WO2023055119A1 - 조성물 - Google Patents

조성물 Download PDF

Info

Publication number
WO2023055119A1
WO2023055119A1 PCT/KR2022/014646 KR2022014646W WO2023055119A1 WO 2023055119 A1 WO2023055119 A1 WO 2023055119A1 KR 2022014646 W KR2022014646 W KR 2022014646W WO 2023055119 A1 WO2023055119 A1 WO 2023055119A1
Authority
WO
WIPO (PCT)
Prior art keywords
weight
composition
parts
filler
polyisocyanate
Prior art date
Application number
PCT/KR2022/014646
Other languages
English (en)
French (fr)
Inventor
김도연
양영조
이정현
강양구
Original Assignee
주식회사 엘지화학
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 엘지화학 filed Critical 주식회사 엘지화학
Priority to JP2023552566A priority Critical patent/JP2024509807A/ja
Priority to US18/280,545 priority patent/US20240228690A9/en
Priority to CN202280019493.6A priority patent/CN117043272A/zh
Priority to EP22876891.7A priority patent/EP4299674A4/en
Publication of WO2023055119A1 publication Critical patent/WO2023055119A1/ko

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • C08G18/40High-molecular-weight compounds
    • C08G18/48Polyethers
    • C08G18/4825Polyethers containing two hydroxy groups
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L75/00Compositions of polyureas or polyurethanes; Compositions of derivatives of such polymers
    • C08L75/04Polyurethanes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/08Processes
    • C08G18/16Catalysts
    • C08G18/22Catalysts containing metal compounds
    • C08G18/24Catalysts containing metal compounds of tin
    • C08G18/244Catalysts containing metal compounds of tin tin salts of carboxylic acids
    • C08G18/246Catalysts containing metal compounds of tin tin salts of carboxylic acids containing also tin-carbon bonds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • C08G18/2805Compounds having only one group containing active hydrogen
    • C08G18/2815Monohydroxy compounds
    • C08G18/282Alkanols, cycloalkanols or arylalkanols including terpenealcohols
    • C08G18/2825Alkanols, cycloalkanols or arylalkanols including terpenealcohols having at least 6 carbon atoms
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • C08G18/30Low-molecular-weight compounds
    • C08G18/38Low-molecular-weight compounds having heteroatoms other than oxygen
    • C08G18/3855Low-molecular-weight compounds having heteroatoms other than oxygen having sulfur
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • C08G18/40High-molecular-weight compounds
    • C08G18/4009Two or more macromolecular compounds not provided for in one single group of groups C08G18/42 - C08G18/64
    • C08G18/4018Mixtures of compounds of group C08G18/42 with compounds of group C08G18/48
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • C08G18/40High-molecular-weight compounds
    • C08G18/42Polycondensates having carboxylic or carbonic ester groups in the main chain
    • C08G18/4202Two or more polyesters of different physical or chemical nature
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • C08G18/40High-molecular-weight compounds
    • C08G18/42Polycondensates having carboxylic or carbonic ester groups in the main chain
    • C08G18/4236Polycondensates having carboxylic or carbonic ester groups in the main chain containing only aliphatic groups
    • C08G18/4238Polycondensates having carboxylic or carbonic ester groups in the main chain containing only aliphatic groups derived from dicarboxylic acids and dialcohols
    • C08G18/4241Polycondensates having carboxylic or carbonic ester groups in the main chain containing only aliphatic groups derived from dicarboxylic acids and dialcohols from dicarboxylic acids and dialcohols in combination with polycarboxylic acids and/or polyhydroxy compounds which are at least trifunctional
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/70Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the isocyanates or isothiocyanates used
    • C08G18/72Polyisocyanates or polyisothiocyanates
    • C08G18/73Polyisocyanates or polyisothiocyanates acyclic
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/70Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the isocyanates or isothiocyanates used
    • C08G18/72Polyisocyanates or polyisothiocyanates
    • C08G18/77Polyisocyanates or polyisothiocyanates having heteroatoms in addition to the isocyanate or isothiocyanate nitrogen and oxygen or sulfur
    • C08G18/78Nitrogen
    • C08G18/79Nitrogen characterised by the polyisocyanates used, these having groups formed by oligomerisation of isocyanates or isothiocyanates
    • C08G18/791Nitrogen characterised by the polyisocyanates used, these having groups formed by oligomerisation of isocyanates or isothiocyanates containing isocyanurate groups
    • C08G18/792Nitrogen characterised by the polyisocyanates used, these having groups formed by oligomerisation of isocyanates or isothiocyanates containing isocyanurate groups formed by oligomerisation of aliphatic and/or cycloaliphatic isocyanates or isothiocyanates
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/01Use of inorganic substances as compounding ingredients characterized by their specific function
    • C08K3/013Fillers, pigments or reinforcing additives
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/18Oxygen-containing compounds, e.g. metal carbonyls
    • C08K3/20Oxides; Hydroxides
    • C08K3/22Oxides; Hydroxides of metals
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/18Oxygen-containing compounds, e.g. metal carbonyls
    • C08K3/20Oxides; Hydroxides
    • C08K3/22Oxides; Hydroxides of metals
    • C08K2003/2206Oxides; Hydroxides of metals of calcium, strontium or barium
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/18Oxygen-containing compounds, e.g. metal carbonyls
    • C08K3/20Oxides; Hydroxides
    • C08K3/22Oxides; Hydroxides of metals
    • C08K2003/221Oxides; Hydroxides of metals of rare earth metal
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/18Oxygen-containing compounds, e.g. metal carbonyls
    • C08K3/20Oxides; Hydroxides
    • C08K3/22Oxides; Hydroxides of metals
    • C08K2003/2217Oxides; Hydroxides of metals of magnesium
    • C08K2003/2224Magnesium hydroxide
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/18Oxygen-containing compounds, e.g. metal carbonyls
    • C08K3/20Oxides; Hydroxides
    • C08K3/22Oxides; Hydroxides of metals
    • C08K2003/2227Oxides; Hydroxides of metals of aluminium
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/18Oxygen-containing compounds, e.g. metal carbonyls
    • C08K3/20Oxides; Hydroxides
    • C08K3/22Oxides; Hydroxides of metals
    • C08K2003/2296Oxides; Hydroxides of metals of zinc
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/28Nitrogen-containing compounds
    • C08K2003/282Binary compounds of nitrogen with aluminium
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/38Boron-containing compounds
    • C08K2003/382Boron-containing compounds and nitrogen
    • C08K2003/385Binary compounds of nitrogen with boron
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K2201/00Specific properties of additives
    • C08K2201/001Conductive additives
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K2201/00Specific properties of additives
    • C08K2201/014Additives containing two or more different additives of the same subgroup in C08K
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/10Metal compounds
    • C08K3/14Carbides
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • This application relates to a composition.
  • a typical heat dissipation material known in the prior art is a material in which a resin binder is filled with a thermally conductive filler (for example, Patent Document 1).
  • a silicone resin, a polyolefin resin, an acrylic resin, an epoxy resin, or the like is usually used as a resin binder.
  • the heat dissipation material is basically required to have excellent thermal conductivity, and additional functions are also required depending on the use. For example, depending on the application, it may be required that the heat dissipation material exhibit high thermal conductivity and low adhesion to a specific adherend.
  • the heat dissipation material when it is necessary to replace a part in contact with a heat dissipation material in a product or to change a location of a heat dissipation material in a process, the heat dissipation material needs to exhibit low adhesive strength.
  • materials showing low adhesive strength include materials to which a silicone resin is applied as a resin binder.
  • silicone resins are relatively expensive.
  • silicone resins contain components that cause contact failure and the like when applied to electronic/electrical products, their uses are limited.
  • the polyurethane material also applied in Patent Document 1 can form a heat dissipation material with high thermal conductivity and has various other advantages, but is a material that exhibits high adhesive strength to most adherends, such as acrylic resins and epoxy resins. It is not easy to realize low adhesion even with materials.
  • plasticizers formulated to control adhesion have problems such as damaging the inherent advantages of the material itself or being eluted during use.
  • heat dissipation material It is necessary to secure an appropriate level of hardness for the heat dissipation material. For example, if the hardness of the heat dissipation material is too high, the material itself tends to be excessively brittle, and it is difficult to apply such a heat dissipation material when impact resistance, vibration resistance and durability are required.
  • a heat dissipation material When a heat dissipation material is formed through a curable composition, it may be required that the composition has so-called room temperature curability depending on the use. This is because it is often difficult to apply heat, electromagnetic waves, or moisture required for curing in the process of forming a heat dissipation material in an electric or electronic device requiring heat management.
  • Patent Document 1 Korean Patent Publication No. 2016-0105354
  • This application aims to provide a composition.
  • One object of the present application is to form a heat dissipation material that can be cured at room temperature when the composition is curable, and exhibits appropriate levels of hardness, low adhesive strength, and excellent thermal conductivity.
  • an object of the present application includes achieving the low adhesive strength without using a plasticizer or the like, or even when using a plasticizer, in a state in which the use rate is minimized.
  • This application also aims to provide a product containing the composition or a cured product thereof.
  • the corresponding physical property is a physical property measured at room temperature unless otherwise specified.
  • room temperature refers to a temperature in the range of about 10 ° C to 30 ° C or about 23 ° C or about 25 ° C as a natural temperature that is not heated and cooled.
  • the unit of temperature is °C.
  • normal pressure refers to a normal pressure in the range of about 700 mmHg to 800 mmHg as natural pressure that is not pressurized and reduced.
  • composition of the present application may be a heat dissipation material or a composition capable of forming the heat dissipation material.
  • composition of the present application is a heat dissipation material means that the composition itself exhibits adhesion to aluminum, hardness, and thermal conductivity, which will be described later.
  • composition of the present application can form a heat dissipation material means that the composition forms a material (eg, a cured body) exhibiting adhesion to aluminum, hardness, and thermal conductivity through a curing reaction or the like. .
  • the composition of the present application may be a curable composition.
  • the composition of the present application may be a room temperature curable composition.
  • a room temperature curable composition means a composition that can be cured in a state maintained at room temperature.
  • the composition of the present application is a curable composition
  • the composition may be a one-component composition or a two-component composition.
  • the term one-component composition refers to a composition in which components necessary for curing are mixed together and stored
  • the term two-component composition refers to a composition in which at least some of the components necessary for curing are physically separated and stored.
  • the composition of the present application may be a polyurethane composition.
  • polyurethane composition refers to a composition containing polyurethane or a component capable of forming polyurethane (eg, a polyol compound, a monohydric alcohol, a thiol compound, and/or a polyisocyanate described later) as a main component.
  • a main component e.g, a polyol compound, a monohydric alcohol, a thiol compound, and/or a polyisocyanate described later.
  • Including as a main component in the above means that the lower limit of the content of the polyurethane or the component capable of forming the polyurethane in the composition is 55% by weight, 60% by weight, 65% by weight, 70% by weight, 75% by weight, 80% by weight , 85% by weight, 90% by weight or 95% by weight.
  • the upper limit of the content of the polyurethane or the component capable of forming the polyurethane in the composition may be 100% by weight.
  • the content of the polyurethane or the component capable of forming the polyurethane is greater than or greater than any one of the lower limits described above, less than or less than any one of the upper limits described above, or less than any one of the upper limits described above, or less than the lower limit described above. It may be at least or above the lower limit of any one of the above, and below or below the upper limit of any one of the upper limits described above.
  • the content of the polyurethane or the component capable of forming the polyurethane is the content in the composition excluding the filler and/or the solvent when the composition includes the filler and/or the solvent.
  • the composition of the present application may be a solvent-free composition.
  • solvent-free composition means that the content of the solvent in the composition is 5% by weight or less, 4% by weight or less, 3% by weight or less, 2% by weight or less, 1% by weight or less, or 0.5% by weight or less.
  • the solvent content in the solvent-free composition may be 0% by weight or more, or about 0% by weight. That is, the solvent-free composition may not substantially contain a solvent.
  • the composition of the present application may form a cured body exhibiting low adhesive strength or low adhesive strength with respect to a specific adherend.
  • polyurethane is known as an adhesive material that exhibits excellent adhesion to various adherends. Therefore, as a method of making the polyurethane composition exhibit low adhesive strength to an adherend, a method of introducing a component that lowers the adhesive strength, such as a plasticizer, is usually used. When components such as plasticizers are applied, the adhesive strength of the polyurethane material can be lowered, but the component deteriorates other physical properties that could be secured in the polyurethane or elutes out of the material during the use of the polyurethane material. Problems can arise.
  • the upper limit of the adhesive strength of the composition or its cured product to aluminum is 1 N/mm 2 , 0.9 N/mm 2 , 0.8 N/mm 2 , 0.7 N/mm 2 , 0.6 N/mm 2 , 0.5 N /mm 2 , 0.4 N/mm 2 , 0.3 N/mm 2 , 0.2 N/mm 2 or 0.1 N/mm 2 .
  • the adhesive force may be the adhesive force of the composition itself to aluminum, or the adhesive force of the cured composition to aluminum when the composition is curable.
  • the lower limit of the adhesive strength to aluminum is not particularly limited.
  • the lower limit of the adhesive force is 0 N/mm 2 , 0.01 N/mm 2 , 0.02 N/mm 2 , 0.03 N/mm 2 , 0.04 N/mm 2 , 0.05 N/mm 2 , 0.06 N/mm 2 , 0.07 N/mm 2 , 0.08 N/mm 2 , 0.09 N/mm 2 , 0.1 N/mm 2 , 0.11 N/mm 2 , 0.12 N/mm 2 , 0.13 N/mm 2 , or 0.14 N/mm 2 . there is.
  • the adhesive strength is less than or less than any one of the upper limits described above, is greater than or exceeds any one of the lower limits described above, or is greater than or exceeds any one of the lower limits described above, may be less than or equal to any one of the stated upper limits.
  • Adhesion to aluminum can be measured in the manner described in the Examples of this specification.
  • the composition may have an adhesive strength of 0 N/mm 2 to aluminum. That is, the composition may be a composition in which adhesive strength to aluminum is not substantially measured.
  • the composition may also exhibit suitable hardness.
  • the hardness may be the hardness of the composition itself or, if the composition is curable, the hardness of the cured composition.
  • the hardness of the composition may be adjusted so that a product having excellent impact resistance, vibration resistance and durability can be provided according to the application purpose when the composition is applied as a heat dissipation material.
  • the upper limit of the hardness (Shore OO hardness) in the Shore OO type of the composition or its cured body may be about 90, 88, 86, 84 or 82, and the upper limit is 40, 45, 50 , 55, 60, 65, 70, 75, 80, 82 or 84.
  • the hardness is less than or equal to or less than any one of the upper limits described above, is greater than or exceeds any one of the lower limits described above, or is greater than or exceeds any one of the lower limits described above, may be less than or equal to any one of the stated upper limits.
  • the hardness may be measured by the method disclosed in the Examples to be described later.
  • the composition can exhibit excellent thermal conductivity.
  • the lower limit of the thermal conductivity of the composition or its cured body is 1.2 W/mk, 1.4 W/mK, 1.6 W/mK, 1.8 W/mK, 2.0 W/mK, 2.2 W/mK, 2.4 W/mK , 2.6 W/mK or 2.8 W/mK
  • the upper limit is 10 W/mK, 9 W/mK, 8 W/mK, 7 W/mK, 6 W/mK, 5 W/mK, 4 W /mK or even 3 W/mK.
  • the thermal conductivity is less than or equal to or less than any one of the upper limits described above, is greater than or exceeds any one of the lower limits described above, or is greater than or exceeds any one of the lower limits described above, may be less than or equal to any one of the upper limits described above.
  • the thermal conductivity may be the thermal conductivity of the composition itself, or the thermal conductivity of the cured composition when the composition is curable. This thermal conductivity can be measured according to the ASTM D5470 standard.
  • the composition may also exhibit adequate flexibility. By adjusting the flexibility of the composition to a desired level, the applications can be greatly expanded.
  • the radius of curvature of the composition may be controlled.
  • the radius of curvature may be the radius of curvature of the composition itself or, if the composition is curable, the radius of curvature of the cured composition.
  • the lower limit of the radius of curvature may be, for example, 1, 2, 3, 4, 5 or 6, and the upper limit may be 20, 19, 18, 17, 16, 15, 14, 13, 12, 11, It can be as many as 10, 9, 8 or 7.
  • the radius of curvature is less than or less than any one of the upper limits described above, is greater than or exceeds any one of the lower limits described above, or is greater than or greater than any one of the lower limits described above, may be less than or equal to any one of the upper limits described above.
  • the radius of curvature of this composition can be measured by the method disclosed in the Examples below. Also, the unit of the radius of curvature is mm.
  • compositions of the present application may be insulating. That is, the composition may form a cured body having insulating properties and/or insulating properties.
  • the composition or its cured product has a breakdown voltage of about 3 kV/mm or more, about 5 kV/mm or more, about 7 kV/mm or more, 10 kV/mm or more, or 15 kV, measured in accordance with ASTM D149. /mm or more or 20 kV/mm or more. The higher the value of the dielectric breakdown voltage, the better the insulation.
  • the upper limit is not particularly limited, but considering the composition of the composition, the dielectric breakdown voltage is about 50 kV/mm or less, 45 kV/mm It may be about 40 kV/mm or less, 35 kV/mm or less, or 30 kV/mm or less.
  • the breakdown voltage as described above can be controlled by adjusting the insulating properties of the composition, and can be achieved, for example, by applying an insulating filler in the resin layer.
  • a ceramic filler is known as a component capable of securing insulation.
  • the composition or cured product thereof may have flame retardancy.
  • the composition or a cured product thereof may exhibit a V-0 grade in the UL 94 V Test (Vertical Burning Test). Accordingly, it is possible to secure stability against fire and other accidents that are of concern depending on the application of the composition.
  • the composition or a cured product thereof may have a specific gravity of 5 or less.
  • the specific gravity may be 4.5 or less, 4 or less, 3.5 or less, or 3 or less in another example.
  • a resin layer exhibiting a specific gravity within this range is advantageous for providing a more lightweight product.
  • the lower limit of the specific gravity is not particularly limited.
  • the specific gravity may be about 1.5 or more or 2 or more.
  • Components added to the resin layer may be adjusted in order to show the specific gravity of the composition or its cured product.
  • a filler capable of securing a desired characteristic eg, thermal conductivity
  • a desired characteristic eg, thermal conductivity
  • applying a filler having a low specific gravity itself or applying a filler having a surface treatment method, etc. may be used.
  • the composition or its cured product may also have a 5% weight loss temperature in thermogravimetric analysis (TGA) of 400°C or more, or a residual amount of 800°C or more of 70% by weight or more. Due to these properties, stability at high temperatures can be further improved.
  • the remaining amount at 800° C. may be about 75% by weight or more, about 80% by weight or more, about 85% by weight or more, or about 90% by weight or more in another example.
  • the remaining amount at 800 ° C. may be about 99% by weight or less in another example.
  • the thermogravimetric analysis (TGA) may measure within the range of 25°C to 800°C at a heating rate of 20°C/min under a nitrogen (N 2 ) atmosphere of 60 cm 3 /min.
  • thermogravimetric analysis (TGA) result can also be achieved by adjusting the composition of the composition.
  • the remaining amount at 800°C is usually influenced by the type or ratio of the filler contained in the composition, and when an excessive amount of filler is included, the remaining amount increases.
  • the composition may include a resin component.
  • resin component includes a component known as a resin in the industry as well as a component capable of forming a resin component through a curing reaction or the like.
  • polyurethane may be formed by reacting a polyol compound with a polyisocyanate, etc.
  • the polyisocyanate itself is not a resin component, and the polyol compound is also not a resin component in some cases.
  • a monohydric alcohol or thiol compound to be described later referred to herein may not be a resin component.
  • the polyol compound, polyisocyanate, monohydric alcohol and/or thiol compound in this specification is intended to form a polyurethane corresponding to the resin component, it can be regarded as a resin component in this specification.
  • the resin component may include at least one selected from the group consisting of polyurethane, polyol compound, monohydric alcohol, thiol compound, and polyisocyanate.
