WO2023054600A1 - 半導体装置 - Google Patents

半導体装置 Download PDF

Info

Publication number
WO2023054600A1
WO2023054600A1 PCT/JP2022/036486 JP2022036486W WO2023054600A1 WO 2023054600 A1 WO2023054600 A1 WO 2023054600A1 JP 2022036486 W JP2022036486 W JP 2022036486W WO 2023054600 A1 WO2023054600 A1 WO 2023054600A1
Authority
WO
WIPO (PCT)
Prior art keywords
line
power
power supply
power switch
bit cell
Prior art date
Application number
PCT/JP2022/036486
Other languages
English (en)
French (fr)
Inventor
ウェンゼン ワン
淳 岡本
紘宜 武野
Original Assignee
株式会社ソシオネクスト
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社ソシオネクスト filed Critical 株式会社ソシオネクスト
Priority to JP2023551857A priority Critical patent/JPWO2023054600A1/ja
Priority to CN202280063274.8A priority patent/CN117957928A/zh
Publication of WO2023054600A1 publication Critical patent/WO2023054600A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/77Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate
    • H01L21/78Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices
    • H01L21/82Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices to produce devices, e.g. integrated circuits, each consisting of a plurality of components
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/77Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate
    • H01L21/78Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices
    • H01L21/82Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices to produce devices, e.g. integrated circuits, each consisting of a plurality of components
    • H01L21/822Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices to produce devices, e.g. integrated circuits, each consisting of a plurality of components the substrate being a semiconductor, using silicon technology
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers
    • H01L27/04Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10BELECTRONIC MEMORY DEVICES
    • H10B10/00Static random access memory [SRAM] devices

