WO2023058334A1 - ポリイミド樹脂組成物及び成形体 - Google Patents

ポリイミド樹脂組成物及び成形体 Download PDF

Info

Publication number
WO2023058334A1
WO2023058334A1 PCT/JP2022/031146 JP2022031146W WO2023058334A1 WO 2023058334 A1 WO2023058334 A1 WO 2023058334A1 JP 2022031146 W JP2022031146 W JP 2022031146W WO 2023058334 A1 WO2023058334 A1 WO 2023058334A1
Authority
WO
WIPO (PCT)
Prior art keywords
polyimide resin
group
resin composition
formula
carbon atoms
Prior art date
Application number
PCT/JP2022/031146
Other languages
English (en)
French (fr)
Inventor
敦史 酒井
勇希 佐藤
卓弥 福島
Original Assignee
三菱瓦斯化学株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱瓦斯化学株式会社 filed Critical 三菱瓦斯化学株式会社
Priority to CN202280066607.2A priority Critical patent/CN118076699A/zh
Publication of WO2023058334A1 publication Critical patent/WO2023058334A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • C08G73/06Polycondensates having nitrogen-containing heterocyclic rings in the main chain of the macromolecule
    • C08G73/10Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L79/00Compositions of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing nitrogen with or without oxygen or carbon only, not provided for in groups C08L61/00 - C08L77/00
    • C08L79/04Polycondensates having nitrogen-containing heterocyclic rings in the main chain; Polyhydrazides; Polyamide acids or similar polyimide precursors
    • C08L79/08Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L81/00Compositions of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing sulfur with or without nitrogen, oxygen or carbon only; Compositions of polysulfones; Compositions of derivatives of such polymers
    • C08L81/06Polysulfones; Polyethersulfones