  • a polyol compound, a monohydric alcohol, a thiol compound, or a polyisocyanate may be included as a resin component when the composition of the present application is a curable composition.
  • polyol compound means a compound containing two or more hydroxyl groups. These polyol compounds may be monomolecular, oligomeric or macromolecular compounds.
  • the number of hydroxy groups included in the polyol compound is not particularly limited, but in one example, the lower limit of the number of hydroxy groups included in the polyol compound may be about 2 or 3, and the upper limit is 10 or 9 , 8, 7, 6, 5, 4, 3 or 2.
  • the number of hydroxyl groups is less than or equal to or less than any one of the upper limits described above, is greater than or exceeds any one of the lower limits described above, or is greater than or exceeds any one of the lower limits described above , may be less than or equal to any one of the upper limits described above.
  • the polyol compound may be selected to secure desired physical properties.
  • the composition of the present application or the resin component may include a trifunctional or higher functional polyol compound and a bifunctional polyol compound as the polyol compound.
  • trifunctional or higher means that the number of hydroxyl groups included in the polyol compound is three or more
  • bifunctional means that the number of hydroxyl groups included in the polyol compound is two.
  • the upper limit of the number of hydroxyl groups included in the trifunctional or higher functional polyol compound may be about 10, 9, 8, 7, 6, 5, 4 or 3.
  • the number of hydroxyl groups included in the trifunctional or higher functional polyol compound may be 3 or more and may be equal to or less than any one of the upper limits described above.
  • At least one of the trifunctional or higher functional polyol compound and the bifunctional polyol compound may have a controlled number average molecular weight (Mn).
  • Mn controlled number average molecular weight
  • the lower limit of the number average molecular weight may be about 300 g/mol, 500 g/mol, 700 g/mol, 900 g/mol, 1100 g/mol, 1300 g/mol, 1500 g/mol, 1700 g/mol or 1900 g/mol.
  • the upper limit may be about 3000 g / mol, 2800 g / mol, 2600 g / mol, 2400 g / mol, 2200 g / mol, 2000 g / mol, 1800 g / mol, 1600 g / mol, 1400 g / mol or 1200 g / mol.
  • the number average molecular weight is less than or equal to or less than any one of the upper limits described above, is greater than or exceeds any one of the lower limits described above, or is greater than or exceeds any one of the lower limits described above , may be less than or equal to any one of the upper limits described above.
  • both the trifunctional or higher functional polyol compound and the bifunctional polyol compound may have a number average molecular weight within the above range.
  • one of the trifunctional or higher functional polyol compound and the bifunctional polyol compound may have a number average molecular weight of 1500 g/mol or more, and the other may have a number average molecular weight of less than 1500 g/mol.
  • the lower limit of the number average molecular weight of the polyol compound having a higher number average molecular weight among the trifunctional or higher functional polyol compound and the bifunctional polyol compound may be about 1500 g/mol, 1700 g/mol or 1900 g/mol.
  • the upper limit may be about 3000 g/mol, 2800 g/mol, 2600 g/mol, 2400 g/mol, 2200 g/mol or 2000 g/mol.
  • the number average molecular weight is less than or equal to or less than any one of the upper limits described above, is greater than or exceeds any one of the lower limits described above, or is greater than or exceeds any one of the lower limits described above , may be less than or equal to any one of the upper limits described above.
  • the upper limit of the number average molecular weight of the polyol compound having a smaller number average molecular weight among the trifunctional or higher functional polyol compound and the bifunctional polyol compound is 1500 g / mol, 1400 g / mol, 1300 g / mol, 1200 g / mol , It may be about 1100 g/mol or 1000 g/mol, and the lower limit may be about 500 g/mol, 700 g/mol or 900 g/mol.
  • the number average molecular weight is less than or equal to or less than any one of the upper limits described above, is greater than or exceeds any one of the lower limits described above, or is greater than or exceeds any one of the lower limits described above , may be less than or equal to any one of the upper limits described above.
  • the tri- or higher functional polyol compound may have a higher number average molecular weight than the bifunctional polyol compound.
  • one of the trifunctional or higher functional polyol compound and the bifunctional polyol compound may be a so-called polyester polyol, and the other may be a polyether polyol.
  • polyester polyol a known polyester polyol can be applied without particular limitation.
  • a polyol having an alkane diol unit, a polyol unit, and a dicarboxylic acid unit may be used as the polyester polyol compound.
  • Such polyols may be mixtures of the above alkane diols, polyols and dicarboxylic acids, or reactants thereof.
  • the alkane diol is 3-methyl-1,5-pentanediol (3-methyl-1,5-pentanediol), 1,9-nonanediol (1,9-nonanediol) or 1,6-hexanediol
  • Diol compounds having 1 to 20 carbon atoms, 4 to 20 carbon atoms, 4 to 16 carbon atoms, or 4 to 12 carbon atoms, such as 1,6-hexanediol may be exemplified.
  • the polyol includes 3 to 10, 3 to 9, 3 to 8, 3 to 7, 3 to 6, 3 to 5, or 3 to 6, such as trimethylolpropane.
  • Alkanes having 1 to 20 carbon atoms, 4 to 20 carbon atoms, 4 to 16 carbon atoms, or 4 to 12 carbon atoms substituted with four hydroxyl groups may be exemplified.
  • dicarboxylic acid adipic acid, terephthalic acid, isophthalic acid, or sebacic acid
  • suitable examples include adipic acid or sebacic acid.
  • Polyester polyol compounds of this kind include, for example, Kuraray's P-510, P-1010, P-2010, P-3010, P-4010, P-5010, P-6010, F-510, F-1010, Known under product names such as F-2010, F-3010, P-2011, P-520, P-2020, P-1012, P-2012, P-630, P-2030, P-2050 or N-2010 .
  • polyether polyol any known polyether polyol can be applied without particular limitation.
  • polyalkylene glycol can be applied as the polyether polyol compound.
  • alkylene alkylene having 1 to 12 carbon atoms, 1 to 8 carbon atoms, or 1 to 4 carbon atoms may be exemplified.
  • an alkylene or alkylene group refers to a divalent substituent formed by leaving two hydrogen atoms from an alkane. It can also break away from a single carbon atom.
  • the polyester polyol is applied as the trifunctional or higher functional polyol compound among the trifunctional or higher functional polyol compound and the bifunctional polyol compound, and the polyether polyol is used as the bifunctional polyol compound. can be applied.
  • the content of the bi-functional polyol compound relative to 100 parts by weight of the tri- or higher-functional polyol compound The lower limit is 5 parts by weight, 10 parts by weight, 15 parts by weight, 20 parts by weight, 25 parts by weight, 30 parts by weight, 35 parts by weight, 40 parts by weight, 45 parts by weight, 50 parts by weight, 55 parts by weight, 60 parts by weight.
  • 65 parts by weight, 70 parts by weight, 75 parts by weight, 80 parts by weight may be about 85 parts by weight or 90 parts by weight, the upper limit of which is 200 parts by weight, 190 parts by weight, 180 parts by weight, 170 parts by weight, 160 parts by weight parts, 150 parts, 140 parts, 130 parts, 120 parts, 110 parts, 100 parts, or 90 parts by weight.
  • the ratio is less than or less than any one of the upper limits described above, is greater than or exceeds any one of the lower limits described above, or is greater than or exceeds any one of the lower limits described above, may be less than or equal to any one of the stated upper limits. Under this ratio, desired physical properties can be effectively secured.
  • the resin component may further include a monohydric alcohol or thiol compound.
  • the monohydric alcohol is a compound containing one hydroxyl group.
  • the monohydric alcohol or thiol compound a compound having a molecular weight (molar mass) within a predetermined range can be used.
  • the lower limit of the molecular weight (molar mass) of the monohydric alcohol or thiol compound is 50 g/mol, 55 g/mol, 60 g/mol, 65 g/mol, 70 g/mol, 75 g/mol, 80 g/mol, 85g/mol, 90g/mol, 95g/mol, 100g/mol, 110g/mol, 120g/mol, 130g/mol, 140g/mol or 150g/mol, the upper limit being 500g/mol, 480g/mol mol, 460g/mol, 440g/mol, 420g/mol, 400g/mol, 380g/mol, 360g/mol, 340g/mol, 320g/mol, 300g/mol, 280g/mol, 260g/mol, 240g/mol, It may be on the order of 220 g/mol,
  • the molecular weight (molar mass) of the monohydric alcohol or thiol compound is less than or equal to any one of the upper limits described above, is greater than or exceeds any one of the lower limits described above, or is less than or equal to any one of the lower limits described above. It may be equal to or greater than any one lower limit and less than or equal to any one of the upper limits set forth above.
  • any compound having one hydroxy group (monohydric alcohol) or one compound having one thiol group (thiol compound) can be applied without particular limitation.
  • Non-limiting examples of monohydric alcohols that can be applied are 2-propylheptanol (2-propylheptanol), ethanol, propanol, butanol, pentanol, hexanol, heptanol, octanol, 2-ethylhexanol, nonanol , decanol, ethenol, propenol, butenol, acetylenol, propanol, butynol, phenol, methylphenol, pyridinol and/or methylpyridinol, etc.
  • thiol compound examples include ethanethiol , Propanethiol, butanethiol, pentanethiol, hexanethiol, heptanethiol, octanethiol, 2-ethylhexanethiol, nonanethiol, tecanthiol, 2-propylheptanethiol, ethenethiol, propenethiol, butenethiol, Acetylenethiol, propinethiol, butynthiol, benzenethiol, methylbenzenethiol, pyridinethiol and/or methylpyridinethiol may be exemplified, but is not limited thereto.
  • the lower limit of the content of the monohydric alcohol or thiol compound relative to 100 parts by weight of the trifunctional or higher polyfunctional polyol compound is 1 part by weight, 3 parts by weight, 5 parts by weight, 7 parts by weight, 9 parts by weight, 11 parts by weight It may be about 13 parts by weight, 15 parts by weight, 17 parts by weight, 19 parts by weight, 21 parts by weight, 23 parts by weight, 25 parts by weight, 27 parts by weight or 29 parts by weight, and the upper limit is 100 parts by weight, 95 parts by weight, 90 parts by weight, 85 parts by weight, 80 parts by weight, 75 parts by weight, 70 parts by weight, 65 parts by weight, 60 parts by weight, 55 parts by weight, 50 parts by weight, 45 parts by weight, 40 parts by weight, 35 parts by weight part or about 30 parts by weight.
  • the ratio is less than or less than any one of the upper limits described above, is greater than or exceeds any one of the lower limits described above, or is greater than or exceeds any one of the lower limits described above, may be less than or equal to any one of the stated upper limits. At this ratio, desired physical properties can be secured more efficiently.
  • the composition may contain polyisocyanate.
  • This polyisocyanate can react with the polyol compound and the like to form polyurethane.
  • polyisocyanate means a compound having two or more isocyanate groups.
  • the lower limit of the number of isocyanate groups of the polyisocyanate may be 2 or 3, and the upper limit is 10, 9, 8, 7, 6, 5, 4, 3 or 2 may be of a degree.
  • the number of the isocyanate groups is less than or equal to or less than any one of the upper limits described above, is equal to or more than the lower limit of any one of the lower limits described above, or exceeds or exceeds the lower limit of any one of the lower limits described above. While, it may be within a range of less than or less than any one of the upper limits described above.
  • polyisocyanate is not particularly limited, but non-aromatic polyisocyanate containing no aromatic group may be used to secure desired physical properties.
  • polyisocyanate compound examples include aliphatic polyisocyanates such as hexamethylene diisocyanate, trimethylhexamethylene diisocyanate, lysine diisocyanate, norbornane diisocyanate methyl, ethylene diisocyanate, propylene diisocyanate or tetramethylene diisocyanate; alicyclic polyisocyanates such as transcyclohexane-1,4-diisocyanate, isophorone diisocyanate, bis(isocyanatemethyl)cyclohexane diisocyanate, or dicyclohexylmethane diisocyanate; Alternatively, one or more of the above carbodiimide-modified polyisocyanates or isocyanurate-modified polyisocyanates may be used.
  • aliphatic polyisocyanates such as hexamethylene diisocyanate, trimethylhexamethylene diisocyanate, lysine diisocyanate
  • polyisocyanate the addition reaction product of the above-mentioned diisocyanate and polyol (for example, trimethylol propane etc.) can also be used. Also, a mixture of two or more of the compounds listed above may be used.
  • polyfunctional polyisocyanates having at least three functions that is, three or more isocyanate groups, and bifunctional polyisocyanates (compounds having two isocyanate groups) may be used together.
  • the upper limit of the number of isocyanate groups included in the trifunctional or higher functional polyisocyanate may be about 10, 9, 8, 7, 6, 5, 4 or 3.
  • the number of isocyanate groups of the trifunctional or higher functional polyisocyanate may be three or more, and may be equal to or less than any one of the upper limits described above.
  • the application rate of the polyisocyanate may be adjusted in consideration of the number of hydroxy groups and thiol groups present in the polyol compound, monohydric alcohol and/or thiol compound included in the composition and physical properties after curing.
  • the polyisocyanate may be included in an appropriate ratio within the range of 10 parts by weight to 2000 parts by weight based on 100 parts by weight of the polyol compound present in the composition.
  • the lower limit of the ratio of the bifunctional polyisocyanate to 100 parts by weight of the trifunctional or higher multifunctional polyisocyanate is 5 parts by weight part, 10 parts by weight, 15 parts by weight, 20 parts by weight, 25 parts by weight, 30 parts by weight, 35 parts by weight, 40 parts by weight, 45 parts by weight, 50 parts by weight, 55 parts by weight, or about 60 parts by weight
  • the upper limit is 200 parts by weight, 190 parts by weight, 180 parts by weight, 170 parts by weight, 160 parts by weight, 150 parts by weight, 140 parts by weight, 130 parts by weight, 120 parts by weight, 110 parts by weight, 100 parts by weight, 90 parts by weight.
  • the ratio is less than or less than any one of the upper limits described above, is greater than or exceeds any one of the lower limits described above, or is greater than or exceeds any one of the lower limits described above, may be less than or equal to any one of the stated upper limits. Under this ratio, desired physical properties can be effectively secured.
  • the composition may further contain a filler component as an additional component.
  • a filler component means a component made of a filler, that is, a component containing only a filler.
  • the filler component may include two or more types of fillers having different average particle diameters.
  • the filler component includes three or more types of fillers having different average particle diameters, or consists of 3 to 6 types, 3 to 5 types, 3 to 4 types, or 3 types of fillers with different average particle diameters. can That is, in one example, the filler component may include only 3 to 6 types, 3 to 5 types, 3 to 4 types, or 3 types of fillers having different average particle diameters.
  • the filler component may exhibit at least two peaks in a volume curve of a particle size distribution measured using laser diffraction.
  • the filler component may exhibit 3 or more peaks, 3 to 6 peaks, 3 to 5 peaks, 3 to 4 peaks, or 3 peaks in the volume curve of the particle size distribution.
  • the range of filler components exhibiting three peaks does not include filler components exhibiting one, two, or four or more peaks.
  • the average particle diameter of the filler of the present application means the particle diameter at which the volume accumulation is 50% in the volume curve of the particle size distribution measured by laser diffraction, and may be referred to as the median diameter. That is, in the present application, the particle size distribution is obtained on a volume basis through the laser diffraction method, and the particle diameter at the point where the cumulative value is 50% in the cumulative curve with the total volume as 100% is the average particle diameter, and this average particle diameter Silver, in another example, may be called a median particle diameter or a D50 particle diameter.
  • the two types of fillers having different average particle diameters may mean fillers having different particle diameters at the point where the cumulative value becomes 50% in the volume curve of the particle size distribution.
  • the volume curve of the particle size distribution measured using the laser diffraction method for the filler component is equal to the type of the mixed filler. peak appears. Therefore, for example, when a filler component is formed by mixing three types of fillers having different average particle diameters, the volume curve of the particle size distribution measured using the laser diffraction method for the filler component shows three peaks.
  • the filler component of the composition of the present application may be a thermally conductive filler component.
  • thermally conductive filler component means a filler component that functions so that the composition or its cured product exhibits the above-mentioned thermal conductivity.
  • the filler component may include at least a first filler having an average particle diameter of 60 ⁇ m to 200 ⁇ m, a second filler having an average particle diameter of 10 ⁇ m to 30 ⁇ m, and a third filler having an average particle diameter of 5 ⁇ m or less. there is.
  • the lower limit of the average particle diameter of the first filler may be about 62 ⁇ m, 62 ⁇ m, 64 ⁇ m, 66 ⁇ m or about 68 ⁇ m, and the upper limit thereof is 200 ⁇ m, 195 ⁇ m, 190 ⁇ m, 185 ⁇ m, 180 ⁇ m, 175 ⁇ m.
  • the average particle diameter of the first filler is less than or less than any one of the upper limits described above, is greater than or exceeds any one of the lower limits described above, or is greater than or equal to any one of the lower limits described above. or greater, but may be within a range of less than or equal to any one of the upper limits described above.
  • the lower limit of the average particle diameter of the second filler may be about 10 ⁇ m, 12 ⁇ m, 13 ⁇ m, 14 ⁇ m, 15 ⁇ m, 16 ⁇ m, 17 ⁇ m, 18 ⁇ m, 19 ⁇ m, or 20 ⁇ m, and the upper limit is 29 ⁇ m. , 28 ⁇ m, 27 ⁇ m, 26 ⁇ m, 25 ⁇ m, 24 ⁇ m, 23 ⁇ m, 22 ⁇ m, 21 ⁇ m or about 20 ⁇ m.
  • the average particle diameter of the second filler is less than or less than any one of the upper limits described above, is greater than or exceeds any one of the lower limits described above, or is greater than or equal to any one of the lower limits described above. or greater, but may be within a range of less than or equal to any one of the upper limits described above.
  • the lower limit of the third filler may be about 0.01 ⁇ m, 0.1 ⁇ m, about 0.5 ⁇ m, 1 ⁇ m, 1.5 ⁇ m, or 2 ⁇ m, and the upper limit thereof is about 5 ⁇ m, 4.5 ⁇ m, about 4 ⁇ m, 3.5 ⁇ m, 3 ⁇ m, or 2.5 ⁇ m. Alternatively, it may be on the order of 2 ⁇ m.
  • the average particle diameter of the third filler is less than or less than any one of the upper limits described above, is greater than or exceeds any one of the lower limits described above, or is greater than or equal to any one of the lower limits described above. or greater, but may be within a range of less than or equal to any one of the upper limits described above.
  • a ratio (D1/D3) between the average particle diameter (D1) of the first filler and the average particle diameter (D3) of the third filler may be in the range of 25 to 300.
  • the third filler may be a filler having the smallest average particle diameter among fillers included in the filler component when the filler component includes two or more types of fillers having different average particle diameters
  • the first filler may be a filler in which the filler components are different from each other.
  • the filler may have the largest average particle size among the fillers included in the filler component. In this state, the particle size ratio may be satisfied.
  • the lower limit of the ratio (D1/D3) is 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 40, 50, 60, 70, 80, 90, 100, 110, 120 , 130, 140, 150, 160, 170, 180, 190, 200, 210, 220, 230 or 235
  • the upper limit is 300, 290, 280, 270, 260, 250, 240, 220, 200, 180, 160, 140, 120, 100, 95, 90, 85, 80, 75, 70, 65 or 60 degrees.
  • the ratio is less than or equal to or less than any one of the upper limits described above, is greater than or exceeds any one of the lower limits described above, or is greater than or exceeds any one of the lower limits described above, It may be within a range of less than or equal to any one of the upper limits described.
  • the lower limit of the ratio (D1/D2) of the average particle diameter (D1) of the first filler to the average particle diameter (D2) of the second filler is about 3, 3.1, 3.2, 3.3, 3.4, or 3.5, or 20 , 18, 17, 16, 15, 14, 13, 12, 11, 10, 9, 8, 7, 6, 5 or 4.
  • the ratio is less than or equal to or less than any one of the upper limits described above, is greater than or exceeds any one of the lower limits described above, or is greater than or exceeds any one of the lower limits described above, It may be within a range of less than or equal to any one of the upper limits described.
  • the filler for example, aluminum oxide (alumina: Al 2 O 3 ), aluminum nitride (AlN), boron nitride (BN), silicon nitride (Si 3 N 4 ), silicon carbide (SiC), beryllium oxide (BeO), oxide Ceramic fillers such as zinc (ZnO), magnesium oxide (MgO), aluminum hydroxide (Al(OH) 3 ), magnesium hydroxide (Mg(OH) 2 ), calcium carbonate (CaCO 3 ) and/or Boehmite can be used Such a filler is advantageous in satisfying the thermal conductivity within the above-mentioned range, and additionally, the above-described insulation may be satisfied through the application of a ceramic filler.
  • AlN aluminum nitride
  • BN boron nitride
  • Si 3 N 4 silicon carbide
  • BeO beryllium oxide
  • oxide Ceramic fillers such as zinc (ZnO), magnesium oxide (MgO), aluminum hydroxide (Al(OH) 3
  • the upper limit of the proportion of the filler component in the composition is 98%, 97.5%, 97%, 96.5%, 96%, 95.5%, 95%, 94.5%, 94%, 93.5%, 93%, 92.5%, 92%, 91.5%, 91%, 90.5%, 90.0%, 89.5%, 89.0%, 88.5% or 88.0% by weight; ,
  • the lower limit is 70% by weight, 71% by weight, 72% by weight, 73% by weight, 74% by weight, about 75% by weight, 76% by weight, 77% by weight, 78% by weight, 79% by weight, 80% by weight, 81%, 82%, 83%, 84%, 85%, 86%, 87% or 88% by weight.
  • the ratio is less than or equal to or less than any one of the upper limits described above, is greater than or exceeds any one of the lower limits described above, or is greater than or exceeds any one of the lower limits described above, It may be within a range of less than or equal to any one of the upper limits described.
  • the content of the filler component is a ratio based on the total weight of the composition when the composition is a one-component composition, and when the composition is a two-component composition, based on the total weight of the main part and the curing agent part of the two-component composition It may be a ratio, or a ratio based on the total weight of the subject or curing agent part alone.
