WO2023056690A1 - 传感器装置及其驱动方法、显示装置 - Google Patents

传感器装置及其驱动方法、显示装置 Download PDF

Info

Publication number
WO2023056690A1
WO2023056690A1 PCT/CN2021/132452 CN2021132452W WO2023056690A1 WO 2023056690 A1 WO2023056690 A1 WO 2023056690A1 CN 2021132452 W CN2021132452 W CN 2021132452W WO 2023056690 A1 WO2023056690 A1 WO 2023056690A1
Authority
WO
WIPO (PCT)
Prior art keywords
signal
sensor
receiving circuit
pixel
pixel group
Prior art date
Application number
PCT/CN2021/132452
Other languages
English (en)
French (fr)
Inventor
蒋鹏飞
曾勉
孙亮
Original Assignee
武汉华星光电半导体显示技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 武汉华星光电半导体显示技术有限公司 filed Critical 武汉华星光电半导体显示技术有限公司
Priority to US17/617,585 priority Critical patent/US20240005692A1/en
Publication of WO2023056690A1 publication Critical patent/WO2023056690A1/zh

Links

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06VIMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
    • G06V40/00Recognition of biometric, human-related or animal-related patterns in image or video data
    • G06V40/10Human or animal bodies, e.g. vehicle occupants or pedestrians; Body parts, e.g. hands
    • G06V40/12Fingerprints or palmprints
    • G06V40/13Sensors therefor
    • G06V40/1306Sensors therefor non-optical, e.g. ultrasonic or capacitive sensing
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06VIMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
    • G06V10/00Arrangements for image or video recognition or understanding
    • G06V10/10Image acquisition
    • G06V10/12Details of acquisition arrangements; Constructional details thereof
    • G06V10/14Optical characteristics of the device performing the acquisition or on the illumination arrangements
    • G06V10/147Details of sensors, e.g. sensor lenses
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06VIMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
    • G06V40/00Recognition of biometric, human-related or animal-related patterns in image or video data
    • G06V40/10Human or animal bodies, e.g. vehicle occupants or pedestrians; Body parts, e.g. hands
    • G06V40/12Fingerprints or palmprints
    • G06V40/13Sensors therefor
    • G06V40/1318Sensors therefor using electro-optical elements or layers, e.g. electroluminescent sensing

