WO2023053645A1 - Transport system, transport method, and control device - Google Patents

Transport system, transport method, and control device Download PDF

Info

Publication number
WO2023053645A1
WO2023053645A1 PCT/JP2022/026101 JP2022026101W WO2023053645A1 WO 2023053645 A1 WO2023053645 A1 WO 2023053645A1 JP 2022026101 W JP2022026101 W JP 2022026101W WO 2023053645 A1 WO2023053645 A1 WO 2023053645A1
Authority
WO
WIPO (PCT)
Prior art keywords
transport
conveying
wheel
control device
vibration
Prior art date
Application number
PCT/JP2022/026101
Other languages
French (fr)
Japanese (ja)
Inventor
浩一 中野
親夫 石丸
Original Assignee
株式会社日立インダストリアルプロダクツ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社日立インダストリアルプロダクツ filed Critical 株式会社日立インダストリアルプロダクツ
Publication of WO2023053645A1 publication Critical patent/WO2023053645A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65GTRANSPORT OR STORAGE DEVICES, e.g. CONVEYORS FOR LOADING OR TIPPING, SHOP CONVEYOR SYSTEMS OR PNEUMATIC TUBE CONVEYORS
    • B65G1/00Storing articles, individually or in orderly arrangement, in warehouses or magazines
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65GTRANSPORT OR STORAGE DEVICES, e.g. CONVEYORS FOR LOADING OR TIPPING, SHOP CONVEYOR SYSTEMS OR PNEUMATIC TUBE CONVEYORS
    • B65G1/00Storing articles, individually or in orderly arrangement, in warehouses or magazines
    • B65G1/02Storage devices
    • B65G1/04Storage devices mechanical
    • B65G1/10Storage devices mechanical with relatively movable racks to facilitate insertion or removal of articles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65GTRANSPORT OR STORAGE DEVICES, e.g. CONVEYORS FOR LOADING OR TIPPING, SHOP CONVEYOR SYSTEMS OR PNEUMATIC TUBE CONVEYORS
    • B65G1/00Storing articles, individually or in orderly arrangement, in warehouses or magazines
    • B65G1/02Storage devices
    • B65G1/04Storage devices mechanical
    • B65G1/137Storage devices mechanical with arrangements or automatic control means for selecting which articles are to be removed
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
    • G05D1/02Control of position or course in two dimensions

Definitions

  • the present invention relates to a transport system, a transport method, and a control device.
  • the delivered items are stored, and when an order is received, the corresponding item is taken out, packed, and shipped to the customer.
  • a transport system that transports articles by an unmanned transport vehicle may be adopted.
  • a device that moves using wheels is widely known as an automatic guided vehicle.
  • identification marks are attached to the side surfaces of the wheels of a guided vehicle that runs along a travel rail, and the overall image of the wheels is photographed from the side of the travel route.
  • the wear of the wheels of automated guided vehicles poses the problem of, for example, increasing frictional resistance and reducing vibration absorption capacity, depending on the cross-sectional shape of the wheels.
  • the contact area increases as the wear progresses, so the running resistance also increases.
  • the running resistance increases, the running performance of the transporting device deteriorates, the transporting time increases, and the work efficiency of the distribution warehouse decreases.
  • the running resistance of the wheels increases, which increases battery consumption when starting or turning, increasing the frequency of charging and lowering the operation rate of the transportation device. occurs.
  • the radius of the wheel with an arc-shaped cross-section in the radial direction decreases as the wear progresses, resulting in a decrease in the vibration absorption capacity, resulting in a decrease in the ability to absorb vibration during travel.
  • the vibration received by the articles and the conveying device increases, and the load applied to the floor surface by the conveying device also increases.
  • a transport system, a transport method, and a control device capable of suppressing the load on the floor surface by suppressing the vibration of the transported article and the transporting device even when the wear of the wheels of the transporting device progresses. offer.
  • the present invention is a transport system comprising a transport device capable of lifting and transporting a movable shelf storing articles, and a control device controlling movement of the transport device via a network, wherein the transport device comprises the A wheel capable of supporting the weight of the transport device and capable of moving on a floor surface, a first sensor detecting a ground contact state of the wheel, and a transport control unit transmitting the ground contact state of the wheel to the control device.
  • the control device calculates the contact width of the wheel from the contact state received from the transfer control unit, and controls the speed or acceleration of the transfer device according to the contact width of the wheel.
  • the present invention even if the wear of the wheels of the conveying device progresses, it is possible to suppress the vibration of the articles to be conveyed and the conveying device, and to suppress the load applied to the floor surface.
  • FIG. 1 shows an example of a structure of a conveying system. It is a perspective view which shows Example 1 and shows an example of a conveying apparatus and a shelf. It is a bottom view which shows Example 1 and shows an example of a conveying apparatus.
  • FIG. 3 is a perspective view showing Example 1 and showing an example of the outline of the bottom surface of the frame of the conveying device, the drive wheels, and the auxiliary wheels.
  • FIG. 2 shows the first embodiment and is a schematic diagram of the mounting position of a safety wheel monitoring sensor.
  • FIG. 5 shows Example 1 and shows how the training wheels are worn.
  • FIG. 10 shows Example 1 and shows an example of order information;
  • FIG. 10 shows Example 1 and shows an example of inventory information;
  • FIG. 10 is a diagram showing Example 1 and showing an example of shelf information
  • FIG. 10 is a diagram showing the first embodiment and showing an example of device information
  • FIG. 10 shows the first embodiment and shows an example of a training wheel table
  • FIG. 10 shows Example 1 and shows an example of a wear degree table
  • FIG. 10 shows the first embodiment and shows an example of a speed control table
  • FIG. 10 shows Example 1 and shows an example of map information
  • It is a figure which shows Example 1 and shows an example of floor information.
  • 5 is a flow chart showing Embodiment 1 and showing an example of processing performed in the transport system.
  • 4 is a flow chart showing Embodiment 1 and showing an example of wear detection processing performed by a warehouse control device.
  • FIG. 4 is a flowchart showing Embodiment 1 and showing an example of travel control according to the wear level performed by the warehouse control device.
  • 5 is a flow chart showing Embodiment 1 and showing an example of a movement process performed by a conveying device.
  • 4 is a graph showing Example 1 and showing an example of speed control according to the wear level performed by the warehouse control device.
  • It is a block diagram which shows Example 2 and shows an example of a structure of a conveying system. It is a figure which shows Example 2 and shows an example of vibration data. It is a graph which shows Example 2 and shows an example of a vibration waveform.
  • FIG. 10 is a flow chart showing Example 2 and showing an example of analysis processing performed by a warehouse control device; FIG. FIG.
  • FIG. 10 is a flow chart showing Example 2 and showing an example of a totaling process of vibration data among the analysis processes performed by the warehouse control device.
  • FIG. FIG. 12 is a diagram showing Example 2 and showing an example of a damage degree table;
  • FIG. 10 is a diagram showing Example 2 and showing an example of a threshold table;
  • FIG. 12 is a diagram showing Example 2 and showing an example of a floor state visualization screen;
  • expressions such as “table”, “list”, and “queue” may be used for explanation, but various types of information may be expressed in data structures other than these.
  • various information such as “XX table”, “XX list”, and “XX queue” may be referred to as “XX information”.
  • identification information expressions such as “identification information”, “identifier”, “name”, “ID”, and “number” are used, but these can be replaced with each other.
  • the processing performed by executing the program may be explained.
  • the computer executes a program by means of a processor (eg, CPU, GPU) and performs processing determined by the program while using storage resources (eg, memory) and interface devices (eg, communication port). Therefore, the main body of the processing performed by executing the program may be the processor.
  • a main body of processing executed by executing a program may be a controller having a processor, a device, a system, a computer, or a node.
  • the main body of processing performed by executing the program may be an arithmetic unit, and may include a dedicated circuit for performing specific processing.
  • the dedicated circuit is, for example, FPGA (Field Programmable Gate Array), ASIC (Application Specific Integrated Circuit), CPLD (Complex Programmable Logic Device), or the like.
  • the program may be installed on the computer from the program source.
  • the program source may be, for example, a program distribution server or a computer-readable storage medium.
  • the program distribution server may include a processor and storage resources for storing the distribution target program, and the processor of the program distribution server may distribute the distribution target program to other computers.
  • two or more programs may be implemented as one program, and one program may be implemented as two or more programs.
  • FIG. 1 is a block diagram showing an example of the configuration of a transport system according to the first embodiment.
  • the transport system of this embodiment includes a warehouse control device 100 , a network 90 , and a plurality of transport devices 1 connected to the warehouse control device 100 via the network 90 .
  • the warehouse control device 100 transmits to the transport device 1 a transport command designating the shelf 7 to be transported by the transport device 1 and the picking station of the transport destination to cause the transport device 1 to automatically transport is shown.
  • the warehouse control device 100 is a computer including an arithmetic device 110, a memory 120, an input device 130, an output device 140, a storage device 150, and a communication interface 170.
  • the storage device 150 has a non-volatile storage medium and stores programs executed by the arithmetic device 110 and data used by the programs.
  • a route creation program 161 a data input/output program 162, a data analysis program 163, and a transport device control program 164 are stored in the storage device 150, and the arithmetic device 110 loads necessary programs into the memory 120. to run.
  • Examples of data stored in the storage device 150 include order information 200, inventory information 220, shelf information 230, floor information 240, map information 250, device information 260, route data 270, and measurement data.
  • Data 280, vibration data 290, a speed control table 410 (speed control information), a wear level table (wear level information) 420, and a training wheel table (training wheel information) 430 are stored.
  • the route creation program 161 calculates the route along which the transport device 1 moves.
  • the route creation program 161 calculates the route along which the conveying device 1 moves from, for example, the position of the article (or product) to be picked and the position of the destination picking station.
  • the data input/output program 162 receives order information, receives sensor data from the conveying apparatus 1, and outputs information on articles to be picked.
  • the data analysis program 163 estimates the contact width of the training wheels of the transport device 1 and updates the device information 260 and the like. Alternatively, the data analysis program 163 analyzes the state of the floor along the path along which the conveying apparatus 1 has moved from the image when the sensor data is floor vibration data or an image or video of the floor, and updates the floor information 240. etc.
  • the transport device control program 164 selects the shelf 7 to be transported to the available transport device 1 based on the route calculated by the route creation program 161, the floor information 240, the device information 260 storing the state of the transport device 1, and the like. and command the goods and the picking station to which they are to be conveyed.
  • the order information 200 is information of an order requesting shipment of goods, and stores information of goods to be picked.
  • the inventory information 220 stores information regarding the inventory of articles, such as information on shelves where articles are arranged, arrangement positions within the shelves, quantity, weight, and the like.
  • the shelf information 230 stores information such as the position and weight of the shelf.
  • the floor information 240 stores information indicating the state of the floor surface for each floor area.
  • the map information 250 stores map information in the warehouse.
  • the device information 260 stores the identification information (identifier), the position, the operating state, the state of the training wheels, and the like for each transport device 1 .