Definitions

  • the present invention relates to polyimide resin compositions and molded articles.
  • polyimide resin Due to the rigidity of the molecular chain, resonance stabilization, and strong chemical bonding, polyimide resin is a useful engineering plastic with high thermal stability, high strength, and high solvent resistance, and is applied in a wide range of fields. Polyimide resins having crystallinity can further improve their heat resistance, strength and chemical resistance, and thus are expected to be used as metal substitutes. However, although the polyimide resin has high heat resistance, it does not show thermoplasticity and has a problem of low moldability.
  • Patent Document 1 As polyimide molding materials, highly heat-resistant resin Vespel (registered trademark) and the like are known (Patent Document 1). Since it is necessary to perform molding, it is also disadvantageous in terms of cost. On the other hand, a resin such as a crystalline resin that has a melting point and is fluid at high temperatures can be molded easily and inexpensively.
  • thermoplastic polyimide resins have been reported.
  • Thermoplastic polyimide resins are excellent in moldability in addition to the inherent heat resistance of polyimide resins. Therefore, thermoplastic polyimide resins can also be applied to moldings used in harsh environments where general-purpose thermoplastic resins such as nylon and polyester could not be applied.
  • Patent Document 2 a predetermined A thermoplastic polyimide resin is disclosed that contains a repeating unit of
  • Patent Document 3 discloses a thermoplastic polyimide resin containing a predetermined repeating unit, and also describes the use of the polyimide resin in combination with another resin as a polymer alloy.
  • thermoplastic polyimide resin described in Patent Document 3 has crystallinity and is excellent in heat resistance, strength, chemical resistance, etc., but depending on the application, a high level of dimensional stability in a wide temperature range is required. There was room for further improvement.
  • An object of the present invention is to provide a polyimide resin composition which has a low coefficient of linear thermal expansion and which can be used to form a molded article having excellent dimensional stability.
  • the present inventors have found that a polyimide resin composition containing a crystalline thermoplastic polyimide resin in which specific different polyimide structural units are combined in a specific ratio and an amorphous resin having a specific structure can solve the above problems. Found it. That is, the present invention relates to the following.
  • a repeating structural unit represented by the following formula (1) and a repeating structural unit represented by the following formula (2) are included, and the sum of the repeating structural unit of the formula (1) and the repeating structural unit of the formula (2) Containing a polyimide resin (A) having a content ratio of 20 to 70 mol% of the repeating structural unit of the formula (1) and an amorphous resin (B) containing a repeating structural unit represented by the following formula (I) polyimide resin composition.
  • R 1 is a C 6-22 divalent group containing at least one alicyclic hydrocarbon structure.
  • R 2 is a C 5-16 divalent chain aliphatic group.
  • X 1 and X 2 are each independently a tetravalent group having 6 to 22 carbon atoms containing at least one aromatic ring.) (R 4 is a single bond or a divalent group having 6 to 22 carbon atoms containing at least one aromatic ring.n is the number of repeating constituent units and is greater than 1.) [2] A molded article containing the polyimide resin composition according to [1] above.
  • the polyimide resin composition and molded article of the present invention have a low coefficient of linear thermal expansion and excellent dimensional stability, and therefore are suitable for, for example, films, copper-clad laminates, electrical and electronic members that require a low coefficient of thermal expansion. .
  • FIG. 2 is a schematic diagram showing a method of preparing a sample used for observation with a field emission scanning electron microscope (FE-SEM); 1 is a micrograph of a cross section of the polyimide resin composition (pellet) of Example 2 taken perpendicularly to the flow direction (MD) and observed by FE-SEM. 1 is a micrograph of a cross section of the polyimide resin composition (pellet) of Example 3 taken perpendicularly to the machine direction (MD) and observed by FE-SEM. 1 is a micrograph of a cross section cut perpendicular to the machine direction (MD) of the polyimide resin composition (pellet) of Example 5, observed by FE-SEM.
  • FE-SEM field emission scanning electron microscope
  • the polyimide resin composition of the present invention comprises a repeating structural unit represented by the following formula (1) and a repeating structural unit represented by the following formula (2), wherein the repeating structural unit of the formula (1) and the formula (2) A polyimide resin (A) having a content ratio of 20 to 70 mol% of repeating structural units of the formula (1) with respect to the total repeating structural units of and an amorphous resin containing a repeating structural unit represented by the following formula (I) (B) and.
  • R 1 is a C 6-22 divalent group containing at least one alicyclic hydrocarbon structure.
  • R 2 is a C 5-16 divalent chain aliphatic group.
  • X 1 and X 2 are each independently a tetravalent group having 6 to 22 carbon atoms containing at least one aromatic ring.) (R 4 is a single bond or a divalent group having 6 to 22 carbon atoms containing at least one aromatic ring.n is the number of repeating constituent units and is greater than 1.)
  • the polyimide resin composition of the present invention is a polyimide resin composition having a low coefficient of linear thermal expansion (hereinafter also referred to as “CTE”) and capable of producing a molded article having excellent dimensional stability.
  • CTE coefficient of linear thermal expansion
  • Component (A) is a crystalline resin
  • component (B) is an amorphous resin
  • component (B) has a sulfonyl group which is a polar group. Therefore, component (A) and component (B) are difficult to be mixed together even when melted and kneaded, but because of their high mutual dispersibility, they are mutually dispersed at the micro to nano level in the resulting resin composition and molded article.
  • a microphase separation structure such as a sea-island structure.
  • a compact in which component (A) or component (B) is finely dispersed at the micro to nano level is likely to disperse stress even when stress is applied. be done.
  • component (A) and component (B) are resins having relatively high heat resistance among thermoplastic resins, it is believed that higher dimensional stability can be maintained even in a high temperature range.
  • a molded article obtained by molding the polyimide resin composition of the present invention preferably has a microphase-separated structure from the viewpoint of achieving a lower CTE.
  • the microphase-separated structure is formed by phase separation of component (A) and component (B), and may be a sea-island structure or a co-continuous structure, but preferably a sea-island structure. In the sea-island structure, either component may form the "sea" depending on the mass ratio of component (A) and component (B) in the compact.
  • whether or not the molded body has a microphase-separated structure can be determined by observing the surface or cross section of the molded body with a scanning electron microscope (SEM).
  • ⁇ Hm 0 is the crystallization heat value of the component (A) alone and ⁇ Hm is the crystallization heat value of the molded body.
  • the heat of crystallization can be specifically measured by the method described in Examples.
  • the polyimide resin (A) used in the present invention contains a repeating structural unit represented by the following formula (1) and a repeating structural unit represented by the following formula (2), and the repeating structural unit of the formula (1) and the formula (
  • the content ratio of the repeating structural units of formula (1) to the total repeating structural units of 2) is 20 to 70 mol %.
  • R 1 is a C 6-22 divalent group containing at least one alicyclic hydrocarbon structure.
  • R 2 is a C 5-16 divalent chain aliphatic group.
  • X 1 and X 2 are each independently a tetravalent group having 6 to 22 carbon atoms containing at least one aromatic ring.
  • the polyimide resin (A) used in the present invention is a crystalline thermoplastic resin, and its form is preferably powder or pellets.
  • the thermoplastic polyimide resin is formed by closing the imide ring after molding in the state of a polyimide precursor such as polyamic acid, for example, a polyimide resin having no glass transition temperature (Tg), or a temperature lower than the glass transition temperature It is distinguished from polyimide resin that decomposes at
  • R 1 is a C 6-22 divalent group containing at least one alicyclic hydrocarbon structure.
  • the alicyclic hydrocarbon structure means a ring derived from an alicyclic hydrocarbon compound, and the alicyclic hydrocarbon compound may be saturated or unsaturated, and It may be cyclic or polycyclic.
  • Examples of the alicyclic hydrocarbon structure include, but are not limited to, cycloalkane rings such as cyclohexane ring, cycloalkene rings such as cyclohexene, bicycloalkane rings such as norbornane ring, and bicycloalkene rings such as norbornene. Do not mean.
  • a cycloalkane ring is preferred, a cycloalkane ring having 4 to 7 carbon atoms is more preferred, and a cyclohexane ring is even more preferred.
  • R 1 has 6 to 22 carbon atoms, preferably 8 to 17 carbon atoms.
  • R 1 contains at least one, preferably 1 to 3, alicyclic hydrocarbon structures.
  • R 1 is preferably a divalent group represented by the following formula (R1-1) or (R1-2).
  • (m 11 and m 12 are each independently an integer of 0 to 2, preferably 0 or 1;
  • m 13 to m 15 are each independently an integer of 0 to 2, preferably 0 or 1.)
  • R 1 is particularly preferably a divalent group represented by the following formula (R1-3).
  • R1-3 the positional relationship of the two methylene groups with respect to the cyclohexane ring may be cis or trans, and the ratio of cis to trans may be can be any value.
  • X 1 is a tetravalent group having 6 to 22 carbon atoms containing at least one aromatic ring.
  • the aromatic ring may be a single ring or a condensed ring, and examples include, but are not limited to, benzene ring, naphthalene ring, anthracene ring, and tetracene ring. Among these, benzene ring and naphthalene ring are preferred, and benzene ring is more preferred.
  • X 1 has 6 to 22 carbon atoms, preferably 6 to 18 carbon atoms.
  • X 1 contains at least one, preferably 1 to 3, aromatic rings.
  • X 1 is preferably a tetravalent group represented by any one of formulas (X-1) to (X-4) below.
  • R 11 to R 18 are each independently an alkyl group having 1 to 4 carbon atoms;
  • p 11 to p 13 are each independently an integer of 0 to 2, preferably 0;
  • p 14 , p 15 , p 16 and p 18 are each independently an integer of 0 to 3, preferably 0.
  • p 17 is an integer of 0 to 4, preferably 0.
  • L 11 to L 13 are each independently a single bond, a carbonyl group or an alkylene group having 1 to 4 carbon atoms.) Since X 1 is a tetravalent group having 6 to 22 carbon atoms and containing at least one aromatic ring, R 12 , R 13 , p 12 and p 13 in formula (X-2) are represented by formula (X- The number of carbon atoms in the tetravalent group represented by 2) is selected within the range of 10 to 22. Similarly, L 11 , R 14 , R 15 , p 14 and p 15 in formula (X-3) are in the range of 12 to 22 carbon atoms in the tetravalent group represented by formula (X-3).
  • L 12 , L 13 , R 16 , R 17 , R 18 , p 16 , p 17 and p 18 in formula (X-4) are selected to contain the tetravalent is selected so that the number of carbon atoms in the group is in the range of 18-22.
  • X 1 is particularly preferably a tetravalent group represented by the following formula (X-5) or (X-6).
  • R 2 is a divalent chain aliphatic group having 5 to 16 carbon atoms, preferably 6 to 14 carbon atoms, more preferably 7 to 12 carbon atoms, still more preferably 8 to 10 carbon atoms.
  • the chain aliphatic group means a group derived from a chain aliphatic compound, the chain aliphatic compound may be saturated or unsaturated, straight-chain It may be branched or branched.
  • R 2 is preferably an alkylene group having 5 to 16 carbon atoms, more preferably an alkylene group having 6 to 14 carbon atoms, still more preferably an alkylene group having 7 to 12 carbon atoms, and most preferably an alkylene group having 8 to 10 carbon atoms. It is an alkylene group.
  • the alkylene group may be a straight-chain alkylene group or a branched alkylene group, but is preferably a straight-chain alkylene group.
  • R 2 is preferably at least one selected from the group consisting of octamethylene group and decamethylene group, and particularly preferably octamethylene group.
  • X2 is defined in the same manner as X1 in Formula (1), and the preferred embodiments are also the same.
  • the content ratio of the repeating structural unit of formula (1) to the total of the repeating structural unit of formula (1) and the repeating structural unit of formula (2) is 20 to 70 mol %.
  • the content ratio of the repeating structural unit of formula (1) is within the above range, the polyimide resin can be sufficiently crystallized even in a general injection molding cycle.
  • the content ratio is less than 20 mol %, moldability is deteriorated, and when it exceeds 70 mol %, crystallinity is deteriorated, resulting in deterioration of heat resistance.
  • the content ratio of the repeating structural unit of formula (1) to the total of the repeating structural unit of formula (1) and the repeating structural unit of formula (2) is preferably 65 mol% or less, from the viewpoint of expressing high crystallinity.
  • the polyimide resin (A) The crystallinity of is increased, and a resin molding having more excellent heat resistance can be obtained.
  • the content ratio is preferably 25 mol% or more, more preferably 30 mol% or more, and still more preferably 32 mol% or more from the viewpoint of moldability, and is even more preferable from the viewpoint of expressing high crystallinity. is 35 mol % or less.
  • the total content ratio of the repeating structural units of the formula (1) and the repeating structural units of the formula (2) with respect to all repeating structural units constituting the polyimide resin (A) is preferably 50 to 100 mol%, more preferably 75 ⁇ 100 mol%, more preferably 80 to 100 mol%, still more preferably 85 to 100 mol%.
  • Polyimide resin (A) may further contain a repeating structural unit of the following formula (3).
  • the content ratio of the repeating structural unit of formula (3) to the sum of the repeating structural units of formula (1) and the repeating structural units of formula (2) is preferably 25 mol % or less.
  • the lower limit is not particularly limited as long as it exceeds 0 mol %.
  • the content ratio is preferably 5 mol% or more, more preferably 10 mol% or more, from the viewpoint of improving heat resistance, while maintaining crystallinity. From the standpoint of doing so, it is preferably 20 mol % or less, more preferably 15 mol % or less.
  • R 3 is a C 6-22 divalent group containing at least one aromatic ring.
  • X 3 is a C 6-22 tetravalent group containing at least one aromatic ring.
  • R 3 is a C 6-22 divalent group containing at least one aromatic ring.
  • the aromatic ring may be a single ring or a condensed ring, and examples include, but are not limited to, benzene ring, naphthalene ring, anthracene ring, and tetracene ring. Among these, benzene ring and naphthalene ring are preferred, and benzene ring is more preferred.
  • R 3 has 6 to 22 carbon atoms, preferably 6 to 18 carbon atoms.
  • R 3 contains at least one, preferably 1 to 3, aromatic rings.
  • R 3 is preferably a divalent group represented by the following formula (R3-1) or (R3-2).
  • (m 31 and m 32 are each independently an integer of 0 to 2, preferably 0 or 1;
  • m 33 and m 34 are each independently an integer of 0 to 2, preferably 0 or 1.
  • R 21 , R 22 and R 23 are each independently an alkyl group having 1 to 4 carbon atoms, an alkenyl group having 2 to 4 carbon atoms, or an alkynyl group having 2 to 4 carbon atoms.
  • p 21 , p 22 and p 23 are integers of 0 to 4, preferably 0.
  • L 21 is a single bond, a carbonyl group or an alkylene group having 1 to 4 carbon atoms.) Since R 3 is a divalent group having 6 to 22 carbon atoms and containing at least one aromatic ring, m 31 , m 32 , R 21 and p 21 in formula (R3-1) are represented by formula (R3- It is selected so that the number of carbon atoms of the divalent group represented by 1) falls within the range of 6-22. Similarly, L 21 , m 33 , m 34 , R 22 , R 23 , p 22 and p 23 in formula (R3-2) have It is chosen to fall within the range of 12-22.
  • X3 is defined in the same manner as X1 in Formula (1), and the preferred embodiments are also the same.
  • the terminal structure of the polyimide resin (A) is not particularly limited, it preferably has a chain aliphatic group having 5 to 14 carbon atoms at its terminal.
  • the chain aliphatic group may be saturated or unsaturated, linear or branched.
  • saturated chain aliphatic groups having 5 to 14 carbon atoms include n-pentyl group, n-hexyl group, n-heptyl group, n-octyl group, n-nonyl group, n-decyl group, n-undecyl group, Lauryl group, n-tridecyl group, n-tetradecyl group, isopentyl group, neopentyl group, 2-methylpentyl group, 2-methylhexyl group, 2-ethylpentyl group, 3-ethylpentyl group, isooctyl group, 2-ethylhexyl group , 3-ethylhexyl group, isononyl group, 2-ethyloctyl group, isodecyl group, isododecyl group, isotridecyl group, isotetradecyl group and the like.
  • Examples of unsaturated chain aliphatic groups having 5 to 14 carbon atoms include 1-pentenyl group, 2-pentenyl group, 1-hexenyl group, 2-hexenyl group, 1-heptenyl group, 2-heptenyl group, 1- octenyl group, 2-octenyl group, nonenyl group, decenyl group, dodecenyl group, tridecenyl group, tetradecenyl group and the like.
  • the chain aliphatic group is preferably a saturated chain aliphatic group, and more preferably a saturated straight chain aliphatic group.
  • the chain aliphatic group preferably has 6 or more carbon atoms, more preferably 7 or more carbon atoms, still more preferably 8 or more carbon atoms, and preferably 12 or less carbon atoms, more preferably 12 or less carbon atoms. has 10 or less carbon atoms, more preferably 9 or less carbon atoms. Only one type of chain aliphatic group may be used, or two or more types may be used.
  • the chain aliphatic group is particularly preferably at least one selected from the group consisting of n-octyl group, isooctyl group, 2-ethylhexyl group, n-nonyl group, isononyl group, n-decyl group and isodecyl group. More preferably at least one selected from the group consisting of n-octyl group, isooctyl group, 2-ethylhexyl group, n-nonyl group and isononyl group, most preferably n-octyl group, isooctyl group and It is at least one selected from the group consisting of 2-ethylhexyl groups.
  • the polyimide resin (A) preferably has only chain aliphatic groups having 5 to 14 carbon atoms at its terminals in addition to terminal amino groups and terminal carboxy groups.
  • the content thereof is preferably 10 mol % or less, more preferably 5 mol % or less, relative to the chain aliphatic group having 5 to 14 carbon atoms.
  • the content of the chain aliphatic group having 5 to 14 carbon atoms in the polyimide resin (A) is 100 in total of all repeating structural units constituting the polyimide resin (A). It is preferably 0.01 mol % or more, more preferably 0.1 mol % or more, and still more preferably 0.2 mol % or more based on mol %.
  • the content of the chain aliphatic group having 5 to 14 carbon atoms in the polyimide resin (A) is Preferably 10 mol% or less, more preferably 6 mol% or less, still more preferably 3.5 mol% or less, even more preferably 2.0 mol% or less, more preferably 100 mol% or less of all repeating structural units More preferably, it is 1.2 mol % or less.
  • the content of the chain aliphatic group having 5 to 14 carbon atoms in the polyimide resin (A) can be obtained by depolymerizing the polyimide resin (A).
  • Polyimide resin (A) preferably has a melting point of 360° C. or lower and a glass transition temperature of 150° C. or higher.
  • the melting point of the polyimide resin (A) is preferably 280° C. or higher, more preferably 290° C. or higher, from the viewpoint of heat resistance, and is preferably 345° C. or lower, more preferably 345° C. or lower, from the viewpoint of achieving high moldability. is 340° C. or less, more preferably 335° C. or less.
  • the glass transition temperature of the polyimide resin (A) is more preferably 160° C. or higher, more preferably 170° C. or higher from the viewpoint of heat resistance, and preferably 250° C. from the viewpoint of expressing high moldability.
  • the polyimide resin (A) is measured by a differential scanning calorimeter, and after melting the polyimide resin, it is cooled at a cooling rate of 20 ° C./min.
  • the heat quantity at the crystallization exothermic peak (hereinafter also simply referred to as “crystallization exothermic value”) observed when the It is preferably 17.0 mJ/mg or more, and more preferably 17.0 mJ/mg or more.
  • the upper limit of the crystallization heat value is not particularly limited, it is usually 45.0 mJ/mg or less.
  • the melting point, glass transition temperature, and crystallization heat value of the polyimide resin (A) can all be measured by a differential scanning calorimeter, and specifically by the methods described in Examples.
  • the weight average molecular weight Mw of the polyimide resin (A) is preferably 10,000 to 150,000, more preferably 15,000 to 100,000, still more preferably 20,000 to 80,000, still more preferably 30, 000 to 70,000, more preferably 35,000 to 65,000. If the weight-average molecular weight Mw of the polyimide resin (A) is 10,000 or more, the mechanical strength of the molded article obtained is good, and if it is 40,000 or more, the stability of the mechanical strength is good, It becomes easy to form the microphase-separated structure mentioned above, and a lower CTE can be achieved. Also, if it is 150,000 or less, moldability will be good.
  • the weight average molecular weight Mw of the polyimide resin (A) can be measured by a gel permeation chromatography (GPC) method using polymethyl methacrylate (PMMA) as a standard sample, and specifically can be measured by the method described in Examples. .
  • the logarithmic viscosity at 30° C. of a 5 mass % concentrated sulfuric acid solution of the polyimide resin (A) is preferably in the range of 0.8 to 2.0 dL/g, more preferably 0.9 to 1.8 dL/g.
  • the logarithmic viscosity ⁇ is obtained from the following formula by measuring the flow times of concentrated sulfuric acid and the polyimide resin solution at 30° C. using a Canon Fenske viscometer.
  • ln [(ts/t 0 )/C] t 0 : Flow time of concentrated sulfuric acid ts: Flow time of polyimide resin solution C: 0.5 (g/dL)
  • Polyimide resin (A) can be produced by reacting a tetracarboxylic acid component and a diamine component.
  • the tetracarboxylic acid component contains a tetracarboxylic acid and/or derivative thereof containing at least one aromatic ring
  • the diamine component contains a diamine containing at least one alicyclic hydrocarbon structure and a linear aliphatic diamine. .
  • the tetracarboxylic acid containing at least one aromatic ring is preferably a compound in which four carboxy groups are directly bonded to the aromatic ring, and may contain an alkyl group in the structure.
  • the tetracarboxylic acid preferably has 6 to 26 carbon atoms.
  • Examples of the tetracarboxylic acid include pyromellitic acid, 2,3,5,6-toluenetetracarboxylic acid, 3,3′,4,4′-benzophenonetetracarboxylic acid, and 3,3′,4,4′-biphenyl. Tetracarboxylic acid, 1,4,5,8-naphthalenetetracarboxylic acid and the like are preferred. Among these, pyromellitic acid is more preferable.
  • Derivatives of tetracarboxylic acids containing at least one aromatic ring include anhydrides or alkyl esters of tetracarboxylic acids containing at least one aromatic ring.
  • the tetracarboxylic acid derivative preferably has 6 to 38 carbon atoms.
  • Anhydrides of tetracarboxylic acids include pyromellitic monoanhydride, pyromellitic dianhydride, 2,3,5,6-toluenetetracarboxylic dianhydride, 3,3′,4,4′-diphenyl sulfonetetracarboxylic dianhydride, 3,3′,4,4′-benzophenonetetracarboxylic dianhydride, 3,3′,4,4′-biphenyltetracarboxylic dianhydride, 1,4,5, 8-naphthalenetetracarboxylic dianhydride and the like are included.
  • alkyl esters of tetracarboxylic acids include dimethyl pyromellitic acid, diethyl pyromellitic acid, dipropyl pyromellitic acid, diisopropyl pyromellitic acid, dimethyl 2,3,5,6-toluenetetracarboxylate, 3,3′,4 ,4′-diphenylsulfonetetracarboxylate dimethyl, 3,3′,4,4′-benzophenonetetracarboxylate dimethyl, 3,3′,4,4′-biphenyltetracarboxylate dimethyl, 1,4,5,8 -Naphthalenetetracarboxylate dimethyl and the like.
  • the alkyl group preferably has 1 to 3 carbon atoms.
  • At least one compound selected from the above may be used alone, or two or more compounds may be used in combination.
  • the diamine containing at least one alicyclic hydrocarbon structure preferably has 6 to 22 carbon atoms, such as 1,2-bis(aminomethyl)cyclohexane, 1,3-bis(aminomethyl)cyclohexane, 1,4- Bis(aminomethyl)cyclohexane, 1,2-cyclohexanediamine, 1,3-cyclohexanediamine, 1,4-cyclohexanediamine, 4,4'-diaminodicyclohexylmethane, 4,4'-methylenebis(2-methylcyclohexylamine) , carvonediamine, limonenediamine, isophoronediamine, norbornanediamine, bis(aminomethyl)tricyclo[5.2.1.0 2,6 ]decane, 3,3′-dimethyl-4,4′-diaminodicyclohexylmethane, 4,4'-Diaminodicyclohexylpropane and the like are preferred.
  • Diamines containing an alicyclic hydrocarbon structure generally have structural isomers, but the ratio of cis/trans isomers is not limited.
  • the chain aliphatic diamine may be linear or branched, and preferably has 5 to 16 carbon atoms, more preferably 6 to 14 carbon atoms, and still more preferably 7 to 12 carbon atoms. In addition, if the chain portion has 5 to 16 carbon atoms, an ether bond may be included therebetween.
  • Chain aliphatic diamines such as 1,5-pentamethylenediamine, 2-methylpentane-1,5-diamine, 3-methylpentane-1,5-diamine, 1,6-hexamethylenediamine, 1,7-hepta methylenediamine, 1,8-octamethylenediamine, 1,9-nonamethylenediamine, 1,10-decamethylenediamine, 1,11-undecamethylenediamine, 1,12-dodecamethylenediamine, 1,13-trideca Methylenediamine, 1,14-tetradecamethylenediamine, 1,16-hexadecamethylenediamine, 2,2'-(ethylenedioxy)bis(ethyleneamine) and the like are preferred.
  • Chain aliphatic diamines may be used singly or in combination. Among these, chain aliphatic diamines having 8 to 10 carbon atoms can be preferably used, and at least one selected from the group consisting of 1,8-octamethylenediamine and 1,10-decamethylenediamine is particularly preferable. Available.
  • the molar amount of the diamine charged containing at least one alicyclic hydrocarbon structure with respect to the total amount of the diamine containing at least one alicyclic hydrocarbon structure and the chain aliphatic diamine The ratio is preferably 20-70 mol %.
  • the molar amount is preferably 25 mol% or more, more preferably 30 mol% or more, still more preferably 32 mol% or more, and from the viewpoint of expressing high crystallinity, preferably 60 mol% or less, more preferably 50 mol% or more.
  • the diamine component may contain a diamine containing at least one aromatic ring.
  • the diamine containing at least one aromatic ring preferably has 6 to 22 carbon atoms, such as orthoxylylenediamine, metaxylylenediamine, paraxylylenediamine, 1,2-diethynylbenzenediamine, 1,3-diethynyl.
  • the molar ratio of the charged amount of the diamine containing at least one aromatic ring to the total amount of the diamine containing at least one alicyclic hydrocarbon structure and the chain aliphatic diamine is 25 mol% or less. It is preferably 20 mol % or less, still more preferably 15 mol % or less. Although the lower limit of the molar ratio is not particularly limited, it is preferably 5 mol % or more, more preferably 10 mol % or more, from the viewpoint of improving heat resistance.
  • the molar ratio is more preferably 12 mol% or less, even more preferably 10 mol% or less, even more preferably 5 mol% or less, and even more preferably 0 mol %.
  • the charged amount ratio of the tetracarboxylic acid component and the diamine component is preferably 0.9 to 1.1 mol of the diamine component with respect to 1 mol of the tetracarboxylic acid component.
  • a terminal blocking agent may be mixed in addition to the tetracarboxylic acid component and the diamine component.
  • the terminal blocking agent at least one selected from the group consisting of monoamines and dicarboxylic acids is preferable.
  • the amount of the terminal blocking agent to be used may be any amount that can introduce a desired amount of terminal groups into the polyimide resin (A), and is 0.0001 to 0.001 to 0.0001 to 0.001 per 1 mol of the tetracarboxylic acid and/or derivative thereof.
  • a monoamine terminal blocking agent is preferable as the terminal blocking agent, and from the viewpoint of improving heat aging resistance by introducing the chain aliphatic group having 5 to 14 carbon atoms described above at the end of the polyimide resin (A). , monoamines having a chain aliphatic group of 5 to 14 carbon atoms are more preferred, and monoamines having a saturated linear aliphatic group of 5 to 14 carbon atoms are even more preferred.