Definitions

  • the present application relates to the display field, in particular to a sensor device, a driving method thereof, and a display device.
  • Sensor devices have been widely used. For example, ultrasonic sensor devices are used for fingerprint recognition.
  • the signal sending unit and signal receiving unit in the sensor device are set at 1:1.
  • One signal sending unit corresponds to one signal receiving unit, but one signal sending unit corresponds to one signal receiving unit.
  • the circuit design in the ratio of the signal receiving unit limits the size of the sensor pixel unit, and the resolution of the sensor pixel is difficult to meet the demand for higher resolution.
  • Embodiments of the present application provide a sensor device, a driving method thereof, and a display device, which can solve the problem that it is difficult to improve the resolution of sensor pixels in existing sensor devices.
  • An embodiment of the present application provides a sensor device, which includes a substrate and a plurality of sensor pixels arrayed on the substrate, and each sensor pixel includes a signal transmitting circuit and a signal receiving circuit.
  • n sensor pixels constitute a pixel group
  • n represents the number of the signal transmitting circuits in the pixel group
  • n is a positive integer greater than or equal to 2.
  • the sensor pixels in each pixel group are electrically connected to the same signal receiving circuit.
  • the multiple signal transmitting circuits in each pixel group are symmetrically distributed around the corresponding signal receiving circuit.
  • n/2 of the sensor pixels are arranged along the first direction and distributed on one side of the signal receiving circuit.
  • the other n/2 sensor pixels are arranged along the first direction and distributed on the other side of the signal receiving circuit.
  • the signal receiving circuit is disposed between the four signal transmitting circuits.
  • a transduction unit layer is also included.
  • the transducing unit layer includes a first transducing unit connected to the signal receiving circuit, and a second transducing unit connected to the signal transmitting circuit.
  • the first transducing unit is used to convert the first electrical signal sent by the signal transmitting circuit into a first signal different from the electrical signal.
  • the second transduction unit is used to convert the received second signal different from the electrical signal into a second electrical signal, and transmit the second electrical signal to the signal receiving circuit, the first signal and The second signal is the same type of signal.
  • the first transducing unit and the second transducing unit are the same transducing unit.
  • the transduction unit layer is disposed on a side of the sensor pixel away from the substrate.
  • the transduction unit layer is disposed on a side of the sensor pixel away from the substrate.
  • the sensor device includes any one of an ultrasonic sensor, an optical sensor, and a piezoelectric sensor.
  • an embodiment of the present application provides a display device, which includes a sensor device and a display panel, the sensor device includes a substrate and a plurality of sensor pixels arrayed on the substrate, and each sensor pixel includes Signal transmitting circuit and signal receiving circuit.
  • n sensor pixels constitute a pixel group
  • n represents the number of the signal transmitting circuits in the pixel group
  • n is a positive integer greater than or equal to 2.
  • the sensor pixels in each pixel group are electrically connected to the same signal receiving circuit.
  • the multiple signal transmitting circuits in each pixel group are symmetrically distributed around the corresponding signal receiving circuit.
  • n/2 of the sensor pixels are arranged along the first direction and distributed on one side of the signal receiving circuit.
  • the other n/2 sensor pixels are arranged along the first direction and distributed on the other side of the signal receiving circuit.
  • the signal receiving circuit is disposed between the four signal transmitting circuits.
  • a transduction unit layer is also included.
  • the transducing unit layer includes a first transducing unit connected to the signal receiving circuit, and a second transducing unit connected to the signal transmitting circuit.
  • the first transducing unit is used to convert the first electrical signal sent by the signal transmitting circuit into a first signal different from the electrical signal;
  • the second transduction unit is used to convert the received second signal different from the electrical signal into a second electrical signal, and transmit the second electrical signal to the signal receiving circuit, the first signal and The second signal is the same type of signal.
  • the first transducing unit and the second transducing unit are the same transducing unit.
  • the transduction unit layer is disposed on a side of the sensor pixel away from the substrate.
  • the sensor device includes any one of an ultrasonic sensor, an optical sensor, and a piezoelectric sensor.
  • an embodiment of the present application provides a driving method for a sensor device, wherein the sensor device includes a substrate and a plurality of sensor pixels arrayed on the substrate, each of the sensor pixels includes a signal emitting circuit and Signal receiving circuit; n said sensor pixels constitute a pixel group, n represents the number of said signal transmitting circuits in said pixel group, n is a positive integer greater than or equal to 2; wherein, each of said pixel groups The sensor pixels are electrically connected to the same signal receiving circuit;
  • the sensor device further includes a transducing unit layer;
  • the transducing unit layer comprises a first transducing unit connected to the signal receiving circuit, and a second transducing unit connected to the signal transmitting circuit;
  • the first transducing unit is used to convert the first electrical signal sent by the signal transmitting circuit into a first signal different from the electrical signal;
  • the second transducing unit is used to convert the received first signal different from the electrical signal the second signal is converted into a second electrical signal, and the second electrical signal is transmitted to the signal receiving circuit, the first signal and the second signal are signals of the same type;
  • the driving method of the sensor device includes:
  • the driving period of each pixel group includes n sub-driving periods, and in the m-th sub-driving period, the mth sensor pixel performs signal transmission and signal reception, and m is a positive integer less than or equal to n;
  • Each of the sub-driving periods includes a signal transmission time period and a signal reception time period
  • the signal emission circuit of the mth sensor pixel in the pixel group sends out the first electrical signal
  • the signal receiving circuit in the pixel group receives the second electrical signal.
  • the transmitting time period and the receiving time period at least partially overlap.
  • the pixel groups include first sensor pixels, second sensor pixels, third sensor pixels, and fourth sensor pixels, and each of the pixel groups
  • the driving period includes a first sub-driving period corresponding to the first sensor pixel, a second sub-driving period corresponding to the second sensor pixel, and a third sub-driving period corresponding to the third sensor pixel, and a fourth sub-driving period corresponding to the fourth sensor pixel.
  • the sensor pixels in each pixel group share the same signal receiving circuit, which can save the layout space of the signal receiving circuit in the sensor device, simplify the circuit, reduce the number of receiving circuits at the same time, and improve the signal receiving circuit in the sensor device.
  • the resolution of the sensor pixels pixel density, PPI).
  • Fig. 1 is a schematic top view of a sensor device provided by an embodiment of the present application
  • Fig. 2 is a schematic circuit diagram of a sensor device provided by an embodiment of the present application.
  • Fig. 3 is a first cross-sectional schematic diagram of a sensor device provided by an embodiment of the present application.
  • Fig. 4 is a second cross-sectional schematic diagram of a sensor device provided by an embodiment of the present application.
  • Fig. 5 is a schematic diagram of a display device provided by an embodiment of the present application.
  • FIG. 6 is a schematic diagram of a first timing sequence of a driving method of a sensor device provided by an embodiment of the present application
  • Fig. 7 is a second timing diagram of a driving method of a sensor device provided by an embodiment of the present application.
  • Fig. 8 is another schematic top view of a sensor device provided by an embodiment of the present application.
  • An embodiment of the present application provides a sensor device, including a substrate and a plurality of sensor pixels arranged in an array on the substrate, each sensor pixel includes a signal transmitting circuit and a signal receiving circuit; n sensor pixels form a pixel group, and n is greater than or a positive integer equal to 2; wherein, the sensor pixels in each pixel group are electrically connected to the same signal receiving circuit.
  • Embodiments of the present application provide a sensor device, a driving method thereof, and a display device. Each will be described in detail below. It should be noted that the description sequence of the following embodiments is not intended to limit the preferred sequence of the embodiments.
  • FIG. 1 is a schematic top view of a sensor device 100 provided in an embodiment of the present application
  • FIG. 2 is a schematic circuit diagram of a sensor device 100 provided in an embodiment of the present application.
  • the embodiment of the present application provides a sensor device 100, the sensor device 100 includes a substrate 11 and a plurality of sensor pixels 30 arrayed on the substrate 11, each sensor pixel 30 includes a signal transmitting circuit Tx and a signal receiving circuit Rx1234; n sensor pixels 30 constitute a pixel group 20, n represents the number of signal transmission circuits Tx in the pixel group, n is a positive integer greater than or equal to 2; wherein, the sensor pixels 30 in each pixel group 20 are electrically connected to the same signal Receive circuit Rx1234.
  • the sensor device 100 includes a substrate 11 and a sensor pixel layer 12 disposed on the substrate 11, the sensor pixel layer 12 includes a plurality of sensor pixels 30 arranged in an array, each sensor pixel 30 includes a signal transmitting circuit Tx, each sensor The pixel 30 corresponds to a signal receiving circuit Rx1234, and the sensor pixels 30 in the same pixel group 20 correspond to the same signal receiving circuit Rx1234.
  • n sensor pixels 30 constitute a pixel group 20
  • n represents the number of signal transmitting circuits Tx in the pixel group 20
  • each sensor pixel 30 includes a signal transmitting circuit Tx, and includes or corresponds to a signal receiving circuit Rx1234 .
  • the schematic diagrams and Rx1234 only indicate the signal receiving circuits shared by the pixel group 20, and do not limit the pixel group 20 to only have four transmitting circuits Tx. In fact, several signal transmitting circuits Tx in the pixel group 20 share one
  • the signal receiving circuit Rx1234 depends on the value of n.
  • the signal transmitting circuit Tx is a circuit that excites signals and transmits signals
  • the signal receiving circuit Rx1234 is a circuit that returns signals and receives signals.
  • the signal transmitting circuit Tx and the signal receiving circuit Rx 1234 may include thin film transistors (TFTs), metal-oxide semiconductor field effect transistors (MOSFETs), and the like.
  • TFTs thin film transistors
  • MOSFETs metal-oxide semiconductor field effect transistors
  • FIG. 2 shows an example that the signal transmitting circuit Tx is composed of one TFT
  • FIG. 2 shows an example that the signal receiving circuit Rx1234 is composed of two TFTs.
  • the substrate may be a glass substrate or a silicon substrate, which is not limited herein.
  • the sensor pixels 30 in each pixel group 20 are electrically connected to the same signal receiving circuit Rx1234, that is, each pixel group 20 shares the same signal receiving circuit Rx1234, which can save the receiving circuit Rx1234 in the sensor device 100.
  • the layout space is reduced, the circuit is simplified, and the resolution (pixel density) of the sensor pixels in the sensor device 100 can be improved.
  • the multiple signal transmitting circuits Tx in each pixel group 20 are symmetrically distributed around the corresponding signal receiving circuit Rx1234.
  • the n signal transmitting circuits Tx in each pixel group 20 are symmetrically distributed around the corresponding signal receiving circuit Rx1234, so that each signal transmitting circuit Tx in the pixel group 20 can be connected to the signal receiving circuit through the shortest wire
  • the Rx1234 can save the layout space of the receiving circuit Rx1234 in the sensor device 100 , simplify the circuit, and improve the pixel resolution (pixel density) of the sensor in the sensor device 100 .
  • n/2 sensor pixels 30 are arranged along the first direction and distributed on one side of the signal receiving circuit Rx1234; the other n/2 sensor pixels 30 are arranged along the first direction and distributed on the signal receiving circuit The other side of the Rx1234.