Definitions

  • FIG. 1 is a plan view showing an overview of the layout of a semiconductor device according to a first embodiment
  • FIG. 2 is a circuit block diagram showing an outline of a power switch circuit arranged in the bit cell area of FIG. 1;
  • FIG. 2 is a plan view showing an example of the layout of a region where the power switch circuit of FIG. 1 is arranged;
  • FIG. 3 is a plan view showing another example of the layout of the area where the power switch circuit of FIG. 1 is arranged;
  • FIG. 3 is a plan view showing still another example of the layout of the area where the power switch circuit of FIG. 1 is arranged;
  • FIG. 2 is a diagram showing an example of bit cells arranged in a bit cell region of FIG. 1;
  • FIG. 2 is a diagram showing another example of bit cells arranged in the bit cell region of FIG. 1;
  • FIG. 7 is a plan view showing an example layout of a power switch circuit arranged in a bit cell region including the bit cells of FIG. 6;
  • FIG. FIG. 9 is a cross-sectional view showing a cross section taken along line Y1-Y1′ of FIG. 8;
  • 8 is a plan view showing an example layout of a power switch circuit arranged in a bit cell region including the bit cells of FIG. 7;
  • FIG. 11 is a cross-sectional view showing a cross section taken along line Y2-Y2' of FIG. 10;
  • FIG. 2 is a diagram showing an overview of an example of arrangement of power switch circuits arranged in the bit cell area of FIG. 1;
  • FIG. FIG. 11 is a plan view showing an example layout of a power switch circuit arranged in a peripheral circuit region of a semiconductor device according to a second embodiment;
  • FIG. 1 is a plan view showing an overview of the layout of the semiconductor device according to the first embodiment.
  • the semiconductor device 100 shown in FIG. 1 is, for example, an SRAM.
  • the semiconductor device 100 has a bit cell area BCA, and a peripheral circuit area PCA and a decoder area DECA arranged around the bit cell area BCA.
  • the peripheral circuit area PCA and the bit cell area BCA are arranged side by side in the X direction, and the decoder area DECA and the bit cell area BCA are arranged side by side in the Y direction.
  • the X direction is an example of a first direction.
  • the Y direction is an example of a second direction different from the first direction.
  • an isolation region SPA is arranged between the bit cell region BCA, the peripheral circuit region PCA and the decoder region DECA.
  • different power supply voltages are supplied to the bit cell area BCA, the peripheral circuit area PCA, and the decoder area DECA.
  • the peripheral circuit area PCA and the decoder area DECA a plurality of power supply lines extending in the X direction and arranged side by side in the Y direction are arranged. The positions and arrangement intervals of the power supply lines in the bit cell area BCA, the peripheral circuit area PCA and the decoder area DECA may be different.
  • FIG. 2 is a circuit block diagram showing an overview of the power switch circuit PSW2 arranged in the bit cell area BCA of FIG.
  • the power switch circuits PSW1 arranged in the peripheral circuit area PCA and the decoder area DECA also have the same circuit configuration as in FIG.
  • the bit cell area BCA has a plurality of bit cells BC (that is, memory cells). Each bit cell BC is electrically connected to a virtual power supply line VVDD and a ground line VSS, and receives power from the virtual power supply line VVDD to operate.
  • the power switch circuit PSW2 has a switch transistor SWT and a control circuit CNTL.
  • the switch transistor SWT is, for example, a p-channel transistor, and operates by receiving a switch control signal SWCNT from the control circuit CNTL at its gate.
  • FIG. 2 shows one switch transistor SWT for simplification, a plurality of switch transistors SWT may be arranged between the power supply line VDD and the virtual power supply line VVDD.
  • the control circuit CNTL is, for example, a buffer circuit.
  • the control circuit CNTL sets the switch control signal SWCNT to low level in order to supply the power supply voltage from the power supply line VDD to the virtual power supply line VVDD.
  • the control circuit CNTL sets the switch control signal SWCNT to high level in order to stop the supply of the power supply voltage from the power supply line VDD to the virtual power supply line VVDD.
  • FIG. 3 is a plan view showing an example of the layout of the area where the power switch circuits PSW1 and PSW2 of FIG. 1 are arranged.
  • FIG. 3 is an enlarged view of the area where the power switch circuits PSW1 and PSW2 are arranged in the boundary portion between the peripheral circuit area PCA and the bit cell area BCA in FIG.
  • the Mint layer wiring and the BPR wiring are provided extending in the X direction.
  • a Mint layer is provided above the semiconductor substrate.
  • the circuits arranged in the peripheral circuit area PCA and the decoder area DECA are electrically connected to the virtual power supply line VVDD1 and the ground line VSS1.
  • Bit cells arranged in bit cell area BCA are electrically connected to virtual power supply line VVDD2 and ground line VSS2.
  • VDD1, VVDD1 and VSS1 the power supply line, virtual power supply line and ground line wired in the peripheral circuit area PCA or decoder area DECA are denoted by VDD1, VVDD1 and VSS1, respectively.
  • symbols BPR, LI, and Mint shown in parentheses after the names of power supply lines or ground lines indicate layers in which power supply lines or ground lines are provided.
  • the power line VDD1 is an example of a first power line.
  • the power line VVDD1 is an example of a second power line.
  • the ground line VSS1 is an example of a first ground line.
  • the power line VDD2 is an example of a third power line.
  • the power line VVDD2 is an example of a fourth power line.
  • the ground line VSS2 is an example of a second ground line.
  • a common power switch circuit PSW may be provided for two or three of the bit cell area BCA, the peripheral circuit area PCA and the decoder area DECA.
  • the voltage values of the power supply voltages VDD1 and VDD2 may be different, and the voltage values of the virtual power lines VVDD1 and VVDD2 may be different.
  • a virtual power supply line VVDD1 that supplies a power supply voltage to the elements in the peripheral circuit area PCA and a ground line VSS1 that supplies a ground voltage to the elements in the peripheral circuit area PCA are embedded in the semiconductor substrate. provided using BPR.
  • a semiconductor substrate is an example of a substrate.
  • the power supply line VDD1 to which the power supply voltage is supplied from the outside is provided as a wiring of the Mint layer.
  • the ground line VSS2 for supplying the ground voltage to the elements in the bit cell area BCA is provided using BPR.
  • the power supply line VDD2 to which the power supply voltage is supplied from the outside and the virtual power supply line VVDD2 to supply the power supply voltage to the elements in the bit cell area BCA are provided as wiring of the Mint layer.
  • the virtual power line VVDD2 may be provided using a BPR instead of the Mint layer.
  • the ground lines VSS2 (BPR) wired on both sides in the Y direction in FIG. 3 may be replaced with virtual power supply lines VVDD2 (BPR).
  • the power switch circuit PSW1 of the peripheral circuit area PCA is arranged on the separation area SPA side of the peripheral circuit area PCA, and controls on/off of supply of the power supply voltage from the power supply line VDD1 to the virtual power supply line VVDD1.
  • the power switch circuit PSW2 of the bit cell area BCA is arranged on the separation area SPA side of the bit cell area BCA, and controls on/off of supply of power supply voltage from the power supply line VDD2 to the virtual power supply line VVDD2. Supply of power supply voltages to respective elements in the peripheral circuit area PCA and the bit cell area BCA are controlled independently of each other.
  • the power supply types of the BPRs arranged in the X direction may not be the same.
  • the X-direction spacing of the BPR wiring is set to a distance that is not mutually affected by the power supplies, for example, according to layout rules. be done.
  • FIG. 4 is a plan view showing another example of the layout of the area where the power switch circuit of FIG. 1 is arranged. Elements similar to those in FIG. 3 are denoted by the same reference numerals, and detailed description thereof is omitted.
  • FIG. 4 has the same layout as FIG. 3 except that the power switch circuit PSW2 is arranged in the isolation area SPA instead of the bit cell area BCA.
  • Isolation region SPA has a different electrical characteristic due to the difference in arrangement positions in the Y direction of virtual power supply line VVDD1 and ground lines VSS1 and VSS2 provided using BPR in peripheral circuit area PCA and bit cell area BCA, respectively. Provided to mitigate fluctuations. Therefore, it is preferable not to arrange the ground line VSS2 using BPR in the isolation region SPA.
  • the power switch circuit PSW2 arranged in the separation area SPA has a mint layer power line VDD2, a virtual power line VVDD2, and a ground line VSS2.
  • Mint layer virtual power supply line VVDD2 extends to bit cell area BCA along the X direction.
  • the mint layer ground line VSS2 extends to the bit cell area BCA along the X direction and is connected to the BPR ground line VSS2.
  • the power supply line VDD2, the virtual power supply line VVDD2 and the ground line VSS2 of the power switch circuit PSW2 are wired using the Mint layer without using the BPR in the isolation area SPA.
  • the power switch circuit PSW2 can be arranged in the separation area SPA while satisfying the layout rule of the X-direction spacing of the BPR wirings provided in the peripheral circuit area PCA and the bit cell area BCA. That is, the power switch circuit PSW2 can be arranged in the separation area SPA without violating the layout rule of the wiring of the BPR.
  • the layout size of the bit cell area BCA can be reduced.
  • the chip size or layout size of the semiconductor device 100 can be reduced by arranging the power switch circuit PSW2 in the isolation area SPA, which is an empty area where no circuit is arranged.
  • FIG. 5 is a plan view showing still another example of the layout of the area where the power switch circuit of FIG. 1 is arranged. Elements similar to those in FIG. 3 are denoted by the same reference numerals, and detailed description thereof is omitted.
  • FIG. 5 has the same layout as FIG. 3 except that the power switch circuit PSW1 is arranged in the separation area SPA instead of the peripheral circuit area PCA.
  • the power supply line VDD1, the virtual power supply line VVDD1 and the ground line VSS1 of the power switch circuit PSW1 are wired using the Mint layer without using the BPR in the isolation area SPA. be.
  • the power switch circuit PSW1 can be arranged in the separation area SPA while satisfying the layout rule for the spacing of the BPR wiring in the X direction. Further, by arranging the power switch circuit PSW1 in the isolation area SPA, the layout size of the peripheral circuit area PCA can be reduced, and the chip size or layout size of the semiconductor device 100 can be reduced.
  • a via VIA1 indicated by a square connects the wiring of the Mint layer and each gate.
  • a via VIA2 indicated by a circle connects the wiring of the Mint layer and the local wiring LI.
  • a diamond-shaped via VIA3 connects the local wiring LI and the wiring of the BPR.
  • the local wirings LI and the fins FIN are connected at overlapping positions in a plan view.
  • the local wiring LI is provided between the semiconductor substrate SUB and the Mint layer.
  • Rectangular broken lines shown in FIG. 6(B) indicate p-channel transistors P1 and P2, n-channel transistors N1 and N2, and transfer transistors T1 and T2.
  • the transfer transistors T1 and T2 are n-channel transistors.
  • References Q and QB shown in FIGS. 6A to 6C indicate complementary storage nodes of bit cell BC.
  • Storage node Q is connected to bit line BL via transfer transistor T1.
  • Storage node QB is connected to bit line BLB via transfer transistor T2.
  • Two word lines WL provided in the Mint layer are connected to gates GT4 and GT1 of transfer transistors T1 and T2 via vias VIA1, respectively.