  • the route data 270 stores route information for each transport device 1 .
  • the measurement data 280 stores sensor data, position information, running state, and the like received from each transport device 1 .
  • the vibration data 290 stores the position where the shock or vibration occurred in the conveying apparatus 1, the magnitude of the shock or vibration, and the running state.
  • the shock and vibration received by the conveying device and the floor when the conveying device 1 travels on the floor may be referred to as "vibration".
  • the input device 130 is composed of a keyboard, mouse, touch panel, or the like.
  • the output device 140 is configured by a display or the like.
  • the communication interface 170 communicates with the transport apparatus 1 and other computers via a wireless network 90 .
  • the network 90 can include a wired network.
  • the transport device 1 is an autonomous mobile body that automatically transports the shelves 7 containing articles according to commands from the warehouse control device 100 .
  • the transport device 1 is an automatic transport device having a control device (control section) 2 , a storage device 4 , a driving device (driving section) 3 , a sensor 5 and a communication interface 6 .
  • the sensors 5 include, for example, a vibration sensor (acceleration sensor) 51, a forward monitoring sensor 52, and an auxiliary wheel monitoring sensor 53.
  • the forward monitoring sensor 52 and the auxiliary wheel monitoring sensor 53 are configured by image sensors or the like.
  • the auxiliary wheel monitoring sensor 53 is, for example, a sensor capable of acquiring information about a grounding portion (grounding surface), which is a portion of the auxiliary wheel that comes into contact with the floor surface when the transport device 1 travels.
  • the training wheel monitoring sensor 53 is, for example, a sensor capable of acquiring information (for example, an image) of the shape or state of the ground contact portion (ground contact surface) of the training wheel.
  • the control device 2 includes an arithmetic device 21 and a memory 22.
  • a self-position estimation program 23 , a travel control program 24 , a measurement program 25 and a communication program 26 are loaded into the memory 22 and executed by the arithmetic unit 21 .
  • the arithmetic unit 21 is composed of a microcomputer and a processor.
  • the self-position estimation program 23 calculates the position of the transport device 1 based on the image data (image or video data) obtained from the forward monitoring sensor 52 or the like. Note that this embodiment shows an example in which markers indicating positions in the warehouse are displayed (installed) in advance on the floor of the distribution warehouse.
  • the self-position estimation program 23 calculates the position of the transport device 1 from the markers read by the forward monitoring sensor 52 .
  • the markers placed on the floor of the distribution warehouse are information that can be read by the sensor 5 of the transport device 1, such as a QR code (registered trademark).
  • the position estimation of the transport device 1 may be configured such that the image data and the like obtained from the forward monitoring sensor 52 are transmitted to the warehouse control device 100 and the warehouse control device 100 performs the estimation. Markers may also be referred to as marks or fiducial markers.
  • the floor of a warehouse is managed in multiple compartments, and each of the multiple compartments has a marker indicating the location of that compartment.
  • the conveying device 1 travels on the floor and reads the markers written on the floor of each section when passing over each section to acquire information about the position of the section.
  • the marker may contain information for specifying the position of the section, for example, the position information of the section, or information associated with the position information of the section (for example, the identification information of the section). ).
  • the travel control program 24 controls the drive device 3 based on the current position of the transport device 1 and the route data 41 received from the warehouse control device 100 .
  • the warehouse control device 100 transmits the route data 270 for each transport device 1 generated by the route creation program 161 to the transport device 1 .
  • the measurement program 25 acquires the sensor data acquired from the sensor 5, the travel speed and acceleration acquired from the travel control program 24, and the position of the transport device 1 calculated by the self-position estimation program 23, and transmits them to the warehouse control device 100. do.
  • the sensor data includes vibration data from the vibration sensor 51, image data of the floor surface from the forward monitoring sensor 52, and image data of the training wheels from the training wheel monitoring sensor 53.
  • the timing at which the measurement program 25 transmits the sensor data to the warehouse control device 100 may be at a predetermined timing or at a predetermined cycle (for example, every 24 hours).
  • the timing at which the measurement program 25 captures the image data of the training wheels with the training wheel monitoring sensor 53 may be performed at a predetermined timing, such as when receiving a command from the warehouse control device 100, for example.
  • the measurement program 25 may store the data acquired from the sensor 5 and each program in the measurement data 43 of the storage device 4 once and then transmit it to the warehouse control device 100 .
  • the communication program 26 communicates with the warehouse control device 100 via the network 90 .
  • the storage device 4 is composed of a non-volatile storage medium and stores each program and data used by each program. Examples of data include route data 41 , measurement data 43 , device information 44 and floor information 46 .
  • the route data 41 stores the route data received from the warehouse control device 100.
  • the measurement data 43 stores sensor data acquired by the sensor 5 described above and data acquired or calculated by each program.
  • Data to be sent to the warehouse control device 100 after being stored in the measurement data 43 include measurement date and time, device ID, vibration data, image data, position information, travel mode, travel speed, travel acceleration, presence/absence of shelf loading, transport A shelf ID is included in one record.
  • the device information 44 stores the identifier (device ID) of the conveying device 1, the state of the device, information about the presence or absence of loading on the shelf, the position of the device, the remaining battery capacity, the cumulative travel distance, the cumulative number of accelerations, and the like.
  • the device information 44 may be information equivalent to information about the conveying device 1 in the device information 260 (described later).
  • the floor information 46 stores the floor information 240 received from the warehouse control device 100. By referring to the floor information 46 , the control device 2 can determine acceleration conditions and the like of the transport device 1 based on information on the floor surface on which the transport device 1 moves.
  • the driving device 3 supplies electric power to the truck 31, the driving wheels 33, the table 32, the auxiliary wheels (casters) 34, the motor 38 as a power source for driving the driving wheels 33 and the table 32, and the motor 38.
  • a battery 39 is included. The configuration of the driving device 3 will be described later.
  • the motors 38 for driving the driving wheels 33 and the table 32 can be composed of independent motors.
  • the sensor 5 is composed of a forward monitoring sensor 52 (camera) that captures the floor surface, a vibration sensor (acceleration sensor) 51 that detects vibration, and a training wheel monitoring sensor 53 that monitors the contact width of the training wheels 34. .
  • the floor surface is photographed by the forward monitoring sensor 52 as the sensor 5, and the current position is specified by identifying the mark with the self-position estimation program 23. be able to.
  • image data of the floor captured by the forward monitoring sensor 52 can be transmitted to the warehouse control device 100 to analyze the state of the floor.
  • the training wheel monitoring sensor 53 takes an image of the training wheels 34 and the floor surface while the conveying apparatus 1 is moving straight, and monitors the contact width of the training wheels 34 as will be described later.
  • the training wheel monitoring sensor 53 may acquire measurement data (for example, an image) of the contact portion of the training wheels 34 while the conveying device 1 is moving straight ahead, and monitor the contact width of the training wheels 34 .
  • the grounding width of the training wheels 34 may be determined from the image of the grounding portion of the training wheels 34 .
  • a vibration sensor 51 as the sensor 5 detects vibration (acceleration) generated in the transport device 1 according to the state of the floor surface as the transport device 1 moves on the floor surface.
  • the warehouse control device 100 can be notified of the magnitude of the vibration and the position information of the floor surface where the vibration occurred as the state of .
  • the movement (running) of the conveying device 1 of this embodiment includes at least straight movement and turning movement in which the vehicle body rotates on the spot. It is assumed that the control device 2 moves along the calculated route data 270 (41) by switching between going straight and turning.
  • the computing device 21 operates as a functional unit that provides a predetermined function by executing processing according to the program of each functional unit.
  • the arithmetic unit 21 functions as a travel control unit by executing processing according to the travel control program 24 . The same is true for other programs. Further, the arithmetic unit 21 also operates as a functional unit that provides functions of multiple processes executed by each program.
  • FIG. 2 is a perspective view showing an example of the conveying device 1 and the shelf 7.
  • the conveying device 1 is an automatic traveling device including a rectangular parallelepiped carriage 31 that can move straight and turn, and a table 32 that is arranged on the upper surface of the carriage 31 and can move up and down and turn.
  • the carrier device 1 may be, for example, an automated guided vehicle (AGV) or an autonomous mobile robot (AMR).
  • a bumper 35 and a forward monitoring sensor 52 are arranged on the forward side of the carriage 31 .
  • the shelf 7 for storing articles (or products) is composed of a rectangular parallelepiped having a pair of openings on the side surfaces, and includes a bottom plate 72 supported by legs 71 at a predetermined height from the floor surface, and a 1 on which articles are placed.
  • the above shelf board 73 is arranged.
  • the transport device 1 After moving the carriage 31 below the bottom plate 72 of the shelf 7 with the table 32 lowered, the transport device 1 raises the table 32 to lift the shelf 7 .
  • the transport device 1 transports the shelf 7 by causing the cart 31 to travel while the shelf 7 is lifted by the table 32 .
  • the table 32 can turn with respect to the carriage 31, and when the carriage 31 turns on the floor surface, the orientation of the shelf 7 is maintained by rotating the table 32 relative to the carriage 31. can be used to change the traveling direction of the carriage 31 .
  • the shelf 7 has two opening surfaces, so that by rotating the table 32 by 180°, different openings can be provided to the picking station.
  • the structure of the shelf 7 is not limited to the illustrated example, but may be a box, pallet, or the like having openings on four sides or having a bottom plate 72 on which the table 32 can be lifted. I wish I had.
  • An object to be transported by the transport vehicle is sometimes called a transported object (for example, a shelf, a pallet, etc.).
  • FIG. 3 is a bottom view showing an example of the transport device 1.
  • FIG. The bumper 35 side of the bottom surface of the carriage 31 faces forward, and drive wheels 33-L and 33-R are arranged on the left and right sides of the bottom surface in the front-rear direction to move the carriage 31 straight or turn.
  • the symbol "33" omitting "-" is used. The same applies to the codes of other constituent elements.
  • Auxiliary wheels 34-FL, 34-RL, 34-FR, and 34-RR are arranged in front and behind the drive wheels 33-L and 33-R, respectively, to support the truck 31.
  • Each auxiliary wheel 34 is rotatably supported around a shaft 36 provided on the bottom surface of the carriage 31 via a holder 37 .
  • this embodiment shows an example in which four auxiliary wheels 34 are arranged, the present invention is not limited to this, and one or more auxiliary wheels 34 can be used.
  • each auxiliary wheel 34 is rotatably supported on the floor surface of the distribution warehouse by a shaft (not shown) supported by a holder 37 .
  • the conveying device 1 moves straight by arranging the driving wheels 33-L and 33-R in parallel and rotating them at a constant speed, and rotates the driving wheels 33-L and 33-R in opposite directions. By doing so, the truck 31 can be pivoted.
  • FIG. 4 is a perspective view showing a simplified outline of part of the bottom surface of the frame 61 that constitutes the carriage 31 of the conveying device 1 and an example of the drive wheels 33 and auxiliary wheels 34 .
