WO2024024851A1 - Agent for suppressing decrease in yield amount - Google Patents

Agent for suppressing decrease in yield amount Download PDF

Info

Publication number
WO2024024851A1
WO2024024851A1 PCT/JP2023/027425 JP2023027425W WO2024024851A1 WO 2024024851 A1 WO2024024851 A1 WO 2024024851A1 JP 2023027425 W JP2023027425 W JP 2023027425W WO 2024024851 A1 WO2024024851 A1 WO 2024024851A1
Authority
WO
WIPO (PCT)
Prior art keywords
humic
less
amount
yield
humic acid
Prior art date
Application number
PCT/JP2023/027425
Other languages
French (fr)
Japanese (ja)
Inventor
弘樹 伊藤
藤樹 飯野
Original Assignee
デンカ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by デンカ株式会社 filed Critical デンカ株式会社
Publication of WO2024024851A1 publication Critical patent/WO2024024851A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01GHORTICULTURE; CULTIVATION OF VEGETABLES, FLOWERS, RICE, FRUIT, VINES, HOPS OR SEAWEED; FORESTRY; WATERING
    • A01G22/00Cultivation of specific crops or plants not otherwise provided for
    • A01G22/05Fruit crops, e.g. strawberries, tomatoes or cucumbers
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01GHORTICULTURE; CULTIVATION OF VEGETABLES, FLOWERS, RICE, FRUIT, VINES, HOPS OR SEAWEED; FORESTRY; WATERING
    • A01G22/00Cultivation of specific crops or plants not otherwise provided for
    • A01G22/15Leaf crops, e.g. lettuce or spinach 
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01GHORTICULTURE; CULTIVATION OF VEGETABLES, FLOWERS, RICE, FRUIT, VINES, HOPS OR SEAWEED; FORESTRY; WATERING
    • A01G7/00Botany in general

