 24,000 mg/L or less, 23,000 mg/L or less, or It may be 22,000 mg/L or less.
  • the method of measuring the TOC of the humic acid extract is defined as follows.
  • the humic acid extract was centrifuged at 3,000 ⁇ g, and the supernatant was measured using a total organic carbon meter (TOC-L manufactured by Shimadzu Corporation) by combustion catalytic oxidation.
  • TOC-L total organic carbon meter
  • the above (humic acid fraction and fulvic acid fraction) are separated according to the International Humic Substances Society method (Fujitake, Humic Substances Research Vol3, P1-9). and measure the TOC of the humic acid extract.
  • Humic acid can be classified into A-type, B-type, Rp-type and P-type.
  • the humic acid may be Rp-type or P-type humic acid (Rp ⁇ P-type humic acid) from the viewpoint of being more likely to act on fruit trees.
  • Humic acid can be easily classified according to the Melanic Index (MI), which will be described later.
  • MI Melanic Index
  • Humic acid with MI of 2.0 or more is classified as Rp ⁇ P type.
  • the melanic index (MI) of humic acid is, for example, 1.5 or more, 2.0 or more, 2.2 or more, 2.5 or more, 3.0 or more, or 3.0 or more, from the viewpoint of being more likely to act on fruit trees. 5 or more, 6.5 or less, 6.0 or less, 5.5 or less, 5.0 or less, 4.5 or less, 4.0 or less, 3.5 or less, or 3.0 or less good.
  • MI is an index used to classify humic acid , and is the ratio (A 450 / A 520 ). (Ky ⁇ ichi Kumada, Soil Organic Matter Chemistry, 2nd Edition, Gakkai Shuppan Center (1981), Japan Journal of Soil and Fertilizer Science, No. 71, No. 1, pp. 82-85 (2000)).
  • MI is calculated by the following method.
  • the sample is ground to a 250 ⁇ m sieve using a mortar and 250 ⁇ m sieve. About 10 g of it is placed in a weighing bottle with a known mass and accurately weighed. This weighing bottle is left in a dryer maintained at a temperature of 105° C. for about 12 hours, then returned to room temperature of 20° C. in a desiccator, and then accurately weighed again.
  • the moisture content of the sample is determined by considering the weight loss as moisture.
  • the absorbance at 450 nm shows 1.0 or more
  • add 0.1 mol/L sodium hydroxide aqueous solution to adjust the absorbance to 0.8 or more and less than 1.0, then measure the absorbance at 520 nm. do.
  • the ratio of absorbance at 450 nm to absorbance at 520 nm is calculated as MI.
  • the mass average molecular weight of humic acid may be 100-6,000.
  • the lower limit of the mass average molecular weight of humic acid may be, for example, 200 or more, 300 or more, 400 or more, 500 or more, 600 or more, 700 or more, 800 or more, 900 or more, or 1,000 or more.
  • the upper limit of the mass average molecular weight of humic acid is, for example, 5,500 or less, 5,000 or less, 4,500 or less, 4,000 or less, 3,500 or less, 3,000 or less, 2,500 or less, 2,000 1,500 or less, 1,200 or less, or 1,000 or less.
  • the mass average molecular weight of humic acid is measured by the HPSEC method (GPC method) using Alliance HPLC System manufactured by Waters.
  • the column is SB-803HQ manufactured by Showa Denko KK, the standard sample is sodium polystyrene sulfonate, and the detection wavelength is 260 nm.
  • the mobile phase is 10 mmol/L sodium phosphate buffer containing 25% by mass of acetonitrile, the flow rate is 0.8 ml/min, and the column temperature is 40° C. (column oven setting).
  • ⁇ logK (log(A 400 /A 600 )) of humic acid may be, for example, 0.7 or more, or 0.8 or more, and 2.0 or less, or 1.0 or more, from the viewpoint of being more likely to act on fruit trees. It may be 8 or less. The higher the ⁇ logK (log(A 400 /A 600 )), the less the carbon-carbon double bonds and the less the carbonization tends to proceed.
  • A400 means the absorbance at a wavelength of 400 nm and A600 means the absorbance at a wavelength of 600 nm.
  • ⁇ logK is calculated according to the humic substance analysis handbook, 2nd edition, p. 86-88 and characteristics of humic substances in the environment and research methods (Sankyo Shuppan) p. 19 can be used. Specifically, the ⁇ logK of humic acid can be measured with an ultraviolet-visible spectrophotometer UV-1850 manufactured by Shimadzu Corporation.
  • Humic acid with an MI of 2.0 or more and a ⁇ logK of 0.7 or more tends to act more easily on plants.
  • the dosage form of the sap flow activator for fruit trees may be, for example, liquid or powder.
  • the powder can be obtained as a redissolvable powder by, for example, drying up a liquid sap flow activator for fruit trees by freeze-drying or the like.
  • the sap flow activator for fruit trees may consist only of humic acid, or may contain other components than humic acid.
  • the content of humic acid in the sap flow activator for fruit trees is, for example, 5% by mass or more, 10% by mass or more, 20% by mass or more, or 30% by mass based on the total mass of the sap flow activator for fruit trees. 40% by mass or more, 50% by mass or more, 60% by mass or more, 70% by mass or more, 80% by mass or more, 90% by mass or more, or 95% by mass or more, 100% by mass or more, 99% by mass or more or less, or 95% by mass or less.
  • Other ingredients include, for example, spreading agents, fertilizers, and plant activators.
  • Fertilizers include, for example, ammonium sulfate, potassium nitrate, and ammonium phosphate.
  • Plant active agents include, for example, seaweed extracts and amino acids.
  • Amino acids include, for example, glycine, proline, and glutamic acid.
  • the total content of other components is, for example, 80% by mass or less, 60% by mass or less, 40% by mass or less, 30% by mass or less, 20% by mass or less, based on the total mass of the sap flow activator for fruit trees. It may be 10 wt% or less, 5 wt% or less, or 1 wt% or less, and may be greater than 0 wt%, 1 wt% or more, or 5 wt% or more.
  • the sap flow of the fruit tree is activated compared to when it is not applied.
  • application of a fruit tree sap flow activator can increase average sap flow per leaf area by 1% or more, or 3-25%, compared to no application.
  • the sap flow rate can be measured by the method described in the examples below.
  • a method for activating sap flow in fruit trees according to the present embodiment includes applying humic acid to fruit trees.
  • methods for applying humic acid to fruit trees include soil irrigation or soil mixing, application from the foliage, and the like.
  • the application amount and application period of humic acid are not particularly limited, and in the case of soil application, 7,000 to 20,000 mg of total organic carbon per fruit tree, or 0.1 to 1,000 mg of total organic carbon concentration. /L 1 to 30 times a month or about 0.1 to 100 mg/L as total organic carbon concentration every day. L can be 1-12 times a month.
  • the present invention described above can also be regarded as the use of humic acid to activate the sap flow of fruit trees.
  • the specific embodiment described above for the sap flow activator for fruit trees can be applied.
  • the present invention described above can also be regarded as humic acid for use in sap flow activation of fruit trees.
  • the specific embodiment described above for the sap flow activator for fruit trees can be applied.
  • the present invention described above can also be regarded as the use (application) of humic acid for the production of a sap flow activator for fruit trees.
  • the specific embodiment described above for the sap flow activator for fruit trees can be applied.
  • humic acid material one containing a humic acid extract prepared by the following method was used.
  • the MI of humic acid in the humic acid extract was 2.2.
  • the total organic carbon concentration (TOC) of the humic acid extract was 34,000 mg/L.
  • the mass average molecular weight of humic acid in the humic acid extract was 4,300.
  • the ⁇ logK of humic acid was 0.9.
  • the mass average molecular weight of humic acid was measured by HPSEC method (GPC method) using Alliance HPLC System manufactured by Waters.
  • the column was SB-803HQ manufactured by Showa Denko KK, the standard sample was sodium polystyrene sulfonate, and the detection wavelength was 260 nm.
  • the mobile phase was 10 mmol/L sodium phosphate buffer containing 25 mass % acetonitrile, the flow rate was 0.8 ml/min, and the column temperature was 40° C. (column oven setting).
  • TOC Total organic carbon concentration
  • MI Melt Index
  • the sample was ground to a 250 ⁇ m sieve product using a mortar and 250 ⁇ m sieve. About 10 g of it was placed in a weighing bottle with a known mass and accurately weighed. This weighing bottle was left for about 12 hours in a dryer maintained at a temperature of 105° C., then returned to room temperature in a desiccator, and then accurately weighed again. The moisture content of the sample was determined by considering the mass decrease as moisture.
  • the absorbance at 450 nm shows 1.0 or more
  • add 0.1 mol/L sodium hydroxide aqueous solution to adjust the absorbance to 0.8 or more and less than 1.0
  • the ratio of absorbance at 450 nm to absorbance at 520 nm was calculated and designated as MI.
  • humic acid plots The ridges to which humic acid was applied were designated as humic acid plots.
  • the second furrow from the humic acid plot was used as a control plot where humic acid was not applied so as not to be strongly affected by the humic acid material due to the permeation of the soil.
  • 100 L of 200-fold diluted agricultural material was applied per tree on June 30, 2020 (test start date).
  • humic acid was carried out as follows. The test was conducted in an orchard in Niigata Prefecture, and humic acid was applied by adjusting a diluted humic acid solution in a tank and spraying the determined amount around the perimeter of the tree.
  • the sap flow in the humic acid plot and the control plot was measured using a sap flow sensor.
  • a branch extending directly upward from the main branch of each fruit tree and having approximately the same thickness was selected from each strain, and a sap flow sensor was attached to the selected branch. Sap flow measurements were performed by the stem heat balance method. The sensor is covered with urethane to suppress the influence of rain and wind on the numerical value.
  • Figure 1 shows the measurement results of the number of fruits (pieces) per fruit tree as of October 12, 2020, one week before harvest. As shown in FIG. 1, the number of fruits (pieces) per fruit tree in the humic acid plot increased by 31% compared to the control plot.
  • Figures 2 (A) to (D) show the total harvested number, total weight (kg), weight per piece (kg) and sugar content Brix as of October 20, 2020, respectively.
  • Sugar content measurement: N 3
  • Table 1 shows a summary of the test results.
  • Lowest molecular height diameter (cm) refers to the diameter of the trunk just below the first branching site (1 cm).
  • Bottom molecular high cross section (cm 2 ) refers to the area of the stem just below (1 cm) the location of the very first branch.
  • the number of branches (lines) means the number of branches per fruit tree one week before the final harvest.
  • the number of bearing fruits (pieces/tree) means the number of bearing fruits per nine fruit trees in each section one week before the final harvest.
  • the amount of fruit bearing per unit area (number/cm 2 ) means the amount of fruit bearing per molecular high cross-sectional area on the fruit tree one week before the final harvest.
  • Number of leaves/branch means the number of leaves on the branch on which the sap flow was measured.
  • the leaf area (cm 2 ) was measured by collecting 10 or more leaves from each group of fruit trees (100 sheets in the control group and 90 sheets in the humic acid group).
  • the sugar content was measured using a sugar-acidity meter PAL-BX
  • Figure 3 shows the solar irradiance from 0:00 on October 1, 2020 to 0:00 on October 5, 2020.
  • FIG. 4 shows temperature, humidity and saturation from October 1, 2020 to October 5, 2020.
  • FIGS. 5(A) and (B) show the sap flow measurement results from 00:00 on October 1, 2020 to 00:00 on October 5, 2020.
  • FIG. FIGS. 6A and 6B show the sap flow measurement results per leaf area from 0:00 on October 1, 2020 to 0:00 on October 5, 2020.
  • FIG. Sap flux per leaf area is the sap flux per total leaf area of the branch measured. The measured branch total leaf area is calculated by “number of leaves/branch (sheet)” ⁇ “leaf area”. The measured branch total leaf area was 1515 cm 2 in the control plot and 1480 cm 2 in the humic acid plot.