  • the composition is composed of a two-component composition
  • the ratio (A/B) of the weight (A) of the filler included in the main part and the weight (B) of the filler included in the curing agent part is within the range of 0.5 to 2, 0.5 to 1.5 or within the range of 0.8 to 1.2.
  • the filler component may include various types of fillers, if necessary, in addition to the thermally conductive filler.
  • a carbon filler such as graphite, fumed silica, or clay may be applied.
  • composition may further include necessary components in addition to the components described above.
  • the composition may further include a plasticizer.
  • a plasticizer As described above, in the present application, it is possible to secure low adhesion to a specific material without applying a plasticizer, but a small amount of plasticizer may be applied if necessary.
  • the type of plasticizer that can be applied is not particularly limited, and examples thereof include dioctyl phthalate (DOP), dibutyl phthalate (DBP), butylbenzyl phthalate (BBP), and diisononyl phthalate.
  • DOP dioctyl phthalate
  • DBP dibutyl phthalate
  • BBP butylbenzyl phthalate
  • diisononyl phthalate diisononyl phthalate.
  • diisononyl phthalate, DINP diisononyl phthalate
  • PET polyethylene terephthalate
  • phthalate-based plasticizers dioctyl adipate (DOA), or diisononyl adipate (diisononyl adipate, DINA)
  • DOA dioctyl adipate
  • diisononyl adipate diisononyl adipate
  • adipate-based plasticizers a fatty acid-based plasticizer, a phosphoric acid-based plasticizer, or a polyester-based plasticizer may be applied.
  • the lower limit of the weight ratio of the plasticizer relative to 100 parts by weight of the polyol compound is 0.5 parts by weight, 1.5 parts by weight, 2 parts by weight, 3 parts by weight, 4 parts by weight, 5 parts by weight parts, 6 parts, 7 parts, 8 parts, 9 parts, 10 parts, 15 parts, 20 parts, 25 parts, 30 parts, 35 parts, 40 parts, 45 parts, It may be about 50 parts by weight, 100 parts by weight, 150 parts by weight, 200 parts by weight, 250 parts by weight or 300 parts by weight, and the upper limit is 500 parts by weight, 450 parts by weight, 400 parts by weight, 350 parts by weight, 300 parts by weight.
  • the ratio is less than or equal to or less than any one of the upper limits described above, is greater than or exceeds any one of the lower limits described above, or is greater than or exceeds any one of the lower limits described above, It may be within a range of less than or equal to any one of the upper limits described.
  • the ratio may be changed in consideration of the composition of the entire composition or intended use.
  • the composition may include additional components as needed.
  • additional components are catalysts that assist or accelerate the curing reaction, viscosity modifiers (e.g., thixotropy imparting agents, diluent, etc.), a dispersing agent, a surface treatment agent, or a coupling agent.
  • the composition may further include a flame retardant or a flame retardant aid.
  • a flame retardant may be used without particular limitation, and for example, a solid filler type flame retardant or a liquid flame retardant may be applied.
  • the flame retardant examples include organic flame retardants such as melamine cyanurate and inorganic flame retardants such as magnesium hydroxide.
  • organic flame retardants such as melamine cyanurate
  • inorganic flame retardants such as magnesium hydroxide.
  • a liquid type flame retardant material TEP, Triethyl phosphate or TCPP, tris(1,3-chloro-2-propyl)phosphate, etc.
  • TEP Triethyl phosphate or TCPP, tris(1,3-chloro-2-propyl)phosphate, etc.
  • silane coupling agent capable of acting as a flame retardant synergist may be added.
  • the composition may be a one-component composition or a two-component composition, as described above.
  • each of the above-described components of the composition may be separately included in a physically separated main part and a curing agent part.
  • the present application relates to a composition in which the composition is a two-component composition (two-component composition).
  • Such a two-component composition may include at least a main component part and a curing agent part, and the main component and curing agent part may be physically separated from each other. When these physically separated main body and curing agent parts are mixed, a curing reaction is initiated, resulting in the formation of polyurethane.
  • the main part may include at least the polyol compound
  • the curing agent part may include at least the polyisocyanate
  • composition includes the aforementioned monohydric alcohol and/or thiol compound
  • this compound may be included in the main part, for example.
  • the filler component may be included in any one of the subject and curing agent parts, or may be included in both of the subject and curing agent parts. When the filler component is included in both the main agent and the curing agent part, the same amount of the filler component may be included in the main agent and the curing agent part.
  • a volume ratio (P/N) of the volume (P) of the main part to the volume (N) of the curing agent part may be in the range of about 0.8 to 1.2.
  • This two-component composition or its cured product also has the aforementioned adhesion to aluminum, thermal conductivity, hardness, radius of curvature, insulation, flame retardancy, specific gravity and/or 5% weight loss in thermogravimetric analysis (TGA) temperature. etc. can be shown.
  • TGA thermogravimetric analysis
  • This application also relates to a product containing the composition or a cured product thereof.
  • the composition of the present application or a cured product thereof may be usefully applied as a heat dissipation material.
  • the product may include a heating component.
  • the term heating component refers to a component that emits heat during use, and the type is not particularly limited. Representative heating components include various electric/electronic products including battery cells, battery modules, or battery packs.
  • the product of the present application may include, for example, the heat-generating component and the composition (or the two-component composition) present adjacent to the heat-generating component or a cured product thereof.
  • a specific method of configuring the product of the present application is not particularly limited, and if the composition of the present application or a two-component composition or a cured product thereof is applied as a heat dissipation material, the product may be configured in various known ways.
  • the present application it is possible to provide a composition that can be cured at room temperature in the case of curing, and can form a heat dissipation material exhibiting an appropriate level of hardness, low adhesive strength, and excellent thermal conductivity.
  • the low adhesive strength and the like can be achieved without using a plasticizer or the like, or in a state where the use ratio is minimized.
  • the present application may also provide a product containing the composition or a cured product thereof.
  • the cured body mentioned below is formed by mixing the main agent and curing agent parts of the compositions of Examples or Comparative Examples prepared in a two-component type at a volume ratio of 1:1, and then maintaining at room temperature for about 24 hours.
  • the thermal conductivity of the composition or its cured product was measured by a hot-dist method according to ISO 22007-2 standards. Specifically, a mixture of a volume ratio of 1:1 of the subject part and the curing agent part of Examples or Comparative Examples composed of a two-component type was placed in a mold having a thickness of about 7 mm, and thermal conductivity was measured in the through plane direction using a hot disk device. was measured.
  • Hot Disk equipment is a device that can check thermal conductivity by measuring temperature change (electrical resistance change) while the sensor in which the nickel wire has a double spiral structure is heated. Thermal conductivity was measured according to.
  • An uncured resin composition (a mixture of a main part and a curing agent part) is coated on the center of an aluminum substrate having a width of 2 cm and a length of 7 cm, respectively, to a size of about 2 cm in width and 2 cm in length, and then on the coating layer again.
  • the two aluminum substrates were attached to form an angle of 90 degrees to each other.
  • the lower aluminum substrate was pressed at a speed of 0.5 mm/min to measure the force while the lower aluminum substrate was separated, and the maximum force measured in the process was expressed as the area of the specimen.
  • the adhesion to aluminum was obtained by dividing (peel angle of 90 degrees).
  • the hardness of the cured body of the composition was measured according to ASTM D 2240 and JIS K 6253 standards. It was performed using an ASKER, durometer hardness device, and the initial hardness was measured by applying a load of 1 Kg or more (about 1.5 Kg) to the surface of the sample (resin layer) in a flat state, and after 15 seconds, the hardness was confirmed as a stabilized measurement value. evaluated.
  • the radius of curvature of the cured body was evaluated using a cured body having a width, length, and thickness of 1 cm, 10 cm, and 2 mm, respectively.
  • the radius of curvature is the minimum radius of a cylinder at which cracks do not occur in the hardened body when the hardened body is attached to cylinders having various radii and bent along the longitudinal direction.
  • the unit of curvature radius in this specification is mm.
  • the weight average molecular weight (Mw) was measured using GPC (Gel permeation chromatography). Specifically, for the weight average molecular weight (Mw), put the sample to be analyzed in a 5 mL vial, dilute with a THF (tetrahydrofuran) solvent to a concentration of about 1 mg/mL, and then prepare a standard sample for calibration and an analysis sample. It can be filtered and measured through a syringe filter (pore size: 0.45 ⁇ m). ChemStation of Agilent technologies was used as an analysis program, and the weight average molecular weight (Mw) can be obtained by comparing the elution time of the sample with the calibration curve.
  • GPC Gel permeation chromatography
  • Standard samples using polystyrene (MP: 3900000, 723000, 316500, 52200, 31400, 7200, 3940, 485).
  • polystyrene resin As a polyol compound, trifunctional polyester polyol (Kuraray, F-2010) and bifunctional polyether polyol (polypropylene glycol) (PPG-1000D, Kumho Petrochemical) and 2-propylheptanol as a monohydric alcohol ( The main part was prepared by mixing 2-propylheptanol, 2PH) with a filler component and a catalyst (dibutyltin dilaurate, DBTDL).
  • a catalyst dibutyltin dilaurate
  • the trifunctional polyester polyol (Kuraray Co., F-2010) has three hydroxy groups, a number average molecular weight of about 2000 g / mol, 3-methyl-1,5-pentanediol unit and trimethylol propane unit and a compound having an adipic acid unit, and the bifunctional polyether polyol is polypropylene glycol having a number average molecular weight of about 1000 g/mol.
  • the mixing ratio of the above components was set to a weight ratio of 100:90:30:1869 (F-2010:PPG-1000D:2-PH:filler component), and a catalyst was added in a catalytic amount.
  • a first alumina filler having an average particle diameter of about 70 ⁇ m, a second alumina filler having an average particle diameter of about 20 ⁇ m, and a third alumina filler having an average particle diameter of about 1 ⁇ m were mixed and prepared.
  • the weight ratio during the mixing was about 60:20:20 (first alumina filler:second alumina filler:third alumina filler).
  • a trifunctional polyisocyanate (trifunctional HDI Trimer, Vencorex, HD T LV2) and a bifunctional polyisocyanate (Asahi Kasei, AE700-100) were mixed with a filler component to prepare a curing agent part.
  • the mixing ratio was 100:60:3271 by weight (HD T LV2:AE700-100:filler component:).
  • the filler component in the above the same component as that applied in the main part was used.
  • a composition was prepared by preparing the subject part and the curing agent part at a volume ratio of 1:1. Mixing and curing of the subject part and the curing agent part were all performed at room temperature.
  • a main part was prepared by mixing a bifunctional polyether polyol (polypropylene glycol) (PPG-1000D, Kumho Petrochemical Co., Ltd.) with a filler component and a catalyst.
  • the mixing ratio of the above components was set to a weight ratio of 100:1010 (PPG-1000D: filler component), and a catalyst was added in a catalytic amount.
  • PPG-1000D polypropylene glycol
  • a catalyst was added in a catalytic amount.
  • the filler component and the catalyst the same components as in Example 1 were used.
  • polyisocyanate As the polyisocyanate, a trifunctional polyisocyanate (trifunctional HDI Trimer, Vencorex, HD T LV2) and a bifunctional polyisocyanate (Asahi Kasei, AE700-100) were mixed with a filler component to prepare a curing agent part.
  • the mixing ratio was 100:25:5631 by weight (HD T LV2:AE700-100:filler component:).
  • the same filler component as in Example 1 was used.
  • a composition was prepared by preparing the subject part and the curing agent part at a volume ratio of 1:1. Mixing and curing of the subject part and the curing agent part were all performed at room temperature.
  • a main part was prepared by mixing a bifunctional polyether polyol (polypropylene glycol) (PPG-1000D, Kumho Petrochemical Co., Ltd.) with a filler component and a catalyst.
  • the mixing ratio of the above components was set to a weight ratio of 100:1010 (PPG-1000D: filler component), and the catalyst was blended in a catalytic amount.
  • PPG-1000D polypropylene glycol
  • the filler component and the catalyst the same components as in Example 1 were used.
  • a curing agent part was prepared by mixing a trifunctional polyisocyanate (trifunctional HDI Trimer, Vencorex, HD T LV2) with a filler component.
  • the mixing ratio was 100:4990 by weight (HD T LV2: Filler component:).
  • HD T LV2 Filler component:
  • a composition was prepared by preparing the subject part and the curing agent part at a volume ratio of 1:1. Mixing and curing of the subject part and the curing agent part were all performed at room temperature.
  • a main part was prepared by mixing a bifunctional polyether polyol (polypropylene glycol) (PPG-1000D, Kumho Petrochemical Co., Ltd.) with a filler component and a catalyst.
  • the mixing ratio of the components was set to a weight ratio of 100:1156 (PPG-1000D: filler component), and the catalyst was blended in a catalytic amount.
  • PPG-1000D polypropylene glycol
  • the filler component and the catalyst the same components as in Example 1 were used.
  • a curing agent part was prepared by mixing trifunctional polyisocyanate (trifunctional HDI Trimer, Vencorex, HD T LV2) with a filler component.
  • the mixing ratio was 100:4416 by weight (HD T LV2: Filler component:).
  • HD T LV2 Filler component:
  • a composition was prepared by preparing the subject part and the curing agent part at a volume ratio of 1:1. Mixing and curing of the subject part and the curing agent part were all performed at room temperature.
  • a polyol compound As a polyol compound, a trifunctional polyester polyol (Kuraray, F-2010) and a bifunctional polyether polyol (polypropylene glycol) (PPG-1000D, Kumho Petrochemical) are mixed with a filler component and a catalyst to form a main part. manufactured.
  • the mixing ratio of the above components was set to a weight ratio of 100:233:3788 (F-2010:PPG-1000D:filler component), and the catalyst was blended in a catalytic amount.
  • the filler component and the catalyst the same components as in Example 1 were used.
  • a curing agent part was prepared by mixing a trifunctional polyisocyanate (trifunctional HDI Trimer, Vencorex, HD T LV2) with a filler component.
  • the mixing ratio was 100:4698 by weight (HD T LV2: Filler component:).
  • HD T LV2 Filler component:
  • a composition was prepared by preparing the subject part and the curing agent part at a volume ratio of 1:1. Mixing and curing of the subject part and the curing agent part were all performed at room temperature.
  • a polyol compound As a polyol compound, a trifunctional polyester polyol (Kuraray, F-2010) and a bifunctional polyether polyol (polypropylene glycol) (PPG-1000D, Kumho Petrochemical) are mixed with a filler component and a catalyst to form a main part. manufactured.
  • the mixing ratio of the above components was set to a weight ratio of 100:150:2825 (F-2010:PPG-1000D:filler component), and the catalyst was blended in a catalytic amount.
  • the filler component and the catalyst the same components as in Example 1 were used.
  • trifunctional polyisocyanate trifunctional HDI Trimer, Vencorex Co., HD T LV2
  • the mixing ratio was 100:4811 by weight (HD T LV2: Filler component:).
  • HD T LV2 Filler component:
  • a composition was prepared by preparing the subject part and the curing agent part at a volume ratio of 1:1. Mixing and curing of the subject part and the curing agent part were all performed at room temperature.
  • a polyol compound As a polyol compound, a trifunctional polyester polyol (Kuraray, F-2010) and a bifunctional polyether polyol (polypropylene glycol) (PPG-1000D, Kumho Petrochemical) are mixed with a filler component and a catalyst to form a main part. manufactured.
  • the mixing ratio of the above components was set to a weight ratio of 100:100:2252 (F-2010:PPG-1000D:filler component), and the catalyst was blended in a catalytic amount.
  • the filler component and the catalyst the same components as in Example 1 were used.
  • a curing agent part was prepared by mixing a trifunctional polyisocyanate (trifunctional HDI Trimer, Vencorex, HD T LV2) with a filler component.
  • the mixing ratio was 100:4912 by weight (HD T LV2: Filler component:).
  • HD T LV2 Filler component:
  • a composition was prepared by preparing the subject part and the curing agent part at a volume ratio of 1:1. Mixing and curing of the subject part and the curing agent part were all performed at room temperature.
  • a polyol compound As a polyol compound, a trifunctional polyester polyol (Kuraray, F-2010) and a bifunctional polyether polyol (polypropylene glycol) (PPG-1000D, Kumho Petrochemical) are mixed with a filler component and a catalyst to form a main part. manufactured.
  • the mixing ratio of the above components was set to a weight ratio of 100:150:2793 (F-2010:PPG-1000D:filler component), and the catalyst was blended in a catalytic amount.
  • the filler component and the catalyst the same components as in Example 1 were used.
  • a curing agent part was prepared by mixing a trifunctional polyisocyanate (trifunctional HDI Trimer, Vencorex, HD T LV2) with a filler component.
  • the mixing ratio was 100:5091 by weight (HD T LV2: Filler component:).
  • HD T LV2 Filler component:
  • a composition was prepared by preparing the subject part and the curing agent part at a volume ratio of 1:1. Mixing and curing of the subject part and the curing agent part were all performed at room temperature.
  • a polyol compound As a polyol compound, a trifunctional polyester polyol (Kuraray, F-2010) and a bifunctional polyether polyol (polypropylene glycol) (PPG-1000D, Kumho Petrochemical) are mixed with a filler component and a catalyst to form a main part. manufactured.
  • the mixing ratio of the above components was set to a weight ratio of 100:150:2759 (F-2010:PPG-1000D:filler component), and the catalyst was blended in a catalytic amount.
  • the filler component and the catalyst the same components as in Example 1 were used.
  • a curing agent part was prepared by mixing a trifunctional polyisocyanate (trifunctional HDI Trimer, Vencorex, HD T LV2) with a filler component.
  • the mixing ratio was 100:5344 by weight (HD T LV2: Filler component:).
  • HD T LV2 Filler component:
  • a composition was prepared by preparing the subject part and the curing agent part at a volume ratio of 1:1. Mixing and curing of the subject part and the curing agent part were all performed at room temperature.
  • a trifunctional polyester polyol (Kuraray, F-2010) was mixed with a monohydric alcohol (2-propylheptanol, 2-PH), a filler component, and a catalyst to prepare a main part.
  • the mixing ratio of the components was 100: 11: 1230 by weight (F-2010: 2-PH: filler component), and the catalyst was blended in a catalytic amount.
  • the filler component and the catalyst the same components as in Example 1 were used.
  • a curing agent part was prepared by mixing a trifunctional polyisocyanate (trifunctional HDI Trimer, Vencorex, HD T LV2) with a filler component.
  • the mixing ratio was 100:3562 by weight (HD T LV2: Filler component:).
  • HD T LV2 Filler component:
  • a composition was prepared by preparing the subject part and the curing agent part at a volume ratio of 1:1. Mixing and curing of the subject part and the curing agent part were all performed at room temperature.
  • a trifunctional polyester polyol (Kuraray, F-2010) was mixed with a monohydric alcohol (2-propylheptanol, 2-PH), a filler component, and a catalyst to prepare a main part.
  • the mixing ratio of the above components was set to a weight ratio of 100:25:1619 (F-2010:2-PH:filler component:catalyst), and the catalyst was blended in a catalytic amount.
  • the filler component and the catalyst the same components as in Example 1 were used.
  • a curing agent part was prepared by mixing a trifunctional polyisocyanate (trifunctional HDI Trimer, Vencorex, HD T LV2) with a filler component.
  • the mixing ratio was 100:3111 by weight (HD T LV2: Filler component:).
  • HD T LV2 Filler component:
  • a composition was prepared by preparing the subject part and the curing agent part at a volume ratio of 1:1. Mixing and curing of the subject part and the curing agent part were all performed at room temperature.
  • a trifunctional polyester polyol (Kuraray, F-2010) was mixed with a monohydric alcohol (2-propylheptanol, 2-PH), a filler component, and a catalyst to prepare a main part.
  • the mixing ratio of the above components was set to a weight ratio of 100:67:2371 (F-2010:2-PH: filler component), and the catalyst was blended in a catalytic amount.
  • the filler component and the catalyst the same components as in Example 1 were used.
  • a curing agent part was prepared by mixing a trifunctional polyisocyanate (trifunctional HDI Trimer, Vencorex, HD T LV2) with a filler component.
  • the mixing ratio was 100:2555 by weight (HD T LV2: Filler component:).
  • HD T LV2 Filler component:
  • a composition was prepared by preparing the subject part and the curing agent part at a volume ratio of 1:1. Mixing and curing of the subject part and the curing agent part were all performed at room temperature.
  • a trifunctional polyester polyol (Kuraray, F-2010) was mixed with a monohydric alcohol (2-propylheptanol, 2-PH), a filler component, and a catalyst to prepare a main part.
  • the mixing ratio of the components was 100: 104: 3046 in weight ratio (F-2010: 2-PH: filler component), and the catalyst was blended in a catalytic amount.
  • the filler component and the catalyst the same components as in Example 1 were used.
  • a curing agent part was prepared by mixing a trifunctional polyisocyanate (trifunctional HDI Trimer, Vencorex, HD T LV2) with a filler component.
  • the mixing ratio was 100:2357 by weight (HD T LV2: Filler component:).
  • HD T LV2 Filler component:
  • a composition was prepared by preparing the subject part and the curing agent part at a volume ratio of 1:1. Mixing and curing of the subject part and the curing agent part were all performed at room temperature.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Polyurethanes Or Polyureas (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