  • the terminal blocking agent is particularly preferably at least one selected from the group consisting of n-octylamine, isooctylamine, 2-ethylhexylamine, n-nonylamine, isononylamine, n-decylamine, and isodecylamine. , more preferably at least one selected from the group consisting of n-octylamine, isooctylamine, 2-ethylhexylamine, n-nonylamine, and isononylamine, most preferably n-octylamine, isooctylamine, and 2-ethylhexylamine.
  • polymerization method for producing the polyimide resin (A) As a polymerization method for producing the polyimide resin (A), a known polymerization method can be applied, and the method described in International Publication No. 2016/147996 can be used.
  • the polyimide resin composition of the present invention contains the polyimide resin (A) and an amorphous resin (B) containing a repeating structural unit represented by the following formula (I).
  • R 4 is a single bond or a divalent group having 6 to 22 carbon atoms containing at least one aromatic ring.n is the number of repeating constituent units and is greater than 1.
  • the polyimide resin composition of the present invention can produce a molded article with a low CTE. It should be noted that the amorphous resin (B) in the present invention does not contain a repeating structural unit having an imide bond.
  • the divalent group having 6 to 22 carbon atoms containing at least one aromatic ring in R 4 of formula (I) preferably contains an ether bond from the viewpoint of achieving a lower CTE. It is a divalent aromatic group of 6 to 22, more preferably a divalent group represented by any one of the following general formulas (a) to (c). (R 41 and R 42 are each independently a hydrogen atom or an alkyl group having 1 to 4 carbon atoms.
  • the alkyl group having 1 to 4 carbon atoms in R 41 and R 42 includes methyl group, ethyl group, n-propyl group, isopropyl group, n-butyl group, isobutyl group, sec-butyl group and tert-butyl group. is mentioned. From the viewpoint of achieving a lower CTE, R 41 and R 42 are each independently preferably a hydrogen atom, a methyl group, an ethyl group, an n-propyl group, or an isopropyl group, more preferably a hydrogen atom or a methyl group, More preferably, it is a methyl group.
  • R 4 in formula (I) is preferably a single bond or a divalent represented by any of the general formulas (a) to (c), from the viewpoint of achieving a lower CTE and reducing the water absorption rate. and more preferably a single bond or a divalent group represented by any one of the general formulas (b) and (c).
  • Component (B) more preferably contains a repeating structural unit represented by any one of the following formulas (I-1) to (I-3) from the viewpoint of achieving a lower CTE and reducing the water absorption rate.
  • Amorphous resin more preferably 50% by mass or more, preferably 70% by mass or more, more preferably 80% by mass of repeating structural units represented by any of the following formulas (I-1) to (I-3) It is an amorphous resin containing at least 90% by mass, more preferably at least 95% by mass, more preferably at least 95% by mass.
  • R 41 and R 42 are each independently a hydrogen atom or an alkyl group having 1 to 4 carbon atoms.
  • n is the number of repeating constituent units, and is a number exceeding 1.
  • the alkyl group having 1 to 4 carbon atoms in R 41 and R 42 is the same as described above, and from the viewpoint of achieving a lower CTE, it is preferably a hydrogen atom, a methyl group, an ethyl group, an n-propyl group, or an isopropyl group. , more preferably a hydrogen atom or a methyl group, still more preferably a methyl group.
  • amorphous resin (B1) an amorphous resin containing a repeating structural unit represented by formula (I-1)
  • amorphous resin (B1) an amorphous resin containing a repeating structural unit represented by formula (I-2)
  • amorphous resin (B1) an amorphous resin containing a repeating structural unit represented by formula (I-2)
  • amorphous resin (B2) an amorphous resin containing a repeating structural unit represented by formula (I-3) is also referred to as "amorphous resin (B3)”.
  • the amorphous resin (B1) is an amorphous resin containing a repeating structural unit represented by the following formula (I-1). n is the number of repeating structural units and is a number exceeding one. More preferably, the amorphous resin (B1) includes a resin having a structure represented by the following formula (I-1a). (Wherein, R represents a terminal group and is Cl or OH. n is the same as above.) From the viewpoint of achieving a lower CTE, R in formula (I-1a) is preferably Cl.
  • the glass transition temperature of the amorphous resin (B1) is preferably 210° C. or higher, more preferably 215° C. or higher from the viewpoint of achieving a lower CTE, and preferably 280° C. or lower from the viewpoint of moldability. , more preferably 260° C. or less.
  • the glass transition temperature can be measured by a method similar to that described above.
  • the intrinsic viscosity of the amorphous resin (B1) at 25° C. is preferably 0.20 to 1.00 dL/g, more preferably 0.25 to 1.00 dL/g, more preferably 0.25 to 1.00 dL/g, from the viewpoint of achieving a lower CTE. It is preferably 0.30 to 0.80 dL/g.
  • the intrinsic viscosity of the amorphous resin (B1) can be measured by a method according to JIS K7367-5:2000, specifically by the method described in Examples.
  • the intrinsic viscosity is preferably within the above range when measured at 25° C. using a powder of the amorphous resin (B1) that has not been subjected to heat history such as melting.
  • the number average molecular weight (Mn) of the amorphous resin (B1) is preferably 2,000 to 25,000, more preferably 3,000 to 25,000, still more preferably 3, from the viewpoint of achieving a lower CTE. , 500 to 25,000, more preferably 3,500 to 25,000, and even more preferably 5,000 to 20,000.
  • the weight average molecular weight (Mw) of the amorphous resin (B1) is preferably 5,000 to 80,000, more preferably 7,000 to 80,000, still more preferably 8 ,000 to 80,000, more preferably 8,000 to 60,000, even more preferably 10,000 to 55,000, and even more preferably 12,000 to 55,000.
  • the number average molecular weight and weight average molecular weight of the amorphous resin (B1) can be measured by gel permeation chromatography (GPC) using polymethyl methacrylate (PMMA) as a standard sample, and are specifically described in Examples. can be measured by the method of The number-average molecular weight and weight-average molecular weight are preferably within the above ranges when measured using a powder of the amorphous resin (B1) that has not been subjected to heat history such as melting.
  • the form of the amorphous resin (B1) is not particularly limited, and either powder or pellets can be used.
  • the morphology of the resulting resin composition and molded article may be different from when powder is used, resulting in mechanical properties of the obtained molded article. may differ.
  • the use of pellets as the amorphous resin (B1) tends to improve the toughness of the obtained molded body as compared with the use of powder.
  • powder is more preferable.
  • a commercially available product can also be used as the amorphous resin (B1).
  • B1 Sumitomo Chemical Co., Ltd. "Sumika Excel PES” series (3600P, 4100P, 4800P, 5200P, 5400P, 5900P, 7600P, 5003P, 5003MPS, 3600G, 4100G, 4800G) , BASF "Ultrazone E” series (E1010, E2010, E2020P, E3010, E6020P) and the like.
  • the amorphous resin (B2) is an amorphous resin containing a repeating structural unit represented by the following formula (I-2), more preferably an amorphous resin represented by the following formula (I-2). .
  • n is the number of repeating structural units and is a number exceeding one.
  • the glass transition temperature of the amorphous resin (B2) is preferably 170° C. or higher, more preferably 180° C. or higher from the viewpoint of achieving a lower CTE, and preferably 230° C. or lower from the viewpoint of moldability. is.
  • the glass transition temperature can be measured by a method similar to that described above.
  • the intrinsic viscosity of the amorphous resin (B2) at 25° C. is preferably 0.20 to 1.00 dL/g, more preferably 0.25 to 1.00 dL/g, and further It is preferably 0.30 to 0.80 dL/g.
  • the intrinsic viscosity of the amorphous resin (B2) can be measured by the same method as described above.
  • a commercially available product can also be used as the amorphous resin (B2).
  • amorphous resins (B2) include "Ultrason S” series (S2010, S3010, S6010) manufactured by BASF, represented by formula (I-2).
  • the amorphous resin (B3) is an amorphous resin containing a repeating structural unit represented by the following formula (I-3), more preferably an amorphous resin represented by the following formula (I-3).
  • R 41 and R 42 are each independently a hydrogen atom or an alkyl group having 1 to 4 carbon atoms. n is the number of repeating constituent units, and is a number exceeding 1.
  • the alkyl group having 1 to 4 carbon atoms in R 41 and R 42 is the same as described above, and from the viewpoint of achieving a lower CTE, it is preferably a hydrogen atom, a methyl group, an ethyl group, an n-propyl group, or an isopropyl group.
  • the amorphous resin (B3) is more preferably an amorphous resin containing a repeating structural unit represented by the following formula (I-3c), more preferably an amorphous resin represented by the following formula (I-3c): It is a crystalline resin.
  • n is the number of repeating structural units and is a number exceeding one.
  • the glass transition temperature of the amorphous resin (B3) is preferably 190° C. or higher, more preferably 200° C. or higher from the viewpoint of achieving a lower CTE, and preferably 230° C. or lower from the viewpoint of moldability. is.
  • the glass transition temperature can be measured by a method similar to that described above.
  • a commercially available product can also be used as the amorphous resin (B3).
  • amorphous resins (B3) include "Ultrason P” series (P3010) manufactured by BASF, represented by formula (I-3c).
  • Component (B) can be used alone or in combination of two or more.
  • the component (B) is more preferably the group consisting of the amorphous resin (B2) and the amorphous resin (B3) from the viewpoint of achieving a lower CTE and reducing the water absorption rate. and more preferably one selected from the group consisting of the amorphous resin represented by the formula (I-2) and the amorphous resin represented by the formula (I-3c) more than seeds.
  • the mass ratio of component (A) to the total mass of component (A) and component (B) in the polyimide resin composition [(A) / ⁇ (A) + (B) ⁇ ] obtains the effects of the present invention From the viewpoint, it is preferably 0.01 or more and 0.99 or less.
  • the 0.50 or more, still more preferably 0.60 or more, and from the viewpoint of achieving a lower CTE it is more preferably 0.90 or less, still more preferably 0.80 or less, and even more preferably 0.75 or less. be.
  • the component (B) is an amorphous resin (B1) containing a repeating structural unit represented by the formula (I-1)
  • the total mass of the component (A) and the component (B1) in the polyimide resin composition The mass ratio [(A)/ ⁇ (A)+(B1) ⁇ ] of the component (A) to the 99 or less, more preferably more than 0.65 and 0.95 or less, still more preferably 0.70 or more and 0.90 or less.
  • the total content of the polyimide resin (A) and the amorphous resin (B) in the polyimide resin composition is preferably 50% by mass or more, more preferably 70% by mass or more, from the viewpoint of obtaining the effects of the present invention. It is preferably 80% by mass or more, and more preferably 90% by mass or more. Moreover, an upper limit is 100 mass %.
  • the polyimide resin composition of the present invention contains a filler, a reinforcing fiber, a matting agent, a nucleating agent, a plasticizer, an antistatic agent, an anti-coloring agent, an anti-gelling agent, a flame retardant, a coloring agent, a slidability improver, Additives such as antioxidants, ultraviolet absorbers, conductive agents, and resin modifiers may be contained as necessary.
  • the content of the additive is not particularly limited, but from the viewpoint of expressing the effect of the additive while maintaining the physical properties derived from the polyimide resin (A) and the amorphous resin (B), the polyimide resin composition , usually 50% by mass or less, preferably 0.0001 to 30% by mass, more preferably 0.0001 to 15% by mass, still more preferably 0.001 to 10% by mass.
  • the polyimide resin composition of the present invention can take any form, pellets are preferred. Since the polyimide resin (A) and the amorphous resin (B) have thermoplasticity, for example, the polyimide resin (A), the amorphous resin (B), and optionally various optional components are melt-kneaded in an extruder. The strands can be extruded with a tumbler and pelletized by cutting the strands. Further, by introducing the obtained pellets into various molding machines and thermoforming them by the method described below, a molded article having a desired shape can be easily produced.
  • the glass transition temperature of the polyimide resin composition of the present invention is preferably 160 ° C. or higher, more preferably 170 ° C. or higher, still more preferably 180 ° C. or higher, and still more preferably 200 ° C. or higher. From the viewpoint of exhibiting moldability, the temperature is preferably 250° C. or lower, more preferably 240° C. or lower, and even more preferably 230° C. or lower.
  • the glass transition temperature can be measured by a method similar to that described above.
  • a low CTE molded article can be produced.
  • the molded article used for CTE measurement is preferably a non-stretched molded article, more preferably an injection molded article.
  • Injection-molded articles also have a machine direction (MD) and a direction perpendicular to it (TD), and the MD and TD may have different CTEs.
  • MD machine direction
  • TD direction perpendicular to it
  • the linear thermal expansion coefficient of at least one of MD and TD is preferably 60 ppm/°C or less, more preferably both MD and TD are 60 ppm/°C or less.
  • the coefficient of linear thermal expansion which is lower among MD and TD, is more preferably 55 ppm/°C or less, more preferably 50 ppm/°C. Below, more preferably 45 ppm/°C or less, still more preferably 40 ppm/°C or less, and even more preferably 35 ppm/°C or less.
  • the total value of the linear thermal expansion coefficients of MD and TD is preferably 100 ppm/° C. or less, more preferably 95 ppm/° C. or less. , and more preferably 90 ppm/°C or less.
  • the thermal linear expansion coefficient of the molded article is a value measured in compression mode by thermomechanical analysis (TMA method), and can be specifically measured by the method described in Examples.
  • a molded article with low water absorption can be produced.
  • the water absorption rate when immersed in water at 23 ° C. for 24 hours, measured in accordance with JIS K7209: 2000, of a molded body of 30 mm ⁇ 20 mm ⁇ thickness 4 mm obtained by molding a polyimide resin composition preferably 0.30% or less, more preferably 0.25% or less, and still more preferably 0.20% or less.
  • the water absorption rate is obtained from the following formula when the mass of the molded article before immersion in water is (W 0 ) and the mass of the molded article after immersion in water at 23° C. for 24 hours is (W 1 ). It is a calculated value.
  • Water absorption (%) [(W 1 -W 0 )/W 0 ] x 100 Specifically, the water absorption can be measured by the method described in Examples.
  • the present invention provides a molded article containing the polyimide resin composition. Since the polyimide resin composition of the present invention has thermoplasticity, the molded article of the present invention can be easily produced by thermoforming.
  • Thermoforming methods include injection molding, extrusion molding, blow molding, hot press molding, vacuum molding, pressure molding, laser molding, welding, welding, etc. Any molding method involving a heat melting process can be used. is possible.
  • the molding temperature varies depending on the thermal properties (melting point and glass transition temperature) of the polyimide resin composition. For example, in injection molding, molding can be performed at a molding temperature of less than 400°C and a mold temperature of 220°C or less.
  • a method for producing a molded article preferably includes a step of thermoforming the polyimide resin composition at a temperature of less than 400°C.
  • Specific procedures include, for example, the following method. First, the polyimide resin (A), the amorphous resin (B), and optionally various optional components are added and dry blended, and then introduced into an extruder, preferably melted at less than 400 ° C. The mixture is then melt-kneaded and extruded in an extruder to produce pellets. Alternatively, the polyimide resin (A) is introduced into the extruder, preferably melted at less than 400 ° C., and the amorphous resin (B) and various optional components are introduced into the extruder with the polyimide resin (A).
  • the aforementioned pellets may be produced by melt-kneading and extrusion. After drying the pellets, they can be introduced into various molding machines and thermoformed preferably at a temperature of less than 400° C. to produce a molded body having a desired shape.
  • the molded article of the present invention has a low coefficient of linear thermal expansion, excellent dimensional stability, and low water absorption. Therefore, it is suitable for, for example, films, copper-clad laminates, electrical and electronic members that require a low coefficient of thermal expansion. is.
  • IR measurement ⁇ Infrared spectroscopic analysis (IR measurement)>
  • the IR measurement of the polyimide resin was performed using "JIR-WINSPEC50" manufactured by JEOL Ltd.
  • the melting point Tm of the polyimide resin, and the glass transition temperature Tg, crystallization temperature Tc, and crystallization heat value ⁇ Hm of the polyimide resin, amorphous resin, and polyimide resin composition were measured using a differential scanning calorimeter (SII Nanotechnology ( Measured using a "DSC-6220" manufactured by Co., Ltd.).
  • the crystallization temperature Tc the resin powder for the polyimide resin and the amorphous resin (B1), the amorphous resin (B2), the amorphous resin (B3), and the pellet for the polyimide resin composition were used as measurement samples.
  • the measurement sample was subjected to thermal history under the following conditions.
  • the thermal history conditions were a first temperature increase (temperature increase rate of 10° C./min), then cooling (temperature decrease rate of 20° C./min), and then a second temperature increase (temperature increase rate of 10° C./min).
  • the melting point Tm was determined by reading the peak top value of the endothermic peak observed the second time the temperature was raised.
  • the glass transition temperature Tg was determined by reading the value observed at the second heating.
  • the crystallization temperature Tc was determined by reading the peak top value of the exothermic peak observed during cooling. For Tm, Tg and Tc, when multiple peaks were observed, the peak top value of each peak was read.
  • the crystallization heat value ⁇ Hm (mJ/mg) was calculated from the area of the exothermic peak observed during cooling.
  • ⁇ Semi-crystallization time> The semi-crystallization time of the polyimide resin was measured using a differential scanning calorimeter ("DSC-6220" manufactured by SII Nanotechnology Co., Ltd.). After holding at 420 ° C. for 10 minutes in a nitrogen atmosphere to completely melt the polyimide resin, when performing a rapid cooling operation at a cooling rate of 70 ° C./min, the peak top from the appearance of the observed crystallization peak. Calculate the time it took to reach In addition, in Table 1, when the semi-crystallization time was 20 seconds or less, it was described as " ⁇ 20".
  • the weight-average molecular weight (Mw) of the polyimide resin, the weight-average molecular weight and number-average molecular weight of the amorphous resin (B1) were measured using a gel permeation chromatography (GPC) measuring device "Shodex GPC-101" manufactured by Showa Denko Co., Ltd. was used and measured under the following conditions.
  • GPC gel permeation chromatography
  • ⁇ Intrinsic viscosity [ ⁇ ]> The intrinsic viscosities of the amorphous resins (B1) and (B2) were measured according to JIS K7367-5:2000 by the following method. As measurement samples, powder of the amorphous resin (B1) and pellets of the amorphous resin (B2) were used. N,N-dimethylformamide solutions of measurement samples with concentrations of 0.5 g/dL, 1.0 g/dL, and 1.5 g/dL were prepared. The viscosity of this solution was measured three times in a constant temperature bath at 25 ⁇ 0.05° C. using an Ubbelote viscometer (No. 0B), and the reduced viscosity (unit: dL/g) was calculated from the average value.
  • the concentration (g / dL) of the measurement sample is plotted on the horizontal axis and the reduced viscosity (dL / g) is plotted on the vertical axis to draw a calibration curve, and the viscosity value extrapolated to a concentration of 0 g / dL is the intrinsic viscosity (unit: dL / g).
  • the polyimide resin of Production Example 1 the amorphous resin, or the polyimide resin composition produced in each example, an injection molded body was produced by the method described later, and cut into a size of 30 mm ⁇ 20 mm ⁇ 4 mm in thickness. This was conditioned in an environment of 23° C. and relative humidity of 50% for 24 hours or longer before being used for measurement. After the molded article was dried in a hot air circulation oven at 50°C for 24 hours, it was returned to room temperature in a desiccator, and the mass (W 0 ) was measured under an environment of 23°C and a relative humidity of 50%.
  • CTE ⁇ Coefficient of thermal expansion
  • JIS K7197:2012 JIS K7197:2012.
  • a thermomechanical analyzer "TMA7100C” manufactured by Hitachi High-Tech Science Co., Ltd. was used in a nitrogen stream (150 mL/min) in compression mode with a load of 49 mN and a heating rate of 5 ° C./min.
  • the TMA measurement was performed by raising the temperature from 23 to 300° C. under the conditions of .
  • the TMA measurement was performed in the machine direction (MD) and the direction (TD) perpendicular to the machine direction (MD) of the injection molded product, and the CTE was obtained from the measured values at 23 to 220°C.
  • Production Example 1 (Production of Polyimide Resin 1)
  • a 2 L separable flask equipped with a Dean-Stark apparatus, a Liebig condenser, a thermocouple, and four paddle blades 500 g of 2-(2-methoxyethoxy) ethanol (manufactured by Nippon Nyukazai Co., Ltd.) and pyromellitic dianhydride ( 218.12 g (1.00 mol) of Mitsubishi Gas Chemical Co., Ltd.) was introduced, and after nitrogen flow, the mixture was stirred at 150 rpm to form a uniform suspension.
  • 1,8- A mixed diamine solution was prepared by dissolving 93.77 g (0.65 mol) of octamethylenediamine (manufactured by Kanto Chemical Co., Ltd.) in 250 g of 2-(2-methoxyethoxy)ethanol. The mixed diamine solution was added slowly using a plunger pump. Heat was generated by the dropwise addition, but the internal temperature was adjusted to be within the range of 40 to 80°C.
  • polyimide resin 1 In the process of increasing the temperature, precipitation of polyimide resin powder and dehydration due to imidization were confirmed when the liquid temperature was 120 to 140°C. After holding at 190° C. for 30 minutes, the mixture was allowed to cool to room temperature and filtered. The obtained polyimide resin powder was washed with 300 g of 2-(2-methoxyethoxy)ethanol and 300 g of methanol, filtered, and then dried in a dryer at 180° C. for 10 hours to obtain 317 g of crystalline thermoplastic polyimide resin 1. (hereinafter also simply referred to as "polyimide resin 1”) was obtained.
  • Table 1 shows the composition and evaluation results of polyimide resin 1 in Production Example 1.
  • the mol % of the tetracarboxylic acid component and the diamine component in Table 1 are values calculated from the amount of each component charged during the production of the polyimide resin.
  • amorphous resin B1
  • Examples 2 to 5 polyimide resin composition, production and evaluation of molded body
  • An injection molded body was produced in the same manner as in Example 1, except that the polyimide resin 1 powder obtained in Production Example 1 and the amorphous resin (B) were used in the proportions shown in Table 2. Various evaluations were performed. Table 2 shows the results. A powder was used for the amorphous resin (B1), and pellets were used for the amorphous resins (B2) and (B3).
  • Comparative example 1 ⁇ Preparation of injection molded body>
  • the polyimide resin 1 powder obtained in Production Example 1 was melt-kneaded and extruded using Laboplastomill (manufactured by Toyo Seiki Seisakusho Co., Ltd.) at a barrel temperature of 360° C. and a screw rotation speed of 150 rpm. After the strand extruded from the extruder was air-cooled, it was pelletized by a pelletizer ("Fan Cutter FC-Mini-4/N" manufactured by Hoshi Plastics Co., Ltd.). The obtained pellets were dried at 150° C. for 12 hours and then used for injection molding.
  • injection molding is performed with a barrel temperature of 350°C, a mold temperature of 200°C, and a molding cycle of 50 seconds. A molded body for water absorption and CTE measurement was produced. Various evaluations were performed by the methods described above using the obtained injection molded article. Table 2 shows the results.
  • Comparative example 2 ⁇ Preparation of injection molded body> A powder of amorphous resin (B1) ("Sumika Excel 3600P” manufactured by Sumitomo Chemical Co., Ltd.) was melted and mixed using a Laboplastomill (manufactured by Toyo Seiki Seisakusho Co., Ltd.) at a barrel temperature of 360 ° C. and a screw rotation speed of 150 rpm. smelted and extruded. After the strand extruded from the extruder was air-cooled, it was pelletized by a pelletizer ("Fan Cutter FC-Mini-4/N" manufactured by Hoshi Plastics Co., Ltd.). The obtained pellets were dried at 160° C. for 6 hours and then used for injection molding.
  • injection molding is performed with a barrel temperature of 350°C, a mold temperature of 180°C, and a molding cycle of 60 seconds.
  • a molded body for water absorption and CTE measurement was produced.
  • Various evaluations were performed by the methods described above using the obtained injection molded article. Table 2 shows the results.
  • Comparative example 3 ⁇ Preparation of injection molded body> Pellets of amorphous resin (B2) ("Ultrason S2010" manufactured by BASF) are molded using an injection molding machine ("ROBOSHOT ⁇ -S30iA” manufactured by Fanuc Corporation) at a barrel temperature of 370°C and a mold temperature of Injection molding was performed at 160° C. and a molding cycle of 60 seconds, and a predetermined size was cut out to prepare a molded body for water absorption and CTE measurement. Various evaluations were performed by the methods described above using the obtained injection molded article. Table 2 shows the results.
  • B2 amorphous resin
  • ROBOSHOT ⁇ -S30iA manufactured by Fanuc Corporation
  • Comparative example 4 ⁇ Preparation of injection molded body> Pellets of amorphous resin (B3) ("Ultrason P3010" manufactured by BASF) were molded using an injection molding machine ("ROBOSHOT ⁇ -S30iA” manufactured by Fanuc Corporation) at a barrel temperature of 370°C and a mold temperature of Injection molding was performed at 160° C. and a molding cycle of 60 seconds, and a predetermined size was cut out to prepare a molded body for water absorption and CTE measurement. Various evaluations were performed by the methods described above using the obtained injection molded article. Table 2 shows the results.
  • B3 amorphous resin
  • ROBOSHOT ⁇ -S30iA manufactured by Fanuc Corporation
  • the molded bodies made of the polyimide resin composition of the present invention have a lower linear thermal expansion coefficient than the molded bodies of Comparative Examples 1 to 4 and excellent dimensional stability. It can be seen that the water absorption rate is also low. Further, in Examples 1 to 5, the difference between the measured value of crystallization exotherm ⁇ Hm and the value of “ ⁇ Hm 0 ⁇ mass ratio of component (A)” was within ⁇ 30%. It can be inferred that the compact of has a microphase-separated structure.
  • each pellet was cut perpendicularly to the flow direction (MD) of the pellet 1 as shown in FIG. 1 (that is, so that a TD cross section appears) using a microtome ("EM UC 7" manufactured by LEICA MICROSYSTEMS). After staining this cut surface with ruthenium tetroxide for 30 minutes in the gas phase, a field emission scanning electron microscope (FE-SEM, "GeminiSEM500” manufactured by ZEISS) was used at an acceleration voltage of 1 kV and an observation magnification of 3000 times. observed (Figs. 2-4).
  • FE-SEM field emission scanning electron microscope
  • the polyimide resin composition and molded article of the present invention have a low coefficient of linear thermal expansion and excellent dimensional stability, and therefore are suitable for, for example, films, copper-clad laminates, electrical and electronic members that require a low coefficient of thermal expansion. .

