WO2023056805A1 - 一种改性淀粉-脂质二元复合物的制备方法 - Google Patents
一种改性淀粉-脂质二元复合物的制备方法 Download PDFInfo
- Publication number
- WO2023056805A1 WO2023056805A1 PCT/CN2022/116468 CN2022116468W WO2023056805A1 WO 2023056805 A1 WO2023056805 A1 WO 2023056805A1 CN 2022116468 W CN2022116468 W CN 2022116468W WO 2023056805 A1 WO2023056805 A1 WO 2023056805A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- starch
- lipid
- modified starch
- preparation
- stirring
- Prior art date
Links
- 238000002360 preparation method Methods 0.000 title claims abstract description 39
- 229920002472 Starch Polymers 0.000 claims abstract description 147
- 235000019698 starch Nutrition 0.000 claims abstract description 146
- 239000008107 starch Substances 0.000 claims abstract description 143
- 150000002632 lipids Chemical class 0.000 claims abstract description 71
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims abstract description 44
- FLISWPFVWWWNNP-BQYQJAHWSA-N dihydro-3-(1-octenyl)-2,5-furandione Chemical compound CCCCCC\C=C\C1CC(=O)OC1=O FLISWPFVWWWNNP-BQYQJAHWSA-N 0.000 claims abstract description 36
- 239000000725 suspension Substances 0.000 claims abstract description 33
- GUOCOOQWZHQBJI-UHFFFAOYSA-N 4-oct-7-enoxy-4-oxobutanoic acid Chemical compound OC(=O)CCC(=O)OCCCCCCC=C GUOCOOQWZHQBJI-UHFFFAOYSA-N 0.000 claims abstract description 25
- IPCSVZSSVZVIGE-UHFFFAOYSA-N hexadecanoic acid Chemical compound CCCCCCCCCCCCCCCC(O)=O IPCSVZSSVZVIGE-UHFFFAOYSA-N 0.000 claims abstract description 16
- QHZLMUACJMDIAE-UHFFFAOYSA-N 1-monopalmitoylglycerol Chemical compound CCCCCCCCCCCCCCCC(=O)OCC(O)CO QHZLMUACJMDIAE-UHFFFAOYSA-N 0.000 claims abstract description 13
- 238000012545 processing Methods 0.000 claims abstract description 13
- 235000021314 Palmitic acid Nutrition 0.000 claims abstract description 8
- WQEPLUUGTLDZJY-UHFFFAOYSA-N n-Pentadecanoic acid Natural products CCCCCCCCCCCCCCC(O)=O WQEPLUUGTLDZJY-UHFFFAOYSA-N 0.000 claims abstract description 8
- 238000003756 stirring Methods 0.000 claims description 62
- HEMHJVSKTPXQMS-UHFFFAOYSA-M Sodium hydroxide Chemical compound [OH-].[Na+] HEMHJVSKTPXQMS-UHFFFAOYSA-M 0.000 claims description 48
- 229920000881 Modified starch Polymers 0.000 claims description 40
- 235000019426 modified starch Nutrition 0.000 claims description 40
- 239000004368 Modified starch Substances 0.000 claims description 39
- 238000005119 centrifugation Methods 0.000 claims description 29
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 claims description 28
- 239000008367 deionised water Substances 0.000 claims description 28
- 229910021641 deionized water Inorganic materials 0.000 claims description 28
- 150000001875 compounds Chemical class 0.000 claims description 27
- 238000006243 chemical reaction Methods 0.000 claims description 24
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 claims description 20
- 229920002261 Corn starch Polymers 0.000 claims description 19
- 239000008120 corn starch Substances 0.000 claims description 19
- 229940099112 cornstarch Drugs 0.000 claims description 19
- 239000002608 ionic liquid Substances 0.000 claims description 19
- 235000013336 milk Nutrition 0.000 claims description 18
- 239000008267 milk Substances 0.000 claims description 18
- 210000004080 milk Anatomy 0.000 claims description 18
- 239000007788 liquid Substances 0.000 claims description 14
- 238000006011 modification reaction Methods 0.000 claims description 14
- 238000005406 washing Methods 0.000 claims description 14
- 125000005456 glyceride group Chemical group 0.000 claims description 12
- 150000004668 long chain fatty acids Chemical class 0.000 claims description 12
- 238000010438 heat treatment Methods 0.000 claims description 11
- 229910052757 nitrogen Inorganic materials 0.000 claims description 10
- 238000001816 cooling Methods 0.000 claims description 9
- 238000002156 mixing Methods 0.000 claims description 8
- KCYQMQGPYWZZNJ-BQYQJAHWSA-N hydron;2-[(e)-oct-1-enyl]butanedioate Chemical compound CCCCCC\C=C\C(C(O)=O)CC(O)=O KCYQMQGPYWZZNJ-BQYQJAHWSA-N 0.000 claims description 6
- 150000002148 esters Chemical class 0.000 claims description 5
- 238000003541 multi-stage reaction Methods 0.000 claims description 5
- 125000004365 octenyl group Chemical group C(=CCCCCCC)* 0.000 claims description 5
- 230000035484 reaction time Effects 0.000 claims description 5
- 230000015572 biosynthetic process Effects 0.000 claims description 4
- 238000003760 magnetic stirring Methods 0.000 claims description 3
- XIYUIMLQTKODPS-UHFFFAOYSA-M 1-ethyl-3-methylimidazol-3-ium;acetate Chemical compound CC([O-])=O.CC[N+]=1C=CN(C)C=1 XIYUIMLQTKODPS-UHFFFAOYSA-M 0.000 claims description 2
- 150000008065 acid anhydrides Chemical class 0.000 claims 1
- 238000000034 method Methods 0.000 abstract description 26
- 230000001804 emulsifying effect Effects 0.000 abstract description 14
- 235000013305 food Nutrition 0.000 abstract description 11
- 235000016709 nutrition Nutrition 0.000 abstract description 10
- 230000006872 improvement Effects 0.000 abstract description 7
- 230000036541 health Effects 0.000 abstract description 5
- 230000035764 nutrition Effects 0.000 abstract description 5
- 230000006870 function Effects 0.000 abstract description 3
- 238000013329 compounding Methods 0.000 abstract description 2
- 230000008569 process Effects 0.000 abstract 2
- 230000009286 beneficial effect Effects 0.000 abstract 1
- 239000002994 raw material Substances 0.000 abstract 1
- 239000000243 solution Substances 0.000 description 32
- 230000000052 comparative effect Effects 0.000 description 22
- 238000003672 processing method Methods 0.000 description 15
- 239000002131 composite material Substances 0.000 description 13
- 230000003993 interaction Effects 0.000 description 10
- 239000011218 binary composite Substances 0.000 description 9
- 238000006467 substitution reaction Methods 0.000 description 7
- KFZMGEQAYNKOFK-UHFFFAOYSA-N Isopropanol Chemical compound CC(C)O KFZMGEQAYNKOFK-UHFFFAOYSA-N 0.000 description 6
- 238000002835 absorbance Methods 0.000 description 6
- 235000014113 dietary fatty acids Nutrition 0.000 description 6
- 229930195729 fatty acid Natural products 0.000 description 6
- 239000000194 fatty acid Substances 0.000 description 6
- 150000004665 fatty acids Chemical class 0.000 description 6
- 239000000126 substance Substances 0.000 description 6
- 239000013078 crystal Substances 0.000 description 5
- 239000000839 emulsion Substances 0.000 description 5
- NIPNSKYNPDTRPC-UHFFFAOYSA-N N-[2-oxo-2-(2,4,6,7-tetrahydrotriazolo[4,5-c]pyridin-5-yl)ethyl]-2-[[3-(trifluoromethoxy)phenyl]methylamino]pyrimidine-5-carboxamide Chemical compound O=C(CNC(=O)C=1C=NC(=NC=1)NCC1=CC(=CC=C1)OC(F)(F)F)N1CC2=C(CC1)NN=N2 NIPNSKYNPDTRPC-UHFFFAOYSA-N 0.000 description 4
- 239000012153 distilled water Substances 0.000 description 4
- 238000005259 measurement Methods 0.000 description 4
- 230000004048 modification Effects 0.000 description 4
- 238000012986 modification Methods 0.000 description 4
- KDYFGRWQOYBRFD-UHFFFAOYSA-L succinate(2-) Chemical compound [O-]C(=O)CCC([O-])=O KDYFGRWQOYBRFD-UHFFFAOYSA-L 0.000 description 4
- 102000000119 Beta-lactoglobulin Human genes 0.000 description 3
- 108010060630 Lactoglobulins Proteins 0.000 description 3
- OGBUMNBNEWYMNJ-UHFFFAOYSA-N batilol Chemical class CCCCCCCCCCCCCCCCCCOCC(O)CO OGBUMNBNEWYMNJ-UHFFFAOYSA-N 0.000 description 3
- 238000009835 boiling Methods 0.000 description 3
- 238000012360 testing method Methods 0.000 description 3
- GFAZGHREJPXDMH-UHFFFAOYSA-N 1,3-dipalmitoylglycerol Chemical compound CCCCCCCCCCCCCCCC(=O)OCC(O)COC(=O)CCCCCCCCCCCCCCC GFAZGHREJPXDMH-UHFFFAOYSA-N 0.000 description 2
- QHZLMUACJMDIAE-SFHVURJKSA-N 1-hexadecanoyl-sn-glycerol Chemical compound CCCCCCCCCCCCCCCC(=O)OC[C@@H](O)CO QHZLMUACJMDIAE-SFHVURJKSA-N 0.000 description 2
- 229920000856 Amylose Polymers 0.000 description 2