  • FIG. 5 is a schematic diagram of the mounting positions of the vibration sensor 51 and the auxiliary wheel monitoring sensor 53.
  • a frame 61 of the transport device 1 is configured in a square frame shape.
  • a driving wheel 33 and an auxiliary wheel 34 are attached to the lower part of the frame 61 to run on the floor surface of the distribution warehouse.
  • a pedestal 62 for mounting the training wheels 34 is provided at the bottom of the four corners of the frame-shaped frame 61 .
  • a shaft 36 for supporting the training wheel 34 is attached to the lower surface of the base 62, and a holder 37 rotatable around the axis of the shaft 36 is mounted, and the holder 37 supports the training wheel 34 rotatably on the floor surface. do.
  • a load applied to the table 32 is supported by the auxiliary wheels 34 and the driving wheels 33 via the frame 61 and the pedestal 62 .
  • a load applied to the training wheel 34 is transmitted from the frame 61 via the pedestal 62 , the shaft 36 and the holder 37 .
  • a vibration sensor 51 is attached to the upper surface of the pedestal 62 that supports the training wheel 34 .
  • a training wheel monitoring sensor 53 that captures the training wheels 34 and the contact position is attached.
  • this embodiment shows an example in which the training wheel monitoring sensor 53 is installed in front of the training wheel 34-RR, it is not limited to this.
  • An auxiliary wheel monitoring sensor 53 that captures the contact position of at least one auxiliary wheel 34 may be provided.
  • the training wheel monitoring sensor 53 is installed at a location where the installation position of the training wheel 34 is photographed from the front while the conveying device 1 is traveling straight, but the present invention is not limited to this.
  • the position at which the training wheel monitoring sensor 53 is installed may be any position where the width at which the training wheel 34 touches the floor surface can be photographed.
  • the front and rear auxiliary wheels 34-FR and 34-RR roll on the same locus when the conveying device 1 moves straight.
  • An auxiliary wheel monitoring sensor 53 is provided to photograph the straight-ahead auxiliary wheel 34-RR from the front, but it may also be photographed from the rear of the auxiliary wheel 34-RR.
  • the training wheel monitoring sensor 53 is arranged on the lower surface of the pedestal 62 supporting the training wheel 34-RR on the right rear of the frame 61, and the vibration sensor 51 is arranged on the upper surface. Although shown, it is not limited to this and may be provided on other pedestals 62 .
  • the vibration sensor 51 By providing the vibration sensor 51 on the upper part of the training wheel 34, more preferably on the pedestal 62 that supports the training wheel 34, the influence of the vibration of the motor 38 that drives the drive wheel 33 and the vibration of the frame 61 can be suppressed. As a result, it is possible to accurately measure the vibration from the floor surface.
  • FIG. 6 is a diagram showing an example of the training wheels 34 photographed by the training wheel monitoring sensor 53.
  • FIG. In the initial state where the auxiliary wheels 34 are attached to the conveying apparatus 1, the auxiliary wheels 34 roll on the floor with a contact width W0 as shown in (A) in the figure.
  • the radial cross section of the training wheel 34 is formed in an arc shape or a trapezoidal shape in which the width (dimension of the training wheel 34 in the rotation axis direction) decreases toward the ground contact surface.
  • the contact width of the auxiliary wheel 34 which has increased the travel distance, increases from the contact width W0 in the initial state to the contact width W0, the contact area also increases, so the resistance required for rotation (running) also increases.
  • the conveying apparatus 1 stops from a straight-ahead state and rotates (pivot turn) in which the left and right driving wheels 33 are reversed at a constant speed, the auxiliary wheels 34 in the straight-ahead state shown in FIG. Frictional resistance for turning is increased compared to the straight running state.
  • the carrier device 1 when the carrier device 1 is turned from a straight-ahead state, it is turned around the shaft 36 while the auxiliary wheels 34 are rotated. A slowdown occurs. A similar increase in running resistance also occurs when the conveying apparatus 1 is moved straight after being turned.
  • the running performance of the transport device 1 decreases, and if the transport time increases, the work efficiency of the distribution warehouse will decrease.
  • the battery consumption increases, so the number of charging times of the conveying apparatus 1 increases (reduces the traveling distance with a full charge). As a result, the operating rate of the transport device 1 decreases.
  • the outer diameter of the training wheel 34 also decreases.
  • the vibration absorption capacity decreases due to the reduction of the radius with the progress of the movement, the vibration applied to the article to be conveyed increases, and the load applied to the floor surface by the conveying apparatus 1 also increases.
  • the warehouse control device 100 controls the running performance of the conveying device 1 as will be described later. By suppressing the movement of the load to 100 degrees, it is possible to prevent an increase in vibration of the article to be conveyed, and to suppress the damage caused by the training wheels 34 to the floor surface of the distribution warehouse. In addition, since the warehouse control device 100 notifies the output device 140 of the replacement timing of the training wheels 34, maintenance of the transport device 1 can be performed accurately.
  • FIG. 7 is a diagram showing an example of the order information 200.
  • the order information 200 is information received by the warehouse control device 100 from another device.
  • the order information 200 includes a serial number 201, a slip number 202, a store name 203, a store code 204, a product name 205, a product code 206, a quantity 207, a delivery date 208, and an order reception date and time 209.
  • a work date and time 210 is included in one record.
  • the serial number 201 is a unique number assigned by the warehouse control device 100. The same applies to serial numbers of other information.
  • the slip number 202 is a number assigned by the warehouse control device 100 to each order.
  • the store name 203 indicates the shipping destination of the article.
  • the quantity 207 indicates the number of ordered products specified by the product name 205 and product code 206 in the slip number 202 of the record.
  • the date and time of work 210 stores the scheduled date and time of the picking work for the product name 205 of the slip number 202 .
  • the work date and time 210 is based on the customer's request (such as a request for early shipment before the delivery date) and the warehouse situation (such as when there is a reason for wanting to ship the product early). ,It is determined.
  • the work date and time 210 may be determined by other software that cooperates with the warehouse control device 100 (for example, a warehouse management system (WMS: Warehouse Management System)), or may be set by the user.
  • WMS warehouse Management System
  • FIG. 8 is a diagram showing an example of inventory information 220.
  • the inventory information 220 is preset information.
  • the stock information 220 includes a serial number 221, a product name 222, a product code 223, a stock quantity 224, a shelf ID 225, and a shelf arrangement position 226 in one record.
  • the serial number 221, product name 222, product code 223, and inventory quantity 224 are the same as in the order information 200 described above.
  • the shelf ID 225 stores the identifier of the shelf 7 on which the product is stored.
  • the arrangement position 226 in the shelf stores information used when a person or a robot picks, for example, at the picking station ST (see FIG. 14). For example, in a record that describes "U3R2", the placement position 226 in the shelf is "the third row from the top (U) and the second position from the right (R)" on the shelf 7. Indicates that the product is placed.
  • FIG. 9 is a diagram showing an example of the shelf information 230.
  • the shelf information 230 is preset information.
  • the shelf information 230 includes serial number 231, shelf ID 232, storage position 233, shelf weight 234, and product weight 235 in one record.
  • a unique identifier given to each shelf 7 is stored in the shelf ID 232 .
  • the shelf ID 232 for example, the identifier of the shelf 7 given by the warehouse control device 100 may be stored.
  • the storage position 233 stores the information of the storage position of the shelf 7, for example, the coordinates of the map information 250 (described later). When the shelf 7 is being transported, the storage position 233 stores “transporting”.
  • the shelf weight 234 stores the weight of the shelf 7 itself, and the product weight 235 stores the weight of the goods (products, containers that store the products, etc.) mounted on the shelf 7 .
  • the weight of the goods (shelf + product) transported by the transport device 1 is at least the sum of the "shelf weight” and the "product weight”.
  • the weight and inventory number of each product may be recorded, and the weight of the transported item (shelf + product) may be calculated.
  • the weight of some of the products on the shelf 7 and the products mounted on the shelf 7 may be excluded from the calculation.
  • a weight sensor capable of measuring "the weight of the goods (shelf + product)" transported by the transport device 1 is installed, and after the completion of picking, the shelf 7 is returned to the storage position. Weight may be measured on occasion. At this time, the weight measured by the transport device 1 may be received by the warehouse control device 100 and recorded as the “weight of the transported article (shelf + product)” in the shelf information 230 .
  • the warehouse control device 100 identifies the storage position 233 of the shelf 7 using the information of the shelf ID 225 obtained from the inventory information 220 of FIG. 8 as a key. For example, the warehouse control device 100 determines the position of the transport device 1 near the storage position of the shelf 7, the storage position 233 of the shelf 7, and the transport of the shelf 7 among the devices in the "standby" state in the transport device 1, for example.
  • the moving route of the transport device 1 is calculated from the information of the picking station ST to be the destination.
  • the warehouse control device 100 can handle the shelf information 230 as weight information specifying the weight of the article that the transport device 1 transports.
  • FIG. 10 is a diagram showing an example of the device information 260.
  • the device information 260 includes a serial number 261, a device ID 262, a device state 263, presence/absence of a shelf 264, a device position 265, a remaining battery level 266, a cumulative travel distance 267, a cumulative acceleration count 268, and a A training wheel code 269, initial contact width value 2610, current contact width value 2611, contact width increase rate 2612, and wear level 1613 are included in one record.
  • the device ID 262 stores a unique identifier given to each transport device 1.
  • the status 263 stores information about the status of each transport device 1 . As the status, for example, the status of the transport apparatus 1 such as "standby”, “moving”, “charging”, and “broken" is input.
  • the warehouse control device 100 selects the transport device 1 that processes a certain transport task (instructs transport), the selection can be made based on the transport efficiency or the like. For example, even if the transport device 1 is in the "moving" state, if the current task is completed early and the next transport task (the above-mentioned certain transport task) can be processed earlier than the others. , may be selected.
  • the presence/absence of shelf 264 stores the presence/absence of the shelf 7 mounted on the transport device 1 .
  • the presence/absence of shelf 264 is information regarding the presence/absence of loading of the shelf 7 in the transport device 1 .
  • the shelf presence/absence 264 is information indicating whether or not the shelf 7 is loaded on the table 32 of the transport device 1 .
  • the position 265 stores information about the position of each transport device 1 .
  • the transport device 1 uses the forward monitoring sensor 52 to read information (eg, a mark) attached to a predetermined position on the floor surface of each area.
  • the information read by the transport device 1 includes information about the position of the area, and the transport device 1 can specify its own position. Note that the self-position specifying method may be based on other techniques.
  • Each transport device 1 can transmit the specified position and date and time to the warehouse control device 100 , and the data input/output program 162 of the warehouse control device 100 can store it in the device information 260 .
  • the remaining battery capacity 266 is information about the remaining capacity of the battery 39 of each transport device 1 .
  • the carrier device 1 may go to the charging station for charging when the remaining battery charge 266 becomes equal to or less than a predetermined remaining battery charge.