본 출원은 조성물 및 그 용도에 대한 것이다. 본 출원에서는, 경화성인 경우에 상온 경화가 가능하고, 적정 수준의 경도 및 낮은 접착력과 우수한 열전도도를 보이는 방열 소재를 형성할 수 있는 조성물을 제공할 수 있다. 또한, 본 출원에서는 상기 낮은 접착력 등을 가소제 등을 사용하지 않거나, 사용하더라도 그 사용 비율을 최소화한 상태에서 달성할 수 있다. 본 출원은 또한 상기 조성물 또는 그 경화체를 포함하는 제품을 제공할 수 있다.

Description

조성물
본 출원은 조성물에 관한 것이다.
배터리 등과 같이 열의 관리가 필요한 전기 또는 전자 기기가 늘어나면서 방열 소재의 중요성이 커지고 있다.
종래에 알려진 대표적인 방열 소재는, 수지 바인더에 열전도성이 있는 필러를 충진한 소재이다(예를 들면, 특허 문헌 1).
위와 같은 방열 소재에서 수지 바인더로는 통상 실리콘 수지, 폴리올레핀 수지, 아크릴 수지 또는 에폭시 수지 등이 사용된다.
방열 소재는, 기본적으로 열전도도가 우수할 것이 요구되며, 용도에 따라서 추가적인 기능도 요구된다. 예를 들면, 용도에 따라서는 방열 소재가 높은 열전도도와 함께 특정 피착체에 대해서 낮은 접착력을 나타낼 것이 요구될 수 있다.
예를 들면, 제품 내에서 방열 소재와 접하는 부품의 교체가 필요하거나, 공정 과정에서 방열 소재의 위치 등을 변경할 필요가 있는 경우에 상기 방열 소재는 낮은 접착력을 나타내는 것이 필요하다.
공지의 방열 소재 중에서 낮은 접착력을 보이는 소재는 수지 바인더로서 실리콘 수지를 적용한 소재가 있다. 그렇지만, 실리콘 수지는 상대적으로 고가이다. 또한, 실리콘 수지는 전자/전기 제품에 적용되었을 때에 접점 불량 등을 유발하는 성분을 포함하고 있기 때문에, 용도가 제한된다.
특허문헌 1에서도 적용한 폴리우레탄 소재는, 높은 열전도도를 가지는 방열 소재를 형성할 수 있고, 기타 다양한 장점을 가지고 있지만, 대부분의 피착체에 대해서 높은 접착력을 나타내는 소재이고, 아크릴 수지나 에폭시 수지와 같은 소재도 낮은 접착력을 구현하는 것이 쉽지 않다.
높은 접착력을 나타내는 소재의 접착력을 낮추는 방법으로는, 가소제를 배합하는 방법이 있다. 그렇지만, 접착력의 제어를 위해 배합된 가소제는 소재 자체의 고유한 장점을 훼손하거나, 사용 과정에서 용출되는 등의 문제를 가지고 있다.
방열 소재에는 적정 수준의 경도가 확보되는 것이 필요하다. 예를 들어, 방열 소재의 경도가 지나치게 높으면, 소재 자체가 지나치게 브리틀(brittle)하게 되는 경향이 있고, 이러한 방열 소재는, 내충격성, 내진동성 및 내구성 등이 요구되는 경우에 적용되기 어렵다.
방열 소재를 경화성 조성물을 통해서 형성하는 경우에 용도에 따라서 해당 조성물이 소위 상온 경화성을 가지는 것이 요구될 수 있다. 이는 열의 관리가 필요한 전기 또는 전자 기기 내에서 방열 소재를 형성하는 과정에서 경화를 위해 필요한 열이나 전자기파 또는 습기를 인가하는 것이 곤란한 경우가 많기 때문이다.
그렇지만, 상온 경화성을 가지면서, 경화 후에 적정 수준의 경도와 특정 피착체(예를 들면, 금속 소재)에 대해서 낮은 접착력을 나타내고, 높은 열전도도가 확보되는 소재를 얻는 것은 어려운 과제이다.
[선행기술문헌]
[특허문헌]
(특허문헌 1) 한국공개특허공보 제2016-0105354호
본 출원은 조성물을 제공하는 것을 목적으로 한다. 본 출원의 하나의 목적은 상기 조성물이 경화성인 경우에 상온 경화가 가능하고, 적정 수준의 경도 및 낮은 접착력과 우수한 열전도도를 보이는 방열 소재를 형성할 수 있도록 하는 것이다. 또한, 본 출원의 목적에는 상기 낮은 접착력을 가소제 등을 사용하지 않거나, 사용하더라도 그 사용 비율을 최소화한 상태에서 달성하는 것이 포함된다.
본 출원은 또한 상기 조성물 또는 그 경화체를 포함하는 제품을 제공하는 것을 하나의 목적으로 한다.
본 명세서에서 언급하는 물성 중에서 측정 온도가 그 결과에 영향을 미치는 경우에는, 특별히 달리 규정하지 않는 한, 해당 물성은 상온에서 측정한 물성이다. 용어 상온은 가온 및 감온되지 않은 자연 그대로의 온도로서 통상 약 10℃ 내지 30℃의 범위 내의 한 온도 또는 약 23℃ 또는 약 25℃ 정도의 온도를 의미한다. 또한, 본 명세서에서 특별히 달리 언급하지 않는 한, 온도의 단위는 ℃이다.
본 명세서에서 언급하는 물성 중에서 측정 압력이 그 결과에 영향을 미치는 경우에는, 특별히 달리 규정하지 않는 한, 해당 물성은 상압에서 측정한 물성이다. 용어 상압은 가압 및 감압되지 않은 자연 그대로의 압력으로서 통상 약 700 mmHg 내지 800 mmHg의 범위 내 정도를 상압으로 지칭한다.
본 출원의 조성물은, 방열 소재이거나, 상기 방열 소재를 형성할 수 있는 조성물일 수 있다.
본 출원의 조성물이 방열 소재라는 것은, 조성물이 그 자체로서 후술하는 알루미늄에 대한 접착력, 경도 및 열전도도를 나타내는 것을 의미한다.
또한, 본 출원의 조성물이 방열 소재를 형성할 수 있다는 것은, 경화 반응 등을 거쳐서 상기 조성물이 상기 알루미늄에 대한 접착력, 경도 및 열전도도를 나타내는 소재(예를 들면, 경화체)를 형성한다는 것을 의미한다.
본 출원의 조성물은 경화성 조성물일 수 있다. 본 출원의 조성물이 경화성 조성물인 경우에 상기 조성물은, 상온 경화형 조성물일 수 있다. 상온 경화형 조성물은, 상온에서 유지된 상태에서 경화될 수 있는 조성물을 의미한다.
본 출원의 조성물이 경화성 조성물인 경우에 상기 조성물은 1액형 조성물이거나, 혹은 2액형 조성물일 수 있다. 용어 1액형 조성물은, 경화에 필요한 성분들이 함께 혼합되어 보관되는 조성물을 의미하고, 용어 2액형 조성물은, 경화에 필요한 성분들 중 적어도 일부가 물리적으로 분리되어 보관되는 조성물을 의미한다.
본 출원의 조성물은 폴리우레탄 조성물일 수 있다. 용어 폴리우레탄 조성물은 폴리우레탄 또는 폴리우레탄을 형성할 수 있는 성분(예를 들면, 후술하는 폴리올 화합물, 1가 알코올, 티올 화합물 및/또는 폴리이소시아네이트 등)을 주성분을 포함하는 조성물을 의미한다. 상기에서 주성분으로 포함한다는 것은, 조성물 내에 상기 폴리우레탄 또는 폴리우레탄을 형성할 수 있는 성분의 함량의 하한이 55 중량%, 60 중량%, 65 중량%, 70 중량%, 75 중량%, 80 중량%, 85 중량%, 90 중량% 또는 95 중량%인 경우를 의미한다. 상기 조성물 내에 상기 폴리우레탄 또는 폴리우레탄을 형성할 수 있는 성분의 함량의 상한은 100 중량%일 수 있다. 상기 폴리우레탄 또는 폴리우레탄을 형성할 수 있는 성분의 함량은, 상기 기술한 하한 중 임의의 어느 한 하한 이상 또는 초과이거나, 상기 기술한 상한 중 임의의 어느 한 상한 이하 또는 미만이거나, 상기 기술한 하한 중 임의의 어느 한 하한 이상 또는 초과이면서, 상기 기술한 상한 중 임의의 어느 한 상한 이하 또는 미만일 수 있다. 상기 폴리우레탄 또는 폴리우레탄을 형성할 수 있는 성분의 함량은 조성물이 필러 및/또는 용매를 포함하는 경우에는 상기 필러 및 용매를 제외한 조성물 내에서의 함량이다.
본 출원의 조성물은 무용제형 조성물일 수 있다. 용어 무용제형 조성물은, 조성물 내에서 용매의 함량이 5 중량% 이하, 4 중량% 이하, 3 중량% 이하, 2 중량% 이하, 1 중량% 이하 또는 0.5 중량% 이하인 경우를 의미한다. 무용제형 조성물 내에서 용매의 함량은 0 중량% 이상이거나, 0 중량% 정도일 수 있다. 즉, 무용제형 조성물은, 용매를 실질적으로 포함하지 않을 수 있다.
본 출원의 조성물은 특정 피착체에 대해서 낮은 접착력을 나타내거나, 혹은 낮은 접착력을 나타내는 경화체를 형성할 수 있다. 예를 들어, 폴리우레탄은 다양한 피착체에 대해서 우수한 접착성을 나타내는 접착 소재로 알려져 있다. 따라서, 폴리우레탄 조성물이 피착체에 대해서 낮은 접착력을 나타내도록 하는 방법으로는 통상 가소제 등의 접착력을 저하시키는 성분을 도입하는 방법이 사용된다. 이러한 가소제 등의 성분을 적용하면, 폴리우레탄 소재의 접착력은 낮출 수 있지만, 해당 성분이 폴리우레탄에서 확보될 수 있었던 다른 물성을 저하시키거나, 폴리우레탄 소재의 사용 과정에서 소재 외부로 용출되는 등의 문제가 발생할 수 있다. 그렇지만, 본 출원에서는 가소제 등의 접착력 저하 성분을 사용하지 않거나, 그 사용량을 최소화하면서도 상기 낮은 접착력을 달성할 수 있다. 따라서, 본 출원에서는 소재의 장점은 취하면서도 용도에 따라서 요구되지 않는 높은 접착력 문제를 해결한 소재를 제공할 수 있다.
예를 들면, 상기 조성물 또는 그 경화체의 알루미늄에 대한 접착력의 상한은, 1 N/mm2, 0.9 N/mm2, 0.8 N/mm2, 0.7 N/mm2, 0.6 N/mm2, 0.5 N/mm2, 0.4 N/mm2, 0.3 N/mm2, 0.2 N/mm2 또는 0.1 N/mm2 정도일 수 있다. 상기 접착력은 조성물 자체의 알루미늄에 대한 접착력이거나, 혹은 조성물이 경화성인 경우에 경화된 조성물이 알루미늄에 대해서 나타내는 접착력일 수 있다. 상기 알루미늄에 대한 접착력의 하한은 특별히 제한되지 않는다. 예를 들면, 상기 접착력의 하한은 0 N/mm2, 0.01 N/mm2, 0.02 N/mm2, 0.03 N/mm2, 0.04 N/mm2, 0.05 N/mm2, 0.06 N/mm2, 0.07 N/mm2, 0.08 N/mm2, 0.09 N/mm2, 0.1 N/mm2, 0.11 N/mm2, 0.12 N/mm2, 0.13 N/mm2 또는 0.14 N/mm2 정도일 수 있다. 상기 접착력은, 상기 기술한 상한 중 임의의 어느 한 상한 이하 또는 미만이거나, 상기 기술한 하한 중 임의의 어느 한 하한 이상 또는 초과이거나, 상기 기술한 하한 중 임의의 어느 한 하한 이상 또는 초과이면서, 상기 기술한 상한 중 임의의 어느 한 상한 이하 또는 미만일 수 있다. 상기 알루미늄에 대한 접착력은 본 명세서의 실시예에 기재된 방식으로 측정할 수 있다. 일 예시에서 상기 조성물은, 알루미늄에 대한 접착력이 0 N/mm2일 수 있다. 즉, 상기 조성물은, 알루미늄에 대해서 접착력이 실질적으로 측정되지 않는 조성물일 수 있다.
조성물은, 또한 적절한 경도를 나타낼 수 있다. 상기 경도는 조성물 자체의 경도이거나, 혹은 조성물이 경화성인 경우에 경화된 조성물의 경도일 수 있다. 조성물의 경도는, 조성물이 방열 소재로 적용되어서, 적용 용도에 따라, 우수한 내충격성, 내진동성 및 내구성을 가지는 제품을 제공할 수 있도록 조절될 수 있다. 예를 들면, 상기 조성물 또는 그 경화체의 쇼어(shore) OO 타입에서의 경도(쇼어 OO 경도)의 상한은, 90, 88, 86, 84 또는 82 정도일 수 있고, 그 상한은, 40, 45, 50, 55, 60, 65, 70, 75, 80, 82 또는 84 정도일 수 있다. 상기 경도는, 상기 기술한 상한 중 임의의 어느 한 상한 이하 또는 미만이거나, 상기 기술한 하한 중 임의의 어느 한 하한 이상 또는 초과이거나, 상기 기술한 하한 중 임의의 어느 한 하한 이상 또는 초과이면서, 상기 기술한 상한 중 임의의 어느 한 상한 이하 또는 미만일 수 있다. 상기 경도는 후술하는 실시예에 개시된 방법으로 측정할 수 있다.
조성물은, 우수한 열전도 특성을 나타낼 수 있다. 예를 들면, 상기 조성물 또는 그 경화체의 열전도도의 하한은, 1.2 W/mk, 1.4 W/mK, 1.6 W/mK, 1.8 W/mK, 2.0 W/mK, 2.2 W/mK, 2.4 W/mK, 2.6 W/mK 또는 2.8 W/mK 정도일 수 있고, 그 상한은, 10 W/mK, 9 W/mK, 8 W/mK, 7 W/mK, 6 W/mK, 5 W/mK, 4 W/mK 또는 3 W/mK 정도일 수도 있다. 상기 열전도도는, 상기 기술한 상한 중 임의의 어느 한 상한 이하 또는 미만이거나, 상기 기술한 하한 중 임의의 어느 한 하한 이상 또는 초과이거나, 상기 기술한 하한 중 임의의 어느 한 하한 이상 또는 초과이면서, 상기 기술한 상한 중 임의의 어느 한 상한 이하 또는 미만일 수 있다. 상기 열전도도는 조성물 자체의 열전도도이거나, 혹은 조성물이 경화성인 경우에 경화된 조성물의 열전도도일 수 있다. 이러한 열전도도는, ASTM D5470 규격에 따라 측정할 수 있다.
조성물은, 또한 적절한 유연성을 나타낼 수 있다. 조성물의 유연성을 원하는 수준으로 조절함으로써 적용 용도를 크게 확대할 수 있다. 예를 들면, 상기 조성물의 곡률 반경이 조절될 수 있다. 상기 곡률 반경은 조성물 자체의 곡률 반경이거나, 혹은 조성물이 경화성인 경우에 경화된 조성물의 곡률 반경일 수 있다. 상기 곡률 반경의 하한은, 예를 들면, 1, 2, 3, 4, 5 또는 6 정도일 수 있고, 그 상한은, 20, 19, 18, 17, 16, 15, 14, 13, 12, 11, 10, 9, 8 또는 7 정도일 수 있다. 상기 곡률 반경은, 상기 기술한 상한 중 임의의 어느 한 상한 이하 또는 미만이거나, 상기 기술한 하한 중 임의의 어느 한 하한 이상 또는 초과이거나, 상기 기술한 하한 중 임의의 어느 한 하한 이상 또는 초과이면서, 상기 기술한 상한 중 임의의 어느 한 상한 이하 또는 미만일 수 있다. 이러한 조성물의 곡률 반경은 후술하는 실시예에 개시된 방법으로 측정할 수 있다. 또한, 상기 곡률 반경의 단위는 mm이다.
본 출원의 조성물은 절연성일 수 있다. 즉 조성물은 절연성을 가지거나 및/또는 절연성을 가지는 경화체를 형성할 수 있다. 예를 들어, 조성물 또는 그 경화체는, ASTM D149에 준거하여 측정한 절연파괴전압이 약 3 kV/mm 이상, 약 5 kV/mm 이상, 약 7 kV/mm 이상, 10 kV/mm 이상, 15 kV/mm 이상 또는 20 kV/mm 이상일 수 있다. 상기 절연파괴전압은 그 수치가 높을수록 우수한 절연성을 가지는 것을 보이는 것으로 상한은 특별히 제한되는 것은 아니나, 조성물의 조성 등을 고려하면, 상기 절연파괴전압은, 약 50 kV/mm 이하, 45 kV/mm 이하, 40 kV/mm 이하, 35 kV/mm 이하, 30 kV/mm 이하 정도일 수 있다. 상기와 같은 절연파괴전압은 조성물의 절연성을 조절하여 제어할 수 있으며, 예를 들면, 수지층 내에 절연성 필러를 적용함으로써 달성할 수 있다. 일반적으로 필러 중에서 세라믹 필러는 절연성을 확보할 수 있는 성분으로 알려져 있다.
조성물 또는 그 경화체는 난연성을 가질 수 있다. 예를 들어, 상기 조성물 또는 그 경화체는, UL 94 V Test (Vertical Burning Test)에서 V-0 등급을 나타낼 수 있다. 이에 따라서 조성물의 적용 용도에 따라서 우려되는 화재 및 기타 사고에 대한 안정성을 확보할 수 있다.
조성물 또는 그 경화체는 비중이 5 이하일 수 있다. 상기 비중은 다른 예시에서 4.5 이하, 4 이하, 3.5 이하 또는 3 이하일 수 있다. 이러한 범위의 비중을 나타내는 수지층은 보다 경량화된 제품을 제공하는 것에 유리하다. 상기 비중의 하한은 특별히 제한되지 않는다. 예를 들면, 상기 비중은 약 1.5 이상 또는 2 이상일 수 있다. 조성물 또는 그 경화체가 상기 비중을 나타내기 위하여 수지층에 첨가되는 성분이 조절될 수 있다. 예를 들어, 필러의 첨가 시에 가급적 낮은 비중에서도 목적하는 특성(예를 들면, 열전도성)이 확보될 수 있는 필러, 즉 자체적으로 비중이 낮은 필러를 적용하거나, 표면 처리가 이루어진 필러를 적용하는 방식 등이 사용될 수 있다.
조성물 또는 그 경화체는, 또한 열중량분석(TGA)에서의 5% 중량 손실(5% weight loss) 온도가 400℃ 이상이거나, 800℃ 잔량이 70 중량% 이상일 수 있다. 이러한 특성에 의해 고온에서의 안정성이 보다 개선될 수 있다. 상기 800℃ 잔량은 다른 예시에서 약 75 중량% 이상, 약 80 중량% 이상, 약 85 중량% 이상 또는 약 90 중량% 이상일 수 있다. 상기 800℃ 잔량은 다른 예시에서 약 99 중량% 이하일 수 있다. 상기 열중량 분석(TGA)은, 60 cm3/분의 질소(N2) 분위기 하에서 20℃/분의 승온 속도로 25℃ 내지 800℃의 범위 내에서 측정할 수 있다. 상기 열중량분석(TGA) 결과도 조성물의 조성의 조절을 통해 달성할 수 있다. 예를 들어, 800℃ 잔량은, 통상 그 조성물에 포함되는 필러의 종류 내지 비율에 의해 좌우되고, 과량의 필러를 포함하면, 상기 잔량은 증가한다.
상기 조성물은 수지 성분을 포함할 수 있다. 본 명세서에서 용어 수지 성분은, 업계에서 수지로서 공지된 성분은 물론 경화 반응 등을 거쳐서 수지 성분을 형성할 수 있는 성분도 포함된다. 예를 들어, 폴리우레탄은, 폴리올 화합물과 폴리이소시아네이트 등이 반응하여 형성될 수 있는데, 상기에서 폴리이소시아네이트는, 그 자체로는 수지 성분이 아닌 경우가 많고, 폴리올 화합물도 수지 성분이 아닌 경우가 있다. 또한, 본 명세서에서 언급하는 후술하는 1가 알코올이나 티올 화합물도 수지 성분은 아닐 수 있다. 그렇지만, 본 명세서에서 상기 폴리올 화합물, 폴리이소시아네이트, 1가 알코올 및/또는 티올 화합물은, 수지 성분에 해당하는 폴리우레탄을 형성하도록 의도된 것이기 때문에, 본 명세서에서는 수지 성분으로 볼 수 있다.
본 출원의 조성물이 폴리우레탄 조성물인 경우에 상기 수지 성분은, 폴리우레탄, 폴리올 화합물, 1가 알코올, 티올 화합물 및 폴리이소시아네이트로 이루어진 군에서 선택된 적어도 하나 이상을 포함할 수 있다. 상기에서 폴리올 화합물, 1가 알코올, 티올 화합물 또는 폴리이소시아네이트는 본 출원의 조성물이 경화성 조성물인 경우에 수지 성분으로서 포함될 수 있다.
본 명세서에서 용어 폴리올 화합물은, 히드록시기를 2개 이상 포함하는 화합물을 의미한다. 이러한 폴리올 화합물은, 단분자성, 올리고머성 또는 고분자성 화합물일 수 있다. 폴리올 화합물이 포함하는 상기 히드록시기의 수는 특별히 제한되지 않지만, 일 예시에서 상기 폴리올 화합물이 포함하는 상기 히드록시기의 수의 하한은, 2개 또는 3개 정도일 수 있고, 그 상한은, 10개, 9개, 8개, 7개, 6개, 5개, 4개, 3개 또는 2개 정도일 수도 있다. 상기 히드록시기의 수는, 상기 기술한 상한 중 임의의 어느 한 상한 이하 또는 미만이거나, 상기 기술한 하한 중 임의의 어느 한 하한 이상 또는 초과이거나, 상기 기술한 하한 중 임의의 어느 한 하한 이상 또는 초과이면서, 상기 기술한 상한 중 임의의 어느 한 상한 이하 또는 미만일 수 있다.