  • a virtual power supply line VVDD2 provided in the Mint layer is connected to local wirings LI2 and LI7 through vias VIA2.
  • Local line LI2 is connected to the source of p-channel transistor P1.
  • Local interconnection LI7 is connected to the source of p-channel transistor P2.
  • the wiring Q provided in the Mint layer is connected to the local wiring LI5 and the fins FIN3 and FIN4 via the via VIA2, and is connected to the gate GT3 via the via VIA1.
  • Fin FIN3 functions as the source and drain of p-channel transistor P1
  • fin FIN4 functions as the sources and drains of transfer transistor T1 and n-channel transistor N1.
  • the wiring QB provided in the Mint layer is connected to the local wiring LI4 and the fins FIN2 and FIN1 through the via VIA2, and is connected to the gate GT2 through the via VIA1.
  • the fin FIN2 functions as the source and drain of the p-channel transistor P2
  • the fin FIN1 functions as the sources and drains of the transfer transistor T2 and the n-channel transistor N2.
  • the bit line BLB provided in the Mint layer is connected to the local wiring LI1 and the fin FIN1 through the via VIA2.
  • a bit line BL provided in the Mint layer is connected to local wiring LI8 and fin FIN4 through via VIA2.
  • Ground lines VSS2 of two BPRs arranged on both sides in the Y direction in FIG. 6B are connected to local lines LI3 and LI6 via vias VIA3, respectively.
  • Local line LI3 is connected to the source of n-channel transistor N1.
  • Local line LI6 is connected to the source of n-channel transistor N2.
  • FIG. 7 is a diagram showing another example of the bit cell BC arranged in the bit cell area BCA of FIG. Elements similar to those in FIG. 6 are given the same reference numerals or the same patterns, and detailed descriptions thereof are omitted.
  • FIG. 7 has the same layout as FIG. 6 except that the virtual power line VVDD2 is provided in BPR.
  • the virtual power line VVDD2 of the local wirings LI2 and LI7 is connected to the virtual power line VVDD2 of the BPR via the via VIA3.
  • the virtual power supply line VVDD2 of the BPR is arranged between the ground lines VSS2 of the two BPRs and extends in the X direction like the ground lines VSS2 of the two BPRs.
  • FIG. 8 is a plan view showing an example layout of the power switch circuit PSW2 arranged in the bit cell area BCA including the bit cell BC of FIG.
  • FIG. 9 is a cross-sectional view showing a cross section along line Y1-Y1' in FIG.
  • the power switch circuit PSW2 has a control circuit CNTL2 and a switch transistor SWT2.
  • the switch transistor SWT2 is an example of a second switch transistor.
  • the correspondence between the wiring pattern and the wiring type shown in FIG. 8 is the same as the correspondence between the wiring pattern and the wiring type shown in FIGS.
  • bit cells BC shown in FIG. 6 are arranged side by side in the Y direction.
  • the two bit cells BC arranged in the Y direction are mirror-symmetrically arranged with the X direction as the axis.
  • some of the wirings and vias in the bit cell region BC are omitted.
  • the power switch circuit PSW2 is arranged adjacent to the bit cell BC of the SRAM within the bit cell area BCA. As shown in FIG. 1, the power switch circuit PSW2 may be arranged on the isolation area SPA side in the bit cell area BCA, or may be arranged on the opposite side of the isolation area SPA in the bit cell area BCA. Also, a plurality of power switch circuits PSW2 may be arranged in the bit cell area BCA.
  • the power switch circuit PSW2 may be arranged within the separation area SPA.
  • the ground line VSS2 connected to the power switch circuit PSW2 in the isolation area SPA may be wired using the Mint layer instead of the BPR in the isolation area SPA, and may be connected to the ground line VSS2 of the BPR in the bit cell area BCA. preferable.
  • the control circuit CNTL2 has inverters IV1 and IV2 connected to the power line VDD2 of the Mint layer and the ground line VSS2 of the BPR. Inverters IV1 and IV2 operate as buffers. The inverter IV1 inverts the level of the signal received at the input terminal IN2 and outputs it to the switch control signal line SWCNT2 of the Mint layer as the switch control signal SWCNT2.
  • the BPR ground line VSS2 connected to the power switch circuit PSW2 is wired by extending the BPR ground line VSS2 connected to the bit cell BC.
  • the switch control signal SWCNT2 is supplied to the gate of the p-channel transistor P of the switch transistor SWT2 and the input terminal of the inverter IV2.
  • Inverter IV2 inverts the level of the signal received at the input terminal and outputs it from output terminal OUT2.
  • the signal output from the output terminal OUT2 is supplied to the input terminal IN2 of another control circuit CNTL2.
  • the switch control signal SWCNT controls on and off of the p-channel transistor P of the switch transistor SWT, thereby controlling the supply of the power supply voltage to the virtual power supply line VVDD2.
  • the switch transistor SWT2 has a plurality of p-channel transistors P whose sources are connected to the power supply line VDD2, whose drains are connected to the virtual power supply line VVDD2, and whose gates are connected to the switch control signal line SWCNT2.
  • the source of the p-channel transistor P is provided in one of the fins FIN facing each other across the gate.
  • the drain of the p-channel transistor P is provided on the other of the fins FIN facing the source with the gate interposed therebetween.
  • One of the fins FIN is electrically connected to the Mint layer power supply line VDD2, and the other of the fins FIN is electrically connected to the Mint layer virtual power supply line VVDD2.
  • the Mint layer virtual power line VVDD2 connected to the switch transistor SWT2 is wired by extending the Mint layer virtual power line VVDD2 connected to the bit cell BC.
  • the virtual power line VVDD2 connected to the bit cell BC in the X direction can be used as the virtual power line VVDD2 for the switch transistor SWT2.
  • the ground line VSS2 connected to the bit cell BC in the X direction it can be used as the ground line VSS2 of the control circuit CNTL2.
  • the virtual power supply line VVDD2 and the ground line VSS2 extending from the bit cell BC can be wired without being bent in plan view.
  • the Mint layer wiring is connected to the local wiring LI via the via VIA2.
  • the local wiring LI is connected to a fin FIN that is part of the switch transistor SWT.
  • the fin FIN is provided on the semiconductor substrate SUB, and the BPR is embedded in the semiconductor substrate SUB.
  • FIG. 10 is a plan view showing an example layout of the power switch circuit arranged in the bit cell area BCA including the bit cell BC of FIG.
  • FIG. 11 is a cross-sectional view showing a cross section taken along line Y2-Y2' in FIG. Elements similar to those in FIGS. 8 and 9 are given the same reference numerals or the same patterns, and detailed descriptions thereof are omitted.
  • FIGS. 10 and 11 have layouts similar to FIGS. 8 and 9, except that the virtual power line VVDD2 is provided using BPR. That is, the power switch circuit PSW2 is arranged adjacent to the bit cell BC of the SRAM within the bit cell area BCA, as in FIG.
  • the wiring resistance can be reduced and the ability to supply the virtual power supply voltage VVDD2 to the bit cells BC can be increased.
  • the Mint layer virtual power line VVDD2 of the power switch circuit PSW2 is wired by extending the Mint layer virtual power line VVDD2 of the bit cell area BCA.
  • the mint layer ground line VSS2 of the power switch circuit PSW2 is connected to the BPR ground line VSS2 of the bit cell area BCA.
  • the virtual power line VVDD2 of the BPR is connected to the virtual power line VVDD2 of the local wiring LI via a via VIA3 provided in the insulating film arranged on the virtual power line VVDD2.
  • a virtual power supply line VVDD2 of the local wiring LI is connected to the fin FIN (the drain of the p-channel transistor P).
  • FIG. 12 is a diagram showing an outline of an arrangement example of the power switch circuits PSW2 arranged in the bit cell area BCA of FIG.
  • a power switch circuit PSW2 is arranged along the Y direction, which is one direction, adjacent to four bit cells BC. Note that the bit cells BC may be repeatedly arranged in the X direction and the Y direction.
  • each power switch circuit PSW2 is arranged corresponding to each of two bit cells BC arranged in the Y direction.
  • the control circuit CNTL2 and the switch transistor SWT2 are arranged side by side in the X direction.
  • the layout of FIG. 12A is similar to the layouts shown in FIGS.
  • each power switch circuit PSW2 is arranged corresponding to each of two bit cells BC arranged in the Y direction.
  • the control circuit CNTL2 and the switch transistor SWT2 of each power switch circuit PSW2 are arranged side by side in the Y direction.
  • the width of the control circuit CNTL2 in the X direction is the same as or smaller than the width of the switch transistor SWT2.
  • each power switch circuit PSW2 is arranged corresponding to each of two bit cells BC arranged in the Y direction.
  • one of the power switch circuits PSW2 receives the switch control signal SWCNT2 from the other of the power switch circuits PSW2. Therefore, the control circuit CNTL2 is not provided in one of the power switch circuits PSW2, but is provided in the other of the power switch circuits PSW2, and is shared by the two switch circuits PSW2.
  • FIG. 12(E) three power switch circuits PSW2 are arranged corresponding to four bit cells BC arranged in the Y direction.
  • the control circuit CNTL2 and the switch transistor SWT2 are arranged side by side in the X direction.
  • three power switch circuits PSW2 are arranged corresponding to four bit cells BC arranged in the Y direction.
  • the two power switch circuits PSW2 receive the switch control signal SWCNT2 from the other power switch circuit PSW2. Therefore, the control circuit CNTL2 is provided in one of the power switch circuits PSW2 and shared by the three switch circuits PSW2.
  • the width of the power switch circuit PSW2 in the X direction can be made smaller than in FIG. 12(A), so the layout size of the bit cell BC can be reduced.
  • the control circuit CNTL2 can be shared by a plurality of power switch circuits PSW2, so the layout size of the bit cell BC can be further reduced.
  • the arrangement density of the switch transistors SWT2 in the Y direction can be made higher than in FIG. can do. In other words, the wiring resistance of the virtual power line VVDD2 can be reduced.
  • a virtual power supply voltage VVDD1 can be supplied to the peripheral circuit area PCA by the power switch circuit PSW1 arranged in the peripheral circuit area PCA or the isolation area SPA.
  • a virtual power supply voltage VVDD2 can be supplied to the bit cell area BCA by the power switch circuit PSW2 arranged in the bit cell area BCA or the isolation area SPA.
  • the virtual power supply voltage VVDD1 can be supplied to the peripheral circuit area PCA, and the virtual power supply voltage VVDD2 can be supplied to the bit cell area BCA.
  • the layout size of the bit cell area BCA can be reduced.
  • the chip size or layout size of the semiconductor device 100 can be reduced.
  • the power supply switch circuit PSW2 can be connected without violating the BPR wiring layout rule. can be placed in the isolation area SPA.
  • FIG. 13 is a plan view showing an example layout of the power switch circuit PSW1 arranged in the peripheral circuit area PCA of the semiconductor device according to the second embodiment. Elements similar to those in FIG. 10 are given the same reference numerals or the same patterns, and detailed descriptions thereof are omitted.
  • the power switch circuit PSW1 has a control circuit CNTL1 and a switch transistor SWT1.
  • the switch transistor SWT1 is an example of a first switch transistor.
  • the layout of control circuit CNTL1 is the same as that of control circuit CNTL2 in FIG. 10 except that the types of signal lines, power supply lines and ground lines are different.
  • the circuit configuration and layout of the power switch circuit PSW1 in the decoder area DECA shown in FIG. 1 are the same as those in FIG.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Manufacturing & Machinery (AREA)
  • Semiconductor Integrated Circuits (AREA)
  • Design And Manufacture Of Integrated Circuits (AREA)