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Wood Science & Technology (AREA)
  • Environmental Sciences (AREA)
  • Biodiversity & Conservation Biology (AREA)
  • Botany (AREA)
  • Forests & Forestry (AREA)
  • Ecology (AREA)
  • Pest Control & Pesticides (AREA)
  • Plant Pathology (AREA)
  • Zoology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Health & Medical Sciences (AREA)
  • Dentistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Agronomy & Crop Science (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Fertilizers (AREA)

Abstract

An aspect of the present invention relates to a sap-flow activator for fruit trees which contains humic acid as an active ingredient.

Description

果樹用樹液流活性化剤Sap flow activator for fruit trees
 本発明は、果樹用樹液流活性化剤に関する。 The present invention relates to a sap flow activator for fruit trees.
 樹液流は、植物内の液体(樹液)の流れをいう。樹液流を測定することによって、例えば、植物の水分蒸散速度を評価することができる。樹液流を測定する方法に関しては、従来から種々の提案がなされている(特許文献1)。 Sap flow refers to the flow of liquid (sap) within a plant. By measuring sap flow, for example, the water transpiration rate of plants can be assessed. Various proposals have been made for methods of measuring sap flow (Patent Document 1).
特許第6007042号公報Japanese Patent No. 6007042
 樹液流測定装置及び樹液流測定方法については種々の報告がなされているものの、樹液流を活性化する具体的な手段はこれまで知られていない。本発明の目的は、新規な果樹用樹液流活性化剤を提供することにある。 Although various reports have been made on sap flow measurement devices and sap flow measurement methods, no specific means for activating sap flow have been known so far. SUMMARY OF THE INVENTION It is an object of the present invention to provide a novel sap flow activator for fruit trees.
 本発明は、以下の各発明に関する。
[1]腐植酸を有効成分として含有する、果樹用樹液流活性化剤。
[2]メラニックインデックスが2.0以上である、[1]に記載の果樹用樹液流活性化剤。
[3]腐植酸の質量平均分子量が100~6,000である、[1]又は[2]に記載の果樹用樹液流活性化剤。
[4]有効成分が腐植酸抽出液であり、腐植酸抽出液の全有機炭素濃度が15,000mg/L以上である、[1]~[3]のいずれかに記載の果樹用樹液流活性化剤。
[5]腐植酸が褐炭由来である、[1]~[4]のいずれかに記載の果樹用樹液流活性化剤。
[6]果樹の樹液流を活性化させる方法であって、果樹に腐植酸を施用することを含む、方法。
The present invention relates to the following inventions.
[1] A sap flow activator for fruit trees containing humic acid as an active ingredient.
[2] The sap flow activator for fruit trees according to [1], which has a melanic index of 2.0 or more.
[3] The sap flow activator for fruit trees according to [1] or [2], wherein the humic acid has a mass average molecular weight of 100 to 6,000.
[4] The sap flow activity for fruit trees according to any one of [1] to [3], wherein the active ingredient is a humic acid extract, and the total organic carbon concentration of the humic acid extract is 15,000 mg/L or more. agent.
[5] The sap flow activator for fruit trees according to any one of [1] to [4], wherein the humic acid is derived from lignite.
[6] A method of activating sap flow in fruit trees, the method comprising applying humic acid to the fruit trees.
 本発明によれば、新規な果樹用樹液流活性化剤を提供することができる。 According to the present invention, a novel sap flow activator for fruit trees can be provided.
腐植酸を施用した果樹の1本あたりの果実数(個)を測定した結果を示すグラフである。4 is a graph showing the results of measuring the number of fruits (pieces) per fruit tree to which humic acid was applied. (A)は、腐植酸を施用した果樹から得られた果実の総収穫個数を測定した結果を示すグラフであり、(B)は、腐植酸を施用した果樹から得られた果実の総重量(kg)を測定した結果を示すグラフであり、(C)は、腐植酸を施用した果樹から得られた果実の1個当たりの重量(kg)を測定した結果を示すグラフであり、(D)は、腐植酸を施用した果樹から得られた果実の糖度Brixを測定した結果を示すグラフである。(A) is a graph showing the results of measuring the total number of harvested fruits obtained from fruit trees to which humic acid was applied, and (B) is the total weight of fruits obtained from fruit trees to which humic acid was applied ( kg), (C) is a graph showing the results of measuring the weight (kg) per fruit obtained from a fruit tree to which humic acid was applied, and (D) 1 is a graph showing the results of measuring the sugar content Brix of fruits obtained from fruit trees to which humic acid was applied. 試験期間における太陽の放射照度を示すグラフである。Fig. 3 is a graph showing solar irradiance during a test period; 試験期間における温度、湿度及び飽差を示すグラフである。It is a graph which shows the temperature, humidity, and saturation during a test period. 試験期間における樹液流測定の結果を示すグラフである。10 is a graph showing the results of sap flow measurements during the test period; 試験期間における葉面積当たりの樹液流の測定結果を示すグラフである。Fig. 3 is a graph showing the measurement results of sap flow per leaf area during the test period.
 以下、本発明を実施するための形態について詳細に説明する。ただし、本発明は以下の実施形態に限定されるものではない。本実施形態では、質量を重量ということもある。 Hereinafter, the embodiments for carrying out the present invention will be described in detail. However, the present invention is not limited to the following embodiments. In this embodiment, the mass may also be referred to as weight.
 本明細書中、「~」を用いて示された数値範囲は、「~」の前後に記載される数値をそれぞれ最小値及び最大値として含む範囲を示す。具体的に明示する場合を除き、「~」の前後に記載される数値の単位は同じである。本明細書中に段階的に記載されている数値範囲において、ある段階の数値範囲の上限値又は下限値は、他の段階の数値範囲の上限値又は下限値に置き換えてもよい。本明細書中に記載されている数値範囲において、その数値範囲の上限値又は下限値は、実施例に示されている値に置き換えてもよい。個別に記載した上限値及び下限値は任意に組み合わせ可能である。 In this specification, a numerical range indicated using "-" indicates a range that includes the numerical values before and after "-" as the minimum and maximum values, respectively. Unless otherwise specified, the units of numerical values before and after "-" are the same. In the numerical ranges described stepwise in this specification, the upper limit value or lower limit value of the numerical range at one step may be replaced with the upper limit value or lower limit value of the numerical range at another step. In the numerical ranges described herein, the upper or lower limits of the numerical ranges may be replaced with the values shown in the examples. The upper and lower limits described individually can be combined arbitrarily.
 本実施形態に係る果樹用樹液流活性化剤は、腐植酸を有効成分として含有する。樹液流活性化とは、果樹内の養水分の吸い上げを活発にすることを意味する。 The sap flow activator for fruit trees according to this embodiment contains humic acid as an active ingredient. Sap flow activation means activating uptake of nutrients and water in fruit trees.
 果樹は、草本植物及び木本植物であって、果実を食用とするものをいう。果樹は、落葉果樹又は常緑果樹であってもよい。果樹は、例えば、バラ科、カキノキ科、クワ科、ザクロ科、ツツジ科、バラ科、ブドウ科、ブナ科、マタタビ科又はミカン科の果樹であってよい。バラ科の果樹としては、サクラ属、スモモ属、ナシ属、ビワ属又はリンゴ属の果樹が挙げられる。具体的には、バラ科の果樹は、例えば、ナシ、又はブドウ等であってよい。ミカン科の果樹としては、カンキツ属、キンカン属又はカラタチ属の果樹が挙げられる。具体的には、ミカン科の果樹は、例えば、ミカン等であってよい。果樹の一例としては、例えば、バラ科ナシ属のセイヨウナシの一品種であるル・レクチェが挙げられる。 Fruit trees refer to herbaceous and woody plants whose fruits are edible. The fruit trees may be deciduous or evergreen fruit trees. The fruit tree may be, for example, a fruit tree of the Rosaceae, Persimmon, Moraceae, Pomegranate, Ericaceae, Rosaceae, Vine, Fagaceae, Actinidia or Rutaceae families. Fruit trees belonging to the family Rosaceae include those belonging to the genus Prunus, Plum, Pear, Loquat, or Apple. Specifically, the Rosaceae fruit tree may be, for example, a pear or a grape. Fruit trees belonging to the Rutaceae family include fruit trees belonging to the genus Citrus, Kumquat, or Trifoliaceae. Specifically, the fruit tree of the Rutaceae family may be, for example, mandarin oranges. An example of a fruit tree is Le Lectier, which is a variety of pear belonging to the genus Pear of the family Rosaceae.
 本明細書における「腐植酸」には、フミン酸及びフルボ酸が含まれる。腐植酸は、腐植酸及び腐植酸塩からなる群より選択される1種以上を含む。 "Humic acid" as used herein includes humic acid and fulvic acid. Humic acid includes one or more selected from the group consisting of humic acid and humic acid salts.
 腐植酸としては、泥炭及び風化炭等の天然に産出される天然腐植酸、褐炭の硝酸酸化等により人工的に製造される人工腐植酸、及び、天然腐植酸又は人工腐植酸をナトリウム、カリウム、アンモニア、カルシウム及びマグネシウム等のアルカリ物質で中和した腐植酸塩等が挙げられる。腐植酸としては、フルボ酸、フミン酸、ニトロフミン酸、フミン酸アンモニウム、フミン酸カルシウム、フミン酸マグネシウム、ニトロフミン酸アンモニウム、ニトロフミン酸カルシウム及びニトロフミン酸マグネシウム、フミン酸カリウム、ニトロフミン酸カリウム等が挙げられる。 Examples of humic acid include natural humic acid produced naturally in peat and weathered coal, artificial humic acid artificially produced by nitric acid oxidation of lignite, and natural humic acid or artificial humic acid containing sodium, potassium, Examples include humic acid salts neutralized with alkaline substances such as ammonia, calcium and magnesium. Humic acids include fulvic acid, humic acid, nitrohumic acid, ammonium humate, calcium humate, magnesium humate, ammonium nitrohumate, calcium nitrohumate and magnesium nitrohumate, potassium humate, potassium nitrohumate and the like.