  • the charging schedule may be determined according to the availability of charging stations (reservation status), the transportation schedule, the remaining battery capacity of each transportation device 1, and the like. For example, if many transport devices 1 are charged at the same timing, the charging station may be crowded and waiting for charging may occur. Therefore, a schedule that takes transport efficiency into consideration is desirable.
  • the cumulative travel distance 267 stores the distance traveled by the transport device 1 so far.
  • the cumulative acceleration count 268 stores the number of times the conveying device 1 has accelerated (or decelerated) so far.
  • the auxiliary wheel code 269 is an identifier that indicates the type (or model) of the auxiliary wheel 34 and stores a value that is set or updated for each conveying device 1 .
  • the contact width initial value 2610 stores the value of the contact width W0 at the time when the safety wheels 34 are attached or replaced.
  • a value (contact width W0) detected from an image taken by the training wheel monitoring sensor 53 when the conveying device 1 is introduced or after the training wheels 34 are replaced can be input.
  • the contact width current value 2611 stores the value (contact width W1) detected from the image captured by the auxiliary wheel monitoring sensor 53.
  • the contact width increase rate 2612 stores the percentage of the value obtained by dividing the contact width current value 2611 by the contact width initial value 2610 .
  • the wear level 2613 stores the value determined by the data analysis program 163 based on the contact width increase rate 2612 . As for the value of the wear level 2613, for example, "A” indicates “new”, “B” indicates “usable”, “C” indicates “inspection required”, and “D” indicates “replacement required”. show.
  • the contact width initial value 2610 and the contact width current value 2611 may be detected by analyzing the image received from the transport device 1 by the warehouse control device 100, or by the transport device 1 using the auxiliary wheel monitoring sensor.
  • the contact width detected from the image of 53 may be transmitted to the warehouse control device 100 .
  • the device information 260 can be handled as state information of the transport device 1 indicating the degree of deterioration over time such as the remaining battery capacity 266, the cumulative travel distance 267, the cumulative number of times of acceleration 268, the wear level 2613, and the frequency of use. .
  • FIG. 11 is a diagram showing an example of the training wheel table 430.
  • the auxiliary wheel table 430 is preset information.
  • the training wheel table 430 includes training wheel code 431, material 432, hardness 433, ground surface shape 434, deformation amount 435, and correction coefficient 436 in one record.
  • the auxiliary wheel code 431 stores an identifier that identifies the type of the auxiliary wheel 34.
  • the auxiliary wheel code 431 stores an identifier that specifies the type of the auxiliary wheel 34, and the material 432, which is the value of the auxiliary wheel code 269 of the device information 260, stores the name of the main material that constitutes the auxiliary wheel 34. be.
  • the hardness 433 stores a value that classifies the hardness of the training wheel 34 into three levels of "large”, “medium”, and “small”.
  • the tread shape 434 stores the shape of the tread in a radial cross-section of the training wheel 34 .
  • the amount of deformation 435 stores values obtained by classifying the value of the spring constant into three levels of "large”, “medium”, and "small”.
  • the correction coefficient 436 stores a preset value according to the material 432 of the training wheel 34, the amount of deformation 435, and the like.
  • the correction coefficient 436 is set to a value for correcting acceleration (angular acceleration) or speed (angular velocity), which will be described later, according to the characteristics (material and shape) of the auxiliary wheels 34 .
  • the warehouse control device 100 can control the transport device 1 in accordance with the wear level by considering the material 432 of the training wheels 34 in addition to the contact width.
  • the acceleration or speed can be suppressed by setting the correction coefficient 436 to decrease as the hardness 433 increases.
  • the correction coefficient 436 by setting the correction coefficient 436 to decrease as the R of the ground contact surface shape 434 (the radius of the cross-sectional shape of the training wheel 34) increases, it is possible to set the acceleration or speed to be suppressed. Also, by setting the correction coefficient 436 to decrease as the deformation amount 435 increases, the acceleration or speed can be set to be suppressed.
  • FIG. 12 is a diagram showing an example of the wear degree table 420.
  • the wear degree table 420 is preset information for determining the wear level of the training wheels 34 .
  • a wear degree table 420 includes a contact width increase rate 421 and a wear level 422 in one record.
  • the contact width increase rate 421 stores the range of values of the contact width increase rate 2612 of the device information 260 .
  • the wear level 422 stores the degree of wear corresponding to the contact width increase rate 421, which is one of "A" to "D".
  • FIG. 13 is a diagram showing an example of the speed control table 410.
  • the speed control table 410 is information in which the speed or acceleration for driving the conveying device 1 is set in advance according to the traveling mode and wear level.
  • the speed control table 410 includes mode 411, wear level 412, running speed 413, acceleration 414, angular velocity 415, and angular acceleration 416 in one record.
  • the mode 411 indicates the running mode of the transport device 1, and stores any one of "turn”, “straight ahead”, and “acceleration (deceleration)".
  • the wear level 412 stores values “A” to “D” of the wear level 422 determined by the wear level table 420 of FIG. 12 for each running mode of the mode 411 .
  • the traveling speed 413 stores the speed at which the conveying device 1 is driven.
  • the acceleration 414 stores the acceleration when the transport device 1 is accelerated or decelerated.
  • the angular velocity 415 stores the angular velocity at which the conveying device 1 is turned.
  • the angular acceleration 416 stores the angular acceleration when the conveying device 1 is turned.
  • the driving mode is divided into “straight ahead” and “acceleration/deceleration”, but speed and acceleration may be set as a pair such as "turning".
  • FIG. 14 is a diagram showing an example of map information.
  • the map information 250 is information in which positions within the distribution warehouse are set in advance.
  • the map information 250 indicates the position and use of the "area” specified by the row number 251 and the column number 252.
  • Each area is a rectangular area, and is set to any one of "passage area”, “shelf storage area”, and "travel prohibited area” according to area setting 244 of floor information 240 (FIG. 21), which will be described later.
  • FIG. 15 is a diagram showing an example of the floor information 240.
  • the floor information 240 is information specifying the state and position of the floor surface in the distribution warehouse calculated by the data analysis program 163 from the measurement data 280 .
  • the floor information 240 includes a serial number 241, an area 242, a floor state 243, an area setting 244, and an accumulated load 245 in one record.
  • the floor condition 243 stores information indicating the condition of the floor, especially the damage level. For example, it may be divided into levels such as “normal state”, “low damage level”, “medium damage level”, and “large damage level”. In addition, the floor state 243 may be, for example, "normal state”, “low damage level”, and “medium damage level” as travelable, and "large damage level” as travel disabled (prohibited travel).
  • the area setting 244 When the area setting 244 is “aisle area”, it indicates that the transport device 1 can travel, and the shelf 7 can also be transported. When the area setting 244 is “shelf storage area”, it indicates an area where the shelf 7 transported by the transport device 1 is placed or an area secured as a place for placing the shelf 7 .
  • the transport device 1 in a state where the shelf 7 is not transported can pass under the shelf 7, so it can travel, but the transport device 1 in a state where the shelf 7 is transported cannot move in the area where the other shelf 7 is located. Do not run to avoid collision with 7.
  • the area setting 244 is "travel prohibited area"
  • this is an area in which travel of the transport device 1 is restricted.
  • an area with “severe damage” may be set as a “no-driving area”.
  • an area where an obstacle that hinders travel is detected, an area where people or other devices work, and the like may be set as the "no travel area”.
  • An area that satisfies a predetermined condition may automatically be set as the "no-travel area", or the user may set the "no-travel area”.
  • the cumulative load 245 is a value obtained by accumulating the load received by the floor of the area from the transport device 1 .
  • the load includes the load when the conveying device 1 passes (the number of passes, the weight when passing, etc.), the load when the conveying device 1 turns (the number of rotations, the weight when rotating), and the acceleration or weight of the conveying device 1.
  • There is a load when decelerating (number of times of acceleration, weight when accelerating, number of times of deceleration, weight when decelerating, etc.).
  • the cumulative load 245 may be a value calculated based on information on some or all of these loads. For example, it may be a total weight value obtained by accumulating the weight when passing.
  • FIG. 16 is a flowchart showing an example of processing performed by the warehouse control device 100. As shown in FIG. This processing is executed at a predetermined timing such as a predetermined period or timing when an order is received.
  • the route creation program 161 sorts the order information 200 in ascending order of the work date and time 210, and performs the following processing in order from the top record (S1).
  • the route creation program 161 selects the order information 200, searches the inventory information 220 from the product code 206, and determines whether there is an inventory quantity 224 or not. If there is inventory, the route creation program 161 acquires the shelf ID 225 and the arrangement position 226 within the shelf, searches the shelf information 230, and specifies the storage position 233 of the shelf 7 (S2).
  • the route creation program 161 refers to the map information 250, the area setting 244 of the floor information 240, and the device information 260 to determine the maximum transport efficiency from the storage position 233 of the shelf 7 to the picking station ST as described above.
  • transport device 1 is selected from the device information 260 .
  • the picking station ST as the transport destination may be set in advance according to the shipping destination (the store name 203), or may be set in advance according to the product to be picked and the type of product.
  • the route creation program 161 creates the transport route of the transport device 1 as route information from the map information 250, the area setting 244 of the floor information 240, the storage position 233 and the picking station ST information (S3).
  • the transport device control program 164 determines the transport device 1 that transports the shelf 7 on the date and time designated by the work date and time 210 of the order information 200, and determines the route information created above and the wear level of the device information 260.
  • a command to convey at the speed or acceleration of the speed control table 410 corresponding to 412 is transmitted (S4).
  • the transport device 1 which has received a transport command from the warehouse control device 100, travels along the received route at the specified speed or acceleration, mounts the specified shelf 7 on the table 32, and transports it to a predetermined picking station ST. do.
  • the transport device 1 loads the shelf 7, transports it to the storage location, and unloads the shelf 7 onto the floor 80. After that, the transport device 1 moves to a predetermined waiting place and ends the transport task.
  • the warehouse control device 100 receives an instruction from the worker at the picking station ST to complete the picking work. Based on this picking operation completion command, the warehouse control device 100 commands the transfer device 1 to move to the storage location.
  • the position to which the transport device 1 returns the shelf 7 may be the original storage location, or may be stored in a different position based on the frequency of use of the shelf 7 or the like. For example, if the shelf 7 is frequently used, the transport device 1 may place the shelf 7 near the picking station ST.
  • FIG. 17 is a flowchart showing an example of wear detection processing performed by the warehouse control device 100.
  • the data analysis program 163 of the warehouse control device 100 executes analysis processing of the measurement data 280 at a predetermined cycle (for example, every 24 hours) or at a predetermined timing such as an instruction from an administrator, 34 to determine the state of wear.
  • the data analysis program 163 acquires information indicating the state of the transport device 1 from the device information 260 (S11). For the transport device 1 to be analyzed, for example, the transport devices 1 registered in the device information 260 are sequentially selected from the top. The data analysis program 163 acquires the device ID 262 from the device information 260 of the transport device 1 to be analyzed, and inquires about the running state of the transport device 1 via the network 90 . In addition, referring to the presence/absence of shelf 264 of the selected device information 260, it acquires whether the transport device 1 to be analyzed is transporting the shelf 7 or not.