- 238000005033 Fourier transform infrared spectroscopy Methods 0.000 description 2
- PEDCQBHIVMGVHV-UHFFFAOYSA-N Glycerol Natural products OCC(O)CO PEDCQBHIVMGVHV-UHFFFAOYSA-N 0.000 description 2
- DBMJMQXJHONAFJ-UHFFFAOYSA-M Sodium laurylsulphate Chemical compound [Na+].CCCCCCCCCCCCOS([O-])(=O)=O DBMJMQXJHONAFJ-UHFFFAOYSA-M 0.000 description 2
- 239000000654 additive Substances 0.000 description 2
- 238000004458 analytical method Methods 0.000 description 2
- 230000008901 benefit Effects 0.000 description 2
- 230000008859 change Effects 0.000 description 2
- 238000007385 chemical modification Methods 0.000 description 2
- 238000010668 complexation reaction Methods 0.000 description 2
- 230000007547 defect Effects 0.000 description 2
- 238000001514 detection method Methods 0.000 description 2
- POULHZVOKOAJMA-UHFFFAOYSA-N dodecanoic acid Chemical compound CCCCCCCCCCCC(O)=O POULHZVOKOAJMA-UHFFFAOYSA-N 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 230000032050 esterification Effects 0.000 description 2
- 238000005886 esterification reaction Methods 0.000 description 2
- 229910052740 iodine Inorganic materials 0.000 description 2
- 239000000203 mixture Substances 0.000 description 2
- KJFMBFZCATUALV-UHFFFAOYSA-N phenolphthalein Chemical compound C1=CC(O)=CC=C1C1(C=2C=CC(O)=CC=2)C2=CC=CC=C2C(=O)O1 KJFMBFZCATUALV-UHFFFAOYSA-N 0.000 description 2
- SQGYOTSLMSWVJD-UHFFFAOYSA-N silver(1+) nitrate Chemical compound [Ag+].[O-]N(=O)=O SQGYOTSLMSWVJD-UHFFFAOYSA-N 0.000 description 2
- 235000019333 sodium laurylsulphate Nutrition 0.000 description 2
- 238000012546 transfer Methods 0.000 description 2
- LDVVTQMJQSCDMK-UHFFFAOYSA-N 1,3-dihydroxypropan-2-yl formate Chemical compound OCC(CO)OC=O LDVVTQMJQSCDMK-UHFFFAOYSA-N 0.000 description 1
- ZCYVEMRRCGMTRW-UHFFFAOYSA-N 7553-56-2 Chemical compound [I] ZCYVEMRRCGMTRW-UHFFFAOYSA-N 0.000 description 1
- 241000196324 Embryophyta Species 0.000 description 1
- 239000005639 Lauric acid Substances 0.000 description 1
- 238000003332 Raman imaging Methods 0.000 description 1
- 238000001237 Raman spectrum Methods 0.000 description 1
- 235000021355 Stearic acid Nutrition 0.000 description 1
- 238000002441 X-ray diffraction Methods 0.000 description 1
- 230000002378 acidificating effect Effects 0.000 description 1
- 238000005054 agglomeration Methods 0.000 description 1
- 230000002776 aggregation Effects 0.000 description 1
- 125000000217 alkyl group Chemical group 0.000 description 1
- 230000004888 barrier function Effects 0.000 description 1
- 239000003153 chemical reaction reagent Substances 0.000 description 1
- 230000007812 deficiency Effects 0.000 description 1
- 235000005911 diet Nutrition 0.000 description 1
- 230000000378 dietary effect Effects 0.000 description 1
- 235000019621 digestibility Nutrition 0.000 description 1
- 239000006185 dispersion Substances 0.000 description 1
- 238000001035 drying Methods 0.000 description 1
- 238000004945 emulsification Methods 0.000 description 1
- 238000000855 fermentation Methods 0.000 description 1
- 230000004151 fermentation Effects 0.000 description 1
- -1 glycerol ester Chemical class 0.000 description 1
- 230000008821 health effect Effects 0.000 description 1
- 238000000265 homogenisation Methods 0.000 description 1
- AKPUJVVHYUHGKY-UHFFFAOYSA-N hydron;propan-2-ol;chloride Chemical compound Cl.CC(C)O AKPUJVVHYUHGKY-UHFFFAOYSA-N 0.000 description 1
- 125000001165 hydrophobic group Chemical group 0.000 description 1
- 239000011630 iodine Substances 0.000 description 1
- 230000001404 mediated effect Effects 0.000 description 1
- 238000002844 melting Methods 0.000 description 1
- 230000008018 melting Effects 0.000 description 1
- 239000007764 o/w emulsion Substances 0.000 description 1
- QIQXTHQIDYTFRH-UHFFFAOYSA-N octadecanoic acid Chemical compound CCCCCCCCCCCCCCCCCC(O)=O QIQXTHQIDYTFRH-UHFFFAOYSA-N 0.000 description 1
- OQCDKBAXFALNLD-UHFFFAOYSA-N octadecanoic acid Natural products CCCCCCCC(C)CCCCCCCCC(O)=O OQCDKBAXFALNLD-UHFFFAOYSA-N 0.000 description 1
- 229920001592 potato starch Polymers 0.000 description 1
- 229940116317 potato starch Drugs 0.000 description 1
- 239000000047 product Substances 0.000 description 1
- 229940100486 rice starch Drugs 0.000 description 1
- 238000001338 self-assembly Methods 0.000 description 1
- 229910001961 silver nitrate Inorganic materials 0.000 description 1
- 235000012424 soybean oil Nutrition 0.000 description 1
- 239000003549 soybean oil Substances 0.000 description 1
- 238000010186 staining Methods 0.000 description 1
- 239000012086 standard solution Substances 0.000 description 1
- 239000008117 stearic acid Substances 0.000 description 1
- 239000006228 supernatant Substances 0.000 description 1
- TUNFSRHWOTWDNC-HKGQFRNVSA-N tetradecanoic acid Chemical compound CCCCCCCCCCCCC[14C](O)=O TUNFSRHWOTWDNC-HKGQFRNVSA-N 0.000 description 1
- 230000009466 transformation Effects 0.000 description 1
- 238000000844 transformation Methods 0.000 description 1
- 150000003626 triacylglycerols Chemical class 0.000 description 1
- 238000003260 vortexing Methods 0.000 description 1
- 229940100445 wheat starch Drugs 0.000 description 1
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08K—Use of inorganic or non-macromolecular organic substances as compounding ingredients
- C08K5/00—Use of organic ingredients
- C08K5/04—Oxygen-containing compounds
- C08K5/09—Carboxylic acids; Metal salts thereof; Anhydrides thereof
-
- A—HUMAN NECESSITIES
- A23—FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
- A23L—FOODS, FOODSTUFFS, OR NON-ALCOHOLIC BEVERAGES, NOT COVERED BY SUBCLASSES A21D OR A23B-A23J; THEIR PREPARATION OR TREATMENT, e.g. COOKING, MODIFICATION OF NUTRITIVE QUALITIES, PHYSICAL TREATMENT; PRESERVATION OF FOODS OR FOODSTUFFS, IN GENERAL
- A23L29/00—Foods or foodstuffs containing additives; Preparation or treatment thereof
- A23L29/20—Foods or foodstuffs containing additives; Preparation or treatment thereof containing gelling or thickening agents
- A23L29/206—Foods or foodstuffs containing additives; Preparation or treatment thereof containing gelling or thickening agents of vegetable origin
- A23L29/212—Starch; Modified starch; Starch derivatives, e.g. esters or ethers
- A23L29/219—Chemically modified starch; Reaction or complexation products of starch with other chemicals
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08B—POLYSACCHARIDES; DERIVATIVES THEREOF
- C08B31/00—Preparation of derivatives of starch
- C08B31/02—Esters
- C08B31/04—Esters of organic acids, e.g. alkenyl-succinated starch
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08K—Use of inorganic or non-macromolecular organic substances as compounding ingredients
- C08K5/00—Use of organic ingredients
- C08K5/04—Oxygen-containing compounds
- C08K5/10—Esters; Ether-esters
- C08K5/101—Esters; Ether-esters of monocarboxylic acids
- C08K5/103—Esters; Ether-esters of monocarboxylic acids with polyalcohols
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L3/00—Compositions of starch, amylose or amylopectin or of their derivatives or degradation products
- C08L3/04—Starch derivatives, e.g. crosslinked derivatives
- C08L3/06—Esters
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P20/00—Technologies relating to chemical industry
- Y02P20/50—Improvements relating to the production of bulk chemicals
- Y02P20/54—Improvements relating to the production of bulk chemicals using solvents, e.g. supercritical solvents or ionic liquids
Definitions
- the invention belongs to the technical field of food processing, and in particular relates to a preparation method of a modified starch-lipid binary compound.
- Starch-lipid complex is mainly a supramolecular helical structure formed by the self-assembly of amylose and lipid during thermal processing, which is commonly found in processed starchy foods.