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Macromolecular Compounds Obtained By Forming Nitrogen-Containing Linkages In General (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

下記式(1)で示される繰り返し構成単位及び下記式(2)で示される繰り返し構成単位を含み、該式(1)の繰り返し構成単位と該式(2)の繰り返し構成単位の合計に対する該式(1)の繰り返し構成単位の含有比が20~70モル%のポリイミド樹脂(A)と、所定の式(I)で示される繰り返し構成単位を含む非晶性樹脂(B)とを含有するポリイミド樹脂組成物、及びこれを含む成形体である。 (R1は少なくとも1つの脂環式炭化水素構造を含む炭素数6~22の2価の基である。R2は炭素数5~16の2価の鎖状脂肪族基である。X1及びX2は、それぞれ独立に、少なくとも1つの芳香環を含む炭素数6~22の4価の基である。)

Description

ポリイミド樹脂組成物及び成形体
 本発明は、ポリイミド樹脂組成物及び成形体に関する。
 ポリイミド樹脂は分子鎖の剛直性、共鳴安定化、強い化学結合によって、高熱安定性、高強度、高耐溶媒性を有する有用なエンジニアリングプラスチックであり、幅広い分野で応用されている。また結晶性を有しているポリイミド樹脂はその耐熱性、強度、耐薬品性をさらに向上させることができることから、金属代替等としての利用が期待されている。しかしながらポリイミド樹脂は高耐熱性である反面、熱可塑性を示さず、成形加工性が低いという問題がある。
 ポリイミド成形材料としては高耐熱樹脂ベスペル(登録商標)等が知られているが(特許文献1)、高温下でも流動性が極めて低いため成形加工が困難であり、高温、高圧条件下で長時間成形を行う必要があることからコスト的にも不利である。これに対し、結晶性樹脂のように融点を有し、高温での流動性がある樹脂であれば容易にかつ安価で成形加工が可能である。
 そこで近年、熱可塑性を有するポリイミド樹脂が報告されている。熱可塑性ポリイミド樹脂はポリイミド樹脂が本来有している耐熱性に加え、成形加工性にも優れる。そのため熱可塑性ポリイミド樹脂は、汎用の熱可塑性樹脂であるナイロンやポリエステルは適用できなかった過酷な環境下で使用される成形体への適用も可能である。
 例えば特許文献2には、少なくとも1つの芳香環を含むテトラカルボン酸及び/またはその誘導体、少なくとも1つの脂環式炭化水素構造を含むジアミン、及び鎖状脂肪族ジアミンを反応させて得られる、所定の繰り返し構成単位を含む熱可塑性ポリイミド樹脂が開示されている。
 エンジニアリングプラスチック分野において、物性の改良、用途に応じた機能付与等を目的として、2種以上の熱可塑性樹脂をコンパウンドしてアロイ化する技術も知られている。特許文献3には、所定の繰り返し単位を含む熱可塑性ポリイミド樹脂が開示され、該ポリイミド樹脂と他の樹脂とを併用してポリマーアロイとして用いることも記載されている。
特開2005-28524号公報 国際公開第2013/118704号 国際公開第2016/147996号
 特許文献3に記載の熱可塑性ポリイミド樹脂は結晶性を有し、耐熱性、強度、耐薬品性等に優れるが、用途によっては幅広い温度範囲における高レベルの寸法安定性が求められ、この点においてさらなる改善の余地があった。
 本発明の課題は、熱線膨張係数が低く寸法安定性に優れる成形体を作成し得るポリイミド樹脂組成物を提供することにある。
 本発明者らは、特定の異なるポリイミド構成単位を特定の比率で組み合わせた結晶性熱可塑性ポリイミド樹脂と、特定構造を有する非晶性樹脂とを含有するポリイミド樹脂組成物が上記課題を解決できることを見出した。
 すなわち本発明は、下記に関する。
[1]下記式(1)で示される繰り返し構成単位及び下記式(2)で示される繰り返し構成単位を含み、該式(1)の繰り返し構成単位と該式(2)の繰り返し構成単位の合計に対する該式(1)の繰り返し構成単位の含有比が20~70モル%のポリイミド樹脂(A)と、下記式(I)で示される繰り返し構成単位を含む非晶性樹脂(B)とを含有するポリイミド樹脂組成物。
Figure JPOXMLDOC01-appb-C000004

(Rは少なくとも1つの脂環式炭化水素構造を含む炭素数6~22の2価の基である。Rは炭素数5~16の2価の鎖状脂肪族基である。X及びXは、それぞれ独立に、少なくとも1つの芳香環を含む炭素数6~22の4価の基である。)
Figure JPOXMLDOC01-appb-C000005

(Rは単結合、又は、少なくとも1つの芳香環を含む炭素数6~22の2価の基である。nは繰り返し構成単位数であり、1を超える数である。)
[2]上記[1]に記載のポリイミド樹脂組成物を含む成形体。
 本発明のポリイミド樹脂組成物及び成形体は、熱線膨張係数が低く寸法安定性に優れることから、例えば、低熱線膨張係数を要求されるフィルム、銅張積層板、電気、電子部材に好適である。
フィールドエミッション型走査型電子顕微鏡(FE-SEM)観察に用いた試料の作製方法を示す模式図である。 実施例2のポリイミド樹脂組成物(ペレット)の、流れ方向(MD)に対し垂直に切断した断面をFE-SEMにより観察した際の顕微鏡写真である。 実施例3のポリイミド樹脂組成物(ペレット)の、流れ方向(MD)に対し垂直に切断した断面をFE-SEMにより観察した際の顕微鏡写真である。 実施例5のポリイミド樹脂組成物(ペレット)の、流れ方向(MD)に対し垂直に切断した断面をFE-SEMにより観察した際の顕微鏡写真である。
[ポリイミド樹脂組成物]
 本発明のポリイミド樹脂組成物は、下記式(1)で示される繰り返し構成単位及び下記式(2)で示される繰り返し構成単位を含み、該式(1)の繰り返し構成単位と該式(2)の繰り返し構成単位の合計に対する該式(1)の繰り返し構成単位の含有比が20~70モル%のポリイミド樹脂(A)と、下記式(I)で示される繰り返し構成単位を含む非晶性樹脂(B)とを含有する。
Figure JPOXMLDOC01-appb-C000006

(Rは少なくとも1つの脂環式炭化水素構造を含む炭素数6~22の2価の基である。Rは炭素数5~16の2価の鎖状脂肪族基である。X及びXは、それぞれ独立に、少なくとも1つの芳香環を含む炭素数6~22の4価の基である。)
Figure JPOXMLDOC01-appb-C000007

(Rは単結合、又は、少なくとも1つの芳香環を含む炭素数6~22の2価の基である。nは繰り返し構成単位数であり、1を超える数である。)
 本発明のポリイミド樹脂組成物は、上記構成とすることにより、熱線膨張係数(以下「CTE」ともいう)が低く寸法安定性に優れる成形体を作成し得るポリイミド樹脂組成物となる。この理由については定かではないが、次のように考えられる。
 成分(A)は結晶性樹脂、成分(B)は非晶性樹脂であり、且つ成分(B)は極性基であるスルホニル基を有している。そのため成分(A)と成分(B)は溶融混練しても混然一体とはなり難いが、相互分散性が高いため、得られる樹脂組成物及び成形体中ではマイクロ~ナノレベルで相互分散し、海島構造等のミクロ相分離構造を形成していると考えられる。成分(A)又は成分(B)がマイクロ~ナノレベルで微分散した成形体は応力を与えた際にも応力分散しやすいので、加熱による収縮応力が生じた場合に応力緩和が生じやすいと考えられる。さらに、成分(A)及び成分(B)は熱可塑性樹脂の中でも比較的耐熱性が高い樹脂であることから、高温領域においてもより高い寸法安定性を維持できると考えられる。
 本発明のポリイミド樹脂組成物を成形して得られる成形体は、より低いCTEを達成する観点から、ミクロ相分離構造を有することが好ましい。ミクロ相分離構造は成分(A)と成分(B)との相分離により形成され、海島構造でも共連続構造でもよいが、海島構造であることが好ましい。
 海島構造においては、成形体中の成分(A)及び成分(B)の質量比によって、いずれの成分が「海」を形成していてもよい。
 本明細書において、成形体がミクロ相分離構造を有しているか否かについては、成形体の表面又は断面を走査型電子顕微鏡(SEM)で観察することによって判別できる。
 あるいは、成形体がミクロ相分離構造を有しているか否かについては、成分(A)単独での結晶化発熱量をΔHm、成形体の結晶化発熱量をΔHmとした場合に、ΔHm×(成形体中の成分(A)の質量割合)の値がΔHmに近い値、具体的には、[ΔHm-{ΔHm×(成形体中の成分(A)の質量割合)}/ΔHm×100=±30%以内であれば、成形体がミクロ相分離構造を有していると判断できる。結晶化発熱量は、具体的には実施例に記載の方法により測定できる。
<ポリイミド樹脂(A)>
 本発明に用いるポリイミド樹脂(A)は、下記式(1)で示される繰り返し構成単位及び下記式(2)で示される繰り返し構成単位を含み、該式(1)の繰り返し構成単位と該式(2)の繰り返し構成単位の合計に対する該式(1)の繰り返し構成単位の含有比が20~70モル%である。
Figure JPOXMLDOC01-appb-C000008