 有効成分は、腐植酸抽出液であってよい。腐植酸抽出液は、若年炭の硝酸酸化物を、水と必要によりアルカリを含む抽出溶媒により抽出した抽出物であってよい。 The active ingredient may be a humic acid extract. The humic acid extract may be an extract obtained by extracting nitric oxide from young coal with an extraction solvent containing water and, if necessary, alkali.
 若年炭とは、瀝青炭等に比べ炭素含有量の少ない石炭であり、炭素含有率が83質量%以下であるものと定義される。若年炭としては、例えば、泥炭、亜炭、褐炭、亜瀝青炭等が挙げられる。若年炭は、1種を単独で、又は2種以上を組み合わせて使用してよい。腐植酸は、樹液流活性化効果の点から、褐炭由来であってよい。 Young coal is coal that has a lower carbon content than bituminous coal, etc., and is defined as having a carbon content of 83% by mass or less. Young coal includes, for example, peat, lignite, lignite, sub-bituminous coal, and the like. Young coal may be used singly or in combination of two or more. Humic acid may be derived from brown coal for its sap flow activation effect.
 若年炭の硝酸酸化物は、若年炭を硝酸で酸化分解させて得られる。硝酸としては濃硝酸が好ましい。安全性と反応性の点で、濃度40~60質量%の硝酸を用いることが好ましい。酸化分解の際の硝酸(HNO)の配合量は、若年炭20質量部に対して、10質量部以上、又は20質量部以上であってよく、300質量部以下、250質量部以下、200質量部以下、150質量部以下、100質量部以下、50質量部以下、36質量部以下、又は20質量部以下であってよい。硝酸(HNO)の配合量は、若年炭20質量部に対して、10~20質量部であってよく、20~36質量部であってよい。ここで、硝酸の配合量は100%硝酸(100%HNO)に換算した値である。 Nitric oxide of young coal is obtained by oxidative decomposition of young coal with nitric acid. Concentrated nitric acid is preferred as the nitric acid. From the viewpoint of safety and reactivity, it is preferable to use nitric acid with a concentration of 40 to 60% by mass. The amount of nitric acid (HNO 3 ) to be added during oxidative decomposition may be 10 parts by mass or more, or 20 parts by mass or more with respect to 20 parts by mass of young coal. It may be no more than 150 parts by mass, no more than 100 parts by mass, no more than 50 parts by mass, no more than 36 parts by mass, or no more than 20 parts by mass. The amount of nitric acid (HNO 3 ) mixed may be 10 to 20 parts by mass, or 20 to 36 parts by mass, with respect to 20 parts by mass of young coal. Here, the blending amount of nitric acid is a value converted to 100% nitric acid (100% HNO 3 ).
 酸化分解の際の温度は、例えば、70~95℃であってよい。酸化反応のスターターとして、湯浴等で70~95℃に加温すると酸化反応が速やかに進行しやすい。反応時間は、例えば、20分間以上、0.5時間以上、又は1時間以上であってよく、6時間以下、4時間以下、又は1時間以下であってよい。 The temperature during oxidative decomposition may be, for example, 70 to 95°C. As a starter for the oxidation reaction, heating to 70 to 95° C. in a hot water bath or the like facilitates rapid progress of the oxidation reaction. The reaction time may be, for example, 20 minutes or more, 0.5 hours or more, or 1 hour or more, and may be 6 hours or less, 4 hours or less, or 1 hour or less.
 腐植酸抽出液は、例えば、若年炭の硝酸酸化物(以下、腐植酸粗製物という)と、水及びアルカリを含む抽出溶媒とを攪拌した後、固液分離工程を行うことにより、液状物として得られる。 The humic acid extract is prepared as a liquid by, for example, stirring nitric oxide of young coal (hereinafter referred to as crude humic acid) and an extraction solvent containing water and alkali, and then performing a solid-liquid separation step. can get.
 アルカリとしては、水酸化物、アンモニア等が挙げられる。水酸化物としては、アルカリ金属の水酸化物、水酸化アンモニウム等が挙げられる。水酸化物としては、アルカリ金属の水酸化物が好ましい。アルカリ金属の水酸化物としては、水酸化カリウム、水酸化ナトリウム等が挙げられる。水酸化物としては、水酸化カリウム、水酸化ナトリウム、及び水酸化アンモニウム(アンモニア水)のうちの1種以上が好ましい。抽出溶媒のpHは、0.5~7.0、0.5~4.0又は1.0~3.0であってよい。  The alkali includes hydroxide, ammonia, and the like. Hydroxides include alkali metal hydroxides, ammonium hydroxide and the like. As the hydroxide, an alkali metal hydroxide is preferable. Examples of alkali metal hydroxides include potassium hydroxide and sodium hydroxide. As the hydroxide, one or more of potassium hydroxide, sodium hydroxide, and ammonium hydroxide (ammonia water) are preferable. The pH of the extraction solvent may be 0.5-7.0, 0.5-4.0 or 1.0-3.0.
 腐植酸粗製物を抽出溶媒で抽出する際の温度(抽出温度)は、抽出液の凍結及び品質低下を更に抑制する観点から、例えば、40~90℃であってよい。腐植酸粗製物を抽出溶媒で抽出する時間(抽出時間)は、例えば、0.5時間以上であってよく、24時間以下であってよく、1時間以下であってもよい。 The temperature (extraction temperature) at which the humic acid crude product is extracted with an extraction solvent may be, for example, 40 to 90°C from the viewpoint of further suppressing freezing and quality deterioration of the extract. The time for extracting the humic acid crude product with the extraction solvent (extraction time) may be, for example, 0.5 hours or longer, 24 hours or shorter, or 1 hour or shorter.
 腐植酸粗製物を調製するために用いた原料の若年炭の量に対する抽出溶媒の量を、固液比と定義する。例えば、若年炭20gから調製された粗製物に抽出溶媒(水)100g(100mL)を添加した場合、固液比(抽出溶媒/若年炭)は5となる。固液比は3以上、4以上、5以上、6以上、7以上、8以上、9以上又は10以上であってよく、15以下、13以下、11以下、9以下、7以下、又は6以下であってよい。固液比は、水の添加によって調整することができる。固液比は、pHを調整後に目的の固液比となるように調整されてよい。固液分離する方法は、遠心分離、フィルタープレス等であってよい。 The solid-liquid ratio is defined as the amount of extraction solvent relative to the amount of raw young coal used to prepare the humic acid crude product. For example, when 100 g (100 mL) of extraction solvent (water) is added to a crude product prepared from 20 g of young coal, the solid-liquid ratio (extraction solvent/young coal) is 5. The solid-liquid ratio may be 3 or more, 4 or more, 5 or more, 6 or more, 7 or more, 8 or more, 9 or more, or 10 or more, and 15 or less, 13 or less, 11 or less, 9 or less, 7 or less, or 6 or less. can be The solid-liquid ratio can be adjusted by adding water. The solid-liquid ratio may be adjusted so as to achieve the desired solid-liquid ratio after adjusting the pH. The solid-liquid separation method may be centrifugation, filter press, or the like.
 腐植酸抽出液の全有機炭素濃度(TOC)は15,000mg/L以上、15,300mg/L以上、15,500mg/L以上、16,000mg/L以上、16,500mg/L以上、17,000mg/L以上、17,500mg/L以上、18,000mg/L以上、18,500mg/L以上、19,000mg/L以上、19,500mg/L以上、20,000mg/L以上、又は20,500mg/L以上であってよい。腐植酸抽出液のTOCは、75,000mg/L以下、70,000mg/L以下、65,000mg/L以下、60,000mg/L以下、55,000mg/L以下、50,000mg/L以下、45,000mg/L以下、40,000mg/L以下、35,000mg/L以下、30,000mg/L以下、25,000mg/L以下、24,000mg/L以下、23,000mg/L以下、又は22,000mg/L以下であってよい。 The total organic carbon concentration (TOC) of the humic acid extract is 15,000 mg/L or more, 15,300 mg/L or more, 15,500 mg/L or more, 16,000 mg/L or more, 16,500 mg/L or more, 17, 000 mg/L or more, 17,500 mg/L or more, 18,000 mg/L or more, 18,500 mg/L or more, 19,000 mg/L or more, 19,500 mg/L or more, 20,000 mg/L or more, or 20, It may be 500 mg/L or more. The TOC of the humic acid extract is 75,000 mg/L or less, 70,000 mg/L or less, 65,000 mg/L or less, 60,000 mg/L or less, 55,000 mg/L or less, 50,000 mg/L or less, 45,000 mg/L or less, 40,000 mg/L or less, 35,000 mg/L or less, 30,000 mg/L or less, 25,000 mg/L or less, 24,000 mg/L or less, 23,000 mg/L or less, or It may be 22,000 mg/L or less.
 腐植酸抽出液のTOCの測定方法は、次のように定義される。腐植酸抽出液を、3,000×gで遠心分離した上澄み液を、全有機体炭素計(株式会社島津製作所製TOC-L)を用いて燃焼触媒酸化方式で測定した値である。肥料成分である尿素等の非腐植物質を含む場合は、国際腐植物質学会法(藤嶽、HumicSubstances Research Vol3、P1-9)に準じて分別したもの(フミン酸画分及びフルボ酸画分)を上記の手法にて定量し、腐植酸抽出液のTOCを測定する。 The method of measuring the TOC of the humic acid extract is defined as follows. The humic acid extract was centrifuged at 3,000×g, and the supernatant was measured using a total organic carbon meter (TOC-L manufactured by Shimadzu Corporation) by combustion catalytic oxidation. When non-humic substances such as urea, which is a fertilizer component, are included, the above (humic acid fraction and fulvic acid fraction) are separated according to the International Humic Substances Society method (Fujitake, Humic Substances Research Vol3, P1-9). and measure the TOC of the humic acid extract.
 腐植酸は、A型、B型、Rp型及びP型に分類することができる。腐植酸は、果樹により作用しやすくなる観点から、Rp型又はP型の腐植酸(Rp・P型腐植酸)であってよい。腐植酸の分類は、後述するメラニックインデックス(MI)によって簡易的に行うことができる。MIが2.0以上である腐植酸がRp・P型に分類される。 Humic acid can be classified into A-type, B-type, Rp-type and P-type. The humic acid may be Rp-type or P-type humic acid (Rp·P-type humic acid) from the viewpoint of being more likely to act on fruit trees. Humic acid can be easily classified according to the Melanic Index (MI), which will be described later. Humic acid with MI of 2.0 or more is classified as Rp·P type.