목적 물성의 확보를 위해서 상기 폴리올 화합물이 선택될 수 있다.
예를 들면, 본 출원의 조성물 또는 상기 수지 성분은, 상기 폴리올 화합물로서, 3관능 이상의 다관능성 폴리올 화합물 및 2관능성 폴리올 화합물을 함께 포함할 수 있다. 상기에서 3관능 이상은, 폴리올 화합물에 포함되는 히드록시기의 수가 3개 이상인 것을 의미하고, 2관능성은 폴리올 화합물에 포함되는 히드록시기의 수가 2개인 것을 의미한다. 상기 3관능 이상의 다관능성 폴리올 화합물이 포함하는 히드록시기의 수의 상한은 10개, 9개, 8개, 7개, 6개, 5개, 4개 또는 3개 정도일 수 있다. 상기 3관능 이상의 다관능성 폴리올 화합물이 포함하는 히드록시기의 수는, 3개 이상이면서, 상기 기술한 상한 중 임의의 어느 한 상한 이하 또는 미만일 수도 있다.
상기 3관능 이상의 다관능성 폴리올 화합물 및 2관능성 폴리올 화합물 중 적어도 하나는 제어된 수평균분자량(Mn)을 가질 수 있다. 예를 들면, 상기 수평균분자량의 하한은, 300 g/mol, 500g/mol, 700g/mol, 900g/mol, 1100g/mol, 1300g/mol, 1500g/mol, 1700g/mol 또는 1900g/mol 정도일 수 있고, 그 상한은, 3000 g/mol, 2800g/mol, 2600g/mol, 2400g/mol, 2200g/mol, 2000g/mol, 1800g/mol, 1600g/mol, 1400g/mol 또는 1200g/mol 정도일 수도 있다. 상기 수평균분자량은, 상기 기술한 상한 중 임의의 어느 한 상한 이하 또는 미만이거나, 상기 기술한 하한 중 임의의 어느 한 하한 이상 또는 초과이거나, 상기 기술한 하한 중 임의의 어느 한 하한 이상 또는 초과이면서, 상기 기술한 상한 중 임의의 어느 한 상한 이하 또는 미만일 수 있다. 이러한 수평균분자량을 가지는 폴리올 화합물을 적용하는 것에 의해서 목적하는 물성을 보다 효율적으로 확보할 수 있다. 하나의 예시에서 상기 3관능 이상의 다관능성 폴리올 화합물 및 2관능성 폴리올 화합물은 모두 상기 범위 내에서 수평균분자량을 가질 수 있다.
하나의 예시에서 상기 3관능 이상의 다관능성 폴리올 화합물 및 2관능성 폴리올 화합물 중 어느 하나는 수평균분자량이 1500 g/mol 이상이고, 다른 하나는 1500 g/mol 미만일 수 있다. 상기 3관능 이상의 다관능성 폴리올 화합물 및 2관능성 폴리올 화합물 중 수평균분자량이 더 큰 폴리올 화합물의 수평균분자량의 하한은, 1500 g/mol, 1700 g/mol 또는 1900 g/mol 정도일 수 있고, 그 상한은, 3000 g/mol, 2800g/mol, 2600g/mol, 2400g/mol, 2200g/mol 또는 2000g/mol 정도일 수도 있다. 상기 수평균분자량은, 상기 기술한 상한 중 임의의 어느 한 상한 이하 또는 미만이거나, 상기 기술한 하한 중 임의의 어느 한 하한 이상 또는 초과이거나, 상기 기술한 하한 중 임의의 어느 한 하한 이상 또는 초과이면서, 상기 기술한 상한 중 임의의 어느 한 상한 이하 또는 미만일 수 있다. 상기 3관능 이상의 다관능성 폴리올 화합물 및 2관능성 폴리올 화합물 중 수평균분자량이 더 작은 폴리올 화합물의 수평균분자량의 상한은, 1500 g/mol, 1400 g/mol, 1300 g/mol, 1200 g/mol, 1100 g/mol 또는 1000 g/mol 정도일 수 있고, 그 하한은, 500g/mol, 700g/mol 또는 900g/mol 정도일 수도 있다. 상기 수평균분자량은, 상기 기술한 상한 중 임의의 어느 한 상한 이하 또는 미만이거나, 상기 기술한 하한 중 임의의 어느 한 하한 이상 또는 초과이거나, 상기 기술한 하한 중 임의의 어느 한 하한 이상 또는 초과이면서, 상기 기술한 상한 중 임의의 어느 한 상한 이하 또는 미만일 수 있다.
특별히 제한되는 것은 아니지만, 상기 3관능 이상의 다관능성 폴리올 화합물은 상기 2관능성 폴리올 화합물보다 큰 수평균분자량을 가질 수 있다.
하나의 예시에서 상기 3관능 이상의 다관능성 폴리올 화합물 및 2관능성 폴리올 화합물 중 어느 하나는 소위 폴리에스테르 폴리올이고, 다른 하나는 폴리에테르 폴리올일 수 있다.
폴리에스테르 폴리올로는, 특별한 제한 없이 공지의 폴리에스테르 폴리올을 적용할 수 있다. 예를 들면, 상기 폴리에스테르 폴리올 화합물로는 알칸 디올 단위, 폴리올 단위 및 디카복실산 단위를 가지는 폴리올을 사용할 수도 있다. 이러한 폴리올은 상기 알칸 디올, 폴리올 및 디카복실산의 혼합물이거나, 혹은 그들의 반응물일 수 있다. 이 때 상기 알칸 디올로는 3-메틸-1,5-펜탄디올(3-methyl-1,5-pentanediol), 1,9-노난디올(1,9-nonanediol) 또는 1,6-헥산디올(1,6-hexanediol) 등의 탄소수 1 내지 20, 탄소수 4 내지 20, 탄소수 4 내지 16 또는 탄소수 4 내지 12의 디올 화합물이 예시될 수 있다. 또한, 상기 폴리올로는 트리메틸롤프로판과 같이 3개 내지 10개, 3개 내지 9개, 3개 내지 8개, 3개 내지 7개, 3개 내지 6개, 3개 내지 5개 또는 3개 내지 4개의 히드록시기로 치환된 탄소수 1 내지 20, 탄소수 4 내지 20, 탄소수 4 내지 16 또는 탄소수 4 내지 12의 알칸이 예시될 수 있다. 또한, 상기 디카복실산으로는 아디프산, 테레프탈산, 이소프탈산 또는 세바스산 등이 예시될 수 있으며, 적절한 예시로는 아디프산 또는 세바스산을 들 수 있다.
이러한 종류의 폴리에스테르 폴리올 화합물은 예를 들면, Kuraray사의 P-510, P-1010, P-2010, P-3010, P-4010, P-5010, P-6010, F-510, F-1010, F-2010, F-3010, P-2011, P-520, P-2020, P-1012, P-2012, P-630, P-2030, P-2050 또는 N-2010 등의 제품명으로 공지되어 있다.
폴리에테르 폴리올로도, 특별한 제한 없이 공지의 폴리에테르 폴리올을 적용할 수 있다. 예를 들면, 상기 폴리에테르 폴리올 화합물로는 소위 폴리알킬렌 글리콜을 적용할 수 있다. 상기에서 알킬렌으로는, 탄소수 1 내지 12, 탄소수 1 내지 8 또는 탄소수 1 내지 4의 알킬렌이 예시될 수 있다.
본 명세서에서 알킬렌 또는 알킬렌기는 알칸에서 2개의 수소 원자가 이탈하여 형성된 2가 치환기를 의미하는데, 이 때 상기 2개의 수소 원자는, 알칸의 다른 탄소 원자에서 각각 1개씩 이탈할 수도 있고, 알칸은 하나의 탄소 원자에서 이탈할 수도 있다.
적절한 물성을 확보하기 위해서 상기 3관능 이상의 다관능성 폴리올 화합물 및 2관능성 폴리올 화합물 중 상기 3관능 이상의 다관능성 폴리올 화합물로서, 상기 폴리에스테르 폴리올을 적용하고, 2관능성 폴리올 화합물로서, 상기 폴리에테르 폴리올을 적용할 수 있다.
본 출원의 조성물 또는 상기 수지 성분이 상기 3관능 이상의 다관능성 폴리올 화합물 및 2관능성 폴리올 화합물을 포함하는 경우에, 상기 3관능 이상의 다관능성 폴리올 화합물 100 중량부 대비 상기 2관능성 폴리올 화합물의 함량의 하한은, 5 중량부, 10 중량부, 15 중량부, 20 중량부, 25 중량부, 30 중량부, 35 중량부, 40 중량부, 45 중량부, 50 중량부, 55 중량부, 60 중량부, 65 중량부, 70 중량부, 75 중량부, 80 중량부, 85 중량부 또는 90 중량부 정도일 수 있고, 그 상한은, 200 중량부, 190 중량부, 180 중량부, 170 중량부, 160 중량부, 150 중량부, 140 중량부, 130 중량부, 120 중량부, 110 중량부, 100 중량부 또는 90 중량부 정도일 수 있다. 상기 비율은, 상기 기술한 상한 중 임의의 어느 한 상한 이하 또는 미만이거나, 상기 기술한 하한 중 임의의 어느 한 하한 이상 또는 초과이거나, 상기 기술한 하한 중 임의의 어느 한 하한 이상 또는 초과이면서, 상기 기술한 상한 중 임의의 어느 한 상한 이하 또는 미만일 수 있다. 이러한 비율 하에서 목적하는 물성을 효과적으로 확보할 수 있다.
상기 수지 성분은 또한 1가 알코올 또는 티올 화합물을 추가로 포함할 수 있다. 상기에서 1가 알코올은 하나의 히드록시기를 포함하는 화합물이다. 위와 같은 성분을 추가로 적용하는 것에 의해서 목적하는 물성을 보다 효과적으로 확보할 수 있다.
상기 1가 알코올 또는 티올 화합물로는, 분자량(몰질량)이 소정 범위인 화합물을 사용할 수 있다. 예를 들면, 상기 1가 알코올 또는 티올 화합물의 분자량(몰질량)의 하한은, 50 g/mol, 55g/mol, 60g/mol, 65g/mol, 70g/mol, 75g/mol, 80g/mol, 85g/mol, 90g/mol, 95g/mol, 100g/mol, 110g/mol, 120g/mol, 130g/mol, 140g/mol 또는 150g/mol 정도일 수 있고, 그 상한은, 500 g/mol, 480g/mol, 460g/mol, 440g/mol, 420g/mol, 400g/mol, 380g/mol, 360g/mol, 340g/mol, 320g/mol, 300g/mol, 280g/mol, 260g/mol, 240g/mol, 220g/mol, 200g/mol, 180g/mol 또는 160g/mol 정도일 수도 있다. 상기 1가 알코올 또는 티올 화합물의 분자량(몰질량)은, 상기 기술한 상한 중 임의의 어느 한 상한 이하 또는 미만이거나, 상기 기술한 하한 중 임의의 어느 한 하한 이상 또는 초과이거나, 상기 기술한 하한 중 임의의 어느 한 하한 이상 또는 초과이면서, 상기 기술한 상한 중 임의의 어느 한 상한 이하 또는 미만일 수 있다.
적용될 수 있는 1가 알코올 또는 티올 화합물의 종류에는 특별한 제한은 없다. 본 출원에서는 하나의 히드록시기를 가지는 화합물(1가 알코올) 또는 하나의 티올기를 가지는 화합물(티올 화합물)이라면 특별한 제한 없이 적용할 수 있다. 적용될 수 있는 1가 알코올의 비제한적인 예로는, 2-프로필헵탄올(2-propylheptanol), 에탄올, 프로판올, 부탄올, 펜탄올, 헥산올, 헵탄올, 옥탄올, 2-에틸헥산올, 노난올, 데칸올, 에텐올, 프로텐올, 부텐올, 아세틸렌올, 프로파인올, 부틴올, 페놀, 메틸페놀, 피리디놀 및/또는 메틸피리디놀 등이 예시될 수 있고, 티올 화합물로는, 에탄티올, 프로판티올, 부탄티올, 펜탄티올, 헥산티올, 헵탄티올, 옥탄티올, 2-에틸헥산티올, 노난티올, 테칸티올, 2-프로필헵탄티올, 에텐티올, 프로텐티올, 부텐티올, 아세틸렌티올, 프로파인티올, 부틴티올, 벤젠티올, 메틸벤젠티올, 피리딘티올 및/또는 메틸피리딘티올 등이 예시될 수 있으나, 이에 제한되는 것은 아니다.
포함되는 경우, 상기 3관능 이상의 다관능성 폴리올 화합물 100 중량부 대비 상기 1가 알코올 또는 티올 화합물의 함량의 하한은, 1 중량부, 3 중량부, 5 중량부, 7 중량부, 9 중량부, 11 중량부, 13 중량부, 15 중량부, 17 중량부, 19 중량부, 21 중량부, 23 중량부, 25 중량부, 27 중량부 또는 29 중량부 정도일 수 있고, 그 상한은, 100 중량부, 95 중량부, 90 중량부, 85 중량부, 80 중량부, 75 중량부, 70 중량부, 65 중량부, 60 중량부, 55 중량부, 50 중량부, 45 중량부, 40 중량부, 35 중량부 또는 30 중량부 정도일 수도 있다. 상기 비율은, 상기 기술한 상한 중 임의의 어느 한 상한 이하 또는 미만이거나, 상기 기술한 하한 중 임의의 어느 한 하한 이상 또는 초과이거나, 상기 기술한 하한 중 임의의 어느 한 하한 이상 또는 초과이면서, 상기 기술한 상한 중 임의의 어느 한 상한 이하 또는 미만일 수 있다. 이러한 비율에서 목적하는 물성을 더 효율적으로 확보할 수 있다.
조성물은, 폴리이소시아네이트를 포함할 수 있다. 이 폴리이소시아네이트는 상기 폴리올 화합물 등과 반응하여 폴리우레탄을 형성할 수 있다. 용어 폴리이소시아네이트는, 이소시아네이트기를 2개 이상 가지는 화합물을 의미한다. 폴리이소시아네이트가 가지는 이소시아네이트기의 수의 하한은, 2개 또는 3개 정도일 수 있고, 상한은, 10개, 9개, 8개, 7개, 6개, 5개, 4개, 3개 또는 2개 정도일 수 있다. 상기 이소시아네이트기의 수는, 상기 기재한 상한 중 임의의 어느 한 상한 이하 또는 미만이거나, 상기 기재한 하한 중 임의의 어느 한 하한 이상 또는 초과이거나, 상기 기재한 하한 중 임의의 어느 한 하한 이상 또는 초과이면서, 상기 기재한 상한 중 임의의 어느 한 상한 이하 또는 미만인 범위 내일 수 있다.
폴리이소시아네이트의 종류는 특별히 제한되지 않으나, 목적하는 물성의 확보를 위해 방향족기를 포함하지 않는 비방향족 폴리이소시아네이트를 사용할 수 있다.
폴리이소시아네이트 화합물로는, 예를 들어, 헥사메틸렌 디이소시아네이트, 트리메틸헥사메틸렌 디이소시아네이트, 리신 디이소시아네이트, 노르보르난 디이소시아네이트 메틸, 에틸렌 디이소시아네이트, 프로필렌 디이소시아네이트 또는 테트라메틸렌 디이소시아네이트 등의 지방족 폴리이소시아네이트; 트랜스사이클로헥산-1,4-디이소시아네이트, 이소포론 디이소시아네이트, 비스(이소시아네이트메틸)사이클로헥산 디이소시아네이트 또는 디사이클로헥실메탄 디이소시아네이트 등의 지환족 폴리이소시아네이트; 또는 상기 중 어느 하나 이상의 카르보디이미드 변성 폴리이소시아네이트나 이소시아누레이트 변성 폴리이소시아네이트 등이 사용될 수 있다. 또한, 폴리이소시아네이트로는, 상기 기술한 디이소시아네이트와 폴리올(예를 들면, 트리메틸롤프로판 등)과의 부가 반응물을 사용할 수도 있다. 또한, 상기 나열된 화합물 중 2 이상의 혼합물이 사용될 수 있다.
적합한 물성의 확보를 위해서 상기 폴리이소시아네이트로서, 3관능 이상, 즉 3개 이상의 이소시아네이트기를 가지는 다관능성 폴리이소시아네이트 및 2관능성 폴리이소시아네이트(2개의 이소시아네이트기를 가지는 화합물)를 함께 사용할 수 있다. 상기 3관능 이상의 다관능성 폴리이소시아네이트가 포함하는 이소시아네이트기의 수의 상한은, 10개, 9개, 8개, 7개, 6개, 5개, 4개 또는 3개 정도일 수 있다. 상기 3관능 이상의 폴리이소시아네이트가 가지는 이소시아네이트기의 수는, 3개 이상이면서, 상기 기술한 상한 중 임의의 어느 한 상한 이하 또는 미만일 수도 있다.
상기 폴리이소시아네이트의 적용 비율은, 조성물에 포함되어 있는 상기 폴리올 화합물, 1가 알코올 및/또는 티올 화합물에 존재하는 히드록시기 및 티올기의 수와 경화 후 물성을 고려하여 조절될 수 있다.
예를 들면, 상기 폴리이소시아네이트는, 조성물에 존재하는 상기 폴리올 화합물 100 중량부 대비 10 중량부 내지 2000 중량부의 범위 내에서 적정 비율로 포함될 수 있다.
폴리이소시아네이트로서, 상기 3관능 이상의 다관능성 폴리이소시아네이트 및 2관능성 폴리이소시아네이트를 동시에 포함하는 경우에 상기 2관능성 폴리이소시아네이트의 상기 3관능 이상의 다관능성 폴리이소시아네이트 100 중량부 대비 비율의 하한은, 5 중량부, 10 중량부, 15 중량부, 20 중량부, 25 중량부, 30 중량부, 35 중량부, 40 중량부, 45 중량부, 50 중량부, 55 중량부 또는 60 중량부 정도일 수 있고, 그 상한은, 200 중량부, 190 중량부, 180 중량부, 170 중량부, 160 중량부, 150 중량부, 140 중량부, 130 중량부, 120 중량부, 110 중량부, 100 중량부, 90 중량부, 80 중량부, 70 중량부 또는 60 중량부 정도일 수도 있다. 상기 비율은, 상기 기술한 상한 중 임의의 어느 한 상한 이하 또는 미만이거나, 상기 기술한 하한 중 임의의 어느 한 하한 이상 또는 초과이거나, 상기 기술한 하한 중 임의의 어느 한 하한 이상 또는 초과이면서, 상기 기술한 상한 중 임의의 어느 한 상한 이하 또는 미만일 수 있다. 이러한 비율 하에서 목적하는 물성을 효과적으로 확보할 수 있다.
조성물은, 추가 성분으로서 필러 성분을 추가로 포함할 수 있다. 용어 필러 성분은, 필러로 이루어진 성분, 즉 필러만을 포함하는 성분을 의미한다.
하나의 예시에서 필러 성분은, 서로 평균 입경이 다른 2종 이상의 필러를 포함할 수 있다. 일 예시에서 상기 필러 성분은, 서로 평균 입경이 다른 3종 이상의 필러를 포함하거나, 서로 평균 입경이 다른 3종 내지 6종, 3종 내지 5종, 3종 내지 4종 또는 3종의 필러로 이루어질 수 있다. 즉, 일 예시에서 상기 필러 성분은, 상기 서로 평균 입경이 다른 3종 내지 6종, 3종 내지 5종, 3종 내지 4종 또는 3종의 필러만을 포함할 수도 있다.
다른 예시에서 상기 필러 성분은, 레이저 회절법(laser Diffraction)을 사용하여 측정되는 입도 분포의 체적 곡선에서 적어도 2개의 피크를 나타낼 수 있다. 일 예시에서 상기 필러 성분은, 상기 입도 분포의 체적 곡선에서 3개 이상의 피크를 나타내거나, 3개 내지 6개, 3개 내지 5개, 3개 내지 4개 또는 3개의 피크를 나타낼 수 있다. 예를 들어, 3개의 피크를 나타내는 필러 성분의 범위에는 1개, 2개 또는 4개 이상의 피크를 나타내는 필러 성분은 포함되지 않는다.
본 출원의 필러의 평균 입경은, 레이저 회절법(laser Diffraction)으로 측정한 입도 분포의 체적 곡선에서 체적 누적이 50%가 되는 입자 직경을 의미하고, 이는 메디안 직경으로 불리울 수도 있다. 즉, 본 출원에서는, 상기 레이저 회절법을 통해 체적 기준으로 입도 분포를 구하고, 전 체적을 100%로 한 누적 곡선에서 누적치가 50%가 되는 지점의 입자 지름을 상기 평균 입경으로 하며, 이러한 평균 입경은, 다른 예시에서 메디안 입경 또는 D50 입경으로 불리울 수 있다.