Definitions

  • the present invention relates to a yield reduction inhibitor.
  • Patent Document 1 describes a method for cultivating fruit and vegetable crops under conditions in which the amount of fertilizer applied is reduced compared to the conventional amount of fertilizer, and the method is characterized in that L-proline is used in combination to suppress a decrease in yield.
  • a novel method for cultivating fruit and vegetable crops is disclosed.
  • An object of the present invention is to provide a novel yield reduction inhibitor capable of suppressing a decrease in yield due to a decrease in the amount of chemical fertilizer applied to fruit or leafy vegetables crops.
  • the present invention relates to the following inventions.
  • the agent for suppressing a decrease in yield according to [1] which is an agent for suppressing a decrease in yield due to a decrease in the amount of chemical fertilizer applied to fruit vegetables or leafy vegetables.
  • FIG. 1 It is a figure which shows the effect which humic acid has on a leaf area under reduced fertilizer cultivation
  • (A) is a photograph which shows the measuring method of a leaf area
  • (B) is a graph which shows the measurement result of a leaf area.
  • (A) is a graph showing the measurement results of the number of flowers when humic acid is applied under reduced fertilizer cultivation
  • (B) is a graph showing the measurement results of the number of fruits when humic acid is applied under reduced fertilizer cultivation. It is a graph.
  • (A) is a graph showing the measurement results of dry mass when the humic acid extract A of the example is applied under reduced fertilizer cultivation
  • (B) is a graph showing the measurement results of the humic acid extract B of the example under reduced fertilizer cultivation. It is a graph which shows the measurement result of dry mass when applying.
  • the yield reduction inhibitor according to the present embodiment contains a humic substance as an active ingredient.
  • Fruit and vegetable crops are crops that mainly utilize fruits and/or seeds.
  • Examples of fruit and vegetable crops include fruits and vegetables of the nightshade family, beans (seeds and seeds), beans (immature), cucurbits (immature), cucurbits (mature), and the like.
  • Examples of fruits and vegetables of the eggplant family include edible Chinese peppers, tomatoes, cherry tomatoes, eggplants, and peppers and chili peppers such as sweet and long chili peppers, Kagura Nanban, Kidachi chili peppers, shishito peppers, chili peppers, habanero, green peppers, and picante. .
  • Examples of legumes include azuki beans, kidney beans, cowpeas, fava beans, soybeans, red beans, Fuji beans, red beans, peas, and radish.
  • Examples of legumes include green beans, green beans, immature cowpeas, immature black beans, immature fava beans, immature beans, immature Fuji beans, snow peas, and real peas.
  • Examples of cucurbits include cucumbers, edible gourds, edible loofahs, zucchini, chili peppers, bittern gourds, gourds, gourds, cucurbits, and red-headed gourds.
  • Examples of cucumbers (mature) include pumpkins, watermelons, cucumbers, and melons.
  • Leafy vegetables are crops that utilize their leaves. Examples of leafy vegetable crops include head-heading leafy vegetables, non-heading leafy vegetables, umbelliferous leafy vegetables, lettuces, leafy vegetables other than lettuce, leafy vegetables of the Lamiaceae family, leafy vegetables of the Amaranthaceae family, and other leafy vegetable crops. . Examples of the head-heading leafy vegetables include cabbage, Chinese cabbage, Brussels sprouts, and hybrids between crops included in the head-heading oily leafy vegetables.
  • non-heading leafy vegetables examples include turnip, mustard, kale, komatsuna, taa cai, bok choy, pear, pak choy, hata wasabi, mizuna, arugula, thistle, ajimina, aburana, and unno (stems and leaves). ), Otakana, Oyama Sodachi, Cavolo Nero, Kahokuna, Kale cola, Sagami green, Sanukina, Sichuan pressed greens, Senbo greens, Body Chinese greens, Takana, Eat greens, Chingen arugula, Tegoruna, Nabana, etc.
  • Examples include zawana, non-heading Brussels sprouts, beni-na, mochi-na, Yamagata midorina, Raffanobrassica, wasabi, and hybrids between crops included in the non-heading oily leafy vegetables.
  • leafy vegetables of the Umbelliferae family include caraway (leaves), Japanese cabbage, coriander (leaves), dill (leaves), parsley, fennel (leaves), chervil, mitsuba, celery, Ashitaba, Japanese parsley, toki (leaves),
  • Examples include Maboufuu (leaf) and Botanboufuu.
  • Examples of lettuces include endive, trevis, non-heading lettuce, lettuce, and puntarella.
  • leafy vegetables other than lettuce examples include leaf vegetables, edible dandelion, curry plant, tarragon, mugwort, watermelon, kooni tabirako, sawa thistle, leaf burdock, haha. Examples include kogusa, hosoba wadan, maple grass, yacon (stems and leaves), yobusumaso, and yomena. Examples of leafy vegetables of the perilla family include perilla (leaves), oregano, perilla, sage, thyme, basil, mint, marjoram, lemon balm, and rosemary.
  • leafy vegetables of the Amaranthaceae family include amaranth (stems and leaves), amaranth, spinach, and hijiki.
  • Other leafy vegetable crops include, for example, ice plant, vine, chili pepper (leaf), marsh, moroheiya, kansho (stem and leaf), cabbage, oranda wa mokou, borage, lemongrass, ukogi, shrimp sugusa (stem and leaf).
  • Chemical fertilizers are chemically manufactured fertilizers, and are different from organic fertilizers that are made from organic matter of animals and plants. Chemical fertilizers can be classified into nitrogenous fertilizers, phosphoric acid fertilizers, potassium fertilizers, compound fertilizers, calcareous fertilizers, and other fertilizers. Examples of nitrogenous fertilizers include urea, ammonium sulfate, ammonium chloride, and lime nitrogen. Examples of phosphoric acid fertilizers include superphosphate lime and molten phosphorous fertilizer. Examples of potassium fertilizers include potassium chloride and potassium sulfate. Examples of compound fertilizers include advanced chemical fertilizers, ordinary chemical fertilizers, and blended fertilizers. Calcareous fertilizers include calcium carbonate fertilizers and slaked lime. Examples of other chemical fertilizers include silicic acid fertilizers and magnesia fertilizers.
  • the yield reduction inhibitor according to the present embodiment it is possible to suppress a reduction in yield due to a decrease in the amount of chemical fertilizer applied to fruit or leafy vegetables crops. That is, according to the yield reduction inhibitor according to the present embodiment, it is possible to reduce the amount of chemical fertilizer applied compared to the conventional amount while suppressing a decrease in yield.
  • the yield reduction suppressing agent according to the present embodiment can be a yield reduction suppressing agent that is associated with a reduction in the amount of chemical fertilizer applied to fruit and vegetable crops or leafy vegetable crops.
  • Humic substances are naturally occurring polymeric organic substances found in soil and terrestrial water.
  • Humic substances include humic acids, which are soluble organic substances, and humins, which are insoluble organic substances.
  • Humic acids can be further classified into fulvic acid, which is soluble in alkaline and acidic solutions, and humic acid, which is soluble in alkaline solutions and insoluble in acidic solutions.
  • the humic substance may contain at least one selected from the group consisting of humic acid and fulvic acid.
  • humic acid examples include natural humic acid produced naturally in peat and weathered coal, artificial humic acid produced artificially by nitric acid oxidation of lignite, and natural humic acid or artificial humic acid containing sodium, potassium, Examples include humic acid salts neutralized with alkali substances such as ammonia, calcium, and magnesium.
  • humic acids include fulvic acid, humic acid, nitrofumic acid, ammonium humate, calcium humate, magnesium humate, ammonium nitrofumate, calcium nitrofumate, magnesium nitrofumate, potassium humate, potassium nitrofumate, and the like.
  • Humic acids can be classified into A type, B type, Rp type and P type.
  • the humic acid may be an Rp-type or a P-type humic acid (Rp/P-type humic acid).
  • Humic acids can be simply classified using the melanic index (MI) described below. Humic acids with an MI of 2.0 or more are classified as Rp/P type.
  • MI melanic index
  • the melanic index (MI) of humic substances may be 1.5 or more, 2.0 or more, 2.2 or more, 2.5 or more, 3.0 or more, or 3.5 or more, and 6.5 or less , 6.0 or less, 5.5 or less, 5.0 or less, 4.5 or less, 4.0 or less, 3.5 or less, or 3.0 or less.
  • MI is an index used to classify humic substances (and humic acids), and is the ratio of absorbance at wavelengths of 450 nm and 520 nm (A 450 /A 520 ) of the absorption spectrum of a sodium hydroxide extract.
  • MI is calculated by the following method.
  • the sample is ground to a 250 ⁇ m sieve quality using a mortar and a 250 ⁇ m sieve.
  • Approximately 10 g of the sample is placed in a weighing bottle with a known mass and accurately weighed.
  • This weighing bottle is left in a dryer maintained at a temperature of 105° C. for about 12 hours, then returned to room temperature in a desiccator, and then accurately weighed again.
  • the moisture content of the sample is determined by assuming that the mass loss is moisture.
  • the absorbance at 450 nm is 1.0 or more
  • add 0.1 mol/L sodium hydroxide aqueous solution to adjust the absorbance to 0.8 or more and less than 1.0, and then measure the absorbance at 520 nm. do.
  • the ratio of (absorbance at 450 nm/absorbance at 520 nm) is calculated and set as MI.
  • the weight average molecular weight of the humic substance may be from 200 to 6,000, since it can further suppress a decrease in yield due to a decrease in the amount of chemical fertilizer applied.
  • the lower limit of the weight average molecular weight of the humic substance may be, for example, 200 or more, 300 or more, 400 or more, 500 or more, 600 or more, 700 or more, 800 or more, 900 or more, or 1000 or more.
  • the upper limit of the weight average molecular weight of humic substances is, for example, 5,500 or less, 5,000 or less, 4,500 or less, 4,000 or less, 3,500 or less, 3,000 or less, 2,500 or less, 2,000 or less It may be less than or equal to 1,500, less than or equal to 1,200, or less than or equal to 1,000.
  • the humic substance is fulvic acid with a weight average molecular weight of 200 to 800, and/or a weight average molecular weight of 2,500 to 6,000, since it can further suppress a decrease in yield due to a decrease in the amount of chemical fertilizer applied. May contain humic acid.
  • the weight average molecular weight of the humic substance is measured by the HPSEC method (GPC method) using the Alliance HPLC System manufactured by Waters.
  • the column is Showa Denko SB-803HQ, the standard sample is sodium polystyrene sulfonate, and the detection wavelength is 260 nm.
  • the mobile phase is a 10 mmol/L sodium phosphate buffer containing 25% by mass acetonitrile, the flow rate is 0.8 ml/min, and the column temperature is 40° C. (column oven setting).
  • the active ingredient may be a humic substance-containing liquid containing humic substances.
  • the pH of the humic substance-containing liquid may be 2.0 to 9.0, since it can further suppress a decrease in yield due to a decrease in the amount of chemical fertilizer applied.
  • the pH of the humic substance-containing liquid is 2.0 or more, 2.5 or more, 3.0 or more, 3.5 or more, 4.0 or more, 4.5 or more, 5.0 or more, 5.5 or more, 6. It may be 0 or more, or 6.5 or more.
  • the upper limit of the pH of the humic substance-containing liquid may be 9.0 or less, 8.0 or less, 7.5 or less, 7.0 or less, or 6.5 or less.
  • the pH of the humic substance-containing liquid is measured by the method described in the Examples below.
  • the humic substance-containing liquid may be, for example, a humic acid extract.
  • the humic acid extract may be an extract obtained by extracting nitric acid oxides from young coal with an extraction solvent containing water and optionally an alkali.
  • Young coal is coal that has a lower carbon content than bituminous coal, etc., and is defined as having a carbon content of 83% by mass or less.
  • Examples of young coal include peat, lignite, lignite, subbituminous coal, and the like. Young charcoal may be used alone or in combination of two or more.
  • Nitrate oxide of young coal is obtained by oxidizing and decomposing young coal with nitric acid.
  • Concentrated nitric acid is preferable as the nitric acid. In terms of safety and reactivity, it is preferable to use nitric acid with a concentration of 40 to 60% by mass.
  • the blending amount of nitric acid (HNO 3 ) during oxidative decomposition may be 10 parts by mass or more, or 20 parts by mass or more, and 300 parts by mass or less, 250 parts by mass or less, 200 parts by mass or less, based on 20 parts by mass of young coal. The amount may be less than or equal to 150 parts by weight, less than 100 parts by weight, less than 50 parts by weight, less than 36 parts by weight, or less than 20 parts by weight.
  • the blending amount of nitric acid may be 10 to 20 parts by mass, or 20 to 36 parts by mass, based on 20 parts by mass of young coal.
  • the blending amount of nitric acid is a value converted to 100% nitric acid (100% HNO 3 ).
  • the temperature during oxidative decomposition may be, for example, 70 to 95°C.
  • the reaction time may be, for example, 20 minutes or more, 0.5 hours or more, or 1 hour or more, and 6 hours or less, 4 hours or less, or 1 hour or less.
  • a humic substance-containing liquid can be obtained as a liquid by, for example, stirring nitric acid oxide of young coal (hereinafter referred to as a humic substance crude product) and an extraction solvent containing water and an alkali, and then performing a solid-liquid separation process. can get.
  • Examples of the alkali include hydroxide and ammonia.
  • Examples of the hydroxide include alkali metal hydroxides and ammonium hydroxide.
  • the hydroxide is preferably an alkali metal hydroxide.
  • Examples of the alkali metal hydroxide include potassium hydroxide, sodium hydroxide, and the like.
  • the hydroxide is preferably one or more of potassium hydroxide, sodium oxide, and ammonium hydroxide (ammonia water).
  • the pH of the extraction solvent may be 0.5-7.0, 0.5-4.0 or 1.0-3.0.
  • the temperature (extraction temperature) when extracting the crude humic substance with the extraction solvent may be, for example, 40 to 90°C from the viewpoint of further suppressing freezing and quality deterioration of the extract.
  • the time for extracting the crude humic substance with the extraction solvent may be, for example, 0.5 hours or more, 24 hours or less, or 1 hour or less.
  • the amount of extraction solvent relative to the amount of raw material young charcoal used to prepare the humic substance crude product is defined as the solid-liquid ratio.
  • the solid-liquid ratio For example, when 100 g (100 mL) of extraction solvent (water) is added to a crude product prepared from 20 g of young charcoal, the solid-liquid ratio (extraction solvent/young charcoal) is 5.
  • the solid-liquid ratio may be 3 or more, 4 or more, 5 or more, 6 or more, 7 or more, 8 or more, 9 or more, or 10 or more, and 15 or less, 13 or less, 11 or less, 9 or less, 7 or less, or 6 or less. It may be.
  • the solid-liquid ratio can be adjusted by adding water.
  • the solid-liquid ratio may be adjusted to a desired solid-liquid ratio after pH adjustment.
  • the solid-liquid separation method may be centrifugation, filter press, or the like.
  • the total organic carbon concentration (TOC) of the humic substance-containing liquid is 15,000 mg/L or more, 15,300 mg/L or more, 15,500 mg/L or more, 16,000 mg/L or more, 16,500 mg/L or more, 17. 000mg/L or more, 17,500mg/L or more, 18,000mg/L or more, 18,500mg/L or more, 19,000mg/L or more, 19,500mg/L or more, 20,000mg/L or more, or 20, It may be 500 mg/L or more.
  • the TOC of the humic substance-containing liquid is 75,000 mg/L or less, 70,000 mg/L or less, 65,000 mg/L or less, 60,000 mg/L or less, 55,000 mg/L or less, 50,000 mg/L or less, 45,000 mg/L or less, 40,000 mg/L or less, 35,000 mg/L or less, 30,000 mg/L or less, 25,000 mg/L or less, 24,000 mg/L or less, 23,000 mg/L or less, or It may be 22,000 mg/L or less.
  • TOC is a value obtained by centrifuging a humic substance-containing liquid at 3,000 ⁇ g and measuring the supernatant liquid using a combustion catalytic oxidation method using a total organic carbon meter (TOC-L manufactured by Shimadzu Corporation).
  • TOC-L total organic carbon meter
  • the yield reduction inhibitor according to the present embodiment may be, for example, liquid or solid such as powder.
  • the powdered agent can be obtained as a redissolved powder by, for example, drying up the liquid yield reduction inhibitor by freeze-drying or the like.
  • the yield reduction inhibitor according to the present embodiment may contain components other than humic substances.
  • examples of other components include other fertilizer components, spreading agents, agricultural chemicals, plant growth regulators, seaweed extracts, amino acids, plant extracts, microbial extracts, and the like.
  • the method for cultivating fruit and vegetable crops or leafy vegetable crops according to the present embodiment is a method for cultivating fruit and vegetable crops or leafy vegetable crops under conditions where the amount of chemical fertilizer applied is lower than the conventional amount of fertilizer.
  • the method includes an application step of applying a humic substance in combination with a chemical fertilizer.
  • Examples of methods for applying humic substances to fruit and leafy crops include soil irrigation, soil mixing, and application to the foliage or plant base.
  • the customary application amount of chemical fertilizers can be easily known by those skilled in the art (farmers, hydroponic growers, etc.). For example, in Japan, reference may be made to the "Fertilizer Application Standards by Crop" established by each prefecture. farmers in each prefecture usually cultivate crops in accordance with this standard, setting the amount of fertilizer appropriate for the region of the prefecture.
  • the conventional application amount of chemical fertilizers is typically determined based on the three components of nitrogen (nitrate nitrogen), phosphoric acid, and potassium. If the amount of chemical fertilizer applied is lower than the fertilizer application standard set in the fertilizer application standards for each crop in at least one of nitrogen (nitrate nitrogen), phosphoric acid, and potassium, the amount of chemical fertilizer applied is the conventional fertilizer application amount. It is determined that the condition is lower than that of
  • the amount of chemical fertilizer applied may be 10% or more lower than the conventional fertilization amount, and may be 20% or more or 30% or more lower than the conventional fertilization amount.
  • the amount and application period of humic substances are not particularly limited; in the case of soil application, the total organic carbon concentration is 7000 to 20000 mg/L once per fruit tree, or the total organic carbon concentration is 0.1 to 1000 mg/L per month. It can be applied 1 to 30 times per day or daily at a total organic carbon concentration of 0.1 to 100 mg/L, and in the case of foliar application, it can be applied once to a month at a total organic carbon concentration of 0.1 to 1000 mg/L. It can be 12 times.
  • a method for suppressing a decrease in yield of fruit and vegetable crops or leafy vegetables is provided.
  • the method may be a method for suppressing a decrease in yield due to a decrease in the amount of chemical fertilizer applied to fruit and vegetable crops or leafy vegetables.
  • the specific embodiments described as the embodiments of the yield reduction inhibitor and cultivation method can be applied to the method of suppressing the reduction in yield of fruit vegetables or leafy vegetables.
  • humic acid to suppress yield loss of fruit and vegetable crops or leafy vegetable crops.
  • the use may be the use of humic acid to suppress a decrease in yield due to a decrease in the amount of chemical fertilizer applied to fruit and vegetable crops or leafy vegetables.
  • humic acid to suppress yield reduction of fruit and leafy vegetables crops, the specific embodiments described as embodiments of the yield reduction inhibitor and cultivation method can be applied.
  • a humic acid for use in suppressing yield loss of fruit and vegetable crops or leafy vegetable crops.
  • the humic acid may be used to suppress a decrease in yield due to a decrease in the amount of chemical fertilizer applied to fruit or leafy vegetables crops.
  • the specific embodiments described as the embodiments of the yield reduction inhibitor and cultivation method can be applied to humic acid for use in suppressing yield reduction of fruit and leafy vegetables crops.
  • humic acid for the production of a yield reduction suppressant for fruit and vegetable crops or leafy vegetables.
  • the use may be the use of humic acid for the production of an agent for suppressing yield loss due to a reduction in the amount of chemical fertilizer applied to fruit or leafy vegetables crops.
  • the specific embodiments described as the embodiments of the yield reduction inhibitor and cultivation method can be applied to the use of humic acid for producing the yield reduction inhibitor for fruit and leafy vegetables crops.
  • the MI of humic acid in humic acid extract A was 2.2.
  • the total organic carbon concentration (TOC) of humic acid extract A was 34,000 mg/L.
  • the weight average molecular weight of humic acid in humic acid extract A was 4,300.
  • the pH of humic acid extract A was 6.0 to 8.0.
  • the MI of humic acid in humic acid extract B was 4.8.
  • the total organic carbon concentration (TOC) of humic acid extract B was 22,000 mg/L.
  • the weight average molecular weight of humic acid in humic acid extract B was 530.
  • the pH of humic acid extract B was 2.0 to 3.0.
  • the weight average molecular weight of humic acid was measured by HPSEC method (GPC method) using Alliance HPLC System manufactured by Waters.
  • the column used was Showa Denko SB-803HQ, the standard sample was sodium polystyrene sulfonate, and the detection wavelength was 260 nm.
  • the mobile phase was a 10 mmol/L sodium phosphate buffer containing 25% by mass of acetonitrile, the flow rate was 0.8 ml/min, and the column temperature was 40° C. (column oven setting).
  • TOC Total organic carbon concentration
  • MI Melt Index
  • the sample was ground to a 250 ⁇ m sieve grade using a mortar and a 250 ⁇ m sieve. Approximately 10 g of the solution was placed in a weighing bottle with a known mass and accurately weighed. This weighing bottle was left in a dryer maintained at a temperature of 105° C. for about 12 hours, and then returned to room temperature in a desiccator and then accurately weighed again. The water content of the sample was determined by assuming that the mass loss was water.
  • the condition where the OAT-A prescription concentration is 100 is the condition where chemical fertilizer is applied at the conventional fertilizer amount.
  • the conditions where the OAT-A prescription concentration is 70, 50, 20, and 5 are conditions where the chemical fertilizer is 30%, 50%, 80%, and 95% lower than the conventional fertilizer application amount, respectively.
  • FIGS. 1(A) and (B) show the measurement results of leaf area when humic acid extract A was used as the humic acid material for testing.
  • FIG. 1(A) the plant under cultivation was photographed from the horizontal direction (directly above) and used for image analysis.
  • a scale with a known area of 20 mm x 20 mm was placed during photographing (arrow in FIG. 1(A)), and a standard scale of 400 mm 2 (4 cm 2 ) was used during image analysis.
  • Image analysis software LIA32 URL: https://www.agr.nagoya-u.ac.jp/ ⁇ shinkan/LIA32/) was used.
  • CAI was calculated 35 days after seeding.
  • FIG. 1(B) shows the measurement results of leaf area.
  • a humic acid material is used as the material (+), and the material (+) contains nutrients derived from the humic acid material.
  • material (-) does not use humic acid materials, but material (-) has a considerable amount of nutrients added at the time of material addition.
  • Humic acid chelates nutrients (minerals, etc.), making it difficult for nutrients to become insolubilized in the soil, making it easier for plant roots to absorb nutrients.
  • FIG. 2(A) shows the measurement results of the number of flowers
  • FIG. 2(B) shows the measurement results of the number of fruits.
  • “A_60" in FIGS. 2(A) and 2(B) means that humic acid extract A was applied at a TOC concentration of 60 ppm.
  • FIG. 3(A) and FIG. 3(B) show the measurement results of dry mass when humic acid extract A and humic acid extract B were used as humic acid materials, respectively.