 腐植酸のメラニックインデックス(MI)は、果樹により作用しやすくなる観点から、例えば、1.5以上、2.0以上、2.2以上、2.5以上、3.0以上、又は3.5以上であってよく、6.5以下、6.0以下、5.5以下、5.0以下、4.5以下、4.0以下、3.5以下、又は3.0以下であってよい。 The melanic index (MI) of humic acid is, for example, 1.5 or more, 2.0 or more, 2.2 or more, 2.5 or more, 3.0 or more, or 3.0 or more, from the viewpoint of being more likely to act on fruit trees. 5 or more, 6.5 or less, 6.0 or less, 5.5 or less, 5.0 or less, 4.5 or less, 4.0 or less, 3.5 or less, or 3.0 or less good.
 MIとは、腐植酸の分類に用いられている指標であり、水酸化ナトリウム抽出液の吸収スペクトルの波長450nmにおける吸光度(A450)と波長520nmにおける吸光度(A520)との比(A450/A520)である。(熊田恭一著、土壌有機物の化学第2版 学会出版センター(1981)、日本土壌肥料学雑誌 第71号 第1号 p.82~85(2000))。 MI is an index used to classify humic acid , and is the ratio (A 450 / A 520 ). (Kyōichi Kumada, Soil Organic Matter Chemistry, 2nd Edition, Gakkai Shuppan Center (1981), Japan Journal of Soil and Fertilizer Science, No. 71, No. 1, pp. 82-85 (2000)).
 より具体的には、MIとは、次の方法によって算出されるものである。試料を乳鉢と250μm篩を用い250μm篩下品に粉砕する。その約10gを、質量が既知の秤量ビンに取り精秤する。この秤量ビンを温度105℃に保持した乾燥機で約12時間放置し、その後、デシケーター中で室温20℃に戻してから再度精秤する。その質量減少分を水分とみなして試料の含水率を求める。次に、50ml遠沈管に、上記250μm篩下品を乾燥質量相当量で0.10gと、0.5mol/L水酸化ナトリウム水溶液45mlとを入れ、室温20℃で約1時間、250rpmの速度で振とうした後、3,000×g、約10分間の遠心分離を実施し、その上澄み液をアドバンテック社製No.5Cの濾紙で濾過する。濾液の450nmの吸光度と520nmの吸光度を、蒸留水をブランクとして測定する。この場合、450nmの吸光度が1.0以上を示したならば、0.1mol/L水酸化ナトリウム水溶液を添加し吸光度が0.8以上1.0未満に調整してから、520nmの吸光度を測定する。520nmでの吸光度に対する450nmでの吸光度の比(450nmでの吸光度/520nmでの吸光度)を算出し、MIとする。 More specifically, MI is calculated by the following method. The sample is ground to a 250 μm sieve using a mortar and 250 μm sieve. About 10 g of it is placed in a weighing bottle with a known mass and accurately weighed. This weighing bottle is left in a dryer maintained at a temperature of 105° C. for about 12 hours, then returned to room temperature of 20° C. in a desiccator, and then accurately weighed again. The moisture content of the sample is determined by considering the weight loss as moisture. Next, in a 50 ml centrifuge tube, 0.10 g of the above 250 μm sieve product (dry mass equivalent) and 45 ml of 0.5 mol/L sodium hydroxide aqueous solution were placed, and the mixture was shaken at room temperature of 20° C. for about 1 hour at a speed of 250 rpm. After centrifugation, centrifugation was carried out at 3,000×g for about 10 minutes, and the supernatant was centrifuged in Advantech No. Filter through 5C filter paper. The absorbance at 450 nm and 520 nm of the filtrate is measured using distilled water as a blank. In this case, if the absorbance at 450 nm shows 1.0 or more, add 0.1 mol/L sodium hydroxide aqueous solution to adjust the absorbance to 0.8 or more and less than 1.0, then measure the absorbance at 520 nm. do. The ratio of absorbance at 450 nm to absorbance at 520 nm (absorbance at 450 nm/absorbance at 520 nm) is calculated as MI.
 腐植酸の質量平均分子量は、100~6,000であってよい。腐植酸の質量平均分子量の下限は、例えば、200以上、300以上、400以上、500以上、600以上、700以上、800以上、900以上、又は1,000以上であってよい。腐植酸の質量平均分子量の上限は、例えば、5,500以下、5,000以下、4,500以下、4,000以下、3,500以下、3,000以下、2,500以下、2,000以下、1,500以下、1,200以下、又は1,000以下であってよい。 The mass average molecular weight of humic acid may be 100-6,000. The lower limit of the mass average molecular weight of humic acid may be, for example, 200 or more, 300 or more, 400 or more, 500 or more, 600 or more, 700 or more, 800 or more, 900 or more, or 1,000 or more. The upper limit of the mass average molecular weight of humic acid is, for example, 5,500 or less, 5,000 or less, 4,500 or less, 4,000 or less, 3,500 or less, 3,000 or less, 2,500 or less, 2,000 1,500 or less, 1,200 or less, or 1,000 or less.
 腐植酸の質量平均分子量は、Waters社製Alliance HPLC Systemを用い、HPSEC法(GPC法)により測定される。カラムは昭和電工株式会社製SB-803HQ、標準試料はポリスチレンスルホン酸ナトリウムを用い、検出波長は260nmとする。移動相は25質量%アセトニトリル含有の10mmol/Lリン酸ナトリウム緩衝液とし、流速は0.8ml/分とし、カラムの温度は40℃(カラムオーブンの設定値)とする。 The mass average molecular weight of humic acid is measured by the HPSEC method (GPC method) using Alliance HPLC System manufactured by Waters. The column is SB-803HQ manufactured by Showa Denko KK, the standard sample is sodium polystyrene sulfonate, and the detection wavelength is 260 nm. The mobile phase is 10 mmol/L sodium phosphate buffer containing 25% by mass of acetonitrile, the flow rate is 0.8 ml/min, and the column temperature is 40° C. (column oven setting).
 腐植酸のΔlogK(log(A400/A600))は、果樹により作用しやすくなる観点から、例えば、0.7以上、又は0.8以上であってよく、2.0以下、又は1.8以下であってよい。ΔlogK(log(A400/A600))が高いほど炭素-炭素二重結合が少なく、炭化が進んでいない傾向がある。A400は波長400nmにおける吸光度を意味し、A600は波長600nmにおける吸光度を意味する。ΔlogKは、腐植物質分析ハンドブック第2版p.86-88及び環境中の腐植物質その特徴と研究法(三共出版)p.19に記載の方法によって測定することができる。具体的には、腐植酸のΔlogKは、株式会社島津製作所製 紫外可視分光光度計 UV-1850により測定することができる。 ΔlogK (log(A 400 /A 600 )) of humic acid may be, for example, 0.7 or more, or 0.8 or more, and 2.0 or less, or 1.0 or more, from the viewpoint of being more likely to act on fruit trees. It may be 8 or less. The higher the ΔlogK (log(A 400 /A 600 )), the less the carbon-carbon double bonds and the less the carbonization tends to proceed. A400 means the absorbance at a wavelength of 400 nm and A600 means the absorbance at a wavelength of 600 nm. ΔlogK is calculated according to the humic substance analysis handbook, 2nd edition, p. 86-88 and characteristics of humic substances in the environment and research methods (Sankyo Shuppan) p. 19 can be used. Specifically, the ΔlogK of humic acid can be measured with an ultraviolet-visible spectrophotometer UV-1850 manufactured by Shimadzu Corporation.
 MIが2.0以上であり、かつ、ΔlogKが0.7以上である腐植酸は、植物により一層作用しやすくなる傾向がある。 Humic acid with an MI of 2.0 or more and a ΔlogK of 0.7 or more tends to act more easily on plants.
 果樹用樹液流活性化剤の剤型は、例えば、液剤又は粉剤であってよい。粉剤は、例えば、液剤である果樹用樹液流活性化剤を凍結乾燥等によってドライアップすることにより、再溶解可能な粉剤として得ることができる。 The dosage form of the sap flow activator for fruit trees may be, for example, liquid or powder. The powder can be obtained as a redissolvable powder by, for example, drying up a liquid sap flow activator for fruit trees by freeze-drying or the like.
 果樹用樹液流活性化剤は、腐植酸のみからなっていてよく、腐植酸以外の他の成分を含んでいてよい。果樹用樹液流活性化剤中の腐植酸の含有量は、果樹用樹液流活性化剤の全質量を基準として、例えば、5質量%以上、10質量%以上、20質量%以上、30質量%以上、40質量%以上、50質量%以上、60質量%以上、70質量%以上、80質量%以上、90質量%以上、又は95質量%以上であってよく、100質量%以下、99質量%以下、又は95質量%以下であってよい。 The sap flow activator for fruit trees may consist only of humic acid, or may contain other components than humic acid. The content of humic acid in the sap flow activator for fruit trees is, for example, 5% by mass or more, 10% by mass or more, 20% by mass or more, or 30% by mass based on the total mass of the sap flow activator for fruit trees. 40% by mass or more, 50% by mass or more, 60% by mass or more, 70% by mass or more, 80% by mass or more, 90% by mass or more, or 95% by mass or more, 100% by mass or more, 99% by mass or more or less, or 95% by mass or less.
 他の成分としては、例えば、展着剤、肥料、植物活性剤が挙げられる。肥料としては、例えば、硫酸アンモニウム、硝酸カリウム、リン酸アンモニウムが挙げられる。植物活性剤としては例えば海藻抽出エキス、アミノ酸が挙げられる。アミノ酸としては、例えば、グリシン、プロリン、グルタミン酸が挙げられる。他の成分の総含有量は、果樹用樹液流活性化剤の全質量を基準として、例えば、80質量%以下、60質量%以下、40質量%以下、30質量%以下、20質量%以下、10質量%以下、5質量%以下、又は1質量%以下であってよく、0質量%超、1質量%以上、又は5質量%以上であってよい。 Other ingredients include, for example, spreading agents, fertilizers, and plant activators. Fertilizers include, for example, ammonium sulfate, potassium nitrate, and ammonium phosphate. Plant active agents include, for example, seaweed extracts and amino acids. Amino acids include, for example, glycine, proline, and glutamic acid. The total content of other components is, for example, 80% by mass or less, 60% by mass or less, 40% by mass or less, 30% by mass or less, 20% by mass or less, based on the total mass of the sap flow activator for fruit trees. It may be 10 wt% or less, 5 wt% or less, or 1 wt% or less, and may be greater than 0 wt%, 1 wt% or more, or 5 wt% or more.
 本実施形態に係る果樹用樹液流活性化剤を施用すると、施用しない場合と比較して果樹の樹液流が活性化する。例えば、果樹用樹液流活性化剤を施用する場合、施用しない場合と比べて、葉面積当たりの平均樹液流量を、1%以上又は3~25%高めることができる。樹液流量は、後述する実施例に記載の方法によって測定することができる。 When the fruit tree sap flow activator according to the present embodiment is applied, the sap flow of the fruit tree is activated compared to when it is not applied. For example, application of a fruit tree sap flow activator can increase average sap flow per leaf area by 1% or more, or 3-25%, compared to no application. The sap flow rate can be measured by the method described in the examples below.