(Rは少なくとも1つの脂環式炭化水素構造を含む炭素数6~22の2価の基である。Rは炭素数5~16の2価の鎖状脂肪族基である。X及びXは、それぞれ独立に、少なくとも1つの芳香環を含む炭素数6~22の4価の基である。)
 本発明に用いるポリイミド樹脂(A)は結晶性熱可塑性樹脂であり、その形態としては粉末又はペレットであることが好ましい。熱可塑性ポリイミド樹脂は、例えばポリアミド酸等のポリイミド前駆体の状態で成形した後にイミド環を閉環して形成される、ガラス転移温度(Tg)を持たないポリイミド樹脂、あるいはガラス転移温度よりも低い温度で分解してしまうポリイミド樹脂とは区別される。
 式(1)の繰り返し構成単位について、以下に詳述する。
 Rは少なくとも1つの脂環式炭化水素構造を含む炭素数6~22の2価の基である。ここで、脂環式炭化水素構造とは、脂環式炭化水素化合物から誘導される環を意味し、該脂環式炭化水素化合物は、飽和であっても不飽和であってもよく、単環であっても多環であってもよい。
 脂環式炭化水素構造としては、シクロヘキサン環等のシクロアルカン環、シクロヘキセン等のシクロアルケン環、ノルボルナン環等のビシクロアルカン環、及びノルボルネン等のビシクロアルケン環が例示されるが、これらに限定されるわけではない。これらの中でも、好ましくはシクロアルカン環、より好ましくは炭素数4~7のシクロアルカン環、さらに好ましくはシクロヘキサン環である。
 Rの炭素数は6~22であり、好ましくは8~17である。
 Rは脂環式炭化水素構造を少なくとも1つ含み、好ましくは1~3個含む。
 Rは、好ましくは下記式(R1-1)又は(R1-2)で表される2価の基である。
Figure JPOXMLDOC01-appb-C000009

(m11及びm12は、それぞれ独立に、0~2の整数であり、好ましくは0又は1である。m13~m15は、それぞれ独立に、0~2の整数であり、好ましくは0又は1である。)
 Rは、特に好ましくは下記式(R1-3)で表される2価の基である。
Figure JPOXMLDOC01-appb-C000010

 なお、上記の式(R1-3)で表される2価の基において、2つのメチレン基のシクロヘキサン環に対する位置関係はシスであってもトランスであってもよく、またシスとトランスの比は如何なる値でもよい。
 Xは少なくとも1つの芳香環を含む炭素数6~22の4価の基である。前記芳香環は単環でも縮合環でもよく、ベンゼン環、ナフタレン環、アントラセン環、及びテトラセン環が例示されるが、これらに限定されるわけではない。これらの中でも、好ましくはベンゼン環及びナフタレン環であり、より好ましくはベンゼン環である。
 Xの炭素数は6~22であり、好ましくは6~18である。
 Xは芳香環を少なくとも1つ含み、好ましくは1~3個含む。
 Xは、好ましくは下記式(X-1)~(X-4)のいずれかで表される4価の基である。
Figure JPOXMLDOC01-appb-C000011

(R11~R18は、それぞれ独立に、炭素数1~4のアルキル基である。p11~p13は、それぞれ独立に、0~2の整数であり、好ましくは0である。p14、p15、p16及びp18は、それぞれ独立に、0~3の整数であり、好ましくは0である。p17は0~4の整数であり、好ましくは0である。L11~L13は、それぞれ独立に、単結合、カルボニル基又は炭素数1~4のアルキレン基である。)
 なお、Xは少なくとも1つの芳香環を含む炭素数6~22の4価の基であるので、式(X-2)におけるR12、R13、p12及びp13は、式(X-2)で表される4価の基の炭素数が10~22の範囲に入るように選択される。
 同様に、式(X-3)におけるL11、R14、R15、p14及びp15は、式(X-3)で表される4価の基の炭素数が12~22の範囲に入るように選択され、式(X-4)におけるL12、L13、R16、R17、R18、p16、p17及びp18は、式(X-4)で表される4価の基の炭素数が18~22の範囲に入るように選択される。
 Xは、特に好ましくは下記式(X-5)又は(X-6)で表される4価の基である。
Figure JPOXMLDOC01-appb-C000012
 次に、式(2)の繰り返し構成単位について、以下に詳述する。
 Rは炭素数5~16の2価の鎖状脂肪族基であり、好ましくは炭素数6~14、より好ましくは炭素数7~12、更に好ましくは炭素数8~10である。ここで、鎖状脂肪族基とは、鎖状脂肪族化合物から誘導される基を意味し、該鎖状脂肪族化合物は、飽和であっても不飽和であってもよく、直鎖状であっても分岐状であってもよい。
 Rは、好ましくは炭素数5~16のアルキレン基であり、より好ましくは炭素数6~14、更に好ましくは炭素数7~12のアルキレン基であり、なかでも好ましくは炭素数8~10のアルキレン基である。前記アルキレン基は、直鎖アルキレン基であっても分岐アルキレン基であってもよいが、好ましくは直鎖アルキレン基である。
 Rは、好ましくはオクタメチレン基及びデカメチレン基からなる群から選ばれる少なくとも1種であり、特に好ましくはオクタメチレン基である。
 Xは、式(1)におけるXと同様に定義され、好ましい様態も同様である。
 式(1)の繰り返し構成単位と式(2)の繰り返し構成単位の合計に対する、式(1)の繰り返し構成単位の含有比は20~70モル%である。式(1)の繰り返し構成単位の含有比が上記範囲である場合、一般的な射出成型サイクルにおいても、ポリイミド樹脂を十分に結晶化させ得ることが可能となる。該含有量比が20モル%未満であると成形加工性が低下し、70モル%を超えると結晶性が低下するため、耐熱性が低下する。
 式(1)の繰り返し構成単位と式(2)の繰り返し構成単位の合計に対する、式(1)の繰り返し構成単位の含有比は、高い結晶性を発現する観点から、好ましくは65モル%以下、より好ましくは60モル%以下、更に好ましくは50モル%以下、より更に好ましくは40モル%未満である。
 式(1)の繰り返し構成単位と式(2)の繰り返し構成単位の合計に対する式(1)の繰り返し構成単位の含有比が20モル%以上、40モル%未満であると、ポリイミド樹脂(A)の結晶性が高くなり、より耐熱性に優れる樹脂成形体を得ることができる。上記含有比は、成形加工性の観点からは、好ましくは25モル%以上、より好ましくは30モル%以上、更に好ましくは32モル%以上であり、高い結晶性を発現する観点から、より更に好ましくは35モル%以下である。
 ポリイミド樹脂(A)を構成する全繰り返し構成単位に対する、式(1)の繰り返し構成単位と式(2)の繰り返し構成単位の合計の含有比は、好ましくは50~100モル%、より好ましくは75~100モル%、更に好ましくは80~100モル%、より更に好ましくは85~100モル%である。
 ポリイミド樹脂(A)は、さらに、下記式(3)の繰り返し構成単位を含有してもよい。その場合、式(1)の繰り返し構成単位と式(2)の繰り返し構成単位の合計に対する、式(3)の繰り返し構成単位の含有比は、好ましくは25モル%以下である。一方で、下限は特に限定されず、0モル%を超えていればよい。
 式(3)の繰り返し構成単位を含有する場合、前記含有比は、耐熱性の向上という観点からは、好ましくは5モル%以上、より好ましくは10モル%以上であり、一方で結晶性を維持する観点からは、好ましくは20モル%以下、より好ましくは15モル%以下である。
Figure JPOXMLDOC01-appb-C000013

(Rは少なくとも1つの芳香環を含む炭素数6~22の2価の基である。Xは少なくとも1つの芳香環を含む炭素数6~22の4価の基である。)
 Rは少なくとも1つの芳香環を含む炭素数6~22の2価の基である。前記芳香環は単環でも縮合環でもよく、ベンゼン環、ナフタレン環、アントラセン環、及びテトラセン環が例示されるが、これらに限定されるわけではない。これらの中でも、好ましくはベンゼン環及びナフタレン環であり、より好ましくはベンゼン環である。
 Rの炭素数は6~22であり、好ましくは6~18である。
 Rは芳香環を少なくとも1つ含み、好ましくは1~3個含む。
 Rは、好ましくは下記式(R3-1)又は(R3-2)で表される2価の基である。
Figure JPOXMLDOC01-appb-C000014