따라서, 상기에서 상이한 평균 입경을 가지는 2종의 필러란, 상기 입도 분포의 체적 곡선에서 누적치가 50%가 되는 지점에서의 입자 지름이 상이한 필러를 의미할 수 있다.
통상 필러 성분을 형성하기 위해서 서로 평균 입경이 다른 2종 이상의 필러를 혼합하는 경우에 상기 필러 성분에 대하여 레이저 회절법(laser Diffraction)을 사용하여 측정한 입도 분포의 체적 곡선에서는 혼합된 필러의 종류만큼의 피크가 나타난다. 따라서, 예를 들어, 서로 평균 입경이 다른 3종의 필러를 혼합하여 필러 성분을 구성한 경우에 그 필러 성분에 대하여 레이저 회절법을 사용하여 측정한 입도 분포의 체적 곡선은 3개의 피크를 나타낸다.
본 출원의 조성물의 상기 필러 성분은 열전도성 필러 성분일 수 있다. 용어 열전도성 필러 성분은, 상기 조성물 또는 그 경화체가 전술한 열전도도를 나타내도록 기능하는 필러 성분을 의미한다.
하나의 예시에서 상기 필러 성분은 적어도 평균 입경이 60 μm 내지 200 μm인 제 1 필러, 평균 입경이 10 μm 내지 30 μm의 범위 내인 제 2 필러 및 평균 입경이 5 μm 이하인 제 3 필러를 포함할 수 있다.
상기 제 1 필러의 평균 입경의 하한은, 62 μm, 62 μm, 64 μm, 66 μm 또는 약 68 μm 정도일 수 있고, 그 상한은, 200 μm, 195 μm, 190 μm, 185 μm, 180 μm, 175 μm, 170 μm, 165 μm, 160 μm, 155 μm, 150 μm, 145 μm, 140 μm, 135 μm, 130 μm, 125 μm, 약 120 μm, 115 μm, 110 μm, 105 μm, 100 μm, 95 μm, 90 μm, 85 μm, 80 μm 또는 약 75 μm 정도일 수 있다. 상기 제 1 필러의 평균 입경은, 상기 기재한 상한 중 임의의 어느 한 상한 이하 또는 미만이거나, 상기 기재한 하한 중 임의의 어느 한 하한 이상 또는 초과이거나, 상기 기재한 하한 중 임의의 어느 한 하한 이상 또는 초과이면서, 상기 기재한 상한 중 임의의 어느 한 상한 이하 또는 미만인 범위 내일 수 있다.
상기 제 2 필러의 평균 입경의 하한은, 10 μm, 12 μm, 13 μm, 14 μm, 15 μm, 16 μm, 17 μm, 18 μm, 19 μm 또는 20 μm 정도일 수 있고, 그 상한은, 29 μm, 28 μm, 27 μm, 26 μm, 25 μm, 24 μm, 23 μm, 22 μm, 21 μm 또는 약 20 μm 정도일 수 있다. 상기 제 2 필러의 평균 입경은, 상기 기재한 상한 중 임의의 어느 한 상한 이하 또는 미만이거나, 상기 기재한 하한 중 임의의 어느 한 하한 이상 또는 초과이거나, 상기 기재한 하한 중 임의의 어느 한 하한 이상 또는 초과이면서, 상기 기재한 상한 중 임의의 어느 한 상한 이하 또는 미만인 범위 내일 수 있다.
상기 제 3 필러의 하한은, 0.01 μm, 0.1 μm, 약 0.5 μm, 1μm, 1.5μm 또는 2μm 정도일 수 있고, 그 상한은, 5 μm, 4.5 μm, 약 4 μm, 3.5 μm, 3 μm, 2.5 μm 또는 2 μm 정도일 수도 있다. 상기 제 3 필러의 평균 입경은, 상기 기재한 상한 중 임의의 어느 한 상한 이하 또는 미만이거나, 상기 기재한 하한 중 임의의 어느 한 하한 이상 또는 초과이거나, 상기 기재한 하한 중 임의의 어느 한 하한 이상 또는 초과이면서, 상기 기재한 상한 중 임의의 어느 한 상한 이하 또는 미만인 범위 내일 수 있다.
상기 필러 성분에서 제 1 필러의 평균 입경(D1)과 제 3 필러의 평균 입경(D3)의 비율(D1/D3)은, 25 내지 300의 범위 내에 있을 수 있다.
일 예시에서 상기 제 3 필러는 필러 성분이 서로 평균 입경이 다른 2종 이상의 필러를 포함할 때에 필러 성분에 포함되는 필러 중에서 평균 입경이 가장 작은 필러일 수 있고, 상기 제 1 필러는 필러 성분이 서로 평균 입경이 다른 2종 이상의 필러를 포함할 때에 필러 성분에 포함되는 필러 중에서 평균 입경이 가장 큰 필러일 수 있다. 이러한 상태에서 상기 입경 비율이 만족될 수 있다.
상기 비율(D1/D3)의 하한은, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 40, 50, 60, 70, 80, 90, 100, 110, 120, 130, 140, 150, 160, 170, 180, 190, 200, 210, 220, 230 또는 235 정도일 수 있고, 그 상한은, 300, 290, 280, 270, 260, 250, 240, 220, 200, 180, 160, 140, 120, 100, 95, 90, 85, 80, 75, 70, 65 또는 60 정도일 수 있다. 상기 비율은, 상기 기재한 상한 중 임의의 어느 한 상한 이하 또는 미만이거나, 상기 기재한 하한 중 임의의 어느 한 하한 이상 또는 초과이거나, 상기 기재한 하한 중 임의의 어느 한 하한 이상 또는 초과이면서, 상기 기재한 상한 중 임의의 어느 한 상한 이하 또는 미만인 범위 내일 수 있다.
상기 필러 성분에서 상기 제 1 필러의 평균 입경(D1)과 제 2 필러의 평균 입경(D2)의 비율(D1/D2)의 하한은, 3, 3.1, 3.2, 3.3, 3.4 또는 3.5 정도이거나, 20, 18, 17, 16, 15, 14, 13, 12, 11, 10, 9, 8, 7, 6, 5 또는 4 정도일 수도 있다. 상기 비율은, 상기 기재한 상한 중 임의의 어느 한 상한 이하 또는 미만이거나, 상기 기재한 하한 중 임의의 어느 한 하한 이상 또는 초과이거나, 상기 기재한 하한 중 임의의 어느 한 하한 이상 또는 초과이면서, 상기 기재한 상한 중 임의의 어느 한 상한 이하 또는 미만인 범위 내일 수 있다.
필러로는 예를 들면, 산화알루미늄(알루미나: Al2O3), 질화알루미늄(AlN), 질화붕소(BN), 질화규소(Si3N4), 탄화규소(SiC) 산화베릴륨(BeO), 산화아연(ZnO), 산화마그네슘(MgO), 수산화알루미늄(Al(OH)3), 수산화마그네슘(Mg(OH)2), 탄산칼슘(CaCO3) 및/또는 보헤마이트(Boehmite) 등과 같은 세라믹 필러를 사용할 수 있다. 이러한 필러는 전술한 범위의 열전도도를 충족시키는 것에 유리하고, 추가로 세라믹 필러의 적용을 통해서 전술한 절연성 등도 충족시킬 수 있다.
상기 필러 성분의 상기 조성물 내에서의 비율의 상한은, 98 중량%, 97.5 중량%, 97 중량%, 96.5 중량%, 96 중량%, 95.5 중량%, 95 중량%, 94.5 중량%, 94 중량%, 93.5 중량%, 93 중량%, 92.5 중량%, 92 중량%, 91.5 중량%, 91 중량%, 90.5 중량%, 90.0 중량%, 89.5 중량%, 89.0 중량%, 88.5 중량% 또는 88.0 중량% 정도일 수 있고, 그 하한은, 70 중량%, 71 중량%, 72 중량%, 73 중량%, 74 중량%, 약 75 중량%, 76 중량%, 77 중량%, 78 중량%, 79 중량%, 80 중량%, 81 중량%, 82 중량%, 83 중량%, 84 중량%, 85 중량%, 86 중량%, 87 중량% 또는 88 중량% 정도일 수 있다. 상기 비율은, 상기 기재한 상한 중 임의의 어느 한 상한 이하 또는 미만이거나, 상기 기재한 하한 중 임의의 어느 한 하한 이상 또는 초과이거나, 상기 기재한 하한 중 임의의 어느 한 하한 이상 또는 초과이면서, 상기 기재한 상한 중 임의의 어느 한 상한 이하 또는 미만인 범위 내일 수 있다.
상기 필러 성분의 함량은, 조성물이 1액형 조성물인 경우에 해당 조성물의 전체 중량을 기준으로 한 비율이고, 2액형 조성물인 경우에 상기 2액형 조성물의 주제 파트와 경화제 파트의 합계 중량을 기준으로 한 비율이거나, 혹은 상기 주제 또는 경화제 파트 단독의 전체 중량을 기준으로 한 비율일 수 있다.
조성물이 2액형 조성물로 조성되는 경우에 필러 성분은 최종 경화체에 적용하고자 하는 필러 성분을 실질적으로 동일한 양으로 분할하여 주제 및 경화제 파트 각각에 도입하는 것이 적절할 수 있다. 예를 들어, 2액형 조성물에서 주제 파트에 포함된 필러의 중량(A)과 경화제 파트에 포함된 필러의 중량(B)의 비율(A/B)은, 0.5 내지 2의 범위 내, 0.5 내지 1.5의 범위 내 또는 0.8 내지 1.2의 범위 내일 수 있다.
필러 성분은, 상기 열전도성 필러 외에도, 필요한 경우에 다양한 종류의 필러를 포함할 수 있는데, 예를 들면, 그래파이트(graphite) 등과 같은 탄소 필러나 퓸드 실리카 또는 클레이 등이 적용될 수도 있다.
조성물은 상기 기술한 성분 외에도 필요한 성분을 추가로 포함할 수 있다.
일 예시에서 상기 조성물은 가소제를 추가로 포함할 수 있다. 전술한 바와 같이 본 출원에서는 가소제를 적용하지 않고도 특정 소재에 대해서 낮은 접착력을 확보할 수 있지만, 필요한 경우에 소량의 가소제를 적용할 수도 있다.
적용될 수 있는 가소제의 종류에는 특별한 제한은 없으며, 예를 들면, 디옥틸 프탈레이트(dioctyl phthalate, DOP), 디부틸 프탈레이트(dibutyl phthalate, DBP), 부틸벤질 프탈레이트(butylbenzyl phthalate, BBP), 디이소 노닐 프탈레이트(diisononyl phthalate, DINP) 또는 폴리에틸렌테레프탈레이트 (polyethyleneterephthalate, PET) 등의 프탈레이트계 가소제나, 디옥틸 아디페이트 (dioctyl adipate, DOA) 또는 디이소노닐 아디페이트 (diisononyl adipate, DINA) 등의 아디페이트계 가소제, 지방산계 가소제, 인산계 가소제 또는 폴리에스터계 가소제 등이 적용될 수 있다.
가소제가 포함되는 경우에 그 비율은 목적에 따라서 조절될 수 있다. 예를 들면, 상기 가소제는, 포함되는 경우에 상기 폴리올 화합물 100 중량부 대비 상기 가소제의 중량 비율의 하한은, 0.5 중량부, 1.5 중량부, 2 중량부, 3 중량부, 4 중량부, 5 중량부, 6 중량부, 7 중량부, 8 중량부, 9 중량부, 10 중량부, 15 중량부, 20 중량부, 25 중량부, 30 중량부, 35 중량부, 40 중량부, 45 중량부, 50 중량부, 100 중량부, 150 중량부, 200 중량부, 250 중량부 또는 300 중량부 정도일 수 있고, 그 상한은, 500 중량부, 450 중량부, 400 중량부, 350 중량부, 300 중량부, 250 중량부, 200 중량부, 150 중량부, 100 중량부, 90 중량부, 80 중량부, 70 중량부, 60 중량부, 50 중량부, 40 중량부, 30 중량부, 20 중량부, 19 중량부, 18 중량부, 17 중량부, 16 중량부, 15 중량부, 14 중량부, 13 중량부, 12 중량부, 11 중량부, 10 중량부, 9 중량부, 8 중량부, 7 중량부, 6 중량부, 5 중량부, 4 중량부, 3 중량부, 2 중량부 또는 1 중량부 정도일 수도 있다. 상기 비율은, 상기 기재한 상한 중 임의의 어느 한 상한 이하 또는 미만이거나, 상기 기재한 하한 중 임의의 어느 한 하한 이상 또는 초과이거나, 상기 기재한 하한 중 임의의 어느 한 하한 이상 또는 초과이면서, 상기 기재한 상한 중 임의의 어느 한 상한 이하 또는 미만인 범위 내일 수 있다.
상기 비율은 전체 조성물의 조성이나 목적하는 용도를 고려하여 변경될 수도 있다.
조성물은 상기 성분들 외에도 필요에 따라서 추가 성분을 포함할 수 있다. 추가 성분의 예로는, 경화 반응을 보조 또는 촉진하는 촉매, 점도의 조절, 예를 들면 점도를 높이거나 혹은 낮추기 위한 또는 전단력에 따른 점도의 조절을 위한 점도 조절제(예를 들면, 요변성 부여제, 희석제 등), 분산제, 표면 처리제 또는 커플링제 등을 추가로 포함하고 있을 수 있다.
조성물은 난연제 또는 난연 보조제 등을 추가로 포함할 수 있다. 이 경우 특별한 제한 없이 공지의 난연제가 사용될 수 있으며, 예를 들면, 고상의 필러 형태의 난연제나 액상 난연제 등이 적용될 수 있다.
난연제로는, 예를 들면, 멜라민 시아누레이트(melamine cyanurate) 등과 같은 유기계 난연제나 수산화 마그네슘 등과 같은 무기계 난연제 등이 있다. 수지층에 충전되는 필러의 양이 많은 경우 액상 타입의 난연 재료(TEP, Triethyl phosphate 또는 TCPP, tris(1,3-chloro-2-propyl)phosphate 등)를 사용할 수도 있다. 또한, 난연상승제의 작용을 할 수 있는 실란 커플링제가 추가될 수도 있다.
조성물은, 전술한 바와 같이 1액형 조성물이거나, 2액형 조성물일 수 있다. 2액형 조성물인 경우에 조성물의 전술한 각 성분들은, 물리적으로 분리된 주제 파트와 경화제 파트에 나뉘어져 포함될 수 있다.
본 출원은 일 예시에서 상기 조성물이 2액형 조성물로 조성된 조성물(2액형 조성물)에 대한 것이다.
이러한 2액형 조성물은, 적어도 주제 파트와 경화제 파트를 포함할 수 있고, 상기 주제 및 경화제 파트는 서로 물리적으로 분리되어 있을 수 있다. 이와 같이 물리적으로 분리된 주제 및 경화제 파트가 혼합되면, 경화 반응이 개시되고, 그 결과 폴리우레탄이 형성될 수 있다.
2액형 조성물에서 주제 파트는 적어도 상기 폴리올 화합물을 포함할 수 있으며, 경화제 파트는 적어도 상기 폴리이소시아네이트를 포함할 수 있다.
조성물에 전술한 1가 알코올 및/또는 티올 화합물이 포함되는 경우에 이 화합물은 예를 들면 상기 주제 파트에 포함될 수 있다.
또한, 필러 성분은 상기 주제 및 경화제 파트 중 어느 하나에 포함되어 있거나, 상기 주제 및 경화제 파트 모두에 포함되어 있을 수 있다. 필러 성분이 주제 및 경화제 파트에 모두 포함되는 경우에 주제 및 경화제 파트에 동량의 필러 성분이 포함될 수 있다.
기타 성분인 촉매, 가소제, 난연제 등은 필요에 따라서 상기 주제 및/또는 경화제 파트에 포함될 수 있다.
또한, 상기 2액형 조성물에서 상기 주제 파트의 부피(P)의 상기 경화제 파트의 부피(N)에 대한 부피 비율(P/N)은, 약 0.8 내지 1.2의 범위 내에 있을 수 있다.
이러한 2액형 조성물 또는 그 경화체도 전술한 알루미늄에 대한 접착력, 열전도도, 경도, 곡률 반경, 절연성, 난연성, 비중 및/또는 열중량분석(TGA)에서의 5% 중량 손실(5% weight loss) 온도 등을 나타낼 수 있다.
본 출원은 또한, 상기 조성물 또는 그 경화체를 포함하는 제품에 대한 것이다. 본 출원의 조성물 또는 그 경화체는 방열 소재로서 유용하게 적용될 수 있다. 따라서, 상기 제품은 발열 부품을 포함할 수 있다. 용어 발열 부품은 사용 과정에서 열을 방생시키는 부품을 의미하고, 그 종류는 특별히 제한되지 않는다. 대표적인 발열 부품으로는 배터리셀, 배터리 모듈 또는 배터리 팩 등을 포함하는 다양한 전기/전자 제품이 있다.
본 출원의 제품은, 예를 들면, 상기 발열 부품과 상기 발열 부품과 인접하여 존재하는 상기 조성물(또는 상기 2액형 조성물)이나 그 경화체를 포함할 수 있다.
본 출원의 제품을 구성하는 구체적인 방법은 특별히 제한되지 않으며, 본 출원의 조성물 또는 2액형 조성물 또는 그 경화체가 방열 소재로 적용된다면, 공지된 다양한 방식으로 상기 제품을 구성할 수 있다.
본 출원에서는, 경화성인 경우에 상온 경화가 가능하고, 적정 수준의 경도 및 낮은 접착력과 우수한 열전도도를 보이는 방열 소재를 형성할 수 있는 조성물을 제공할 수 있다. 또한, 본 출원에서는 상기 낮은 접착력 등을 가소제 등을 사용하지 않거나, 사용하더라도 그 사용 비율을 최소화한 상태에서 달성할 수 있다. 본 출원은 또한 상기 조성물 또는 그 경화체를 포함하는 제품을 제공할 수 있다.
이하 실시예를 통하여 본 출원을 구체적으로 설명하지만, 본 출원의 범위가 하기 실시예에 의해 제한되는 것은 아니다.
하기에서 언급하는 경화체는, 모두 2액형으로 제조된 실시예 또는 비교예의 조성물의 주제 및 경화제 파트를 1:1의 부피 비율로 혼합한 후에 상온에서 24 시간 정도 유지하여 형성한 것이다.
1. 열전도도
조성물 또는 그 경화체의 열전도도는 ISO 22007-2 규격에 따라 핫 디스크(Hot-Dist) 방식으로 측정하였다. 구체적으로 2액형으로 조성된 실시예 또는 비교예의 주제 파트 및 경화제 파트의 부피 비율 1:1의 혼합물을 약 7 mm 정도의 두께의 몰드에 위치시키고, Hot Disk 장비를 사용하여 through plane 방향으로 열전도도를 측정하였다. 상기 규격(ISO 22007-2)에 규정된 것과 같이 Hot Disk 장비는 니켈선이 이중 스파이럴 구조로 되어 있는 센서가 가열되면서 온도 변화(전기 저항 변화)를 측정하여 열전도도을 확인할 수 있는 장비이고, 이러한 규격에 따라서 열전도도를 측정하였다.
2. 알루미늄에 대한 접착력 측정
가로 및 세로의 길이가 각각 2 cm 및 7 cm인 알루미늄 기판의 중앙에 가로 2 cm 및 세로 2 cm 정도가 되도록 미경화된 수지 조성물(주제 파트 및 경화제 파트의 혼합물)을 코팅하고, 다시 상기 코팅층 위에 가로 및 세로의 길이가 각각 2 cm 및 7 cm인 알루미늄 기판을 부착하고, 그 상태를 유지하여 상기 수지 조성물을 경화시켰다. 상기에서 2개의 알루미늄 기판은 서로 90도의 각도를 이루도록 부착하였다. 이후, 상부의 알루미늄 기판을 고정한 상태로 하부의 알루미늄 기판을 0.5 mm/min의 속도로 눌러서 상기 하부 알루미늄 기판이 분리되는 동안의 힘을 측정하고, 그 과정에서 측정되는 최대치의 힘을 시편의 면적으로 나누어서 알루미늄에 대한 접착력을 구하였다(90도 수준의 박리 각도).
3. 경도의 측정
조성물의 경화체의 경도는, ASTM D 2240, JIS K 6253 규격에 따라 측정하였다. ASKER, durometer hardness 기기를 사용하여 수행하였으며, 평평한 상태의 샘플(수지층)의 표면에 1 Kg 이상의 하중(약 1.5 Kg)을 가하여 초기 경도를 측정하고, 15초 후에 안정화된 측정값으로 확인하여 경도를 평가하였다.