 果樹用樹液流活性化剤を施用することによって、例えば、品質を保ちながらの収量増加、健全な果樹及び果実の成長等が可能になる。 By applying a sap flow activator for fruit trees, it is possible, for example, to increase yields while maintaining quality and grow healthy fruit trees and fruits.
 本実施形態に係る果樹の樹液流を活性化する方法は、果樹に腐植酸を施用することを含む。果樹に腐植酸を施用する方法として、土壌潅注又は土壌混和、葉面からの施用等を行う方法が挙げられる。 A method for activating sap flow in fruit trees according to the present embodiment includes applying humic acid to fruit trees. Examples of methods for applying humic acid to fruit trees include soil irrigation or soil mixing, application from the foliage, and the like.
 腐植酸の施用量及び施用期間は特に限られず、土壌施用の場合は果樹1本あたり、全有機炭素として7,000~20,000mgを1回若しくは全有機炭素濃度として0.1~1,000mg/Lを月に1~30回若しくは全有機炭素濃度として0.1~100mg/L程度を毎日とすることができ、葉面施用の場合は全有機炭素濃度として0.1~1,000mg/Lで月に1~12回とすることができる。 The application amount and application period of humic acid are not particularly limited, and in the case of soil application, 7,000 to 20,000 mg of total organic carbon per fruit tree, or 0.1 to 1,000 mg of total organic carbon concentration. /L 1 to 30 times a month or about 0.1 to 100 mg/L as total organic carbon concentration every day. L can be 1-12 times a month.
 上述した本発明は、果樹の樹液流を活性化するための腐植酸の使用と捉えることもできる。当該態様における具体的な実施形態としては、上述した果樹用樹液流活性化剤で説明した具体的な実施形態を適用することができる。 The present invention described above can also be regarded as the use of humic acid to activate the sap flow of fruit trees. As a specific embodiment of this aspect, the specific embodiment described above for the sap flow activator for fruit trees can be applied.
 上述した本発明は、果樹の樹液流活性化に使用するための腐植酸と捉えることもできる。当該態様における具体的な実施形態としては、上述した果樹用樹液流活性化剤で説明した具体的な実施形態を適用することができる。 The present invention described above can also be regarded as humic acid for use in sap flow activation of fruit trees. As a specific embodiment of this aspect, the specific embodiment described above for the sap flow activator for fruit trees can be applied.
 上述した本発明は、果樹用樹液流活性化剤の製造のための腐植酸の使用(応用)と捉えることもできる。当該態様における具体的な実施形態としては、上述した果樹用樹液流活性化剤で説明した具体的な実施形態を適用することができる。 The present invention described above can also be regarded as the use (application) of humic acid for the production of a sap flow activator for fruit trees. As a specific embodiment of this aspect, the specific embodiment described above for the sap flow activator for fruit trees can be applied.
 以下、実施例に基づいて本発明をより具体的に説明する。但し、本発明は、以下の実施例により限定されるものではない。 The present invention will be described more specifically below based on examples. However, the present invention is not limited by the following examples.
<腐植酸資材の準備>
 腐植酸資材として次に示す方法によって調製した腐植酸抽出液を含むものを用いた。
<Preparation of humic acid materials>
As a humic acid material, one containing a humic acid extract prepared by the following method was used.
 ドラフト中で、炭素含有率が77質量%の褐炭500gを1,000mlのビーカーに入れて、濃度48質量%の硝酸625g(若年炭100質量部に対して100%硝酸60質量部)を添加した。80℃の水浴中で3時間酸化反応を行った。この操作で得た腐植酸を含む粗製物を以下の抽出操作に供した。 In a fume hood, 500 g of brown coal with a carbon content of 77% by mass was placed in a 1,000 ml beaker, and 625 g of nitric acid with a concentration of 48% by mass (60 parts by mass of 100% nitric acid per 100 parts by mass of young coal) was added. . An oxidation reaction was carried out in a water bath at 80°C for 3 hours. The crude product containing humic acid obtained by this operation was subjected to the following extraction operation.
 この粗製物100gに0.5mol/Lの水酸化カリウム水溶液を約900mL加え、pH計でモニタしながら1.0mol/Lの水酸化カリウム水溶液を適宜加えpH6.5とした。固液比1:10(固液比10)となるように水を加え、80℃で1時間抽出した。この抽出液を、3,000×gで遠心分離し、得られた上澄み液は適宜希釈し、質量平均分子量、全有機炭素濃度(TOC)、メラニックインデックス(MI)及びΔlogKを測定した。 About 900 mL of 0.5 mol/L potassium hydroxide aqueous solution was added to 100 g of this crude product, and the pH was adjusted to 6.5 by adding 1.0 mol/L potassium hydroxide aqueous solution appropriately while monitoring with a pH meter. Water was added so that the solid-liquid ratio was 1:10 (solid-liquid ratio 10), and extraction was performed at 80° C. for 1 hour. This extract was centrifuged at 3,000×g, the obtained supernatant was diluted appropriately, and the mass average molecular weight, total organic carbon concentration (TOC), melanic index (MI) and ΔlogK were measured.
 腐植酸抽出液中の腐植酸のMIは2.2であった。腐植酸抽出液の全有機炭素濃度(TOC)は、34,000mg/Lであった。腐植酸抽出液中の腐植酸の質量平均分子量は4,300であった。腐植酸のΔlogKは、0.9であった。 The MI of humic acid in the humic acid extract was 2.2. The total organic carbon concentration (TOC) of the humic acid extract was 34,000 mg/L. The mass average molecular weight of humic acid in the humic acid extract was 4,300. The ΔlogK of humic acid was 0.9.
[質量平均分子量]
 腐植酸の質量平均分子量は、Waters社製Alliance HPLC Systemを用い、HPSEC法(GPC法)により測定した。カラムは昭和電工株式会社製SB-803HQ、標準試料はポリスチレンスルホン酸ナトリウムを用い、検出波長は260nmとした。移動相は25質量%アセトニトリル含有の10mmol/Lリン酸ナトリウム緩衝液とし、流速は0.8ml/分とし、カラムの温度は40℃(カラムオーブンの設定値)とした。
[Mass average molecular weight]
The mass average molecular weight of humic acid was measured by HPSEC method (GPC method) using Alliance HPLC System manufactured by Waters. The column was SB-803HQ manufactured by Showa Denko KK, the standard sample was sodium polystyrene sulfonate, and the detection wavelength was 260 nm. The mobile phase was 10 mmol/L sodium phosphate buffer containing 25 mass % acetonitrile, the flow rate was 0.8 ml/min, and the column temperature was 40° C. (column oven setting).
[全有機炭素濃度(TOC)]
 腐植酸抽出液のTOCは、全有機体炭素計(島津製作所製TOC-L)を用い、燃焼触媒酸化方式で測定した。
[Total organic carbon concentration (TOC)]
The TOC of the humic acid extract was measured by a combustion catalytic oxidation method using a total organic carbon meter (TOC-L manufactured by Shimadzu Corporation).
[メラニックインデックス(MI)]
 試料を乳鉢と250μm篩を用い250μm篩下品に粉砕した。その約10gを、質量が既知の秤量ビンに取り精秤した。この秤量ビンを温度105℃に保持した乾燥機で約12時間放置し、その後、デシケーター中で室温に戻してから再度精秤した。その質量減少分を水分とみなして試料の含水率を求めた。次に、50ml遠沈管に、上記250μm篩下品を乾燥質量相当量で0.10gと、0.5mol/L水酸化ナトリウム水溶液45mlとを入れ、室温20℃で約1時間、250rpmの速度で振とうした後、3,000×g、約10分間の遠心分離を実施し、その上澄み液をアドバンテック社製No.5Cの濾紙で濾過した。濾液の450nmの吸光度と520nmの吸光度を、蒸留水をブランクとして測定した。この場合、450nmの吸光度が1.0以上を示したならば、0.1mol/L水酸化ナトリウム水溶液を添加し吸光度が0.8以上1.0未満に調整してから、520nmの吸光度を測定した。520nmでの吸光度に対する450nmでの吸光度の比(450nmでの吸光度/520nmでの吸光度)を算出し、MIとした。
[Melanic Index (MI)]
The sample was ground to a 250 μm sieve product using a mortar and 250 μm sieve. About 10 g of it was placed in a weighing bottle with a known mass and accurately weighed. This weighing bottle was left for about 12 hours in a dryer maintained at a temperature of 105° C., then returned to room temperature in a desiccator, and then accurately weighed again. The moisture content of the sample was determined by considering the mass decrease as moisture. Next, in a 50 ml centrifuge tube, 0.10 g of the above 250 μm sieve product (dry mass equivalent) and 45 ml of 0.5 mol/L sodium hydroxide aqueous solution were placed, and the mixture was shaken at room temperature of 20° C. for about 1 hour at a speed of 250 rpm. After centrifugation, centrifugation was carried out at 3,000×g for about 10 minutes, and the supernatant was centrifuged in Advantech No. It was filtered through a 5C filter paper. Absorbance at 450 nm and 520 nm of the filtrate was measured using distilled water as a blank. In this case, if the absorbance at 450 nm shows 1.0 or more, add 0.1 mol/L sodium hydroxide aqueous solution to adjust the absorbance to 0.8 or more and less than 1.0, then measure the absorbance at 520 nm. bottom. The ratio of absorbance at 450 nm to absorbance at 520 nm (absorbance at 450 nm/absorbance at 520 nm) was calculated and designated as MI.
[ΔlogK]
 試料を乳鉢と250μm篩を用い250μm篩下品に粉砕した。その約10gを、質量が既知の秤量ビンに取り精秤した。この秤量ビンを温度105℃に保持した乾燥機で約12時間放置し、その後、デシケーター中で室温に戻してから再度精秤した。その質量減少分を水分とみなして試料の含水率を求めた。次に、50ml遠沈管に、上記250μm篩下品を乾燥質量相当量で0.10gと、0.5mol/L水酸化ナトリウム水溶液45mlとを入れ、室温20℃で約1時間、250rpmの速度で振とうした後、3,000×g、約10分間の遠心分離を実施し、その上澄み液をアドバンテック社製No.5Cの濾紙で濾過した。濾液の400nmの吸光度と600nmの吸光度を、蒸留水をブランクとして測定した。この場合、400nmの吸光度が1.0以上を示したならば、0.1mol/L水酸化ナトリウム水溶液を添加し吸光度が0.8以上1.0未満に調整してから、600nmの吸光度を測定した。log(400nmでの吸光度/600nmでの吸光度)の比を算出し、ΔlogKとした。