  • the data analysis program 163 determines whether or not the transport device 1 to be analyzed is transporting the shelf 7 (S12). If the transport device 1 has not transported the shelf 7, the process proceeds to step S13. If the shelf 7 is being transported, the process returns to step S11 to select the next analysis object.
  • the weight of the shelf 7 and the weight of the article are added to the training wheels 34 of the conveying device 1, and the contact width increases. exclude.
  • the data analysis program 163 determines whether the traveling state of the transport device 1 to be analyzed is straight (S13). The data analysis program 163 proceeds to step S15 if the traveling state of the transport device 1 is in a straight running state, and returns to step S11 if not in a straight running state to select the next analysis object.
  • the data analysis program 163 causes the transport device 1 to be analyzed to acquire an image of the training wheels 34 (S14).
  • the transport device 1 acquires image data of the training wheels 34 in a straight-ahead state with the training wheel monitoring sensor 53 and transmits the image data to the warehouse control device 100 . Store.
  • the data analysis program 163 acquires the image data of the training wheels 34 of the transport device 1 to be analyzed from the measurement data 280, and calculates the contact width of the training wheels 34 (S15).
  • the straight-ahead state may be either during movement or while the transport device 1 is stopped, as long as the direction of the training wheels 34 is in the straight-ahead direction.
  • the conveying device 1 when the conveying device 1 is moving, it is desirable to avoid a straight-ahead state during acceleration or deceleration.
  • the load applied to the front (advance direction side) auxiliary wheel 34 and the rear auxiliary wheel 34 may not be even, so if the vehicle is stopped in a straight line or during uniform motion, the load may not be uniform. It is desirable to capture an image of the training wheels 34 with the wheel monitoring sensor 53 .
  • the data analysis program 163 acquires the contact width initial value 2610 of the device information 260, and if a value is set in the contact width initial value 2610, the contact width calculated in step S15 is calculated as the contact width current contact width. Store in value 2811. Then, the data analysis program 163 stores the percentage obtained by dividing the contact width current value 2811 by the contact width initial value 2610 in the contact width increase rate 2612 (S16).
  • the data analysis program 163 stores the contact width calculated in step S15 in the contact width initial value 2810 when no value is set in the contact width initial value 2610 of the device information 260 .
  • the data analysis program 163 searches the wear degree table 420 shown in FIG. 12 with the contact width increase rate 2612 calculated in step S16, determines the record of the contact width increase rate 421 corresponding to the contact width increase rate 2612, The wear level 412 of the record is determined as the wear level 412 of the training wheels 34 of the transport device 1 (S17).
  • the data analysis program 163 adds the device ID 262 of the transport device 1 to the table (not shown) for managing the reservation of inspection because it is "inspection required”. You may make it add.
  • step S21 the wear level calculated by the data analysis program 163 is set as the wear level 2613 of the device information 260 and the device information 260 is updated.
  • step S22 the data analysis program 163 determines whether or not the above processing has been completed for all records of the device information 260. If not completed, the process returns to step 11 to perform the above processing for the device ID 262 of the next transport device 1. is repeated, and if completed, the process ends.
  • the warehouse control device 100 that has acquired the image data of the training wheels 34 taken while the transport device 1 is moving straight detects the contact width of the training wheels 34 from the image data and calculates the contact width increase rate 2612. Then, the warehouse control device 100 searches the wear degree table 420 with the contact width increase rate 2612 to calculate the wear level 2613 of the training wheels 34 of the transport device 1 .
  • the transport device 1 captures an image of the training wheels 34 with the training wheel monitoring sensor 53 at a predetermined period (for example, once a day) and transmits the image data to the warehouse control device 100 .
  • the warehouse control device 100 accumulates the image data received from the transport device 1 in the measurement data 280, activates the data analysis program 163 at predetermined intervals (for example, every 24 hours), and extracts the image data of the measurement data 280.
  • the contact width increase rate 2612 and the wear level 2613 may be updated for the unprocessed image data.
  • FIG. 18 is a flowchart showing an example of travel control performed by the warehouse control device 100.
  • This processing is executed by the transport device control program 164 of the warehouse control device 100 in step S4 of FIG.
  • the transport device control program 164 calculates the speed conditions according to the characteristics such as the wear level and material of the training wheels 34 of the designated transport device 1, and transmits the route data and the speed conditions to the transport device 1. Commands the transport of the shelf 7.
  • the transport device control program 164 causes the route creation program 161 to calculate route data from the information of the rack 7 transported by the transport device 1 and the information of the picking station ST, store it in the route data 270, obtain route data to be used in (S31).
  • the transport device control program 164 searches the device ID 262 of the device information 260 with the identifier of the transport device 1 that transports the shelf 7, and acquires the wear level 2613 of the corresponding transport device 1 (S32).
  • the transport device control program 164 searches the speed control table 410 with the acquired wear level 2613, and sets the travel speed 413, acceleration 414, angular velocity 415, and angular acceleration 416 corresponding to the mode 411 from the record of the corresponding wear level 412 as speed conditions. (S33).
  • the transport device control program 164 acquires a training wheel code 269 by referring to the device information 260 using the identifier of the transport device 1 . Then, the transport device control program 164 searches the auxiliary wheel table 430 with the auxiliary wheel code 269 to obtain the correction coefficient 436 corresponding to the material and characteristics of the auxiliary wheel 34 (S34).
  • the transport device control program 164 calculates the corrected speed condition by multiplying the speed condition calculated in step S33 by the acquired correction coefficient 436 (S35).
  • the corrected speed condition is calculated by multiplying the speed or acceleration for each mode of the speed condition by a correction coefficient 436 .
  • the transport device control program 164 transmits the calculated corrected speed condition and the acquired route data to the transport device 1 (S36).
  • the conveying device 1 that conveys the shelf 7 is commanded with correction speed conditions that take into account the wear level of the training wheels 34 and the characteristics of the training wheels 34 such as the material, and the conveying device 1 receives the specified route data. You can move above with the corrected speed condition.
  • FIG. 19 is a flowchart showing an example of movement processing performed by the control device 2 of the transport device 1.
  • This processing is performed by the traveling control program 24 of the conveying device 1 that has received the route data and the corrected speed conditions.
  • FIG. 19 shows an example of control when the conveying device 1 starts from a stopped state.
  • the control device 2 of the conveying device 1 has two running modes: a straight mode in which the driving wheels 33-L and 33-R are driven at a constant speed, and a turning mode in which the driving wheels 33-L and 33-R are rotated in the opposite direction. (or transport mode) to move the carriage 31 .
  • a straight mode in which the driving wheels 33-L and 33-R are driven at a constant speed
  • a turning mode in which the driving wheels 33-L and 33-R are rotated in the opposite direction. (or transport mode) to move the carriage 31 .
  • the orientation of the shelf 7 can be maintained by turning the table 32 in the direction opposite to the turning direction of the carriage 31 . If the drive wheels 33-L and 33-R are driven at different speeds in the same rotational direction, the truck 31 can be turned while traveling.
  • the turning mode in which the drive wheels 33-L and 33-R are driven in the opposite direction is the spin turn, and for example, it turns around the center of the bottom surface of the carriage 31.
  • the pivot turn is simply referred to as a turn.
  • the control device 2 determines the above travel mode and controls the drive wheels 33.
  • the control device 2 determines whether or not the shelf 7 is loaded on the table 32 (S41). Regarding the presence or absence of the shelf 7, for example, a sensor for detecting articles such as the shelf 7 is provided on the table 32, and if the output of the sensor satisfies a predetermined condition, the control device 2 loads the shelf 7 on the table 32. It is determined that it is, and the process proceeds to step S42. On the other hand, if the predetermined condition is not satisfied, the control device 2 determines that the table 32 is not loaded with the shelf 7, and proceeds to step S45.
  • step S42 the control device 2 determines whether or not the previous running mode and the next running mode are the same. This determination is made by the control device 2 comparing the previous running mode of the route data 41 with the next running mode. When the immediately preceding driving mode and the next driving mode are the same, the process proceeds to step S43, and when the immediately preceding driving mode and the next driving mode are different, the process proceeds to step S44.
  • the control device 2 selects the maximum acceleration A to drive the drive wheels 33 or the table 32.
  • the control device 2 drives the driving wheels 33 or the table 32 under the corrected speed condition smaller than the acceleration A in step S43.
  • the acceleration A is not defined in the speed control table 410 of FIG. 13, it is a value preset as the maximum acceleration (or maximum angular acceleration) when the transport device 1 is not transporting the shelf 7. .
  • the control device 2 multiplies the corrected speed condition by a predetermined reduction coefficient (for example, 0.7).
  • a predetermined reduction coefficient for example, 0.7.
  • a second correction speed condition is calculated, and the driving wheels 33 or the table 32 is driven under the second correction speed condition.
  • the control device 2 increases the friction between the floor surfaces due to the rotation of the auxiliary wheels 34 and increases the load on the motor 38 at the start of movement.
  • the conveying device 1 moves (or turns) under the second corrected speed condition in which the acceleration or speed is reduced.
  • the driving force can be reduced and the consumption of the battery 39 can be suppressed.
  • the load applied to the conveying device 1 and the floor surface can be reduced by the above control.
  • the movement (or turning) is started with the maximum acceleration A, thereby shortening the time required for movement and improving the efficiency of the transport process.
  • the warehouse control device 100 can determine whether or not the shelf 7 is loaded on the transport device 1 from the route data or the device information 260, determine the speed condition and the correction speed condition, and issue a command to the transport device 1.
  • FIG. 20 is a graph showing an example of speed control performed in the conveying device 1, showing the relationship between time and speed.
  • the illustrated example shows an example of speed conditions according to the level of wear of the auxiliary wheels 34 .
  • the acceleration and speed are maximized, and the transport device 1 can be operated efficiently, improving the work efficiency of the distribution warehouse.
  • the acceleration and speed are suppressed, suppressing the increase in battery consumption due to the increase in frictional resistance and suppressing the increase in the load on the floor surface.
  • the replacement of the training wheel 34 is notified, the acceleration and speed are minimized, and the moderate acceleration reduces the increase in battery consumption due to the increase in frictional resistance. It is possible to suppress an increase in the load on the floor surface and suppress an increase in vibration to the article due to the reduction in the outer diameter of the training wheels 34 .
  • the warehouse control device 100 of the present embodiment is capable of controlling the acceleration and By suppressing the speed, it is possible to suppress the increase in battery consumption, the load on the floor surface, and the vibration of the conveyed article.
  • the shape of the auxiliary wheel 34 shows an example in which the contact width W1 increases as the wear progresses, but the present invention is not limited to this.
  • the contact width of the drive wheel 33 may be monitored to change the speed condition of the transport device 1. The speed conditions can be controlled according to the wear condition of the weight bearing wheels.