  • n/2 sensor pixels 30 are arranged along the first direction and distributed on one side of the signal receiving circuit Rx1234, and the other n/2 sensor pixels 30 are arranged along the first direction and distributed on The other side of the signal receiving circuit Rx1234. That is, in one pixel group 20, half of the sensor pixels 30 are arranged along the first direction and distributed on one side of the signal receiving circuit Rx1234, and the other half of the sensor pixels 30 are arranged along the first direction and distributed on one side of the signal receiving circuit Rx1234. The other side.
  • half of the sensor pixels 30 are arranged in the row or column direction and distributed on one side of the signal receiving circuit Rx1234, and the other half of the sensor pixels 30 are arranged in the row or column direction and distributed on the signal receiving circuit Rx1234 side.
  • each pixel group 20 shares the same signal receiving circuit Rx1234, which can save the layout space of the signal receiving circuit Rx1234 in the sensor device 100, simplify the circuit, reduce the number of signal receiving circuits Rx1234, and improve the sensor
  • the resolution (pixel density, PPI) of the sensor pixels in the device 100 is Rx1234.
  • n 4
  • the signal receiving circuit Rx1234 is disposed between four signal transmitting circuits Tx.
  • one pixel group 20 includes four sensor pixels 30, and shares the signal receiving circuit Rx1234, and the common signal receiving circuit Rx1234 is arranged between the four signal transmitting circuits Tx .
  • the first direction may be a row direction or a column direction.
  • the four sensor pixels 30 in each pixel group 20 share the same signal receiving circuit Rx1234, which can save the layout space of the signal receiving circuit Rx1234 in the sensor device 100, simplify the circuit, and improve the sensor pixel size in the sensor device 100. resolution (pixel density).
  • This embodiment is the same or similar to the above embodiments, and the difference further describes the structure or function of the sensor device 100 .
  • FIG. 3 is a schematic cross-sectional view of the first type of sensor device 100 provided by the embodiment of the present application
  • FIG. 4 is a schematic cross-sectional view of the second type of sensor device 100 provided by the embodiment of the present application.
  • the sensor device 100 further includes a transducing unit layer 40, and the transducing unit layer 40 includes a first transducing unit 42 connected to the signal receiving circuit Rx1234, and a second transducing unit connected to the signal transmitting circuit Tx 41; the first transducing unit 42 is used to convert the first electrical signal sent by the signal transmitting circuit into a first signal different from the electrical signal; the second transducing unit 41 is used to convert the received second electrical signal different from the electrical signal The signal is converted into a second electrical signal, and the second electrical signal is transmitted to the signal receiving circuit, and the first signal and the second signal are signals of the same type.
  • FIG. 3 illustrates that the first transducing unit 42 and the second transducing unit 41 are different transducing units, and the first transducing unit 42 and the second transducing unit 42 Unit 41 is an independent and different transducing unit.
  • the first transducing unit 42 and the second transducing unit 41 are the same transducing unit.
  • FIG. 4 illustrates that the first transducing unit 42 and the second transducing unit 41 are the same transducing unit.
  • the first transducing unit 42 and the second transducing unit 41 are the same transducing unit, and perform the functions of the first transducing unit 42 and the second transducing unit 41 in different time periods through time-division multiplexing, for example, In the previous time period, the same transduction unit performs the function of the first transduction unit 42 , and in the latter time period, the same transduction unit performs the function of the second transduction unit 41 .
  • the transducer unit layer 40 is disposed on a side of the sensor pixel 30 away from the substrate 11 .
  • the signal transmitting circuit Tx and the signal receiving circuit Rx1234 are provided on the substrate 11 first, and then the transduction unit layer 40 is provided on the side of the signal transmitting circuit Tx and the signal receiving circuit Rx1234 away from the substrate 11 .
  • the sensor device 100 includes any one of an ultrasonic sensor, an optical sensor, and a piezoelectric sensor.
  • the first transducing unit 42 and the second transducing unit 41 correspond to transducing units of the ultrasonic sensor.
  • the first transducing unit 42 and the second transducing unit 41 correspond to transducing units of the optical sensor.
  • the first transducing unit 42 and the second transducing unit 41 correspond to the transducing units of the piezoelectric sensor.
  • the first transducing unit 42 and the second transducing unit 41 are ultrasonic sensors
  • the first transducing unit 42 can convert the first electrical signal sent by the signal transmitting circuit Tx into a first signal different from the electrical signal
  • the second transduction unit 41 can convert the received second signal different from the electrical signal into a second electrical signal, and transmit the second electrical signal to the signal receiving circuit Rx1234.
  • the first signal and the second signal are ultrasonic waves. Signals, for example, the sensor device 100 is used for fingerprint recognition, then the first signal is an ultrasonic signal transmitted to the surface of the finger, and the second signal is an ultrasonic signal reflected back by the finger.
  • the first transducing unit 42 and the second transducing unit 41 are optical sensors
  • the first transducing unit 42 can convert the first electrical signal sent by the signal transmitting circuit Tx into a first signal different from the electrical signal
  • the second transduction unit 41 can convert the received second signal different from the electrical signal into a second electrical signal, and transmit the second electrical signal to the signal receiving circuit Rx1234.
  • the first signal and the second signal are optical Signals, for example, the sensor device 100 is used for fingerprint recognition, then the first signal is an optical signal emitted to the surface of the finger, and the second signal is an optical signal reflected back by the finger.
  • the embodiment of the present application also provides a display device 1000 , and the display device 1000 includes any sensor device 100 and a display panel 200 as described above.
  • FIG. 5 is a schematic diagram of a display device 1000 provided in an embodiment of the present application.
  • the display device 1000 includes a sensor device 100 and a display panel 200.
  • the sensor device 100 can be arranged on one side of the display panel 200.
  • the display panel 200 can display images, and the sensor device 100 can perform fingerprint recognition, so that the display device 1000 can perform partial or full-surface fingerprint recognition.
  • the embodiment of the present application also provides a driving method of the sensor device 100, which can be applied to any one of the sensor devices 100 described above.
  • FIG. 6 is a schematic diagram of the first timing sequence of the driving method of the sensor device 100 provided by this embodiment
  • FIG. 7 is a schematic diagram of the second timing sequence of the driving method of the sensor device 100 provided by this embodiment.
  • a method for driving a sensor device 100 in any one of the above sensor devices 100, the driving period TT of each pixel group 20 includes n sub-driving periods T, and in the m-th sub-driving period T , the mth sensor pixel 30 performs signal transmission and signal reception work, m is a positive integer less than or equal to n; each sub-drive cycle T includes a signal transmission time period t1 and a signal reception time period t2; the mth sub-drive cycle During the signal transmission period t1 of Tm, the signal transmission circuit Tx of the mth sensor pixel 30 in the pixel group sends out the first electrical signal; Rx1234 receives the second electrical signal.
  • the transmitting time period t1 and the receiving time period t2 are at least partially overlapped, and the transmitting time period t1 and the receiving time period t2 are partially overlapped in FIG.
  • the sensor device 100 with a certain time difference between the reception of electrical signals, for example, there is a time difference t3 between the transmission of the first electrical signal and the reception of the second electrical signal, and the generation of the time difference t3 is, for example, the first electrical signal and the second electrical signal caused by the propagation time in the medium.
  • the transmitting time period t1 and the receiving time period t2 at least partially overlap, and it is shown in FIG. 7 that the transmitting time period t1 and the receiving time period t2 completely overlap.
  • the time difference t3 between the reception of the electric signal is much smaller than the sensor device 100 of the signal transmission time period t1 and the signal reception time period t2, for example, the first electric signal and the second electric signal propagate very rapidly in the medium or the signal transmission time period t1 and the signal reception time period t2
  • the signal reception period t2 has sufficient time.
  • the ratio of the signal transmitting circuit Tx and the signal receiving circuit Rx1234 of n:1 is adopted, the transmission and reception are read at intervals, and the circuit is simplified to improve the resolution (PPI, pixel density) of the sensor pixel, and the interval of transmission and reception
  • the way of reading can avoid cross-talk signal interference (signal crosstalk) to complete high-speed reading/transmission of signals.
  • the pixel group 20 includes the first sensor pixel 31, the second sensor pixel 32, the third sensor pixel 33 and the fourth sensor pixel 34
  • the driving cycle of each pixel group 20 includes the first The first sub-driving period T1 corresponding to the sensor pixel 31, the second sub-driving period T2 corresponding to the second sensor pixel 32, the third sub-driving period T3 corresponding to the third sensor pixel 33, and the third sub-driving period T3 corresponding to the fourth sensor pixel 34 corresponding to the fourth sub-driving period T4.
  • FIG. 8 is another schematic top view of a sensor device provided by an embodiment of the present application.
  • the first sensor pixel 31 includes a first signal transmitting circuit Tx1 and a shared signal receiving circuit Rx1234
  • the second sensor pixel 32 includes a second signal transmitting circuit Tx2 and a shared signal receiving circuit Rx1234
  • the third sensor pixel 33 includes a third signal transmitting circuit
  • the fourth sensor pixel 34 includes the fourth signal transmitting circuit Tx4 and the shared signal receiving circuit Rx1234.
  • the first sub-drive period T1, the second sub-drive period T2, the third sub-drive period T3 and the fourth sub-drive period T4 respectively include the signal emission period t1 and the signal reception period t2; the signal emission of the mth sub-drive period Tm
  • the signal transmitting circuit Tx of the mth sensor pixel 30 in the pixel group sends out the first electrical signal; in the receiving time period t2 of the mth sub-driving period
  • the signal transmission circuit Tx1 corresponding to the first sensor pixel 31 sends out the first electrical signal; in the signal reception time period in the first sub-drive cycle T1 At t2, the signal receiving circuit Rx1234 in the pixel group 20 receives the second electrical signal.
  • the signal transmission circuit Tx2 corresponding to the second sensor pixel 32 sends out the first electrical signal; during the signal reception time period t2 in the second sub-drive cycle T2, The signal receiving circuit Rx1234 in the pixel group 20 receives the second electrical signal.
  • the signal transmission circuit Tx3 corresponding to the third sensor pixel 33 sends out the first electrical signal; in the signal receiving time period t2 in the third sub-driving cycle T3, The signal receiving circuit Rx1234 in the pixel group 20 receives the second electrical signal.
  • the signal transmission circuit Tx4 corresponding to the fourth sensor pixel 34 sends out the first electrical signal; in the signal receiving time period t2 in the fourth sub-driving cycle T4, The signal receiving circuit Rx1234 in the pixel group 20 receives the second electrical signal.
  • the ratio of signal transmitting circuit Tx and signal receiving circuit Rx1234 of 4:1 is adopted, sending and receiving and reading at intervals, and cooperate to realize simplified circuit, improve the resolution of sensor pixels (PPI, pixel density), and avoid cross -Complete high-speed reading/transmission of signals under signal interference (signal crosstalk) of talk.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Multimedia (AREA)
  • Theoretical Computer Science (AREA)
  • Human Computer Interaction (AREA)
  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Vascular Medicine (AREA)
  • Transforming Light Signals Into Electric Signals (AREA)
  • Image Input (AREA)