[ΔlogK]
The sample was ground to a 250 μm sieve product using a mortar and 250 μm sieve. About 10 g of it was placed in a weighing bottle with a known mass and accurately weighed. This weighing bottle was left for about 12 hours in a dryer maintained at a temperature of 105° C., then returned to room temperature in a desiccator, and then accurately weighed again. The moisture content of the sample was determined by considering the mass decrease as moisture. Next, in a 50 ml centrifuge tube, 0.10 g of the above 250 μm sieve product (dry mass equivalent) and 45 ml of 0.5 mol/L sodium hydroxide aqueous solution were placed, and the mixture was shaken at room temperature of 20° C. for about 1 hour at a speed of 250 rpm. After centrifugation, centrifugation was carried out at 3,000×g for about 10 minutes, and the supernatant was centrifuged in Advantech No. It was filtered through a 5C filter paper. The absorbance at 400 nm and 600 nm of the filtrate was measured using distilled water as a blank. In this case, if the absorbance at 400 nm shows 1.0 or more, add 0.1 mol/L sodium hydroxide aqueous solution to adjust the absorbance to 0.8 or more and less than 1.0, then measure the absorbance at 600 nm. bottom. The ratio of log (absorbance at 400 nm/absorbance at 600 nm) was calculated and designated as ΔlogK.
[試験例1:ル・レクチェの栽培試験]
 ル・レクチェの栽培試験は、次に示す条件で実施した。
・2畝栽培
・1畝あたりのル・レクチェ果樹数:9本
・畝間距離:約3.5m
・樹間距離:約2m
[Test Example 1: Cultivation test of Le Lectier]
The cultivation test of Le Lectier was carried out under the following conditions.
・Two ridge cultivation ・Number of Le Lectier fruit trees per ridge: 9 ・Distance between ridges: about 3.5m
・Distance between trees: about 2m
 腐植酸を施用した畝を腐植酸区とした。土の染み込みから腐植酸資材の影響を強く受けないように腐植酸区から2つ目の畝を腐植酸非施用の対照区とした。腐植酸区では、2020年6月30日(試験開始日)に200倍希釈した農業資材を樹木1本あたり100L施用した。 The ridges to which humic acid was applied were designated as humic acid plots. The second furrow from the humic acid plot was used as a control plot where humic acid was not applied so as not to be strongly affected by the humic acid material due to the permeation of the soil. In the humic acid plot, 100 L of 200-fold diluted agricultural material was applied per tree on June 30, 2020 (test start date).
 腐植酸の施用は、次に示すとおりに実施した。試験は新潟県の果樹園で実施して腐植酸の施用は腐植酸希釈液をタンクで調整して、樹木の外周に決められた量を散布した。 The application of humic acid was carried out as follows. The test was conducted in an orchard in Niigata Prefecture, and humic acid was applied by adjusting a diluted humic acid solution in a tank and spraying the determined amount around the perimeter of the tree.
 果樹にはすでに長さ5cm程の果実が着いている。当該果樹は、この後も新しい果実ができていく状態である。腐植酸区及び対照区にそれぞれ9本の果樹で試験を実施した。 Fruits about 5 cm long have already arrived on the fruit tree. The fruit tree is in a state where new fruits are produced even after this. Nine fruit trees were tested in each of the humic acid plot and the control plot.
 腐植酸区及び対照区の樹液流は樹液流センサーを用いて測定した。各果樹の主枝から真上に伸び、太さが大体同じ枝を各株から選抜し、選抜した枝に樹液流センサーを取り付けた。樹液流の測定は、茎熱収支法(stem heat balance method)により実施した。センサーは雨風等による数値への影響を抑えるためにウレタンで覆った。  The sap flow in the humic acid plot and the control plot was measured using a sap flow sensor. A branch extending directly upward from the main branch of each fruit tree and having approximately the same thickness was selected from each strain, and a sap flow sensor was attached to the selected branch. Sap flow measurements were performed by the stem heat balance method. The sensor is covered with urethane to suppress the influence of rain and wind on the numerical value.
 図1は、収穫1週間前にあたる2020年10月12日時点における果樹1本あたりの果実数(個)の測定結果を示す。図1に示すとおり、腐植酸区の果樹1本あたりの果実数(個)は対照区に対して31%増加した。 Figure 1 shows the measurement results of the number of fruits (pieces) per fruit tree as of October 12, 2020, one week before harvest. As shown in FIG. 1, the number of fruits (pieces) per fruit tree in the humic acid plot increased by 31% compared to the control plot.
 図2(A)~(D)はそれぞれ2020年10月20日時点における総収穫個数、総重量(kg)、1個当たりの重量(kg)及び糖度Brixを示す。糖度測定:N=3 Figures 2 (A) to (D) show the total harvested number, total weight (kg), weight per piece (kg) and sugar content Brix as of October 20, 2020, respectively. Sugar content measurement: N=3
 図2(A)及び(B)のとおり、腐植酸区では、対照区と比べて、総収穫個数及び重量が増加した。図2(C)及び(D)のとおり、果実1個当たりの重量及び糖度については大きな変化がないことが確認された。なお、2020年10月20時点の総収穫個数は、10月12日時点より少なくなっている。これは不良果実又は落果の影響であると考えられる。 As shown in Figures 2 (A) and (B), in the humic acid plot, the total harvested number and weight increased compared to the control plot. As shown in FIGS. 2(C) and (D), it was confirmed that there was no significant change in the weight and sugar content per fruit. In addition, the total number of harvested as of October 20, 2020 is less than as of October 12. This is believed to be the effect of bad fruit or fruit drop.
 表1に試験結果のまとめを示す。最下分子高直径(cm)は、1番最初の枝分かれ場所すぐ下(1cm)にある幹の直径を意味する。最下分子高断面積(cm)は、1番最初の枝分かれ場所すぐ下(1cm)にある幹の面積を意味する。枝数(本)は、最終収穫1週前の果樹当たりの枝数を意味する。着果個数(個/樹)は、最終収穫1週前の各区9本の果樹1本あたりの着果個数を意味する。単位面積当たりの着果量(個/cm)は、最終収穫1週前の果樹における分子高断面積当たりの着果量を意味する。葉数/枝(毎)は、樹液流を測定した枝の葉の枚数を意味する。葉面積(cm)は、各区果樹から10枚以上採取して測定した(対照区100枚、腐植酸区90枚)。糖度Brix(%)は、N=3の結果を示す。糖度は、株式会社アタゴの糖酸度計PAL-BX|ACID F5により測定した。 Table 1 shows a summary of the test results. Lowest molecular height diameter (cm) refers to the diameter of the trunk just below the first branching site (1 cm). Bottom molecular high cross section (cm 2 ) refers to the area of the stem just below (1 cm) the location of the very first branch. The number of branches (lines) means the number of branches per fruit tree one week before the final harvest. The number of bearing fruits (pieces/tree) means the number of bearing fruits per nine fruit trees in each section one week before the final harvest. The amount of fruit bearing per unit area (number/cm 2 ) means the amount of fruit bearing per molecular high cross-sectional area on the fruit tree one week before the final harvest. Number of leaves/branch (per) means the number of leaves on the branch on which the sap flow was measured. The leaf area (cm 2 ) was measured by collecting 10 or more leaves from each group of fruit trees (100 sheets in the control group and 90 sheets in the humic acid group). Sugar content Brix (%) shows the result of N=3. The sugar content was measured using a sugar-acidity meter PAL-BX|ACID F5 manufactured by Atago Co., Ltd.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 対照区及び腐植酸区のそれぞれの果樹個体には大きな違いがないことが確認された。表1のとおり、腐植酸の施用によって着果個数が増加することが示された。 It was confirmed that there was no significant difference between the individual fruit trees in the control plot and the humic acid plot. As shown in Table 1, it was shown that the number of fruits set increased by applying humic acid.
 図3は2020年10月1日0時から2020年10月5日0時までの太陽の放射照度を示す。図4は2020年10月1日から2020年10月5日までの温度、湿度及び飽差を示す。 Figure 3 shows the solar irradiance from 0:00 on October 1, 2020 to 0:00 on October 5, 2020. FIG. 4 shows temperature, humidity and saturation from October 1, 2020 to October 5, 2020.
 図5(A)及び(B)は2020年10月1日0時から2020年10月5日0時までの樹液流測定結果を示す。図6(A)及び(B)は2020年10月1日0時から2020年10月5日0時までの葉面積当たりの樹液流測定結果を示す。葉面積当たりの樹液流量は、測定枝総葉面積当たりの樹液流量である。測定枝総葉面積は、「葉数/枝(枚)」×「葉面積」で算出される。測定枝総葉面積は、対照区では1515cmであり、腐植酸区では1480cmであった。 FIGS. 5(A) and (B) show the sap flow measurement results from 00:00 on October 1, 2020 to 00:00 on October 5, 2020. FIG. FIGS. 6A and 6B show the sap flow measurement results per leaf area from 0:00 on October 1, 2020 to 0:00 on October 5, 2020. FIG. Sap flux per leaf area is the sap flux per total leaf area of the branch measured. The measured branch total leaf area is calculated by “number of leaves/branch (sheet)”דleaf area”. The measured branch total leaf area was 1515 cm 2 in the control plot and 1480 cm 2 in the humic acid plot.
 図5(A)及び(B)並びに図6(A)及び(B)のとおり、腐植酸区は対照区と比べて樹液流量が大きい傾向がみられた。  As shown in Figures 5 (A) and (B) and Figures 6 (A) and (B), the sap flow rate tended to be higher in the humic acid plot than in the control plot. 