Abstract

半導体装置は、周辺回路領域およびビットセル領域と、周辺回路領域とビットセルとの間に位置する分離領域とを有する。周辺回路領域用の第1の電源スイッチ回路は、第1の電源線と、基板に設けられた第2の電源線および第1の接地線とに接続され、第1の電源線と第2の電源線とを接続する。ビットセル領域用の第2の電源スイッチ回路は、第3の電源線と、第4の電源線と、前記基板に設けられた第2の接地線とに接続され、第3の電源線と第4の電源線とを接続する。これにより、基板に設けられた電源線および接地線を有するSRAMに電源スイッチ回路を適切に配置することができる。

Description

半導体装置
 本発明は、半導体装置に関する。
 本出願は、2021年9月30日出願の米国仮出願第63/261,845号に基づく優先権を主張し、前記出願に記載された全ての記載内容を援用するものである。
 SRAM(Static Random Access Memory)において、ビットセル領域と周辺回路領域とで電源配線の配置が異なる場合に、平面視でビットセル領域と周辺回路領域との間隔を確保するために分離領域が設けられる場合がある。半導体基板に電源配線を埋め込んだBPR(Buried Power Rail)という技術が知られている。内部回路の仮想電源線への電源電圧の供給と遮断とを切り替えるために、電源線と仮想電源線との間に電源スイッチ回路を設ける技術が知られている。
米国特許第10446224号明細書 米国特許第8670265号明細書 米国特許出願公開第2020/0135718号明細書 米国特許出願公開第2018/0151494号明細書 米国特許第2005/0212018号明細書 米国特許第10170413号明細書
 BPRを使用した電源線および接地線がSRAMに設けられる場合に、電源スイッチ回路をどのように配置するかの詳細な技術検討がなされていない。
 本発明は、上記の点に鑑みてなされたもので、基板に設けられた電源線および接地線を有するSRAMに電源スイッチ回路を適切に配置することを目的とする。
 本発明の一態様では、半導体装置は、基板と、第1の電源線と、前記基板に設けられた第2の電源線と、前記基板に設けられた第1の接地線とを有する周辺回路領域と、第3の電源線と、第4の電源線と、前記基板に設けられた第2の接地線とを有するビットセル領域と、平面視で前記ビットセル領域と前記周辺回路領域との間に位置する分離領域と、前記第1の電源線と前記第2の電源線と前記第1の接地線とに接続された第1の電源スイッチ回路と、前記第3の電源線と前記第4の電源線と前記第2の接地線とに接続された第2の電源スイッチ回路と、を有し、前記第1の電源スイッチ回路は、前記第1の電源線と前記第2の電源線との間に電気的に接続された第1のスイッチトランジスタを有し、前記第2の電源スイッチ回路は、前記第3の電源線と前記第4の電源線との間に電気的に接続された第2のスイッチトランジスタを有する。
 開示の技術によれば、基板に設けられた電源線および接地線を有するSRAMに電源スイッチ回路を適切に配置することができる。
第1の実施形態における半導体装置のレイアウトの概要を示す平面図である。 図1のビットセル領域に配置される電源スイッチ回路の概要を示す回路ブロック図である。 図1の電源スイッチ回路が配置される領域のレイアウトの一例を示す平面図である。 図1の電源スイッチ回路が配置される領域のレイアウトの別の例を示す平面図である。 図1の電源スイッチ回路が配置される領域のレイアウトのさらなる別の例を示す平面図である。 図1のビットセル領域に配置されるビットセルの一例を示す図である。 図1のビットセル領域に配置されるビットセルの別の例を示す図である。 図6のビットセルを含むビットセル領域に配置される電源スイッチ回路のレイアウトの一例を示す平面図である。 図8のY1-Y1'線に沿う断面を示す断面図である。 図7のビットセルを含むビットセル領域に配置される電源スイッチ回路のレイアウトの一例を示す平面図である。 図10のY2-Y2'線に沿う断面を示す断面図である。 図1のビットセル領域に配置される電源スイッチ回路の配置の例の概要を示す図である。 第2の実施形態における半導体装置の周辺回路領域に配置される電源スイッチ回路のレイアウトの一例を示す平面図である。
 以下、図面を用いて実施形態を説明する。以下では、信号を示す符号は、信号値、信号線または信号端子を示す符号としても使用される場合がある。電源を示す符号は、電源電圧、電源電圧が供給される電源線または電源端子を示す符号としても使用される場合がある。
 (第1の実施形態)
 図1は、第1の実施形態における半導体装置のレイアウトの概要を示す平面図である。図1に示す半導体装置100は、例えば、SRAMである。半導体装置100は、ビットセル領域BCAと、ビットセル領域BCAの周囲に配置される周辺回路領域PCAおよびデコーダ領域DECAとを有する。
 例えば、周辺回路領域PCAおよびビットセル領域BCAは、X方向に並んで配置され、デコーダ領域DECAおよびビットセル領域BCAは、Y方向に並んで配置される。X方向は、第1の方向の一例である。Y方向は、第1の方向と異なる第2の方向の一例である。平面視で、ビットセル領域BCA、周辺回路領域PCAおよびデコーダ領域DECAの間には、分離領域SPAが配置される。
 例えば、ビットセル領域BCA、周辺回路領域PCAおよびデコーダ領域DECAには、それぞれ異なる電源電圧が供給される。例えば、ビットセル領域BCA、周辺回路領域PCAおよびデコーダ領域DECAには、X方向に延在し、Y方向に並んで配置される複数の電源線が配置される。なお、ビットセル領域BCA、周辺回路領域PCAおよびデコーダ領域DECAの電源線の位置および配置間隔は、それぞれ異なってもよい。
 また、周辺回路領域PCAおよびデコーダ領域DECAには、所定数の電源スイッチ回路PSW1がそれぞれ設けられる。ビットセル領域BCAには、所定数の電源スイッチ回路PSW2が設けられる。なお、電源スイッチ回路PSW1、PSW2の一方または両方は、分離領域SPAに配置されてもよい。電源スイッチ回路PSW1は、第1の電源スイッチ回路の一例である。電源スイッチ回路PSW2は、第2の電源スイッチ回路の一例である。以下では、電源スイッチ回路PSW1、PSW2を区別なく示す場合、電源スイッチ回路PSWとも称される。
 図2は、図1のビットセル領域BCAに配置される電源スイッチ回路PSW2の概要を示す回路ブロック図である。なお、周辺回路領域PCAおよびデコーダ領域DECAに配置される電源スイッチ回路PSW1も図2と同様の回路構成を有する。ビットセル領域BCAは、複数のビットセルBC(すなわち、メモリセル)を有する。各ビットセルBCは、電気的に仮想電源線VVDDおよび接地線VSSに接続され、仮想電源線VVDDから電力の供給を受けて動作する。
 電源スイッチ回路PSW2は、スイッチトランジスタSWTと制御回路CNTLとを有する。スイッチトランジスタSWTは、例えば、pチャネルトランジスタであり、制御回路CNTLからのスイッチ制御信号SWCNTをゲートで受けて動作する。なお、図2では、簡単化のため、1つのスイッチトランジスタSWTを示すが、電源線VDDと仮想電源線VVDDとの間には、複数のスイッチトランジスタSWTが配置されてもよい。
 スイッチトランジスタSWTがオンしている間、電源線VDDと仮想電源線VVDDとが電気的に接続され、電源電圧VDDが仮想電源線VVDDに供給される。スイッチトランジスタSWTがオフしている間、電源線VDDと仮想電源線VVDDとの電気的な接続が遮断され、仮想電源線VVDDは、フローティング状態に設定される。
 制御回路CNTLは、例えば、バッファ回路である。制御回路CNTLは、SRAMを動作させる場合、電源線VDDから仮想電源線VVDDに電源電圧を供給するためにスイッチ制御信号SWCNTをロウレベルに設定する。制御回路CNTLは、SRAMの動作を停止する場合、電源線VDDから仮想電源線VVDDへの電源電圧の供給を停止するためにスイッチ制御信号SWCNTをハイレベルに設定する。
 図3は、図1の電源スイッチ回路PSW1、PSW2が配置される領域のレイアウトの一例を示す平面図である。図3は、図1の周辺回路領域PCAとビットセル領域BCAとの境界部分において、電源スイッチ回路PSW1、PSW2が配置される領域の拡大図である。図3に示す例では、Mint層の配線およびBPRの配線は、それぞれX方向に延在して設けられる。例えば、Mint層は、半導体基板の上方に設けられる。
 周辺回路領域PCAおよびデコーダ領域DECAに配置される回路は、仮想電源線VVDD1と接地線VSS1とに電気的に接続される。ビットセル領域BCAに配置されるビットセルは、仮想電源線VVDD2と接地線VSS2とに電気的に接続される。