(m31及びm32は、それぞれ独立に、0~2の整数であり、好ましくは0又は1である。m33及びm34は、それぞれ独立に、0~2の整数であり、好ましくは0又は1である。R21、R22、及びR23は、それぞれ独立に、炭素数1~4のアルキル基、炭素数2~4のアルケニル基、又は炭素数2~4のアルキニル基である。p21、p22及びp23は0~4の整数であり、好ましくは0である。L21は、単結合、カルボニル基又は炭素数1~4のアルキレン基である。)
 なお、Rは少なくとも1つの芳香環を含む炭素数6~22の2価の基であるので、式(R3-1)におけるm31、m32、R21及びp21は、式(R3-1)で表される2価の基の炭素数が6~22の範囲に入るように選択される。
 同様に、式(R3-2)におけるL21、m33、m34、R22、R23、p22及びp23は、式(R3-2)で表される2価の基の炭素数が12~22の範囲に入るように選択される。
 Xは、式(1)におけるXと同様に定義され、好ましい様態も同様である。
 ポリイミド樹脂(A)の末端構造には特に制限はないが、炭素数5~14の鎖状脂肪族基を末端に有することが好ましい。
 該鎖状脂肪族基は、飽和であっても不飽和であってもよく、直鎖状であっても分岐状であってもよい。ポリイミド樹脂(A)が上記特定の基を末端に有すると、耐熱老化性に優れる樹脂組成物を得ることができる。
 炭素数5~14の飽和鎖状脂肪族基としては、n-ペンチル基、n-ヘキシル基、n-ヘプチル基、n-オクチル基、n-ノニル基、n-デシル基、n-ウンデシル基、ラウリル基、n-トリデシル基、n-テトラデシル基、イソペンチル基、ネオペンチル基、2-メチルペンチル基、2-メチルヘキシル基、2-エチルペンチル基、3-エチルペンチル基、イソオクチル基、2-エチルヘキシル基、3-エチルヘキシル基、イソノニル基、2-エチルオクチル基、イソデシル基、イソドデシル基、イソトリデシル基、イソテトラデシル基等が挙げられる。
 炭素数5~14の不飽和鎖状脂肪族基としては、1-ペンテニル基、2-ペンテニル基、1-へキセニル基、2-へキセニル基、1-ヘプテニル基、2-ヘプテニル基、1-オクテニル基、2-オクテニル基、ノネニル基、デセニル基、ドデセニル基、トリデセニル基、テトラデセニル基等が挙げられる。
 中でも、上記鎖状脂肪族基は飽和鎖状脂肪族基であることが好ましく、飽和直鎖状脂肪族基であることがより好ましい。また耐熱老化性を得る観点から、上記鎖状脂肪族基は好ましくは炭素数6以上、より好ましくは炭素数7以上、更に好ましくは炭素数8以上であり、好ましくは炭素数12以下、より好ましくは炭素数10以下、更に好ましくは炭素数9以下である。上記鎖状脂肪族基は1種のみでもよく、2種以上でもよい。
 上記鎖状脂肪族基は、特に好ましくはn-オクチル基、イソオクチル基、2-エチルヘキシル基、n-ノニル基、イソノニル基、n-デシル基、及びイソデシル基からなる群から選ばれる少なくとも1種であり、更に好ましくはn-オクチル基、イソオクチル基、2-エチルヘキシル基、n-ノニル基、及びイソノニル基からなる群から選ばれる少なくとも1種であり、最も好ましくはn-オクチル基、イソオクチル基、及び2-エチルヘキシル基からなる群から選ばれる少なくとも1種である。
 またポリイミド樹脂(A)は、耐熱老化性の観点から、末端アミノ基及び末端カルボキシ基以外に、炭素数5~14の鎖状脂肪族基のみを末端に有することが好ましい。上記以外の基を末端に有する場合、その含有量は、好ましくは炭素数5~14の鎖状脂肪族基に対し10モル%以下、より好ましくは5モル%以下である。
 ポリイミド樹脂(A)中の上記炭素数5~14の鎖状脂肪族基の含有量は、優れた耐熱老化性を発現する観点から、ポリイミド樹脂(A)を構成する全繰り返し構成単位の合計100モル%に対し、好ましくは0.01モル%以上、より好ましくは0.1モル%以上、更に好ましくは0.2モル%以上である。また、十分な分子量を確保し良好な機械的物性を得るためには、ポリイミド樹脂(A)中の上記炭素数5~14の鎖状脂肪族基の含有量は、ポリイミド樹脂(A)を構成する全繰り返し構成単位の合計100モル%に対し、好ましくは10モル%以下、より好ましくは6モル%以下、更に好ましくは3.5モル%以下、より更に好ましくは2.0モル%以下、より更に好ましくは1.2モル%以下である。
 ポリイミド樹脂(A)中の上記炭素数5~14の鎖状脂肪族基の含有量は、ポリイミド樹脂(A)を解重合することにより求めることができる。
 ポリイミド樹脂(A)は、360℃以下の融点を有し、かつ150℃以上のガラス転移温度を有することが好ましい。ポリイミド樹脂(A)の融点は、耐熱性の観点から、より好ましくは280℃以上、更に好ましくは290℃以上であり、高い成形加工性を発現する観点からは、好ましくは345℃以下、より好ましくは340℃以下、更に好ましくは335℃以下である。また、ポリイミド樹脂(A)のガラス転移温度は、耐熱性の観点から、より好ましくは160℃以上、より好ましくは170℃以上であり、高い成形加工性を発現する観点からは、好ましくは250℃以下、より好ましくは230℃以下、更に好ましくは200℃以下である。
 またポリイミド樹脂(A)は、結晶性、耐熱性、機械的強度、耐薬品性を向上させる観点から、示差走査型熱量計測定により、該ポリイミド樹脂を溶融後、降温速度20℃/分で冷却した際に観測される結晶化発熱ピークの熱量(以下、単に「結晶化発熱量」ともいう)が、5.0mJ/mg以上であることが好ましく、10.0mJ/mg以上であることがより好ましく、17.0mJ/mg以上であることが更に好ましい。結晶化発熱量の上限値は特に限定されないが、通常、45.0mJ/mg以下である。
 ポリイミド樹脂(A)の融点、ガラス転移温度、結晶化発熱量は、いずれも示差走査型熱量計により測定することができ、具体的には実施例に記載の方法により測定できる。
 ポリイミド樹脂(A)の重量平均分子量Mwは、好ましくは10,000~150,000、より好ましくは15,000~100,000、更に好ましくは20,000~80,000、より更に好ましくは30,000~70,000、より更に好ましくは35,000~65,000の範囲である。ポリイミド樹脂(A)の重量平均分子量Mwが10,000以上であれば得られる成形体の機械的強度が良好になり、40,000以上であれば機械的強度の安定性が良好になるとともに、前述したミクロ相分離構造を形成しやすくなり、より低いCTEを達成することができる。また、150,000以下であれば成形加工性が良好になる。
 ポリイミド樹脂(A)の重量平均分子量Mwは、ポリメチルメタクリレート(PMMA)を標準試料としてゲルろ過クロマトグラフィー(GPC)法により測定することができ、具体的には実施例に記載の方法で測定できる。
 ポリイミド樹脂(A)の5質量%濃硫酸溶液の30℃における対数粘度は、好ましくは0.8~2.0dL/g、より好ましくは0.9~1.8dL/gの範囲である。対数粘度が0.8dL/g以上であれば、成形体とした際に十分な機械的強度が得られる。対数粘度が2.0dL/g以下であると、成形加工性及び取り扱い性が良好になる。対数粘度μは、キャノンフェンスケ粘度計を使用して、30℃において濃硫酸及び上記ポリイミド樹脂溶液の流れる時間をそれぞれ測定し、下記式から求められる。
  μ=ln[(ts/t)/C]
   t:濃硫酸の流れる時間
   ts:ポリイミド樹脂溶液の流れる時間
   C:0.5(g/dL)
(ポリイミド樹脂(A)の製造方法)
 ポリイミド樹脂(A)は、テトラカルボン酸成分とジアミン成分とを反応させることにより製造することができる。該テトラカルボン酸成分は少なくとも1つの芳香環を含むテトラカルボン酸及び/又はその誘導体を含有し、該ジアミン成分は少なくとも1つの脂環式炭化水素構造を含むジアミン及び鎖状脂肪族ジアミンを含有する。
 少なくとも1つの芳香環を含むテトラカルボン酸は4つのカルボキシ基が直接芳香環に結合した化合物であることが好ましく、構造中にアルキル基を含んでいてもよい。また前記テトラカルボン酸は、炭素数6~26であるものが好ましい。前記テトラカルボン酸としては、ピロメリット酸、2,3,5,6-トルエンテトラカルボン酸、3,3’,4,4’-ベンゾフェノンテトラカルボン酸、3,3’,4,4’-ビフェニルテトラカルボン酸、1,4,5,8-ナフタレンテトラカルボン酸等が好ましい。これらの中でもピロメリット酸がより好ましい。
 少なくとも1つの芳香環を含むテトラカルボン酸の誘導体としては、少なくとも1つの芳香環を含むテトラカルボン酸の無水物又はアルキルエステル体が挙げられる。前記テトラカルボン酸誘導体は、炭素数6~38であるものが好ましい。テトラカルボン酸の無水物としては、ピロメリット酸一無水物、ピロメリット酸二無水物、2,3,5,6-トルエンテトラカルボン酸二無水物、3,3’,4,4’-ジフェニルスルホンテトラカルボン酸二無水物、3,3’,4,4’-ベンゾフェノンテトラカルボン酸二無水物、3,3’,4,4’-ビフェニルテトラカルボン酸二無水物、1,4,5,8-ナフタレンテトラカルボン酸二無水物等が挙げられる。テトラカルボン酸のアルキルエステル体としては、ピロメリット酸ジメチル、ピロメリット酸ジエチル、ピロメリット酸ジプロピル、ピロメリット酸ジイソプロピル、2,3,5,6-トルエンテトラカルボン酸ジメチル、3,3’,4,4’-ジフェニルスルホンテトラカルボン酸ジメチル、3,3’,4,4’-ベンゾフェノンテトラカルボン酸ジメチル、3,3’,4,4’-ビフェニルテトラカルボン酸ジメチル、1,4,5,8-ナフタレンテトラカルボン酸ジメチル等が挙げられる。上記テトラカルボン酸のアルキルエステル体において、アルキル基の炭素数は1~3が好ましい。
 少なくとも1つの芳香環を含むテトラカルボン酸及び/又はその誘導体は、上記から選ばれる少なくとも1つの化合物を単独で用いてもよく、2つ以上の化合物を組み合わせて用いてもよい。
 少なくとも1つの脂環式炭化水素構造を含むジアミンの炭素数は6~22が好ましく、例えば、1,2-ビス(アミノメチル)シクロヘキサン、1,3-ビス(アミノメチル)シクロヘキサン、1,4-ビス(アミノメチル)シクロヘキサン、1,2-シクロヘキサンジアミン、1,3-シクロヘキサンジアミン、1,4-シクロヘキサンジアミン、4,4’-ジアミノジシクロヘキシルメタン、4,4’-メチレンビス(2-メチルシクロヘキシルアミン)、カルボンジアミン、リモネンジアミン、イソフォロンジアミン、ノルボルナンジアミン、ビス(アミノメチル)トリシクロ[5.2.1.02,6]デカン、3,3’-ジメチル-4,4’-ジアミノジシクロヘキシルメタン、4,4’-ジアミノジシクロヘキシルプロパン等が好ましい。これらの化合物を単独で用いてもよく、これらから選ばれる2つ以上の化合物を組み合わせて用いてもよい。これらのうち、1,3-ビス(アミノメチル)シクロヘキサンが好適に使用できる。なお、脂環式炭化水素構造を含むジアミンは一般的には構造異性体を持つが、シス体/トランス体の比率は限定されない。
 鎖状脂肪族ジアミンは、直鎖状であっても分岐状であってもよく、炭素数は5~16が好ましく、6~14がより好ましく、7~12が更に好ましい。また、鎖部分の炭素数が5~16であれば、その間にエーテル結合を含んでいてもよい。鎖状脂肪族ジアミンとして例えば1,5-ペンタメチレンジアミン、2-メチルペンタン-1,5-ジアミン、3-メチルペンタン-1,5-ジアミン、1,6-ヘキサメチレンジアミン、1,7-ヘプタメチレンジアミン、1,8-オクタメチレンジアミン、1,9-ノナメチレンジアミン、1,10-デカメチレンジアミン、1,11-ウンデカメチレンジアミン、1,12-ドデカメチレンジアミン、1,13-トリデカメチレンジアミン、1,14-テトラデカメチレンジアミン、1,16-ヘキサデカメチレンジアミン、2,2’-(エチレンジオキシ)ビス(エチレンアミン)等が好ましい。
 鎖状脂肪族ジアミンは1種類あるいは複数を混合して使用してもよい。これらのうち、炭素数が8~10の鎖状脂肪族ジアミンが好適に使用でき、特に1,8-オクタメチレンジアミン及び1,10-デカメチレンジアミンからなる群から選ばれる少なくとも1種が好適に使用できる。
 ポリイミド樹脂(A)を製造する際、少なくとも1つの脂環式炭化水素構造を含むジアミンと鎖状脂肪族ジアミンの合計量に対する、少なくとも1つの脂環式炭化水素構造を含むジアミンの仕込み量のモル比は20~70モル%であることが好ましい。該モル量は、好ましくは25モル%以上、より好ましくは30モル%以上、更に好ましくは32モル%以上であり、高い結晶性を発現する観点から、好ましくは60モル%以下、より好ましくは50モル%以下、更に好ましくは40モル%未満、更に好ましくは35モル%以下である。
 また、上記ジアミン成分中に、少なくとも1つの芳香環を含むジアミンを含有してもよい。少なくとも1つの芳香環を含むジアミンの炭素数は6~22が好ましく、例えば、オルトキシリレンジアミン、メタキシリレンジアミン、パラキシリレンジアミン、1,2-ジエチニルベンゼンジアミン、1,3-ジエチニルベンゼンジアミン、1,4-ジエチニルベンゼンジアミン、1,2-ジアミノベンゼン、1,3-ジアミノベンゼン、1,4-ジアミノベンゼン、4,4’-ジアミノジフェニルエーテル、3,4’-ジアミノジフェニルエーテル、4,4’-ジアミノジフェニルメタン、α,α’-ビス(4-アミノフェニル)1,4-ジイソプロピルベンゼン、α,α’-ビス(3-アミノフェニル)-1,4-ジイソプロピルベンゼン、2,2-ビス〔4-(4-アミノフェノキシ)フェニル〕プロパン、2,6-ジアミノナフタレン、1,5-ジアミノナフタレン等が挙げられる。
 上記において、少なくとも1つの脂環式炭化水素構造を含むジアミンと鎖状脂肪族ジアミンの合計量に対する、少なくとも1つの芳香環を含むジアミンの仕込み量のモル比は、25モル%以下であることが好ましく、より好ましくは20モル%以下、更に好ましくは15モル%以下である。
 前記モル比の下限は特に限定されないが、耐熱性の向上という観点からは、好ましくは5モル%以上、より好ましくは10モル%以上である。
 一方で、ポリイミド樹脂の着色を少なくする観点からは、前記モル比は、より更に好ましくは12モル%以下、より更に好ましくは10モル%以下、より更に好ましくは5モル%以下、より更に好ましくは0モル%である。
 ポリイミド樹脂(A)を製造する際、前記テトラカルボン酸成分と前記ジアミン成分の仕込み量比は、テトラカルボン酸成分1モルに対してジアミン成分が0.9~1.1モルであることが好ましい。
 またポリイミド樹脂(A)を製造する際、前記テトラカルボン酸成分、前記ジアミン成分の他に、末端封止剤を混合してもよい。末端封止剤としては、モノアミン類及びジカルボン酸類からなる群から選ばれる少なくとも1種が好ましい。末端封止剤の使用量は、ポリイミド樹脂(A)中に所望量の末端基を導入できる量であればよく、前記テトラカルボン酸及び/又はその誘導体1モルに対して0.0001~0.1モルが好ましく、0.001~0.06モルがより好ましく、0.002~0.035モルが更に好ましく、0.002~0.020モルがより更に好ましく、0.002~0.012モルがより更に好ましい。
 中でも、末端封止剤としてはモノアミン類末端封止剤が好ましく、ポリイミド樹脂(A)の末端に前述した炭素数5~14の鎖状脂肪族基を導入して耐熱老化性を向上させる観点から、炭素数5~14の鎖状脂肪族基を有するモノアミンがより好ましく、炭素数5~14の飽和直鎖状脂肪族基を有するモノアミンが更に好ましい。
 末端封止剤は、特に好ましくはn-オクチルアミン、イソオクチルアミン、2-エチルヘキシルアミン、n-ノニルアミン、イソノニルアミン、n-デシルアミン、及びイソデシルアミンからなる群から選ばれる少なくとも1種であり、更に好ましくはn-オクチルアミン、イソオクチルアミン、2-エチルヘキシルアミン、n-ノニルアミン、及びイソノニルアミンからなる群から選ばれる少なくとも1種であり、最も好ましくはn-オクチルアミン、イソオクチルアミン、及び2-エチルヘキシルアミンからなる群から選ばれる少なくとも1種である。
 ポリイミド樹脂(A)を製造するための重合方法としては、公知の重合方法が適用でき、国際公開第2016/147996号に記載の方法を用いることができる。
<非晶性樹脂(B)>
 本発明のポリイミド樹脂組成物は、前記ポリイミド樹脂(A)と、下記式(I)で示される繰り返し構成単位を含む非晶性樹脂(B)とを含有する。
Figure JPOXMLDOC01-appb-C000015

(Rは単結合、又は、少なくとも1つの芳香環を含む炭素数6~22の2価の基である。nは繰り返し構成単位数であり、1を超える数である。)
 本発明のポリイミド樹脂組成物は、ポリイミド樹脂(A)と特定構造の非晶性樹脂(B)とを含有することで、低CTEの成形体を作製することができる。なお、本発明における非晶性樹脂(B)は、イミド結合を有する繰り返し構成単位は含まないものとする。
 式(I)のRにおける、少なくとも1つの芳香環を含む炭素数6~22の2価の基としては、より低いCTEを達成する観点から、好ましくは、エーテル結合を含んでもよい、炭素数6~22の2価の芳香族基であり、より好ましくは、下記一般式(a)~(c)のいずれかで示される2価の基である。
Figure JPOXMLDOC01-appb-C000016

(R41及びR42はそれぞれ独立に、水素原子又は炭素数1~4のアルキル基である。*は結合部分を示す。)
 R41及びR42における、炭素数1~4のアルキル基としては、メチル基、エチル基、n-プロピル基、イソプロピル基、n-ブチル基、イソブチル基、sec-ブチル基、及びtert-ブチル基が挙げられる。
 より低いCTEを達成する観点から、R41及びR42はそれぞれ独立に、好ましくは水素原子、メチル基、エチル基、n-プロピル基、又はイソプロピル基であり、より好ましくは水素原子又はメチル基、更に好ましくはメチル基である。
 式(I)におけるRは、より低いCTEを達成する観点、及び吸水率を低減する観点から、好ましくは単結合、又は前記一般式(a)~(c)のいずれかで示される2価の基であり、より好ましくは単結合、又は前記一般式(b)、(c)のいずれかで示される2価の基である。
 成分(B)は、より低いCTEを達成する観点、及び吸水率を低減する観点から、より好ましくは下記式(I-1)~(I-3)のいずれかで示される繰り返し構成単位を含む非晶性樹脂であり、更に好ましくは、下記式(I-1)~(I-3)のいずれかで示される繰り返し構成単位を50質量%以上、好ましくは70質量%以上、より好ましくは80質量%以上、更に好ましくは90質量%以上、より更に好ましくは95質量%以上含む非晶性樹脂である。
Figure JPOXMLDOC01-appb-C000017

(R41及びR42はそれぞれ独立に、水素原子又は炭素数1~4のアルキル基である。nは繰り返し構成単位数であり、1を超える数である。)
 R41及びR42における炭素数1~4のアルキル基は前記と同じであり、より低いCTEを達成する観点から、好ましくは水素原子、メチル基、エチル基、n-プロピル基、又はイソプロピル基であり、より好ましくは水素原子又はメチル基、更に好ましくはメチル基である。
 以下、式(I-1)で示される繰り返し構成単位を含む非晶性樹脂を「非晶性樹脂(B1)」、式(I-2)で示される繰り返し構成単位を含む非晶性樹脂を「非晶性樹脂(B2)」、式(I-3)で示される繰り返し構成単位を含む非晶性樹脂を「非晶性樹脂(B3)」ともいう。
(非晶性樹脂(B1))
 非晶性樹脂(B1)は、下記式(I-1)で示される繰り返し構成単位を含む非晶性樹脂である。nは繰り返し構成単位数であり、1を超える数である。
Figure JPOXMLDOC01-appb-C000018

 非晶性樹脂(B1)としては、より好ましくは下記式(I-1a)で示される構造の樹脂が挙げられる。
Figure JPOXMLDOC01-appb-C000019

(式中、Rは末端基を示し、Cl又はOHである。nは前記と同じである。)
 より低いCTEを達成する観点からは、式(I-1a)中のRは好ましくはClである。
 非晶性樹脂(B1)のガラス転移温度は、より低いCTEを達成する観点から、好ましくは210℃以上、より好ましくは215℃以上であり、成形加工性の観点からは、好ましくは280℃以下、より好ましくは260℃以下である。
 ガラス転移温度は、前記と同様の方法で測定することができる。
 非晶性樹脂(B1)の25℃における固有粘度は、より低いCTEを達成する観点から、好ましくは0.20~1.00dL/g、より好ましくは0.25~1.00dL/g、更に好ましくは0.30~0.80dL/gである。
 非晶性樹脂(B1)の固有粘度は、JIS K7367-5:2000に準拠した方法で、具体的には実施例に記載の方法により測定することができる。上記固有粘度は、溶融等による熱履歴を与えていない非晶性樹脂(B1)の粉末を用いて25℃で測定した値が上記範囲であることが好ましい。
 非晶性樹脂(B1)の数平均分子量(Mn)は、より低いCTEを達成する観点から、好ましくは2,000~25,000、より好ましくは3,000~25,000、更に好ましくは3,500~25,000、より更に好ましくは3,500~25,000、より更に好ましくは5,000~20,000である。
 非晶性樹脂(B1)の重量平均分子量(Mw)は、より低いCTEを達成する観点から、好ましくは5,000~80,000、より好ましくは7,000~80,000、更に好ましくは8,000~80,000、より更に好ましくは8,000~60,000、より更に好ましくは10,000~55,000、より更に好ましくは12,000~55,000である。
 非晶性樹脂(B1)の数平均分子量及び重量平均分子量は、ポリメチルメタクリレート(PMMA)を標準試料としてゲルろ過クロマトグラフィー(GPC)法により測定することができ、具体的には実施例に記載の方法で測定できる。上記数平均分子量及び重量平均分子量は、溶融等による熱履歴を与えていない非晶性樹脂(B1)の粉末を用いて測定した値が上記範囲であることが好ましい。
 非晶性樹脂(B1)の形態は特に制限されず、粉末、ペレットのいずれも用いることができる。非晶性樹脂(B1)としてペレットを用いた場合には、粉末を用いた場合とは得られる樹脂組成物及び成形体におけるモルフォロジーが異なることがあり、その結果、得られる成形体の機械的特性が異なる場合がある。本発明者らの知見によれば、非晶性樹脂(B1)としてペレットを用いると、粉末を用いた場合と比較して、得られる成形体の靭性が向上する傾向がある。しかしながら、ポリイミド樹脂(A)への分散性向上の観点、溶融等の熱履歴がない状態での性状を維持できる観点からは、粉末がより好ましい。
 非晶性樹脂(B1)として、市販品を用いることもできる。市販の非晶性樹脂(B1)としては、住友化学(株)製の「スミカエクセルPES」シリーズ(3600P、4100P、4800P、5200P、5400P、5900P、7600P、5003P、5003MPS、3600G、4100G、4800G)、BASF社製の「ウルトラゾーンE」シリーズ(E1010、E2010、E2020P、E3010、E6020P)等が挙げられる。
(非晶性樹脂(B2))
 非晶性樹脂(B2)は、下記式(I-2)で示される繰り返し構成単位を含む非晶性樹脂であり、更に好ましくは下記式(I-2)で示される非晶性樹脂である。nは繰り返し構成単位数であり、1を超える数である。
Figure JPOXMLDOC01-appb-C000020
 非晶性樹脂(B2)のガラス転移温度は、より低いCTEを達成する観点から、好ましくは170℃以上、より好ましくは180℃以上であり、成形加工性の観点からは、好ましくは230℃以下である。
 ガラス転移温度は、前記と同様の方法で測定することができる。
 非晶性樹脂(B2)の25℃における固有粘度は、より低いCTEを達成する観点から、好ましくは0.20~1.00dL/g、より好ましくは0.25~1.00dL/g、更に好ましくは0.30~0.80dL/gである。
 非晶性樹脂(B2)の固有粘度は、前記と同様の方法で測定することができる。
 非晶性樹脂(B2)として、市販品を用いることもできる。市販の非晶性樹脂(B2)としては、式(I-2)で示される、BASF社製の「ウルトラゾーンS」シリーズ(S2010、S3010、S6010)等が挙げられる。
(非晶性樹脂(B3))
 非晶性樹脂(B3)は、下記式(I-3)で示される繰り返し構成単位を含む非晶性樹脂であり、更に好ましくは下記式(I-3)で示される非晶性樹脂である。
Figure JPOXMLDOC01-appb-C000021