Abstract

一种传感器装置(100)及其驱动方法、显示装置(1000),可以节省传感器装置(100)中接收电路(Rx1234)的布局空间。传感器装置(100)包括多个传感器像素(30);n个传感器像素(30)构成一个像素组(20),n为大于或等于2的正整数;其中,每一像素组(20)中的传感器像素(30)电性连接同一信号接收电路(Rx1234)。

Description

传感器装置及其驱动方法、显示装置 技术领域
本申请涉及显示领域,具体涉及一种传感器装置及其驱动方法、显示装置。
背景技术
传感器装置已经广泛应用,例如超声波类型的传感器装置用于指纹识别,目前传感器装置中信号发送单元和信号接收单元1:1设置,一个信号发送单元对应一个信号接收单元,但一个信号发送单元对应一个信号接收单元配比中的电路设计限定了传感器像素单元的大小,传感器像素的分辨率难以满足更高分辨率的需求。
技术问题
本申请实施例提供了一种传感器装置及其驱动方法、显示装置,可以解决现有传感器装置中传感器像素的分辨率难以提升的问题。
技术解决方案
本申请实施例提供了一种传感器装置,其中,包括基底和阵列设置于所述基底上的多个传感器像素,每一所述传感器像素包括信号发射电路和信号接收电路。
n个所述传感器像素构成一个像素组,n表示所述像素组中所述信号发射电路的数量,n为大于或等于2的正整数。
其中,每一所述像素组中的所述传感器像素电性连接同一所述信号接收电路。
可选的,在本申请的一些实施例中,其中,每一所述像素组中的多个信号发射电路对称分布于对应的所述信号接收电路的周围。
可选的,在本申请的一些实施例中,其中,在所述像素组中,n/2个所述传感器像素沿第一方向排列,且分布于所述信号接收电路的一侧。
另外n/2个所述传感器像素沿第一方向排列,且分布于所述信号接收电路的另一侧。
可选的,在本申请的一些实施例中,其中,n=4,所述信号接收电路设置于4个所述信号发射电路之间。
可选的,在本申请的一些实施例中,其中,还包括换能单元层。
所述换能单元层包括与所述信号接收电路连接的第一换能单元,以及与所述信号发射电路连接的第二换能单元。
所述第一换能单元用于将所述信号发射电路发出的第一电信号转变成不同于电信号的第一信号。
所述第二换能单元用于将接收到的不同于电信号的第二信号转变成第二电信号,并将所述第二电信号传递至所述信号接收电路,所述第一信号和所述第二信号为同种类型的信号。
可选的,在本申请的一些实施例中,其中,所述第一换能单元和所述第二换能单元为同一换能单元。
可选的,在本申请的一些实施例中,其中,所述换能单元层设置于所述传感器像素远离所述基底的一侧。
可选的,在本申请的一些实施例中,其中,所述换能单元层设置于所述传感器像素远离所述基底的一侧。
可选的,在本申请的一些实施例中,其中,所述传感器装置包括超声波传感器、光学传感器、压电传感器中的任一种。
相应的,本申请实施例提供了一种显示装置,其中,包括传感器装置和显示面板,所述传感器装置包括基底和阵列设置于所述基底上的多个传感器像素,每一所述传感器像素包括信号发射电路和信号接收电路。
n个所述传感器像素构成一个像素组,n表示所述像素组中所述信号发射电路的数量,n为大于或等于2的正整数。
其中,每一所述像素组中的所述传感器像素电性连接同一所述信号接收电路。
可选的,在本申请的一些实施例中,其中,每一所述像素组中的多个信号发射电路对称分布于对应的所述信号接收电路的周围。
可选的,在本申请的一些实施例中,其中,在所述像素组中,n/2个所述传感器像素沿第一方向排列,且分布于所述信号接收电路的一侧。
另外n/2个所述传感器像素沿第一方向排列,且分布于所述信号接收电路的另一侧。
可选的,在本申请的一些实施例中,其中,n=4,所述信号接收电路设置于4个所述信号发射电路之间。
可选的,在本申请的一些实施例中,其中,还包括换能单元层。
所述换能单元层包括与所述信号接收电路连接的第一换能单元,以及与所述信号发射电路连接的第二换能单元。
所述第一换能单元用于将所述信号发射电路发出的第一电信号转变成不同于电信号的第一信号;
所述第二换能单元用于将接收到的不同于电信号的第二信号转变成第二电信号,并将所述第二电信号传递至所述信号接收电路,所述第一信号和所述第二信号为同种类型的信号。
可选的,在本申请的一些实施例中,其中,所述第一换能单元和所述第二换能单元为同一换能单元。
可选的,在本申请的一些实施例中,其中,所述换能单元层设置于所述传感器像素远离所述基底的一侧。
可选的,在本申请的一些实施例中,其中,所述传感器装置包括超声波传感器、光学传感器、压电传感器中的任一种。
相应的,本申请实施例提供了一种传感器装置的驱动方法,其中,所述传感器装置包括基底和阵列设置于所述基底上的多个传感器像素,每一所述传感器像素包括信号发射电路和信号接收电路;n个所述传感器像素构成一个像素组,n表示所述像素组中所述信号发射电路的数量,n为大于或等于2的正整数;其中,每一所述像素组中的所述传感器像素电性连接同一所述信号接收电路;
其中,所述传感器装置还包括换能单元层;所述换能单元层包括与所述信号接收电路连接的第一换能单元,以及与所述信号发射电路连接的第二换能单元;所述第一换能单元用于将所述信号发射电路发出的第一电信号转变成不同于电信号的第一信号;所述第二换能单元用于将接收到的不同于电信号的第二信号转变成第二电信号,并将所述第二电信号传递至所述信号接收电路,所述第一信号和所述第二信号为同种类型的信号;
在所述传感器装置中,所述传感器装置的驱动方法包括:
每一所述像素组的驱动周期包括n个子驱动周期,在第m个子驱动周期中,第m个传感器像素进行信号发射和信号接收工作,m为小于或等于n的正整数;
每一所述子驱动周期包括信号发射时间段和信号接收时间段;
在第m个所述子驱动周期的所述信号发射时间段,所述像素组中的第m个所述传感器像素的所述信号发射电路发出所述第一电信号;
在第m个所述子驱动周期的所述接收时间段,所述像素组中的所述信号接收电路接收所述第二电信号。
可选的,在本申请的一些实施例中,其中,所述发射时间段和所述接收时间段至少部分重叠。
可选的,在本申请的一些实施例中,其中,n=4,所述像素组包括第一传感器像素、第二传感器像素、第三传感器像素和第四传感器像素,每一所述像素组的驱动周期包括与所述第一传感器像素对应的第一个子驱动周期、与所述第二传感器像素对应的第二个子驱动周期、与所述第三传感器像素对应的第三个子驱动周期,以及与所述第四传感器像素对应的第四个子驱动周期。
有益效果
本申请实施例中,每一像素组中的传感器像素共用同一信号接收电路,可以节省传感器装置中信号接收电路的布局空间,简化电路,同时减小了接收电路的数量,可以提升传感器装置中的传感器像素的分辨率(像素密度,PPI)。
附图说明
为了更清楚地说明本申请实施例中的技术方案,下面将对实施例描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本申请的一些实施例,对于本领域技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1是本申请一实施例提供的一种传感器装置的俯视示意图;
图2是本申请一实施例提供的一种传感器装置的电路示意图;
图3是本申请一实施例提供的一种传感器装置的第一种截面示意图;
图4是本申请一实施例提供的一种传感器装置的第二种截面示意图;
图5是本申请一实施例提供的一种显示装置的示意图;