 以下では、周辺回路領域PCAまたはデコーダ領域DECAに配線される電源線、仮想電源線および接地線は、それぞれ符号VDD1、VVDD1、VSS1で示される。ビットセル領域BCAに配線される電源線、仮想電源線および接地線は、それぞれ符号VDD2、VVDD2、VSS2で示される。また、以下では、電源線名または接地線名の後ろに括弧で示す符号BPR、LI、Mintは、電源線または接地線が設けられる層を示す。
 電源線VDD1は、第1の電源線の一例である。電源線VVDD1は、第2の電源線の一例である。接地線VSS1は、第1の接地線の一例である。電源線VDD2は、第3の電源線の一例である。電源線VVDD2は、第4の電源線の一例である。接地線VSS2は、第2の接地線の一例である。
 なお、ビットセル領域BCA、周辺回路領域PCAおよびデコーダ領域DECAの2つまたは3つに共通の電源スイッチ回路PSWが設けられてもよい。例えば、周辺回路領域PCAとビットセル領域BCAのパワードメインが異なる場合、電源電圧VDD1、VDD2の電圧値は、互いに異なる場合があり、仮想電源線VVDD1、VVDD2の電圧値は、互いに異なる場合がある。
 周辺回路領域PCAにおいて、周辺回路領域PCA内の素子に電源電圧を供給する仮想電源線VVDD1と、周辺回路領域PCA内の素子に接地電圧を供給する接地線VSS1とは、半導体基板に埋め込まれたBPRを使用して設けられる。半導体基板は、基板の一例である。また、周辺回路領域PCAにおいて、外部から電源電圧が供給される電源線VDD1は、Mint層の配線として設けられる。
 ビットセル領域BCAにおいて、ビットセル領域BCA内の素子に接地電圧を供給する接地線VSS2は、BPRを使用して設けられる。また、ビットセル領域BCAにおいて、外部から電源電圧が供給される電源線VDD2と、ビットセル領域BCA内の素子に電源電圧を供給する仮想電源線VVDD2とは、Mint層の配線として設けられる。なお、仮想電源線VVDD2は、Mint層ではなく、BPRを使用して設けられてもよい。この場合、図3のY方向の両側の配線される接地線VSS2(BPR)が、仮想電源線VVDD2(BPR)に置き換えられてもよい。
 周辺回路領域PCAの電源スイッチ回路PSW1は、周辺回路領域PCAの分離領域SPA側に配置され、電源線VDD1から仮想電源線VVDD1への電源電圧の供給のオンとオフとを制御する。ビットセル領域BCAの電源スイッチ回路PSW2は、ビットセル領域BCAの分離領域SPA側に配置され、電源線VDD2から仮想電源線VVDD2への電源電圧の供給のオンとオフとを制御する。そして、周辺回路領域PCAとビットセル領域BCAのそれぞれの素子への電源電圧の供給は、互いに独立に制御される。
 例えば、図3に示すレイアウトは、Y方向に繰り返し配置される。多数のビットセルBC(図6、図7)が配置されるビットセル領域BCAでは、周辺回路領域PCAに比べてトランジスタ等の素子が高密度に配置される場合がある。このため、高密度に配置される素子に対応して接地線VSS2(BPR)のY方向の配置間隔は、周辺回路領域PCAの接地線VSS1(BPR)のY方向の配置間隔より小さく設定される場合がある。
 したがって、周辺回路領域PCAおよびビットセル領域BCAにおいて、X方向に並ぶBPRの電源種は、互いに同じにならない場合がある。X方向に並ぶBPRの電源種が異なる場合を考慮して(例えば、VVDD1とVSS2)、BPRの配線のX方向の間隔は、例えば、レイアウトルールにより、電源の影響を相互に受けない距離に設定される。
 図4は、図1の電源スイッチ回路が配置される領域のレイアウトの別の例を示す平面図である。図3と同様の要素については、同じ符号を付し、詳細な説明は省略する。図4は、電源スイッチ回路PSW2がビットセル領域BCAではなく、分離領域SPAに配置されていることを除き、図3と同様のレイアウトを有する。
 なお、分離領域SPAは、周辺回路領域PCAとビットセル領域BCAとのそれぞれにBPRを使用して設けられる仮想電源線VVDD1および接地線VSS1、VSS2のY方向の配置位置の相違により生じる電気的特性の変動を緩和するために設けられる。このため、BPRを使用した接地線VSS2は、分離領域SPAに配置しないことが好ましい。
 分離領域SPAに配置された電源スイッチ回路PSW2は、Mint層の電源線VDD2、仮想電源線VVDD2および接地線VSS2を有する。Mint層の仮想電源線VVDD2は、X方向に沿ってビットセル領域BCAまで延在される。Mint層の接地線VSS2は、X方向に沿ってビットセル領域BCAまで延在され、BPRの接地線VSS2に接続される。
 図4に示すように、電源スイッチ回路PSW2の電源線VDD2、仮想電源線VVDD2および接地線VSS2は、分離領域SPAにおいてBPRを使用せずにMint層を使用して配線される。これにより、周辺回路領域PCAおよびビットセル領域BCAにそれぞれ設けられるBPRの配線のX方向の間隔のレイアウトルールを満足しつつ、分離領域SPAに電源スイッチ回路PSW2を配置することができる。すなわち、BPRの配線のレイアウトルールに違反することなく、電源スイッチ回路PSW2を分離領域SPAに配置することができる。
 また、電源スイッチ回路PSW2を分離領域SPAに配置することで、ビットセル領域BCAのレイアウトサイズを低減することができる。回路が配置されずに空き領域となっている分離領域SPAに電源スイッチ回路PSW2を配置することで、半導体装置100のチップサイズまたはレイアウトサイズを低減することができる。
 ビットセル領域BCAに電源スイッチ回路PSW2が配置されないため、既存のビットセル領域BCAのマクロを流用することができる。この結果、既存のビットセル領域BCAのマクロを流用しない場合に比べて、SRAMの開発コストおよび製造コストを低減することができる。
 図5は、図1の電源スイッチ回路が配置される領域のレイアウトのさらなる別の例を示す平面図である。図3と同様の要素については、同じ符号を付し、詳細な説明は省略する。
図5は、電源スイッチ回路PSW1が周辺回路領域PCAではなく、分離領域SPAに配置されていることを除き、図3と同様のレイアウトを有する。
 分離領域SPAに配置された電源スイッチ回路PSW1は、Mint層の電源線VDD1、仮想電源線VVDD1および接地線VSS1有する。Mint層の仮想電源線VVDD1は、X方向に沿って周辺回路領域PCAまで延在され、周辺回路領域PCAにおいてBPRの仮想電源線VVDD1に接続される。Mint層の接地線VSS2は、X方向に沿って周辺回路領域PCAまで延在され、BPRの接地線VSS1に接続される。
 上述したように、BPRを使用した接地線VSS1は、分離領域SPAに配置しないことが好ましい。このため、図5では、図4と同様に、電源スイッチ回路PSW1の電源線VDD1、仮想電源線VVDD1および接地線VSS1は、分離領域SPAにおいてBPRを使用せずにMint層を使用して配線される。これにより、BPRの配線のX方向の間隔のレイアウトルールを満足しつつ、分離領域SPAに電源スイッチ回路PSW1を配置することができる。また、電源スイッチ回路PSW1を分離領域SPAに配置することで、周辺回路領域PCAのレイアウトサイズを低減することができ、半導体装置100のチップサイズまたはレイアウトサイズを低減することができる。
 図6は、図1のビットセル領域BCAに配置されるビットセルBCの一例を示す図である。配線のレイアウトを分かりやすくするため、図6(A)にMint層の配線およびMint層に接続されるビアのレイアウトが示され、図6(B)にMint層より下(半導体基板側)の層の配線、ゲート、フィンおよびビアのレイアウトが示される。また、図6(C)にビットセルBCの回路が示される。図6(A)および図6(B)に示すレイアウトは、平面視で互いに重なって位置する。なお、図5では、配線層名またはゲート名の後に付加する括弧内に、電源線名、接地線名、信号線名またはノード名が示される。
 四角で示すビアVIA1は、Mint層の配線と各ゲートとを接続する。丸印で示すビアVIA2は、Mint層の配線とローカル配線LIとを接続する。菱形で示すビアVIA3は、ローカル配線LIとBPRの配線とを接続する。ローカル配線LIとフィンFINとは、平面視で重なる位置で接続される。ローカル配線LIは、半導体基板SUBとMint層との間に設けられる。
 図6(B)に示す矩形の破線は、pチャネルトランジスタP1、P2、nチャネルトランジスタN1、N2および転送トランジスタT1、T2を示す。転送トランジスタT1、T2は、nチャネルトランジスタである。図6(A)から図6(C)に示す符号Q、QBは、ビットセルBCの相補の記憶ノードを示す。記憶ノードQは、転送トランジスタT1を介してビット線BLに接続される。記憶ノードQBは、転送トランジスタT2を介してビット線BLBに接続される。
 Mint層に設けられた2つワードラインWLは、それぞれビアVIA1を介して転送トランジスタT1、T2のゲートGT4、GT1に接続される。Mint層に設けられた仮想電源線VVDD2は、ビアVIA2を介してローカル配線LI2、LI7に接続される。ローカル配線LI2は、pチャネルトランジスタP1のソースに接続される。ローカル配線LI7は、pチャネルトランジスタP2のソースに接続される。