(R41及びR42はそれぞれ独立に、水素原子又は炭素数1~4のアルキル基である。nは繰り返し構成単位数であり、1を超える数である。)
 R41及びR42における炭素数1~4のアルキル基は前記と同じであり、より低いCTEを達成する観点から、好ましくは水素原子、メチル基、エチル基、n-プロピル基、又はイソプロピル基であり、より好ましくは水素原子又はメチル基、更に好ましくはメチル基である。
 すなわち非晶性樹脂(B3)は、より更に好ましくは下記式(I-3c)で示される繰り返し構成単位を含む非晶性樹脂であり、更に好ましくは下記式(I-3c)で示される非晶性樹脂である。nは繰り返し構成単位数であり、1を超える数である。
Figure JPOXMLDOC01-appb-C000022
 非晶性樹脂(B3)のガラス転移温度は、より低いCTEを達成する観点から、好ましくは190℃以上、より好ましくは200℃以上であり、成形加工性の観点からは、好ましくは230℃以下である。
 ガラス転移温度は、前記と同様の方法で測定することができる。
 非晶性樹脂(B3)として、市販品を用いることもできる。市販の非晶性樹脂(B3)としては、式(I-3c)で示される、BASF社製の「ウルトラゾーンP」シリーズ(P3010)等が挙げられる。
 成分(B)は、1種又は2種以上を用いることができる。
 上記の中でも、成分(B)としては、より低いCTEを達成する観点、及び吸水率を低減する観点から、より更に好ましくは非晶性樹脂(B2)及び非晶性樹脂(B3)からなる群から選ばれる1種以上であり、より更に好ましくは前記式(I-2)で示される非晶性樹脂、及び前記式(I-3c)で示される非晶性樹脂からなる群から選ばれる1種以上である。
<質量比>
 前記ポリイミド樹脂組成物中の成分(A)及び成分(B)の合計質量に対する成分(A)の質量比[(A)/{(A)+(B)}]は、本発明の効果を得る観点から、好ましくは0.01以上0.99以下である。また、吸水率をより低減する観点から、より好ましくは0.10以上、更に好ましくは0.20以上、より更に好ましくは0.25以上、より更に好ましくは0.30以上、より更に好ましくは0.50以上、より更に好ましくは0.60以上であり、より低いCTEを達成する観点からは、より好ましくは0.90以下、更に好ましくは0.80以下、より更に好ましくは0.75以下である。
 成分(B)が前記式(I-1)で示される繰り返し構成単位を含む非晶性樹脂(B1)である場合、前記ポリイミド樹脂組成物中の成分(A)及び成分(B1)の合計質量に対する成分(A)の質量比[(A)/{(A)+(B1)}]は、より低いCTEを達成する観点、及び吸水率を低減する観点から、好ましくは0.65超0.99以下であり、より好ましくは0.65超0.95以下、更に好ましくは0.70以上0.90以下である。
 ポリイミド樹脂組成物中のポリイミド樹脂(A)及び非晶性樹脂(B)の合計含有量は、本発明の効果を得る観点から、好ましくは50質量%以上、より好ましくは70質量%以上、更に好ましくは80質量%以上、より更に好ましくは90質量%以上である。また、上限は100質量%である。
<添加剤>
 本発明のポリイミド樹脂組成物は、充填材、強化繊維、艶消剤、核剤、可塑剤、帯電防止剤、着色防止剤、ゲル化防止剤、難燃剤、着色剤、摺動性改良剤、酸化防止剤、紫外線吸収剤、導電剤、樹脂改質剤等の添加剤を、必要に応じて含有してもよい。
 上記添加剤の含有量には特に制限はないが、ポリイミド樹脂(A)及び非晶性樹脂(B)由来の物性を維持しつつ添加剤の効果を発現させる観点からは、ポリイミド樹脂組成物中、通常、50質量%以下であり、好ましくは0.0001~30質量%、より好ましくは0.0001~15質量%、更に好ましくは0.001~10質量%である。
 本発明のポリイミド樹脂組成物は任意の形態をとることができるが、ペレットであることが好ましい。
 ポリイミド樹脂(A)及び非晶性樹脂(B)は熱可塑性を有するため、例えばポリイミド樹脂(A)、非晶性樹脂(B)、及び必要に応じて各種任意成分を押出機内で溶融混練してストランドを押出し、ストランドをカットすることによりペレット化することができる。また、得られたペレットを各種成形機に導入して後述の方法で熱成形することにより、所望の形状を有する成形体を容易に製造することができる。
 本発明のポリイミド樹脂組成物のガラス転移温度は、耐熱性の観点から、好ましくは160℃以上、より好ましくは170℃以上、更に好ましくは180℃以上、より更に好ましくは200℃以上であり、高い成形加工性を発現する観点からは、好ましくは250℃以下、より好ましくは240℃以下、更に好ましくは230℃以下である。ガラス転移温度は、前記と同様の方法で測定できる。
<熱線膨張係数(CTE)>
 本発明のポリイミド樹脂組成物によれば、低CTEの成形体を作製することができる。例えば、ポリイミド樹脂組成物を成形して得られる厚さ4mm(5mm×4mm×10mm)の成形体の、JIS K7197:2012に準拠して23~220℃の範囲で測定される熱線膨張係数を、好ましくは60ppm/℃以下とすることができる。
 なお、延伸が施された成形体であるとCTEの値が変動するため、CTE測定に用いる成形体は、好ましくは無延伸の成形体であり、より好ましくは射出成形体である。
 射出成形体においても、流れ方向(MD)とそれに直交する方向(TD)が存在し、MDとTDとでCTEが異なる場合がある。この場合は、MD又はTDのうち少なくとも一方の熱線膨張係数が60ppm/℃以下であることが好ましく、MD及びTDの熱線膨張係数が共に60ppm/℃以下であることがより好ましい。
 ポリイミド樹脂組成物を成形して得られる、厚さ4mmの射出成形体においては、MD及びTDのうちより低い前記熱線膨張係数の値を、より好ましくは55ppm/℃以下、更に好ましくは50ppm/℃以下、より更に好ましくは45ppm/℃以下、より更に好ましくは40ppm/℃以下、より更に好ましくは35ppm/℃以下とすることができる。
 また、ポリイミド樹脂組成物を成形して得られる、厚さ4mmの射出成形体においては、MD及びTDの前記熱線膨張係数の合計値を、好ましくは100ppm/℃以下、より好ましくは95ppm/℃以下、更に好ましくは90ppm/℃以下とすることができる。
 成形体の熱線膨張係数は、熱機械分析(TMA法)により圧縮モードで測定される値であり、具体的には実施例に記載の方法で測定できる。
<吸水率>
 本発明のポリイミド樹脂組成物によれば、低吸水率の成形体を作製することができる。例えば、ポリイミド樹脂組成物を成形して得られる30mm×20mm×厚さ4mmの成形体の、JIS K7209:2000に準拠して測定される、23℃の水に24時間浸漬した際の吸水率を、好ましくは0.30%以下、より好ましくは0.25%以下、更に好ましくは0.20%以下とすることができる。
 上記吸水率は、水への浸漬前の成形体の質量を(W)、23℃の水に24時間浸漬した後の成形体の質量を(W)をとした際に、下記式より算出される値である。
  吸水率(%)=[(W-W)/W]×100
 上記吸水率は、具体的には実施例に記載の方法で測定できる。
[成形体]
 本発明は、前記ポリイミド樹脂組成物を含む成形体を提供する。
 本発明のポリイミド樹脂組成物は熱可塑性を有するため、熱成形することにより容易に本発明の成形体を製造できる。熱成形方法としては射出成形、押出成形、ブロー成形、熱プレス成形、真空成形、圧空成形、レーザー成形、溶接、溶着等が挙げられ、熱溶融工程を経る成形方法であればいずれの方法でも成形が可能である。
 成形温度はポリイミド樹脂組成物の熱特性(融点及びガラス転移温度)によっても異なるが、例えば射出成形においては、成形温度400℃未満、金型温度220℃以下での成形が可能である。
 成形体を製造する方法としては、ポリイミド樹脂組成物を400℃未満の温度で熱成形する工程を有することが好ましい。具体的な手順としては、例えば以下の方法が挙げられる。
 まず、ポリイミド樹脂(A)に、非晶性樹脂(B)、及び必要に応じて各種任意成分を添加してドライブレンドした後、これを押出機内に導入して、好ましくは400℃未満で溶融して押出機内で溶融混練及び押出し、ペレットを作製する。あるいは、ポリイミド樹脂(A)を押出機内に導入して、好ましくは400℃未満で溶融し、ここに非晶性樹脂(B)及び各種任意成分を導入して押出機内でポリイミド樹脂(A)と溶融混練し、押出すことで前述のペレットを作製してもよい。
 上記ペレットを乾燥させた後、各種成形機に導入して好ましくは400℃未満で熱成形し、所望の形状を有する成形体を製造することができる。
 本発明の成形体は、熱線膨張係数が低く寸法安定性に優れ、さらに低吸水率であることから、例えば、低熱線膨張係数を要求されるフィルム、銅張積層板、電気、電子部材に好適である。
 次に実施例を挙げて本発明をより詳しく説明するが、本発明はこれに限定されるものではない。また、各製造例及び実施例における各種測定及び評価は以下のように行った。
<赤外線分光分析(IR測定)>
 ポリイミド樹脂のIR測定は日本電子(株)製「JIR-WINSPEC50」を用いて行った。
<対数粘度μ>
 ポリイミド樹脂を190~200℃で2時間乾燥した後、該ポリイミド樹脂0.100gを濃硫酸(96%、関東化学(株)製)20mLに溶解したポリイミド樹脂溶液を測定試料とし、キャノンフェンスケ粘度計を使用して30℃において測定を行った。対数粘度μは下記式により求めた。
μ=ln[(ts/t)/C]
:濃硫酸の流れる時間
ts:ポリイミド樹脂溶液の流れる時間
C:0.5g/dL
<融点、ガラス転移温度、結晶化温度、結晶化発熱量>
 ポリイミド樹脂の融点Tm、並びに、ポリイミド樹脂、非晶性樹脂、ポリイミド樹脂組成物のガラス転移温度Tg、結晶化温度Tc及び結晶化発熱量ΔHmは、示差走査熱量計装置(エスアイアイ・ナノテクノロジー(株)製「DSC-6220」)を用いて測定した。結晶化温度Tcの測定において、ポリイミド樹脂及び非晶性樹脂(B1)については樹脂粉末、非晶性樹脂(B2)、非晶性樹脂(B3)、及びポリイミド樹脂組成物についてはペレットを測定試料として用いた。
 窒素雰囲気下、測定試料に下記条件の熱履歴を課した。熱履歴の条件は、昇温1度目(昇温速度10℃/分)、その後冷却(降温速度20℃/分)、その後昇温2度目(昇温速度10℃/分)である。
 融点Tmは昇温2度目で観測された吸熱ピークのピークトップ値を読み取り決定した。ガラス転移温度Tgは昇温2度目で観測された値を読み取り決定した。結晶化温度Tcは冷却時に観測された発熱ピークのピークトップ値を読み取り決定した。なおTm、Tg及びTcに関して、ピークが複数観測されたものについては各ピークのピークトップ値を読み取った。
 また結晶化発熱量ΔHm(mJ/mg)は冷却時に観測された発熱ピークの面積から算出した。
<半結晶化時間>
 ポリイミド樹脂の半結晶化時間は、示差走査熱量計装置(エスアイアイ・ナノテクノロジー(株)製「DSC-6220」)を用いて測定した。
 窒素雰囲気下、420℃で10分保持し、ポリイミド樹脂を完全に溶融させたのち、冷却速度70℃/分の急冷操作を行った際に、観測される結晶化ピークの出現時からピークトップに達するまでにかかった時間を計算した。なお表1中、半結晶化時間が20秒以下である場合は「<20」と表記した。
<重量平均分子量及び数平均分子量>
 ポリイミド樹脂の重量平均分子量(Mw)、非晶性樹脂(B1)の重量平均分子量及び数平均分子量は、昭和電工(株)製のゲルろ過クロマトグラフィー(GPC)測定装置「Shodex GPC-101」を用いて下記条件にて測定した。
 カラム:Shodex HFIP-806M
 移動相溶媒:トリフルオロ酢酸ナトリウム2mM含有ヘキサフルオロイソプロパノール(HFIP)
 カラム温度:40℃
 移動相流速:1.0mL/min
 試料濃度:約0.1質量%
 検出器:IR検出器
 注入量:100μm
 検量線:標準PMMA
<固有粘度[η]>
 非晶性樹脂(B1)及び(B2)の固有粘度は、JIS K7367-5:2000に準拠して、下記方法で測定した。なお測定試料としては、非晶性樹脂(B1)の粉末、及び非晶性樹脂(B2)のペレットを用いた。
 濃度が0.5g/dL、1.0g/dL、及び1.5g/dLの、測定試料のN,N-ジメチルホルムアミド溶液を調製した。この溶液について、25±0.05℃の恒温槽内で、ウベローテ粘度計(No.0B)を用いてそれぞれ3回ずつ粘度測定を行い、その平均値から還元粘度(単位:dL/g)を求めた。測定試料の濃度(g/dL)を横軸、還元粘度(dL/g)を縦軸としてプロットして検量線を引き、濃度0g/dLに外挿した粘度値を固有粘度(単位:dL/g)の値とした。
<ΔHm×成分(A)の質量割合>
 製造例1で得られたポリイミド樹脂1(成分(A))の結晶化発熱量をΔHmとし、この値に各例のポリイミド樹脂組成物中の成分(A)の質量割合を乗じた値を算出した。
<吸水率>
 吸水率はJIS K7209:2000に準拠して測定した。製造例1のポリイミド樹脂、非晶性樹脂、又は各例で製造したポリイミド樹脂組成物を用いて、後述する方法により射出成形体を作製し、30mm×20mm×厚さ4mmのサイズに切り出した。これを23℃、相対湿度50%の環境下で24時間以上状態調節を行い、測定に使用した。
 上記成形体を50℃の熱風循環オーブン中で24時間乾燥した後、デシケーターで室温に戻し、23℃、相対湿度50%の環境下で質量(W)を測定した。続いて、この成形体を23℃の水中に24時間浸漬し、表面の水分を拭き取った後、1分後の質量(W)を測定した。下記式に基づいて吸水率を算出し、3回測定の平均値を表1に示した。
  吸水率(%)=[(W-W)/W]×100
<熱線膨張係数(CTE)>
 CTEはJIS K7197:2012に準拠して測定した。製造例1のポリイミド樹脂、非晶性樹脂、又は各例で製造したポリイミド樹脂組成物を用いて、後述する方法により射出成形体を作製し、5mm×4mm×10mmのサイズに切り出し、測定に使用した。
 上記射出成形体を測定試料として、(株)日立ハイテクサイエンス製の熱機械分析装置「TMA7100C」を用いて、窒素気流中(150mL/min)、圧縮モードで荷重49mN、昇温速度5℃/minの条件で23~300℃まで昇温してTMA測定を行った。TMA測定は射出成形体の流れ方向(MD)及びそれに直交する方向(TD)について行い、23~220℃における測定値からCTEを求めた。
製造例1(ポリイミド樹脂1の製造)
 ディーンスターク装置、リービッヒ冷却管、熱電対、4枚パドル翼を設置した2Lセパラブルフラスコ中に2-(2-メトキシエトキシ)エタノール(日本乳化剤(株)製)500gとピロメリット酸二無水物(三菱ガス化学(株)製)218.12g(1.00mol)を導入し、窒素フローした後、均一な懸濁溶液になるように150rpmで撹拌した。一方で、500mLビーカーを用いて、1,3-ビス(アミノメチル)シクロヘキサン(三菱ガス化学(株)製、シス/トランス比=7/3)49.79g(0.35mol)、1,8-オクタメチレンジアミン(関東化学(株)製)93.77g(0.65mol)を2-(2-メトキシエトキシ)エタノール250gに溶解させ、混合ジアミン溶液を調製した。この混合ジアミン溶液を、プランジャーポンプを使用して徐々に加えた。滴下により発熱が起こるが、内温は40~80℃に収まるよう調整した。混合ジアミン溶液の滴下中はすべて窒素フロー状態とし、撹拌翼回転数は250rpmとした。滴下が終わったのちに、2-(2-メトキシエトキシ)エタノール130gと、末端封止剤であるn-オクチルアミン(関東化学(株)製)1.284g(0.010mol)を加えさらに撹拌した。この段階で、淡黄色のポリアミド酸溶液が得られた。次に、撹拌速度を200rpmとした後に、2Lセパラブルフラスコ中のポリアミド酸溶液を190℃まで昇温した。昇温を行っていく過程において、液温度が120~140℃の間にポリイミド樹脂粉末の析出と、イミド化に伴う脱水が確認された。190℃で30分保持した後、室温まで放冷を行い、濾過を行った。得られたポリイミド樹脂粉末は2-(2-メトキシエトキシ)エタノール300gとメタノール300gにより洗浄、濾過を行った後、乾燥機で180℃、10時間乾燥を行い、317gの結晶性熱可塑性ポリイミド樹脂1(以下、単に「ポリイミド樹脂1」ともいう)の粉末を得た。
 ポリイミド樹脂1のIRスペクトルを測定したところ、ν(C=O)1768、1697(cm-1)にイミド環の特性吸収が認められた。対数粘度は1.30dL/g、Tmは323℃、Tgは184℃、Tcは266℃、結晶化発熱量は21.0mJ/mg、半結晶化時間は20秒以下、Mwは55,000であった。
 製造例1におけるポリイミド樹脂1の組成及び評価結果を表1に示す。なお、表1中のテトラカルボン酸成分及びジアミン成分のモル%は、ポリイミド樹脂製造時の各成分の仕込み量から算出した値である。
Figure JPOXMLDOC01-appb-T000023
 表1中の略号は下記の通りである。
・PMDA;ピロメリット酸二無水物
・1,3-BAC;1,3-ビス(アミノメチル)シクロヘキサン
・OMDA;1,8-オクタメチレンジアミン
実施例1(ポリイミド樹脂組成物、成形体の作製及び評価)
<射出成形体の作製>
 製造例1で得られたポリイミド樹脂1の粉末と、非晶性樹脂(B1)の粉末(住友化学(株)製「スミカエクセル 3600P」、25℃における固有粘度:0.307dL/g、Mn:8,600、Mw:16,500、Tg:222℃)とを、表2に示す割合でドライブレンドした後、同方向回転二軸混錬押出機((株)パーカーコーポレーション製「HK-25D」、スクリュー径25mmΦ、L/D=41)を用いて、バレル温度370℃、スクリュー回転数150rpmの条件で溶融混練し押し出した。押出機より押し出されたストランドを空冷後、ペレタイザー((株)星プラスチック製「ファンカッターFC-Mini-4/N」)によってペレット化した。得られたペレットは150℃、12時間乾燥を行った後、射出成形に使用した。
 射出成形機(ファナック(株)製「ロボショットα-S30iA」)を使用して、バレル温度385℃、金型温度165℃、成形サイクル60秒にて射出成形を行い、所定の大きさに切り出して、吸水率及びCTE測定用の成形体を作製した。
 得られた射出成形体を用いて、前述した方法で各種評価を行った。結果を表2に示す。
実施例2~5(ポリイミド樹脂組成物、成形体の作製及び評価)
 製造例1で得られたポリイミド樹脂1の粉末と、非晶性樹脂(B)とを、表2に示す割合で用いたこと以外は、実施例1と同様にして射出成形体を作製し、各種評価を行った。結果を表2に示す。なお、非晶性樹脂(B1)については粉末、非晶性樹脂(B2)及び(B3)についてはペレットを用いた。
比較例1
<射出成形体の作製>
 製造例1で得られたポリイミド樹脂1の粉末をラボプラストミル((株)東洋精機製作所製)を用いてバレル温度360℃、スクリュー回転数150rpmで溶融混錬し押し出した。押出機より押し出されたストランドを空冷後、ペレタイザー((株)星プラスチック製「ファンカッターFC-Mini-4/N」)によってペレット化した。得られたペレットは150℃、12時間乾燥を行った後、射出成形に使用した。
 射出成形機(ファナック(株)製「ROBOSHOT α-S30iA」)を使用して、バレル温度350℃、金型温度200℃、成形サイクル50秒として射出成形を行い、所定の大きさに切り出して、吸水率及びCTE測定用の成形体を作製した。
 得られた射出成形体を用いて、前述した方法で各種評価を行った。結果を表2に示す。
比較例2
<射出成形体の作製>
 非晶性樹脂(B1)(住友化学(株)製「スミカエクセル 3600P」)の粉末をラボプラストミル((株)東洋精機製作所製)を用いてバレル温度360℃、スクリュー回転数150rpmで溶融混錬し押し出した。押出機より押し出されたストランドを空冷後、ペレタイザー((株)星プラスチック製「ファンカッターFC-Mini-4/N」)によってペレット化した。得られたペレットは160℃、6時間乾燥を行った後、射出成形に使用した。
 射出成形機(ファナック(株)製「ROBOSHOT α-S30iA」)を使用して、バレル温度350℃、金型温度180℃、成形サイクル60秒として射出成形を行い、所定の大きさに切り出して、吸水率及びCTE測定用の成形体を作製した。
 得られた射出成形体を用いて、前述した方法で各種評価を行った。結果を表2に示す。
比較例3
<射出成形体の作製>
 非晶性樹脂(B2)(BASF社製「ウルトラゾーン S2010」)のペレットを、射出成形機(ファナック(株)製「ROBOSHOT α-S30iA」)を使用して、バレル温度370℃、金型温度160℃、成形サイクル60秒として射出成形を行い、所定の大きさに切り出して、吸水率及びCTE測定用の成形体を作製した。
 得られた射出成形体を用いて、前述した方法で各種評価を行った。結果を表2に示す。
比較例4
<射出成形体の作製>
 非晶性樹脂(B3)(BASF社製「ウルトラゾーン P3010」)のペレットを、射出成形機(ファナック(株)製「ROBOSHOT α-S30iA」)を使用して、バレル温度370℃、金型温度160℃、成形サイクル60秒として射出成形を行い、所定の大きさに切り出して、吸水率及びCTE測定用の成形体を作製した。
 得られた射出成形体を用いて、前述した方法で各種評価を行った。結果を表2に示す。
Figure JPOXMLDOC01-appb-T000024
 表2に示した各成分の詳細は下記の通りである。
<ポリイミド樹脂(A)>
(A1)ポリイミド樹脂1:製造例1で得られた結晶性熱可塑性ポリイミド樹脂1
<非晶性樹脂(B)>
(B1)3600P:住友化学(株)製「スミカエクセル 3600P」、前記式(I-1a)で示される非晶性樹脂、式(I-1a)におけるR=Cl、25℃における固有粘度:0.307dL/g、Mn:8,600、Mw:16,500、Tg:222℃
(B2)S2010:BASF社製「ウルトラゾーン S2010」、前記式(I-2)で示される非晶性樹脂、25℃における固有粘度:0.305dL/g
(B3)P3010:BASF社製「ウルトラゾーン P3010」、前記式(I-3c)で示される非晶性樹脂
 表2に示すように、本発明のポリイミド樹脂組成物(実施例1~5)からなる成形体は、比較例1~4の成形体よりも熱線膨張係数が低く寸法安定性に優れ、さらに、吸水率も低いことがわかる。
 また実施例1~5において、結晶化発熱量ΔHmの実測値と、「ΔHm×成分(A)の質量割合」の値との差が±30%以内であることから、実施例1~5の成形体はミクロ相分離構造を有していると推測できる。
 また、実施例2、3、5で得られたペレットを用いて、各ペレット中のポリイミド樹脂(A)及び非晶性樹脂(B)の分散状態を以下の方法で確認した。
 各ペレットを、ミクロトーム(LEICA MICROSYSTEMS製「EM UC 7」)を用いて、図1に示すようにペレット1の流れ方向(MD)に対し垂直に(すなわち、TD断面が出るように)切断した。
 この切断面を気相中で30分、四酸化ルテニウムにより染色した後、フィールドエミッション型走査型電子顕微鏡(FE-SEM、ZEISS製「GeminiSEM500」)を用いて、加速電圧1kV、観察倍率3000倍で観察した(図2~4)。各観察画像において、色が濃い部分は、四酸化ルテニウムにより染色されにくいポリイミド樹脂(A)で構成されていると判断した。
 図2は実施例2(質量比[(A)/(B2)]=70/30)、図3は実施例3(質量比[(A)/(B3)]=70/30)、図4は実施例5(質量比[(A)/(B3)]=30/70)のペレットの顕微鏡写真である。
 図2~4より、実施例2、3、5で得られたペレット中では、ポリイミド樹脂(A)と非晶性樹脂(B)とが海島構造を形成していることがわかる。
 本発明のポリイミド樹脂組成物及び成形体は、熱線膨張係数が低く寸法安定性に優れることから、例えば、低熱線膨張係数を要求されるフィルム、銅張積層板、電気、電子部材に好適である。