4. 곡률 반경의 측정
경화체의 곡률 반경은, 가로, 세로 및 두께가 각각 1cm, 10cm 및 2mm인 경화체를 사용하여 평가하였다. 상기 곡률 반경은, 상기 경화체를 다양한 반경을 가진 원통에 부착시키고 세로 방향을 따라서 굽혔을 때, 상기 경화체에 크랙(crack)이 발생되지 않는 원통의 최소 반경이다. 또한, 특별히 달리 규정하지 않는 한, 본 명세서에서 곡률 반경의 단위는 mm이다.
5. 수평균분자량의 측정
중량평균분자량(Mw)은 GPC(Gel permeation chromatography)를 사용하여 측정하였다. 구체적으로, 중량평균분자량(Mw)은 5 mL 바이알(vial)에 분석 대상 시료를 넣고, 약 1 mg/mL의 농도가 되도록 THF(tetrahydrofuran) 용제로 희석한 후, Calibration용 표준 시료와 분석 시료를 syringe filter(pore size: 0.45 μm)를 통해 여과시키고 측정할 수 있다. 분석 프로그램으로는 Agilent technologies社의 ChemStation을 사용하였고, 시료의 elution time을 calibration curve와 비교하여 중량평균분자량(Mw)을 구할 수 있다.
<GPC 측정 조건>
기기: Agilent technologies社의 1200 series
컬럼: Agilent technologies社의 TL Mix. A & B 사용
용제: THF(tetrahydrofuran)
컬럼온도: 35℃
샘플 농도: 1 mg/mL, 200 ㎕ 주입
표준 시료: 폴리스티렌(MP: 3900000, 723000, 316500, 52200, 31400, 7200, 3940, 485) 사용.
실시예 1.
주제 파트의 제조
폴리올 화합물로서, 3관능성 폴리에스테르 폴리올(Kuraray사, F-2010) 및 2관능성 폴리에테르 폴리올(폴리프로필렌글리콜)(금호석유화학, PPG-1000D)과 1가 알코올로서 2-프로필헵탄올(2-propylheptanol, 2PH)을 필러 성분 및 촉매(dibutyltin dilaurate, DBTDL)와 혼합하여 주제 파트를 제조하였다. 상기에서 3관능성 폴리에스테르 폴리올(Kuraray사, F-2010)은 3개의 히드록시기를 가지고, 수평균분자량이 약 2000 g/mol이며, 3-메틸-1,5-펜탄디올 단위 및 트리메틸롤 프로판 단위 및 아디프산 단위를 가지는 화합물이고, 상기 2관능성 폴리에테르 폴리올은 수평균분자량이 약 1000 g/mol인 폴리프로필렌글리콜이다. 상기 성분들의 혼합 비율은, 100:90:30:1869의 중량 비율(F-2010:PPG-1000D:2-PH:필러 성분)로 하였고, 촉매는 촉매량으로 첨가하였다. 상기에서 필러 성분으로는, 평균 입경이 약 70 μm인 제 1 알루미나 필러, 평균 입경이 약 20 μm인 제 2 알루미나 필러 및 평균 입경이 약 1 μm인 제 3 알루미나 필러를 혼합하여 제조하였다. 상기 혼합 시의 중량 비율은 60:20:20(제1알루미나필러:제2알루미나필러:제3알루미나필러) 정도로 하였다.
경화제 파트의 제조
폴리이소시아네이트로서, 3관능성 폴리이소시아네이트(3관능 HDI Trimer, Vencorex사, HD T LV2) 및 2관능 폴리이소시아네이트(Asahi Kasei사, AE700-100)를 필러 성분과 혼합하여 경화제 파트를 제조하였다. 혼합 비율은 100:60:3271의 중량 비율(HD T LV2:AE700-100:필러 성분:)로 하였다. 상기에서 필러 성분으로는, 주제 파트에서 적용한 것과 동일한 성분을 사용하였다.
조성물의 제조
상기 주제 파트와 경화제 파트를 1:1의 부피 비율로 준비하여 준비하여 조성물을 제조하였다. 상기 주제 파트와 경화제 파트의 혼합 및 경화는 모두 상온에서 진행하였다.
비교예 1.
주제 파트의 제조
폴리올 화합물로서, 2관능성 폴리에테르 폴리올(폴리프로필렌글리콜)(금호석유화학, PPG-1000D)을 필러 성분 및 촉매와 혼합하여 주제 파트를 제조하였다. 상기 성분들의 혼합 비율은, 100:1010의 중량 비율(PPG-1000D:필러 성분)로 하였고, 촉매는 촉매량으로 첨가하였다. 상기에서 필러 성분 및 촉매로는, 실시예 1과 동일한 성분을 사용하였다.
경화제 파트의 제조
폴리이소시아네이트로서, 3관능성 폴리이소시아네이트(3관능 HDI Trimer, Vencorex사, HD T LV2) 및 2관능 폴리이소시아네이트(Asahi Kasei사, AE700-100)를 필러 성분과 혼합하여 경화제 파트를 제조하였다. 혼합 비율은 100:25:5631의 중량 비율(HD T LV2:AE700-100:필러 성분:)로 하였다. 상기에서 필러 성분은 실시예 1과 동일한 것을 사용하였다.
조성물의 제조
상기 주제 파트와 경화제 파트를 1:1의 부피 비율로 준비하여 준비하여 조성물을 제조하였다. 상기 주제 파트와 경화제 파트의 혼합 및 경화는 모두 상온에서 진행하였다.
비교예 2.
주제 파트의 제조
폴리올 화합물로서, 2관능성 폴리에테르 폴리올(폴리프로필렌글리콜)(금호석유화학, PPG-1000D)을 필러 성분 및 촉매와 혼합하여 주제 파트를 제조하였다. 상기 성분들의 혼합 비율은, 100:1010의 중량 비율(PPG-1000D:필러 성분)로 하였고, 촉매는 촉매량으로 배합하였다. 상기에서 필러 성분 및 촉매로는, 실시예 1과 동일한 성분을 사용하였다.
경화제 파트의 제조
폴리이소시아네이트로서, 3관능성 폴리이소시아네이트(3관능 HDI Trimer, Vencorex사, HD T LV2)를 필러 성분과 혼합하여 경화제 파트를 제조하였다. 혼합 비율은 100:4990의 중량 비율(HD T LV2:필러 성분:)로 하였다. 상기에서 필러 성분은 실시예 1과 동일한 것을 사용하였다.
조성물의 제조
상기 주제 파트와 경화제 파트를 1:1의 부피 비율로 준비하여 준비하여 조성물을 제조하였다. 상기 주제 파트와 경화제 파트의 혼합 및 경화는 모두 상온에서 진행하였다.
비교예 3.
주제 파트의 제조
폴리올 화합물로서, 2관능성 폴리에테르 폴리올(폴리프로필렌글리콜)(금호석유화학, PPG-1000D)을 필러 성분 및 촉매와 혼합하여 주제 파트를 제조하였다. 상기 성분들의 혼합 비율은, 100:1156의 중량 비율(PPG-1000D:필러 성분)로 하였고, 촉매는 촉매량으로 배합하였다. 상기에서 필러 성분 및 촉매로는, 실시예 1과 동일한 성분을 사용하였다.
경화제 파트의 제조
3관능성 폴리이소시아네이트(3관능 HDI Trimer, Vencorex사, HD T LV2)를 필러 성분과 혼합하여 경화제 파트를 제조하였다. 혼합 비율은 100:4416의 중량 비율(HD T LV2:필러 성분:)로 하였다. 상기에서 필러 성분은 실시예 1과 동일한 것을 사용하였다.
조성물의 제조
상기 주제 파트와 경화제 파트를 1:1의 부피 비율로 준비하여 준비하여 조성물을 제조하였다. 상기 주제 파트와 경화제 파트의 혼합 및 경화는 모두 상온에서 진행하였다.
비교예 4.
주제 파트의 제조
폴리올 화합물로서, 3관능성 폴리에스테르 폴리올(Kuraray사, F-2010) 및 2관능성 폴리에테르 폴리올(폴리프로필렌글리콜)(금호석유화학, PPG-1000D)을 필러 성분 및 촉매와 혼합하여 주제 파트를 제조하였다. 상기 성분들의 혼합 비율은, 100:233:3788의 중량 비율(F-2010:PPG-1000D:필러 성분)로 하였고, 촉매는 촉매량으로 배합하였다. 상기에서 필러 성분 및 촉매로는, 실시예 1과 동일한 성분을 사용하였다.
경화제 파트의 제조
폴리이소시아네이트로서, 3관능성 폴리이소시아네이트(3관능 HDI Trimer, Vencorex사, HD T LV2)를 필러 성분과 혼합하여 경화제 파트를 제조하였다. 혼합 비율은 100:4698의 중량 비율(HD T LV2:필러 성분:)로 하였다. 상기에서 필러 성분은 실시예 1과 동일한 것을 사용하였다.
조성물의 제조
상기 주제 파트와 경화제 파트를 1:1의 부피 비율로 준비하여 준비하여 조성물을 제조하였다. 상기 주제 파트와 경화제 파트의 혼합 및 경화는 모두 상온에서 진행하였다.
비교예 5.
주제 파트의 제조
폴리올 화합물로서, 3관능성 폴리에스테르 폴리올(Kuraray사, F-2010) 및 2관능성 폴리에테르 폴리올(폴리프로필렌글리콜)(금호석유화학, PPG-1000D)을 필러 성분 및 촉매와 혼합하여 주제 파트를 제조하였다. 상기 성분들의 혼합 비율은, 100:150:2825의 중량 비율(F-2010:PPG-1000D:필러 성분)로 하였고, 촉매는 촉매량으로 배합하였다. 상기에서 필러 성분 및 촉매로는, 실시예 1과 동일한 성분을 사용하였다.
경화제 파트의 제조
폴리이소시아네이트로서, 3관능성 폴리이소시아네이트(3관능 HDI Trimer, Vencorex사, HD T LV2)를 필러 성분과 혼합하여 경화제 파트를 제조하였다. 혼합 비율은 100:4811의 중량 비율(HD T LV2:필러 성분:)로 하였다. 상기에서 필러 성분은 실시예 1과 동일한 것을 사용하였다.
조성물의 제조
상기 주제 파트와 경화제 파트를 1:1의 부피 비율로 준비하여 준비하여 조성물을 제조하였다. 상기 주제 파트와 경화제 파트의 혼합 및 경화는 모두 상온에서 진행하였다.
비교예 6.
주제 파트의 제조
폴리올 화합물로서, 3관능성 폴리에스테르 폴리올(Kuraray사, F-2010) 및 2관능성 폴리에테르 폴리올(폴리프로필렌글리콜)(금호석유화학, PPG-1000D)을 필러 성분 및 촉매와 혼합하여 주제 파트를 제조하였다. 상기 성분들의 혼합 비율은, 100:100:2252의 중량 비율(F-2010:PPG-1000D:필러 성분)로 하였고, 촉매는 촉매량으로 배합하였다. 상기에서 필러 성분 및 촉매로는, 실시예 1과 동일한 성분을 사용하였다.
경화제 파트의 제조
폴리이소시아네이트로서, 3관능성 폴리이소시아네이트(3관능 HDI Trimer, Vencorex사, HD T LV2)를 필러 성분과 혼합하여 경화제 파트를 제조하였다. 혼합 비율은 100:4912의 중량 비율(HD T LV2:필러 성분:)로 하였다. 상기에서 필러 성분은 실시예 1과 동일한 것을 사용하였다.
조성물의 제조
상기 주제 파트와 경화제 파트를 1:1의 부피 비율로 준비하여 준비하여 조성물을 제조하였다. 상기 주제 파트와 경화제 파트의 혼합 및 경화는 모두 상온에서 진행하였다.
비교예 7.
주제 파트의 제조
폴리올 화합물로서, 3관능성 폴리에스테르 폴리올(Kuraray사, F-2010) 및 2관능성 폴리에테르 폴리올(폴리프로필렌글리콜)(금호석유화학, PPG-1000D)을 필러 성분 및 촉매와 혼합하여 주제 파트를 제조하였다. 상기 성분들의 혼합 비율은, 100:150:2793의 중량 비율(F-2010:PPG-1000D:필러 성분)로 하였고, 촉매는 촉매량으로 배합하였다. 상기에서 필러 성분 및 촉매로는, 실시예 1과 동일한 성분을 사용하였다.
경화제 파트의 제조
폴리이소시아네이트로서, 3관능성 폴리이소시아네이트(3관능 HDI Trimer, Vencorex사, HD T LV2)를 필러 성분과 혼합하여 경화제 파트를 제조하였다. 혼합 비율은 100:5091의 중량 비율(HD T LV2:필러 성분:)로 하였다. 상기에서 필러 성분은 실시예 1과 동일한 것을 사용하였다.
조성물의 제조
상기 주제 파트와 경화제 파트를 1:1의 부피 비율로 준비하여 준비하여 조성물을 제조하였다. 상기 주제 파트와 경화제 파트의 혼합 및 경화는 모두 상온에서 진행하였다.
비교예 8.
주제 파트의 제조
폴리올 화합물로서, 3관능성 폴리에스테르 폴리올(Kuraray사, F-2010) 및 2관능성 폴리에테르 폴리올(폴리프로필렌글리콜)(금호석유화학, PPG-1000D)을 필러 성분 및 촉매와 혼합하여 주제 파트를 제조하였다. 상기 성분들의 혼합 비율은, 100:150:2759의 중량 비율(F-2010:PPG-1000D:필러 성분)로 하였고, 촉매는 촉매량으로 배합하였다. 상기에서 필러 성분 및 촉매로는, 실시예 1과 동일한 성분을 사용하였다.
경화제 파트의 제조
폴리이소시아네이트로서, 3관능성 폴리이소시아네이트(3관능 HDI Trimer, Vencorex사, HD T LV2)를 필러 성분과 혼합하여 경화제 파트를 제조하였다. 혼합 비율은 100:5344의 중량 비율(HD T LV2:필러 성분:)로 하였다. 상기에서 필러 성분은 실시예 1과 동일한 것을 사용하였다.
조성물의 제조
상기 주제 파트와 경화제 파트를 1:1의 부피 비율로 준비하여 준비하여 조성물을 제조하였다. 상기 주제 파트와 경화제 파트의 혼합 및 경화는 모두 상온에서 진행하였다.
비교예 9.
주제 파트의 제조
폴리올 화합물로서, 3관능성 폴리에스테르 폴리올(Kuraray사, F-2010)을 1가 알코올(2-propylheptanol, 2-PH), 필러 성분 및 촉매와 혼합하여 주제 파트를 제조하였다. 상기 성분들의 혼합 비율은, 100:11:1230의 중량 비율(F-2010:2-PH:필러 성분)로 하였고, 촉매는 촉매량으로 배합하였다. 상기에서 필러 성분 및 촉매로는, 실시예 1과 동일한 성분을 사용하였다.
경화제 파트의 제조
폴리이소시아네이트로서, 3관능성 폴리이소시아네이트(3관능 HDI Trimer, Vencorex사, HD T LV2)를 필러 성분과 혼합하여 경화제 파트를 제조하였다. 혼합 비율은 100:3562의 중량 비율(HD T LV2:필러 성분:)로 하였다. 상기에서 필러 성분은 실시예 1과 동일한 것을 사용하였다.
조성물의 제조
상기 주제 파트와 경화제 파트를 1:1의 부피 비율로 준비하여 준비하여 조성물을 제조하였다. 상기 주제 파트와 경화제 파트의 혼합 및 경화는 모두 상온에서 진행하였다.
비교예 10.
주제 파트의 제조
폴리올 화합물로서, 3관능성 폴리에스테르 폴리올(Kuraray사, F-2010)을 1가 알코올(2-propylheptanol, 2-PH), 필러 성분 및 촉매와 혼합하여 주제 파트를 제조하였다. 상기 성분들의 혼합 비율은, 100:25:1619의 중량 비율(F-2010:2-PH:필러 성분:촉매)로 하였고, 촉매는 촉매량으로 배합하였다. 상기에서 필러 성분 및 촉매로는, 실시예 1과 동일한 성분을 사용하였다.
경화제 파트의 제조
폴리이소시아네이트로서, 3관능성 폴리이소시아네이트(3관능 HDI Trimer, Vencorex사, HD T LV2)를 필러 성분과 혼합하여 경화제 파트를 제조하였다. 혼합 비율은 100:3111의 중량 비율(HD T LV2:필러 성분:)로 하였다. 상기에서 필러 성분은 실시예 1과 동일한 것을 사용하였다.
조성물의 제조
상기 주제 파트와 경화제 파트를 1:1의 부피 비율로 준비하여 준비하여 조성물을 제조하였다. 상기 주제 파트와 경화제 파트의 혼합 및 경화는 모두 상온에서 진행하였다.
비교예 11.
주제 파트의 제조
폴리올 화합물로서, 3관능성 폴리에스테르 폴리올(Kuraray사, F-2010)을 1가 알코올(2-propylheptanol, 2-PH), 필러 성분 및 촉매와 혼합하여 주제 파트를 제조하였다. 상기 성분들의 혼합 비율은, 100:67:2371의 중량 비율(F-2010:2-PH:필러 성분)로 하였고, 촉매는 촉매량으로 배합하였다. 상기에서 필러 성분 및 촉매로는, 실시예 1과 동일한 성분을 사용하였다.
경화제 파트의 제조
폴리이소시아네이트로서, 3관능성 폴리이소시아네이트(3관능 HDI Trimer, Vencorex사, HD T LV2)를 필러 성분과 혼합하여 경화제 파트를 제조하였다. 혼합 비율은 100:2555의 중량 비율(HD T LV2:필러 성분:)로 하였다. 상기에서 필러 성분은 실시예 1과 동일한 것을 사용하였다.
조성물의 제조
상기 주제 파트와 경화제 파트를 1:1의 부피 비율로 준비하여 준비하여 조성물을 제조하였다. 상기 주제 파트와 경화제 파트의 혼합 및 경화는 모두 상온에서 진행하였다.
비교예 12.
주제 파트의 제조
폴리올 화합물로서, 3관능성 폴리에스테르 폴리올(Kuraray사, F-2010)을 1가 알코올(2-propylheptanol, 2-PH), 필러 성분 및 촉매와 혼합하여 주제 파트를 제조하였다. 상기 성분들의 혼합 비율은, 100:104:3046의 중량 비율(F-2010:2-PH:필러 성분)로 하였고, 촉매는 촉매량으로 배합하였다. 상기에서 필러 성분 및 촉매로는, 실시예 1과 동일한 성분을 사용하였다.
경화제 파트의 제조
폴리이소시아네이트로서, 3관능성 폴리이소시아네이트(3관능 HDI Trimer, Vencorex사, HD T LV2)를 필러 성분과 혼합하여 경화제 파트를 제조하였다. 혼합 비율은 100:2357의 중량 비율(HD T LV2:필러 성분:)로 하였다. 상기에서 필러 성분은 실시예 1과 동일한 것을 사용하였다.
조성물의 제조
상기 주제 파트와 경화제 파트를 1:1의 부피 비율로 준비하여 준비하여 조성물을 제조하였다. 상기 주제 파트와 경화제 파트의 혼합 및 경화는 모두 상온에서 진행하였다.
상기 실시예 및 비교예에 대해서 정리한 물성 평가 결과는 하기 표 1과 같다. 하기 표 1에서 벌크 파괴는 접착력 측정을 위해서 알루미늄에서 조성물의 경화체를 박리할 때에 경화체의 파괴가 일어나서 알루미늄과 경화체의 계면에서의 접착력의 측정이 불가능한 경우를 의미하고, 곡률 반경이 측정 불가인 경우는 경화체의 경도가 지나치게 낮거나 기계적 강도가 확보되지 않아서 쉽게 부스러지거나 무른 제형이 되어 측정이 불가능한 경우를 의미한다.
접착력(Al)(N/mm2) 경도(shore OO) 곡률 반경(mm) 열전도도(W/mK)
실시예1 0.1 82~85 6.5 2.546
비교예1 벌크파괴 18 측정불가 2.537
비교예2 벌크파괴 32~37 측정불가 2.519
비교예3 1.07 72 측정불가 2.698
비교예4 0.22 92 >11 2.604
비교예5 0.27 94 >11 2.633
비교예6 0.06 96 >11 2.579
비교예7 0.17 92 >11 2.564
비교예8 0.15 93 >11 2.552
비교예9 0.18 95 >11 2.802
비교예10 0.10 92 7 2.803
비교예11 벌크파괴 0 0 측정불가
비교예12 벌크파괴 0 0 측정불가