  • the training wheel monitoring sensor 53 may be arranged at a predetermined position on the floor of the distribution warehouse to measure the contact width W1 of the training wheels 34 .
  • a part of the floor surface is made of a transparent member, the upper surface of the transparent member is moved straight to the transport device 1, and the auxiliary wheel monitoring sensor 53 arranged on the lower surface of the transparent member detects the contact width W1 of the auxiliary wheel 34. can be taken.
  • the wear level 2613 of the training wheels 34 is calculated by the warehouse control device 100, but the present invention is not limited to this.
  • the data analysis program 163, the wear degree table 420, and the speed control table 410 may be installed in the transport device 1 so that the transport device 1 calculates the wear level of the training wheels 34 and adjusts the speed conditions.
  • the passage, acceleration, deceleration, or rotation of the transport device 1 on which the shelves 7 are mounted may damage or deteriorate the floor surface, and may vibrate the passing transport devices 1 and the articles on the shelves 7.
  • the state of the floor surface in the distribution warehouse is grasped, and when traveling on a place where the floor surface is in poor condition or where the floor surface is uneven, the transport device It becomes necessary to suppress the speed of the conveying device 1 or to detour the conveying device 1 .
  • the state of the floor surface in the distribution warehouse is acquired by the vibration sensor 51 and the forward monitoring sensor 52 of the transport device 1 shown in the first embodiment, and the amount of vibration and the presence or absence of damage are accumulated in the floor information 240.
  • the route creation program 161 calculates the travel route of the conveying device 1, the floor information 240 can be used to specify speed suppression and detour positions.
  • the shock absorbing ability of the auxiliary wheels 34 decreases as the wear of the auxiliary wheels 34 progresses. Therefore, in the present embodiment, when the floor information 240 is generated, the vibration determination criterion is changed according to the degree of progress of wear of the training wheels 34 to suppress the influence of the progress of wear, thereby obtaining accurate floor information 240. to improve the accuracy of route data generation and travel control of the transport device 1 .
  • FIG. 21 is a block diagram showing an example of the configuration of the transport system of the second embodiment.
  • the transportation system is obtained by adding a threshold value table 310 and a damage degree table 320 to the warehouse control device 100 of the first embodiment, and the rest of the configuration is the same as that of the first embodiment.
  • FIG. 22 is a diagram showing an example of vibration data 290.
  • the vibration data 290 stores the vibration data received from the transport device 1 by the data input/output program 162 of the warehouse control device 100, and further stores the vibration data threshold value calculated by the data analysis program 163, which will be described later.
  • the vibration data 290 regarding the vibration generated in the conveying device 1 during movement has a correlation with the state of the floor surface.
  • a certain floor surface state for example, a floor surface with a large degree of damage
  • the vibration applied to the transport device 1 during movement is It has been found that it may be significantly larger compared to different floor conditions (eg, normal floor, less damaged floor, etc.).
  • the specific correlation between the vibration data 290 and the state of the floor surface may change depending on various environmental factors such as the specific design of the transport apparatus 1, the material of the floor surface, and the communication environment.
  • Vibration data 290 includes serial number 291, vibration data measurement date and time 292, device ID 293, measured vibration data 294, vibration data threshold value 295, device position 296, shelf loading/unloading 297, and transport shelf ID 298. , shelf/commodity weight 299, remaining battery capacity 300, mode 301, running speed 302, running acceleration 303, cumulative running distance 304, and cumulative number of accelerations 305 are included in one record.
  • the vibration data measurement date and time 292 stores the date and time when the vibration data was measured by the vibration sensor 51 of the transport device 1 .
  • the device ID 293 stores an identifier preset for the transport device 1 .
  • the measured vibration data 294 stores the magnitude of vibration measured by the vibration sensor 51 as acceleration (m/s ⁇ 2). It should be noted that the format of the measured vibration data 294 is not limited to the example described above, and may be replaced by another index representing the magnitude of vibration.
  • the vibration data threshold value 295 stores a threshold value calculated by the data analysis program 163 of the warehouse control device 100 based on the running state, transportation state, etc. of the transport device 1, as will be described later.
  • the data analysis program 163 changes the acceleration threshold to be applied according to the running state of the conveying device 1 and the wear level of the auxiliary wheels 34 when the measured vibration data 294 is acquired.
  • the device position 296 stores the coordinates (position information) of the area on the map information 250 calculated by the self-position estimation program 23 of the transport device 1 .
  • the shelf load presence/absence 297 stores a value indicating whether or not the transport device 1 transported the shelf 7 at the vibration data measurement date/time 292 .
  • a value detected by the conveying device 1 or a value of the device information 260 can be used as the value of the presence/absence of stacking on the shelf 297 .
  • the transport shelf ID 298 stores the identifier of the shelf 7 designated to be loaded on the transport device 1 .
  • the transport shelf ID 298 is the identifier of the shelf 7 transported by the transport apparatus 1 at the vibration data measurement date and time 292 .
  • the shelf/product weight 299 stores the sum of the shelf weight 234 and the product weight 235 of the shelf information 230 corresponding to the transfer shelf ID 298 .
  • the remaining battery capacity 300 stores the remaining capacity of the battery 39 measured by the measurement program 25 of the transport device 1 .
  • the mode 301 stores the travel mode of the transport device 1 at the vibration data measurement date and time 292 .
  • a value determined by the travel control program 24 of the transport device 1 can be acquired by the measurement program 25 and transmitted to the warehouse control device 100 by being included in the vibration data.
  • the travel speed 302 stores the travel speed (or angular velocity) detected by the conveying device 1 .
  • the travel acceleration 303 stores the acceleration (or angular acceleration) detected by the transport device 1 .
  • the cumulative travel distance 304 stores the cumulative travel distance detected by the conveying device 1 .
  • the cumulative acceleration count 305 is the cumulative count of acceleration (or deceleration) detected by the transport device 1 .
  • the cumulative travel distance 304 and the cumulative number of acceleration times 305 are data representing the travel record of the transport device 1 and serve as indicators of the load accumulated in the transport device 1 . Since deterioration of the auxiliary wheels 34 due to load accumulation is predicted for the conveying apparatus 1 in which the cumulative travel distance 304 or the cumulative number of acceleration times 305 exceeds a certain reference value, it may be excluded from the determination of the degree of damage to the floor surface.
  • the vibration data 290 stores data received from the transport device 1 by the data input/output program 162 of the warehouse control device 100, and data other than the vibration data threshold value 295 are set at the time of storage.
  • the vibration data threshold 295 is set by a process described later.
  • the shelf/merchandise weight 299 may be obtained and set by the data input/output program 162 from the shelf information 230 based on the transfer shelf ID 298 .
  • the cumulative traveled distance 304 and the cumulative number of times of acceleration 305 may be acquired from the device information 260 by the data input/output program 162 based on the device ID 291 .
  • the transportation device 1 adds the traveling state and the transportation state to the vibration data measured by the vibration sensor 51 at a predetermined sampling period and transmits it to the warehouse control device 100, it is not limited to this.
  • statistical values average value, maximum value, etc.
  • of vibration data measured by the vibration sensor 51 for a predetermined period may be calculated for each area and transmitted to the warehouse control device 100 .
  • the data analysis program 163 of the warehouse control device 100 can calculate the degree of damage in each area using only the measured vibration data 294. By also analyzing the transportation state consisting of product weight 299, mode 301, remaining battery capacity 300, traveling speed 302, traveling acceleration 3030, cumulative travel distance 304, and cumulative acceleration times 305, the degree of floor damage can be determined. It is possible to improve the judgment accuracy.
  • the index of vibration detected by the transport device 1 is larger than when the transport device 1 is not transporting. Therefore, when determining the state of the floor surface, if different thresholds are set according to the presence or absence of the shelf 7, the accuracy of determining the degree of damage to the floor surface can be improved. Further, by adding the weight of the shelf/commodity 299, the accuracy of determining the degree of damage to the floor is further improved.
  • the vibration data of the transport device 1 in such a state can be excluded from the objects for determining the degree of damage to the floor surface.
  • the mode 301 is set to any one of "rotation”, “acceleration”, “deceleration”, and “straight ahead” in the case of the transport device 1 of this embodiment.
  • the transport device 1 vibrates more during straight movement than during turning, and during acceleration than during deceleration. Velocity and acceleration are also related to the magnitude of vibration.
  • the data analysis program 163 can delete records in which the measured vibration data 294 do not exceed the vibration data threshold 295 .
  • FIG. 23 is a graph showing an example of a vibration waveform detected by the vibration sensor 51.
  • the vertical axis indicates acceleration (magnitude of vibration) and the horizontal axis indicates time.
  • the acceleration increases or decreases according to the degree of damage to the floor surface.
  • the vibration data threshold value 295 calculated by the data analysis program 163 changes according to the travel speed, acceleration, travel mode, and loading state of the shelf 7, like the threshold value Tha and the threshold value Thb in the figure.
  • FIG. 24 is a flowchart showing an example of analysis processing performed by the warehouse control device 100.
  • the data analysis program 163 of the warehouse control device 100 executes analysis processing of the vibration data 290 at a predetermined cycle (for example, every 24 hours) or at a predetermined timing such as a manager's instruction, and determines the degree of damage to the floor surface of the distribution warehouse. is determined for each area through which the conveying apparatus 1 has passed.
  • the data analysis program 163 acquires data to be analyzed from the vibration data 290 (S51). For data to be analyzed, for example, when processing is executed every 24 hours, the data analysis program 163 extracts data whose vibration data measurement date and time 292 are within 24 hours.
  • the data analysis program 163 calculates a vibration data threshold value 295 corresponding to the traveling state and the conveying state of the shelf 7 for each vibration data 290 as described later, and stores it in the vibration data 290 . Then, the data analysis program 163 sorts the vibration data 290 by the device position 296 (area) (S52).
  • steps S53 to S59 the data analysis program 163 determines the degree of floor damage for each sorted area, and repeats the process for all data.
  • step S54 the data analysis program 163 compares the measured vibration data 294 and the vibration data threshold 295 to determine whether the measured vibration data 294 exceeds the vibration data threshold 295. If the measured vibration data 294 exceeds the vibration data threshold value 295, the data analysis program 163 proceeds to step S55, otherwise proceeds to step S57.
  • step S55 the data analysis program 163 calculates the percentage of the value obtained by dividing the measured vibration data 294 by the vibration data threshold value 295 as the threshold excess rate Ex.
  • the data analysis program 163 retrieves the damage level table 320 (described later) with the threshold excess rate Ex to obtain the damage level 322, which is used as the damage level of the floor surface of the area (S56).
  • this embodiment shows an example in which the degree of damage is calculated based on the ratio of the measured vibration data 294 exceeding the vibration data threshold value 295, but the present invention is not limited to this.
  • the data analysis program 163 may calculate the degree of damage using a preset function, table, or the like.
  • FIG. 26 is a diagram showing an example of the damage level table 320.
  • the damage degree table 320 is a preset table.