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Botany (AREA)
  • Environmental Sciences (AREA)
  • Biodiversity & Conservation Biology (AREA)
  • Ecology (AREA)
  • Forests & Forestry (AREA)
  • Fertilizers (AREA)

Abstract

One aspect of the present invention relates to an agent for suppressing decrease in a yield amount, the agent comprising a humic substance as an active ingredient. One aspect of the present invention relates to a method for culturing fruit vegetable crops or leaf vegetable crops under a condition under which a chemical fertilizer application amount is lower than a conventional fertilizer application amount.

Description

収穫量低下抑制剤Yield reduction inhibitor
 本発明は、収穫量低下抑制剤に関する。 The present invention relates to a yield reduction inhibitor.
 世界の農業現場において耕作地はpHや乾燥・湿害といった何かしらの不良土壌環境を持ち合わせており、貧栄養状態における農作物収量の減少は世界人口が増加する中で解決しなければならない問題の一つである。また、農林水産省は、2021年3月に『みどりの食料システム戦略』というこれからの日本の農業をどうしていくかについて、30年先を見据えたかなり長期的なビジョンを発表した。その中で化学肥料の使用量を30%低減させる目標が出されている。 In agricultural fields around the world, cultivated land has some kind of poor soil environment such as pH, dryness, or moisture damage, and the reduction in crop yields due to poor nutrition is one of the problems that must be solved as the world's population increases. It is. Additionally, in March 2021, the Ministry of Agriculture, Forestry and Fisheries announced the Green Food System Strategy, a fairly long-term vision looking 30 years into the future regarding the future of Japanese agriculture. The goal is to reduce the amount of chemical fertilizers used by 30%.
 例えば、特許文献1には、慣行施肥量よりも施肥量を減らした条件下での果菜類作物の栽培方法であって、L-プロリンを併用することを特徴とする収穫量低下を抑制することのできる果菜類作物の新規栽培方法が開示されている。 For example, Patent Document 1 describes a method for cultivating fruit and vegetable crops under conditions in which the amount of fertilizer applied is reduced compared to the conventional amount of fertilizer, and the method is characterized in that L-proline is used in combination to suppress a decrease in yield. A novel method for cultivating fruit and vegetable crops is disclosed.
特開2006-191848号公報Japanese Patent Application Publication No. 2006-191848
 本発明の目的は、果菜類作物又は葉菜類作物における化学肥料の施肥量減少に伴う収穫量低下を抑制可能な新規な収穫量低下抑制剤を提供することにある。 An object of the present invention is to provide a novel yield reduction inhibitor capable of suppressing a decrease in yield due to a decrease in the amount of chemical fertilizer applied to fruit or leafy vegetables crops.
 本発明は、以下の各発明に関する。
[1]
 腐植物質を有効成分として含む、収穫量低下抑制剤。
[2]
 果菜類作物又は葉菜類作物における化学肥料の施肥量減少に伴う収穫量低下抑制剤である、[1]に記載の収穫量低下抑制剤。
[3]
 腐植物質がフミン酸及びフルボ酸からなる群より選択される少なくとも1種を含む、[1]又は[2]に記載の収穫量低下抑制剤。
[4]
 腐植物質のメラニックインデックスが2.0以上である、[1]~[3]のいずれかに記載の収穫量低下抑制剤。
[5]
 腐植物質の重量平均分子量が200~6,000である、[1]~[4]のいずれかに記載の収穫量低下抑制剤。
[6]
 有効成分が腐植物質を含む腐植物質含有液であり、腐植物質含有液のpHが2.0~9.0である、[1]~[5]のいずれかに記載の収穫量低下抑制剤。
[7]
 化学肥料の施肥量が慣行施肥量よりも低い条件において、果菜類作物又は葉菜類作物を栽培する方法であって、腐植物質を化学肥料と併用して施用する施用工程を含む、方法。
The present invention relates to the following inventions.
[1]
A yield reduction inhibitor containing humic substances as an active ingredient.
[2]
The agent for suppressing a decrease in yield according to [1], which is an agent for suppressing a decrease in yield due to a decrease in the amount of chemical fertilizer applied to fruit vegetables or leafy vegetables.
[3]
The yield reduction inhibitor according to [1] or [2], wherein the humic substance contains at least one selected from the group consisting of humic acid and fulvic acid.
[4]
The yield reduction inhibitor according to any one of [1] to [3], wherein the melanic index of the humic substance is 2.0 or more.
[5]
The yield reduction inhibitor according to any one of [1] to [4], wherein the humic substance has a weight average molecular weight of 200 to 6,000.
[6]
The yield reduction inhibitor according to any one of [1] to [5], wherein the active ingredient is a humic substance-containing liquid containing a humic substance, and the pH of the humic substance-containing liquid is 2.0 to 9.0.
[7]
A method for cultivating fruit vegetable crops or leafy vegetable crops under conditions where the amount of chemical fertilizer applied is lower than the conventional amount of fertilizer, the method comprising an application step of applying a humic substance in combination with the chemical fertilizer.
 本発明によれば、果菜類作物又は葉菜類作物における化学肥料の施肥量減少に伴う収穫量低下を抑制可能な新規な収穫量低下抑制剤を提供することができる。 According to the present invention, it is possible to provide a novel yield reduction inhibitor capable of suppressing a decrease in yield due to a decrease in the amount of chemical fertilizer applied to fruit or leafy vegetables crops.
減肥料栽培下において腐植酸が葉面積に与える効果を示す図であり、(A)は葉面積の測定方法を示す写真であり、(B)は葉面積の測定結果を示すグラフである。It is a figure which shows the effect which humic acid has on a leaf area under reduced fertilizer cultivation, (A) is a photograph which shows the measuring method of a leaf area, and (B) is a graph which shows the measurement result of a leaf area. (A)は減肥料栽培下で腐植酸を施用した場合の開花数の測定結果を示すグラフであり、(B)は減肥料栽培下で腐植酸を施用した場合の果実数の測定結果を示すグラフである。(A) is a graph showing the measurement results of the number of flowers when humic acid is applied under reduced fertilizer cultivation, and (B) is a graph showing the measurement results of the number of fruits when humic acid is applied under reduced fertilizer cultivation. It is a graph. (A)は減肥料栽培下で実施例の腐植酸抽出液Aを施用した場合の乾燥質量の測定結果を示すグラフであり、(B)は減肥料栽培下で実施例の腐植酸抽出液Bを施用した場合の乾燥質量の測定結果を示すグラフである。(A) is a graph showing the measurement results of dry mass when the humic acid extract A of the example is applied under reduced fertilizer cultivation, and (B) is a graph showing the measurement results of the humic acid extract B of the example under reduced fertilizer cultivation. It is a graph which shows the measurement result of dry mass when applying.
 以下、本発明を実施するための形態について詳細に説明する。ただし、本発明は以下の実施形態に限定されるものではない。 Hereinafter, modes for carrying out the present invention will be described in detail. However, the present invention is not limited to the following embodiments.
〔収穫量低下抑制剤〕
 本実施形態に係る収穫量低下抑制剤は、腐植物質を有効成分として含む。
[Yield yield reduction inhibitor]
The yield reduction inhibitor according to the present embodiment contains a humic substance as an active ingredient.
<果菜類作物>
 果菜類作物は、果実及び/又は種実を主に利用する作物である。果菜類作物としては、例えば、なす科果菜類、豆類(種実)、豆類(未成熟)、うり類(未成熟)、及びうり類(成熟)等が挙げられる。なす科果菜類としては、食用ほおずき、トマト、ミニトマト、なす、並びに、甘長とうがらし、かぐらなんばん、きだちとうがらし、ししとう、とうがらし、ハバネロ、ピーマン及びピカンテ等のピーマン及びとうがらし類等が挙げられる。豆類(種実)としては、例えば、あずき、いんげんまめ、ささげ、そらまめ、だいず、なたまめ、ふじまめ、べにばないんげん、えんどうまめ及びらっかせい等が挙げられる。豆類(未成熟)としては、えだまめ、さやいんげん、未成熟ささげ、未成熟しかくまめ、未成熟そらまめ、未成熟なたまめ、未成熟ふじまめ、さやえんどう及び実えんどう等が挙げられる。うり類(未成熟)としては、例えば、きゅうり、食用ひょうたん、食用へちま、ズッキーニ、とうがん、にがうり、はやとうり、ゆうがお、しろうり及び赤毛ウリ等が挙げられる。うり類(成熟)としては、例えば、かぼちゃ、すいか、まくわうり及びメロン等が挙げられる。
<Fruit and vegetable crops>
Fruit and vegetable crops are crops that mainly utilize fruits and/or seeds. Examples of fruit and vegetable crops include fruits and vegetables of the nightshade family, beans (seeds and seeds), beans (immature), cucurbits (immature), cucurbits (mature), and the like. Examples of fruits and vegetables of the eggplant family include edible Chinese peppers, tomatoes, cherry tomatoes, eggplants, and peppers and chili peppers such as sweet and long chili peppers, Kagura Nanban, Kidachi chili peppers, shishito peppers, chili peppers, habanero, green peppers, and picante. . Examples of legumes (seeds) include azuki beans, kidney beans, cowpeas, fava beans, soybeans, red beans, Fuji beans, red beans, peas, and radish. Examples of legumes (immature) include green beans, green beans, immature cowpeas, immature black beans, immature fava beans, immature beans, immature Fuji beans, snow peas, and real peas. Examples of cucurbits (immature) include cucumbers, edible gourds, edible loofahs, zucchini, chili peppers, bittern gourds, gourds, gourds, cucurbits, and red-headed gourds. Examples of cucumbers (mature) include pumpkins, watermelons, cucumbers, and melons.
<葉菜類作物>
 葉菜類作物は、葉の部分を利用する作物である。葉菜類作物は、例えば、結球あぶらな科葉菜類、非結球あぶらな科葉菜類、せり科葉菜類、レタス類、レタス類以外のきく科葉菜類、しそ科葉菜類、ヒユ科葉菜類、その他の葉菜類作物等が挙げられる。結球あぶらな科葉菜類としては、例えば、キャベツ、はくさい、メキャベツ、結球あぶらな科葉菜類に含まれる作物間の交配種等が挙げられる。非結球あぶらな科葉菜類としては、例えば、かぶな、からしな、ケール、こまつな、タアサイ、チンゲンサイ、なずな、パクチョイ、畑わさび、みずな、ルッコラ、あざみな、あじみな、あぶらな、海野(茎葉)、大高菜、大山そだち、カーボロネロ、かほくな、ケールッコラ、さがみグリーン、さぬきな、四川搾菜、千宝菜、体中菜、たかな、食べて菜、チンゲンルッコラ、てごろ菜、なばな類、のざわな、非結球芽キャベツ、べんり菜、餅菜、山形みどりな、ラファノブラシカ、わさびな、及び非結球あぶらな科葉菜類に含まれる作物間の交配種等が挙げられる。せり科葉菜類としては、例えば、キャラウエイ(葉)、きんさい、コリアンダー(葉)、ディル(葉)、パセリ、フェンネル(葉)、チャービル、みつば、セルリー、あしたば、せり、とうき(葉)、はまぼうふう(葉)、及びぼたんぼうふう等が挙げられる。レタス類としては、例えば、エンダイブ、トレビス、非結球レタス、レタス及びプンタレッラ等が挙げられる。レタス類以外のきく科葉菜類としては、例えば、きく(葉)、しゅんぎく、食用西洋たんぽぽ、カレープラント、タラゴン、よもぎ、すいぜんじな、こおにたびらこ、さわあざみ、葉ごぼう、ははこぐさ、ほそばわだん、もみじがさ、ヤーコン(茎葉)、よぶすまそう及びよめな等が挙げられる。しそ科葉菜類としては、例えば、えごま(葉)、オレガノ、しそ、セージ、タイム、バジル、はっか、マジョラム、レモンバーム、及びローズマリー等が挙げられる。ヒユ科葉菜類としては、例えば、アマランサス(茎葉)、ふだんそう、ほうれんそう、おかひじき等が挙げられる。その他の葉菜類作物としては、例えば、アイスプラント、つるな、とうがらし(葉)、マーシュ、モロヘイヤ、かんしょ(茎葉)、エンサイ、おらんだわれもこう、ボリジ、レモングラス、うこぎ、えびすぐさ(茎葉)、おかのり、かわらけつめい、きゅうり(葉)、食用すいば、つるむらさき、どくだみ、はこべ、はぶそう(茎葉)、やなぎたで、ゆきのした及びレモンバーベナ等が挙げられる。
<Leafy vegetables>