Claims (6)

  1.  腐植酸を有効成分として含有する、果樹用樹液流活性化剤。 A sap flow activator for fruit trees that contains humic acid as an active ingredient.
  2.  メラニックインデックスが2.0以上である、請求項1に記載の果樹用樹液流活性化剤。 The sap flow activator for fruit trees according to claim 1, which has a melanic index of 2.0 or more.
  3.  前記腐植酸の質量平均分子量が100~6,000である、請求項1又は2に記載の果樹用樹液流活性化剤。 The sap flow activator for fruit trees according to claim 1 or 2, wherein the humic acid has a mass average molecular weight of 100 to 6,000.
  4.  前記有効成分が腐植酸抽出液であり、
     前記腐植酸抽出液の全有機炭素濃度が15,000mg/L以上である、請求項1又は2に記載の果樹用樹液流活性化剤。
    The active ingredient is a humic acid extract,
    The sap flow activator for fruit trees according to claim 1 or 2, wherein the humic acid extract has a total organic carbon concentration of 15,000 mg/L or more.
  5.  前記腐植酸が褐炭由来である、請求項1又は2に記載の果樹用樹液流活性化剤。 The sap flow activator for fruit trees according to claim 1 or 2, wherein the humic acid is derived from lignite.
  6.  果樹の樹液流を活性化させる方法であって、
     前記果樹に腐植酸を施用することを含む、方法。 
    A method of activating sap flow in a fruit tree comprising:
    A method comprising applying humic acid to said fruit tree.
PCT/JP2022/037512 2021-10-07 2022-10-06 Sap-flow activator for fruit tree WO2023058730A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2023552947A JPWO2023058730A1 (en) 2021-10-07 2022-10-06