图6是本申请一实施例提供的一种传感器装置的驱动方法的第一种时序示意图;
图7是本申请一实施例提供的一种传感器装置的驱动方法的第二种时序示意图;
图8是本申请一实施例提供的一种传感器装置的又一种俯视示意图。
本发明的实施方式
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。此外,应当理解的是,此处所描述的具体实施方式仅用于说明和解释本申请,并不用于限制本申请。在本申请中,在未作相反说明的情况下,使用的方位词如“上”和“下”通常是指装置实际使用或工作状态下的上和下,具体为附图中的图面方向;而“内”和“外”则是针对装置的轮廓而言的。
本申请实施例提供了一种传感器装置,包括基底和阵列设置于基底上的多个传感器像素,每一传感器像素包括信号发射电路和信号接收电路;n个传感器像素构成一个像素组,n为大于或等于2的正整数;其中,每一像素组中的传感器像素电性连接同一信号接收电路。
本申请实施例提供了一种传感器装置及其驱动方法、显示装置。以下分别进行详细说明。需说明的是,以下实施例的描述顺序不作为对实施例优选顺序的限定。
实施例一、
请参阅图1、图2,图1为本申请实施例提供的一种传感器装置100的俯视示意图,图2为本申请实施例提供的一种传感器装置100的电路示意图。
本申请的实施例提供了一种传感器装置100,感器装置100包括基底11和阵列设置于基底11上的多个传感器像素30,每一传感器像素30包括信号发射电路Tx和信号接收电路Rx1234;n个传感器像素30构成一个像素组20,n表示像素组中信号发射电路Tx的数量,n为大于或等于2的正整数;其中,每一像素组20中的传感器像素30电性连接同一信号接收电路Rx1234。
具体的,传感器装置100包括基底11和设置于基底11上的传感器像素层12,传感器像素层12包括多个阵列设置的传感器像素30,每一传感器像素30包括一个信号发射电路Tx,每一传感器像素30对应一个信号接收电路Rx1234,同一像素组20中的传感器像素30对应同一个信号接收电路Rx1234。
具体的,n个传感器像素30构成一个像素组20,n表示像素组20中信号发射电路Tx的数量,每一传感器像素30包括一个信号发射电路Tx,并包括或对应一个信号接收电路Rx1234。
需要说明的是,各个示意图和Rx1234只是示意像素组20中共用的信号接收电路,并不限定像素组20中只有4个发射电路Tx,实际上像素组20中有几个信号发射电路Tx共用一个信号接收电路Rx1234是取决于n的取值。具体的,信号发射电路Tx为激励信号并发射信号的电路,信号接收电路Rx1234为回传信号并接收信号的电路。信号发射电路Tx和信号接收电路Rx1234可以包括薄膜晶体管(TFT)、金属-氧化物半导体场效应晶体管(MOSFET)等。图2中举例示意了信号发射电路Tx由一个TFT组成,图2中举例示意了信号接收电路Rx1234由两个TFT组成。
具体的,基底可以为玻璃基底、硅基基底,在此不做限定。
具体的,在传感器装置100中,每一像素组20中的传感器像素30电性连接同一信号接收电路Rx1234,即每一像素组20共用同一信号接收电路Rx1234,可以节省传感器装置100中接收电路Rx1234的布局空间,简化电路,可以提升传感器装置100中的传感器像素的分辨率(像素密度)。
在一些实施例中,每一像素组20中的多个信号发射电路Tx对称分布于对应的信号接收电路Rx1234的周围。
具体的,每一像素组20中的n个信号发射电路Tx对称分布于对应的信号接收电路Rx1234的周围,可以使得像素组20中每一信号发射电路Tx通过最短的走线连接于信号接收电路Rx1234,可以节省传感器装置100中接收电路Rx1234的布局空间,简化电路,可以提升传感器装置100中的传感器像素分辨率(像素密度)。
在一些实施例中,n/2个传感器像素30沿第一方向排列,且分布于信号接收电路Rx1234的一侧;另外n/2个传感器像素30沿第一方向排列,且分布于信号接收电路Rx1234的另一侧。
具体的,在像素组20中,n/2个传感器像素30沿第一方向排列,且分布于信号接收电路Rx1234的一侧,另外n/2个传感器像素30沿第一方向排列,且分布于信号接收电路Rx1234的另一侧。即在一个像素组20中,一半数量的传感器像素30沿第一方向排列且分布于信号接收电路Rx1234的一侧,另一半数量的传感器像素30沿第一方向排列且分布于信号接收电路Rx1234的另一侧。例如在一个像素组20中,一半数量的传感器像素30沿行方向或列方向排列且分布于信号接收电路Rx1234的一侧,另一半数量的传感器像素30沿行方向或列方向排列且分布于信号接收电路Rx1234的另一侧。通过此种设置,可以优化像素组20中的传感器像素30的排布,利于按照行或列顺序驱动。
在本申请实施例中,每一像素组20共用同一信号接收电路Rx1234,可以节省传感器装置100中信号接收电路Rx1234的布局空间,简化电路,同时减小了信号接收电路Rx1234的数量,可以提升传感器装置100中的传感器像素的分辨率(像素密度,PPI)Rx1234。
实施例二、
本实施例与实施例一相同或相似,不同之处n=4。
在一些实施例中,n=4,信号接收电路Rx1234设置于4个信号发射电路Tx之间。
具体的,如图1、图2所示,n=4,一个像素组20中包括4个传感器像素30,且共用信号接收电路Rx1234,公共信号接收电路Rx1234设置于4个信号发射电路Tx之间。
具体的,在一个像素组20中,2个信号发射电路Tx沿第一方向排列在信号接收电路Rx1234的一侧,另外2个信号发射电路Tx沿第一方向排列在信号接收电路Rx1234的另一侧,第一方向可以为行方向或列方向。通过此种设置,每一像素组20中的4个传感器像素30共用同一信号接收电路Rx1234,可以节省传感器装置100中信号接收电路Rx1234的布局空间,简化电路,可以提升传感器装置100中的传感器像素的分辨率(像素密度)。
实施例三、
本实施例与上述实施例相同或相似,不同之处进一步描述了传感器装置100的结构或功能。
请参阅图3、图4,图3为本申请实施例提供的传感器装置100的第一种截面示意图,图4为本申请实施例提供的传感器装置100的第二种截面示意图。
在一些实施例中,传感器装置100还包括换能单元层40,换能单元层40包括与信号接收电路Rx1234连接的第一换能单元42,以及与信号发射电路Tx连接的第二换能单元41;第一换能单元42用于将信号发射电路发出的第一电信号转变成不同于电信号的第一信号;第二换能单元41用于将接收到的不同于电信号的第二信号转变成第二电信号,并将第二电信号传递至信号接收电路,第一信号和第二信号为同种类型的信号。
具体的,在一些实施例中,如图3所示,图3示意了第一换能单元42和第二换能单元41为不同的换能单元,第一换能单元42和第二换能单元41为独立的不同的换能单元。
在一些实施例中,第一换能单元42和第二换能单元41为同一换能单元。
具体的,在一些实施例中,如图4所示,图4示意了第一换能单元42和第二换能单元41为同一换能单元。第一换能单元42和第二换能单元41为同一换能单元,通过分时复用的方式,在不同时间段执行第一换能单元42和第二换能单元41的功能,例如,在前一时间段中同一换能单元执行第一换能单元42的功能,在后一时间段中同一换能单元执行第二换能单元41的功能。在一些实施例中,换能单元层40设置于传感器像素30远离基底11的一侧。