Leafy vegetables are crops that utilize their leaves. Examples of leafy vegetable crops include head-heading leafy vegetables, non-heading leafy vegetables, umbelliferous leafy vegetables, lettuces, leafy vegetables other than lettuce, leafy vegetables of the Lamiaceae family, leafy vegetables of the Amaranthaceae family, and other leafy vegetable crops. . Examples of the head-heading leafy vegetables include cabbage, Chinese cabbage, Brussels sprouts, and hybrids between crops included in the head-heading oily leafy vegetables. Examples of non-heading leafy vegetables include turnip, mustard, kale, komatsuna, taa cai, bok choy, pear, pak choy, hata wasabi, mizuna, arugula, thistle, ajimina, aburana, and unno (stems and leaves). ), Otakana, Oyama Sodachi, Cavolo Nero, Kahokuna, Kale cola, Sagami green, Sanukina, Sichuan pressed greens, Senbo greens, Body Chinese greens, Takana, Eat greens, Chingen arugula, Tegoruna, Nabana, etc. Examples include zawana, non-heading Brussels sprouts, beni-na, mochi-na, Yamagata midorina, Raffanobrassica, wasabi, and hybrids between crops included in the non-heading oily leafy vegetables. Examples of leafy vegetables of the Umbelliferae family include caraway (leaves), Japanese cabbage, coriander (leaves), dill (leaves), parsley, fennel (leaves), chervil, mitsuba, celery, Ashitaba, Japanese parsley, toki (leaves), Examples include Maboufuu (leaf) and Botanboufuu. Examples of lettuces include endive, trevis, non-heading lettuce, lettuce, and puntarella. Examples of leafy vegetables other than lettuce include leaf vegetables, edible dandelion, curry plant, tarragon, mugwort, watermelon, kooni tabirako, sawa thistle, leaf burdock, haha. Examples include kogusa, hosoba wadan, maple grass, yacon (stems and leaves), yobusumaso, and yomena. Examples of leafy vegetables of the perilla family include perilla (leaves), oregano, perilla, sage, thyme, basil, mint, marjoram, lemon balm, and rosemary. Examples of leafy vegetables of the Amaranthaceae family include amaranth (stems and leaves), amaranth, spinach, and hijiki. Other leafy vegetable crops include, for example, ice plant, vine, chili pepper (leaf), marsh, moroheiya, kansho (stem and leaf), cabbage, oranda wa mokou, borage, lemongrass, ukogi, shrimp sugusa (stem and leaf). , Okanoori, Kawaraketsumei, cucumber (leaves), edible sorrel, Tsurumurasaki, Dokudami, Hakobe, Habusou (stems and leaves), Yanagita, Yukinoshita, and Lemon verbena.
<化学肥料>
 化学肥料は、化学的に製造される肥料であり、動植物性の有機物を原料とする有機質肥料とは異なるものである。化学肥料は、窒素質肥料、リン酸質肥料、加里質肥料、複合肥料、石灰質肥料及びその他肥料に分類することができる。窒素質肥料としては、尿素、硫安、塩安及び石灰窒素等が挙げられる。リン酸質肥料としては、過りん酸石灰及び熔成りん肥等が挙げられる。加里質肥料としては、塩化加里、硫酸加里等が挙げられる。複合肥料としては、高度化成肥料、普通化成肥料、配合肥料等が挙げられる。石灰質肥料としては、炭酸カルシウム肥料、消石灰が挙げられる。化学肥料におけるその他肥料としては、ケイ酸質肥料、苦土肥料等が挙げられる。
<Chemical fertilizer>
Chemical fertilizers are chemically manufactured fertilizers, and are different from organic fertilizers that are made from organic matter of animals and plants. Chemical fertilizers can be classified into nitrogenous fertilizers, phosphoric acid fertilizers, potassium fertilizers, compound fertilizers, calcareous fertilizers, and other fertilizers. Examples of nitrogenous fertilizers include urea, ammonium sulfate, ammonium chloride, and lime nitrogen. Examples of phosphoric acid fertilizers include superphosphate lime and molten phosphorous fertilizer. Examples of potassium fertilizers include potassium chloride and potassium sulfate. Examples of compound fertilizers include advanced chemical fertilizers, ordinary chemical fertilizers, and blended fertilizers. Calcareous fertilizers include calcium carbonate fertilizers and slaked lime. Examples of other chemical fertilizers include silicic acid fertilizers and magnesia fertilizers.
 化学肥料の施肥量を慣行施肥量から減少させた場合、収穫量は低下する。本実施形態に係る収穫量低下抑制剤によれば、果菜類作物又は葉菜類作物における化学肥料の施肥量減少に伴う収穫量低下を抑制することができる。すなわち、本実施形態に係る収穫量低下抑制剤によれば、収穫量の低下を抑制しながら、化学肥料の施肥量を慣行施肥量より減少させることが可能になる。本実施形態に係る収穫量低下抑制剤は、果菜類作物又は葉菜類作物における化学肥料の施肥量減少に伴う収穫量低下抑制剤であることができる。 If the amount of chemical fertilizer applied is reduced from the conventional amount, the yield will decrease. According to the yield reduction inhibitor according to the present embodiment, it is possible to suppress a reduction in yield due to a decrease in the amount of chemical fertilizer applied to fruit or leafy vegetables crops. That is, according to the yield reduction inhibitor according to the present embodiment, it is possible to reduce the amount of chemical fertilizer applied compared to the conventional amount while suppressing a decrease in yield. The yield reduction suppressing agent according to the present embodiment can be a yield reduction suppressing agent that is associated with a reduction in the amount of chemical fertilizer applied to fruit and vegetable crops or leafy vegetable crops.
<腐植物質>
 腐植物質は、土壌中及び陸水中に存在する天然の高分子有機物である。腐植物質は、溶解性有機物である腐植酸及び不溶解性有機物であるヒューミンを包含する。
<Humic substances>
Humic substances are naturally occurring polymeric organic substances found in soil and terrestrial water. Humic substances include humic acids, which are soluble organic substances, and humins, which are insoluble organic substances.
 腐植酸は、アルカリ性溶液及び酸性溶液に可溶であるフルボ酸、アルカリ性溶液に可溶であり、酸性溶液に不溶であるフミン酸に更に分類することができる。腐植物質は、フミン酸及びフルボ酸からなる群より選択される少なくとも1種を含んでいてよい。 Humic acids can be further classified into fulvic acid, which is soluble in alkaline and acidic solutions, and humic acid, which is soluble in alkaline solutions and insoluble in acidic solutions. The humic substance may contain at least one selected from the group consisting of humic acid and fulvic acid.
 腐植酸としては、泥炭及び風化炭等の天然に産出される天然腐植酸、褐炭の硝酸酸化等により人工的に製造される人工腐植酸、及び、天然腐植酸又は人工腐植酸をナトリウム、カリウム、アンモニア、カルシウム及びマグネシウム等のアルカリ物質で中和した腐植酸塩等が挙げられる。腐植酸としては、フルボ酸、フミン酸、ニトロフミン酸、フミン酸アンモニウム、フミン酸カルシウム、フミン酸マグネシウム、ニトロフミン酸アンモニウム、ニトロフミン酸カルシウム及びニトロフミン酸マグネシウム、フミン酸カリウム、ニトロフミン酸カリウム等が挙げられる。 Examples of humic acid include natural humic acid produced naturally in peat and weathered coal, artificial humic acid produced artificially by nitric acid oxidation of lignite, and natural humic acid or artificial humic acid containing sodium, potassium, Examples include humic acid salts neutralized with alkali substances such as ammonia, calcium, and magnesium. Examples of humic acids include fulvic acid, humic acid, nitrofumic acid, ammonium humate, calcium humate, magnesium humate, ammonium nitrofumate, calcium nitrofumate, magnesium nitrofumate, potassium humate, potassium nitrofumate, and the like.
 腐植酸は、A型、B型、Rp型及びP型に分類することができる。腐植酸は、Rp型又はP型の腐植酸(Rp・P型腐植酸)であってよい。腐植酸の分類は、後述するメラニックインデックス(MI)によって簡易的に行うことができる。MIが2.0以上である腐植酸がRp・P型に分類される。 Humic acids can be classified into A type, B type, Rp type and P type. The humic acid may be an Rp-type or a P-type humic acid (Rp/P-type humic acid). Humic acids can be simply classified using the melanic index (MI) described below. Humic acids with an MI of 2.0 or more are classified as Rp/P type.
 腐植物質のメラニックインデックス(MI)は、1.5以上、2.0以上、2.2以上、2.5以上、3.0以上、又は3.5以上であってよく、6.5以下、6.0以下、5.5以下、5.0以下、4.5以下、4.0以下、3.5以下、又は3.0以下であってよい。 The melanic index (MI) of humic substances may be 1.5 or more, 2.0 or more, 2.2 or more, 2.5 or more, 3.0 or more, or 3.5 or more, and 6.5 or less , 6.0 or less, 5.5 or less, 5.0 or less, 4.5 or less, 4.0 or less, 3.5 or less, or 3.0 or less.
 MIとは、腐植物質(及び腐植酸)の分類に用いられている指標であり、水酸化ナトリウム抽出液の吸収スペクトルの波長450nmと520nmにおける吸光度の比(A450/A520)である。(熊田恭一著、土壌有機物の化学第2版 学会出版センター(1981)、日本土壌肥料学雑誌 第71号 第1号 p.82~85(2000))。 MI is an index used to classify humic substances (and humic acids), and is the ratio of absorbance at wavelengths of 450 nm and 520 nm (A 450 /A 520 ) of the absorption spectrum of a sodium hydroxide extract. (Kyoichi Kumada, Chemistry of Soil Organic Matter, 2nd Edition, Gakkai Publishing Center (1981), Japanese Journal of Soil and Fertilization, No. 71, No. 1, p. 82-85 (2000)).
 より具体的には、MIとは、次の方法によって算出されるものである。試料を乳鉢と250μm篩を用い250μm篩下品に粉砕する。その約10gを、質量が既知の秤量ビンに取り精秤する。この秤量ビンを温度105℃に保持した乾燥機で約12時間放置し、その後、デシケーター中で室温に戻してから再度精秤する。その質量減少分を水分とみなして試料の含水率を求める。次に、50ml遠沈管に、上記250μm篩下品を乾燥質量相当量で0.10gと、0.5mol/L水酸化ナトリウム水溶液45mlとを入れ、室温20℃で約1時間、250rpmの速度で振とうした後、3,000×g、約10分間の遠心分離を実施し、その上澄み液をアドバンテック社製No.5Cの濾紙で濾過する。濾液の450nmの吸光度と520nmの吸光度を、蒸留水をブランクとして測定する。この場合、450nmの吸光度が1.0以上を示したならば、0.1mol/L水酸化ナトリウム水溶液を添加し吸光度が0.8以上1.0未満に調整してから、520nmの吸光度を測定する。(450nmでの吸光度/520nmでの吸光度)の比を算出し、MIとする。 More specifically, MI is calculated by the following method. The sample is ground to a 250 μm sieve quality using a mortar and a 250 μm sieve. Approximately 10 g of the sample is placed in a weighing bottle with a known mass and accurately weighed. This weighing bottle is left in a dryer maintained at a temperature of 105° C. for about 12 hours, then returned to room temperature in a desiccator, and then accurately weighed again. The moisture content of the sample is determined by assuming that the mass loss is moisture. Next, in a 50 ml centrifuge tube, put 0.10 g of the above 250 μm sieved product in dry weight equivalent and 45 ml of 0.5 mol/L sodium hydroxide aqueous solution, and shake at a speed of 250 rpm for about 1 hour at room temperature of 20°C. After cooling, centrifugation was carried out at 3,000 x g for about 10 minutes, and the supernatant was transferred to Advantech No. Filter through 5C filter paper. The absorbance of the filtrate at 450 nm and 520 nm is measured using distilled water as a blank. In this case, if the absorbance at 450 nm is 1.0 or more, add 0.1 mol/L sodium hydroxide aqueous solution to adjust the absorbance to 0.8 or more and less than 1.0, and then measure the absorbance at 520 nm. do. The ratio of (absorbance at 450 nm/absorbance at 520 nm) is calculated and set as MI.
 腐植物質の重量平均分子量は、化学肥料の施肥量減少に伴う収穫量低下をより抑制できることから、200~6,000であってよい。腐植物質の重量平均分子量の下限は、例えば、200以上、300以上、400以上、500以上、600以上、700以上、800以上、900以上、又は1000以上であってよい。腐植物質の重量平均分子量の上限は、例えば、5,500以下、5,000以下、4,500以下、4,000以下、3,500以下、3,000以下、2,500以下、2,000以下、1,500以下、1,200以下、又は1,000以下であってよい。腐植物質は、化学肥料の施肥量減少に伴う収穫量低下をより抑制できることから、重量平均分子量が200~800であるフルボ酸、及び/又は、重量平均分子量が2,500~6,000であるフミン酸を含んでいてよい。 The weight average molecular weight of the humic substance may be from 200 to 6,000, since it can further suppress a decrease in yield due to a decrease in the amount of chemical fertilizer applied. The lower limit of the weight average molecular weight of the humic substance may be, for example, 200 or more, 300 or more, 400 or more, 500 or more, 600 or more, 700 or more, 800 or more, 900 or more, or 1000 or more. The upper limit of the weight average molecular weight of humic substances is, for example, 5,500 or less, 5,000 or less, 4,500 or less, 4,000 or less, 3,500 or less, 3,000 or less, 2,500 or less, 2,000 or less It may be less than or equal to 1,500, less than or equal to 1,200, or less than or equal to 1,000. The humic substance is fulvic acid with a weight average molecular weight of 200 to 800, and/or a weight average molecular weight of 2,500 to 6,000, since it can further suppress a decrease in yield due to a decrease in the amount of chemical fertilizer applied. May contain humic acid.