  • the damage level table 320 includes, in one record, a threshold excess rate 321 that sets the range of the threshold excess rate Ex and a damage level 322 that sets the damage level of the floor according to the range of the threshold excess rate Ex.
  • a threshold excess rate 321 that sets the range of the threshold excess rate Ex
  • a damage level 322 that sets the damage level of the floor according to the range of the threshold excess rate Ex.
  • the damage degree table 320 is also set such that the higher the threshold excess rate, the greater the damage degree. For example, the threshold excess rate is higher for "medium damage” than for "small damage”, and the threshold excess rate is higher for "large damage” than for “medium damage”. It is set so that the damage level of "repair required" is higher than the threshold exceeding rate.
  • step S57 of FIG. 24 the measured vibration data 294 is less than or equal to the threshold, so the data analysis program 163 determines that the damage level of the floor surface in the area is "normal".
  • step S58 the data analysis program 163 writes the degree of damage calculated in step S56 or S57 into the floor state 243 of the area currently being processed, and updates the floor information 240.
  • step S59 the above process is repeated for all areas to be processed, and then the process proceeds to step S60.
  • step S60 the data analysis program 163 generates a floor surface damage visualization map 330 in FIG. 28, which will be described later. Then, in step S61, the data analysis program 163 generates a visualization screen 141 shown in FIG.
  • the state of the floor surface for each section is classified into "normal state”, “low damage level”, “medium damage level”, and “ Determination is made in multiple stages such as “extent of damage” and "repair required", and the result is output to the output device 140.
  • the warehouse control device 100 generates vibration data 290 collected from a plurality of transport devices 1 based on the running state, the transport state, and the wear level of the training wheels 34 at the time when the vibration sensor 51 measures the vibration data.
  • a threshold 295 is determined.
  • the data analysis program 163 then calculates the degree of damage for areas where the measured vibration data 294 exceeds the vibration data threshold value 295 and writes it to the floor state 243 to update the floor information 240 .
  • the administrator or the like of the warehouse control device 100 changes the area setting 244 of the floor information 240 to a no-travel area or the like, or performs repair work so that the transfer device 1 or the floor surface This load can be reduced.
  • the data analysis program 163 After updating the floor information 240, the data analysis program 163 generates a visualization screen 141 and displays it on the output device 140, thereby clearly indicating an area that requires repair. Also, on the visualization screen 141, by displaying the degree of damage for each area, it is possible to draw up a repair plan for the floor surface.
  • the data analysis program 163 determines that there is damage to the floor surface of the area when a plurality of measured vibration data 294 exceeds the vibration data threshold value 295 when a plurality of vibration data exist for one area. You may Accuracy of the degree of damage can be improved by performing determination using a plurality of vibration data.
  • the data analysis program 163 may determine that the floor condition of the area is damaged when the measured vibration data 294 of a plurality of transport devices 1 exceeds the vibration data threshold value 295 for one area. Accuracy of the degree of damage can be improved by performing determination using vibration data measured by a plurality of transport devices 1 .
  • the data analysis program 163 may issue an alert when the calculated degree of damage exceeds a predetermined standard. For example, if the damage level is "needs repair," the data analysis program 163 can display the location of the area and an alert for repair to the output device 140 . Also, the alert may be notified to an external party for external maintenance. As a result, the manager or the like can quickly recognize the damage to the floor surface. As a result, it is possible to appropriately change the operation according to the degree of damage to the floor surface.
  • the data analysis program 163 may calculate the representative value of the area and use this representative value to determine the degree of damage to the floor surface.
  • the representative value an average value, a median value, a maximum value, a minimum value, or the like may be appropriately selected.
  • FIG. 27 is a diagram showing an example of the threshold table 310.
  • the threshold table 310 is a preset table.
  • the threshold table 310 includes travel speed 311, acceleration 312, mode 313, shelf weight 314, wear level 315, and threshold 316 in one record.
  • the travel speed range of the transport device 1 is set, and the threshold value 316 is set according to the value of the travel speed 302 of the vibration data 290.
  • the threshold value table 310 may also be set so that the threshold value increases as the traveling speed increases.
  • the acceleration range of the transport device 1 is set, and the threshold 316 is set according to the value of the running acceleration 303 of the vibration data 290. For example, even when the conveying apparatus 1 travels on the same floor surface, the greater the acceleration, the greater the vibration or impact caused by the floor surface. Therefore, in the threshold table 310 as well, the threshold may be set to increase as the acceleration increases.
  • a mode 313 sets a threshold value 316 corresponding to the travel mode of the transport device 1 .
  • the threshold value 316 is set to 10 m/s ⁇ 2 when the travel mode is turning.
  • a threshold 316 corresponding to the total weight of the shelf and the product transported by the transport device 1 is set.
  • the threshold table 310 may also be set such that the heavier the object to be transported, the larger the threshold.
  • the threshold table 310 may be set to be larger when the article is being conveyed than when the article is not being conveyed.
  • the wear level 315 sets the threshold 316 corresponding to the wear level 2613 of the training wheels 34 . For example, when the wear level 315 is "A”, the threshold value 316 is set to “0", indicating that the threshold value added by the wear level is “0". On the other hand, when the wear level 315 is "B” and wear has progressed, the threshold value 316 is set to "2", indicating that the threshold value to be added according to the wear level is "2".
  • the traveling speed 311, the acceleration 312, and the shelf weight 314 are classified into three stages, but the classification is not limited to this.
  • FIG. 25 is a flow chart showing an example of the vibration data aggregation process performed in step S52, among the analysis processes performed by the warehouse control device 100.
  • FIG. 25 is a flow chart showing an example of the vibration data aggregation process performed in step S52, among the analysis processes performed by the warehouse control device 100.
  • the data analysis program 163 repeats the processing of steps S71 to S77 for each record of the vibration data 290 for the data to be analyzed (S71).
  • the data analysis program 163 acquires the mode 301 of the vibration data 290, searches the mode 313 of the threshold table 310 with the value of the mode 301 when the transport apparatus 1 measured the vibration data, and acquires the corresponding threshold 316. , is set as a threshold value Th1 as a variable (S72).
  • the data analysis program 163 acquires the running speed 302 of the vibration data 290, searches the running speed 311 of the threshold table 310 with the value of the running speed 302, acquires the corresponding threshold 316, and obtains the threshold 316 as a variable.
  • Th2 is set (S73).
  • the data analysis program 163 acquires the running acceleration 303 of the vibration data 290, searches the acceleration 312 of the threshold table 310 with the value of the running acceleration 303, acquires the corresponding threshold 316, and sets the threshold Th3 as a variable. (S74).
  • the data analysis program 163 acquires the shelf/product weight 299 of the vibration data 290, searches the shelf weight 314 of the threshold table 310 with the value of the shelf/product weight 299, acquires the corresponding threshold 316, and uses is set to the threshold value Th4 (S75).
  • the data analysis program 163 acquires the wear level 2613 of the device information 260, searches the wear level 315 of the threshold table 310 with the value of the shelf/merchandise weight 299, acquires the corresponding threshold 316, and uses A threshold Th5 is set (S76).
  • the data analysis program 163 calculates the sum of the thresholds Th1 to T5 set in steps S72 to S76, and writes it to the vibration data threshold 295 of the vibration data 290 of the record (S77).
  • step S78 after performing the above processing for all the vibration data 290, the process proceeds to step S79.
  • step S79 the data analysis program 163 sorts the vibration data 290 in the order of the device position 196, rearranges them in order of area, and returns to the process of FIG.
  • the data analysis program 163 determines the vibration data threshold value 295 based on the travel state, the transport state, and the wear level of the auxiliary wheels 34 at the time when the vibration sensor 51 of the transport device 1 measures the vibration data. can be done.
  • FIG. 28 is a diagram showing an example of the visualization screen 141 of the floor surface.
  • the visualization screen 141 includes a damage status visualization map 330 that visualizes the degree of damage to the floor of the distribution warehouse, and a floor status 340 that displays data on the degree of damage to the floor.
  • the damage visualization map 330 is a diagram in which a pattern corresponding to the value of the floor condition 243 of the floor information 240 updated by the data analysis program 163 is set for each area of the map information 250, and is displayed at the top of the visualization screen 141. be done.
  • the damage visualization map 330 the area (row 331 and column 332) specified by the row number 251 and column number 252 of the map information 250 is darkened as the floor condition (floor condition 243 of the floor information 240) deteriorates.
  • a pattern is set and normal areas are displayed in white with no pattern.
  • the manager of the warehouse control device 100 or the like can easily grasp the areas that require repair or the areas that should be banned from traveling by referring to the damage status visualization map 330 on the visualization screen 141 displayed on the output device 140. be able to.
  • the floor condition 340 is visualized screen 141 as a table including serial number 341, degree of damage 342, address 343, measured vibration data 344, vibration data threshold 345, and floor information update date 346 in one record. displayed at the bottom of the
  • the values of the floor state 243 and area 242 of the floor information 240 are set.
  • the measured vibration data 344 and the vibration data threshold 345 the measured vibration data 294 and the vibration data threshold 295 of the vibration data 290 of the area are set.
  • the floor information update date 346 the date and time when the data analysis program 163 updated the floor information 240 is set.
  • the administrator of the warehouse control device 100 can check the measured vibration data 344 and the vibration data threshold value 345 that determined the degree of damage 342 by referring to the floor condition 340 .
  • the warehouse control device 100 of this embodiment determines the vibration data threshold value 295 according to the vibration data collected from the transfer device 1, the traveling state, the transfer state, and the wear level, Calculate the degree of surface damage.
  • the manager of the warehouse control device 100 identifies the position of the floor where the magnitude of the vibration exceeds the threshold as the floor where the transport device 1 vibrates, and suppresses or prohibits the travel of the transport device 1 at that position. By doing so, it becomes possible to suppress the load on the conveying device 1 and the floor surface.
  • the threshold 316 according to the wear level of the training wheels 34 for the vibration data measured by the vibration sensor 51, the degree of damage to the floor surface is calculated taking into account the deterioration of the training wheels 34. It becomes possible to
  • the threshold value 316 By using the threshold value 316 according to the wear level of the training wheels 34, it is possible to mitigate the effects of aged deterioration of the transport device 1 and improve the accuracy of determining damage to the floor surface.
  • the vibration data of a predetermined area for example, the threshold excess rate 321 is 1000 or more
  • the detection value of the vibration sensor 51 is abnormal is used to calculate the degree of floor damage. It is desirable to exclude it from the target. As a result, it is possible to further improve the accuracy of determining damage to the floor surface.
  • the wear level of the training wheel 34 exceeds a predetermined threshold value (131%), that is, "D"
  • a predetermined threshold value that is, "D”
  • the deterioration progresses excessively. good too.
  • the accuracy of determining the degree of damage to the floor can be further improved by excluding the transportation device 1 whose training wheel 34 has reached the replacement time from the calculation target of the degree of damage to the floor.
  • the data analysis program 163 detects the status information (apparatus information 260) satisfies a specific condition, it may be excluded from the determination of the degree of damage to the floor surface. Depending on the state information of the transport device 1, the magnitude of the vibration to be measured may differ. Judgment accuracy can be improved.