Claims (17)

  1. 수지 성분 및 필러 성분을 포함하고,
    알루미늄에 대한 접착력이 1 N/mm2 이하이고, 쇼어 OO 경도가 90 미만인 조성물.
  2. 제 1 항에 있어서, 열전도율이 1.2 W/mK 이상인 조성물.
  3. 제 1 항 또는 제 2 항에 있어서, 수지 성분은, 폴리올 화합물, 1가 알코올, 티올 화합물, 폴리이소시아네이트 화합물 또는 폴리우레탄을 포함하는 조성물.
  4. 제 1 항 내지 제 3 항 중 어느 한 항에 있어서, 수지 성분은, 3관능 이상의 다관능성 폴리올 화합물 및 2관능성 폴리올 화합물을 포함하는 조성물.
  5. 제 4 항에 있어서, 3관능 이상의 다관능성 폴리올 화합물 및 2관능성 폴리올 화합물 중 적어도 하나는 수평균분자량이 300 내지 3000 g/mol의 범위 내에 있는 조성물.
  6. 제 4 항에 있어서, 3관능 이상의 다관능성 폴리올 화합물 및 2관능성 폴리올 화합물 중 어느 하나는 수평균분자량이 1500 g/mol 이상이고, 다른 하나는 1500 g/mol 미만인 조성물.
  7. 제 4 항에 있어서, 3관능 이상의 다관능성 폴리올 화합물 및 2관능성 폴리올 화합물 중 어느 하나는 폴리에스테르 폴리올이고, 다른 하나는 폴리에테르 폴리올인 조성물.
  8. 제 7 항에 있어서, 폴리에스테르 폴리올은, 알칸 디올 단위, 폴리올 단위 및 디카복실산 단위를 포함하고, 상기 디카복실산 단위는 아디프산 단위 또는 세바스산 단위인 조성물.
  9. 제 4 항에 있어서, 수지 성분은, 3관능 이상의 다관능성 폴리올 화합물 100 중량부 대비 5 내지 200 중량부의 2관능성 폴리올 화합물을 포함하는 조성물.
  10. 제 4 항에 있어서, 수지 성분은 1가 알코올 또는 티올 화합물을 추가로 포함하는 조성물.
  11. 제 10 항에 있어서, 수지 성분은, 3관능 이상의 다관능성 폴리올 화합물 100 중량부 대비 1 내지 100 중량부의 1가 알코올 또는 티올 화합물을 포함하는 조성물.
  12. 제 1 항 내지 제 11 항 중 어느 한 항에 있어서, 수지 성분은, 폴리이소시아네이트를 포함하는 조성물.
  13. 제 12 항에 있어서, 폴리이소시아네이트는 3관능 이상의 다관능성 폴리이소시아네이트 및 2관능성 폴리이소시아네이트를 포함하는 조성물.
  14. 제 13 항에 있어서, 폴리이소시아네이트는 3관능 이상의 다관능성 폴리이소시아네이트 100 중량부 대비 5 내지 200 중량부의 2관능성 폴리이소시아네이트를 포함하는 조성물.
  15. 제 1 항 내지 제 14 항 중 어느 한 항에 있어서, 필러는, 수산화 알루미늄, 수산화 마그네슘, 수산화 칼슘, 하이드로마그네사이트, 마그네시아, 알루미나, 질화 알루미늄, 질화 붕소, 질화 규소, 탄화 규소, 산화 아연 또는 산화 베릴륨인 조성물.
  16. 폴리올 성분 및 필러를 포함하는 주제 파트; 및
    경화제 성분 및 필러를 포함하는 경화제 파트를 포함하고,
    알루미늄에 대한 접착력이 1 N/mm2 이하이고, 쇼어 OO 경도가 90 미만인 2액형 조성물.
  17. 발열 부품 및 상기 발열 부품과 인접하여 존재하는, 제 1 항의 조성물 또는 제 16 항의 2액형 조성물 또는 상기 조성물의 경화체를 포함하는 제품.
PCT/KR2022/014646 2021-09-30 2022-09-29 조성물 WO2023055119A1 (ko)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2023552566A JP2024509807A (ja) 2021-09-30 2022-09-29 組成物
US18/280,545 US20240228690A9 (en) 2021-09-30 2022-09-29 Composition
CN202280019493.6A CN117043272A (zh) 2021-09-30 2022-09-29 组合物
EP22876891.7A EP4299674A4 (en) 2021-09-30 2022-09-29 COMPOSITION

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2021-0129551 2021-09-30
KR1020210129551A KR20230046498A (ko) 2021-09-30 2021-09-30 조성물

Publications (1)

Publication Number Publication Date
WO2023055119A1 true WO2023055119A1 (ko) 2023-04-06

Family

ID=85783227

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2022/014646 WO2023055119A1 (ko) 2021-09-30 2022-09-29 조성물

Country Status (6)

Country Link
US (1) US20240228690A9 (ko)
EP (1) EP4299674A4 (ko)
JP (1) JP2024509807A (ko)
KR (1) KR20230046498A (ko)
CN (1) CN117043272A (ko)
WO (1) WO2023055119A1 (ko)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008038020A (ja) * 2006-08-07 2008-02-21 Yokohama Rubber Co Ltd:The 成型用樹脂組成物
KR20160088297A (ko) * 2013-11-20 2016-07-25 헨켈 아이피 앤드 홀딩 게엠베하 배터리 전지 코팅
KR20160105354A (ko) 2015-02-27 2016-09-06 주식회사 엘지화학 배터리 모듈
KR20190122451A (ko) * 2018-04-20 2019-10-30 주식회사 엘지화학 수지 조성물 및 이를 포함하는 배터리 모듈
KR20210108432A (ko) * 2018-12-26 2021-09-02 모멘티브 퍼포먼스 머티리얼즈 인크. 경화성 실리콘 기반 조성물 및 그 용도
KR20220043762A (ko) * 2020-09-29 2022-04-05 주식회사 엘지에너지솔루션 수지 조성물

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007284520A (ja) * 2006-04-14 2007-11-01 Agc Polymer Material Co Ltd 二液型ポリウレタン防水材組成物
EP2194084A1 (en) * 2007-09-28 2010-06-09 Asahi Glass Company, Limited Method for producing flexible polyurethane foam, method for producing hot press molded article, and hot press molded article
CN103772979A (zh) * 2013-12-20 2014-05-07 上海珀理玫化学科技有限公司 一种合成pbi纤维复合材料的配方
CN103849145A (zh) * 2013-12-20 2014-06-11 上海珀理玫化学科技有限公司 一种合成pbo纤维复合材料的配方
CN105820793B (zh) * 2016-05-24 2017-12-12 吉林省泽希科技发展有限公司 一种膨胀型双组份防火密封胶及其制备方法
CN106010415B (zh) * 2016-05-24 2017-11-10 吉林省泽希科技发展有限公司 一种全水发泡冷熟化泡沫防火填缝胶及其制备方法
EP3601400B1 (en) * 2017-03-23 2021-07-21 Ustav Makromolekularni Chemie AV CR, v.v.i. Odor deterrent for repelling animals
KR20210121150A (ko) * 2019-02-25 2021-10-07 헨켈 아이피 앤드 홀딩 게엠베하 2-파트 폴리우레탄을 기재로 하는 열 계면 재료
CN111073585A (zh) * 2019-12-31 2020-04-28 浙江睿高新材料股份有限公司 一种新型环保膨胀型防火密封胶及其制备方法
CN117715952A (zh) * 2021-09-28 2024-03-15 株式会社Lg化学 可固化组合物
EP4286440A4 (en) * 2021-09-28 2024-10-02 Lg Chemical Ltd HARDENABLE COMPOSITION
CN117043213A (zh) * 2021-09-28 2023-11-10 株式会社Lg化学 可固化组合物
CN116997586A (zh) * 2021-09-28 2023-11-03 株式会社Lg化学 可固化组合物
KR20230045584A (ko) * 2021-09-28 2023-04-04 주식회사 엘지화학 경화성 조성물
KR20230045581A (ko) * 2021-09-28 2023-04-04 주식회사 엘지화학 경화성 조성물
EP4286441A4 (en) * 2021-09-28 2024-09-25 Lg Chemical Ltd CURABLE COMPOSITION

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008038020A (ja) * 2006-08-07 2008-02-21 Yokohama Rubber Co Ltd:The 成型用樹脂組成物
KR20160088297A (ko) * 2013-11-20 2016-07-25 헨켈 아이피 앤드 홀딩 게엠베하 배터리 전지 코팅
KR20160105354A (ko) 2015-02-27 2016-09-06 주식회사 엘지화학 배터리 모듈
KR20190030673A (ko) * 2015-02-27 2019-03-22 주식회사 엘지화학 배터리 모듈
KR20190122451A (ko) * 2018-04-20 2019-10-30 주식회사 엘지화학 수지 조성물 및 이를 포함하는 배터리 모듈
KR20210108432A (ko) * 2018-12-26 2021-09-02 모멘티브 퍼포먼스 머티리얼즈 인크. 경화성 실리콘 기반 조성물 및 그 용도
KR20220043762A (ko) * 2020-09-29 2022-04-05 주식회사 엘지에너지솔루션 수지 조성물

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP4299674A4

Also Published As

Publication number Publication date
US20240132655A1 (en) 2024-04-25
US20240228690A9 (en) 2024-07-11
CN117043272A (zh) 2023-11-10
JP2024509807A (ja) 2024-03-05
KR20230046498A (ko) 2023-04-06
EP4299674A1 (en) 2024-01-03
EP4299674A4 (en) 2024-10-16

Similar Documents

Publication Publication Date Title
WO2021049863A1 (ko) 경화성 조성물
WO2019013366A1 (ko) 폴더블 표시 장치용 윈도우 필름 및 표시 장치
WO2021034099A1 (ko) 수지 조성물
WO2023080349A1 (ko) 일액형 우레탄 방열 도료 조성물 및 이의 제조방법
WO2020153754A1 (ko) 표면 보호 필름 및 유기 발광 전자 장치 제조 방법
CN117715952A (zh) 可固化组合物
CN117043213A (zh) 可固化组合物
CN117043212A (zh) 可固化组合物
CN117062850A (zh) 可固化组合物
CN116806231A (zh) 可固化组合物
WO2019203431A1 (ko) 수지 조성물 및 이를 포함하는 배터리 모듈
WO2021034102A1 (ko) 수지 조성물
WO2023055119A1 (ko) 조성물
WO2010076990A2 (ko) 이방 전도성 필름 조성물 및 이를 이용한 이방 전도성 필름
WO2023055082A1 (ko) 경화성 조성물
WO2023132737A1 (ko) 경화성 조성물
WO2023055095A1 (ko) 경화성 조성물
WO2021075899A1 (ko) 경화성 조성물
WO2023055087A1 (ko) 경화성 조성물
WO2021049860A1 (ko) 경화성 조성물
WO2020116951A1 (ko) 점착제 조성물, 표면 보호 필름 및 유기 발광 전자 장치 제조 방법
WO2023055090A1 (ko) 경화성 조성물
WO2023055092A1 (ko) 경화성 조성물
WO2024058586A1 (ko) 경화성 조성물
WO2022071667A1 (ko) 경화성 조성물

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22876891

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2023552566

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 18280545

Country of ref document: US

Ref document number: 202280019493.6

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 22876891.7

Country of ref document: EP

Ref document number: 2022876891

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2022876891

Country of ref document: EP

Effective date: 20230926

WWE Wipo information: entry into national phase

Ref document number: 202317071418

Country of ref document: IN

NENP Non-entry into the national phase

Ref country code: DE