 Mint層に設けられた配線Qは、ビアVIA2を介してローカル配線LI5およびフィンFIN3、FIN4に接続され、ビアVIA1を介してゲートGT3に接続される。フィンFIN3は、pチャネルトランジスタP1のソース、ドレインとして機能し、フィンFIN4は、転送トランジスタT1およびnチャネルトランジスタN1のソース、ドレインとして機能する。
 Mint層に設けられた配線QBは、ビアVIA2を介してローカル配線LI4およびフィンFIN2、FIN1に接続され、ビアVIA1を介してゲートGT2に接続される。フィンFIN2は、pチャネルトランジスタP2のソース、ドレインとして機能し、フィンFIN1は、転送トランジスタT2およびnチャネルトランジスタN2のソース、ドレインとして機能する。
 Mint層に設けられたビット線BLBは、ビアVIA2を介してローカル配線LI1およびフィンFIN1に接続される。Mint層に設けられたビット線BLはビアVIA2を介してローカル配線LI8およびフィンFIN4に接続される。図6(B)のY方向の両側に配置される2つのBPRの接地線VSS2は、ビアVIA3を介してそれぞれローカル配線LI3、LI6に接続される。ローカル配線LI3は、nチャネルトランジスタN1のソースに接続される。ローカル配線LI6は、nチャネルトランジスタN2のソースに接続される。
 図7は、図1のビットセル領域BCAに配置されるビットセルBCの別の例を示す図である。図6と同様の要素については、同じ符号または同じパターンを付し、詳細な説明は省略する。図7は、仮想電源線VVDD2がBPRに設けられる点を除き、図6と同様のレイアウトを有する。
 ローカル配線LI2、LI7の仮想電源線VVDD2は、ビアVIA3を介してBPRの仮想電源線VVDD2に接続される。BPRの仮想電源線VVDD2は、2つのBPRの接地線VSS2の間に配置され、2つのBPRの接地線VSS2と同様に、X方向に延在している。
 図8は、図6のビットセルBCを含むビットセル領域BCAに配置される電源スイッチ回路PSW2のレイアウトの一例を示す平面図である。図9は、図8のY1-Y1'線に沿う断面を示す断面図である。電源スイッチ回路PSW2は、制御回路CNTL2およびスイッチトランジスタSWT2を有する。スイッチトランジスタSWT2は、第2のスイッチトランジスタの一例である。図8に示す配線のパターンと配線種との対応は、図6および図7に示す配線のパターンと配線種との対応と同じである。
ビットセル領域BCAには、例えば、図6に示すビットセルBCがY方向に並んで配置される。この際、Y方向に並ぶ2つのビットセルBCは、X方向を軸として鏡面対称に配置される。なお、図8では、ビットセル領域BCの配線およびビアの一部は図示が省略される。
 図8に示す例では、電源スイッチ回路PSW2は、ビットセル領域BCA内でSRAMのビットセルBCと隣接して配置される。電源スイッチ回路PSW2は、図1に示すように、ビットセル領域BCA内の分離領域SPA側に配置されてもよく、ビットセル領域BCA内の分離領域SPAと反対側に配置されてもよい。また、複数の電源スイッチ回路PSW2がビットセル領域BCA内に配置されてもよい。
 さらに、図4に示すように、電源スイッチ回路PSW2は、分離領域SPA内に配置されてもよい。この場合、分離領域SPAの電源スイッチ回路PSW2に接続する接地線VSS2は、分離領域SPAではBPRではなくMint層を使用して配線され、ビットセル領域BCAでBPRの接地線VSS2に接続されることが好ましい。
 制御回路CNTL2は、Mint層の電源線VDD2とBPRの接地線VSS2とに接続されたインバータIV1、IV2を有する。インバータIV1、IV2は、バッファとして動作する。インバータIV1は、入力端子IN2で受ける信号のレベルを反転してMint層のスイッチ制御信号線SWCNT2にスイッチ制御信号SWCNT2として出力する。電源スイッチ回路PSW2に接続されるBPRの接地線VSS2は、ビットセルBCに接続されるBPRの接地線VSS2を延在させることで配線される。
 スイッチ制御信号SWCNT2は、スイッチトランジスタSWT2のpチャネルトランジスタPのゲートと、インバータIV2の入力端子とに供給される。インバータIV2は、入力端子で受ける信号のレベルを反転して出力端子OUT2から出力する。例えば、出力端子OUT2から出力される信号は、他の制御回路CNTL2の入力端子IN2に供給される。スイッチ制御信号SWCNTによりスイッチトランジスタSWTのpチャネルトランジスタPのオンとオフとが制御され、仮想電源線VVDD2への電源電圧の供給が制御される。
 スイッチトランジスタSWT2は、ソースが電源線VDD2に接続され、ドレインが仮想電源線VVDD2に接続され、ゲートがスイッチ制御信号線SWCNT2に接続された複数のpチャネルトランジスタPを有する。ここで、pチャネルトランジスタPのソースは、ゲート挟んで対向するフィンFINの一方に設けられる。pチャネルトランジスタPのドレインは、ゲートを挟んでソースに対向するフィンFINの他方に設けられる。
 フィンFINの一方は、Mint層の電源線VDD2に電気的に接続され、フィンFINの他方は、Mint層の仮想電源線VVDD2に電気的に接続される。スイッチトランジスタSWT2に接続されるMint層の仮想電源線VVDD2は、ビットセルBCに接続されるMint層の仮想電源線VVDD2を延在させることで配線される。
 図8に示すように、ビットセルBCに接続される仮想電源線VVDD2をX方向に延在させることで、スイッチトランジスタSWT2の仮想電源線VVDD2として利用することができる。ビットセルBCに接続される接地線VSS2をX方向に延在させることで、制御回路CNTL2の接地線VSS2として利用することができる。この際、ビットセルBCから延在する仮想電源線VVDD2および接地線VSS2は、平面視で折り曲げることなく配線することができる。
 図9に示すように、Mint層の配線は、ビアVIA2を介してローカル配線LIに接続される。ローカル配線LIは、スイッチトランジスタSWTの一部であるフィンFINに接続される。フィンFINは、半導体基板SUB上に設けられ、BPRは、半導体基板SUB内に埋め込まれる。
 図10は、図7のビットセルBCを含むビットセル領域BCAに配置される電源スイッチ回路のレイアウトの一例を示す平面図である。図11は、図10のY2-Y2'線に沿う断面を示す断面図である。図8および図9と同様の要素については、同じ符号または同じパターンを付し、詳細な説明は省略する。
 図10および図11は、仮想電源線VVDD2がBPRを使用して設けられる点を除き、図8および図9と同様のレイアウトを有する。すなわち、電源スイッチ回路PSW2は、図8と同様に、ビットセル領域BCA内でSRAMのビットセルBCと隣接して配置される。仮想電源線VVDD2をBPRを使用して設けることで、配線抵抗を下げることができ、仮想電源電圧VVDD2のビットセルBCへの供給能力を高くすることができる。
 なお、図4に示すように、電源スイッチ回路PSW2が分離領域SPA内に配置される場合、電源スイッチ回路PSW2の仮想電源線VVDD2および接地線VSS2はBPRではなくMint層を使用して配線されてもよい。この場合、例えば、電源スイッチ回路PSW2のMint層の仮想電源線VVDD2は、ビットセル領域BCAのMint層の仮想電源線VVDD2を延在させることで配線される。例えば、電源スイッチ回路PSW2のMint層の接地線VSS2は、ビットセル領域BCAのBPRの接地線VSS2に接続される。
 図11において、BPRの仮想電源線VVDD2は、この仮想電源線VVDD2上に配置された絶縁膜中に設けられたビアVIA3を介してローカル配線LIの仮想電源線VVDD2に接続される。そして、ローカル配線LIの仮想電源線VVDD2は、フィンFIN(pチャネルトランジスタPのドレイン)に接続される。
 図12は、図1のビットセル領域BCAに配置される電源スイッチ回路PSW2の配置の例の概要を示す図である。図12では、4つのビットセルBCに隣接して、一方向であるY方向に沿って電源スイッチ回路PSW2が配置される。なお、ビットセルBCは、X方向およびY方向に繰り返し配置されてもよい。
 図12(A)では、各電源スイッチ回路PSW2は、Y方向に並ぶ2つのビットセルBCにそれぞれ対応して配置される。各電源スイッチ回路PSW2において、制御回路CNTL2とスイッチトランジスタSWT2とは、X方向に並んで配置されている。図12(A)のレイアウトは、図8および図10に示すレイアウトと同様である。
 図12(B)では、各電源スイッチ回路PSW2は、Y方向に並ぶ2つのビットセルBCにそれぞれ対応して配置される。各電源スイッチ回路PSW2の制御回路CNTL2は、2つの分離しており、スイッチトランジスタSWT2におけるY方向の両側に配置される。例えば、制御回路CNTL2がバッファである場合、2つのインバータの各々が各制御回路CNTL2に配置される。そして、一方のインバータの出力と、他方のインバータの入力とが信号線SIGで接続される。信号線SIGは、Mint層よりも上の配線層を使用して配線されてもよい。
 図12(C)では、各電源スイッチ回路PSW2は、Y方向に並ぶ2つのビットセルBCにそれぞれ対応して配置される。各電源スイッチ回路PSW2の制御回路CNTL2およびスイッチトランジスタSWT2は、Y方向に並んで配置される。制御回路CNTL2のX方向の幅は、スイッチトランジスタSWT2の幅と同一または小さい。駆動能力が小さい制御回路CNTL2を設ける場合、制御回路CNTL2のサイズを小さくすることができる。
 図12(D)では、各電源スイッチ回路PSW2は、Y方向に並ぶ2つのビットセルBCにそれぞれ対応して配置される。但し、電源スイッチ回路PSW2の一方は、電源スイッチ回路PSW2の他方からスイッチ制御信号SWCNT2を受ける。このため、制御回路CNTL2は、電源スイッチ回路PSW2の一方には設けられず、電源スイッチ回路PSW2の他方に設けられ、2つのスイッチ回路PSW2で共有される。
 図12(E)では、3つの電源スイッチ回路PSW2が、Y方向に並ぶ4つのビットセルBCに対応して配置される。各電源スイッチ回路PSW2において、制御回路CNTL2とスイッチトランジスタSWT2とは、X方向に並んで配置されている。
 図12(F)では、3つの電源スイッチ回路PSW2が、Y方向に並ぶ4つのビットセルBCに対応して配置される。但し、2つの電源スイッチ回路PSW2は、他の電源スイッチ回路PSW2からスイッチ制御信号SWCNT2を受ける。このため、制御回路CNTL2は、電源スイッチ回路PSW2の1つに設けられ、3つのスイッチ回路PSW2で共有される。
 図12(B)では、電源スイッチ回路PSW2のX方向の幅を図12(A)より小さくできるため、ビットセルBCのレイアウトサイズを低減することができる。図12(C)、図12(D)および図12(F)では、複数の電源スイッチ回路PSW2で制御回路CNTL2を共有できるため、ビットセルBCのレイアウトサイズをさらに低減することができる。図12(E)および図12(F)では、スイッチトランジスタSWT2のY方向の配置密度を図12(A)等に比べて高くでき、ビットセルBCに供給される仮想電源電圧VVDD2の供給能力を高くすることができる。換言すれば、仮想電源線VVDD2の配線抵抗を下げることができる。
 以上、この実施形態では、BPRの仮想電源電圧VVDD1、VVDD2およびBPRの接地線VSS1、VSS2を有する半導体装置100に電源スイッチ回路PSW1、PSW2を配置することができる。
 周辺回路領域PCAまたは分離領域SPAに配置された電源スイッチ回路PSW1により周辺回路領域PCAに仮想電源電圧VVDD1を供給することができる。ビットセル領域BCAまたは分離領域SPAに配置された電源スイッチ回路PSW2によりビットセル領域BCAに仮想電源電圧VVDD2を供給することができる。換言すれば、仮想電源電圧VVDD1、VVDD2の電圧値が異なる場合にも、周辺回路領域PCAに仮想電源電圧VVDD1を供給することができ、ビットセル領域BCAに仮想電源電圧VVDD2を供給することができる。
 電源スイッチ回路PSW2を分離領域SPAに配置することで、ビットセル領域BCAのレイアウトサイズを低減することができる。この結果、半導体装置100のチップサイズまたはレイアウトサイズを低減することができる。電源スイッチ回路PSW2の電源線VDD2、仮想電源線VVDD2および接地線VSS2を、分離領域SPAにおいてMint層を使用して配線することで、BPRの配線のレイアウトルールに違反することなく、電源スイッチ回路PSW2を分離領域SPAに配置することができる。
 BPRを使用して仮想電源線VVDD2を配線することで、配線抵抗を下げることができ、仮想電源電圧VVDD2のビットセルBCへの供給能力を高くすることができる。
 (第2の実施形態)
 図13は、第2の実施形態における半導体装置の周辺回路領域PCAに配置される電源スイッチ回路PSW1のレイアウトの一例を示す平面図である。図10と同様の要素については、同じ符号または同じパターンを付し、詳細な説明は省略する。電源スイッチ回路PSW1は、制御回路CNTL1およびスイッチトランジスタSWT1を有する。スイッチトランジスタSWT1は、第1のスイッチトランジスタの一例である。制御回路CNTL1のレイアウトは、信号線、電源線および接地線の種類が異なることを除き、図10の制御回路CNTL2のレイアウトと同じである。なお、図1に示すデコーダ領域DECAの電源スイッチ回路PSW1の回路構成およびレイアウトは、図13と同様である。
 図10に示す例では、電源スイッチ回路PSW1は、周辺回路領域PCA内で回路LGCと隣接して配置される。電源スイッチ回路PSW1は、図1に示すように、周辺回路領域PCA内の分離領域SPA側に配置されてもよく、周辺回路領域PCAの分離領域SPAと反対側に配置されてもよい。また、複数の電源スイッチ回路PSW1が周辺回路領域PCA内に配置されてもよい。
 さらに、図5に示すように、電源スイッチ回路PSW1は、分離領域SPA内に配置されてもよい。この場合、分離領域SPAの電源スイッチ回路PSW1に接続する接地線VSS1は、分離領域SPAにおいてBPRではなくMint層を使用して配線され、周辺回路領域PCAでBPRの接地線VSS1に接続されることが好ましい。
 制御回路CNTL1は、Mint層の電源線VDD1とBPRの接地線VSS1とに接続されたインバータIV1、IV2を有する。インバータIV1、IV2は、バッファとして動作する。インバータIV1は、入力端子IN1で受ける信号のレベルを反転してMint層のスイッチ制御信号線SWCNT1にスイッチ制御信号SWCNT1として出力する。電源スイッチ回路PSW1に接続されるBPRの接地線VSS1は、周辺回路領域PCAに設けられる回路LGCに接続されるBPRの接地線VSS1を延在させることで配線される。
 スイッチ制御信号SWCNT1は、スイッチトランジスタSWT1のpチャネルトランジスタPのゲートと、インバータIV2の入力端子とに供給される。例えば、インバータIV2の出力端子OUT1から出力される信号は、他の制御回路CNTL2の入力端子IN2に供給される。
 スイッチトランジスタSWT1は、ソースが電源線VDD1に接続され、ドレインが仮想電源線VVDD1に接続され、ゲートがスイッチ制御信号線SWCNT1に接続された複数のpチャネルトランジスタPを有する。pチャネルトランジスタPのソースは、ゲート挟んで対向するフィンFINの一方に設けられる。pチャネルトランジスタPのドレインは、ゲート挟んでソースと対向するフィンFINの他方に設けられる。
 フィンFINの一方は、Mint層の電源線VDD1に電気的に接続され、フィンFINの他方は、BPRの仮想電源線VVDD1に電気的に接続される。スイッチトランジスタSWT1に接続されるBPRの仮想電源線VVDD1は、周辺回路領域PCAに設けられる回路LGCに接続されるBPRの仮想電源線VVDD1を延在させることで配線される。
 図10に示すように、回路LGCに接続される仮想電源線VVDD1をX方向に延在させることで、スイッチトランジスタSWT1の仮想電源線VVDD1として利用することができる。回路LGCに接続される接地線VSS1をX方向に延在させることで、制御回路CNTL1の接地線VSS1として利用することができる。この際、回路LGCから延在する仮想電源線VVDD1および接地線VSS1は、平面視で折り曲げることなく配線することができる。以上、この実施形態においても第1の実施形態と同様の効果を得ることができる。
 以上、各実施形態に基づき本発明の説明を行ってきたが、上記実施形態に示した要件に本発明が限定されるものではない。これらの点に関しては、本発明の主旨をそこなわない範囲で変更することができ、その応用形態に応じて適切に定めることができる。
 100 半導体装置
 BCA ビットセル領域
 BL、BLB ビット線
 CNTL、CNTL1、CNTL2 制御回路
 DECA デコーダ領域
 FIN1-FIN4 フィン
 GT1-GT4 ゲート
 IN2 入力端子
 IV1、IV2 インバータ
 LI1-LI8 ローカル配線
 N1、N2 nチャネルトランジスタ
 OUT2 出力端子
 P、P1、P2 pチャネルトランジスタ
 PCA 周辺回路領域
 PSW、PSW1、PSW2 電源スイッチ回路
 Q、QB 記憶ノード
 SPA 分離領域
 SUB 半導体基板
 SWCNT、SWCNT1、SWCNT2 スイッチ制御信号
 SWT、SWT1、SWT2 スイッチトランジスタ
 T1、T2 転送トランジスタ
 VDD、VDD1、VDD2 電源線
 VIA1、VIA2、VIA3 ビア
 VSS、VSS1、VSS2 接地線
 VVDD、VVDD1、VVDD2 仮想電源線
 WL ワード線

Claims (11)

  1.  基板と、
     第1の電源線と、前記基板に設けられた第2の電源線と、前記基板に設けられた第1の接地線とを有する周辺回路領域と、
     第3の電源線と、第4の電源線と、前記基板に設けられた第2の接地線とを有するビットセル領域と、
     平面視で前記ビットセル領域と前記周辺回路領域との間に位置する分離領域と、
     前記第1の電源線と前記第2の電源線と前記第1の接地線とに接続された第1の電源スイッチ回路と、
     前記第3の電源線と前記第4の電源線と前記第2の接地線とに接続された第2の電源スイッチ回路と、を有し、
     前記第1の電源スイッチ回路は、前記第1の電源線と前記第2の電源線との間に電気的に接続された第1のスイッチトランジスタを有し、
     前記第2の電源スイッチ回路は、前記第3の電源線と前記第4の電源線との間に電気的に接続された第2のスイッチトランジスタを有する
     半導体装置。
  2.  前記周辺回路領域は、第1の方向にそれぞれ延在する複数の前記第1の接地線を有し、
     前記ビットセル領域は、前記第1の方向にそれぞれ延在する複数の前記第2の接地線を有し、
     複数の前記第1の接地線における前記第1の方向と異なる第2の方向の配置間隔は、複数の前記第2の接地線における前記第2の方向の配置間隔と異なる
     請求項1に記載の半導体装置。
  3.  前記第2の電源スイッチ回路は、平面視で前記分離領域に位置する
     請求項1または請求項2に記載の半導体装置。
  4.  前記第4の電源線は、前記基板の上方の配線層を使用して前記ビットセル領域から前記分離領域に延在し、
     前記第2の接地線は、前記分離領域において前記基板の上方の配線層を使用して設けられた前記第2の接地線を介して、前記第2の電源スイッチ回路に電気的に接続される
     請求項3に記載の半導体装置。
  5.  第1の電源スイッチ回路は、平面視で前記分離領域に位置する
     請求項1または請求項2に記載の半導体装置。
  6.  前記第1の電源線は、前記分離領域において前記基板の上方の配線層を使用して設けられた電源線に電気的に接続され、
     前記第1の接地線は、前記分離領域において前記基板の上方の配線層を使用して設けられた前記第1の接地線を介して、前記第1の電源スイッチ回路に電気的に接続される
     請求項5に記載の半導体装置。
  7.  前記第4の電源線は、前記基板に設けられる
     請求項1または請求項2に記載の半導体装置。
  8.  一方向に沿って配置された複数の前記第2の電源スイッチ回路を有する
     請求項1または請求項2に記載の半導体装置。
  9.  複数の前記第2の電源スイッチ回路は、互いに隣接して配置される
     請求項8に記載の半導体装置。
  10.  前記第2の電源スイッチ回路は、前記第2のスイッチトランジスタを制御する制御回路を有し、
     前記制御回路は、前記第2のスイッチトランジスタの前記一方向の両側に分けて配置される
     請求項8に記載の半導体装置。
  11.  前記第2の電源スイッチ回路は、前記一方向に並んで配置される複数の前記第2のスイッチトランジスタを共通に制御する制御回路を有する
     請求項8に記載の半導体装置。
PCT/JP2022/036486 2021-09-30 2022-09-29 半導体装置 WO2023054600A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2023551857A JPWO2023054600A1 (ja) 2021-09-30 2022-09-29
CN202280063274.8A CN117957928A (zh) 2021-09-30 2022-09-29 半导体装置

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US202163261845P 2021-09-30 2021-09-30
US63/261,845 2021-09-30

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US18/602,522 Continuation US20240224491A1 (en) 2024-03-12 Semiconductor device

Publications (1)

Publication Number Publication Date
WO2023054600A1 true WO2023054600A1 (ja) 2023-04-06

Family

ID=85782915

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/036486 WO2023054600A1 (ja) 2021-09-30 2022-09-29 半導体装置

Country Status (3)

Country Link
JP (1) JPWO2023054600A1 (ja)
CN (1) CN117957928A (ja)
WO (1) WO2023054600A1 (ja)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008251835A (ja) * 2007-03-30 2008-10-16 Renesas Technology Corp 半導体装置
JP2016035966A (ja) * 2014-08-01 2016-03-17 株式会社東芝 半導体集積回路装置
JP2017028085A (ja) * 2015-07-22 2017-02-02 富士通株式会社 半導体装置および半導体装置の制御方法
WO2020065916A1 (ja) * 2018-09-28 2020-04-02 株式会社ソシオネクスト 半導体装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008251835A (ja) * 2007-03-30 2008-10-16 Renesas Technology Corp 半導体装置
JP2016035966A (ja) * 2014-08-01 2016-03-17 株式会社東芝 半導体集積回路装置
JP2017028085A (ja) * 2015-07-22 2017-02-02 富士通株式会社 半導体装置および半導体装置の制御方法
WO2020065916A1 (ja) * 2018-09-28 2020-04-02 株式会社ソシオネクスト 半導体装置

Also Published As

Publication number Publication date
JPWO2023054600A1 (ja) 2023-04-06
CN117957928A (zh) 2024-04-30

Similar Documents

Publication Publication Date Title
US9305633B2 (en) SRAM cell and cell layout method
KR101435744B1 (ko) Sram 셀 접속 구조
KR20190020682A (ko) 핀 카운트에 기반한 확산을 위한 표준 셀 아키텍처
JPH10335612A (ja) 高密度ゲートアレイセル構造およびその製造方法
US20050253287A1 (en) Dual-port SRAM cell structure
JPH10178110A (ja) 半導体記憶装置
TW201735324A (zh) 雙端口靜態隨機存取記憶體單元
CN108257960B (zh) 静态随机存取存储元件
TW201705136A (zh) 半導體裝置
US20130334576A1 (en) Gate array architecture with multiple programmable regions
KR100473457B1 (ko) 반도체 기억장치
WO2022186012A1 (ja) 半導体集積回路装置
JP4492736B2 (ja) 半導体集積回路
WO2023054600A1 (ja) 半導体装置
US8243524B2 (en) Semiconductor storage device
WO2023054601A1 (ja) 半導体装置
WO2023054602A1 (ja) 半導体装置
JPS5864047A (ja) マスタ−スライス半導体集積回路装置
JP2000031300A (ja) スタティック型半導体記憶装置
KR19990007090A (ko) Soi. cmos 기술을 이용한 소형 반도체 장치
US20240224491A1 (en) Semiconductor device
JP2009272587A (ja) 半導体記憶装置
WO2023248772A1 (ja) 半導体集積回路装置
KR100502672B1 (ko) 풀 씨모스 에스램 셀
JPH0329187B2 (ja)

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22876464

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2023551857

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 202280063274.8

Country of ref document: CN

NENP Non-entry into the national phase

Ref country code: DE