具体的,在基底11上先设置信号发射电路Tx和信号接收电路Rx1234,然后在信号发射电路Tx和信号接收电路Rx1234远离基底11的一侧设置换能单元层40。
在一些实施例中,传感器装置100包括超声波传感器、光学传感器、压电传感器中的任一种。
具体的,传感器装置100为超声波传感器时,第一换能单元42和第二换能单元41对应超声波传感器的换能单元。
具体的,传感器装置100为光学传感器时,第一换能单元42和第二换能单元41对应光学传感器的换能单元。
具体的,传感器装置100为压电传感器时,第一换能单元42和第二换能单元41对应压电传感器的换能单元。具体的,第一换能单元42和第二换能单元41为超声波传感器时,第一换能单元42可以将信号发射电路Tx发出的第一电信号转变成不同于电信号的第一信号,第二换能单元41可将接收到的不同于电信号的第二信号转变成第二电信号,并将第二电信号传递至信号接收电路Rx1234,此时第一信号和第二信号为超声波信号,例如传感器装置100用于指纹识别,那么第一信号为发射至手指表面的超声波信号,第二信号为被手指反射回去的超声波信号。
具体的,第一换能单元42和第二换能单元41为光学传感器时,第一换能单元42可以将信号发射电路Tx发出的第一电信号转变成不同于电信号的第一信号,第二换能单元41可将接收到的不同于电信号的第二信号转变成第二电信号,并将第二电信号传递至信号接收电路Rx1234,此时第一信号和第二信号为光学信号,例如传感器装置100用于指纹识别,那么第一信号为发射至手指表面的光学信号,第二信号为被手指反射回去的光学信号。
实施例四、
本申请实施例还提供了一种显示装置1000,显示装置1000包括如上述所述的任一项传感器装置100和显示面板200。
具体的,请参阅图5,图5为本申请实施例提供的显示装置1000的示意图,显示装置1000包括传感器装置100和显示面板200,传感器装置100可以设置于显示面板200的一侧,在此不做限定。
具体的,在一些实施例中,显示面板200可以显示图像,传感器装置100可以进行指纹识别,这样,显示装置1000就可以进行局部或整面的指纹识别。
实施例五、
本申请实施例还提供了一种传感器装置100的驱动方法,可以应用于上述任一项所述的传感器装置100。
请参阅图6、图7,图6为本实施例提供的传感器装置100的驱动方法的第一种时序示意图,图7为本实施例提供的传感器装置100的驱动方法的第二种时序示意图。
在一些实施例中,一种传感器装置100的驱动方法,在上述任一项的传感器装置100中,每一像素组20的驱动周期TT包括n个子驱动周期T,在第m个子驱动周期T中,第m个传感器像素30进行信号发射和信号接收工作,m为小于或等于n的正整数;每一子驱动周期T包括信号发射时间段t1和信号接收时间段t2;在第m个子驱动周期Tm的信号发射时间段t1,像素组中的第m个传感器像素30的信号发射电路Tx发出第一电信号;在第m个子驱动周期Tm的接收时间段t2,像素组20中的信号接收电路Rx1234接收第二电信号。
在一些实施例中,发射时间段t1和接收时间段t2至少部分重叠,在图6中示意了发射时间段t1和接收时间段t2部分重叠,这种时序适合第一电信号的发射和第二电信号的接收之间具有一定时间差的传感器装置100,例如第一电信号的发射和第二电信号的接收之间具有一个时间差t3,时间差t3的产生例如为第一电信号和第二电信号在介质中传播的时间导致的。
在一些实施例中,发射时间段t1和接收时间段t2至少部分重叠,在图7中示意了发射时间段t1和接收时间段t2全部重叠,这种时序适合第一电信号的发射和第二电信号的接收之间的时间差t3远小于信号发射时间段t1和信号接收时间段t2的传感器装置100,例如第一电信号和第二电信号在介质中传播非常迅速或信号发射时间段t1和信号接收时间段t2具有充足的时间。
在本申请实施例中,采用n:1的信号发射电路Tx和信号接收电路Rx1234配比,间隔收发读取,配合实现简化电路,提升传感器像素的分辨率(PPI,像素密度),且间隔收发读取的方式可以避免cross-talk的信号干扰(信号串扰)下完成信号的高速读取/传输。
实施例六、
本实施例与实施例五相同或相似,不同之处在于n=4。
在一些实施例中,n=4,像素组20包括第一传感器像素31、第二传感器像素32、第三传感器像素33和第四传感器像素34,每一像素组20的驱动周期包括与第一传感器像素31对应的第一个子驱动周期T1、与第二传感器像素32对应的第二个子驱动周期T2、与第三传感器像素33对应的第三个子驱动周期T3,以及与第四传感器像素34对应的第四个子驱动周期T4。
具体的,请参阅图1、图2、图6、图7、图8,图8是本申请一实施例提供的一种传感器装置的又一种俯视示意图。第一传感器像素31包括第一信号发射电路Tx1和共用的信号接收电路Rx1234,第二传感器像素32包括第二信号发射电路Tx2和共用的信号接收电路Rx1234,第三传感器像素33包括第三信号发射电路Tx3和共用的信号接收电路Rx1234,第四传感器像素34包括第四信号发射电路Tx4和共用的信号接收电路Rx1234。
具体的,每一像素组20的驱动周期TT包括4个子驱动周期T,在第m个子驱动周期T中,第m个传感器像素30进行信号发射和信号接收工作,m为小于或等于n的正整数,m=1、2、3、4,4个子驱动周期T分别为第一个子驱动周期T1、第二个子驱动周期T2、第三个子驱动周期T3和第四个子驱动周期T4;第一个子驱动周期T1、第二个子驱动周期T2、第三个子驱动周期T3和第四个子驱动周期T4分别包括信号发射时间段t1和信号接收时间段t2;在第m个子驱动周期Tm的信号发射时间段t1,像素组中的第m个传感器像素30的信号发射电路Tx发出第一电信号;在第m个子驱动周期Tm的接收时间段t2,像素组20中的信号接收电路Rx1234接收第二电信号。
具体的,在第一个子驱动周期T1中的信号发射时间段t1,第一传感器像素31对应的信号发射电路Tx1发出第一电信号;在第一个子驱动周期T1中的信号接收时间段t2,像素组20中的信号接收电路Rx1234接收第二电信号。
具体的,在第二个子驱动周期T2中的信号发射时间段t1,第二传感器像素32对应的信号发射电路Tx2发出第一电信号;在第二个子驱动周期T2中的信号接收时间段t2,像素组20中的信号接收电路Rx1234接收第二电信号。
具体的,在第三个子驱动周期T3中的信号发射时间段t1,第三传感器像素33对应的信号发射电路Tx3发出第一电信号;在第三个子驱动周期T3中的信号接收时间段t2,像素组20中的信号接收电路Rx1234接收第二电信号。
具体的,在第四个子驱动周期T4中的信号发射时间段t1,第四传感器像素34对应的信号发射电路Tx4发出第一电信号;在第四个子驱动周期T4中的信号接收时间段t2,像素组20中的信号接收电路Rx1234接收第二电信号。
在本申请实施例中,采用4:1的信号发射电路Tx和信号接收电路Rx1234配比,间隔收发读取,配合实现简化电路,提升传感器像素的分辨率(PPI,像素密度),且避免cross-talk的信号干扰(信号串扰)下完成信号的高速读取/传输。
以上对本申请实施例所提供的一种传感器装置及其驱动方法、显示装置进行了详细介绍,本文中应用了具体个例对本申请的原理及实施方式进行了阐述,以上实施例的说明只是用于帮助理解本申请的方法及其核心思想;同时,对于本领域的技术人员,依据本申请的思想,在具体实施方式及应用范围上均会有改变之处,综上所述,本说明书内容不应理解为对本申请的限制。

Claims (20)

  1. 一种传感器装置,其中,包括基底和阵列设置于所述基底上的多个传感器像素,每一所述传感器像素包括信号发射电路和信号接收电路;
    n个所述传感器像素构成一个像素组,n表示所述像素组中所述信号发射电路的数量,n为大于或等于2的正整数;
    其中,每一所述像素组中的所述传感器像素电性连接同一所述信号接收电路。
  2. 如权利要求1所述的传感器装置,其中,每一所述像素组中的多个信号发射电路对称分布于对应的所述信号接收电路的周围。
  3. 如权利要求2所述的传感器装置,其中,在所述像素组中,n/2个所述传感器像素沿第一方向排列,且分布于所述信号接收电路的一侧;
    另外n/2个所述传感器像素沿第一方向排列,且分布于所述信号接收电路的另一侧。
  4. 如权利要求3所述的传感器装置,其中,n=4,所述信号接收电路设置于4个所述信号发射电路之间。
  5. 如权利要求1所述的传感器装置,其中,还包括换能单元层;
    所述换能单元层包括与所述信号接收电路连接的第一换能单元,以及与所述信号发射电路连接的第二换能单元;
    所述第一换能单元用于将所述信号发射电路发出的第一电信号转变成不同于电信号的第一信号;
    所述第二换能单元用于将接收到的不同于电信号的第二信号转变成第二电信号,并将所述第二电信号传递至所述信号接收电路,所述第一信号和所述第二信号为同种类型的信号。
  6. 如权利要求5所述的传感器装置,其中,所述第一换能单元和所述第二换能单元为同一换能单元。
  7. 如权利要求5所述的传感器装置,其中,所述换能单元层设置于所述传感器像素远离所述基底的一侧。
  8. 如权利要求6所述的传感器装置,其中,所述换能单元层设置于所述传感器像素远离所述基底的一侧。
  9. 如权利要求5所述的传感器装置,其中,所述传感器装置包括超声波传感器、光学传感器、压电传感器中的任一种。
  10. 一种显示装置,其中,包括传感器装置和显示面板,所述传感器装置包括基底和阵列设置于所述基底上的多个传感器像素,每一所述传感器像素包括信号发射电路和信号接收电路;
    n个所述传感器像素构成一个像素组,n表示所述像素组中所述信号发射电路的数量,n为大于或等于2的正整数;
    其中,每一所述像素组中的所述传感器像素电性连接同一所述信号接收电路。
  11. 如权利要求10所述的显示装置,其中,每一所述像素组中的多个信号发射电路对称分布于对应的所述信号接收电路的周围。
  12. 如权利要求11所述的显示装置,其中,在所述像素组中,n/2个所述传感器像素沿第一方向排列,且分布于所述信号接收电路的一侧;
    另外n/2个所述传感器像素沿第一方向排列,且分布于所述信号接收电路的另一侧。
  13. 如权利要求12所述的显示装置,其中,n=4,所述信号接收电路设置于4个所述信号发射电路之间。
  14. 如权利要求10所述的显示装置,其中,所述传感器装置还包括换能单元层;
    所述换能单元层包括与所述信号接收电路连接的第一换能单元,以及与所述信号发射电路连接的第二换能单元;
    所述第一换能单元用于将所述信号发射电路发出的第一电信号转变成不同于电信号的第一信号;
    所述第二换能单元用于将接收到的不同于电信号的第二信号转变成第二电信号,并将所述第二电信号传递至所述信号接收电路,所述第一信号和所述第二信号为同种类型的信号。
  15. 如权利要求14所述的显示装置,其中,所述第一换能单元和所述第二换能单元为同一换能单元。
  16. 如权利要求14所述的显示装置,其中,所述换能单元层设置于所述传感器像素远离所述基底的一侧。
  17. 如权利要求14所述的显示装置,其中,所述传感器装置包括超声波传感器、光学传感器、压电传感器中的任一种。
  18. 一种传感器装置的驱动方法,其中,所述传感器装置包括基底和阵列设置于所述基底上的多个传感器像素,每一所述传感器像素包括信号发射电路和信号接收电路;n个所述传感器像素构成一个像素组,n表示所述像素组中所述信号发射电路的数量,n为大于或等于2的正整数;其中,每一所述像素组中的所述传感器像素电性连接同一所述信号接收电路;
    其中,所述传感器装置还包括换能单元层;所述换能单元层包括与所述信号接收电路连接的第一换能单元,以及与所述信号发射电路连接的第二换能单元;所述第一换能单元用于将所述信号发射电路发出的第一电信号转变成不同于电信号的第一信号;所述第二换能单元用于将接收到的不同于电信号的第二信号转变成第二电信号,并将所述第二电信号传递至所述信号接收电路,所述第一信号和所述第二信号为同种类型的信号;
    在所述传感器装置中,所述传感器装置的驱动方法包括:
    每一所述像素组的驱动周期包括n个子驱动周期,在第m个子驱动周期中,第m个传感器像素进行信号发射和信号接收工作,m为小于或等于n的正整数;
    每一所述子驱动周期包括信号发射时间段和信号接收时间段;
    在第m个所述子驱动周期的所述信号发射时间段,所述像素组中的第m个所述传感器像素的所述信号发射电路发出所述第一电信号;
    在第m个所述子驱动周期的所述接收时间段,所述像素组中的所述信号接收电路接收所述第二电信号。
  19. 如权利要求18所述的传感器装置的驱动方法,其中,所述发射时间段和所述接收时间段至少部分重叠。
  20. 如权利要求18所述的传感器装置的驱动方法,其中,n=4,所述像素组包括第一传感器像素、第二传感器像素、第三传感器像素和第四传感器像素,每一所述像素组的驱动周期包括与所述第一传感器像素对应的第一个子驱动周期、与所述第二传感器像素对应的第二个子驱动周期、与所述第三传感器像素对应的第三个子驱动周期,以及与所述第四传感器像素对应的第四个子驱动周期。
PCT/CN2021/132452 2021-10-09 2021-11-23 传感器装置及其驱动方法、显示装置 WO2023056690A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US17/617,585 US20240005692A1 (en) 2021-10-09 2021-11-23 Sensing device, method of driving sensing device, and display device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202111177890.X 2021-10-09
CN202111177890.XA CN113850223A (zh) 2021-10-09 2021-10-09 传感器装置及其驱动方法、显示装置

Publications (1)

Publication Number Publication Date
WO2023056690A1 true WO2023056690A1 (zh) 2023-04-13

Family

ID=78977863

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/132452 WO2023056690A1 (zh) 2021-10-09 2021-11-23 传感器装置及其驱动方法、显示装置

Country Status (3)

Country Link
US (1) US20240005692A1 (zh)
CN (1) CN113850223A (zh)
WO (1) WO2023056690A1 (zh)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140263959A1 (en) * 2013-03-15 2014-09-18 Taiwan Semiconductor Manufacturing Company, Ltd. Method and Apparatus for Image Sensor Packaging
CN108027879A (zh) * 2015-09-17 2018-05-11 高通股份有限公司 用于超声成像装置的低频噪声降低的像素接收机
US20190065814A1 (en) * 2017-08-29 2019-02-28 Synaptics Incorporated Device with improved circuit positioning
CN111881877A (zh) * 2014-10-13 2020-11-03 深圳市汇顶科技股份有限公司 用于指纹识别的传感器像素电路
CN112714268A (zh) * 2020-08-21 2021-04-27 深圳市汇顶科技股份有限公司 图像传感器、指纹检测装置和电子设备
CN113033502A (zh) * 2021-05-10 2021-06-25 北京集创北方科技股份有限公司 指纹采集电路、芯片及电子设备

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10931859B2 (en) * 2016-05-23 2021-02-23 InSyte Systems Light emitter and sensors for detecting biologic characteristics
KR20200080484A (ko) * 2018-12-26 2020-07-07 삼성디스플레이 주식회사 표시 장치
CN115698919A (zh) * 2020-06-12 2023-02-03 株式会社半导体能源研究所 显示装置的驱动方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140263959A1 (en) * 2013-03-15 2014-09-18 Taiwan Semiconductor Manufacturing Company, Ltd. Method and Apparatus for Image Sensor Packaging
CN111881877A (zh) * 2014-10-13 2020-11-03 深圳市汇顶科技股份有限公司 用于指纹识别的传感器像素电路
CN108027879A (zh) * 2015-09-17 2018-05-11 高通股份有限公司 用于超声成像装置的低频噪声降低的像素接收机
US20190065814A1 (en) * 2017-08-29 2019-02-28 Synaptics Incorporated Device with improved circuit positioning
CN112714268A (zh) * 2020-08-21 2021-04-27 深圳市汇顶科技股份有限公司 图像传感器、指纹检测装置和电子设备
CN113033502A (zh) * 2021-05-10 2021-06-25 北京集创北方科技股份有限公司 指纹采集电路、芯片及电子设备

Also Published As

Publication number Publication date
US20240005692A1 (en) 2024-01-04
CN113850223A (zh) 2021-12-28

Similar Documents

Publication Publication Date Title
EP3206804B1 (en) Three-port piezoelectric ultrasonic transducer
JP6186696B2 (ja) 超音波測定装置、ヘッドユニット、プローブ及び診断装置
US9184370B2 (en) Ultrasonic transducer device, ultrasonic measurement apparatus, head unit, probe, and ultrasonic imaging apparatus
JP6102284B2 (ja) 超音波測定装置、超音波ヘッドユニット、超音波プローブ及び超音波画像装置
US10622541B2 (en) Ultrasonic device, ultrasonic module, and ultrasonic measurement apparatus
CN103284755A (zh) 超声波换能器装置、探测器、电子设备及超声波诊断装置
US11902761B2 (en) Sound producing device and method for driving the same, display panel and display apparatus
JP2015097733A (ja) 超音波デバイスおよびその製造方法並びに電子機器および超音波画像装置
CN105310718B (zh) 超声波器件、探测器以及电子设备
JP2014083282A (ja) 超音波測定装置、ヘッドユニット、プローブ及び診断装置
JP2015023995A (ja) 超音波測定装置、超音波ヘッドユニット、超音波プローブ及び超音波画像装置
US7596078B2 (en) Method and apparatus for reducing crosstalk in a structural health monitoring system
WO2023056690A1 (zh) 传感器装置及其驱动方法、显示装置
JP2014195495A (ja) 超音波トランスデューサー装置およびプローブ並びに電子機器および超音波画像装置
WO2016090655A1 (zh) 一种具有触摸功能的嵌入式显示屏、终端及触摸检测方法
JP6465161B2 (ja) 超音波トランスデューサーデバイス及び超音波測定装置
WO2020253479A1 (zh) 显示基板及其制备方法、显示面板和显示装置
JP4445096B2 (ja) 超音波プローブおよびこれを用いた超音波診断装置
CN112835052A (zh) 超声波传感模块、超声波传感装置及控制方法、显示设备
JP2017034057A (ja) 圧電デバイス、超音波デバイス、圧電モジュール及び電子機器
US20210044317A1 (en) Method for transceiving signals and transceiver using the same
US20200168784A1 (en) Piezoelectric device and electronic apparatus
JP2001161687A (ja) 超音波診断装置
CN117935321A (zh) 一种指纹识别模组及其制作方法
JPH0197984A (ja) プラズマディスプレイパネル

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 17617585

Country of ref document: US