- Starch-lipid complexes have attracted much attention due to their unique functional and nutritional health properties, such as reducing the hardness of starch, delaying starch retrogradation, improving gel properties, and having reduced starch digestibility and excellent fermentation properties.
- the formation quantity and structural stability of starch-lipid complexes are affected by many factors, mainly including starch source, lipid structure and reaction conditions. Among them, the alkyl chain length, unsaturation, and solubility of lipids affect the structural and functional properties of starch-lipid complexes.
- fatty acids and monoglycerides can form amylose-lipid complexes with a single helix structure with conventional starch.
- complexes cannot be formed with conventional starches.
- the complexation efficiency of conventional starch and them is not high, which limits the preparation and application of related complexes.
- Patent application CN110372917A is a method for efficiently preparing starch-lipid complexes, which uses the emulsifying activity of exogenous additives ( ⁇ -lactoglobulin) to increase the solubility and dispersibility of lipids in water, thereby obtaining ternary complexes,
- exogenous additives ⁇ -lactoglobulin
- the patent application CN110372917A can only prepare the complex of conventional starch and fatty acid or monoglyceride through the addition of exogenous substance ( ⁇ -lactoglobulin), but cannot prepare the complex of starch and diglyceride.
- octenyl succinic acid starch ester is synthesized by esterification of octenyl succinic anhydride and starch, which contains hydrophilic and hydrophobic groups, so it has excellent emulsifying ability.
- the technical problem to be solved by the present invention is to propose a method that can compound and interact conventional starch with long-chain fatty acids or diglycerides, and then efficiently prepare binary complexes, especially the efficient preparation of complexes with diglycerides method.
- a high-efficiency preparation method of a modified starch-lipid binary complex prepared by the following steps
- the conventional cornstarch is adjusted to 10wt% starch milk with the ionic liquid compound solution; then the pH value of the system is adjusted to weak alkaline; at room temperature, octenyl succinic anhydride is added dropwise to the starch milk to carry out esterification modification property, keep the pH value of the reaction system as weakly alkaline, and keep stirring; after the reaction, adjust the pH value of the system as weakly acidic; then perform centrifugation, washing, and drying to obtain starch octenyl succinate;
- step (2) Add the octenyl succinic anhydride modified starch obtained in step (1) to deionized water, stir to form a 7-20 wt% suspension, then add lipid, lipid and modified starch on a dry basis The ratio is 1:10-200, stir well to obtain the modified starch-lipid suspension;
- step (3) Heat the modified starch-lipid suspension obtained in step (2) in a precision temperature-controlled magnetic stirring water bath until the starch is completely gelatinized, then cool to obtain a complex, freeze-dry and grind to obtain octenyl Succinic anhydride modified binary complexes of starch and lipids.
- the cornstarch is formulated into 10wt% starch milk with the prepared ionic liquid complex liquid; then a 0.5M sodium hydroxide solution is added to adjust the pH value of the system to 8.0-8.5; Weigh 1%-9% of octenyl succinic anhydride on a dry basis of starch, and add it dropwise to starch milk within 2.5 hours at a temperature of 25°C to modify the starch; the modification reaction lasts for 5 hours, and the stirring rate is 200rpm; After the reaction, adjust the pH value of the system to 6.0; alternately centrifuge and wash with deionized water and 70% ethanol, each 3 times, the centrifugal force is 5000g, and the centrifugation time is 10min; dry in a vacuum oven at 40°C for 12h to obtain octenylsuccinic acid starch esters.
- the ionic liquid complex liquid is prepared by mixing 1-ethyl-3-methylimidazolium acetate ionic liquid and water at a mass ratio of 2:8.
- starch octenyl succinate is added to deionized water, premixed for 3min, and the stirring speed is 200rpm, and the starch suspension of 8wt% is prepared; then add lipid, lipid and The mass ratio of modified starch dry basis is 1:200, 1:40, 1:20 and 1:10, the stirring time is 2min, and the speed is 260rpm.
- the lipids are long-chain fatty acids or glycerides.
- the long-chain fatty acid is palmitic acid
- the glycerol ester is monopalmitin or dipalmitin.
- the processing and preparation method in the step (3) is: 1 preheating and mixing stage, through the precise temperature control system, the modified starch-lipid suspension is preheated and stirred at 50°C for 2min, and the stirring rate is 200rpm ;
- 2In the heating reaction stage the temperature is raised to 100°C at a heating rate of 25°C/min, the composite reaction time is 1h, and the stirring rate is 260rpm;
- 3The cooling formation stage is cooled to 10°C/min at a cooling rate of 25°C, with a stirring rate of 100rpm; 4
- the obtained modified starch-lipid complex paste sample was quickly cooled in liquid nitrogen for 5 minutes, freeze-dried for 24 hours, and then used a high-throughput liquid nitrogen freezer grinder , grind for 10 minutes under the condition of rotating speed 10cps (rotor specification 6x ⁇ 0.9cm), and pass through a 100-mesh sieve to obtain a binary compound of octenyl succinic anhydride modified starch and lipid.
- Potato starch, wheat starch, and rice starch from different plant sources are treated with modification technology, and fatty acids with different chain lengths, such as lauric acid, myristic acid, and stearic acid, and their corresponding monoglycerides and diglycerides, etc.
- Lipids prepared the resulting binary complexes by the method of the invention with similar results.
- the method provided by the present invention for modifying starch by octenyl succinic anhydride to efficiently prepare starch-lipid complex utilizes the octenyl succinic acid group on the starch molecular chain after modification to improve the emulsifying ability of starch, thus without In the case of adding any exogenous substances, it solves the key scientific and technical problems of the complex reaction of starch and lipids affected by the poor dispersion of fatty acids or diglycerides in water, and greatly improves the interaction between amylose and lipids, especially the long chain Fatty acid or diglyceride, thereby significantly improving the number of complexes and their structural stability, and for the first time efficiently prepared a binary complex of octenyl succinic acid starch ester and dipalmitin glyceride.
- the present invention has the following advantages and effects:
- the invention provides a high-efficiency preparation method of a modified starch-lipid binary complex.
- octenyl succinic anhydride groups are introduced to improve the emulsifying ability of conventional starch.
- the modified starch and fatty acid or glyceride can be efficiently reacted without adding any foreign substances to prepare starch-long-chain fatty acids and starch.
- the compound prepared by the method of the present invention has an excellent thermal stability structure and good emulsifying ability, overcomes the low compound efficiency of conventional starch and long-chain fatty acids and the inability to combine with diglyceride Due to the difficulty of complex interaction, the modified starch-diglyceride binary complex with specific physical and chemical properties and nutritional functions was efficiently prepared for the first time, which achieved a breakthrough in traditional preparation methods, with higher efficiency and better quality. Understanding the interaction between starch and lipids provides new insights and technical methods, which are more conducive to the improvement of food quality and the regulation of human nutrition and health.
- Fig. 1 (A/B/C) is respectively the X-ray diffraction pattern of embodiment 1-9 and comparative example 1-3.
- Figure 2 is the Fourier transform infrared spectrograms of Examples 1-9 and Comparative Examples 1-3 respectively.
- Figure 3 is the laser confocal Raman spectrum of Examples 1-9 and Comparative Examples 1-3, respectively.
- Fig. 4 is the laser confocal scanning staining images of Examples 1-9 and Comparative Examples 1-3 respectively.
- the processing and preparation method is as follows: 1 preheating and mixing stage, preheating and stirring the modified starch-lipid suspension at 50 ° C for 2 minutes through a precise temperature control system, and stirring rate is 200 rpm; 2 heating reaction stage, using 25 The heating rate of °C/min raises the temperature to 100°C, the composite reaction time is 1h, and the stirring rate is 260rpm; 3The temperature is cooled to 25°C at a cooling rate of 10°C/min, and the stirring rate is 100rpm; 4 In the sample processing stage, the obtained modified starch-lipid complex paste sample was quickly cooled in liquid nitrogen for 5 minutes, freeze-dried for 24 hours, and then ground for 10 minutes at a speed of 10 cps using a high-throughput liquid nitrogen freezer grinder (rotor specification 6 ⁇ 0.9 cm), pass through a 100-mesh sieve to obtain a binary compound of octenyl succinic anhydride modified starch and palmitic acid.
- the processing and preparation method is as follows: 1 preheating and mixing stage, preheating and stirring the modified starch-lipid suspension at 50 ° C for 2 minutes through a precise temperature control system, and stirring rate is 200 rpm; 2 heating reaction stage, using 25 The heating rate of °C/min raises the temperature to 100°C, the composite reaction time is 1h, and the stirring rate is 260rpm; 3The temperature is cooled to 25°C at a cooling rate of 10°C/min, and the stirring rate is 100rpm; 4 In the sample processing stage, the obtained modified starch-lipid complex paste sample was quickly cooled in liquid nitrogen for 5 minutes, freeze-dried for 24 hours, and then ground for 10 minutes at a speed of 10 cps using a high-throughput liquid nitrogen freezer grinder (rotor specification 6 ⁇ 0.9 cm), pass through a 100-mesh sieve to obtain a binary compound of octenyl succinic anhydride modified starch and glycerol monopalmitate.
- the processing and preparation method is as follows: 1 preheating and mixing stage, preheating and stirring the modified starch-lipid suspension at 50 ° C for 2 minutes through a precise temperature control system, and stirring rate is 200 rpm; 2 heating reaction stage, using 25 The heating rate of °C/min raises the temperature to 100°C, the composite reaction time is 1h, and the stirring rate is 260rpm; 3The temperature is cooled to 25°C at a cooling rate of 10°C/min, and the stirring rate is 100rpm; 4 In the sample processing stage, the obtained modified starch-lipid complex paste sample was quickly cooled in liquid nitrogen for 5 minutes, freeze-dried for 24 hours, and then ground for 10 minutes at a speed of 10 cps using a high-throughput liquid nitrogen freeze-mill (rotor specification 6 ⁇ 0.9 cm), pass through a 100-mesh sieve to obtain a binary compound of octenyl succinic anhydride modified starch and dipalmitin.
- the starch sample (1.5%, w/w) suspension was heated in a boiling water bath and stirred for 20 min.
- Soybean oil (5% of the quality of the starch suspension) was added to the starch suspension in a high-speed homogenizer (Ultra-Turrax T18) to prepare an oil-in-water (O/W) emulsion.
- a high-speed homogenizer Ultra-Turrax T18
- O/W oil-in-water
- thermodynamic properties of conventional starch-lipid and modified starch-lipid complexes were analyzed by a high-sensitivity differential scanning calorimeter (200F3) from Netzsch, Germany. The above results are shown in Table 3. Analysis of test results shows that the binary complex of starch octenyl succinate and lipid has better melting temperature (T p II ) and greater enthalpy ( ⁇ H). Compared with the composites prepared from conventional starch (Comparative Examples 1-3), Examples 1-3, Examples 4-6 and Examples 7-9 have excellent thermal stability and a more ordered crystal structure.
- the detection indicators of the binary composites obtained in the above three embodiments are also better than those prepared by compounding common starches. Moreover, the composite method of the present invention is simple and easy to operate.
- the present invention provides a method for preparing a modified starch-lipid binary complex. Compared with the defects and deficiencies of the traditional method for preparing the complex, this method not only breaks through the technical barrier of the complex interaction between starch and diglyceride without any external additives, but also the obtained modified starch-lipid
- the V-type crystal structure of the complex, molecular order and thermal stability are superior to those of conventional starch-lipid complexes, which greatly improves the complex efficiency between starch and lipids, and contributes to the improvement of food quality in food processing and Improving human nutritional health is of great significance.
Landscapes
- Chemical & Material Sciences (AREA)
- Health & Medical Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Polymers & Plastics (AREA)
- Medicinal Chemistry (AREA)
- Organic Chemistry (AREA)
- Life Sciences & Earth Sciences (AREA)
- Engineering & Computer Science (AREA)
- Biochemistry (AREA)
- Materials Engineering (AREA)
- Dispersion Chemistry (AREA)
- Nutrition Science (AREA)
- Food Science & Technology (AREA)
- Polysaccharides And Polysaccharide Derivatives (AREA)
- Coloring Foods And Improving Nutritive Qualities (AREA)
Abstract
本发明提供一种改性淀粉-脂质二元复合物的制备方法,该制备方法包括:通过辛烯基琥珀酸酐对常规淀粉进行化学改性,使其具有优良的乳化性能;以辛烯基琥珀酸淀粉酯和脂质(棕榈酸,单棕榈酸甘油酯,二棕榈酸甘油酯)为原料,二者质量配比为10~200:1,配成浓度为7~20%的淀粉悬浮液,通过水相体系可以高效制备淀粉-脂质二元复合物。本发明提供的制备方法在食品加工过程中,可以有效促进淀粉与甘油二酯的复合。基于本发明制备出的具有特定理化性质和营养功能的淀粉-脂质复合物,相比于传统工艺,效率更高,品质更好,更加有利于食品品质的提升及对人体营养健康的调节改善。
Description
本发明属于食品加工技术领域,具体的说涉及一种改性淀粉-脂质二元复合物的制备方法。
淀粉-脂类复合物主要是直链淀粉和脂质在热加工过程中自组装形成的一种超分子螺旋结构,普遍存在于加工淀粉类食品中。淀粉-脂质复合物因其独特的功能和营养健康特性而备受关注,如降低淀粉的硬度、延缓淀粉回生、改善凝胶特性以及具有降低淀粉消化率和优异的发酵特性。淀粉-脂质复合物的形成数量和结构稳定性受多种因素的影响,主要包括淀粉来源、脂质结构和反应条件。其中,脂质的烷基链长度、不饱和度和溶解度会影响淀粉-脂类复合物的结构和功能性质。研究表明脂肪酸和甘油单酯等可以与常规淀粉形成单螺旋结构的直链淀粉-脂质复合物。而对于甘油二酯或甘油三酯而言,还不能与常规淀粉形成复合物。此外,由于脂肪酸和单甘脂的水溶性较差,导致常规淀粉与他们的复合效率并不高,从而限制了相关复合物的制备及应用。专利申请CN110372917A一种高效制备淀粉-脂质复合物的方法,利用外源添加物(β-乳球蛋白)的乳化活性增加了脂质在水中的溶解度和分散性,从而得到三元复合物,但专利申请CN110372917A通过外源物(β-乳球蛋白)的添加仅能制备常规淀粉与脂肪酸或单甘脂的复合物,而不能制备淀粉与甘油二酯的复合物。此外,由于β-乳球蛋白成本较高,且对长链脂肪酸与淀粉复合的效率提高有限,寻找新的方法提高淀粉与脂质的复合迫在眉睫。如何促进淀粉与脂质的复合相互作用,形成更好满足对 食品品质及人体营养健康需求的复合物,已成为食品加工及膳食营养调节中亟待解决的关键性问题。