Claims (7)

  1.  下記式(1)で示される繰り返し構成単位及び下記式(2)で示される繰り返し構成単位を含み、該式(1)の繰り返し構成単位と該式(2)の繰り返し構成単位の合計に対する該式(1)の繰り返し構成単位の含有比が20~70モル%のポリイミド樹脂(A)と、下記式(I)で示される繰り返し構成単位を含む非晶性樹脂(B)とを含有するポリイミド樹脂組成物。
    Figure JPOXMLDOC01-appb-C000001

    (Rは少なくとも1つの脂環式炭化水素構造を含む炭素数6~22の2価の基である。Rは炭素数5~16の2価の鎖状脂肪族基である。X及びXは、それぞれ独立に、少なくとも1つの芳香環を含む炭素数6~22の4価の基である。)
    Figure JPOXMLDOC01-appb-C000002

    (Rは単結合、又は、少なくとも1つの芳香環を含む炭素数6~22の2価の基である。nは繰り返し構成単位数であり、1を超える数である。)
  2.  前記ポリイミド樹脂組成物を成形して得られる成形体がミクロ相分離構造を有する、請求項1に記載のポリイミド樹脂組成物。
  3.  前記ポリイミド樹脂組成物を成形して得られる厚さ4mmの成形体の、JIS K7197:2012に準拠して23~220℃の範囲で測定される熱線膨張係数が60ppm/℃以下である、請求項1又は2に記載のポリイミド樹脂組成物。
  4.  前記成分(B)が下記式(I-1)~(I-3)のいずれかで示される繰り返し構成単位を含む非晶性樹脂である、請求項1~3のいずれか1項に記載のポリイミド樹脂組成物。
    Figure JPOXMLDOC01-appb-C000003

    (R41及びR42はそれぞれ独立に、水素原子又は炭素数1~4のアルキル基である。nは繰り返し構成単位数であり、1を超える数である。)
  5.  前記ポリイミド樹脂組成物中の前記成分(A)及び成分(B)の合計質量に対する前記成分(A)の質量比[(A)/{(A)+(B)}]が0.01以上0.99以下である、請求項1~4のいずれか1項に記載のポリイミド樹脂組成物。
  6.  前記成分(B)が前記式(I-1)で示される繰り返し構成単位を含む非晶性樹脂(B1)であり、前記ポリイミド樹脂組成物中の前記成分(A)及び成分(B1)の合計質量に対する前記成分(A)の質量比[(A)/{(A)+(B1)}]が0.65超0.99以下である、請求項4又は5に記載のポリイミド樹脂組成物。
  7.  請求項1~6のいずれか1項に記載のポリイミド樹脂組成物を含む成形体。
PCT/JP2022/031146 2021-10-05 2022-08-18 ポリイミド樹脂組成物及び成形体 WO2023058334A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202280066607.2A CN118076699A (zh) 2021-10-05 2022-08-18 聚酰亚胺树脂组合物和成型体

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021-164314 2021-10-05
JP2021164314 2021-10-05

Publications (1)

Publication Number Publication Date
WO2023058334A1 true WO2023058334A1 (ja) 2023-04-13

Family

ID=85803355

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/031146 WO2023058334A1 (ja) 2021-10-05 2022-08-18 ポリイミド樹脂組成物及び成形体

Country Status (3)

Country Link
CN (1) CN118076699A (ja)
TW (1) TW202332735A (ja)
WO (1) WO2023058334A1 (ja)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10251515A (ja) * 1997-03-14 1998-09-22 Nitto Denko Corp 複合フィルムおよびその製造法
WO2016147996A1 (ja) 2015-03-19 2016-09-22 三菱瓦斯化学株式会社 ポリイミド樹脂
JP2017132892A (ja) * 2016-01-27 2017-08-03 住友電工ウインテック株式会社 樹脂ワニス及び絶縁電線
WO2019220969A1 (ja) * 2018-05-17 2019-11-21 三菱瓦斯化学株式会社 樹脂成形体
WO2021131501A1 (ja) * 2019-12-23 2021-07-01 三菱瓦斯化学株式会社 ポリイミド樹脂組成物及び成形体
WO2022065063A1 (ja) * 2020-09-23 2022-03-31 三菱瓦斯化学株式会社 ポリイミド樹脂組成物及び成形体

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10251515A (ja) * 1997-03-14 1998-09-22 Nitto Denko Corp 複合フィルムおよびその製造法
WO2016147996A1 (ja) 2015-03-19 2016-09-22 三菱瓦斯化学株式会社 ポリイミド樹脂
JP2017132892A (ja) * 2016-01-27 2017-08-03 住友電工ウインテック株式会社 樹脂ワニス及び絶縁電線
WO2019220969A1 (ja) * 2018-05-17 2019-11-21 三菱瓦斯化学株式会社 樹脂成形体
WO2021131501A1 (ja) * 2019-12-23 2021-07-01 三菱瓦斯化学株式会社 ポリイミド樹脂組成物及び成形体
WO2022065063A1 (ja) * 2020-09-23 2022-03-31 三菱瓦斯化学株式会社 ポリイミド樹脂組成物及び成形体

Also Published As

Publication number Publication date
CN118076699A (zh) 2024-05-24
TW202332735A (zh) 2023-08-16

Similar Documents

Publication Publication Date Title
JP7347415B2 (ja) 樹脂成形体
JP6927458B1 (ja) ポリイミド樹脂組成物及び成形体
WO2021024624A1 (ja) 難燃性ポリイミド成形材料及び成形体
WO2020179391A1 (ja) ポリイミド樹脂組成物
TWI794491B (zh) 聚醯亞胺樹脂組成物
JP7040692B1 (ja) ポリイミド樹脂組成物及び成形体
WO2023058334A1 (ja) ポリイミド樹脂組成物及び成形体
WO2023105969A1 (ja) ポリイミド樹脂組成物及び成形体
JP6879438B1 (ja) ポリイミド樹脂組成物及び成形体
JP6856173B2 (ja) 難燃性ポリイミド成形材料及び成形体
JP6766986B1 (ja) ポリイミド樹脂組成物
WO2022004471A1 (ja) 樹脂組成物及び成形体
KR20240072166A (ko) 폴리이미드 수지 조성물 및 성형체
JP7497721B2 (ja) ポリイミド樹脂組成物
WO2022220007A1 (ja) 熱可塑性ポリイミド樹脂組成物及び成形品

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22878205

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2023552723

Country of ref document: JP

ENP Entry into the national phase

Ref document number: 20247010911

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2022878205

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2022878205

Country of ref document: EP

Effective date: 20240506