 腐植物質の重量平均分子量は、Waters社製Alliance HPLC Systemを用い、HPSEC法(GPC法)により測定される。カラムは昭和電工(株)SB-803HQ、標準試料はポリスチレンスルホン酸ナトリウムを用い、検出波長は260nmとする。移動相は25質量%アセトニトリル含有の10mmol/Lリン酸ナトリウム緩衝液とし、流速は0.8ml/分とし、カラムの温度は40℃(カラムオーブンの設定値)とする。 The weight average molecular weight of the humic substance is measured by the HPSEC method (GPC method) using the Alliance HPLC System manufactured by Waters. The column is Showa Denko SB-803HQ, the standard sample is sodium polystyrene sulfonate, and the detection wavelength is 260 nm. The mobile phase is a 10 mmol/L sodium phosphate buffer containing 25% by mass acetonitrile, the flow rate is 0.8 ml/min, and the column temperature is 40° C. (column oven setting).
 有効成分は、腐植物質を含む腐植物質含有液であってよい。腐植物質含有液のpHは、化学肥料の施肥量減少に伴う収穫量低下をより抑制できることから、2.0~9.0であってよい。腐植物質含有液のpHは、2.0以上、2.5以上、3.0以上、3.5以上、4.0以上、4.5以上、5.0以上、5.5以上、6.0以上、又は6.5以上であってよい。腐植物質含有液のpHの上限は、9.0以下、8.0以下、7.5以下、7.0以下、又は6.5以下であってよい。腐植物質含有液のpHは後述する実施例に記載の方法によって測定される。 The active ingredient may be a humic substance-containing liquid containing humic substances. The pH of the humic substance-containing liquid may be 2.0 to 9.0, since it can further suppress a decrease in yield due to a decrease in the amount of chemical fertilizer applied. The pH of the humic substance-containing liquid is 2.0 or more, 2.5 or more, 3.0 or more, 3.5 or more, 4.0 or more, 4.5 or more, 5.0 or more, 5.5 or more, 6. It may be 0 or more, or 6.5 or more. The upper limit of the pH of the humic substance-containing liquid may be 9.0 or less, 8.0 or less, 7.5 or less, 7.0 or less, or 6.5 or less. The pH of the humic substance-containing liquid is measured by the method described in the Examples below.
 腐植物質含有液は、例えば、腐植酸抽出液であってよい。腐植酸抽出液は、若年炭の硝酸酸化物を、水と必要によりアルカリを含む抽出溶媒により抽出した抽出物であってよい。 The humic substance-containing liquid may be, for example, a humic acid extract. The humic acid extract may be an extract obtained by extracting nitric acid oxides from young coal with an extraction solvent containing water and optionally an alkali.
 若年炭とは、瀝青炭等に比べ炭素含有量の少ない石炭であり、炭素含有率が83質量%以下であるものと定義される。若年炭としては、例えば、泥炭、亜炭、褐炭、亜瀝青炭等が挙げられる。若年炭は、1種を単独で、又は2種以上を組み合わせて使用してよい。 Young coal is coal that has a lower carbon content than bituminous coal, etc., and is defined as having a carbon content of 83% by mass or less. Examples of young coal include peat, lignite, lignite, subbituminous coal, and the like. Young charcoal may be used alone or in combination of two or more.
 若年炭の硝酸酸化物は、若年炭を硝酸で酸化分解させて得られる。硝酸としては濃硝酸が好ましい。安全性と反応性の点で、濃度40~60質量%の硝酸を用いることが好ましい。酸化分解の際の硝酸(HNO)の配合量は、若年炭20質量部に対して、10質量部以上、又は20質量部以上であってよく、300質量部以下、250質量部以下、200質量部以下、150質量部以下、100質量部以下、50質量部以下、36質量部以下、又は20質量部以下であってよい。硝酸(HNO)の配合量は、若年炭20質量部に対して、10~20質量部であってよく、20~36質量部であってよい。ここで、硝酸の配合量は100%硝酸(100%HNO)に換算した値である。 Nitrate oxide of young coal is obtained by oxidizing and decomposing young coal with nitric acid. Concentrated nitric acid is preferable as the nitric acid. In terms of safety and reactivity, it is preferable to use nitric acid with a concentration of 40 to 60% by mass. The blending amount of nitric acid (HNO 3 ) during oxidative decomposition may be 10 parts by mass or more, or 20 parts by mass or more, and 300 parts by mass or less, 250 parts by mass or less, 200 parts by mass or less, based on 20 parts by mass of young coal. The amount may be less than or equal to 150 parts by weight, less than 100 parts by weight, less than 50 parts by weight, less than 36 parts by weight, or less than 20 parts by weight. The blending amount of nitric acid (HNO 3 ) may be 10 to 20 parts by mass, or 20 to 36 parts by mass, based on 20 parts by mass of young coal. Here, the blending amount of nitric acid is a value converted to 100% nitric acid (100% HNO 3 ).
 酸化分解の際の温度は、例えば、70~95℃であってよい。酸化反応のスターターとして、湯浴等で70~95℃に加温すると酸化反応が速やかに進行しやすい。反応時間は、例えば、20分間以上、0.5時間以上、又は1時間以上であってよく、6時間以下、4時間以下、又は1時間以下であってよい。 The temperature during oxidative decomposition may be, for example, 70 to 95°C. As a starter for the oxidation reaction, heating it to 70-95°C in a hot water bath or the like will help the oxidation reaction proceed quickly. The reaction time may be, for example, 20 minutes or more, 0.5 hours or more, or 1 hour or more, and 6 hours or less, 4 hours or less, or 1 hour or less.
 腐植物質含有液は、例えば、若年炭の硝酸酸化物(以下、腐植物質粗製物という)と、水及びアルカリを含む抽出溶媒とを攪拌した後、固液分離工程を行うことにより、液状物として得られる。 A humic substance-containing liquid can be obtained as a liquid by, for example, stirring nitric acid oxide of young coal (hereinafter referred to as a humic substance crude product) and an extraction solvent containing water and an alkali, and then performing a solid-liquid separation process. can get.
 アルカリとしては、水酸化物、アンモニア等が挙げられる。水酸化物としては、アルカリ金属の水酸化物、水酸化アンモニウム等が挙げられる。水酸化物としては、アルカリ金属の水酸化物が好ましい。アルカリ金属の水酸化物としては、水酸化カリウム、水酸化ナトリウム等が挙げられる。水酸化物としては、水酸化カリウム、酸化ナトリウム、水酸化アンモニウム(アンモニア水)のうちの1種以上が好ましい。抽出溶媒のpHは、0.5~7.0、0.5~4.0又は1.0~3.0であってよい。 Examples of the alkali include hydroxide and ammonia. Examples of the hydroxide include alkali metal hydroxides and ammonium hydroxide. The hydroxide is preferably an alkali metal hydroxide. Examples of the alkali metal hydroxide include potassium hydroxide, sodium hydroxide, and the like. The hydroxide is preferably one or more of potassium hydroxide, sodium oxide, and ammonium hydroxide (ammonia water). The pH of the extraction solvent may be 0.5-7.0, 0.5-4.0 or 1.0-3.0.
 腐植物質粗製物を抽出溶媒で抽出する際の温度(抽出温度)は、抽出液の凍結及び品質低下を更に抑制する観点から、例えば、40~90℃であってよい。腐植物質粗製物を抽出溶媒で抽出する時間(抽出時間)は、例えば、0.5時間以上であってよく、24時間以下であってよく、1時間以下であってもよい。 The temperature (extraction temperature) when extracting the crude humic substance with the extraction solvent may be, for example, 40 to 90°C from the viewpoint of further suppressing freezing and quality deterioration of the extract. The time for extracting the crude humic substance with the extraction solvent (extraction time) may be, for example, 0.5 hours or more, 24 hours or less, or 1 hour or less.
 腐植物質粗製物を調製するために用いる原料の若年炭の量に対する抽出溶媒の量を、固液比と定義する。例えば、若年炭20gから調製された粗製物に抽出溶媒(水)100g(100mL)を添加した場合、固液比(抽出溶媒/若年炭)は5となる。固液比は3以上、4以上、5以上、6以上、7以上、8以上、9以上又は10以上であってよく、15以下、13以下、11以下、9以下、7以下、又は6以下であってよい。固液比は、水の添加によって調整することができる。固液比は、pH調整後に目的の固液比となるように調整されてよい。固液分離する方法は、遠心分離、フィルタープレス等であってよい。 The amount of extraction solvent relative to the amount of raw material young charcoal used to prepare the humic substance crude product is defined as the solid-liquid ratio. For example, when 100 g (100 mL) of extraction solvent (water) is added to a crude product prepared from 20 g of young charcoal, the solid-liquid ratio (extraction solvent/young charcoal) is 5. The solid-liquid ratio may be 3 or more, 4 or more, 5 or more, 6 or more, 7 or more, 8 or more, 9 or more, or 10 or more, and 15 or less, 13 or less, 11 or less, 9 or less, 7 or less, or 6 or less. It may be. The solid-liquid ratio can be adjusted by adding water. The solid-liquid ratio may be adjusted to a desired solid-liquid ratio after pH adjustment. The solid-liquid separation method may be centrifugation, filter press, or the like.
 腐植物質含有液の全有機炭素濃度(TOC)は15,000mg/L以上、15,300mg/L以上、15,500mg/L以上、16,000mg/L以上、16,500mg/L以上、17,000mg/L以上、17,500mg/L以上、18,000mg/L以上、18,500mg/L以上、19,000mg/L以上、19,500mg/L以上、20,000mg/L以上、又は20,500mg/L以上であってよい。腐植物質含有液のTOCは、75,000mg/L以下、70,000mg/L以下、65,000mg/L以下、60,000mg/L以下、55,000mg/L以下、50,000mg/L以下、45,000mg/L以下、40,000mg/L以下、35,000mg/L以下、30,000mg/L以下、25,000mg/L以下、24,000mg/L以下、23,000mg/L以下、又は22,000mg/L以下であってよい。 The total organic carbon concentration (TOC) of the humic substance-containing liquid is 15,000 mg/L or more, 15,300 mg/L or more, 15,500 mg/L or more, 16,000 mg/L or more, 16,500 mg/L or more, 17. 000mg/L or more, 17,500mg/L or more, 18,000mg/L or more, 18,500mg/L or more, 19,000mg/L or more, 19,500mg/L or more, 20,000mg/L or more, or 20, It may be 500 mg/L or more. The TOC of the humic substance-containing liquid is 75,000 mg/L or less, 70,000 mg/L or less, 65,000 mg/L or less, 60,000 mg/L or less, 55,000 mg/L or less, 50,000 mg/L or less, 45,000 mg/L or less, 40,000 mg/L or less, 35,000 mg/L or less, 30,000 mg/L or less, 25,000 mg/L or less, 24,000 mg/L or less, 23,000 mg/L or less, or It may be 22,000 mg/L or less.
 腐植物質含有液のTOCの測定方法は、次のように定義される。TOCは、腐植物質含有液を、3,000×gで遠心分離した上澄み液を、全有機体炭素計(島津製作所製TOC-L)を用いて燃焼触媒酸化方式で測定した値である。肥料成分である尿素等の非腐植物質を含む場合は、国際腐植物質学会法(藤嶽、HumicSubstances Research Vol3、P1-9)に準じて分別したもの(フミン酸画分及びフルボ酸画分)を上記の手法にて定量し、腐植物質含有液のTOCを測定する。 The method for measuring TOC of a humic substance-containing liquid is defined as follows. TOC is a value obtained by centrifuging a humic substance-containing liquid at 3,000×g and measuring the supernatant liquid using a combustion catalytic oxidation method using a total organic carbon meter (TOC-L manufactured by Shimadzu Corporation). When non-humic substances such as urea, which is a fertilizer component, are included, the above-mentioned fractions (humic acid fraction and fulvic acid fraction) are separated according to the method of the International Society of Humic Substances (Fujitake, Humic Substances Research Vol. 3, P1-9). The TOC of the humic substance-containing liquid is determined by the following method.
 本実施形態に係る収穫量低下抑制剤は、例えば、液状、又は粉状等の固形であってよい。粉状の剤は、例えば、液状の収穫量低下抑制剤を凍結乾燥等によってドライアップすることにより、再溶解可能な粉剤として得ることができる。 The yield reduction inhibitor according to the present embodiment may be, for example, liquid or solid such as powder. The powdered agent can be obtained as a redissolved powder by, for example, drying up the liquid yield reduction inhibitor by freeze-drying or the like.
<他の成分>
 本実施形態に係る収穫量低下抑制剤は、腐植物質以外の他の成分を含んでいてよい。他の成分としては、例えば、他の肥料成分、展着剤、農薬、植物生育調節剤、海藻抽出物、アミノ酸、植物抽出物、微生物抽出物等が挙げられる。
<Other ingredients>
The yield reduction inhibitor according to the present embodiment may contain components other than humic substances. Examples of other components include other fertilizer components, spreading agents, agricultural chemicals, plant growth regulators, seaweed extracts, amino acids, plant extracts, microbial extracts, and the like.
〔栽培方法〕
 本実施形態に係る果菜類作物又は葉菜類作物を栽培する方法は、化学肥料の施肥量が慣行施肥量よりも低い条件において、果菜類作物又は葉菜類作物を栽培する方法である。当該方法では、腐植物質を化学肥料と併用して施用する施用工程を含む。
[Cultivation method]
The method for cultivating fruit and vegetable crops or leafy vegetable crops according to the present embodiment is a method for cultivating fruit and vegetable crops or leafy vegetable crops under conditions where the amount of chemical fertilizer applied is lower than the conventional amount of fertilizer. The method includes an application step of applying a humic substance in combination with a chemical fertilizer.
 果菜類作物又は葉菜類作物に腐植物質を施用する方法として、土壌潅注又は土壌混和、葉面又は株元への施用等を行う方法が挙げられる。 Examples of methods for applying humic substances to fruit and leafy crops include soil irrigation, soil mixing, and application to the foliage or plant base.
 化学肥料の慣行施肥量は、当業者(農家、水耕栽培業者等)であれば容易に知ることができる。例えば、日本国内では都道府県別に策定されている「作物別肥料施用基準」等を参照すればよい。各都道府県の農家は、通常、当該都道府県の地域に適する施肥量としてこの基準に従って農作物を栽培している。 The customary application amount of chemical fertilizers can be easily known by those skilled in the art (farmers, hydroponic growers, etc.). For example, in Japan, reference may be made to the "Fertilizer Application Standards by Crop" established by each prefecture. Farmers in each prefecture usually cultivate crops in accordance with this standard, setting the amount of fertilizer appropriate for the region of the prefecture.
 化学肥料の慣行施肥量は、典型的には、窒素(硝酸態窒素)、リン酸及びカリの三成分に基づいて決定される。化学肥料の施肥量が、窒素(硝酸態窒素)、リン酸及びカリの少なくとも一つにおいて、作物別肥料施用基準で設定されている施肥基準より低い場合に、化学肥料の施肥量が慣行施肥量よりも低い条件であると判断される。 The conventional application amount of chemical fertilizers is typically determined based on the three components of nitrogen (nitrate nitrogen), phosphoric acid, and potassium. If the amount of chemical fertilizer applied is lower than the fertilizer application standard set in the fertilizer application standards for each crop in at least one of nitrogen (nitrate nitrogen), phosphoric acid, and potassium, the amount of chemical fertilizer applied is the conventional fertilizer application amount. It is determined that the condition is lower than that of
 化学肥料の施肥量は、慣行施肥量に対して10%以上低い条件であってよく、慣行施肥量に比べて20%以上又は30%以上低い条件であってよい。 The amount of chemical fertilizer applied may be 10% or more lower than the conventional fertilization amount, and may be 20% or more or 30% or more lower than the conventional fertilization amount.
 腐植物質の施用量及び施用期間は特に限られず、土壌施用の場合は果樹1本あたり、全有機炭素として7000~20000mg/Lを1回若しくは全有機炭素濃度として0.1~1000mg/Lを月に1~30回若しくは全有機炭素濃度として0.1~100mg/L程度を毎日とすることができ、葉面施用の場合は全有機炭素濃度として0.1~1000mg/Lで月に1~12回とすることができる。 The amount and application period of humic substances are not particularly limited; in the case of soil application, the total organic carbon concentration is 7000 to 20000 mg/L once per fruit tree, or the total organic carbon concentration is 0.1 to 1000 mg/L per month. It can be applied 1 to 30 times per day or daily at a total organic carbon concentration of 0.1 to 100 mg/L, and in the case of foliar application, it can be applied once to a month at a total organic carbon concentration of 0.1 to 1000 mg/L. It can be 12 times.
 本発明の一実施形態として、果菜類作物又は葉菜類作物の収穫量低下を抑制する方法が提供される。当該方法は、果菜類作物又は葉菜類作物における化学肥料の施肥量減少に伴う収穫量低下を抑制する方法であってよい。果菜類作物又は葉菜類作物の収穫量低下を抑制する方法には、収穫量低下抑制剤及び栽培方法の態様として述べた具体的態様を適用することができる。 As one embodiment of the present invention, a method for suppressing a decrease in yield of fruit and vegetable crops or leafy vegetables is provided. The method may be a method for suppressing a decrease in yield due to a decrease in the amount of chemical fertilizer applied to fruit and vegetable crops or leafy vegetables. The specific embodiments described as the embodiments of the yield reduction inhibitor and cultivation method can be applied to the method of suppressing the reduction in yield of fruit vegetables or leafy vegetables.
 本発明の一実施形態として、果菜類作物又は葉菜類作物の収穫量低下を抑制するための腐植酸の使用が提供される。当該使用は、果菜類作物又は葉菜類作物における化学肥料の施肥量減少に伴う収穫量低下を抑制するための腐植酸の使用であってよい。果菜類作物又は葉菜類作物の収穫量低下を抑制するための腐植酸の使用には、収穫量低下抑制剤及び栽培方法の態様として述べた具体的態様を適用することができる。 As one embodiment of the present invention, there is provided the use of humic acid to suppress yield loss of fruit and vegetable crops or leafy vegetable crops. The use may be the use of humic acid to suppress a decrease in yield due to a decrease in the amount of chemical fertilizer applied to fruit and vegetable crops or leafy vegetables. For the use of humic acid to suppress yield reduction of fruit and leafy vegetables crops, the specific embodiments described as embodiments of the yield reduction inhibitor and cultivation method can be applied.
 本発明の一実施形態として、果菜類作物又は葉菜類作物の収穫量低下の抑制に使用するための腐植酸が提供される。当該腐植酸は、果菜類作物又は葉菜類作物における化学肥料の施肥量減少に伴う収穫量低下の抑制に使用するための腐植酸であってよい。果菜類作物又は葉菜類作物の収穫量低下の抑制に使用するための腐植酸には、収穫量低下抑制剤及び栽培方法の態様として述べた具体的態様を適用することができる。 As one embodiment of the present invention, a humic acid is provided for use in suppressing yield loss of fruit and vegetable crops or leafy vegetable crops. The humic acid may be used to suppress a decrease in yield due to a decrease in the amount of chemical fertilizer applied to fruit or leafy vegetables crops. The specific embodiments described as the embodiments of the yield reduction inhibitor and cultivation method can be applied to humic acid for use in suppressing yield reduction of fruit and leafy vegetables crops.
 本発明の一実施形態として、果菜類作物又は葉菜類作物の収穫量低下抑制剤の製造のための腐植酸の使用(応用)が提供される。当該使用は、果菜類作物又は葉菜類作物における化学肥料の施肥量減少に伴う収穫量低下抑制剤の製造のための腐植酸の使用であってよい。果菜類作物又は葉菜類作物の収穫量低下抑制剤の製造のための腐植酸の使用には、収穫量低下抑制剤及び栽培方法の態様として述べた具体的態様を適用することができる。 As one embodiment of the present invention, there is provided the use (application) of humic acid for the production of a yield reduction suppressant for fruit and vegetable crops or leafy vegetables. The use may be the use of humic acid for the production of an agent for suppressing yield loss due to a reduction in the amount of chemical fertilizer applied to fruit or leafy vegetables crops. The specific embodiments described as the embodiments of the yield reduction inhibitor and cultivation method can be applied to the use of humic acid for producing the yield reduction inhibitor for fruit and leafy vegetables crops.
 以下、実施例に基づいて本発明をより具体的に説明する。但し、本発明は、以下の実施例により限定されるものではない。 Hereinafter, the present invention will be explained more specifically based on Examples. However, the present invention is not limited to the following examples.
[腐植酸抽出液Aの準備]
 ドラフト中で、炭素含有率が77質量%の褐炭500gを1,000mlのビーカーに入れて、濃度48質量%の硝酸625g(若年炭100質量部に対して100%硝酸60質量部)を添加した。80℃の水浴中で3時間酸化反応を行った。この操作で得た腐植酸を含む粗製物を以下の抽出操作に供した。
 この粗製物100gに0.5mol/Lの水酸化カリウム水溶液を約900mL加え、pH計でモニタしながら1.0mol/Lの水酸化カリウム水溶液を適宜加えpH6.5とした。固液比1:10となるように水を加え、80℃で1時間抽出した。この抽出液を、3,000×gで遠心分離し、得られた上澄み液は適宜希釈し、重量平均分子量、全有機炭素濃度(TOC)及びメラニックインデックス(MI)を測定した。
[Preparation of humic acid extract A]
In a draft, 500 g of lignite with a carbon content of 77% by mass was placed in a 1,000 ml beaker, and 625 g of nitric acid with a concentration of 48% by mass (60 parts by mass of 100% nitric acid per 100 parts by mass of young coal) was added. . The oxidation reaction was carried out in a water bath at 80°C for 3 hours. The crude product containing humic acid obtained in this operation was subjected to the following extraction operation.
Approximately 900 mL of 0.5 mol/L potassium hydroxide aqueous solution was added to 100 g of this crude product, and while monitoring with a pH meter, 1.0 mol/L potassium hydroxide aqueous solution was appropriately added to adjust the pH to 6.5. Water was added so that the solid-liquid ratio was 1:10, and extraction was performed at 80°C for 1 hour. This extract was centrifuged at 3,000×g, the resulting supernatant was diluted appropriately, and the weight average molecular weight, total organic carbon concentration (TOC), and melanic index (MI) were measured.
 腐植酸抽出液A中の腐植酸のMIは2.2であった。腐植酸抽出液Aの全有機炭素濃度(TOC)は、34,000mg/Lであった。腐植酸抽出液A中の腐植酸の重量平均分子量は4,300であった。腐植酸抽出液AのpHは、6.0~8.0であった。 The MI of humic acid in humic acid extract A was 2.2. The total organic carbon concentration (TOC) of humic acid extract A was 34,000 mg/L. The weight average molecular weight of humic acid in humic acid extract A was 4,300. The pH of humic acid extract A was 6.0 to 8.0.
[腐植酸抽出液Bの準備]
 ドラフト中で、炭素含有率が77質量%の褐炭500gを1,000mlのビーカーに入れて、濃度48質量%の硝酸1562.5g(若年炭100質量部に対して100%硝酸150質量部)を添加した。80℃の水浴中で3時間酸化反応を行った。この操作で得た腐植酸を含む粗製物を以下の抽出操作に供した。
 この粗製物100gに0.5mol/Lの水酸化カリウム水溶液を約450mL加え、pH計でモニタしながら1.0mol/Lの水酸化カリウム水溶液を適宜加えpH2.0とした。固液比1:5となるように水を加え、80℃で1時間抽出した。この抽出液を、3,000×gで遠心分離し、得られた上澄み液は適宜希釈し、重量平均分子量、全有機炭素濃度(TOC)及びメラニックインデックス(MI)を測定した。
[Preparation of humic acid extract B]
In a draft, 500 g of lignite with a carbon content of 77% by mass was placed in a 1,000ml beaker, and 1562.5g of nitric acid with a concentration of 48% by mass (150 parts by mass of 100% nitric acid per 100 parts by mass of young coal) was added. Added. The oxidation reaction was carried out in a water bath at 80°C for 3 hours. The crude product containing humic acid obtained in this operation was subjected to the following extraction operation.
Approximately 450 mL of 0.5 mol/L potassium hydroxide aqueous solution was added to 100 g of this crude product, and while monitoring with a pH meter, 1.0 mol/L potassium hydroxide aqueous solution was appropriately added to adjust the pH to 2.0. Water was added so that the solid-liquid ratio was 1:5, and extraction was performed at 80°C for 1 hour. This extract was centrifuged at 3,000×g, the resulting supernatant was diluted appropriately, and the weight average molecular weight, total organic carbon concentration (TOC), and melanic index (MI) were measured.
 腐植酸抽出液B中の腐植酸のMIは4.8であった。腐植酸抽出液Bの全有機炭素濃度(TOC)は、22,000mg/Lであった。腐植酸抽出液B中の腐植酸の重量平均分子量は530であった。腐植酸抽出液BのpHは、2.0~3.0であった。 The MI of humic acid in humic acid extract B was 4.8. The total organic carbon concentration (TOC) of humic acid extract B was 22,000 mg/L. The weight average molecular weight of humic acid in humic acid extract B was 530. The pH of humic acid extract B was 2.0 to 3.0.
[重量平均分子量]
 腐植酸の重量平均分子量は、Waters社製Alliance HPLC Systemを用い、HPSEC法(GPC法)により測定した。カラムは昭和電工(株)SB-803HQ、標準試料はポリスチレンスルホン酸ナトリウムを用い、検出波長は260nmとした。移動相は25質量%アセトニトリル含有の10mmol/Lリン酸ナトリウム緩衝液とし、流速は0.8ml/分とし、カラムの温度は40℃(カラムオーブンの設定値)とした。
[Weight average molecular weight]
The weight average molecular weight of humic acid was measured by HPSEC method (GPC method) using Alliance HPLC System manufactured by Waters. The column used was Showa Denko SB-803HQ, the standard sample was sodium polystyrene sulfonate, and the detection wavelength was 260 nm. The mobile phase was a 10 mmol/L sodium phosphate buffer containing 25% by mass of acetonitrile, the flow rate was 0.8 ml/min, and the column temperature was 40° C. (column oven setting).
[全有機炭素濃度(TOC)]
 腐植酸抽出液のTOCは、全有機体炭素計(島津製作所製TOC-L)を用い、燃焼触媒酸化方式で測定した。
[Total organic carbon concentration (TOC)]
The TOC of the humic acid extract was measured using a total organic carbon meter (TOC-L manufactured by Shimadzu Corporation) using a combustion catalytic oxidation method.
[メラニックインデックス(MI)]
 試料を乳鉢と250μm篩を用い250μm篩下品に粉砕した。その約10gを、質量が既知の秤量ビンに取り精秤した。この秤量ビンを温度105℃に保持した乾燥機で約12時間放置し、その後、デシケーター中で室温に戻してから再度精秤した。その質量減少分を水分とみなして試料の含水率を求めた。次に、50ml遠沈管に、上記250μm篩下品を乾燥質量相当量で0.10gと、0.5mol/L水酸化ナトリウム水溶液45mlとを入れ、室温20℃で約1時間、250rpmの速度で振とうした後、3,000×g、約10分間の遠心分離を実施し、その上澄み液をアドバンテック社製No.5Cの濾紙で濾過した。濾液の450nmの吸光度と520nmの吸光度を、蒸留水をブランクとして測定した。この場合、450nmの吸光度が1.0以上を示したならば、0.1mol/L水酸化ナトリウム水溶液を添加し吸光度が0.8以上1.0未満に調整してから、520nmの吸光度を測定した。(450nmでの吸光度/520nmでの吸光度)の比を算出し、MIとした。
[Melanic Index (MI)]
The sample was ground to a 250 μm sieve grade using a mortar and a 250 μm sieve. Approximately 10 g of the solution was placed in a weighing bottle with a known mass and accurately weighed. This weighing bottle was left in a dryer maintained at a temperature of 105° C. for about 12 hours, and then returned to room temperature in a desiccator and then accurately weighed again. The water content of the sample was determined by assuming that the mass loss was water. Next, in a 50 ml centrifuge tube, put 0.10 g of the above 250 μm sieved product in dry weight equivalent and 45 ml of 0.5 mol/L sodium hydroxide aqueous solution, and shake at a speed of 250 rpm for about 1 hour at room temperature of 20°C. After cooling, centrifugation was carried out at 3,000 x g for about 10 minutes, and the supernatant was transferred to Advantech No. Filtered through 5C filter paper. The absorbance of the filtrate at 450 nm and 520 nm was measured using distilled water as a blank. In this case, if the absorbance at 450 nm is 1.0 or more, add 0.1 mol/L sodium hydroxide aqueous solution to adjust the absorbance to 0.8 or more and less than 1.0, and then measure the absorbance at 520 nm. did. The ratio of (absorbance at 450 nm/absorbance at 520 nm) was calculated and defined as MI.
[供試植物及び施用前栽培方法]
 実験用トマト (Solanum lycopersicum cv. Micro-Tom)種子を4.8(D)*4.8(W)*2.5(H)mmに裁断したロックウール(Grodan)に2粒ずつ播種し、約10日後に発芽が良かった方を残し、栽培試験に用いた。尚、ロックウールは水道水に含侵させたものを約200個使用し、播種後は乾かないよう適宜水道水を与えた。インキュベーター(EYELA,FLI-2010H-LED)内の栽培環境は、播種~発芽期は20℃、80%RH、暗所条件、発芽期~播種14日目は20℃、55%RH、弱光条件(16hr,光量2L設定、8hr暗条件設定)、播種14日目以降は25℃/16hr/光量3L設定、20℃/8hr/暗条件で栽培を行った。
[Test plants and cultivation method before application]
Experimental tomato (Solanum lycopersicum cv. Micro-Tom) seeds were sown two at a time in rock wool (Grodan) cut into 4.8 (D) * 4.8 (W) * 2.5 (H) mm. After about 10 days, the ones that germinated well were kept and used for cultivation tests. Approximately 200 rock wool impregnated with tap water were used, and after sowing, tap water was given as appropriate to prevent drying. The cultivation environment in the incubator (EYELA, FLI-2010H-LED) is 20°C, 80% RH, dark conditions during the sowing to germination period, and 20°C, 55% RH, weak light conditions from the germination period to the 14th day of sowing. After the 14th day of sowing, cultivation was carried out at 25° C./16 hr/light setting of 3 L and 20° C./8 hr/dark conditions.
[腐植酸及び養液施用条件]
 播種14日目の植物体を施用区間で生育にばらつきが出ないように12個体ずつポリプロピレン製バット(AS ONE 1-4618-01)に分け、OATハウス1号とOATハウス2号(共にOATアグリオ社)を混合したOAT-A処方を用いて栽培を行った。試験区は、OAT-A処方濃度を100とした時の70、50、20、又は5で設定し、腐植酸資材は腐植酸抽出液A及び腐植酸抽出液BをそれぞれTOC60ppm濃度で各OATに混合し施用した。尚、OATは週に一度バットごと更新する形で播種から約80日間栽培を行った。OAT-Aは、果菜類栽培に用いる一般的な液体肥料である。
[Humic acid and nutrient solution application conditions]
Plants on the 14th day of sowing were divided into 12 individual polypropylene bats (AS ONE 1-4618-01) to prevent variations in growth between the application areas. Cultivation was carried out using the OAT-A formulation mixed with A. The test area was set at 70, 50, 20, or 5 when the OAT-A prescription concentration was 100, and the humic acid materials were humic acid extract A and humic acid extract B at a TOC concentration of 60 ppm for each OAT. Mixed and applied. In addition, OAT was cultivated for about 80 days after sowing, with each bat being renewed once a week. OAT-A is a general liquid fertilizer used for growing fruits and vegetables.
 OAT-A処方濃度を100とした条件が化学肥料を慣行施肥量で施肥した条件である。OAT-A処方濃度を70、50、20及び5とした条件が、化学肥料が慣行施肥量よりそれぞれ30%、50%、80%及び95%低い条件である。 The condition where the OAT-A prescription concentration is 100 is the condition where chemical fertilizer is applied at the conventional fertilizer amount. The conditions where the OAT-A prescription concentration is 70, 50, 20, and 5 are conditions where the chemical fertilizer is 30%, 50%, 80%, and 95% lower than the conventional fertilizer application amount, respectively.
[測定項目・測定方法]
 各測定項目において栽培されている全植物体を計測し、各施用区上位12個体のうち中央値8個体の平均値データを使用した。
[Measurement items/methods]
All cultivated plants were measured for each measurement item, and the average value data of a median of 8 plants out of the top 12 plants in each application area was used.
(1)葉面積/Canopy Area Index (CAI)
 図1(A)及び(B)は、試験用の腐植酸資材として腐植酸抽出液Aを用いた場合の葉面積の測定結果を示す。図1(A)に示すように栽培中の植物体を水平方向(真上)から撮影し、画像解析に用いた。写真撮影の際に20mm×20mmの既知面積のスケールを置き(図1(A)中の矢印)、画像解析の際に400mm(4cm)の標準スケールとした。画像解析ソフトLIA32 (URL:https://www.agr.nagoya-u.ac.jp/~shinkan/LIA32/)を使用した。CAIは播種後35日目に算出した。図1(B)は、葉面積の測定結果を示す。図1(B)において、資材(+)は腐植酸資材を用いており、資材(+)には腐植酸資材由来の栄養素が含有されている。図1(B)において、資材(-)は腐植酸資材を用いていないが、資材(-)には資材添加時相当量の栄養素を添加している。腐植酸は、栄養素(ミネラル等)をキレート化するため、栄養素が土壌中で不溶化しにくくなり、植物体の根が栄養素を吸収しやすくなる。
(1) Leaf area/Canopy Area Index (CAI)
FIGS. 1(A) and (B) show the measurement results of leaf area when humic acid extract A was used as the humic acid material for testing. As shown in FIG. 1(A), the plant under cultivation was photographed from the horizontal direction (directly above) and used for image analysis. A scale with a known area of 20 mm x 20 mm was placed during photographing (arrow in FIG. 1(A)), and a standard scale of 400 mm 2 (4 cm 2 ) was used during image analysis. Image analysis software LIA32 (URL: https://www.agr.nagoya-u.ac.jp/~shinkan/LIA32/) was used. CAI was calculated 35 days after seeding. FIG. 1(B) shows the measurement results of leaf area. In FIG. 1(B), a humic acid material is used as the material (+), and the material (+) contains nutrients derived from the humic acid material. In Figure 1 (B), material (-) does not use humic acid materials, but material (-) has a considerable amount of nutrients added at the time of material addition. Humic acid chelates nutrients (minerals, etc.), making it difficult for nutrients to become insolubilized in the soil, making it easier for plant roots to absorb nutrients.
(2)開花数,果実数調査
 開花期から毎週個体ごとに開花した花と果実数の累計を計測した。果実数は10mm以上肥大したもののみをデータに使用した。最終調査は播種後約80日とした。図2(A)は、開花数の測定結果を示し、図2(B)は果実数の測定結果を示す。図2(A)及び図2(B)中の「A_60」は、腐植酸抽出液AをTOC60ppm濃度で施用したことを意味する。
(2) Survey on the number of flowers and fruits The cumulative number of flowers and fruits bloomed for each individual was measured every week from the flowering period. Regarding the number of fruits, only those that were enlarged by 10 mm or more were used for data. The final survey was conducted approximately 80 days after sowing. FIG. 2(A) shows the measurement results of the number of flowers, and FIG. 2(B) shows the measurement results of the number of fruits. "A_60" in FIGS. 2(A) and 2(B) means that humic acid extract A was applied at a TOC concentration of 60 ppm.
(3)乾燥質量
 播種後約80日の植物体から果実を全て収穫し、葉と茎に分けてそれぞれの乾燥質量を測定した。乾燥は恒温乾燥機を用いて70℃で16時間以上乾燥させた。図3(A)及び図3(B)は、腐植酸資材として腐植酸抽出液A及び腐植酸抽出液Bそれぞれを用いた場合の乾燥質量の測定結果を示す。
(3) Dry mass All fruits were harvested from the plants about 80 days after sowing, and the leaves and stems were separated and the dry mass of each was measured. Drying was carried out at 70° C. for 16 hours or more using a constant temperature dryer. FIG. 3(A) and FIG. 3(B) show the measurement results of dry mass when humic acid extract A and humic acid extract B were used as humic acid materials, respectively.
 図1(B)、図2(A)及び(B)並びに図3(A)及び(B)に示すように、腐植酸資材の施用によって、化学肥料の施肥量減少に伴う収穫量の低下が抑制された。