由于常规淀粉自身存在一定的缺陷,如冷水不溶性,乳化能力较差等。因此,需要通过化学改性技术改变常规淀粉的亲水特性。如利用辛烯基琥珀酸酐与淀粉酯化反应制合成辛烯基琥珀酸淀粉酯,其包含亲水性和疏水性基团,从而具有优异的乳化能力。因此,本发明专利中,我们将常规淀粉进行改性以提升淀粉分子链的乳化能力,进而促进其与脂质(长链脂肪酸和甘油二酯)高效复合进而制备二元复合物,尤其是促进辛烯基琥珀酸淀粉酯与甘油二酯的复合物高效制备。这实现了食品加工中对淀粉-甘油二酯复合物制备技术的突破,可以制备出具有特定理化性质和营养功能的淀粉-脂质复合物,效率更高,品质更好,更加有利于食品品质的提升及对人体营养健康的调节改善。
发明内容
本发明所要解决的技术问题是提出一种可将常规淀粉与长链脂肪酸或甘油二酯复合互作,进而高效制备出二元复合物的方法,尤其是其与甘油二酯的复合物高效制备方法。
为达到上述目的,本发明创造的技术方案是这样实现的:
一种改性淀粉-脂质二元复合物的高效制备方法,由如下步骤制备而
(1)将常规玉米淀粉用离子液体复合液调成10wt%淀粉乳;然后将体系pH值调至弱碱性;在室温下,向淀粉乳中逐滴加入辛烯基琥珀酸酐进行酯化改性,保持反应体系的pH值为弱碱性,不断搅拌;反应结束后调节体系pH值为弱酸性;然后进行离心、洗涤,干燥即得辛烯基琥珀酸淀粉酯;
(2)将步骤(1)中得到的辛烯基琥珀酸酐改性淀粉加入到去离子水中,搅拌配置成7~20wt%的悬浮液,随后加入脂质,脂质与改性淀粉干基质量比为1:10~200,充分搅拌均匀得到改性淀粉-脂质悬浮液;
(3)将步骤(2)中得到的改性淀粉-脂质悬浮液在精密控温磁力搅拌水浴锅中加热至淀粉完全凝胶化后冷却得到复合物,冷冻干燥研磨,即得辛烯基琥珀酸酐改性淀粉与脂质的二元复合物。
优选的,所述的步骤(1)中将玉米淀粉用配置好的离子液体复合液调配成为10wt%的淀粉乳;然后加入浓度为0.5M氢氧化钠溶液将体系pH值调节至8.0-8.5;分别称取淀粉干基质量1%-9%的辛烯基琥珀酸酐,在25℃温度下,在2.5h内逐滴加入淀粉乳中对淀粉改性;改性反应持续5h,搅拌速率200rpm;反应结束后调节体系pH值至6.0;用去离子水和70%乙醇交替离心洗涤,各3遍,离心力5000g,离心时间为10min;真空干燥箱内40℃干燥12h,即得辛烯基琥珀酸淀粉酯。
优选的,所述的离子液体复合液为1-乙基-3-甲基咪唑醋酸盐离子液体与水按照质量比2:8混合制备。
优选的,所述的步骤(2)中辛烯基琥珀酸淀粉酯加入到去离子水中,预混3min,搅拌速率为200rpm,制备得到8wt%的淀粉悬浮液;随后加入脂质,脂质与改性淀粉干基质量配比1:200,1:40,1:20和1:10,搅拌时间2min,速率为260rpm。
优选的,所述脂质为长链脂肪酸或甘油酯。
优选的,所述长链脂肪酸为棕榈酸,甘油酯为单棕榈酸甘油酯或二棕榈酸甘油酯。
优选的,所述的步骤(3)中加工制备方法为:①预热混匀阶段,通过精准温控系统,将改性淀粉-脂质悬浮液在50℃预热搅拌2min,搅拌速率为200rpm;②升温反应阶段,以25℃/min的升温速率将温度升高至100℃,复合反应时间为1h,搅拌速率为260rpm;③降温形成阶段,以10℃/min的降温速率将温度冷却至25℃,搅拌速率为100rpm;④样品处理阶段,将得到的改性淀粉-脂质复合物糊状样品迅速放于液氮中冷却5min,冷冻干燥24h后,使用高通量液氮冷冻研磨仪,在转速10cps条件下研磨10min(转子规格6xФ0.9cm),过100目筛网,得到辛烯基琥珀酸酐改性淀粉与脂质的二元复合物。
不同植物来源的马铃薯淀粉、小麦淀粉和大米淀粉等经过改性技术处理后,与不同链长度脂肪酸,如月桂酸、肉豆蔻酸和硬脂酸,及其相应的单甘油脂和甘油二酯等脂质通过本发明方法制备所得二元复合物,得到相类似的结果。
本发明提供的通过辛烯基琥珀酸酐改性淀粉进而高效制备淀粉-脂质复合物的方法,利用改性后淀粉分子链上的辛烯基琥珀酸基团提升淀粉的乳化能力,从而在不添加任何外源物的情况下,解决脂肪酸或甘油二酯在水中因分散性差而影响淀粉和脂质复合反应的关键科学技术问题,大幅提升直链淀粉与脂质的相互作用,尤其是长链脂肪酸或甘油二酯,进而显著提高复合物的数量形成及其结构稳定性,并首次高效制备出辛烯基琥珀酸淀粉酯与二棕榈酸甘油酯的二元复合物。
本发明与传统方法相比较具有以下优点效果:
本发明提供了一种改性淀粉-脂质二元复合物的高效制备方法,通过对常规淀粉的化学改性,引入辛烯基琥珀酸酐基团以此提升常规淀粉的乳化能力。通过预热混匀阶段,升温反应阶段,降温形成阶段以及样品处理阶段,将改性淀粉与脂肪酸或甘油酯在不添加任何外源物的情况下,高效反应制备出淀粉-长链脂肪 酸以及淀粉-甘油二酯的复合物。与传统工艺及制备方法的产物相比,本发明方法制备出的复合物具有优异的热稳定性结构和良好的乳化能力,克服了常规淀粉与长链脂肪酸复合效率较低以及不能与甘油二酯复合互作的困难,首次高效制备出了具有特定理化性质和营养功能的改性淀粉-甘油二酯的二元复合物,实现了传统制备方法的突破,效率更高,品质更好,为我们理解淀粉和脂质之间的相互作用提供了新的见解与技术方法,更加有利于食品品质的提升及对人体营养健康的调节改善。
图1(A/B/C)分别为实施例1-9及对比例1-3的X-射线衍射图谱。
图2(A/B/C)分别为实施例1-9及对比例1-3的傅立叶转变红外光谱图。
图3(A/B/C)分别为实施例1-9及对比例1-3的激光共聚焦拉曼光谱图。
图4分别为实施例1-9及对比例1-3的激光共聚焦扫描染色图像。
下面将更详细地描述本公开的示例性的优化实施方式,对本发明作进一步的说明。虽然说明书中显示了本公开的示例性的优化实施方式,然而应当理解,可以以各种形式实现本公开而不应被这里阐述的实施方式所限制。相反,提供这些实施方式是为了能够更透彻地理解本公开,并且能够将本公开的范围完整的传达给本领域的技术人员,以帮助本领域技术人员对本发明的发明构思、技术方案有更完整、准确和深入的理解。
实施例1
(1)将常规玉米淀粉用配置好的离子液体复合液调配成为10wt%的淀粉乳;然后加入浓度为0.5M氢氧化钠溶液将体系pH值调节至8.0-8.5;称取淀粉 干基质量1%的辛烯基琥珀酸酐,在25℃温度下,在2.5h内逐滴加入体系中对淀粉改性;改性反应持续5h,搅拌速率200rpm;反应结束后调节体系pH值至6.0;用去离子水和70%乙醇交替离心洗涤,各3遍,离心力5000g,离心时间为10min;真空干燥箱内40℃干燥12h,即得辛烯基琥珀酸淀粉酯。
(2)预混辛烯基琥珀酸淀粉酯与去离子水3min,搅拌速率为200rpm,制备得到8wt%的淀粉悬浮液;随后按照脂质与改性淀粉干基的质量配比为1:20加入脂质,搅拌时间2min,速率为260rpm,脂质选用长链脂肪酸为棕榈酸。
(3)加工制备方法为:①预热混匀阶段,通过精准温控系统,将改性淀粉-脂质悬浮液在50℃预热搅拌2min,搅拌速率为200rpm;②升温反应阶段,以25℃/min的升温速率将温度升高至100℃,复合反应时间为1h,搅拌速率为260rpm;③降温形成阶段,以10℃/min的降温速率将温度冷却至25℃,搅拌速率为100rpm;④样品处理阶段,将得到的改性淀粉-脂质复合物糊状样品迅速放于液氮中冷却5min,冷冻干燥24h后,使用高通量液氮冷冻研磨仪,在转速10cps条件下研磨10min(转子规格6xФ0.9cm),过100目筛网,得到辛烯基琥珀酸酐改性淀粉与棕榈酸的二元复合物。
实施例2
(1)将常规玉米淀粉用配置好的离子液体复合液调配成为10wt%的淀粉乳;然后加入浓度为0.5M氢氧化钠溶液将体系pH值调节至8.0-8.5;称取淀粉干基质量3%的辛烯基琥珀酸酐,在25℃温度下,在2.5h内逐滴加入体系中对淀粉改性;改性反应持续5h,搅拌速率200rpm;反应结束后调节体系pH值至6.0;用去离子水和70%乙醇交替离心洗涤,各3遍,离心力5000g,离心时间为10min;真空干燥箱内40℃干燥12h,即得辛烯基琥珀酸淀粉酯。
(2)预混制备改性淀粉悬浮液及其添加脂质种类和方法与实施例1相同。
(3)加工制备方法与实施例1相同。
实施例3
(1)将常规玉米淀粉用配置好的离子液体复合液调配成为10wt%的淀粉乳;然后加入浓度为0.5M氢氧化钠溶液将体系pH值调节至8.0-8.5;称取淀粉干基质量9%的辛烯基琥珀酸酐,在25℃温度下,在2.5h内逐滴加入体系中对淀粉改性;改性反应持续5h,搅拌速率200rpm;反应结束后调节体系pH值至6.0;用去离子水和70%乙醇交替离心洗涤,各3遍,离心力5000g,离心时间为10min;真空干燥箱内40℃干燥12h,即得辛烯基琥珀酸淀粉酯。
(2)预混制备改性淀粉悬浮液及其添加脂质种类和方法与实施例1相同。
(3)加工制备方法与实施例1相同。
实施例4
(1)将常规玉米淀粉用配置好的离子液体复合液调配成为10wt%的淀粉乳;然后加入浓度为0.5M氢氧化钠溶液将体系pH值调节至8.0-8.5;称取淀粉干基质量1%的辛烯基琥珀酸酐,在25℃温度下,在2.5h内逐滴加入体系中对淀粉改性;改性反应持续5h,搅拌速率200rpm;反应结束后调节体系pH值至6.0;用去离子水和70%乙醇交替离心洗涤,各3遍,离心力5000g,离心时间为10min;真空干燥箱内40℃干燥12h,即得辛烯基琥珀酸淀粉酯。
(2)预混辛烯基琥珀酸淀粉酯与去离子水3min,搅拌速率为200rpm,制备得到8wt%的淀粉悬浮液;随后按照脂质与改性淀粉干基的质量配比为1:20加入脂质,搅拌时间2min,速率为260rpm,脂质选用甘油酯为单棕榈酸甘油酯。
(3)加工制备方法为:①预热混匀阶段,通过精准温控系统,将改性淀粉-脂质悬浮液在50℃预热搅拌2min,搅拌速率为200rpm;②升温反应阶段,以25℃/min的升温速率将温度升高至100℃,复合反应时间为1h,搅拌速率为260rpm;③降温形成阶段,以10℃/min的降温速率将温度冷却至25℃,搅拌速率为100rpm;④样品处理阶段,将得到的改性淀粉-脂质复合物糊状样品迅速放于液氮中冷却5min,冷冻干燥24h后,使用高通量液氮冷冻研磨仪,在转速10cps条件下研磨10min(转子规格6xФ0.9cm),过100目筛网,得到辛烯基琥珀酸酐改性淀粉与单棕榈酸甘油酯的二元复合物。
实施例5
(1)将常规玉米淀粉用配置好的离子液体复合液调配成为10wt%的淀粉乳;然后加入浓度为0.5M氢氧化钠溶液将体系pH值调节至8.0-8.5;称取淀粉干基质量3%的辛烯基琥珀酸酐,在25℃温度下,在2.5h内逐滴加入体系中对淀粉改性;改性反应持续5h,搅拌速率200rpm;反应结束后调节体系pH值至6.0;用去离子水和70%乙醇交替离心洗涤,各3遍,离心力5000g,离心时间为10min;真空干燥箱内40℃干燥12h,即得辛烯基琥珀酸淀粉酯。
(2)预混制备改性淀粉悬浮液及其添加脂质种类和方法与实施例4相同。
(3)加工制备方法与实施例4相同。
实施例6
(1)将常规玉米淀粉用配置好的离子液体复合液调配成为10wt%的淀粉乳;然后加入浓度为0.5M氢氧化钠溶液将体系pH值调节至8.0-8.5;称取淀粉干基质量9%的辛烯基琥珀酸酐,在25℃温度下,在2.5h内逐滴加入体系中对淀粉改性;改性反应持续5h,搅拌速率200rpm;反应结束后调节体系pH值至 6.0;用去离子水和70%乙醇交替离心洗涤,各3遍,离心力5000g,离心时间为10min;真空干燥箱内40℃干燥12h,即得辛烯基琥珀酸淀粉酯。
(2)预混制备改性淀粉悬浮液及其添加脂质种类和方法与实施例4相同。
(3)加工制备方法与实施例4相同。
实施例7
(1)将常规玉米淀粉用配置好的离子液体复合液调配成为10wt%的淀粉乳;然后加入浓度为0.5M氢氧化钠溶液将体系pH值调节至8.0-8.5;称取淀粉干基质量1%的辛烯基琥珀酸酐,在25℃温度下,在2.5h内逐滴加入体系中对淀粉改性;改性反应持续5h,搅拌速率200rpm;反应结束后调节体系pH值至6.0;用去离子水和70%乙醇交替离心洗涤,各3遍,离心力5000g,离心时间为10min;真空干燥箱内40℃干燥12h,即得辛烯基琥珀酸淀粉酯。
(2)预混辛烯基琥珀酸淀粉酯与去离子水3min,搅拌速率为200rpm,制备得到8wt%的淀粉悬浮液;随后按照脂质与改性淀粉干基的质量配比为1:20加入脂质,搅拌时间2min,速率为260rpm,脂质选用甘油酯为二棕榈酸甘油酯。
(3)加工制备方法为:①预热混匀阶段,通过精准温控系统,将改性淀粉-脂质悬浮液在50℃预热搅拌2min,搅拌速率为200rpm;②升温反应阶段,以25℃/min的升温速率将温度升高至100℃,复合反应时间为1h,搅拌速率为260rpm;③降温形成阶段,以10℃/min的降温速率将温度冷却至25℃,搅拌速率为100rpm;④样品处理阶段,将得到的改性淀粉-脂质复合物糊状样品迅速放于液氮中冷却5min,冷冻干燥24h后,使用高通量液氮冷冻研磨仪,在转速10cps 条件下研磨10min(转子规格6xФ0.9cm),过100目筛网,得到辛烯基琥珀酸酐改性淀粉与二棕榈酸甘油酯的二元复合物。
实施例8
(1)将常规玉米淀粉用配置好的离子液体复合液调配成为10wt%的淀粉乳;然后加入浓度为0.5M氢氧化钠溶液将体系pH值调节至8.0-8.5;称取淀粉干基质量3%的辛烯基琥珀酸酐,在25℃温度下,在2.5h内逐滴加入体系中对淀粉改性;改性反应持续5h,搅拌速率200rpm;反应结束后调节体系pH值至6.0;用去离子水和70%乙醇交替离心洗涤,各3遍,离心力5000g,离心时间为10min;真空干燥箱内40℃干燥12h,即得辛烯基琥珀酸淀粉酯。
(2)预混制备改性淀粉悬浮液及其添加脂质种类和方法与实施例7相同。
(3)加工制备方法与实施例7相同。
实施例9
(1)将常规玉米淀粉用配置好的离子液体复合液调配成为10wt%的淀粉乳;然后加入浓度为0.5M氢氧化钠溶液将体系pH值调节至8.0-8.5;称取淀粉干基质量9%的辛烯基琥珀酸酐,在25℃温度下,在2.5h内逐滴加入体系中对淀粉改性;改性反应持续5h,搅拌速率200rpm;反应结束后调节体系pH值至6.0;用去离子水和70%乙醇交替离心洗涤,各3遍,离心力5000g,离心时间为10min;真空干燥箱内40℃干燥12h,即得辛烯基琥珀酸淀粉酯。
(2)预混制备改性淀粉悬浮液及其添加脂质种类和方法与实施例7相同。
(3)加工制备方法与实施例7相同。
对比例1
(1)预混常规玉米淀粉与去离子水3min,搅拌速率为200rpm,制备得到8wt%的淀粉悬浮液;随后按照脂质与常规淀粉干基的质量配比为1:20加入脂质,搅拌时间2min,速率为260rpm,脂质选用长链脂肪酸为棕榈酸。
(2)加工制备方法与实施例1相同
对比例2
(1)预混常规玉米淀粉与去离子水3min,搅拌速率为200rpm,制备得到8wt%的淀粉悬浮液;随后按照脂质与常规淀粉干基的质量配比为1:20加入脂质,搅拌时间2min,速率为260rpm,脂质选用甘油酯为单棕榈酸甘油酯。
(2)加工制备方法与实施例4相同。
对比例3
(1)预混常规玉米淀粉与去离子水3min,搅拌速率为200rpm,制备得到8wt%的淀粉悬浮液;随后按照脂质与常规淀粉干基的质量配比为1:20加入脂质,搅拌时间2min,速率为260rpm,脂质选用甘油酯为二棕榈酸甘油酯。
(2)加工制备方法与实施例7相同。
本发明方法制备的所有实施例与对比例的相关检测结果:
(1)不同百分比(1%,3%和9%)辛烯基琥珀酸酐改性淀粉的取代度(DS)测定。
称取2.0g样品置于250ml烧杯中,用10ml异丙醇润湿,搅拌10min,加入15mL 2.5mol/L盐酸-异丙醇溶液,磁力搅拌30min,然后加入50mL 90%异丙醇溶液,继续搅拌10min。将样品移入布氏漏斗,用90%异丙醇洗涤至无Cl
-(用0.1mol/L硝酸银检验)。再将样品移入500mL烧杯中,加去离子水至300mL,沸水浴20min,加2滴酚酞试剂,趁热用0.1mol/L氢氧化钠溶液滴定至 粉红色,30s内不变色。按照以下公式计算:取代度=0.1624*N/(1-0.21*N),N代表消耗0.1mol/L氢氧化钠标准溶液的物质的量(mmol)。
(2)改性淀粉乳化能力的测定。
将淀粉样品(1.5%,w/w)悬浮液在沸水浴中加热,搅拌20min。在高速均质器(Ultra-Turrax T18)中向淀粉悬浮液中加入大豆油(5%的淀粉悬浮液质量),制备水包油(O/W)乳液。在室温下,12000rpm共4次,单次均质时间为1.5min。随后取乳状液50μL与5mL的0.1%十二烷基硫酸钠均匀混合,形成细乳状液。以0.1%十二烷基硫酸钠为空白对照,在500nm处用吸光度(A
0)测定乳化活性。待样品乳剂放置20min后,在500nm处再次测量吸光度(A
20)。按照以下公式计算乳化稳定性:乳化稳定性(min)=20*A
0/(A
0-A
20)。
上述结果如表1所示,随着辛烯基琥珀酸酐添加百分比的增加(1%-9%),改性淀粉中辛烯基琥珀酸酐基团取代度逐渐由0.0071增加至0.0489,其乳化活性和乳化能力最高达到2.09和1213.5min,相比于常规淀粉有显著性提升。
表1.改性淀粉的取代度、乳化活性和乳化能力
注:表中数据为均值±标准偏差;后缀的字母相同表示无显著性差异,不同字母表示有显著性差异(p<0.05);“/”代表未检测出数据。
(3)复合物样品复合指数的测定。
将淀粉-脂类复合物(0.4g)称取50mL离心管,加入蒸馏水,总重量为5.0g。旋涡后,均匀的悬浮体在沸水浴中加热,磁搅拌速度为200rpm,直到淀粉完全糊化。冷却至室温后,加入25mL蒸馏水,离心(3000g,15min)前斡旋混匀2min。取600μL的上清液转移到试管中,加入15mL蒸馏水和2mL的碘 溶液(2.0%KI和1.3%I
2于蒸馏水中)。在690nm处测量紫外吸光度。以上述方法处理的常规玉米淀粉作为对照。复合指数按照以下公式计算:复合指数(%)=100*(吸光度
对照-吸光度
淀粉-
脂质)/吸光度
对照。
上述结果如表2所示,在对比例中,常规淀粉分别与棕榈酸、单棕榈酸甘油酯和二棕榈酸甘油酯复合反应后,其与单棕榈酸甘油酯(对比例2)的复合互作强于与棕榈酸复合互作(对比例1),而与二棕榈酸甘油酯(对比例3)之间基本没有复合物的产生。常规淀粉经过辛烯基琥珀酸酐改性后,改性淀粉与各种脂质的复合作用增强。与对比例1和对比例3相比,实施例1-3和实施例7-9的复合相互作用显著增强,复合指数显著增加,由对比例1或对比例3的复合指数21.6%或8.6%提升至93.3%或93.2%。并且随着辛烯基琥珀酸酐改性程度(取代度)的增加,改性淀粉与长链脂肪酸或甘油酯的复合指数提升效果更好,特别是其与二棕榈酸甘油酯复合互作效率(实施例7-9)。
表2.淀粉脂质二元复合物的复合指数(%)
注:表中数据为均值±标准偏差;后缀的字母相同表示无显著性差异,不同字母表示有显著性差异(p<0.05)。
(4)采用德国Bruker公司的X-射线衍射仪(D8Advance)检测常规淀粉-脂质和改性淀粉-脂质复合物的晶体结构(如图1)。测定结果表明,与常规淀粉 所制备的二元复合物对比例1-3相比较,由辛烯基琥珀酸淀粉酯所制备的二元复合物实施例1-3、实施例4-6和实施例7-9展示出更强的V-型晶体特征衍射峰(12.9°和19.8°),表明由改性淀粉制备的实施例中是由稳定结构和数量较多的V-型晶体复合物构成,且随着辛烯基琥珀酸酐改性淀粉的乳化活性增加,二元复合物的结构和数量也在逐渐稳定和提升。
(5)采用德国Bruker公司的傅立叶转变红外光谱仪(IS50)检测常规淀粉-脂质和改性淀粉-脂质复合物的短程分子有序性结构(如图2)。测定结果表明,与常规淀粉所制备的二元复合物对比例1-3相比较,由辛烯基琥珀酸淀粉酯所制备的二元复合物实施例1-3、实施例4-6和实施例7-9展示出更好的短程分子有序性,且随着辛烯基琥珀酸酐改性淀粉的取代度增加,二元复合物的短程分子有序性在显著提升。
(6)采用英国Renishaw公司的激光共聚焦拉曼成像光谱仪(Renishaw Invia)分析常规淀粉-脂质和改性淀粉-脂质复合物的短程分子有序性结构(如图3)。测定结果表明,与常规淀粉所制备的二元复合物对比例1-3相比较,由辛烯基琥珀酸淀粉酯所制备的二元复合物实施例1-3、实施例4-6和实施例7-9展示出更好的短程分子有序性,且随着辛烯基琥珀酸酐改性淀粉的取代度增加,二元复合物的短程分子有序性在显著提升。