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021165530 2021-10-07
JP2021-165530 2021-10-07

Publications (1)

Publication Number Publication Date
WO2023058730A1 true WO2023058730A1 (en) 2023-04-13

Family

ID=85804329

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/037512 WO2023058730A1 (en) 2021-10-07 2022-10-06 Sap-flow activator for fruit tree

Country Status (2)

Country Link
JP (1) JPWO2023058730A1 (en)
WO (1) WO2023058730A1 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107337539A (en) * 2017-08-14 2017-11-10 史丹利化肥扶余有限公司 A kind of Special fertilizer for potato with prevention and control pest and disease damage function and preparation method thereof
CN107500870A (en) * 2017-08-30 2017-12-22 深圳市芭田生态工程股份有限公司 A kind of fertilizer synergist for improving crop drought resistance ability and preparation method thereof
CN108046856A (en) * 2018-01-16 2018-05-18 北京东方好地科技有限公司 Produce the device and method of biological humic acid fertilizer
CN109121632A (en) * 2018-09-27 2019-01-04 江西省农业科学院土壤肥料与资源环境研究所 A kind of Rice-rape rotation anniversary fertilizing method
CN111066545A (en) * 2020-01-02 2020-04-28 广州普邦园林股份有限公司 Method for preventing Duying transplantation ulcer disease
CN112042407A (en) * 2019-06-06 2020-12-08 云南库博农业科技有限公司 Drought-resistant planting method for high-quality cultivation of fruit trees in dry and hot valley and mountain land

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107337539A (en) * 2017-08-14 2017-11-10 史丹利化肥扶余有限公司 A kind of Special fertilizer for potato with prevention and control pest and disease damage function and preparation method thereof
CN107500870A (en) * 2017-08-30 2017-12-22 深圳市芭田生态工程股份有限公司 A kind of fertilizer synergist for improving crop drought resistance ability and preparation method thereof
CN108046856A (en) * 2018-01-16 2018-05-18 北京东方好地科技有限公司 Produce the device and method of biological humic acid fertilizer
CN109121632A (en) * 2018-09-27 2019-01-04 江西省农业科学院土壤肥料与资源环境研究所 A kind of Rice-rape rotation anniversary fertilizing method
CN112042407A (en) * 2019-06-06 2020-12-08 云南库博农业科技有限公司 Drought-resistant planting method for high-quality cultivation of fruit trees in dry and hot valley and mountain land
CN111066545A (en) * 2020-01-02 2020-04-28 广州普邦园林股份有限公司 Method for preventing Duying transplantation ulcer disease

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
JOSHI AKHILESH, DATTA SOUMANA: "Effect of Various Organic Manures on Chlorophyll Content and Leaf Surface Area of Guar", INDIAN JOURNAL OF AGRICULTURAL BIOCHEMISTRY, INDIAN SOCIETY OF AGRICULTURAL BIOCHEMISTS, vol. 28, no. 2, 1 January 2015 (2015-01-01), pages 183, XP093056850, ISSN: 0970-6399, DOI: 10.5958/0974-4479.2015.00014.3 *
SHUMILO, P. E: "Ratio of nutrient elements in apple tree plants on chernozem and floodplain-meadow soils of Moldavia.", GENEZIS PLODORODIE POCHV, 1979, pages 75 - 79 *

Also Published As

Publication number Publication date
JPWO2023058730A1 (en) 2023-04-13

Similar Documents

Publication Publication Date Title
CN105794583B (en) The method that Kiwi berry is planted in high altitude localities
WO2023058730A1 (en) Sap-flow activator for fruit tree
CN110946140B (en) Application of melatonin in increasing sugar content of sugarcane
WO2023058719A1 (en) Utilization activator for rhizosphere oxygen of fruit tree
CN105294338A (en) Zenia insigins Chun. special fertilizer and production method thereof
CN103125331A (en) Method for preventing citrus fruits from sunburning
Kuchanwar et al. Effect of fertigation on leaf nutrient content and fruit quality of high density plantation of Nagpur mandarin
Blackman et al. Physiological and ecological studies in the analysis of Plant Environment: IV. The Interaction between Light Intensity and Mineral Nutrient Supply on the Uptake of Nutrients by the Bluebell (Scilla non-scripta)
Sabu et al. Cultivation of Solanum nigrum under controlled environment using organic fertilizer
WO2023157928A1 (en) Resistance inducer for plants
WO2024024851A1 (en) Agent for suppressing decrease in yield amount
WO2023157929A1 (en) Inhibitor against crop injury due to agricultural material
KR20200030285A (en) Chelate selenium plant nutrition for selenium production
CN110574621B (en) Method for improving quality of waxberry fruits by using mixture of oriental blueberry and candelilla
Mohamed et al. Effect of foliar application of Sida compound fertilizer on growth, yield, and fruit chemical composition of ‘early superior’grapevine
Faissal et al. Physiological Studies on Fertilization of Superior Grapevines by Nano Technology System
Devy et al. Gradual flowering and fruiting technology (“Bujangseta”) through fertilizer management in siam (Citrus nobilis l.) Cv. Pontianak.
Wekumbura et al. Comparison of assimilate partitioning in organically and conventionally grown tea
El-Labbody et al. PERFORMANCE OF TWO PROMISING SUGAR CANE VARIETIES UNDER DIFFERENT INTERROW SPACING.
CN101919419A (en) Pollution-free efficient plant growth regulator and preparation method thereof
Limisha et al. Growth and Yield of Container Grown Elephant Foot Yam as Influenced by Growth Medium, Nutrient and Irrigation Schedules
Dahmardeh et al. Eucalyptus plantlet growth in relation to foliar application with complete fertilizers in Southeast of Iran
Chandola et al. Effect of potassic compounds and ethrel sprays on fruiting and quality attributes of litchi (Litchi chinensis Sonn.) cv. rose scented
KR101320046B1 (en) Fruit promoter containing the extract of current branch on tomato
Valenzuela-Núñez et al. Dynamic of total soluble proteins and total amino acids in two varities of pecan (Carya illinoinensis [Wangenh.] K. Koch): Western and Wichita.

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22878597

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2023552947

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE