WO2023054463A1 - 積層フィルム、光学積層体及び画像表示装置 - Google Patents

積層フィルム、光学積層体及び画像表示装置 Download PDF

Info

Publication number
WO2023054463A1
WO2023054463A1 PCT/JP2022/036149 JP2022036149W WO2023054463A1 WO 2023054463 A1 WO2023054463 A1 WO 2023054463A1 JP 2022036149 W JP2022036149 W JP 2022036149W WO 2023054463 A1 WO2023054463 A1 WO 2023054463A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
film
optical
less
laminated film
Prior art date
Application number
PCT/JP2022/036149
Other languages
English (en)
French (fr)
Inventor
彰二 祖父江
貴志 白石
Original Assignee
住友化学株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 住友化学株式会社 filed Critical 住友化学株式会社
Publication of WO2023054463A1 publication Critical patent/WO2023054463A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B7/00Layered products characterised by the relation between layers; Layered products characterised by the relative orientation of features between layers, or by the relative values of a measurable parameter between layers, i.e. products comprising layers having different physical, chemical or physicochemical properties; Layered products characterised by the interconnection of layers
    • B32B7/02Physical, chemical or physicochemical properties
    • B32B7/023Optical properties
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B1/00Optical elements characterised by the material of which they are made; Optical coatings for optical elements
    • G02B1/10Optical coatings produced by application to, or surface treatment of, optical elements
    • G02B1/11Anti-reflection coatings
    • G02B1/111Anti-reflection coatings using layers comprising organic materials
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B1/00Optical elements characterised by the material of which they are made; Optical coatings for optical elements
    • G02B1/10Optical coatings produced by application to, or surface treatment of, optical elements
    • G02B1/14Protective coatings, e.g. hard coatings
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/30Polarising elements
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09FDISPLAYING; ADVERTISING; SIGNS; LABELS OR NAME-PLATES; SEALS
    • G09F9/00Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements
    • G09F9/30Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements in which the desired character or characters are formed by combining individual elements

Definitions

  • the present invention relates to a laminated film, an optical laminate and an image display device.
  • a circular polarizer is an optical laminate that includes a linear polarizer and a retardation layer.
  • a circularly polarizing plate is usually arranged on the viewing side of an image display element such as an organic EL display element.
  • an image display element such as an organic EL display element.
  • An optical member such as a circularly polarizing plate arranged on the viewing side of an image display element is required to be able to adjust the reflection hue according to needs while maintaining a low reflectance.
  • An object of the present invention is to provide a laminated film for constituting an optical laminate together with a circularly polarizing plate by arranging it on the viewing side of the circularly polarizing plate, wherein the optical laminate maintains a low reflectance of the optical laminate.
  • An object of the present invention is to provide a laminated film capable of adjusting the reflection hue of the laminated body.
  • Another object of the present invention is to provide an optical layered body including the layered film and the circularly polarizing plate, and an image display device including the optical layered body.
  • the present invention provides the following laminated film, optical laminate and image display device.
  • a laminated film comprising a substrate film and an optical function layer (A) laminated thereon, The laminated film has a luminous reflectance Y of 9.0% or less, a reflection hue a* of 0.3 or more and 7.0 or less, and a reflection hue b* of ⁇ 10.0 or more and 0 or less.
  • Laminated film [2] The laminated film according to [1], wherein the optical function layer (A) has a refractive index of 1.55 or more and 1.68 or less.
  • the optical function layer (A) contains zirconium oxide particles, The laminated film according to any one of [1] to [4], wherein in the primary particle size distribution of the zirconium oxide particles, the particle size range of 0.1 nm to 15 nm accounts for 90% or more.
  • An adjustable laminated film, an optical laminated body including the laminated film and a circularly polarizing plate, and an image display device including the optical laminated body can be provided.
  • FIG. 4 is a schematic cross-sectional view showing another example of the laminated film according to the present invention
  • FIG. 4 is a schematic cross-sectional view showing still another example of the laminated film according to the present invention
  • FIG. 4 is a schematic cross-sectional view showing still another example of the laminated film according to the present invention
  • 1 is a schematic cross-sectional view showing an example of an optical layered body according to the present invention
  • FIG. 4 is a schematic cross-sectional view showing another example of the optical layered body according to the present invention
  • FIG. 4 is a schematic cross-sectional view showing another example of the optical layered body according to the present invention
  • FIG. 4 is a schematic cross-sectional view showing still another example of the optical layered body according to the present invention.
  • FIG. 4 is a schematic cross-sectional view showing still another example of the optical layered body according to the present invention;
  • FIG. 4 is a schematic cross-sectional view showing still another example of the optical layered body according to the present invention;
  • 1 is a schematic cross-sectional view showing an example of an image display device according to the present invention;
  • laminated film according to the present invention is a laminated optical film including a substrate film and an optical functional layer (A) laminated thereon. Examples of the layer structure of the laminated film are shown in FIGS. 1 to 4. FIG.
  • the laminated film shown in FIG. 1 is composed of a base film 1b and an optical function layer (A) 1a laminated thereon, and the base film 1b and the optical function layer (A) 1a are in contact with each other. ing.
  • the laminated film shown in FIG. 2 has the same configuration as the laminated film shown in FIG. 1 except that it further includes a resin layer 1c arranged on the opposite side of the base film 1b in the optical function layer (A) 1a. have.
  • the optical function layer (A) 1a and the resin layer 1c are in contact with each other.
  • the laminated film shown in FIG. 3 has the same configuration as the laminated film shown in FIG. 1 except that it has an intervening layer 1d between the base film 1b and the optical function layer (A) 1a.
  • the optical functional layer (A) 1a and the intervening layer 1d are in contact, and the intervening layer 1d and the base film 1b are in contact.
  • the laminated film shown in FIG. 4 has a resin layer 1c arranged on the opposite side of the base film 1b in the optical function layer (A) 1a, and further includes the base film 1b and the optical function layer (A) 1a. It has the same configuration as the laminated film shown in FIG.
  • the optical functional layer (A) 1a and the resin layer 1c are in contact, the optical functional layer (A) 1a and the intervening layer 1d are in contact, and the intervening layer 1d and the base film 1b are in contact.
  • a laminated film is used in combination with a circularly polarizing plate.
  • the term "circular polarizer" includes elliptical polarizers.
  • a laminate that is a combination of a laminate film and a circularly polarizing plate is referred to as an optical laminate.
  • the laminated film is laminated on the viewing side of the circularly polarizing plate.
  • To be laminated on the viewing side means to be laminated on the surface of the linearly polarizing plate in the circularly polarizing plate including the linearly polarizing plate and the retardation layer.
  • the laminated film is laminated on the circularly polarizing plate, for example, so that the base film side faces the circularly polarizing plate.
  • the optical layered body can be suitably applied to an image display device such as an organic EL display device.
  • an image display device such as an organic EL display device.
  • the laminated film side of the optical laminate is on the viewing side, that is, so that the retardation layer side of the optical laminate is on the image display element (organic EL display element etc.) side. It is arranged on the viewing side of the image display element.
  • the laminated film has a luminous reflectance Y of 9.0% or less, a reflection hue a* of 0.3 or more and 7.0 or less, and a reflection hue b* of ⁇ 10.0 or more and 0 or less. .
  • the laminated film having the above optical properties by laminating this on the viewing side of the circularly polarizing plate, it is possible to adjust and control the reflection hue of the optical laminated body regardless of the configuration and retardation characteristics of the circularly polarizing plate. becomes.
  • the laminated film since the laminated film has a reflection hue b* of ⁇ 10.0 or more and 0 or less, the reflected light reflected on the viewer-side surface of the optical laminate can be bluish. This is advantageous in making it difficult to visually recognize color unevenness of internally reflected light due to slight fluctuations in the reflected hue within the plane of the circularly polarizing plate.
  • a conventional circular polarizer especially when it includes a ⁇ /4 layer with reverse wavelength dispersion, suppresses internal reflected light over a wide visible range, resulting in black display (the reflection hue of the circular polarizer is neutral). ) is easy to realize.
  • the more neutral the reflected hue of the circularly polarizing plate becomes the more easily the color unevenness becomes visible.
  • this color unevenness can be made difficult to see.
  • the transmitted light (white display) from the image display element does not change to a bluish color, and the reflectance does not increase significantly. .
  • the laminated film can play the role of adjusting the reflection hue of the optical laminated body. It is also possible to make the reflection hue of the circularly polarizing plate bluish by adjusting the wavelength dispersion and retardation characteristics of the retardation layer of the circularly polarizing plate. However, in this case, another problem arises in that the change in hue of the reflected light from an oblique angle becomes large. Moreover, in the first place, the range of reflected hues that can be adjusted by a technique for adjusting the wavelength dispersion and retardation characteristics of the retardation layer of the circularly polarizing plate is limited. According to the method of making the laminated film play the role of adjusting the reflected hue of the optical laminated body, it is possible to suppress the change in the reflected hue from an oblique direction and make the color unevenness less visible.
  • the reflection hue of the optical laminated body can be appropriately bluish, so that the display of the image display device can be given a high-class feeling.
  • the laminated film has a luminous reflectance Y of 9.0% or less, preferably 8.5% or less, more preferably 8.3% or less, still more preferably 8.2% or less, and even more preferably 8.2% or less. 0% or less. Thereby, the reflectance of the optical layered body can be appropriately reduced.
  • the luminous reflectance Y of the laminated film is usually more than 0%, preferably 5.0% or more, more preferably 5.5% or more, still more preferably 6.0% or more, and even more preferably 6.5%. % or more, particularly preferably 7.0% or more. When the luminous reflectance Y of the laminated film is within this range, it is possible to achieve both the function of adjusting the reflection hue of the optical layered body and the maintenance of low reflectance of the optical layered body.
  • the reflectance of the optical layered body is preferably 5.5% or less, more preferably 5.4% or less, and even more preferably 5.3% or less from the viewpoint of visibility of the image display device.
  • the reflectance of the optical stack is typically greater than 0%.
  • the laminated film has a reflective hue a* of 0.3 or more and 7.0 or less, and a reflective hue of neutral to slightly red is preferable to green. It is preferably 1.0 or more and 5.0 or less, more preferably 1.5 or more and 4.5 or less.
  • the laminated film has a reflection hue b* of -10.0 or more and 0 or less, and preferably -10. 0 or more and -0.5 or less, more preferably -9.0 or more and -1.0 or less, more preferably -8.0 or more and -2.0 or less, still more preferably -8.0 or more and -3.0 or less is.
  • the a* of the reflective hue of the optical layered body is preferably 0.0 or more and 2.0 or less, more preferably 0.2 or more and 1.8 or less. , more preferably 0.4 or more and 1.5 or less, still more preferably 0.6 or more and 1.4 or less.
  • the reflected hue b* is preferably ⁇ 5.0 or more and ⁇ 2.5 or less, more preferably ⁇ 4. 0.8 or more and -2.5 or less, more preferably -4.6 or more and -2.6 or less.
  • the reflectance of the optical laminate, the reflective hue of the laminated film, and the luminous reflectance Y can be measured according to the methods described in the section [Examples] below.
  • the optical functional layer (A) 1a includes, for example, a high refractive index layer, a dye-containing layer (e.g., a yellow dye-containing layer), alternating multilayers of high refractive index layers and low refractive index layers, a liquid crystal layer, a fluorescent layer, Or it may be a combination of these.
  • the high refractive index layer utilizes interface reflection to achieve the above reflective properties.
  • the dye-containing layer contains, for example, a dye that absorbs yellow light, and is a layer that enhances the bluishness of reflected light. Alternating multiple layers of high refractive index layers and low refractive index layers achieve the above reflection properties by utilizing interface reflection at the interface between the high refractive index layers and the low refractive index layers.
  • the liquid crystal layer achieves the above-described reflection characteristics by utilizing, for example, reflection of circularly polarized light by cholesteric liquid crystals.
  • the optical functional layer (A) having the above-described optical properties and the laminated film can be easily realized and manufactured, the reflection hue of the optical laminate can be easily adjusted, and an image display device can be used.
  • the optical function layer (A) 1a is preferably a high refractive index layer from the viewpoint that it is preferable not to color the light transmitted through the layer.
  • refractive index imparting agents include particles composed of metal oxides such as zirconium oxide, titanium oxide, tin oxide, zinc oxide, indium tin oxide, indium oxide, aluminum oxide, silicon oxide, yttrium oxide, and antimony oxide. mentioned.
  • the average particle size of the particles is, for example, 0.01 nm or more and 100 nm or less, preferably 0.1 nm or more and 50 nm or less.
  • the content of the refractive index imparting agent in the high refractive index layer is preferably 10% by mass or more and 90% by mass in 100% by mass of the high refractive index layer from the viewpoint of the refractive index of the high refractive index layer and the ease of film formation of the layer. % or less, more preferably 20 to 80 mass %, still more preferably 30 to 70 mass %, still more preferably 40 to 60 mass %.
  • the refractive index of the high refractive index layer can be adjusted by the content of the refractive index imparting agent in the high refractive index layer. The higher the content of the refractive index imparting agent in the high refractive index layer, the higher the refractive index of the high refractive index layer.
  • the binder resin may be a thermoplastic resin or a cured product of a curable resin.
  • the high refractive index layer may have a hard coat property.
  • the high refractive index layer is a composition for forming a hard coat layer containing an active energy ray-curable resin such as an ultraviolet curable resin and a refractive index imparting agent. It can be formed from a hardened material.
  • active energy ray-curable resins include (meth)acrylic resins, silicone-based resins, polyester-based resins, urethane-based resins, amide-based resins, epoxy-based resins, and the like, and UV-curable resins are preferred.
  • the ultraviolet curable resin that constitutes the binder resin is preferably a (meth)acrylic resin, and from the viewpoint of curability, more preferably a (meth)acrylic resin containing a structural unit derived from a polyfunctional (meth)acrylic monomer.
  • Resin. means either acrylic or methacrylic.
  • (Meth)" such as (meth)acrylate has the same meaning.
  • the thickness (optical film thickness) of the optical functional layer (A) 1a is preferably 10 nm or more and 1000 nm or less, more preferably 10 nm or more and 500 nm or less, still more preferably 20 nm or more and 300 nm or less, in order to realize the above optical properties of the laminated film. , still more preferably 40 nm or more and 250 nm or less, particularly preferably 100 nm or more and 200 nm or less, most preferably 150 nm or more and 200 nm or less.
  • the optical functional layer (A) 1a (preferably a high refractive index layer) preferably has a refractive index of 1.53 or more and 1.68 or less, more preferably 1.55, in order to achieve the above optical properties of the laminated film. 1.66 or less, more preferably 1.58 or more and 1.64 or less.
  • the refractive index of the optical functional layer (A) 1a can be measured according to the method described in the section [Examples] below.
  • the optical function layer (A) 1a is a high refractive index layer containing zirconium oxide particles as a refractive index imparting agent.
  • the volume average diameter (MV) of the zirconium oxide particles is preferably 1 nm or more and 50 nm or less, more preferably 3 nm or more and 20 nm or less so as not to impair the function of suppressing internal reflected light of the circularly polarizing plate.
  • the particle size range of 0.1 nm to 15 nm preferably accounts for 90% or more, more preferably 95% or more.
  • the primary particle size distribution is expressed by measuring the number of zirconium oxide particles.
  • the substrate film 1b is a substrate that supports the optical function layer (A) 1a.
  • a laminate film containing a substrate film and a high refractive index layer can be formed by applying a composition for forming a high refractive index layer onto a substrate film, and drying and/or curing as necessary. can.
  • a thermoplastic resin film which will be described later, can be used as the base film.
  • the thickness of the base film is usually 100 ⁇ m or less, preferably 80 ⁇ m or less, more preferably 60 ⁇ m or less, even more preferably 40 ⁇ m or less, and even more preferably 30 ⁇ m or less, from the viewpoint of thinning. , and is usually 5 ⁇ m or more, preferably 10 ⁇ m or more.
  • the base film is preferably a cyclic polyolefin resin film, a cellulose ester resin film, a polyester resin film, or a (meth)acrylic resin film.
  • the difference from the refractive index is preferably 0.05 or more and 0.20 or less, more preferably 0.07 or more and 0.18 or less, still more preferably 0.09 or more and 0.09 or less, in order to realize the above optical properties of the laminated film. 0.16 or less, even more preferably 0.09 or more and 0.14 or less, and may be 0.10 or less.
  • the laminated film can further include a resin layer 1c arranged on the opposite side of the base film 1b in the optical function layer (A) 1a.
  • the resin layer 1c include a bonding layer such as an adhesive layer, a hard coat layer, and the like.
  • the bonding layer can be used for laminating a front plate or the like on the viewing side of the optical function layer (A) 1a.
  • the pressure-sensitive adhesive layer the description in "(3) Pressure-sensitive adhesive layer" described later is cited.
  • the hard coat layer is, for example, a cured layer of an active energy ray-curable resin, preferably an ultraviolet-curable resin.
  • UV curable resins include (meth)acrylic resins, silicone resins, polyester resins, urethane resins, amide resins, epoxy resins, and olefin resins.
  • the hard coat layer may contain additives in order to improve strength.
  • the additive is not particularly limited, and may be inorganic fine particles, organic fine particles, or a mixture thereof.
  • the hard coat layer can contain an ultraviolet absorber.
  • ultraviolet absorbers include salicylate compounds, benzophenone compounds, benzotriazole compounds, cyanoacrylate compounds, nickel complex compounds, and the like. When there is absorption in the visible light region, the reflection hue becomes bluer, so there is an advantage that the refractive index of the optical function layer can be lowered.
  • the hard coat layer may be one that can be transferred from the substrate film.
  • the laminated film may have an intervening layer 1d between the base film 1b and the optical function layer (A) 1a.
  • the intervening layer 1d include a primer layer and a hard coat layer.
  • the laminated film may have both the resin layer 1c and the intervening layer 1d.
  • resins that form the primer layer include (meth)acrylic resins, silicone resins, polyester resins, urethane resins, amide resins, epoxy resins, and olefin resins.
  • the primer layer may contain additives.
  • the additive is not particularly limited, and inorganic fine particles, organic fine particles, or a mixture thereof may be added particularly to the primer layer for the purpose of improving adhesion and imparting slipperiness.
  • the hard coat layer the above description is cited.
  • the difference between the refractive index of the optical function layer (A) 1a and the intervening layer 1d is preferably 0.05 or more in order to realize the above optical properties of the laminated film. 0.20 or less, more preferably 0.07 or more and 0.18 or less, still more preferably 0.09 or more and 0.16 or less, still more preferably 0.09 or more and 0.14 or less, and 0.10 or less may
  • the intervening layer 1d can contain an ultraviolet absorber. Examples of UV absorbers are the same as above.
  • the intervening layer 1d is a hard coat layer containing an ultraviolet absorber.
  • An optical layered body according to the present invention (hereinafter also simply referred to as an "optical layered body”) includes the above-described laminated film and a circularly polarizing plate.
  • a circular polarizer includes a linear polarizer and a retardation layer.
  • the optical layered body includes a layered film, a linear polarizing plate and a retardation layer in this order.
  • the laminated film is laminated on the viewing side of the circularly polarizing plate.
  • To be laminated on the viewing side means to be laminated on the surface of the linearly polarizing plate in the circularly polarizing plate including the linearly polarizing plate and the retardation layer.
  • the laminated film is laminated on the circularly polarizing plate, for example, so that the base film side faces the circularly polarizing plate.
  • FIG. 5 is a schematic cross-sectional view showing an example of the optical layered body according to the present invention.
  • the optical layered body shown in FIG. 5 includes a layered film 1, a linear polarizing plate 2, and a retardation layer 3.
  • the laminated film 1 and the linear polarizing plate 2 can be laminated via the first bonding layer 10, and the linear polarizing plate 2 and the retardation layer 3 can be laminated via the second bonding layer 20. can be done.
  • the laminated film 1 can be laminated on the linear polarizing plate 2 via the first bonding layer 10 so that the base film side faces the linear polarizing plate 2 .
  • the optical laminated body of the present invention can have the following reflection characteristics [a] to [c].
  • the linear polarizing plate 2 contains a linear polarizer.
  • a linear polarizer has a function of selectively transmitting linearly polarized light in one direction from non-polarized light such as natural light.
  • Examples of the linear polarizer include a stretched film or layer to which a dichroic dye is adsorbed, a cured polymerizable liquid crystal compound and a cured liquid crystal layer containing a dichroic dye, and the like.
  • the laminated film 1 and the linear polarizing plate 2 can be laminated via the first bonding layer 10 .
  • a linear polarizer which is a stretched film to which a dichroic dye is adsorbed, is usually produced by uniaxially stretching a polyvinyl alcohol resin film and dyeing the polyvinyl alcohol resin film with a dichroic dye such as iodine. It can be produced through a step of adsorbing a dichroic dye, a step of treating a polyvinyl alcohol resin film on which the dichroic dye is adsorbed with an aqueous boric acid solution, and a step of washing with water after treatment with the aqueous boric acid solution.
  • the thickness of the stretched film to which the dichroic dye is adsorbed is usually 30 ⁇ m or less, preferably 18 ⁇ m or less, more preferably 15 ⁇ m or less.
  • the thickness is usually 1 ⁇ m or more, and may be, for example, 5 ⁇ m or more.
  • Polyvinyl alcohol-based resin is obtained by saponifying polyvinyl acetate-based resin.
  • Polyvinyl acetate-based resins include polyvinyl acetate, which is a homopolymer of vinyl acetate, and copolymers of vinyl acetate and other monomers copolymerizable therewith.
  • Other monomers copolymerizable with vinyl acetate include, for example, unsaturated carboxylic acid-based compounds, olefin-based compounds, vinyl ether-based compounds, unsaturated sulfone-based compounds, and (meth)acrylamide-based compounds having an ammonium group. .
  • the degree of saponification of the polyvinyl alcohol resin is usually about 85 mol% or more and 100 mol% or less, preferably 98 mol% or more.
  • the polyvinyl alcohol-based resin may be modified, and aldehyde-modified polyvinyl formal, polyvinyl acetal, and the like can also be used.
  • the degree of polymerization of the polyvinyl alcohol resin is usually 1000 or more and 10000 or less, preferably 1500 or more and 5000 or less.
  • a linear polarizer which is a stretched layer to which a dichroic dye is adsorbed, is usually produced by applying a coating liquid containing the polyvinyl alcohol-based resin onto a substrate layer, uniaxially stretching the resulting laminate, and uniaxially stretching the laminate.
  • the substrate layer may be used as a protective film for the linear polarizer, or may be peeled off from the linear polarizer.
  • the material and thickness of the base layer may be the same as the material and thickness of the thermoplastic resin film, which will be described later.
  • the linear polarizing plate 2 can include a protective film laminated on one side or both sides of a linear polarizer, which is a stretched film or stretched layer to which a dichroic dye is adsorbed.
  • a thermoplastic resin film which will be described later, can be used as the protective film.
  • the linear polarizer and the protective film can be laminated via a later-described bonding layer (third bonding layer).
  • thermoplastic resins constituting thermoplastic resin films include, for example, cellulose resins such as triacetyl cellulose; polyester resins such as polyethylene terephthalate and polyethylene naphthalate; polyethersulfone resins; polysulfone resins; polycarbonate resins; Polyamide resins such as polyimide resins; Polyolefin resins such as polyethylene, polypropylene, and ethylene/propylene copolymers; Cyclic polyolefin resins having cyclo- and norbornene structures (also referred to as norbornene-based resins); polystyrene resin; polyvinyl alcohol resin and the like.
  • the thermoplastic resin film is preferably a cyclic polyolefin resin film, a cellulose ester resin film, a polyester resin film, or a (meth)acrylic resin film.
  • the thickness of the thermoplastic resin film is usually 100 ⁇ m or less, preferably 80 ⁇ m or less, more preferably 60 ⁇ m or less, still more preferably 40 ⁇ m or less, and even more preferably 30 ⁇ m or less. It is usually 5 ⁇ m or more, preferably 10 ⁇ m or more.
  • a hard coat layer may be formed on the thermoplastic resin film.
  • the hard coat layer may be formed on one side of the thermoplastic resin film, or may be formed on both sides.
  • a thermoplastic resin film having improved hardness and scratch resistance can be obtained.
  • the hard coat layer the above description is cited.
  • the polymerizable liquid crystal compound used to form the linear polarizer which is the liquid crystal cured layer, is a compound that has a polymerizable reactive group and exhibits liquid crystallinity.
  • the polymerizable reactive group is a group that participates in a polymerization reaction, and is preferably a photopolymerizable reactive group.
  • a photopolymerizable reactive group refers to a group that can participate in a polymerization reaction by an active radical generated from a photopolymerization initiator, an acid, or the like.
  • photopolymerizable reactive groups examples include vinyl group, vinyloxy group, 1-chlorovinyl group, isopropenyl group, 4-vinylphenyl group, acryloyloxy group, methacryloyloxy group, oxiranyl group and oxetanyl group. Among them, an acryloyloxy group, a methacryloyloxy group, a vinyloxy group, an oxiranyl group and an oxetanyl group are preferred, and an acryloyloxy group is more preferred.
  • the type of the polymerizable liquid crystal compound is not particularly limited, and rod-like liquid crystal compounds, discotic liquid crystal compounds, and mixtures thereof can be used.
  • the liquid crystallinity of the polymerizable liquid crystal compound may be either thermotropic liquid crystal or lyotropic liquid crystal, and thermotropic liquid crystal may be classified into nematic liquid crystal or smectic liquid crystal according to the degree of order.
  • the dichroic dye is dispersed and oriented in the cured polymerizable liquid crystal compound.
  • the dichroic dye used in the linear polarizer that is the liquid crystal cured layer one having a maximum absorption wavelength in the range of 300 nm or more and 700 nm or less is preferable.
  • dichroic dyes include acridine dyes, oxazine dyes, cyanine dyes, naphthalene dyes, azo dyes, and anthraquinone dyes, among which azo dyes are preferred.
  • azo dyes examples include monoazo dyes, bisazo dyes, trisazo dyes, tetrakis azo dyes, and stilbene azo dyes, and preferably bisazo dyes and trisazo dyes.
  • the dichroic dyes may be used alone or in combination of two or more, preferably in combination of three or more. In particular, it is more preferable to combine three or more azo compounds.
  • a part of the dichroic dye may have a reactive group and may have liquid crystallinity.
  • a linear polarizer that is a liquid crystal cured layer is obtained, for example, by coating a linear polarizer-forming composition containing a polymerizable liquid crystal compound and a dichroic dye on an alignment layer formed on a substrate layer, and applying a polymerizable liquid crystal compound.
  • a linear polarizer may be formed by coating the composition for forming a linear polarizer on the substrate layer to form a coating film, and stretching the coating film together with the substrate layer.
  • a substrate layer used to form a linear polarizer may be used as a protective film for the linear polarizer.
  • the material and thickness of the base layer may be the same as the material and thickness of the thermoplastic resin film described above.
  • a composition for forming a linear polarizer containing a polymerizable liquid crystal compound and a dichroic dye, and a method for producing a linear polarizer using this composition are disclosed in JP-A-2013-37353 and JP-A-2013-33249. Examples include those described in publications such as JP-A-2017-83843.
  • the linear polarizer-forming composition further contains additives such as solvents, polymerization initiators, cross-linking agents, leveling agents, antioxidants, plasticizers, and sensitizers. may contain. Each of these components may be used alone or in combination of two or more.
  • the polymerization initiator that may be contained in the composition for forming a linear polarizer is a compound capable of initiating the polymerization reaction of the polymerizable liquid crystal compound.
  • initiators are preferred.
  • photopolymerization initiators capable of generating active radicals or acids by the action of light may be mentioned, and among these, photopolymerization initiators capable of generating radicals by the action of light are preferred.
  • the content of the polymerization initiator is preferably 1 part by mass or more and 10 parts by mass or less, more preferably 3 parts by mass or more and 8 parts by mass or less with respect to 100 parts by mass of the total amount of the polymerizable liquid crystal compound. Within this range, the reaction of the polymerizable group proceeds sufficiently, and the alignment state of the liquid crystal compound is easily stabilized.
  • the thickness of the linear polarizer which is the liquid crystal cured layer, is usually 10 ⁇ m or less, preferably 0.5 ⁇ m or more and 8 ⁇ m or less, more preferably 1 ⁇ m or more and 5 ⁇ m or less.
  • the linear polarizing plate 2 may be a laminate of a substrate layer and a linear polarizer that is a liquid crystal cured layer. Alternatively, the substrate layer may be peeled away from the linear polarizer.
  • the linear polarizing plate 2 including a linear polarizer that is a liquid crystal cured layer may or may not have an alignment layer.
  • the linear polarizing plate 2 can include a protective film laminated on one side or both sides of a linear polarizer, which is a liquid crystal cured layer.
  • the protective film the thermoplastic resin film described above can be used.
  • the linear polarizer and the protective film can be laminated via a later-described bonding layer (third bonding layer).
  • the linear polarizer which is a liquid crystal cured layer, may have an overcoat layer on one side or both sides for the purpose of protecting the linear polarizer.
  • the overcoat layer can be formed, for example, by applying a composition for forming the overcoat layer on the linear polarizer.
  • Materials constituting the overcoat layer include, for example, photocurable resins and water-soluble polymers. Specifically, (meth)acrylic resins, polyvinyl alcohol-based resins, and the like can be used.
  • Visibility correction polarization degree Py of the linear polarizer is usually 95% or more, preferably 97% or more, more preferably 98% or more, still more preferably 98.7% or more, and even more preferably 99.0% or more. , particularly preferably 99.4% or more, and may be 99.9% or more.
  • the visibility correction polarization degree Py of the linear polarizer may be 99.999% or less or 99.99% or less.
  • the visibility correction polarization degree Py is obtained using a spectrophotometer with an integrating sphere (“V7100” manufactured by JASCO Corporation), and the obtained polarization degree is “JIS Z 8701” 2 degrees field of view (C light source) It can be calculated by performing visibility correction by .
  • Increasing the visibility correction polarization degree Py of the linear polarizer is advantageous in enhancing the antireflection function of the optical laminate. If the visibility correction polarization degree Py is less than 95%, the antireflection function may not be achieved.
  • Visibility correction single transmittance Ty of the linear polarizer is usually 41% or more, preferably 41.1% or more, more preferably 41.2% or more, and may be 42% or more. It may be 5% or more. Visibility correction single transmittance Ty of the linear polarizer is usually 50% or less, may be 48% or less, may be 46% or less, may be 44% or less, and may be 43% or less. may be If the luminosity correction single transmittance Ty is excessively high, the luminosity correction polarization degree Py becomes too low, and the antireflection function of the optical layered body may become insufficient.
  • the luminosity-corrected single transmittance Ty was obtained using a spectrophotometer with an integrating sphere ("V7100" manufactured by Jasco Co., Ltd.). ) to correct visibility.
  • the optical laminate includes a retardation layer 3 having a first retardation layer 3a.
  • the linear polarizing plate 2 and the first retardation layer 3a can be laminated with the second bonding layer 20 interposed therebetween.
  • the retardation layer 3 may have only the first retardation layer 3a, or may have a laminated structure composed of two or more retardation layers. That is, the retardation layer 3 may include one or more retardation layers different from the first retardation layer 3a.
  • the retardation layer 3 may have an overcoat layer that protects its surface, a substrate layer that supports the retardation layer 3, and the like.
  • the first retardation layer 3a is, for example, a ⁇ /4 layer.
  • the combination of the retardation layers of the layers is, in order from the linear polarizing plate 2 side, a combination of a ⁇ / 4 layer and a positive C layer, and a ⁇ / 2 layer. and a ⁇ /4 layer, and a combination of a positive C layer and a ⁇ /4 layer.
  • a bonding layer (fourth bonding layer), which will be described later, can be used for lamination of the retardation layers.
  • the ⁇ /4 layer has an in-plane retardation value Re(550) at a wavelength of 550 nm, usually in the range of 90 nm or more and 220 nm or less, preferably in the range of 100 nm or more and 200 nm or less.
  • the ⁇ /2 layer preferably has an in-plane retardation value Re(550) at a wavelength of 550 nm in the range of 200 nm or more and 300 nm or less.
  • the positive C layer has a retardation value Rth(550) in the thickness direction at a wavelength of 550 nm, which is usually in the range of -170 nm or more and -10 nm or less, preferably in the range of -150 nm or more and -20 nm or less.
  • the retardation layer 3 preferably has a reverse wavelength dispersion property, more preferably has a wavelength dispersion ⁇ of 0.95 or less, and still more preferably has a wavelength dispersion ⁇ of
  • the wavelength dispersion ⁇ is preferably 0.80 or more and 0.93 or less, more preferably 0.80 or more and 0.90 or less, and particularly preferably 0.80 or more and 0.88 or less.
  • the chromatic dispersion ⁇ is the ratio between the in-plane retardation value Re(450) at a wavelength of 450 nm and the in-plane retardation value Re(550) at a wavelength of 550 nm.
  • Wavelength dispersion ⁇ in-plane retardation value Re (450)/in-plane retardation value Re (550)
  • the first retardation layer 3a and other retardation layers may be retardation films formed by stretching the thermoplastic resin film described above, or may be liquid crystal cured layers.
  • the cured liquid crystal layer is a cured layer obtained by polymerizing and curing a polymerizable liquid crystal compound in an aligned state.
  • the retardation layer 3 can contain one or more liquid crystal cured layers, and may contain two or more layers.
  • the polymerizable liquid crystal compound includes a rod-shaped polymerizable liquid crystal compound and a disk-shaped polymerizable liquid crystal compound, and one of them may be used, or a mixture containing both of them may be used.
  • the rod-shaped polymerizable liquid crystal compound is aligned horizontally or vertically with respect to the substrate layer, the optical axis of the polymerizable liquid crystal compound coincides with the long axis direction of the polymerizable liquid crystal compound.
  • the discotic polymerizable liquid crystal compound is oriented, the optical axis of the polymerizable liquid crystal compound exists in a direction orthogonal to the discotic surface of the polymerizable liquid crystal compound.
  • the polymerizable liquid crystal compound may be oriented in a suitable direction.
  • an in-plane retardation is expressed by aligning the optical axis of the polymerizable liquid crystal compound horizontally with respect to the plane of the substrate layer. match the direction.
  • an in-plane retardation is expressed by aligning the optical axis of the polymerizable liquid crystal compound horizontally with respect to the plane of the substrate layer, and in this case, the optical axis and the slow axis are orthogonal to
  • the alignment state of the polymerizable liquid crystal compound can be adjusted by combining the alignment layer and the polymerizable liquid crystal compound.
  • a polymerizable liquid crystal compound is a compound that has at least one polymerizable reactive group and has liquid crystallinity. When two or more polymerizable liquid crystal compounds are used in combination, at least one preferably has two or more polymerizable reactive groups in the molecule.
  • the polymerizable reactive group is a group that participates in a polymerization reaction, and is preferably a photopolymerizable reactive group.
  • a photopolymerizable reactive group refers to a group that can participate in a polymerization reaction by an active radical generated from a photopolymerization initiator, an acid, or the like. Examples of photopolymerizable reactive groups are the same as those described above.
  • the liquid crystallinity of the polymerizable liquid crystal compound may be either thermotropic liquid crystal or lyotropic liquid crystal, and thermotropic liquid crystal may be classified into nematic liquid crystal or smectic liquid crystal according to the degree of order.
  • the optical laminate may contain an alignment layer adjacent to the retardation layer.
  • the orientation layer has an orientation regulating force that orients the polymerizable liquid crystal compound in a desired direction.
  • the alignment layer may be a vertical alignment layer in which the molecular axis of the polymerizable liquid crystal compound is vertically aligned with respect to the base layer, or a horizontal alignment layer in which the molecular axis of the polymerizable liquid crystal compound is horizontally aligned with respect to the base layer. or a tilted alignment layer in which the molecular axis of the polymerizable liquid crystal compound is tilted with respect to the substrate layer.
  • the thickness of the liquid crystal cured layer may be 0.1 ⁇ m or more, 0.5 ⁇ m or more, 1 ⁇ m or more, 2 ⁇ m or more, or 10 ⁇ m or less. is preferable, and may be 8 ⁇ m or less, or may be 5 ⁇ m or less.
  • the cured liquid crystal layer can be formed by applying a composition for forming a liquid crystal layer containing a polymerizable liquid crystal compound onto the substrate layer, drying the composition, and polymerizing the polymerizable liquid crystal compound.
  • the composition for forming a liquid crystal layer may be applied onto the alignment layer formed on the substrate layer.
  • the material and thickness of the base layer may be the same as the material and thickness of the thermoplastic resin film described above.
  • the substrate layer may be incorporated in the optical laminate together with the retardation layer which is the liquid crystal cured layer, and the substrate layer is peeled off to form the liquid crystal cured layer alone, or the liquid crystal cured layer and the alignment layer are the optical laminate. may be incorporated into
  • FIG. 6 is a schematic cross-sectional view showing another example of the optical layered body according to the present invention.
  • the optical laminate shown in FIG. 6 includes a laminated film 1, a first bonding layer 10, a linear polarizing plate 2, a second bonding layer 20, a retardation layer 3, and an adhesive layer 50. .
  • the retardation layer 3 preferably has reverse wavelength dispersion.
  • the pressure-sensitive adhesive layer 50 can be laminated on the surface opposite to the viewing side (laminated film 1 side) of the optical layered body, and is used for bonding the optical layered body to an image display element such as an organic EL display element. be able to.
  • the laminated film 1 includes a base film 1b and an optical functional layer (A) 1a laminated thereon.
  • the linear polarizing plate 2 includes a linear polarizer 2b and protective films 2a and 2c laminated on both sides thereof with a third bonding layer 30 interposed therebetween. Either one of the protective films 2a and 2c may be omitted.
  • the retardation layer 3 includes a first retardation layer 3a and a second retardation layer 3b.
  • the optical laminate shown in FIG. 6 includes a first retardation layer 3a and a second retardation layer 3b, which are bonded together by a fourth bonding layer 40. As shown in FIG. However, the fourth bonding layer 40 and the second retardation layer 3b may be omitted.
  • the thickness of the adhesive layer 50 may be, for example, 250 ⁇ m or less, preferably 100 ⁇ m or less, more preferably 50 ⁇ m or less, and still more preferably 40 ⁇ m or less from the viewpoint of thinning. From the viewpoint of durability, the lower limit of the thickness of the pressure-sensitive adhesive layer may be, for example, 1 ⁇ m or more, preferably 5 ⁇ m or more, and more preferably 10 ⁇ m or more.
  • the adhesive layer 50 can be composed of an adhesive composition containing (meth)acrylic resin, rubber resin, urethane resin, ester resin, silicone resin, and polyvinyl ether resin as main components. Among them, a pressure-sensitive adhesive composition using a (meth)acrylic resin as a base polymer, which is excellent in transparency, weather resistance, heat resistance, etc., is preferable.
  • the adhesive composition may be active energy ray-curable or heat-curable.
  • the (meth)acrylic resin (base polymer) used in the adhesive composition includes butyl (meth)acrylate, ethyl (meth)acrylate, isooctyl (meth)acrylate, 2-ethylhexyl (meth)acrylate, and the like. Polymers or copolymers containing one or more of the (meth)acrylic acid esters as monomers are preferably used.
  • the base polymer is copolymerized with a polar monomer.
  • Polar monomers include (meth) acrylic acid, 2-hydroxypropyl (meth) acrylate, hydroxyethyl (meth) acrylate, (meth) acrylamide, N,N-dimethylaminoethyl (meth) acrylate, glycidyl (meth) Monomers having a carboxyl group, a hydroxyl group, an amide group, an amino group, an epoxy group, etc., such as acrylates, can be mentioned.
  • the adhesive composition may contain only the above base polymer, but usually further contains a cross-linking agent.
  • a cross-linking agent a metal ion having a valence of 2 or more and forming a carboxylic acid metal salt with a carboxyl group, a polyamine compound forming an amide bond with a carboxyl group, and a carboxyl group
  • examples include polyepoxy compounds or polyols that form ester bonds with and polyisocyanate compounds that form amide bonds with carboxyl groups. Among them, polyisocyanate compounds are preferred.
  • the pressure-sensitive adhesive composition may further contain the ultraviolet absorber described in the explanation of " ⁇ Laminate film> (3) Resin layer" above.
  • the active energy ray-curable pressure-sensitive adhesive composition has the property of being cured by being irradiated with an active energy ray such as an ultraviolet ray or an electron beam. It has the property that it can be adhered to an adherend and can be cured by irradiation with active energy rays to adjust the adhesion force.
  • the active energy ray-curable pressure-sensitive adhesive composition is preferably UV-curable.
  • the active energy ray-curable pressure-sensitive adhesive composition further contains an active energy ray-polymerizable compound in addition to the base polymer and the cross-linking agent. If necessary, a photopolymerization initiator, a photosensitizer, etc. may be contained.
  • the optical layered body is provided with a separate film 60 for protecting the outer surface of the pressure-sensitive adhesive layer 50 (the surface opposite to the second retardation layer 3b). can be done.
  • the optical layered body shown in FIG. 7 has the same layer structure as the optical layered body shown in FIG. 6 except that it has a separate film 60 .
  • the separate film 60 is usually composed of a thermoplastic resin film whose one side has been subjected to release treatment with a release agent such as silicone or fluorine, and the release-treated surface is attached to the adhesive layer 50 .
  • the thermoplastic resin forming the separate film 60 is, for example, a polyethylene-based resin such as polyethylene, a polypropylene-based resin such as polypropylene, a polyester-based resin such as polyethylene terephthalate or polyethylene naphthalate, or the like.
  • the thickness of the separate film 60 is, for example, 10 ⁇ m or more and 50 ⁇ m or less.
  • the optical layered body may include a protection film 70 laminated on the surface of the layered film 1 side.
  • the optical layered body shown in FIG. 8 has the same layer configuration as the optical layered body shown in FIG. 7 except that the protective film 70 is included.
  • the protection film 70 is composed of, for example, a base film and an adhesive layer laminated thereon.
  • the pressure-sensitive adhesive layer the above description is cited.
  • the resin constituting the base film is, for example, a polyethylene-based resin such as polyethylene, a polypropylene-based resin such as polypropylene, a polyester-based resin such as polyethylene terephthalate or polyethylene naphthalate, or a thermoplastic resin such as a polycarbonate-based resin. be able to. Polyester-based resins such as polyethylene terephthalate are preferred.
  • the optical stack may further include a front plate 90 .
  • the front plate 90 is usually arranged on the outermost surface of the optical layered body on the viewing side.
  • the front plate 90 can be laminated, for example, on the surface of the laminated film 1 on the viewing side with the fifth bonding layer 80 interposed therebetween.
  • the optical layered body shown in FIG. 9 has the same layer configuration as the optical layered body shown in FIG. 7 except that it has the fifth bonding layer 80 and the front plate 90 .
  • the material and thickness of the front plate 90 are not limited as long as it is a plate-like body that can transmit light.
  • the front plate 90 may be composed of only one layer, or may be composed of two or more layers.
  • a plate-like body made of resin eg, a resin plate, a resin sheet, a resin film, etc.
  • a plate-shaped body made of glass eg, a glass plate, a glass film, etc.
  • a plate-shaped body made of resin and a plate-shaped body made of glass A laminate with a plate-shaped body of The front panel can constitute the outermost surface of the display device.
  • the thickness of the front plate 90 is, for example, 1000 ⁇ m or less, preferably 800 ⁇ m or less.
  • the thickness is usually 10 ⁇ m or more, preferably 20 ⁇ m or more.
  • Examples of the resin that constitutes the resin plate-like body include triacetyl cellulose, acetyl cellulose butyrate, ethylene-vinyl acetate copolymer, propionyl cellulose, butyryl cellulose, acetyl propionyl cellulose, polyester, polystyrene, polyamide, and polyether.
  • thermoplastic resins can be used alone or in combination of two or more.
  • the resin plate is preferably a thermoplastic resin film made of polyimide, polyamide, polyamideimide, or the like.
  • the front plate 90 may be a thermoplastic resin film with a hard coat layer.
  • the hard coat layer may be formed on one side of the thermoplastic resin film, or may be formed on both sides.
  • hardness and scratch resistance can be improved.
  • the hard coat layer the above description is cited.
  • the front plate 90 is a glass plate
  • tempered glass for displays is preferably used as the glass plate.
  • the thickness of the glass plate may be, for example, 10 ⁇ m or more and 1000 ⁇ m or less, or may be 10 ⁇ m or more and 800 ⁇ m or less.
  • the front plate 90 preferably has high rigidity, and has a Young's modulus of, for example, 70 GPa or more, and may be 80 GPa or more.
  • the Young's modulus of the front plate 90 is usually 100 GPa or less. Young's modulus can be measured as follows. A sample for measurement of the front panel 60 having a long side of 110 mm and a short side of 10 mm is cut out using a super cutter. Then, the upper and lower grips of a tensile tester (manufactured by Shimadzu Corporation, Autograph AG-Xplus testing machine) grip both ends of the measurement sample in the long side direction so that the distance between the grips is 5 cm, and the temperature is 23. ° C., under an environment of 55% relative humidity, the stress obtained by pulling in the length direction of the measurement sample at a tensile speed of 4 mm / min. Young's modulus in % can be calculated.
  • a tensile tester manufactured by Shimadzu Corporation, Autograph AG-
  • the fifth bonding layer is used from the viewpoint of making the color unevenness less visible.
  • the refractive index of the composite layer 80 is preferably 1.45 to 1.51, more preferably 1.46 to 1.50, and the front plate 90 preferably has a refractive index of 1.49 to 1.52. It is more preferably 1.50 or more and 1.52 or less.
  • the fifth bonding layer 80 is preferably an adhesive layer.
  • the front plate 90 not only has a function of protecting the front surface (screen) of the image display device (function as a window film), but also functions as a touch sensor. It may have a light cut function, a viewing angle adjustment function, and the like.
  • the optical laminate can include a lamination layer for joining two layers (or films).
  • the bonding layers include a first bonding layer 10 for bonding the laminated film 1 and the linear polarizing plate 2 together, a second bonding layer 20 for bonding the linear polarizing plate 2 and the retardation layer 3 together, and a linear polarizer. 2b and the protective films 2a and 2c, a fourth bonding layer 40 for bonding the first retardation layer 3a and the second retardation layer 3b, and a front plate 90.
  • a fifth bonding layer 80 (which may be regarded as the resin layer 1c included in the laminated film 1) for the purpose of bonding, and the like.
  • the lamination layer is an adhesive layer composed of an adhesive composition or an adhesive layer composed of an adhesive composition.
  • the adhesive composition and the adhesive layer the description of (3) above is cited.
  • adhesive compositions include water-based adhesives and active energy ray-curable adhesives.
  • water-based adhesives include polyvinyl alcohol-based resin aqueous solutions and water-based two-part urethane-based emulsion adhesives.
  • Active energy ray-curable adhesives are adhesives that are cured by irradiation with active energy rays such as ultraviolet rays.
  • adhesives containing a polymerizable compound and a photopolymerization initiator adhesives containing a photoreactive resin , an adhesive containing a binder resin and a photoreactive cross-linking agent, and the like.
  • Examples of the polymerizable compound include photopolymerizable monomers such as photocurable epoxy-based monomers, photocurable (meth)acrylic monomers, and photocurable urethane-based monomers, and oligomers derived from these monomers.
  • Examples of the photopolymerization initiator include compounds containing substances that generate active species such as neutral radicals, anion radicals, and cation radicals upon irradiation with active energy rays such as ultraviolet rays.
  • the thickness of the lamination layer composed of the adhesive composition may be, for example, 0.1 ⁇ m or more, preferably 0.5 ⁇ m or more, 1 ⁇ m or more, or 2 ⁇ m or more, and 100 ⁇ m or less, 50 ⁇ m or less, 25 ⁇ m or less, or 15 ⁇ m. or less or 5 ⁇ m or less.
  • the two opposing surfaces to be bonded via the bonding layer may be previously subjected to surface activation treatment such as corona treatment, plasma treatment, and flame treatment.
  • An image display device includes the optical laminate according to the present invention and an image display element (organic EL display element or the like).
  • the optical layered body is arranged on the viewing side of the image display element.
  • the adhesive layer 50 can be used to bond the optical layered body to an image display element.
  • FIG. 10 is a schematic cross-sectional view showing an example of an image display device according to the present invention.
  • the optical layered body shown in FIG. 9 is used as an example of the optical layered body.
  • the optical layered body is attached to the image display element 100 using the pressure-sensitive adhesive layer 50 .
  • a front plate 90 is laminated via a fifth bonding layer 80 on the surface of the optical laminate opposite to the pressure-sensitive adhesive layer 50 (the outermost surface on the viewing side).
  • the image display device is not particularly limited, and examples thereof include image display devices such as organic electroluminescence (organic EL) display devices, inorganic electroluminescence (inorganic EL) display devices, liquid crystal display devices, and electroluminescence display devices.
  • image display devices such as organic electroluminescence (organic EL) display devices, inorganic electroluminescence (inorganic EL) display devices, liquid crystal display devices, and electroluminescence display devices.
  • the image display device can be used as mobile devices such as smartphones and tablets, televisions, digital photo frames, electronic signboards, measuring instruments or gauges, office equipment, medical equipment, computing equipment, and the like.
  • Luminous reflectance Y and reflection hue (a* and b*) of laminated film First, using a spectrophotometer "MPC-2200" manufactured by Shimadzu Corporation, the reflectance in the visible light region was measured. During the measurement, a black acrylic plate (“Kanacelite 1410” manufactured by Kanase Co., Ltd.) was attached to the back side of the measurement surface via an adhesive layer. Luminous reflectance Y and reflection hue (a* and b*) were calculated from the obtained reflection spectrum. The luminous reflectance was calculated by multiplying the obtained reflectance Y by a luminosity coefficient.
  • Retardation Characteristics of Retardation Layer The retardation characteristics of the retardation layer were measured using “KOBRA-WPR” manufactured by Oji Scientific Instruments.
  • Irgacure 184" manufactured by BASF
  • An ultraviolet curable resin (“KAYARAD-DPHA” manufactured by Nippon Kayaku Co., Ltd.) was added thereto and stirred.
  • ZRMIBK15WT%-P03 manufactured by CIK Nanotech, solid content 15% by mass, average primary particle size 7.8 nm
  • ZRMIBK15WT%-P03 manufactured by CIK Nanotech, solid content 15% by mass, average primary particle size 7.8 nm
  • the ratio of the particle size range of 0.1 nm to 15 nm to the total was 99.56%.
  • a polyvinyl alcohol aqueous solution was prepared by dissolving 3 parts by mass of carboxyl group-modified polyvinyl alcohol ["KL-318" manufactured by Kuraray Co., Ltd.] in 100 parts by mass of water.
  • Water-soluble polyamide epoxy resin (“Sumireze Resin 650 (30)” manufactured by Taoka Chemical Co., Ltd., solid content concentration 30% by mass) was added to the resulting aqueous solution, and 1.5 parts by mass was added to 100 parts by mass of water. The proportions were mixed to obtain a water-based adhesive.
  • the water-based adhesive obtained above is applied to one surface of the linear polarizer obtained above, and a cyclic polyolefin resin film (hereinafter referred to as a hard coat layer (hereinafter also referred to as “HC layer”) having a hard coat layer (hereinafter referred to as "HC layer”) Also referred to as "COP film”.), apply the water-based adhesive obtained above to the other surface of the linear polarizer, laminate the TAC film, and dry at a temperature of 80 ° C. for 5 minutes. , a linear polarizing plate having protective films on both sides of the linear polarizer was obtained.
  • HC layer cyclic polyolefin resin film
  • the layer structure of the linear polarizing plate is HC layer/COP film/water-based adhesive layer/linear polarizer/water-based adhesive layer/TAC film.
  • a protective film having an adhesive layer on a base film was laminated on the HC layer of the linear polarizing plate to obtain a linear polarizing plate with a protective film (hereinafter also referred to as "linear polarizing plate with PF").
  • Retardation Layer Laminate An orientation layer is formed on the first substrate layer made of a transparent resin, and a composition for forming a liquid crystal layer containing a rod-shaped nematic polymerizable liquid crystal compound is applied to form the first substrate layer.
  • a first retardation layer with a substrate layer was produced.
  • the first retardation layer was a ⁇ /4 layer.
  • the thickness of the first retardation layer was 2 ⁇ m.
  • the wavelength dispersion ⁇ [in-plane retardation value Re(450)/in-plane retardation value Re(550)] of the first retardation layer was 0.85, and Re(550) was 142 nm. Details are shown below.
  • Photo-orientable material :
  • a polymerizable liquid crystal compound (A1) and a polymerizable liquid crystal compound (A2) having the structures shown below were prepared.
  • a polymerizable liquid crystal compound (A1) was prepared in the same manner as described in JP-A-2019-003177.
  • a polymerizable liquid crystal compound (A2) was prepared in the same manner as described in JP-A-2009-173893.
  • a solution was obtained by dissolving 1 mg of the polymerizable liquid crystal compound (A1) in 10 mL of chloroform.
  • a measurement sample was placed in a measurement cell having an optical path length of 1 cm, and the measurement sample was set in an ultraviolet-visible spectrophotometer ("UV-2450" manufactured by Shimadzu Corporation) to measure the absorption spectrum.
  • UV-2450 ultraviolet-visible spectrophotometer
  • the maximum absorption wavelength ⁇ max in the wavelength range of 300 to 400 nm was 356 nm.
  • a biaxially stretched polyethylene terephthalate (PET) film (Diafoil, manufactured by Mitsubishi Plastics Co., Ltd.) as the first substrate layer was coated with the composition for forming an orientation layer using a bar coater. The resulting coating film was dried at 120° C. for 2 minutes and then cooled to room temperature to form a dry film. Thereafter, a UV irradiation device (SPOT CURE SP-9; manufactured by Ushio Inc.) was used to irradiate 100 mJ (313 nm standard) of polarized ultraviolet light to obtain an alignment layer. The thickness of the alignment layer measured using an ellipsometer M-220 manufactured by JASCO Corporation was 100 nm.
  • SPOT CURE SP-9 manufactured by Ushio Inc.
  • the composition for forming the first retardation layer was applied using a bar coater to form a coating film.
  • This coating film was dried by heating at 120° C. for 2 minutes and then cooled to room temperature to obtain a dry film. Then, using a high-pressure mercury lamp (“Unicure VB-15201BY-A” manufactured by Ushio Inc.), the dry film is irradiated with ultraviolet light at an exposure amount of 500 mJ/cm 2 (365 nm standard) in a nitrogen atmosphere.
  • the first substrate layer / alignment layer / first retardation layer (horizontally aligned liquid crystal A cured film) was thus obtained.
  • the film thickness of the first retardation layer measured using a laser microscope LEXT OLS4100 manufactured by Olympus Corporation was 2.0 ⁇ m.
  • a second retardation layer with a second base layer was produced by the following method.
  • a composition for forming an alignment layer was obtained by adding 2-butoxyethanol to Sanever SE-610 (manufactured by Nissan Chemical Industries, Ltd.), which is a commercially available alignment polymer, so that the solid content was 1% by mass.
  • Second Retardation Layer As the second base material layer, a cycloolefin polymer (COP) (ZF14, manufactured by Nippon Zeon Co., Ltd.) was used, and one side thereof was subjected to corona treatment using a corona treatment device (AGF-B10; manufactured by Kasuga Denki Co., Ltd.). , the alignment layer-forming composition was applied to the surface thereof using a bar coater and dried at 90°C for 1 minute. The film thickness of the resulting alignment layer was measured with a laser microscope and found to be 30 nm. Subsequently, the composition for forming the second retardation layer was applied onto the alignment layer using a bar coater and dried at 90° C. for 1 minute.
  • COP cycloolefin polymer
  • a second retardation layer with a second base layer was obtained by irradiating the dry film with ultraviolet light at an exposure amount of 1000 mJ/cm 2 (365 nm standard) in a nitrogen atmosphere.
  • the film thickness was measured with a laser microscope, the film thickness of the second retardation layer was 450 nm.
  • the in-plane retardation value was measured using KOBRA-WR manufactured by Oji Scientific Instruments Co., Ltd.
  • a UV-curable adhesive was prepared by mixing cationic curable components shown below.
  • 3′,4′-epoxycyclohexylmethyl 3,4-epoxycyclohexane carboxylate (trade name: CEL2021P, manufactured by Daicel Corporation): 70 parts by mass
  • Neopentyl glycol diglycidyl ether (trade name: EX-211, Nagase ChemteX Corporation) Company): 20 parts by weight 2-ethylhexyl glycidyl ether (trade name: EX-121, manufactured by Nagase ChemteX Corporation): 10 parts by weight Cationic polymerization initiator (trade name: CPI-100, 50% solution, San-Apro Co., Ltd. made): 4.5 parts by mass (substantial solid content: 2.25 parts by mass) 1,4-diethoxynaphthalene: 2.0 parts by mass
  • the retardation layer side of the first retardation layer with the first substrate layer and the retardation layer side of the second retardation layer with the second substrate layer were each subjected to corona treatment.
  • the prepared ultraviolet curable adhesive was applied to one corona-treated surface, and the first retardation layer with the first base layer and the second retardation layer with the second base layer were bonded together.
  • An adhesive layer was formed by irradiating ultraviolet rays from the second base material layer side to cure the ultraviolet curing adhesive.
  • the thickness of the UV curable adhesive layer after curing was 1.5 ⁇ m.
  • the reflectance Y of the optical layered body was evaluated according to the following criteria. Table 1 shows the results. A: Reflectance Y is 5.5% or less. B: Reflectance Y is over 5.5%.
  • Example 2 to 4 (1) Production of laminated film A laminated film was produced in the same manner as in Example 1 except that the optical film thickness of the optical function layer (high refractive index layer) was as shown in Table 1 (same as in Example 1 using a composition for forming a high refractive index layer). Table 1 shows the refractive index of the optical functional layer, and the luminous reflectance Y and reflection hue of the laminated film.
  • ZRMIBK15WT%-P03 zirconium oxide particle dispersion
  • solid content 15% by mass, average primary particle diameter 7.8 nm
  • the composition for forming a low refractive index layer prepared in (1-2) above is applied using a bar coater, dried and irradiated with ultraviolet rays to form a low refractive index layer,
  • a laminated film was prepared from the material film and optical functional layers (high refractive index layer and low refractive index layer) having optical film thicknesses shown in Table 1.
  • Table 1 shows the refractive index of the optical functional layer, and the luminous reflectance Y and reflection hue of the laminated film.
  • the numerical value of the optical film thickness of the optical function layer in Comparative Examples 9 and 10 indicates the optical film thickness of the high refractive index layer/the optical film thickness of the low refractive index layer.
  • the numerical value of the refractive index of the optical functional layer in Comparative Examples 9 and 10 indicates the refractive index of the high refractive index layer/the refractive index of the low refractive index layer.
  • Laminated film 1a Optical function layer (A) 1b Base film 1c Resin layer 1d Intervening layer 2 Linear polarizing plate 2a, 2c Protective film 2b Linear polarizer 3 Retardation layer 3a First place Retardation layer 3b Second retardation layer 10 First bonding layer 20 Second bonding layer 30 Third bonding layer 40 Fourth bonding layer 50 Adhesive layer 60 Separate film 70 Protection film , 80 fifth bonding layer, 90 front plate, 100 image display element.
  • Base film 1c Resin layer 1d Intervening layer 2 Linear polarizing plate 2a, 2c Protective film 2b Linear polarizer 3 Retardation layer 3a First place Retardation layer 3b Second retardation layer 10 First bonding layer 20 Second bonding layer 30 Third bonding layer 40 Fourth bonding layer 50 Adhesive layer 60 Separate film 70 Protection film , 80 fifth bonding layer, 90 front plate, 100 image display element.

Abstract

基材フィルムと、その上に積層される光学機能層(A)とを含む積層フィルムであって、積層フィルムは視感反射率Yが9.0%以下であり、反射色相のa*が0.3以上7.0以下であり、反射色相のb*が-10.0以上0以下である積層フィルム、該積層フィルムと円偏光板とを含む光学積層体、並びに、該光学積層体を含む画像表示装置が提供される。

Description

積層フィルム、光学積層体及び画像表示装置
 本発明は、積層フィルム、光学積層体及び画像表示装置に関する。
 有機エレクトロルミネッセンス(EL)表示装置に代表される画像表示装置では、外光の反射による視認性の低下を抑制するために、円偏光板等を用いて反射防止性能を向上させることが知られている〔例えば、特開2020-134934号公報(特許文献1)〕。円偏光板は、直線偏光板と位相差層とを含む光学積層体である。
特開2020-134934号公報
 円偏光板は通常、有機EL表示素子等の画像表示素子の視認側に配置される。このように円偏光板を配置することによって、画像表示素子に入射した外光が、該素子が有する内部電極等により反射して外部に出射する内部反射光を抑制することができる。円偏光板のような、画像表示素子の視認側に配置される光学部材には、低い反射率を維持しながら、ニーズに合わせて反射色相を調整できることが求められている。
 本発明の目的は、円偏光板の視認側に配置することにより円偏光板とともに光学積層体を構成するための積層フィルムであって、該光学積層体の低い反射率を維持しながら、該光学積層体の反射色相を調整可能な積層フィルムを提供することにある。本発明の他の目的は、該積層フィルムと円偏光板とを含む光学積層体及び該光学積層体を含む画像表示装置を提供することにある。
 本発明は、以下の積層フィルム、光学積層体及び画像表示装置を提供する。
 [1] 基材フィルムと、その上に積層される光学機能層(A)とを含む積層フィルムであって、
 前記積層フィルムは、視感反射率Yが9.0%以下であり、反射色相のa*が0.3以上7.0以下であり、反射色相のb*が-10.0以上0以下である、積層フィルム。
 [2] 前記光学機能層(A)は、屈折率が1.55以上1.68以下である、[1]に記載の積層フィルム。
 [3] 前記光学機能層(A)の屈折率と前記基材フィルムの屈折率との差が0.05以上0.20以下である、[1]又は[2]に記載の積層フィルム。
 [4] 前記光学機能層(A)は、光学膜厚が150nm以上200nm以下である、[1]~[3]のいずれかに記載の積層フィルム。
 [5] 前記光学機能層(A)は、酸化ジルコニウム粒子を含み、
 前記酸化ジルコニウム粒子の一次粒子径分布において、粒子径0.1nm以上15nmの範囲が90%以上を占める、[1]~[4]のいずれかに記載の積層フィルム。
 [6] 前記基材フィルムは、環状ポリオレフィン系樹脂フィルム、セルロースエステル系樹脂フィルム、ポリエステル系樹脂フィルム又は(メタ)アクリル系樹脂フィルムである、[1]~[5]のいずれかに記載の積層フィルム。
 [7] 前記光学機能層(A)における前記基材フィルムとは反対側に配置される樹脂層をさらに含む、[1]~[6]のいずれかに記載の積層フィルム。
 [8] 前記基材フィルムと前記光学機能層(A)との間に、プライマー層及びハードコート層から選択される介在層を有する、[1]~[7]のいずれかに記載の積層フィルム。
 [9] 前記介在層が紫外線吸収剤を含む、[8]に記載の積層フィルム。
 [10] [1]~[9]のいずれかに記載の積層フィルムと、円偏光板とを含む、光学積層体。
 [11] [10]に記載の光学積層体を含む、画像表示装置。
 円偏光板の視認側に配置することにより円偏光板とともに光学積層体を構成するための積層フィルムであって、該光学積層体の低い反射率を維持しながら、該光学積層体の反射色相を調整可能な積層フィルム、該積層フィルムと円偏光板とを含む光学積層体、並びに、該光学積層体を含む画像表示装置を提供することができる。
本発明に係る積層フィルムの一例を示す概略断面図である。 本発明に係る積層フィルムの他の一例を示す概略断面図である。 本発明に係る積層フィルムのさらに他の一例を示す概略断面図である。 本発明に係る積層フィルムのさらに他の一例を示す概略断面図である。 本発明に係る光学積層体の一例を示す概略断面図である。 本発明に係る光学積層体の他の一例を示す概略断面図である。 本発明に係る光学積層体のさらに他の一例を示す概略断面図である。 本発明に係る光学積層体のさらに他の一例を示す概略断面図である。 本発明に係る光学積層体のさらに他の一例を示す概略断面図である。 本発明に係る画像表示装置の一例を示す概略断面図である。
 以下、図面を参照しつつ本発明の実施形態を説明するが、本発明は以下の実施形態に限定されるものではない。以下のすべての図面は、本発明の理解を助けるために示すものであり、図面に示される各構成要素のサイズや形状は、実際の構成要素のサイズや形状とは必ずしも一致しない。
 <積層フィルム>
 本発明に係る積層フィルム(以下、単に「積層フィルム」ともいう。)は、基材フィルムと、その上に積層される光学機能層(A)とを含む積層光学フィルムである。積層フィルムの層構成の例を図1~図4に示す。
 図1に示される積層フィルムは、基材フィルム1bと、その上に積層される光学機能層(A)1aとから構成されており、基材フィルム1bと光学機能層(A)1aとは接している。
 図2に示される積層フィルムは、光学機能層(A)1aにおける基材フィルム1bとは反対側に配置される樹脂層1cをさらに含むこと以外は図1に示される積層フィルムと同様の構成を有する。光学機能層(A)1aと樹脂層1cとは接している。
 図3に示される積層フィルムは、基材フィルム1bと光学機能層(A)1aとの間に介在層1dを有すること以外は図1に示される積層フィルムと同様の構成を有する。光学機能層(A)1aと介在層1dとは接しており、介在層1dと基材フィルム1bとは接している。
 図4に示される積層フィルムは、光学機能層(A)1aにおける基材フィルム1bとは反対側に配置される樹脂層1cを有し、さらに、基材フィルム1bと光学機能層(A)1aとの間に介在層1dを有すること以外は図1に示される積層フィルムと同様の構成を有する。光学機能層(A)1aと樹脂層1cとは接しており、光学機能層(A)1aと介在層1dとは接しており、介在層1dと基材フィルム1bとは接している。
 積層フィルムは、円偏光板と組み合わせて用いられる。用語「円偏光板」は、楕円偏光板を含む。本明細書において、積層フィルムと円偏光板との組み合わせである積層体を光学積層体という。光学積層体において積層フィルムは、円偏光板の視認側に積層される。視認側に積層されるとは、直線偏光板と位相差層とを含む円偏光板における直線偏光板の面に積層されることをいう。積層フィルムは、例えば、その基材フィルム側が円偏光板に対向するように円偏光板上に積層される。
 光学積層体は、有機EL表示装置等の画像表示装置に好適に適用することができる。画像表示装置に適用される場合、該光学積層体の積層フィルム側が視認側となるように、すなわち、光学積層体の位相差層側が画像表示素子(有機EL表示素子等)側となるように、画像表示素子の視認側に配置される。
 以下、積層フィルムの光学特性、積層フィルムに含まれる又は含まれていてもよい構成要素について詳細に説明する。
 (1)積層フィルムの光学特性及び光学機能層(A)
 積層フィルムは、視感反射率Yが9.0%以下であり、反射色相のa*が0.3以上7.0以下であり、反射色相のb*が-10.0以上0以下である。
 上記光学特性を有する積層フィルムによれば、これを円偏光板の視認側に積層することにより、円偏光板の構成や位相差特性によらず、光学積層体の反射色相の調整、コントロールが可能となる。特に、積層フィルムは、反射色相のb*が-10.0以上0以下であることから、光学積層体の視認側表面で反射する反射光を青味がかった色にすることができる。このことは、円偏光板の面内における反射色相のわずかな振れに起因する内部反射光の色ムラを視認させにくくするうえで有利である。従来の円偏光板は、特に逆波長分散性を有するλ/4層を含む構成であるとき、内部反射光を広い可視範囲で抑えられるため、黒表示(円偏光板の反射色相をニュートラルにすること)を実現しやすい。しかし、円偏光板の反射色相がニュートラルになるほど、色ムラが視認されやすいという問題があった。積層フィルムを円偏光板の視認側に配置することにより、この色ムラを視認しにくくすることができる。その一方で、積層フィルムを円偏光板の視認側に配置しても、画像表示素子からの透過光(白表示)を青味がかった色に変化させたり、反射率が大きく上昇することがない。
 本発明によれば、光学積層体の反射色相の調整の役割を積層フィルムに担わせることができる。円偏光板が有する位相差層の波長分散や位相差特性を調整することによっても、円偏光板の反射色相を青味がかった色にすることは可能である。しかしこの場合、斜めからの反射色相の変化が大きくなるという別の問題を生じる。また、そもそも、円偏光板が有する位相差層の波長分散や位相差特性を調整する手法によって調整できる反射色相の範囲は限定的である。光学積層体の反射色相の調整の役割を積層フィルムに担わせる手法によれば、斜めからの反射色相の変化を抑制しつつ、色ムラを視認しにくくすることができる。
 また、本発明に係る積層フィルムによれば、光学積層体の反射色相を適度に青味がかった色にすることができるため、画像表示装置の表示に高級感を与えることができる。
 積層フィルムは、視感反射率Yが9.0%以下であり、好ましくは8.5%以下、より好ましくは8.3%以下、さらに好ましくは8.2%以下、なおさらに好ましくは8.0%以下である。これにより、光学積層体の反射率を適度に小さくすることができる。積層フィルムの視感反射率Yは、通常0%超であり、好ましくは5.0%以上、より好ましくは5.5%以上、さらに好ましくは6.0%以上、なおさらに好ましくは6.5%以上、特に好ましくは7.0%以上である。積層フィルムの視感反射率Yがこの範囲であることにより、光学積層体の反射色相を調整する機能と光学積層体の低い反射率の維持とを両立することができる。
 光学積層体の反射率は、画像表示装置の視認性の観点から、好ましくは5.5%以下、より好ましくは5.4%以下、さらに好ましくは5.3%以下である。光学積層体の反射率は、通常0%超である。
 積層フィルムは、反射色相のa*が0.3以上7.0以下であり、反射色相は緑色より、ニュートラルからやや赤よりが好まれることから、好ましくは0.5以上6.0以下、より好ましくは1.0以上5.0以下、さらに好ましくは1.5以上4.5以下である。積層フィルムは、反射色相のb*が-10.0以上0以下であり、光学積層体の視認側表面で反射する反射光を適度に青味がかった色にするために、好ましくは-10.0以上-0.5以下、より好ましくは-9.0以上-1.0以下、さらに好ましくは-8.0以上-2.0以下、なおさらに好ましくは-8.0以上-3.0以下である。
 反射色相は緑色より、ニュートラルからやや赤よりが好まれることから、光学積層体は、反射色相のa*が好ましくは0.0以上2.0以下、より好ましくは0.2以上1.8以下、さらに好ましくは0.4以上1.5以下、なおさらに好ましくは0.6以上1.4以下である。光学積層体は、視認側表面で反射する反射光を適度に青味がかった色にするために、反射色相のb*が好ましくは-5.0以上-2.5以下、より好ましくは-4.8以上-2.5以下、さらに好ましくは-4.6以上-2.6以下である。
 光学積層体の反射率、積層フィルムの反射色相及び視感反射率Yは、後述する[実施例]の項に記載された方法に従って測定することができる。
 光学機能層(A)1aは、例えば、高屈折率層、色素含有層(例えば、黄色色素含有層)、高屈折率層と低屈折率層との交互多層、液晶層、蛍光発光性層、又はこれらの組み合わせ等であってよい。高屈折率層は、界面反射を利用して上記反射特性を実現する。色素含有層は、例えば黄色光を吸収する色素を含有するものであって、反射光の青味を高める層である。高屈折率層と低屈折率層との交互多層は、高屈折率層と低屈折率層との界面における界面反射を利用して上記反射特性を実現する。液晶層は、例えば、コレステリック液晶による円偏光の反射を利用して上記反射特性を実現する。中でも、上記光学特性を有する光学機能層(A)及び積層フィルムの実現のしやすさ及び製造の容易さの観点、光学積層体の反射色相の調整のしやすさの観点、並びに、画像表示素子からの透過光は着色させない方が好ましいという観点から、光学機能層(A)1aは、高屈折率層であることが好ましい。
 高屈折率層を構成する材料としては、従来公知の構成のものを用いることができるが、好ましくはバインダ樹脂中に屈折率付与剤が分散されている層が挙げられる。屈折率付与剤としては、例えば、酸化ジルコニウム、酸化チタン、酸化スズ、酸化亜鉛、酸化インジウムスズ、酸化インジウム、酸化アルミウム、酸化ケイ素、酸化イットリウム、酸化アンチモン等の金属酸化物から構成される粒子が挙げられる。該粒子の平均粒子径は、例えば0.01nm以上100nm以下、好ましくは0.1nm以上50nm以下である。
 高屈折率層における屈折率付与剤の含有量は、高屈折率層の屈折率及び該層の製膜容易性の観点から、高屈折率層100質量%中、好ましくは10質量%以上90質量%以下、より好ましくは20質量%以上80質量%以下、さらに好ましくは30質量%以上70質量%以下、なおさらに好ましくは40質量%以上60質量%以下である。高屈折率層の屈折率は、高屈折率層における屈折率付与剤の含有量によって調整することができる。高屈折率層における屈折率付与剤の含有量が多いほど、高屈折率層の屈折率を高くすることができる。
 バインダ樹脂は、熱可塑性樹脂であってもよいし、硬化性樹脂の硬化物であってもよい。高屈折率層はハードコート性を有していてもよく、この場合、高屈折率層は、紫外線硬化型樹脂等の活性エネルギー線硬化型樹脂及び屈折率付与剤を含むハードコート層形成用組成物の硬化物から形成することができる。活性エネルギー線硬化型樹脂としては、例えば(メタ)アクリル系樹脂、シリコーン系樹脂、ポリエステル系樹脂、ウレタン系樹脂、アミド系樹脂、エポキシ系樹脂等が挙げられ、好ましくは紫外線硬化型樹脂である。バインダ樹脂を構成する紫外線硬化型樹脂は、好ましくは(メタ)アクリル系樹脂であり、硬化性の観点から、より好ましくは多官能の(メタ)アクリルモノマー由来の構成単位を含む(メタ)アクリル系樹脂である。
 なお、本明細書において「(メタ)アクリル」とは、アクリル又はメタクリルのいずれでもよいことを意味する。(メタ)アクリレート等の「(メタ)」も同様の意味である。
 光学機能層(A)1aの厚み(光学膜厚)は、積層フィルムの上記光学特性を実現するために、好ましくは10nm以上1000nm以下、より好ましくは10nm以上500nm以下、さらに好ましくは20nm以上300nm以下、なおさらに好ましくは40nm以上250nm以下、特に好ましくは100nm以上200nm以下、最も好ましくは150nm以上200nm以下である。
 光学機能層(A)1a(好ましくは高屈折率層)は、積層フィルムの上記光学特性を実現するために、好ましくは、屈折率が1.53以上1.68以下、より好ましくは1.55以上1.66以下、さらに好ましくは1.58以上1.64以下である。光学機能層(A)1aの屈折率は、後述する[実施例]の項に記載された方法に従って測定することができる。
 1つの好ましい実施形態において光学機能層(A)1aは、屈折率付与剤として酸化ジルコニウム粒子を含む高屈折率層である。この実施形態において、酸化ジルコニウム粒子の体積平均径(MV)は、円偏光板の内部反射光抑制機能を阻害しないために、好ましくは1nm以上50nm以下、より好ましくは3nm以上20nm以下である。同様の理由から、酸化ジルコニウム粒子は、その一次粒子径分布において、粒子径0.1nm以上15nmの範囲が90%以上を占めることが好ましく、95%以上を占めることがより好ましい。なお、上記一次粒子径分布は、酸化ジルコニウム粒子数の測定により表される。
 (2)基材フィルム
 基材フィルム1bは、光学機能層(A)1aを支持する基材である。例えば、高屈折率層形成用組成物を基材フィルム上に塗布し、必要に応じて乾燥及び/又は硬化させることにより、基材フィルムと高屈折率層とを含む積層フィルムを形成することができる。
 基材フィルムとしては、後述する熱可塑性樹脂フィルムを用いることができる。基材フィルムの厚みは、薄型化の観点から、通常100μm以下であり、好ましくは80μm以下であり、より好ましくは60μm以下であり、さらに好ましくは40μm以下であり、なおさらに好ましくは30μm以下であり、また、通常5μm以上であり、好ましくは10μm以上である。
 中でも、基材フィルムは、環状ポリオレフィン系樹脂フィルム、セルロースエステル系樹脂フィルム、ポリエステル系樹脂フィルム又は(メタ)アクリル系樹脂フィルムであることが好ましい。
 図1に示される積層フィルムのように、光学機能層(A)1aと基材フィルム1bとが隣接している場合にはとりわけ、光学機能層(A)1aの屈折率と基材フィルム1bの屈折率との差は、積層フィルムの上記光学特性を実現するために、好ましくは0.05以上0.20以下、より好ましくは0.07以上0.18以下、さらに好ましくは0.09以上0.16以下、なおさらに好ましくは0.09以上0.14以下であり、0.10以下であってもよい。
 (3)樹脂層
 図2に示される積層フィルムのように、積層フィルムは、光学機能層(A)1aにおける基材フィルム1bとは反対側に配置される樹脂層1cをさらに含むことができる。樹脂層1cとしては、例えば、粘着剤層等の貼合層、ハードコート層等が挙げられる。貼合層は、光学機能層(A)1aの視認側に前面板等を積層するために用いることができる。粘着剤層については、後述する「(3)粘着剤層」における記述が引用される。
 ハードコート層は、例えば活性エネルギー線硬化型樹脂、好ましくは紫外線硬化型樹脂の硬化層である。紫外線硬化型樹脂としては、例えば(メタ)アクリル系樹脂、シリコーン系樹脂、ポリエステル系樹脂、ウレタン系樹脂、アミド系樹脂、エポキシ系樹脂、オレフィン系樹脂等が挙げられる。ハードコート層は、強度を向上させるために、添加剤を含んでいてもよい。添加剤は特に限定されず、無機系微粒子、有機系微粒子又はこれらの混合物が挙げられる。ハードコート層は、紫外線吸収剤を含有することができる。紫外線吸収剤としては、サリチル酸エステル系化合物、ベンゾフェノン系化合物、ベンゾトリアゾール系化合物、シアノアクリレート系化合物、ニッケル錯塩系化合物等が挙げられる。可視光域に吸収のある場合は反射色相が青色よりになるため光学機能層の屈折率を下げられるメリットがある。また、ハードコート層は基材フィルム上から転写できるものでもよい。
 (4)介在層
 図3に示される積層フィルムのように、積層フィルムは、基材フィルム1bと光学機能層(A)1aとの間に介在層1dを有していてもよい。介在層1dとしては、例えば、プライマー層、ハードコート層等が挙げられる。図4に示される積層フィルムのように、積層フィルムは、樹脂層1c及び介在層1dの両方を有していてもよい。
 プライマー層を形成する樹脂としては、例えば、(メタ)アクリル系樹脂、シリコーン系樹脂、ポリエステル系樹脂、ウレタン系樹脂、アミド系樹脂、エポキシ系樹脂、オレフィン系樹脂等が挙げられる。プライマー層は添加剤を含んでいてもよい。添加剤は特に限定されず、特にプライマー層には、密着性向上とともに滑り性付与を目的として無機系微粒子、有機系微粒子又はこれらの混合物を添加することが挙げられる。ハードコート層については、上記の記述が引用される。
 積層フィルムが介在層1dを有する場合、光学機能層(A)1aの屈折率と介在層1dの屈折率との差は、積層フィルムの上記光学特性を実現するために、好ましくは0.05以上0.20以下、より好ましくは0.07以上0.18以下、さらに好ましくは0.09以上0.16以下、なおさらに好ましくは0.09以上0.14以下であり、0.10以下であってもよい。
 介在層1dは、紫外線吸収剤を含有することができる。紫外線吸収剤の例は上記と同様である。1つの実施形態において、介在層1dは、紫外線吸収剤を含むハードコート層である。
 <光学積層体>
 本発明に係る光学積層体(以下、単に「光学積層体」ともいう。)は、上述の積層フィルムと円偏光板とを含む。円偏光板は、直線偏光板と位相差層とを含む。光学積層体は、積層フィルムと直線偏光板と位相差層とをこの順で含む。光学積層体において積層フィルムは、円偏光板の視認側に積層される。視認側に積層されるとは、直線偏光板と位相差層とを含む円偏光板における直線偏光板の面に積層されることをいう。積層フィルムは、例えば、その基材フィルム側が円偏光板に対向するように円偏光板上に積層される。
 図5は、本発明に係る光学積層体の一例を示す概略断面図である。図5に示される光学積層体は、積層フィルム1と、直線偏光板2と、位相差層3とを備える。積層フィルム1と直線偏光板2とは、第1貼合層10を介して積層することができ、直線偏光板2と位相差層3とは、第2貼合層20を介して積層することができる。積層フィルム1は、その基材フィルム側が直線偏光板2に対向するように、第1貼合層10を介して直線偏光板2上に積層することができる。
 本発明の光学積層体は、上述の積層フィルム1が直線偏光板2の視認側に配置されているため、下記の反射特性〔a〕~〔c〕を有することができる。
 〔a〕反射率:5.5%以下、好ましくは5.4%以下、より好ましくは5.3%以下。
 〔b〕反射色相のa*:0.0以上2.0以下、好ましくは0.2以上1.8以下、より好ましくは0.4以上1.5以下、さらに好ましくは0.6以上1.4以下。
 〔c〕反射色相のb*:-5.0以上-2.5以下、好ましくは-4.8以上-2.5以下、より好ましくは-4.6以上-2.6以下。
 (1)直線偏光板
 直線偏光板2は、直線偏光子を含む。直線偏光子は、自然光等の非偏光な光線から、ある一方向の直線偏光を選択的に透過させる機能を有する。直線偏光子としては、二色性色素を吸着させた延伸フィルム又は延伸層、重合性液晶化合物の硬化物及び二色性色素を含む液晶硬化層等が挙げられる。積層フィルム1と直線偏光板2とは、第1貼合層10を介して積層することができる。
 二色性色素を吸着させた延伸フィルムである直線偏光子は、通常、ポリビニルアルコール系樹脂フィルムを一軸延伸する工程、ポリビニルアルコール系樹脂フィルムをヨウ素等の二色性色素で染色することにより、その二色性色素を吸着させる工程、二色性色素が吸着されたポリビニルアルコール系樹脂フィルムをホウ酸水溶液で処理する工程、及び、ホウ酸水溶液による処理後に水洗する工程を経て製造することができる。
 二色性色素を吸着させた延伸フィルムの厚みは、通常30μm以下であり、好ましくは18μm以下、より好ましくは15μm以下である。該厚みは、通常1μm以上であり、例えば5μm以上であってよい。
 ポリビニルアルコール系樹脂は、ポリ酢酸ビニル系樹脂をケン化することによって得られる。ポリ酢酸ビニル系樹脂としては、酢酸ビニルの単独重合体であるポリ酢酸ビニルのほか、酢酸ビニルとそれに共重合可能な他の単量体との共重合体が用いられる。酢酸ビニルに共重合可能な他の単量体としては、例えば不飽和カルボン酸系化合物、オレフィン系化合物、ビニルエーテル系化合物、不飽和スルホン系化合物、アンモニウム基を有する(メタ)アクリルアミド系化合物が挙げられる。
 ポリビニルアルコール系樹脂のケン化度は、通常85モル%以上100モル%以下程度であり、好ましくは98モル%以上である。ポリビニルアルコール系樹脂は変性されていてもよく、アルデヒド類で変性されたポリビニルホルマール、ポリビニルアセタール等も使用することができる。ポリビニルアルコール系樹脂の重合度は、通常1000以上10000以下であり、好ましくは1500以上5000以下である。
 二色性色素を吸着させた延伸層である直線偏光子は、通常、上記ポリビニルアルコール系樹脂を含む塗布液を基材層上に塗布する工程、得られた積層体を一軸延伸する工程、一軸延伸された積層体のポリビニルアルコール系樹脂層を二色性色素で染色することにより、その二色性色素を吸着させる工程、二色性色素が吸着された積層体をホウ酸水溶液で処理する工程、及び、ホウ酸水溶液による処理後に水洗する工程を経て製造することができる。基材層は、直線偏光子の保護フィルムとして用いてもよいし、直線偏光子から剥離除去されてもよい。基材層の材料及び厚みは、後述する熱可塑性樹脂フィルムの材料及び厚みと同様であってよい。
 直線偏光板2は、二色性色素を吸着させた延伸フィルム又は延伸層である直線偏光子の片面又は両面に積層される保護フィルムを含むことができる。保護フィルムとしては、後述する熱可塑性樹脂フィルムを用いることができる。直線偏光子と保護フィルムとは、後述する貼合層(第3貼合層)を介して積層することができる。
 熱可塑性樹脂フィルムを構成する熱可塑性樹脂としては、例えば、トリアセチルセルロース等のセルロース樹脂;ポリエチレンテレフタレート、ポリエチレンナフタレート等のポリエステル樹脂;ポリエーテルスルホン樹脂;ポリスルホン樹脂;ポリカーボネート樹脂;ナイロンや芳香族ポリアミド等のポリアミド樹脂;ポリイミド樹脂;ポリエチレン、ポリプロピレン、エチレン・プロピレン共重合体等のポリオレフィン樹脂;シクロ系及びノルボルネン構造を有する環状ポリオレフィン樹脂(ノルボルネン系樹脂ともいう);(メタ)アクリル樹脂;ポリアリレート樹脂;ポリスチレン樹脂;ポリビニルアルコール樹脂等が挙げられる。中でも、熱可塑性樹脂フィルムは、環状ポリオレフィン系樹脂フィルム、セルロースエステル系樹脂フィルム、ポリエステル系樹脂フィルム又は(メタ)アクリル系樹脂フィルムであることが好ましい。
 熱可塑性樹脂フィルムの厚みは、薄型化の観点から、通常100μm以下であり、好ましくは80μm以下であり、より好ましくは60μm以下であり、さらに好ましくは40μm以下であり、なおさらに好ましくは30μm以下であり、また、通常5μm以上であり、好ましくは10μm以上である。
 熱可塑性樹脂フィルム上にハードコート層が形成されていてもよい。ハードコート層は、熱可塑性樹脂フィルムの一方の面に形成されていてもよいし、両面に形成されていてもよい。ハードコート層を設けることにより、硬度及び耐スクラッチ性を向上させた熱可塑性樹脂フィルムとすることができる。ハードコート層については、上記の記述が引用される。
 液晶硬化層である直線偏光子を形成するために用いる重合性液晶化合物は、重合性反応基を有し、かつ、液晶性を示す化合物である。重合性反応基は、重合反応に関与する基であり、光重合性反応基であることが好ましい。光重合性反応基は、光重合開始剤から発生した活性ラジカルや酸等によって重合反応に関与し得る基をいう。光重合性反応基としては、ビニル基、ビニルオキシ基、1-クロロビニル基、イソプロペニル基、4-ビニルフェニル基、アクリロイルオキシ基、メタクリロイルオキシ基、オキシラニル基、オキセタニル基等が挙げられる。中でも、アクリロイルオキシ基、メタクリロイルオキシ基、ビニルオキシ基、オキシラニル基及びオキセタニル基が好ましく、アクリロイルオキシ基がより好ましい。重合性液晶化合物の種類は特に限定されず、棒状液晶化合物、円盤状液晶化合物、及び、これらの混合物を用いることができる。重合性液晶化合物の液晶性は、サーモトロピック性液晶でもリオトロピック性液晶でもよく、サーモトロピック液晶を秩序度で分類すると、ネマチック液晶でもスメクチック液晶でもよい。
 液晶硬化層において、二色性色素は、重合性液晶化合物の硬化物中に分散し、配向している。液晶硬化層である直線偏光子に用いられる二色性色素としては、300nm以上700nm以下の範囲に吸収極大波長を有するものが好ましい。このような二色性色素としては、例えば、アクリジン色素、オキサジン色素、シアニン色素、ナフタレン色素、アゾ色素、及び、アントラキノン色素等が挙げられ、中でもアゾ色素が好ましい。アゾ色素としては、モノアゾ色素、ビスアゾ色素、トリスアゾ色素、テトラキスアゾ色素、及び、スチルベンアゾ色素等が挙げられ、好ましくはビスアゾ色素、及び、トリスアゾ色素である。二色性色素は単独でも、2種以上を組み合わせてもよく、3種以上を組み合わせることが好ましい。特に、3種以上のアゾ化合物を組み合わせることがより好ましい。二色性色素の一部が反応性基を有していてもよく、また液晶性を有していてもよい。
 液晶硬化層である直線偏光子は、例えば、基材層上に形成した配向層上に、重合性液晶化合物及び二色性色素を含む直線偏光子形成用組成物を塗布し、重合性液晶化合物を重合して硬化させることによって形成することができる。基材層上に、直線偏光子形成用組成物を塗布して塗膜を形成し、この塗膜を基材層とともに延伸することによって、直線偏光子を形成してもよい。直線偏光子を形成するために用いる基材層は、直線偏光子の保護フィルムとして用いてもよい。基材層の材料及び厚みは、上述した熱可塑性樹脂フィルムの材料及び厚みと同様であってよい。
 重合性液晶化合物及び二色性色素を含む直線偏光子形成用組成物、並びに、この組成物を用いた直線偏光子の製造方法としては、特開2013-37353号公報、特開2013-33249号公報、特開2017-83843号公報等に記載のものを例示することができる。直線偏光子形成用組成物は、重合性液晶化合物及び二色性色素に加えて、溶媒、重合開始剤、架橋剤、レベリング剤、酸化防止剤、可塑剤、増感剤等の添加剤をさらに含んでいてもよい。これらの成分は、それぞれ1種のみを用いてもよく、2種以上を組み合わせて用いてもよい。
 直線偏光子形成用組成物が含有していてもよい重合開始剤は、重合性液晶化合物の重合反応を開始し得る化合物であり、より低温条件下で、重合反応を開始できる点で、光重合性開始剤が好ましい。具体的には、光の作用により活性ラジカル又は酸を発生できる光重合開始剤が挙げられ、中でも、光の作用によりラジカルを発生する光重合開始剤が好ましい。重合開始剤の含有量は、重合性液晶化合物の総量100質量部に対して、好ましくは1質量部以上10質量部以下、より好ましくは3質量部以上8質量部以下である。この範囲内であると、重合性基の反応が十分に進行し、かつ、液晶化合物の配向状態を安定化させやすい。
 液晶硬化層である直線偏光子の厚みは、通常10μm以下であり、好ましくは0.5μm以上8μm以下、より好ましくは1μm以上5μm以下である。
 直線偏光板2は、基材層と液晶硬化層である直線偏光子との積層体であってもよい。あるいは基材層は、直線偏光子から剥離除去されてもよい。液晶硬化層である直線偏光子を含む直線偏光板2は、配向層を有していてもよいし、有していなくてもよい。直線偏光板2は、液晶硬化層である直線偏光子の片面又は両面に積層される保護フィルムを含むことができる。保護フィルムとしては、上述する熱可塑性樹脂フィルムを用いることができる。直線偏光子と保護フィルムとは、後述する貼合層(第3貼合層)を介して積層することができる。
 液晶硬化層である直線偏光子は、直線偏光子の保護等を目的として、その片面又は両面にオーバーコート層を有していてもよい。オーバーコート層は、例えば直線偏光子上にオーバーコート層を形成するための組成物を塗布することによって形成することができる。オーバーコート層を構成する材料としては、例えば光硬化型樹脂、水溶性ポリマー等が挙げられ、具体的には、(メタ)アクリル系樹脂、ポリビニルアルコール系樹脂等を用いることができる。
 直線偏光子の視感度補正偏光度Pyは、通常95%以上であり、好ましくは97%以上、より好ましくは98%以上、さらに好ましくは98.7%以上、なおさらに好ましくは99.0%以上、特に好ましくは99.4%以上であり、99.9%以上であってもよい。直線偏光子の視感度補正偏光度Pyは、99.999%以下又は99.99%以下であってもよい。
 視感度補正偏光度Pyは、積分球付き分光光度計(日本分光株式会社製の「V7100」)を用いて、得られた偏光度に対して「JIS Z 8701」の2度視野(C光源)により視感度補正を行うことで算出することができる。
 直線偏光子の視感度補正偏光度Pyを高くすることは、光学積層体の反射防止機能を高めるうえで有利である。視感度補正偏光度Pyが95%未満であると、反射防止機能を果たせないことがある。
 直線偏光子の視感度補正単体透過率Tyは、通常41%以上であり、好ましくは41.1%以上、より好ましくは41.2%以上であり、42%以上であってもよく、42.5%以上であってもよい。直線偏光子の視感度補正単体透過率Tyは、通常50%以下であり、48%以下であってもよく、46%以下であってもよく、44%以下であってもよく、43%以下であってもよい。視感度補正単体透過率Tyが過度に高いと視感度補正偏光度Pyが低くなりすぎて、光学積層体の反射防止機能が不十分となることがある。
 視感度補正単体透過率Tyは、積分球付き分光光度計(日本分光株式会社製の「V7100」)を用いて、得られた透過率に対して「JIS Z 8701」の2度視野(C光源)により視感度補正を行うことで算出することができる。
 (2)位相差層
 光学積層体は、第1位相差層3aを有する位相差層3を含む。直線偏光板2と第1位相差層3aとは、第2貼合層20を介して積層することができる。位相差層3は、第1位相差層3aのみを有していてもよいし、2層以上の位相差層からなる積層構造であってもよい。すなわち、位相差層3は、第1位相差層3aとは別の位相差層を1層以上含んでいてもよい。位相差層3は、その表面を保護するオーバーコート層、位相差層3を支持する基材層等を有していてもよい。
 第1位相差層3aは、例えばλ/4層である。位相差層3が2層の位相差層を含む場合、該層の位相差層の組み合わせとしては、直線偏光板2側から順に、λ/4層とポジティブC層との組み合わせ、λ/2層とλ/4層との組み合わせ、ポジティブC層とλ/4層との組み合わせが挙げられる。位相差層同士の積層には後述する貼合層(第4貼合層)を用いることができる。
 λ/4層は、波長550nmにおける面内位相差値Re(550)が、通常90nm以上220nm以下の範囲であり、好ましくは100nm以上200nm以下の範囲である。λ/2層は、波長550nmにおける面内位相差値Re(550)が、好ましくは200nm以上300nm以下の範囲である。また、ポジティブC層は、波長550nmにおける厚み方向の位相差値Rth(550)が、通常-170nm以上-10nm以下の範囲であり、好ましくは-150nm以上-20nm以下の範囲である。
 位相差層3は、上述の内部反射を効果的に抑制する観点から、好ましくは逆波長分散性を有し、より好ましくは波長分散αが0.95以下であり、さらに好ましくは波長分散αが0.80以上0.93以下であり、なおさらに好ましくは波長分散αが0.80以上0.90以下であり、特に好ましくは波長分散αが0.80以上0.88以下である。
 波長分散αとは、波長450nmにおける面内位相差値Re(450)と波長550nmにおける面内位相差値Re(550)との比である。
 波長分散α=面内位相差値Re(450)/面内位相差値Re(550)
 第1位相差層3a及び他の位相差層は、上述する熱可塑性樹脂フィルムから延伸等により形成される位相差フィルムであってもよいし、液晶硬化層であってもよい。液晶硬化層は、重合性液晶化合物が配向状態で重合硬化した硬化物層である。位相差層3は、液晶硬化層を1層以上含むことができ、2層又はそれ以上の層を含んでいてもよい。
 重合性液晶化合物としては、棒状の重合性液晶化合物及び円盤状の重合性液晶化合物が挙げられ、これらのうちの一方を用いてもよく、これらの両方を含む混合物を用いてもよい。棒状の重合性液晶化合物が基材層に対して水平配向又は垂直配向した場合は、該重合性液晶化合物の光軸は、該重合性液晶化合物の長軸方向と一致する。円盤状の重合性液晶化合物が配向した場合は、該重合性液晶化合物の光軸は、該重合性液晶化合物の円盤面に対して直交する方向に存在する。
 重合性液晶化合物を重合することによって形成される液晶硬化層が面内位相差を発現するためには、重合性液晶化合物を適した方向に配向させればよい。重合性液晶化合物が棒状の場合は、該重合性液晶化合物の光軸を基材層平面に対して水平に配向させることで面内位相差が発現し、この場合、光軸方向と遅相軸方向とは一致する。重合性液晶化合物が円盤状の場合は、該重合性液晶化合物の光軸を基材層平面に対して水平に配向させることで面内位相差が発現し、この場合、光軸と遅相軸とは直交する。重合性液晶化合物の配向状態は、配向層と重合性液晶化合物との組み合わせによって調整することができる。
 重合性液晶化合物は、少なくとも1つの重合性反応基を有し、かつ、液晶性を有する化合物である。重合性液晶化合物を2種類以上併用する場合、少なくとも1種類が分子内に2以上の重合性反応基を有することが好ましい。重合性反応基は、重合反応に関与する基であり、光重合性反応基であることが好ましい。光重合性反応基は、光重合開始剤から発生した活性ラジカルや酸等によって重合反応に関与し得る基をいう。光重合性反応基の例は上述のものと同様である。重合性液晶化合物が有する液晶性は、サーモトロピック性液晶でもリオトロピック液晶でもよく、サーモトロピック液晶を秩序度で分類すると、ネマチック液晶でもスメクチック液晶でもよい。
 光学積層体は、位相差層に隣接する配向層を含んでいてもよい。配向層は、重合性液晶化合物を所望の方向に配向させる配向規制力を有する。配向層は、重合性液晶化合物の分子軸を基材層に対して垂直配向した垂直配向層であってもよく、重合性液晶化合物の分子軸を基材層に対して水平配向した水平配向層であってもよく、重合性液晶化合物の分子軸を基材層に対して傾斜配向させる傾斜配向層であってもよい。
 液晶硬化層の厚みは、0.1μm以上であってもよく、0.5μm以上であってもよく、1μm以上であってもよく、2μm以上であってもよく、また、10μm以下であることが好ましく、8μm以下であってもよく、5μm以下であってもよい。
 液晶硬化層は、基材層上に、重合性液晶化合物を含む液晶層形成用組成物を塗布、乾燥し、重合性液晶化合物を重合させることによって形成することができる。液晶層形成用組成物は、基材層上に形成された配向層上に塗布してもよい。基材層の材料及び厚みは、上述する熱可塑性樹脂フィルムの材料及び厚みと同様であってよい。基材層は、液晶硬化層である位相差層とともに光学積層体に組み込まれてもよく、基材層を剥離して、液晶硬化層のみ、又は、該液晶硬化層及び配向層が光学積層体に組み込まれてもよい。
 (3)粘着剤層
 図6は、本発明に係る光学積層体の他の一例を示す概略断面図である。図6に示される光学積層体は、積層フィルム1と、第1貼合層10と、直線偏光板2と、第2貼合層20と、位相差層3と、粘着剤層50とを備える。位相差層3は、好ましくは逆波長分散性を有する。粘着剤層50は、光学積層体の視認側(積層フィルム1側)とは反対側の面に積層することができ、有機EL表示素子等の画像表示素子への光学積層体の貼合に用いることができる。
 図6に示される光学積層体において、積層フィルム1は基材フィルム1bとその上に積層される光学機能層(A)1aとを備える。直線偏光板2は、直線偏光子2bとその両面に第3貼合層30を介して積層される保護フィルム2a,2cとを備える。保護フィルム2a,2cのいずれか一方は省略されてもよい。位相差層3は、第1位相差層3a及び第2位相差層3bを備える。
 図6に示される光学積層体は、第1位相差層3a及び第2位相差層3bを備えており、これらは第4貼合層40により貼合されている。ただし、第4貼合層40及び第2位相差層3bは省略されてもよい。
 粘着剤層50の厚みは、例えば250μm以下であってよく、薄型化の観点から好ましくは100μm以下であり、より好ましくは50μm以下であり、さらに好ましくは40μm以下である。該粘着剤層の厚みの下限値は、耐久性の観点からは、例えば1μm以上であってよく、好ましくは5μm以上であり、より好ましくは10μm以上である。
 粘着剤層50は、(メタ)アクリル系樹脂、ゴム系樹脂、ウレタン系樹脂、エステル系樹脂、シリコーン系樹脂、ポリビニルエーテル系樹脂を主成分とする粘着剤組成物から構成することができる。中でも、透明性、耐候性、耐熱性等に優れる(メタ)アクリル系樹脂をベースポリマーとする粘着剤組成物が好適である。粘着剤組成物は、活性エネルギー線硬化型又は熱硬化型であってもよい。
 粘着剤組成物に用いられる(メタ)アクリル系樹脂(ベースポリマー)としては、(メタ)アクリル酸ブチル、(メタ)アクリル酸エチル、(メタ)アクリル酸イソオクチル、(メタ)アクリル酸2-エチルヘキシル等の(メタ)アクリル酸エステルの1種又は2種以上をモノマーとする重合体又は共重合体が好適に用いられる。ベースポリマーには、極性モノマーを共重合させることが好ましい。極性モノマーとしては、(メタ)アクリル酸、(メタ)アクリル酸2-ヒドロキシプロピル、(メタ)アクリル酸ヒドロキシエチル、(メタ)アクリルアミド、N,N-ジメチルアミノエチル(メタ)アクリレート、グリシジル(メタ)アクリレート等の、カルボキシル基、水酸基、アミド基、アミノ基、エポキシ基等を有するモノマーが挙げられる。
 粘着剤組成物は、上記ベースポリマーのみを含むものであってもよいが、通常は架橋剤をさらに含有する。架橋剤としては、2価以上の金属イオンであって、カルボキシル基との間でカルボン酸金属塩を形成する金属イオン、カルボキシル基との間でアミド結合を形成するポリアミン化合物、カルボキシル基との間でエステル結合を形成するポリエポキシ化合物又はポリオール、カルボキシル基との間でアミド結合を形成するポリイソシアネート化合物が挙げられる。中でも、ポリイソシアネート化合物が好ましい。粘着剤組成物は、さらに、上記「<積層フィルム>(3)樹脂層」の説明に記載した紫外線吸収剤を含有してもよい。
 活性エネルギー線硬化型粘着剤組成物は、紫外線や電子線のような活性エネルギー線の照射を受けて硬化する性質を有しており、活性エネルギー線照射前においても粘着性を有してフィルム等の被着体に密着させることができ、活性エネルギー線の照射によって硬化して密着力の調整ができる性質を有する。活性エネルギー線硬化型粘着剤組成物は、紫外線硬化型であることが好ましい。活性エネルギー線硬化型粘着剤組成物は、ベースポリマー、架橋剤に加えて、活性エネルギー線重合性化合物をさらに含有する。必要に応じて、光重合開始剤、光増感剤等を含有させてもよい。
 (4)セパレートフィルム
 図7に示されるように、光学積層体は、粘着剤層50の外表面(第2位相差層3bとは反対側の表面)を保護するためのセパレートフィルム60を備えることができる。図7に示される光学積層体は、セパレートフィルム60を有すること以外は図6に示される光学積層体と同様の層構成を有する。セパレートフィルム60は通常、片面にシリコーン系、フッ素系等の離型剤などによる離型処理が施された熱可塑性樹脂フィルムで構成され、その離型処理面が粘着剤層50に貼り合わされる。
 セパレートフィルム60を構成する熱可塑性樹脂は、例えばポリエチレン等のポリエチレン系樹脂、ポリプロピレン等のポリプロピレン系樹脂、ポリエチレンテレフタレートやポリエチレンナフタレート等のポリエステル系樹脂等である。セパレートフィルム60の厚みは、例えば10μm以上50μm以下である。
 (5)プロテクトフィルム
 図8に示されるように、光学積層体は、積層フィルム1側の面に積層されるプロテクトフィルム70を含んでいてもよい。図8に示される光学積層体は、プロテクトフィルム70を有すること以外は図7に示される光学積層体と同様の層構成を有する。プロテクトフィルム70は、例えば、基材フィルムとその上に積層される粘着剤層とで構成される。粘着剤層については上述の記載が引用される。基材フィルムを構成する樹脂は、例えば、ポリエチレンのようなポリエチレン系樹脂、ポリプロピレンのようなポリプロピレン系樹脂、ポリエチレンテレフタレートやポリエチレンナフタレートのようなポリエステル系樹脂、ポリカーボネート系樹脂等の熱可塑性樹脂であることができる。好ましくは、ポリエチレンテレフタレート等のポリエステル系樹脂である。
 (6)前面板
 図9に示されるように、光学積層体は、前面板90をさらに含むことができる。前面板90は通常、光学積層体における視認側の最表面に配置される。前面板90は、例えば、積層フィルム1の視認側の面に第5貼合層80を介して積層することができる。図9に示される光学積層体は、第5貼合層80及び前面板90を有すること以外は図7に示される光学積層体と同様の層構成を有する。
 前面板90は、光を透過可能な板状体であれば、材料及び厚みは限定されない。前面板90は、1層のみから構成されてよく、2層以上から構成されてもよい。前面板90としては、樹脂製の板状体(例えば樹脂板、樹脂シート、樹脂フィルム等)、ガラス製の板状体(例えばガラス板、ガラスフィルム等)、樹脂製の板状体とガラス製の板状体との積層体が挙げられる。前面板は、表示装置の最表面を構成することができる。
 前面板90の厚みは、例えば1000μm以下であり、好ましくは800μm以下である。該厚みは、通常10μm以上であり、好ましくは20μm以上である。
 樹脂製の板状体を構成する樹脂としては、例えばトリアセチルセルロース、アセチルセルロースブチレート、エチレン-酢酸ビニル共重合体、プロピオニルセルロース、ブチリルセルロース、アセチルプロピオニルセルロース、ポリエステル、ポリスチレン、ポリアミド、ポリエーテルイミド、ポリ(メタ)アクリル、ポリイミド、ポリエーテルスルホン、ポリスルホン、ポリエチレン、ポリプロピレン、ポリメチルペンテン、ポリ塩化ビニル、ポリ塩化ビニリデン、ポリビニルアルコール、ポリビニルアセタール、ポリエーテルケトン、ポリエーテルエーテルケトン、ポリエーテルスルホン、ポリメチルメタアクリレート、ポリエチレンテレフタレート、ポリブチレンテレフタレート、ポリエチレンナフタレート、ポリカーボネート、ポリアミドイミド等の熱可塑性樹脂が挙げられる。これらの熱可塑性樹脂は、単独で又は2種以上混合して用いることができる。強度及び透明性向上の観点から、樹脂製の板状体は、好ましくは、ポリイミド、ポリアミド、ポリアミドイミド等で形成される熱可塑性樹脂フィルムである。
 硬度の観点から、前面板90は、ハードコート層を備えた熱可塑性樹脂フィルムであってもよい。ハードコート層は、熱可塑性樹脂フィルムの一方の面に形成されていてもよいし、両面に形成されていてもよい。ハードコート層を設けることにより、硬度及び耐スクラッチ性を向上させることができる。ハードコート層については上述の記載が引用される。
 前面板90がガラス板である場合、ガラス板は、ディスプレイ用強化ガラスが好ましく用いられる。ガラス板の厚みは、例えば10μm以上1000μm以下であってよく、10μm以上800μm以下であってもよい。ガラス板を用いることにより、優れた機械的強度及び表面硬度を有する前面板を構成することができる。
 前面板90は、剛性が高いことが好ましく、例えばヤング率が70GPa以上であり、80GPa以上であってもよい。前面板90のヤング率は、通常100GPa以下である。ヤング率は次のようにして測定できる。長辺110mm×短辺10mmの前面板60の測定用サンプルをスーパーカッタを用いて切り出す。次いで、引張試験機(株式会社島津製作所製、オートグラフ AG-Xplus試験機)の上下つかみ具で、つかみ具の間隔が5cmとなるように上記測定用サンプルの長辺方向両端を挟み、温度23℃、相対湿度55%の環境下、引張速度4mm/分で測定用サンプルの長さ方向に引張り、得られる応力-ひずみ曲線における20~40MPa間の直線の傾きから、温度23℃、相対湿度55%でのヤング率を算出できる。
 積層フィルム1が高屈折率層を含み、その視認側の面に第5貼合層80を介して前面板90が配置される場合、上述の色ムラを視認しにくくする観点から、第5貼合層80の屈折率は好ましくは1.45以上1.51以下、より好ましくは1.46以上1.50以下であり、前面板90の屈折率は好ましくは1.49以上1.52以下、より好ましくは1.50以上1.52以下である。第5貼合層80は、好ましくは粘着剤層である。
 光学積層体が画像表示装置に適用される場合、前面板90は、画像表示装置の前面(画面)を保護する機能(ウィンドウフィルムとしての機能)を有するのみではなく、タッチセンサとしての機能、ブルーライトカット機能、視野角調整機能等を有するものであってもよい。
 (7)貼合層
 光学積層体は、2つの層(又はフィルム)を接合するための貼合層を含むことができる。貼合層としては、積層フィルム1と直線偏光板2とを貼合する第1貼合層10、直線偏光板2と位相差層3とを貼合する第2貼合層20、直線偏光子2bと保護フィルム2a,2cとを貼合する第3貼合層30、第1位相差層3aと第2位相差層3bとを貼合する第4貼合層40、前面板90を貼合するための第5貼合層80(積層フィルム1が有する樹脂層1cと捉えてもよい。)等が挙げられる。
 貼合層は、粘着剤組成物から構成される粘着剤層又は接着剤組成物から構成される接着剤層である。粘着剤組成物及び粘着剤層については、上記(3)の記載が引用される。
 接着剤組成物としては、例えば、水系接着剤、活性エネルギー線硬化型接着剤等が挙げられる。水系接着剤としては、例えば、ポリビニルアルコール系樹脂水溶液、水系二液型ウレタン系エマルジョン接着剤等が挙げられる。活性エネルギー線硬化型接着剤は、紫外線等の活性エネルギー線を照射することによって硬化する接着剤であり、例えば重合性化合物及び光重合性開始剤を含む接着剤、光反応性樹脂を含む接着剤、バインダー樹脂及び光反応性架橋剤を含む接着剤等が挙げられる。上記重合性化合物としては、光硬化性エポキシ系モノマー、光硬化性(メタ)アクリル系モノマー、光硬化性ウレタン系モノマー等の光重合性モノマー、及びこれらモノマーに由来するオリゴマー等が挙げられる。上記光重合開始剤としては、紫外線等の活性エネルギー線を照射して中性ラジカル、アニオンラジカル、カチオンラジカル等の活性種を発生する物質を含む化合物が挙げられる。
 接着剤組成物から構成される貼合層の厚みは、例えば0.1μm以上であってよく、好ましくは0.5μm以上、1μm以上又は2μm以上であり、100μm以下、50μm以下、25μm以下、15μm以下又は5μm以下であってもよい。
 貼合層を介して貼合される対向する二つの表面は、予めコロナ処理、プラズマ処理、火炎処理等の表面活性化処理を行ってもよい。
 <画像表示装置>
 本発明に係る画像表示装置は、本発明に係る光学積層体と、画像表示素子(有機EL表示素子等)とを含む。光学積層体は、画像表示素子の視認側に配置される。粘着剤層50を用いて、光学積層体を画像表示素子に貼合することができる。
 図10は、本発明に係る画像表示装置の一例を示す概略断面図である。図10では、光学積層体の一例として図9に示される光学積層体が用いられている。光学積層体は、その粘着剤層50を用いて画像表示素子100に貼合されている。光学積層体における粘着剤層50とは反対側の面(視認側の最表面)には、第5貼合層80を介して前面板90が積層されている。
 画像表示装置は特に限定されず、例えば有機エレクトロルミネッセンス(有機EL)表示装置、無機エレクトロルミネッセンス(無機EL)表示装置、液晶表示装置、電界発光表示装置等の画像表示装置が挙げられる。
 画像表示装置は、スマートフォン、タブレット等のモバイル機器、テレビ、デジタルフォトフレーム、電子看板、測定器または計器類、事務用機器、医療機器、電算機器等として用いることができる。
 以下、実施例及び比較例を示して本発明をさらに具体的に説明するが、本発明はこれらの例によって限定されるものではない。
 [測定]
 (1)積層フィルムの視感反射率Y及び反射色相(a*及びb*)
 まず、島津製作所製の分光光度計「MPC-2200」を用いて、可視光域の反射率を測定した。測定の際には、測定面の裏面側に粘着剤層を介して黒色アクリル板(株式会社カナセ製の「カナセライト1410」)を貼合した。得られた反射スペクトルから視感反射率Y及び反射色相(a*及びb*)を算出した。視感反射率は、得られた反射率Yに視感度係数を掛けて算出した。
 (2)光学機能層(A)の光学膜厚及び屈折率(@550nm)
 まず、島津製作所製の分光光度計「MPC-2200」を用いて、積層フィルムにおける可視光域の反射率を測定した。測定の際には、測定面の裏面側に粘着剤層を介して黒色アクリル板(株式会社カナセ製の「カナセライト1410」)を貼合した。得られた反射スペクトルについて、薄膜干渉スペクトルの計算式から算出したスペクトルの特に波長550nmの反射率を合わせるようにスペクトルフィッティングを行い、光学機能層の屈折率と光学膜厚を算出した。
 (3)位相差層の位相差特性
 位相差層の位相差特性は、王子計測機器株式会社の「KOBRA-WPR」を使用して測定した。
 <実施例1>
 (1)積層フィルムの作製
 (1-1)高屈折率層形成用組成物の調製
 光重合開始剤(BASF社製の「イルガキュア184」)と、希釈溶剤(メチルエチルケトン/プロピレングリコールモノメチルエーテルアセテート質量比=5/1)とを混合し、撹拌した。ここに紫外線硬化性樹脂(日本化薬社製の「KAYARAD-DPHA」)を加え、撹拌した。さらに、酸化ジルコニウム粒子分散液(CIKナノテック社製の「ZRMIBK15WT%-P03」、固形分15質量%、平均一次粒子径7.8nm)を加えて撹拌し、高屈折率層形成用組成物を調製した。
 酸化ジルコニウム粒子分散液について、マイクロトラック社製の「MT3300EX」を用いて一次粒子径分布を測定したところ、粒子径0.1nm以上15nmの範囲が全体に占める割合は99.56%であった。
 (1-2)積層フィルムの作製
 基材フィルムとしての厚み40μmのトリアセチルセルロースフィルム(屈折率1.49。以下、「TACフィルム」ともいう。)上に、上記(1-1)で調製した高屈折率層形成用組成物をバーコーターを用いて塗布、乾燥及び紫外線照射して、基材フィルムと表1に示される光学膜厚を有する光学機能層(高屈折率層)とからなる積層フィルムを作製した。光学機能層の屈折率を併せて表1に示す。
 また、積層フィルムの視感反射率Y及び反射色相を併せて表1に示す。
 (2)光学積層体の作製
 (2-1)積層フィルムへの前面板の貼合
 上記(1)で得られた積層フィルムの光学機能層の上に、粘着剤層(屈折率1.49)を積層した。粘着剤層に無アルカリガラス板(屈折率1.51)を貼合して、ガラス板/粘着剤層/光学機能層/基材フィルムからなる前面板(ガラス板)付き積層フィルムを得た。
 (2-2)直線偏光板の作製
 厚み20μmのポリビニルアルコール系樹脂フィルム(平均重合度約2400、ケン化度99.9モル%以上)を乾式延伸により約5倍に縦一軸延伸し、さらに緊張状態を保ったまま、温度60℃の純水に1分間浸漬した後、ヨウ素/ヨウ化カリウム/水の質量比が0.05/5/100である温度28℃の水溶液に60秒間浸漬した。その後、ヨウ化カリウム/ホウ酸/水の質量比が8.5/8.5/100である温度72℃の水溶液に300秒間浸漬した。引き続き温度26℃の純水で20秒間洗浄した後、温度65℃で乾燥処理を行って、ポリビニルアルコール系樹脂フィルムにヨウ素が吸着配向している、厚み8μmの直線偏光子を得た。
 水100質量部に対し、カルボキシル基変性ポリビニルアルコール〔株式会社クラレ製の「KL-318」〕を3質量部溶解して、ポリビニルアルコール水溶液を調製した。得られた水溶液に水溶性ポリアミドエポキシ樹脂(田岡化学工業株式会社製の「スミレーズレジン650(30)」、固形分濃度30質量%)を、水100質量部に対し、1.5質量部の割合で混合して、水系接着剤を得た。
 上記で得られた直線偏光子の一方の面に、上記で得られた水系接着剤を塗布し、ハードコート層(以下、「HC層」ともいう。)を有する環状ポリオレフィン系樹脂フィルム(以下、「COPフィルム」ともいう。)を積層し、直線偏光子の他方の面に、上記で得られた水系接着剤を塗布し、TACフィルムを積層して、温度80℃で5分間乾燥することにより、直線偏光子の両面に保護フィルムを有する直線偏光板を得た。直線偏光板の層構造は、HC層/COPフィルム/水系接着剤層/直線偏光子/水系接着剤層/TACフィルムである。直線偏光板のHC層上に、基材フィルム上に粘着剤層を有するプロテクトフィルムを積層し、プロテクトフィルム付き直線偏光板(以下、「PF付き直線偏光板」ともいう。)を得た。
 (2-3)位相差層積層体の作製
 透明樹脂からなる第1基材層上に配向層を形成し、棒状のネマチック重合性液晶化合物を含む液晶層形成用組成物を塗布し、第1基材層付き第1位相差層を作製した。第1位相差層はλ/4層であった。第1位相差層の厚みは2μmであった。第1位相差層の波長分散α〔面内位相差値Re(450)/面内位相差値Re(550)〕は0.85であり、Re(550)は142nmであった。以下に詳細を示す。
 [配向層形成用組成物の調製]
 下記構造の光配向性材料(重量平均分子量:50000、m:n=50:50)は特開2021-196514に記載の方法に準じて製造した。光配向性材料2質量部とシクロペンタノン(溶剤)98質量部とを成分として混合した。得られた混合物を80℃で1時間攪拌することにより、配向層形成用組成物を調製した。
 光配向性材料:
Figure JPOXMLDOC01-appb-C000001
 [ネマチック重合性液晶化合物の製造]
 下記に示す構造を有する重合性液晶化合物(A1)及び重合性液晶化合物(A2)を、それぞれ調製した。重合性液晶化合物(A1)は、特開2019-003177に記載の方法と同様に準備した。重合性液晶化合物(A2)は、特開2009-173893号公報に記載の方法と同様に準備した。
 重合性液晶化合物(A1):
Figure JPOXMLDOC01-appb-C000002

 重合性液晶化合物(A2):
Figure JPOXMLDOC01-appb-C000003
 クロロホルム10mLに重合性液晶化合物(A1)1mgを溶解させて溶液を得た。得られた溶液を光路長1cmの測定用セルに測定用試料を入れ、測定用試料を紫外可視分光光度計(株式会社島津製作所製「UV-2450」)にセットして吸収スペクトルを測定した。得られた吸収スペクトルから極大吸収度となる波長を読み取ったところ、波長300~400nmの範囲における極大吸収波長λmaxは356nmであった。
 [第1位相差層形成用組成物の調製]
 重合性液晶化合物(A1)及び重合性液晶化合物(A2)を質量比93:7で混合し、混合物を得た。得られた混合物100質量部に対して、レベリング剤「BYK-361N」(BM Chemie社製)0.1質量部と、光重合開始剤として「イルガキュアOXE-03」(BASFジャパン株式会社製)3質量部を添加した。さらに、固形分濃度が13質量%となるようにN-メチル-2-ピロリドン(NMP)を添加した。この混合物を温度80℃で1時間撹拌することにより、第1位相差層形成用組成物を調製した。
 [第1位相差層の作製]
 第1基材層としての二軸延伸ポリエチレンテレフタレート(PET)フィルム(ダイアホイル 三菱樹脂(株)製)に、上記配向層形成用組成物をバーコーターにより塗布した。得られた塗布膜を120℃で2分間乾燥させた後、室温まで冷却して乾燥被膜を形成した。その後、UV照射装置(SPOT CURE SP-9;ウシオ電機株式会社製)を用いて、偏光紫外光100mJ(313nm基準)を照射し、配向層を得た。日本分光株式会社製のエリプソメータ M-220を用いて測定した配向層の膜厚は100nmであった。
 得られた配向層上に、上記第1位相差層形成用組成物をバーコーターにより塗布し、塗布膜を形成した。この塗布膜を120℃で2分間加熱乾燥後、室温まで冷却して乾燥被膜を得た。次いで、高圧水銀ランプ(ウシオ電機株式会社製「ユニキュアVB-15201BY-A」)を用いて、窒素雰囲気下にて露光量500mJ/cm(365nm基準)の紫外光を前記乾燥被膜に照射することにより、重合性液晶化合物が基材面内に対して水平方向に配向した状態で硬化した第1位相差層を形成し、第1基材層/配向層/第1位相差層(水平配向液晶硬化膜)からなる第1基材層付き第1位相差層を得た。オリンパス株式会社製のレーザー顕微鏡LEXT OLS4100を用いて測定した第1位相差層の膜厚は2.0μmであった。
 また、以下の方法により、第2基材層付き第2位相差層を作製した。
 [第2位相差層形成用組成物の調製]
 重合性液晶化合物Paliocolor LC242(BASFジャパン社製)100質量部と、レベリング剤「BYK-361N」(BYK-Chemie社製)0.1質量部と、光重合開始剤「Omnirad907」(IGM Resin B.V.社製)2.5質量部を混合した。さらに、プロピレングリコール1-モノメチルエーテル2-アセテート(PGME)400質量部を添加し、得られた混合物を温度80℃で1時間撹拌することにより、第2位相差層形成用組成物を調製した。
 重合性液晶化合物LC242:
Figure JPOXMLDOC01-appb-C000004
 [配向層形成用組成物の調製]
 市販の配向性ポリマーであるサンエバーSE-610(日産化学工業株式会社製)に2-ブトキシエタノールを固形分量が1質量%になるよう加えて配向層形成用組成物を得た。
 [第2位相差層の作製]
 第2基材層として、シクロオレフィンポリマー(COP)(日本ゼオン株式会社製、ZF14)を用いて、その片面にコロナ処理装置(AGF-B10;春日電機株式会社製)を用いてコロナ処理を施し、その表面に配向層形成用組成物を、バーコーターを用いて塗布し、90℃で1分間乾燥した。得られた配向層の膜厚をレーザー顕微鏡で測定したところ、30nmであった。続いて、配向層上に第2位相差層形成用組成物を、バーコーターを用いて塗布し、90℃で1分間乾燥した後、高圧水銀ランプ(ウシオ電機株式会社製「ユニキュアVB-15201BY-A」)を用いて、窒素雰囲気下にて露光量1000mJ/cm(365nm基準)の紫外光を前記乾燥被膜に照射することにより、第2基材層付き第2位相差層を得た。膜厚をレーザー顕微鏡で測定したところ、第2位相差層の膜厚は450nmであった。面内位相差値は、王子計測機器株式会社製のKOBRA-WRを用いて測定した。その結果、Re(550)=1nm、Rth(550)=-75nmであった。よって、第2基材層付き第2位相差層は、nx≒ny<nzで表される光学特性を有した。なお、COPの波長550nmにおける位相差値は略0であるため、当該光学特性には影響しない。
 以下に示すカチオン硬化性成分を混合し、紫外線硬化型接着剤を調製した。
 3’,4’-エポキシシクロヘキシルメチル3,4-エポキシシクロヘキサンカルボキシレート(商品名:CEL2021P、株式会社ダイセル製):70質量部
 ネオペンチルグリコールジグリシジルエーテル(商品名:EX-211、ナガセケムテックス株式会社製):20質量部
 2-エチルヘキシルグリシジルエーテル(商品名:EX-121、ナガセケムテックス株式会社製):10質量部
 カチオン重合開始剤(商品名:CPI-100、50%溶液、サンアプロ株式会社製):4.5質量部(実質固形分2.25質量部)
 1,4-ジエトキシナフタレン:2.0質量部
 第1基材層付き第1位相差層の位相差層側及び第2基材層付き第2位相差層の位相差層側に、それぞれコロナ処理を施した。一方のコロナ処理面に、調製した紫外線硬化性接着剤を塗布して、第1基材層付き第1位相差層と第2基材層付き第2位相差層とを貼り合わせた。第2基材層側から紫外線を照射して紫外線硬化型接着剤を硬化させて、接着剤層を形成した。硬化後の紫外線硬化型接着剤層の厚みは1.5μmであった。
 (2-4)光学積層体の作製
 上記(2-2)で得られた直線偏光板におけるTACフィルム側の表面に、紫外線吸収剤を含有する粘着剤層を貼合した。次に、上記(2-3)で得られた位相差積層体の第1基材層を剥離除去し、露出した配向層上に、上記直線偏光板に貼合した紫外線吸収剤を含有する粘着剤層を積層し、円偏光板を作製した。得られた円偏光板について、下記に記載の反射色相と反射率とを測定したところ、反射率Y:5.2%、反射色相a*:-0.1、b*:-1.6であった。
 ついで、上記円偏光板の直線偏光板のHC層上に、粘着剤層を介して上記(2-1)で得られた前面板付き積層フィルムを積層して、光学積層体を得た。この際、前面板付き積層フィルムは、その基材フィルム側で粘着剤層を介して直線偏光板に貼合した。
 (3)光学積層体の反射色相及び反射率Yの測定及び評価
 コニカミノルタ社製の「Cm2600d」を用いて、上記(2)で得られた光学積層体の反射色相a*及びb*、並びに、反射率Yを測定した。結果を表1に示す。測定の際には、光学積層体における光を入射させる面とは反対側の面(光学積層体における前面板とは反対側の面)に粘着剤層を介してガラス板(厚み0.7mm、コーニング社製の「イーグルXG」)反射板(反射率:96%以上、拡散反射率:9%以下)の上に、上記で得られたガラス板付きの光学積層体を、前面板を上にして載せ、反射板/空気/ガラス板/光学積層体の層構成とした状態で測定を行った。光学積層体の反射色相を下記の基準に従って評価した。結果を表1に示す。
 A:a*が0.0以上2.0以下であり、かつ、b*が-5.0以上-2.5以下である。
 B:a*又はb*が上記範囲外である。
 光学積層体の反射率Yを下記の基準に従って評価した。結果を表1に示す。
 A:反射率Yが5.5%以下である。
 B:反射率Yが5.5%超である。
 <実施例2~4>
 (1)積層フィルムの作製
 光学機能層(高屈折率層)の光学膜厚を表1に示されるとおりとしたこと以外は実施例1と同様にして積層フィルムを作製した(実施例1と同じ高屈折率層形成用組成物を使用)。光学機能層の屈折率、並びに、積層フィルムの視感反射率Y及び反射色相を表1に示す。
 (2)光学積層体の作製、並びに、反射色相及び反射率Yの測定及び評価
 上記(1)で得られた積層フィルムを用いたこと以外は実施例1と同様にして光学積層体を作製し、反射色相及び反射率Yの測定及び評価を行った。結果を表1に示す。
 <比較例1>
 (1)積層フィルムの作製
 (1-1)高屈折率層形成用組成物の調製
 光重合開始剤(BASF社製の「イルガキュア184」)0.4質量部と、希釈溶剤(メチルエチルケトン/プロピレングリコールモノメチルエーテルアセテート質量比=5/1)29.6質量部とを混合し、撹拌した。ここに紫外線硬化性樹脂(日本化薬社製の「KAYARAD-DPHA」)を70.0質量部加え、撹拌し、高屈折率層形成用組成物を調製した。
 (1-2)積層フィルムの作製
 基材フィルムとしての厚み40μmのTACフィルム(屈折率1.49)上に、上記(1-1)で調製した高屈折率層形成用組成物をバーコーターを用いて塗布、乾燥及び紫外線照射して、基材フィルムと表1に示される光学膜厚(5μm)を有する光学機能層(高屈折率層)とからなる積層フィルムを作製した。光学機能層の屈折率、並びに、積層フィルムの視感反射率Y及び反射色相を表1に示す。
 (2)光学積層体の作製、並びに、反射色相及び反射率Yの測定及び評価
 上記(1)で得られた積層フィルムを用いたこと以外は実施例1と同様にして光学積層体を作製し、反射色相及び反射率Yの測定及び評価を行った。結果を表1に示す。
 <比較例2>
 (1)積層フィルムの作製
 (1-1)高屈折率層形成用組成物の調製
 光重合開始剤(BASF社製の「イルガキュア184」)0.3質量部と、希釈溶剤(メチルエチルケトン/プロピレングリコールモノメチルエーテルアセテート質量比=5/1)44.6質量部とを混合し、撹拌した。ここに紫外線硬化性樹脂(日本化薬社製の「KAYARAD-DPHA」)を2.0質量部加え、撹拌した。さらに、酸化ジルコニウム粒子分散液(CIKナノテック社製の「ZRMIBK15WT%-P03」、固形分15質量%、平均一次粒子径7.8nm)53.4質量部を加えて撹拌し、高屈折率層形成用組成物を調製した。
 (1-2)積層フィルムの作製
 基材フィルムとしての厚み40μmのTACフィルム(屈折率1.49)上に、上記(1-1)で調製した高屈折率層形成用組成物をバーコーターを用いて塗布、乾燥及び紫外線照射して、基材フィルムと表1に示される光学膜厚を有する光学機能層(高屈折率層)とからなる積層フィルムを作製した。光学機能層の屈折率、並びに、積層フィルムの視感反射率Y及び反射色相を表1に示す。
 (2)光学積層体の作製、並びに、反射色相及び反射率Yの測定及び評価
 上記(1)で得られた積層フィルムを用いたこと以外は実施例1と同様にして光学積層体を作製し、反射色相及び反射率Yの測定及び評価を行った。結果を表1に示す。
 <比較例3~5>
 (1)積層フィルムの作製
 光学機能層(高屈折率層)の光学膜厚を表1に示されるとおりとしたこと以外は比較例2と同様にして積層フィルムを作製した(比較例2と同じ高屈折率層形成用組成物を使用)。光学機能層の屈折率、並びに、積層フィルムの視感反射率Y及び反射色相を表1に示す。
 (2)光学積層体の作製、並びに、反射色相及び反射率Yの測定及び評価
 上記(1)で得られた積層フィルムを用いたこと以外は実施例1と同様にして光学積層体を作製し、反射色相及び反射率Yの測定及び評価を行った。結果を表1に示す。
 <比較例6>
 (1)積層フィルムの作製
 (1-1)高屈折率層形成用組成物の調製
 光重合開始剤(BASF社製の「イルガキュア184」)0.4質量部と、希釈溶剤(メチルエチルケトン/プロピレングリコールモノメチルエーテルアセテート質量比=5/1)17.6質量部とを混合し、撹拌した。ここに紫外線硬化性樹脂(日本化薬社製の「KAYARAD-DPHA」)を2.9質量部加え、撹拌した。さらに、酸化ジルコニウム粒子分散液(CIKナノテック社製の「ZRMIBK15WT%-P03」、固形分15質量%、平均一次粒子径7.8nm)79.1質量部を加えて撹拌し、高屈折率層形成用組成物を調製した。
 (1-2)積層フィルムの作製
 基材フィルムとしての厚み40μmのTACフィルム(屈折率1.49)上に、上記(1-1)で調製した高屈折率層形成用組成物をバーコーターを用いて塗布、乾燥及び紫外線照射して、基材フィルムと表1に示される光学膜厚を有する光学機能層(高屈折率層)とからなる積層フィルムを作製した。光学機能層の屈折率、並びに、積層フィルムの視感反射率Y及び反射色相を表1に示す。
 <比較例7~8>
 (1)積層フィルムの作製
 光学機能層(高屈折率層)の光学膜厚を表1に示されるとおりとしたこと以外は比較例6と同様にして積層フィルムを作製した(比較例6と同じ高屈折率層形成用組成物を使用)。光学機能層の屈折率、並びに、積層フィルムの視感反射率Y及び反射色相を表1に示す。
 (2)光学積層体の作製、並びに、反射色相及び反射率Yの測定及び評価
 上記(1)で得られた積層フィルムを用いたこと以外は実施例1と同様にして光学積層体を作製し、反射色相及び反射率Yの測定及び評価を行った。結果を表1に示す。
 <比較例9>
 (1)積層フィルムの作製
 (1-1)高屈折率層形成用組成物の調製
 光重合開始剤(BASF社製の「イルガキュア184」)0.4質量部と、希釈溶剤(メチルエチルケトン/プロピレングリコールモノメチルエーテルアセテート質量比=5/1)29.6質量部とを混合し、撹拌した。ここに紫外線硬化性樹脂(日本化薬社製の「KAYARAD-DPHA」)を70.0質量部加え、撹拌し、高屈折率層形成用組成物を調製した。
 (1-2)低屈折率層形成用組成物の調製
 光重合開始剤(BASF社製の「イルガキュア127」)0.2質量部と、希釈溶剤(メチルイソブチルケトン/アセトニトリル質量比=7/3)91.1質量部とを混合し、撹拌した。ここに紫外線硬化性樹脂(日本化薬社製の「KAYARAD-PET-30」)3.1質量部、中空シリカ粒子(固形分20質量%、平均一次粒子径60nm)5.5質量部、及び、レベリング剤(大日精化工業社製の「セイカビーム10-28(MB)」0.1質量部を加え、撹拌し、低屈折率層形成用組成物を調製した。
 (1-3)積層フィルムの作製
 基材フィルムとしての厚み40μmのTACフィルム(屈折率1.49)上に、上記(1-1)で調製した高屈折率層形成用組成物をバーコーターを用いて塗布、乾燥及び紫外線照射して、表1に示される光学膜厚(3μm)を有する高屈折率層を形成した。次いで、高屈折率層の上に、上記(1-2)で調製した低屈折率層形成用組成物をバーコーターを用いて塗布、乾燥及び紫外線照射して低屈折率層を形成し、基材フィルムと表1に示される光学膜厚を有する光学機能層(高屈折率層及び低屈折率層)とからなる積層フィルムを作製した。光学機能層の屈折率、並びに、積層フィルムの視感反射率Y及び反射色相を表1に示す。
 (2)光学積層体の作製、並びに、反射色相及び反射率Yの測定及び評価
 上記(1)で得られた積層フィルムを用いたこと以外は実施例1と同様にして光学積層体を作製し、反射色相及び反射率Yの測定及び評価を行った。結果を表1に示す。
 <比較例10>
 (1)積層フィルムの作製
 低屈折率層の光学膜厚を表1に示されるとおりとしたこと以外は比較例9と同様にして積層フィルムを作製した(比較例9と同じ高屈折率層形成用組成物及び低屈折率層形成用組成物を使用)。光学機能層の屈折率、並びに、積層フィルムの視感反射率Y及び反射色相を表1に示す。
 (2)光学積層体の作製、並びに、反射色相及び反射率Yの測定及び評価
 上記(1)で得られた積層フィルムを用いたこと以外は実施例1と同様にして光学積層体を作製し、反射色相及び反射率Yの測定及び評価を行った。結果を表1に示す。
Figure JPOXMLDOC01-appb-T000005
 表1において、比較例9及び10における光学機能層の光学膜厚の数値は、高屈折率層の光学膜厚/低屈折率層の光学膜厚を示す。比較例9及び10における光学機能層の屈折率の数値は、高屈折率層の屈折率/低屈折率層の屈折率を示す。
 1 積層フィルム、1a 光学機能層(A)、1b 基材フィルム、1c 樹脂層、1d 介在層、2 直線偏光板、2a,2c 保護フィルム、2b 直線偏光子、3 位相差層、3a 第1位相差層、3b 第2位相差層、10 第1貼合層、20 第2貼合層、30 第3貼合層、40 第4貼合層、50 粘着剤層、60 セパレートフィルム、70 プロテクトフィルム、80 第5貼合層、90 前面板、100 画像表示素子。

Claims (11)

  1.  基材フィルムと、その上に積層される光学機能層(A)とを含む積層フィルムであって、
     前記積層フィルムは、視感反射率Yが9.0%以下であり、反射色相のa*が0.3以上7.0以下であり、反射色相のb*が-10.0以上0以下である、積層フィルム。
  2.  前記光学機能層(A)は、屈折率が1.55以上1.68以下である、請求項1に記載の積層フィルム。
  3.  前記光学機能層(A)の屈折率と前記基材フィルムの屈折率との差が0.05以上0.20以下である、請求項1又は2に記載の積層フィルム。
  4.  前記光学機能層(A)は、光学膜厚が150nm以上200nm以下である、請求項1又は2に記載の積層フィルム。
  5.  前記光学機能層(A)は、酸化ジルコニウム粒子を含み、
     前記酸化ジルコニウム粒子の一次粒子径分布において、粒子径0.1nm以上15nmの範囲が90%以上を占める、請求項1又は2に記載の積層フィルム。
  6.  前記基材フィルムは、環状ポリオレフィン系樹脂フィルム、セルロースエステル系樹脂フィルム、ポリエステル系樹脂フィルム又は(メタ)アクリル系樹脂フィルムである、請求項1又は2に記載の積層フィルム。
  7.  前記光学機能層(A)における前記基材フィルムとは反対側に配置される樹脂層をさらに含む、請求項1又は2に記載の積層フィルム。
  8.  前記基材フィルムと前記光学機能層(A)との間に、プライマー層及びハードコート層から選択される介在層を有する、請求項1又は2に記載の積層フィルム。
  9.  前記介在層が紫外線吸収剤を含む、請求項8に記載の積層フィルム。
  10.  請求項1又は2に記載の積層フィルムと、円偏光板とを含む、光学積層体。
  11.  請求項10に記載の光学積層体を含む、画像表示装置。
PCT/JP2022/036149 2021-10-01 2022-09-28 積層フィルム、光学積層体及び画像表示装置 WO2023054463A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021-162939 2021-10-01
JP2021162939 2021-10-01

Publications (1)

Publication Number Publication Date
WO2023054463A1 true WO2023054463A1 (ja) 2023-04-06

Family

ID=85782837

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/036149 WO2023054463A1 (ja) 2021-10-01 2022-09-28 積層フィルム、光学積層体及び画像表示装置

Country Status (2)

Country Link
TW (1) TW202330250A (ja)
WO (1) WO2023054463A1 (ja)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010152056A (ja) * 2008-12-25 2010-07-08 Toppan Printing Co Ltd 反射防止フィルム及び反射防止フィルムを有する偏光板並びに画像表示装置
JP2013097356A (ja) * 2011-11-07 2013-05-20 Toppan Printing Co Ltd 反射防止フィルム製造方法、反射防止フィルム、偏光板、および表示装置
JP2013097562A (ja) * 2011-10-31 2013-05-20 Teijin Dupont Films Japan Ltd 静電容量方式タッチパネル電極用積層体
WO2018110503A1 (ja) * 2016-12-12 2018-06-21 日東電工株式会社 円偏光板
WO2019124347A1 (ja) * 2017-12-22 2019-06-27 大日本印刷株式会社 光学積層体、表示パネル及び表示装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010152056A (ja) * 2008-12-25 2010-07-08 Toppan Printing Co Ltd 反射防止フィルム及び反射防止フィルムを有する偏光板並びに画像表示装置
JP2013097562A (ja) * 2011-10-31 2013-05-20 Teijin Dupont Films Japan Ltd 静電容量方式タッチパネル電極用積層体
JP2013097356A (ja) * 2011-11-07 2013-05-20 Toppan Printing Co Ltd 反射防止フィルム製造方法、反射防止フィルム、偏光板、および表示装置
WO2018110503A1 (ja) * 2016-12-12 2018-06-21 日東電工株式会社 円偏光板
WO2019124347A1 (ja) * 2017-12-22 2019-06-27 大日本印刷株式会社 光学積層体、表示パネル及び表示装置

Also Published As

Publication number Publication date
TW202330250A (zh) 2023-08-01

Similar Documents

Publication Publication Date Title
TWI502220B (zh) 光學裝置與包含其的立體影像顯示裝置
JP7300906B2 (ja) 光学積層体及びそれを備えた画像表示装置
JP6638239B2 (ja) 光学積層体及び液晶表示装置
KR20160095612A (ko) 편광판, 액정 패널 및 액정 표시 장치
KR20190096816A (ko) 원편광판 및 광학 표시 디바이스
JP7351621B2 (ja) 円偏光板および光学表示デバイス
JP2017138401A (ja) 光学フィルム及び画像表示装置
JP7462597B2 (ja) 円偏光板、光学積層体及び画像表示装置
WO2023054463A1 (ja) 積層フィルム、光学積層体及び画像表示装置
JP6819156B2 (ja) 液晶表示装置
WO2023054595A1 (ja) 光学積層体及び画像表示装置
JP2023053913A (ja) 光学積層体及び画像表示装置
JP2018060150A (ja) Ipsモード用の偏光板のセット及びそれを用いたipsモード液晶表示装置
WO2023127471A1 (ja) 円偏光板及び有機el表示装置
WO2022270402A1 (ja) 表示装置
CN117957469A (en) Optical laminate and image display device
WO2020100468A1 (ja) 光学積層体及びそれを備えた画像表示装置
WO2022190673A1 (ja) 表示装置
TWI715919B (zh) 多層液晶膜、偏光板及製造偏光板之方法
WO2023127629A1 (ja) 円偏光板
JP2023003395A (ja) 表示装置
KR20220126652A (ko) 광학 적층체 및 타원 편광판
JP2023022022A (ja) 円偏光板、光学積層体及び画像表示装置
WO2017082134A1 (ja) 偏光板及び液晶表示装置
JP2022148467A (ja) 光学積層体

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22876329

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2023551595

Country of ref document: JP