 
As shown in Figure 1 (B), Figures 2 (A) and (B), and Figure 3 (A) and (B), the application of humic acid materials reduces the yield due to the decrease in the amount of chemical fertilizer applied. suppressed.

Claims (7)

  1.  腐植物質を有効成分として含む、収穫量低下抑制剤。 A yield reduction inhibitor that contains humic substances as an active ingredient.
  2.  果菜類作物又は葉菜類作物における化学肥料の施肥量減少に伴う収穫量低下抑制剤である、請求項1に記載の収穫量低下抑制剤。 The agent for suppressing a decrease in yield according to claim 1, which is an agent for suppressing a decrease in yield due to a decrease in the amount of chemical fertilizer applied to fruit and vegetable crops or leafy vegetables.
  3.  前記腐植物質がフミン酸及びフルボ酸からなる群より選択される少なくとも1種を含む、請求項1又は2に記載の収穫量低下抑制剤。 The yield reduction inhibitor according to claim 1 or 2, wherein the humic substance contains at least one selected from the group consisting of humic acid and fulvic acid.
  4.  前記腐植物質のメラニックインデックスが2.0以上である、請求項1又は2に記載の収穫量低下抑制剤。 The yield reduction inhibitor according to claim 1 or 2, wherein the humic substance has a melanic index of 2.0 or more.
  5.  前記腐植物質の重量平均分子量が200~6,000である、請求項1又は2に記載の収穫量低下抑制剤。 The yield reduction inhibitor according to claim 1 or 2, wherein the humic substance has a weight average molecular weight of 200 to 6,000.
  6.  前記有効成分が前記腐植物質を含む腐植物質含有液であり、
     前記腐植物質含有液のpHが2.0~9.0である、請求項1又は2に記載の収穫量低下抑制剤。
    The active ingredient is a humic substance-containing liquid containing the humic substance,
    The yield reduction inhibitor according to claim 1 or 2, wherein the humic substance-containing liquid has a pH of 2.0 to 9.0.
  7.  化学肥料の施肥量が慣行施肥量よりも低い条件において、果菜類作物又は葉菜類作物を栽培する方法であって、
     腐植物質を前記化学肥料と併用して施用する施用工程を含む、方法。

     
    A method of cultivating fruit and leafy vegetables crops under conditions where the amount of chemical fertilizer applied is lower than the amount of conventional fertilizer, the method comprising:
    A method comprising applying a humic substance in combination with the chemical fertilizer.

PCT/JP2023/027425 2022-07-27 2023-07-26 Agent for suppressing decrease in yield amount WO2024024851A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022119386 2022-07-27
JP2022-119386 2022-07-27

Publications (1)

Publication Number Publication Date
WO2024024851A1 true WO2024024851A1 (en) 2024-02-01

Family

ID=89706568

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/027425 WO2024024851A1 (en) 2022-07-27 2023-07-26 Agent for suppressing decrease in yield amount

Country Status (1)

Country Link
WO (1) WO2024024851A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016050151A (en) * 2014-08-30 2016-04-11 扶桑化学工業株式会社 Low phosphate stress-resistant formulation, and cultivation method of plants using the same
JP2017071522A (en) * 2015-10-06 2017-04-13 デンカ株式会社 Humic acid extract
JP2018058721A (en) * 2016-10-04 2018-04-12 デンカ株式会社 Humic acid-containing three-elements liquid fertilizer
JP2018095555A (en) * 2016-12-08 2018-06-21 デンカ株式会社 Humus acid extract solution and manufacturing method therefor
WO2021117755A1 (en) * 2019-12-12 2021-06-17 デンカ株式会社 Liquid humic acid extract

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016050151A (en) * 2014-08-30 2016-04-11 扶桑化学工業株式会社 Low phosphate stress-resistant formulation, and cultivation method of plants using the same
JP2017071522A (en) * 2015-10-06 2017-04-13 デンカ株式会社 Humic acid extract
JP2018058721A (en) * 2016-10-04 2018-04-12 デンカ株式会社 Humic acid-containing three-elements liquid fertilizer
JP2018095555A (en) * 2016-12-08 2018-06-21 デンカ株式会社 Humus acid extract solution and manufacturing method therefor
WO2021117755A1 (en) * 2019-12-12 2021-06-17 デンカ株式会社 Liquid humic acid extract

Similar Documents

Publication Publication Date Title
Souri et al. Growth and quality of cucumber, tomato, and green bean under foliar and soil applications of an aminochelate fertilizer
Wade et al. Mulching and green manure applications for continuous crop production in the amazon basin 1
Vončina Sheep wool and leather waste as fertilizers in organic production of asparagus (Asparagus officinalis L.)
Muoneke et al. Productivity of cassava/okra intercropping systems as influenced by okra planting density
Layek et al. Effect of seaweed sap on germination, growth and productivity of maize (Zea mays) in North Eastern Himalayas
CN115067044A (en) Fertilizing method and organic cultivation method for organic cultivation of gramineous forage grass in alpine pasturing area
KR20200143779A (en) Sugar-enhancing water-soluble powder fertilizer and its manufacturing methods for fruits or fruit vegetables using L-methionine
Kandil et al. Influence of water stress and organic and inorganic fertilization on quality, storability and chemical analysis of potato (Solanum tuberosum L)
RU2684745C1 (en) Method of monitoring toxic soils
WO2024024851A1 (en) Agent for suppressing decrease in yield amount
Ahamad et al. Impact of FYM and potassium interactions on potato yield cultivated on moderate saline soils
Chohura et al. Suitability of some nitrogen fertilizers for the cultivation of early cabbage.
Oprica et al. A new eco-friendly foliar fertilizer with bone glue suitable for crops of maize and sunflower
Patel et al. Effect of phosphorus and potassium on growth characters, forage yield, nutrient uptake and quality of lucerne (Medicago sativa)
Negi et al. Effect of organic manures and inorganic fertilizers on dry matter yield, soil and plant nutrient content in onion (Allium cepa)
Stepantsova et al. Effect of granular fertilizer of disinfected chicken dung application on crop productivity and soil fertility
Salkić et al. The ecophysiological needs of plums and their impact on ecological production of plum in Bosnia and Herzegovina
Altuntas et al. Optimization and comparison of the effects of vermicompost and conventional fertilization on spinach (Spinacia oleracea L.) growth.
JP3119296B2 (en) Citrus anti-icing agent and method for preventing icing with it
Aon et al. Peanut-waste biochar and buffalo manure decreased nitrogen and phosphorus requirement of maize grown in an alkaline calcareous soil
KR20160140248A (en) Composition for growth promotion of sweet potato and the enhancing method for viability of sweet potato in repeated cultivation soil using the same
Kwayep et al. Effects of different soil amendments on the performance of okra (Abelmoschus esculentus L.) in a bimodal rainforest zone
Kaniszewski et al. Effect of irrigation and organic fertilization on the yield of crisphead lettuce grown under ecological conditions
Ghazal et al. Effect of mulching, foliar application of amino acid on the growth and yield od cauliflower, brassica olerace var botrytis L.
WO2013120116A1 (en) Methods of treating plants

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23846581

Country of ref document: EP

Kind code of ref document: A1