(7)采用德国Leica公司的激光扫描共聚焦显微镜(TCSSP5)分析常规淀粉-脂质和改性淀粉-脂质复合物的实际样品形貌结构(如图4)。测定结果表明(淀粉结构呈现绿色荧光,脂质结构呈现红色荧光,复合物结构呈现黄色荧光),常规淀粉所制备的二元复合物对比例1-3样品的实际形貌展示出较差的团聚物或混合物(绿色荧光显示),尽管对比例2样品中有复合物的棒状结构,但是其数 量相对较少。而辛烯基琥珀酸淀粉酯所制备的二元复合物实施例1-3、实施例4-6和实施例7-9样品中展示出更多数量的复合物真实棒状形貌结构(黄色荧光的棒状结构),且实施例3、实施例6和实施例9样品中都出现了更多的二元复合物,这也是通过本发明方法首次制备并拍摄到辛烯基琥珀酸淀粉酯与脂质的二元复合物真实形貌结构。
(8)采用德国Netzsch公司的高灵敏度示差扫描量热仪(200F3)分析常规淀粉-脂质和改性淀粉-脂质复合物的热力学性质。上述结果如表3所示,测试结果分析表明,辛烯基琥珀酸淀粉酯与脂质的二元复合物拥有更好的熔融温度(T
p
Ⅱ)和更大的焓值(ΔH)。相比于常规淀粉制备的复合物(对比例1-3),实施例1-3、实施例4-6和实施例7-9拥有优异的热稳定性以及更有序的晶体结构。
实施例10
(1)将常规玉米淀粉用配置好的离子液体复合液调配成为10wt%的淀粉乳;然后加入浓度为0.5M氢氧化钠溶液将体系pH值调节至8.0-8.5;称取淀粉干基质量1%的辛烯基琥珀酸酐,在25℃温度下,在2.5h内逐滴加入体系中对淀粉改性;改性反应持续5h,搅拌速率200rpm;反应结束后调节体系pH值至6.0;用去离子水和70%乙醇交替离心洗涤,各3遍,离心力5000g,离心时间为10min;真空干燥箱内40℃干燥12h,即得辛烯基琥珀酸淀粉酯。
(2)预混辛烯基琥珀酸淀粉酯与去离子水3min,搅拌速率为200rpm,制备得到7wt%的淀粉悬浮液;随后按照脂质与改性淀粉干基的质量配比为1:10加入脂质,搅拌时间2min,速率为260rpm,脂质选用甘油酯为二棕榈酸甘油酯。
(3)加工制备方法与实施例4相同。
实施例11
(1)将常规玉米淀粉用配置好的离子液体复合液调配成为10wt%的淀粉乳;然后加入浓度为0.5M氢氧化钠溶液将体系pH值调节至8.0-8.5;称取淀粉干基质量1%的辛烯基琥珀酸酐,在25℃温度下,在2.5h内逐滴加入体系中对淀粉改性;改性反应持续5h,搅拌速率200rpm;反应结束后调节体系pH值至6.0;用去离子水和70%乙醇交替离心洗涤,各3遍,离心力5000g,离心时间为10min;真空干燥箱内40℃干燥12h,即得辛烯基琥珀酸淀粉酯。
(2)预混辛烯基琥珀酸淀粉酯与去离子水3min,搅拌速率为200rpm,制备得到20wt%的淀粉悬浮液;随后按照脂质与改性淀粉干基的质量配比为1:40加入脂质,搅拌时间2min,速率为260rpm,脂质选用甘油酯为二棕榈酸甘油酯。
(3)加工制备方法与实施例4相同。
实施例12
(1)将常规玉米淀粉用配置好的离子液体复合液调配成为10wt%的淀粉乳;然后加入浓度为0.5M氢氧化钠溶液将体系pH值调节至8.0-8.5;称取淀粉干基质量1%的辛烯基琥珀酸酐,在25℃温度下,在2.5h内逐滴加入体系中对淀粉改性;改性反应持续5h,搅拌速率200rpm;反应结束后调节体系pH值至6.0;用去离子水和70%乙醇交替离心洗涤,各3遍,离心力5000g,离心时间为10min;真空干燥箱内40℃干燥12h,即得辛烯基琥珀酸淀粉酯。
(2)预混辛烯基琥珀酸淀粉酯与去离子水3min,搅拌速率为200rpm,制备得到8wt%的淀粉悬浮液;随后按照脂质与改性淀粉干基的质量配比为1:200 加入脂质,搅拌时间2min,速率为260rpm,脂质选用甘油酯为二棕榈酸甘油酯。
(3)加工制备方法与实施例4相同。
以上三个实施例得到的二元复合物检测各项指标也优于普通淀粉复合制备的。而且本发明的复合方法简单,易操作。
综合以上测试数据及结果分析,本发明提供了一种改性淀粉-脂质二元复合物的制备方法。相比于传统方法制备复合物的缺陷与不足,本方法在无任何外源添加剂的情况下,不仅突破了淀粉与甘油二酯之间复合互作的技术屏障,而且所得改性淀粉-脂质复合物的V-型晶体结构,分子有序性以及热稳定性均优于常规淀粉-脂质复合物,大幅提升了淀粉与脂质之间的复合效率,对于食品加工中食品品质的提升及改善人体营养健康具有重要意义。
以上显示和描述了本发明的基本原理、主要特征和本发明的优点。本行业的技术人员应该了解,本发明不受上述实施例的限制,上述实施例和说明书中描述的只是说明本发明的原理,在不脱离本发明精神和范围的前提下,本发明还会有各种变化和改进,这些变化和改进都落入要求保护的本发明范围内。本发明要求保护范围由所附的权利要求书及其等效物界定。
一切从本发明的构思出发,不经过创造性劳动所作出的结构变换均落在本发明的保护范围之内。
表3.辛烯基琥珀酸酐改性淀粉与脂质二元复合物的热力学性质
注:表中数据为均值±标准偏差;后缀的字母相同表示无显著性差异,不同字母表示有显著性差异(p<0.05);“/”代表未检测出数据。
Claims (3)
- 一种改性淀粉脂质二元复合物的制备方法,其特征在于,包括以下步骤:(1)将常规玉米淀粉用配置好的离子液体复合液调配成为10wt%的淀粉乳;然后加入浓度为0.5M氢氧化钠溶液将体系pH值调节至8.0 8.5;分别称取淀粉干基质量1%9%的辛烯基琥珀酸酐,在25℃温度下,在2.5h内逐滴加入淀粉乳中对淀粉改性;改性反应持续5h,搅拌速率200rpm;反应结束后调节体系pH值至6.0;用去离子水和70%乙醇交替离心洗涤,各3遍,离心力5000g,离心时间为10min;真空干燥箱内40℃干燥12h,即得辛烯基琥珀酸淀粉酯;所述的离子液体复合液为1乙基3甲基咪唑醋酸盐离子液体与水质量比为2:8混合制备;(2)将步骤(1)中得到的辛烯基琥珀酸酐改性淀粉加入到去离子水中,搅拌配置成7~20wt%的悬浮液,随后加入脂质,脂质与改性淀粉干基质量比为1:10~200,充分搅拌均匀得到改性淀粉脂质悬浮液;所述脂质为长链脂肪酸或甘油酯;(3)将步骤(2)中得到的改性淀粉脂质悬浮液在精密控温磁力搅拌水浴锅中加热至淀粉完全凝胶化后冷却得到复合物,冷冻干燥研磨,即得辛烯基琥珀酸酐改性淀粉与脂质的二元复合物,具体步骤为:①预热混匀阶段,通过精准温控系统,将改性淀粉脂质悬浮液在50℃预热搅拌2min,搅拌速率为200rpm;②升温反应阶段,以25℃/min的升温速率将温度升高至100℃,复合反应时间为1h,搅拌速率为260rpm;③降温形成阶段,以10℃/min的降温速率将温度冷 却至25℃,搅拌速率为100rpm;④样品处理阶段,将得到的改性淀粉脂质复合物糊状样品迅速放于液氮中冷却5min,冷冻干燥24h后,使用高通量液氮冷冻研磨仪,在转速10cps条件下研磨10min,转子规格6xФ0.9cm,过100目筛网,得到辛烯基琥珀酸酐改性淀粉与脂质的二元复合物。
- 根据权利要求1所述的一种改性淀粉脂质二元复合物的制备方法,其特征在于,所述的步骤(2)中辛烯基琥珀酸淀粉酯加入到去离子水中,预混3min,搅拌速率为200rpm,制备得到8wt%的淀粉悬浮液;随后加入脂质,脂质与改性淀粉干基质量配比1:200,1:40,1:20和1:10,搅拌时间2min,速率为260rpm。
- 根据权利要求1所述的一种改性淀粉脂质二元复合物的制备方法,其特征在于,所述长链脂肪酸为棕榈酸,甘油酯为单棕榈酸甘油酯或二棕榈酸甘油酯。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US18/137,431 US20230257482A1 (en) | 2021-10-08 | 2023-04-20 | Preparation method of modified starch-lipid binary complexes |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202111170698.8A CN113698673B (zh) | 2021-10-08 | 2021-10-08 | 一种改性淀粉-脂质二元复合物的制备方法 |
CN202111170698.8 | 2021-10-08 |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US18/137,431 Continuation US20230257482A1 (en) | 2021-10-08 | 2023-04-20 | Preparation method of modified starch-lipid binary complexes |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2023056805A1 true WO2023056805A1 (zh) | 2023-04-13 |
Family
ID=78662468
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2022/116468 WO2023056805A1 (zh) | 2021-10-08 | 2022-09-01 | 一种改性淀粉-脂质二元复合物的制备方法 |
Country Status (3)
Country | Link |
---|---|
US (1) | US20230257482A1 (zh) |
CN (1) | CN113698673B (zh) |
WO (1) | WO2023056805A1 (zh) |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN113698673B (zh) * | 2021-10-08 | 2022-09-06 | 天津科技大学 | 一种改性淀粉-脂质二元复合物的制备方法 |
CN115353570B (zh) * | 2022-03-08 | 2023-08-22 | 天津科技大学 | 一种具有更高酶抗性的二元复合型抗性淀粉的制备方法 |
CN116268418B (zh) * | 2023-02-23 | 2024-09-24 | 天津科技大学 | 一种复合抗性淀粉在调控高产短链脂肪酸菌群中的应用 |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN105166885A (zh) * | 2015-08-07 | 2015-12-23 | 江南大学 | 一种包埋共轭亚油酸的微胶囊的制备方法 |
CN107573422A (zh) * | 2017-08-11 | 2018-01-12 | 天津科技大学 | 辛烯基琥珀酸淀粉酯的制备方法 |
WO2021012709A1 (zh) * | 2019-07-25 | 2021-01-28 | 天津科技大学 | 一种高效制备淀粉-脂质复合物的方法 |
CN113698673A (zh) * | 2021-10-08 | 2021-11-26 | 天津科技大学 | 一种改性淀粉-脂质二元复合物的高效制备方法 |
Family Cites Families (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2003102072A1 (en) * | 2002-05-30 | 2003-12-11 | Granate Seed Limited | Starch products involving a starch-lipid complex, their preparation and uses |
CN111171386A (zh) * | 2020-01-13 | 2020-05-19 | 江南大学 | 一种淀粉-脂质复合物的制备方法 |
CN111333740A (zh) * | 2020-04-03 | 2020-06-26 | 天津科技大学 | 一种新型辛烯基琥珀酸颗粒淀粉酯的高效制备方法 |
CN112741247B (zh) * | 2020-12-28 | 2023-05-05 | 浙江新和成股份有限公司 | 一种辛烯基琥珀酸淀粉酯及其制备方法和应用 |
-
2021
- 2021-10-08 CN CN202111170698.8A patent/CN113698673B/zh active Active
-
2022
- 2022-09-01 WO PCT/CN2022/116468 patent/WO2023056805A1/zh active Application Filing
-
2023
- 2023-04-20 US US18/137,431 patent/US20230257482A1/en active Pending
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN105166885A (zh) * | 2015-08-07 | 2015-12-23 | 江南大学 | 一种包埋共轭亚油酸的微胶囊的制备方法 |
CN107573422A (zh) * | 2017-08-11 | 2018-01-12 | 天津科技大学 | 辛烯基琥珀酸淀粉酯的制备方法 |
WO2021012709A1 (zh) * | 2019-07-25 | 2021-01-28 | 天津科技大学 | 一种高效制备淀粉-脂质复合物的方法 |
CN113698673A (zh) * | 2021-10-08 | 2021-11-26 | 天津科技大学 | 一种改性淀粉-脂质二元复合物的高效制备方法 |
Non-Patent Citations (1)
Title |
---|
SUN, SIWEI: "Research on the Preparation and Physicochemical Properties of OSA Modified Lotus Seed Starch-Conjugated Linoleic Acid Complex", CHINESE SELECTED DOCTORAL DISSERTATIONS AND MASTER’S THESES FULL-TEXT DATABASES (DOCTORAL), ENGINEERING SCIENCE & TECHNOLOGY I, no. 02, 1 June 2020 (2020-06-01), CN, pages 1 - 77, XP009544890, DOI: 10.27018/d.cnki.gfjnu.2020.000194 * |
Also Published As
Publication number | Publication date |
---|---|
CN113698673A (zh) | 2021-11-26 |
CN113698673B (zh) | 2022-09-06 |
US20230257482A1 (en) | 2023-08-17 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2023056805A1 (zh) | 一种改性淀粉-脂质二元复合物的制备方法 | |
CN111675830B (zh) | 一种脱支淀粉-脂质复合物的制备方法 | |
Zheng et al. | Effects of pullulanase pretreatment on the structural properties and digestibility of lotus seed starch-glycerin monostearin complexes | |
CN107663241B (zh) | 一种高抗性淀粉含量的交联淀粉及其制备方法 | |
CN102399841B (zh) | 一种淀粉醋酸酯的合成方法 | |
Zhong et al. | Preparation and characterization of rice starch citrates by superheated steam: A new strategy of producing resistant starch | |
CN104172200B (zh) | 一种提高苹果渣中可溶性膳食纤维含量的方法 | |
WO2021012709A1 (zh) | 一种高效制备淀粉-脂质复合物的方法 | |
Zhang et al. | Influences of feed moisture on the structure and physicochemical properties of high amylose corn starch-flax oil complexes during extrusion | |
Utomo et al. | Crosslink modification of tapioca starch with citric acid as a functional food | |
CN115595346A (zh) | 一种豌豆iii型抗性淀粉制备方法 | |
He et al. | Effects of two contrasting dietary polysaccharides and tannic acid on the digestive and physicochemical properties of wheat starch | |
CN110358759B (zh) | 一种包封脂肪酶的Pickering乳液及其制备方法 | |
Wang et al. | Preparation of natural food-grade core-shell starch/zein microparticles by antisolvent exchange and transglutaminase crosslinking for reduced digestion of starch | |
Chen et al. | Effect of temperature during acetylation and heat moisture treatment on the structural and physicochemical properties and application of wheat starch | |
Zheng et al. | Effects of electron beam irradiation pretreatment on the substitution degree, multiscale structure and physicochemical properties of OSA-esterified rice starch | |
CN102115501A (zh) | 一种酸解乙酰化复合变性淀粉的制备方法 | |
Ge et al. | Preparation, structure, and in-vitro hypoglycemic potential of debranched millet starch-fatty acid composite resistant starch | |
CN115353570B (zh) | 一种具有更高酶抗性的二元复合型抗性淀粉的制备方法 | |
CN112106976A (zh) | 一种富含改性纳米纤维素的鱼糜制品添加剂的制备方法 | |
CN110004195B (zh) | 一种酶促辅助挤压制备辛烯基琥珀酸淀粉酯的方法 | |
CN111202235A (zh) | 一种聚丙烯酸钠在改性淀粉或淀粉基食品中的新用途 | |
CN114747757A (zh) | 一种具有高产丁酸的淀粉-脂质复合物抗性淀粉的制备方法 | |
Okugawa et al. | In vivo decomposition of 13 C-labeled cellulose in the mouse | |
CN116268418B (zh) | 一种复合抗性淀粉在调控高产短链脂肪酸菌群中的应用 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 22877827 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 22877827 Country of ref document: EP Kind code of ref document: A1 |