  • the ground contact width W1 increases as the shape of the auxiliary wheel 34 progresses in wear
  • the present invention is not limited to this.
  • the contact width of the drive wheel 33 increases as the shape of the drive wheel 33 wears
  • the contact width of the drive wheel 33 is monitored to change the wear level of the conveying device 1 and adjust the threshold value 316.
  • the threshold 316 can be adjusted by changing the wear level according to the wear condition of the wheels that support the weight of the transport device 1 .
  • the threshold value 316 corresponding to the wear level 315 can be corrected by the correction coefficient 436.
  • the threshold value 316 can be corrected to be small. That is, if the auxiliary wheels 34 are made of a soft material, the vibration will be small even on the same floor surface, so lowering the threshold value can improve the accuracy of determining damage to the floor surface.
  • the transport system of the above embodiment can be configured as follows.
  • a transport device (1) capable of lifting and transporting a movable shelf (shelf 7) for storing articles, and a control device (warehouse control device) for controlling the movement of the transport device (1) via a network (90).
  • the transport device (1) includes wheels (reinforcing wheels 34) that can move on the floor while supporting the weight of the transport device (1), and the wheels ( 34), a first sensor (retaining wheel monitoring sensor 53) for detecting the contact state of the wheel (34), and a transport control section (control device 2) for transmitting the contact state of the wheel (34) to the control device (100).
  • the control device (100) calculates the contact width of the wheel (34) from the contact state received from the transport control unit (2), and adjusts the transfer according to the contact width of the wheel (34).
  • a control device controls a conveying device capable of lifting and conveying a movable shelf for storing articles, wherein the control device detects from the conveying device the grounding state of the wheels detected by a first sensor.
  • a control device for controlling a conveying device capable of conveying a conveyed object which receives measurement data of a contact portion of a wheel of the conveying device from the conveying device, and uses the received measurement data of the contact portion to The control device may calculate a contact width and control the speed or acceleration of the conveying device according to the contact width of the wheel.
  • control device (100) In the conveying system described in (1) above, the control device (100) notifies the replacement timing of the wheels (34) according to the contact width (W1) of the wheels (34).
  • a transport system characterized by:
  • a control device for controlling a conveying device capable of conveying a conveyed object which receives measurement data of a contact portion of a wheel of the conveying device from the conveying device, and uses the received measurement data of the contact portion to The control device may calculate a ground contact width and notify the replacement timing of the wheel according to the ground contact width of the wheel.
  • the first sensor (53) is an image sensor, and the conveying control section (2) controls the conveying device (1) in a straight advance state.
  • the first sensor (53) acquires image data including the ground contact state of the wheel (34) and transmits it to the control device (100), and the control device (100) controls the conveying device ( 1)
  • a conveying system characterized by measuring the contact width of the wheel (34) from the image data including the contact state of the wheel (34) received from 1).
  • the training wheel monitoring sensor 53 acquires image data including the grounding state of the training wheels 34 when the transport device 1 is in a straight-ahead state, and the warehouse control device 100 detects the training wheels 34 from the image data including the grounding state.
  • the contact width W1 By calculating the contact width W1, it is possible to monitor the contact width W1 with high accuracy.
  • the conveying device (1) has a plurality of drive wheels (33) arranged in parallel as the wheels, and the plurality of drive wheels (33) are arranged in parallel.
  • a transport system characterized in that the transport system is driven at a constant speed so as to be in the straight-ahead state.
  • the conveying device 1 can be accurately moved straight.
  • the training wheel monitoring sensor 53 can photograph the grounding state of the training wheels 34 in a straight-ahead state, and the warehouse control device 100 can accurately calculate the grounding width W1 of the training wheels 34 and measure the progress of wear. can be monitored.
  • control device (100) controls the degree of progress of wear of the wheels (34) (a wear level 2613 ), and changes the acceleration or speed (speed control table 410) according to the degree of progress of wear (2613).
  • the warehouse control device 100 controls the acceleration and speed according to the increase in running resistance by the speed control table 410 when the running resistance increases due to the wear of the training wheels 34, thereby controlling the goods to be transported and the floor to be transported. It is possible to suppress the damage given to the surface.
  • control device (100) stores speed control information (speed control table 410) in which the acceleration or speed is preset according to the degree of progress of the wear. and wherein the speed control information (410) sets the acceleration lower as the wear progresses.
  • the warehouse control device 100 suppresses the acceleration of the transport device 1 as the level of wear of the training wheels 34 progresses, thereby reducing the vibration applied to the articles on the shelves 7 and suppressing the load applied to the floor surface. be able to.
  • control device (100) adjusts a preset correction coefficient (436) according to the characteristics (relief wheel table 430) of the wheels (34).
  • a transport system characterized in that it corrects said acceleration or velocity accordingly.
  • the transport device (1) has a second sensor (vibration sensor 51) that measures vibration of the transport device (1) during movement.
  • the transport control unit (2) includes a position estimation unit (23) for estimating position information of the transport device (1) based on markers placed on the floor surface, and the second sensor (51).
  • control device (100) at least Vibration data including information on the vibration of the conveying device (1) during movement measured by the second sensor (51) and position information of the conveying device (1) when the vibration was measured is transmitted to the conveying device ( 1), and determines the state of the floor surface at the position of the transport device (1) when the vibration is measured according to the vibration data and the degree of progress of the wear.
  • the control device (100) includes threshold information (threshold table 310), and when determining the state of the floor surface at the position of the transport device (1) when the vibration is measured, if the value of the vibration data exceeds the vibration threshold value (316) 1.
  • threshold information threshold table 310
  • a transport system characterized in that it is determined that there is damage to the floor surface at the position of the transport device (1) when the vibration is measured.
  • the warehouse control device 100 can accurately determine the state of the floor surface by applying different threshold values according to the progress of wear of the training wheels 34 .
  • control device (100) adjusts the correction coefficient (438) preset according to the characteristics (relief wheel table 430) of the wheels (34). and correcting said vibration threshold (316) accordingly.
  • the warehouse control device 100 can accurately determine the state of the floor surface by correcting the vibration threshold according to the characteristics such as the material and outer diameter of the training wheels 34 .
  • control device (100) A transport system characterized in that the transport device (1) is excluded from the state determination of the floor surface.
  • the warehouse control device 100 can accurately determine the degree of damage to the floor surface by excluding the transfer device 1 having the training wheels 34 that have reached the replacement time from the determination of the state of the floor surface.
  • the present invention is not limited to the above-described embodiments, and includes various modifications.
  • the above embodiments are described in detail for easy understanding of the present invention, and are not necessarily limited to those having all the described configurations.
  • any addition, deletion, or replacement of other configurations for a part of the configuration of each embodiment can be applied singly or in combination.
  • each of the above configurations, functions, processing units, processing means, etc. may be implemented in hardware, for example, by designing a part or all of them in an integrated circuit.
  • each of the above configurations, functions, etc. may be realized by software by a processor interpreting and executing a program for realizing each function.
  • Information such as programs, tables, and files that implement each function can be stored in a recording device such as a memory, a hard disk, an SSD (Solid State Drive), or a recording medium such as an IC card, SD card, or DVD.
  • control lines and information lines indicate what is considered necessary for explanation, and not all control lines and information lines are necessarily indicated on the product. In practice, it may be considered that almost all configurations are interconnected.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Automation & Control Theory (AREA)
  • Warehouses Or Storage Devices (AREA)
  • Control Of Position, Course, Altitude, Or Attitude Of Moving Bodies (AREA)

Abstract

A transport system comprising a transport device capable of lifting and transporting a moving shelf storing an article, and a control device that controls the movement of the transport device via a network, wherein the transport device has: wheels that can support the weight of the transport device and move on the floor surface; a first sensor that detects the grounding state of the wheels; and a transport control unit that transmits the grounding state of the wheels to the control device. The control device calculates the grounding width of the wheels from the grounding state received from the transport control unit and controls the speed or acceleration of the transport device according to the grounding width of the wheels.

Description

搬送システム、搬送方法及び制御装置Conveying system, conveying method and control device 参照による取り込みImport by reference
 本出願は、令和3年(2021年)9月28日に出願された日本出願である特願2021-158485の優先権を主張し、その内容を参照することにより、本出願に取り込む。 This application claims the priority of Japanese Patent Application No. 2021-158485 filed on September 28, 2021, and incorporates the contents thereof into the present application by reference.
 本発明は、搬送システム、搬送方法及び制御装置に関する。 The present invention relates to a transport system, a transport method, and a control device.
 物流倉庫では、納入された物品を保管し、注文を受け付けると該当する物品を取り出して、梱包した後に顧客宛てに発送している。近年では無人搬送車によって物品を運搬する搬送システムが採用されることがある。無人搬送車では車輪を使用して移動する装置が広く知られている。 At the distribution warehouse, the delivered items are stored, and when an order is received, the corresponding item is taken out, packed, and shipped to the customer. In recent years, a transport system that transports articles by an unmanned transport vehicle may be adopted. A device that moves using wheels is widely known as an automatic guided vehicle.
 無人搬送車の車輪の摩耗を検査する技術としては、例えば、走行レールに沿って走行する搬送車の車輪の側面に識別マークを付与し、車輪の全体像を走行経路の側方から撮影して、車輪の外径と識別マークを検出して、車輪の摩耗の検査と個体の特定を行う技術がある。例えば、特許文献1に記載の技術がある。 As a technology for inspecting the wear of the wheels of an automatic guided vehicle, for example, identification marks are attached to the side surfaces of the wheels of a guided vehicle that runs along a travel rail, and the overall image of the wheels is photographed from the side of the travel route. , there is a technology for inspecting wheel wear and identifying individual wheels by detecting the outer diameter and identification marks of the wheels. For example, there is a technique described in Patent Document 1.
特開2018-132332号公報JP 2018-132332 A
 無人搬送車(搬送装置)の車輪の摩耗は、例えば、車輪の断面形状によっては、摩擦抵抗の増大や振動吸収能力の低下を招く、という課題がある。 The wear of the wheels of automated guided vehicles (conveyance devices) poses the problem of, for example, increasing frictional resistance and reducing vibration absorption capacity, depending on the cross-sectional shape of the wheels.
 例えば、車輪の半径方向の断面形状が円弧状又は台形状の場合、摩耗の進行に伴って接地面積が増大するため走行抵抗も増大する。走行抵抗の増大に伴って、搬送装置の走行性能が低下して搬送時間が増大し、物流倉庫の作業効率が低下する、という課題が生じる。 For example, if the cross-sectional shape of the wheel in the radial direction is arc-shaped or trapezoidal, the contact area increases as the wear progresses, so the running resistance also increases. As the running resistance increases, the running performance of the transporting device deteriorates, the transporting time increases, and the work efficiency of the distribution warehouse decreases.
 また、搬送装置がバッテリを動力源とする場合では、車輪の走行抵抗の増大によって発進時や旋回時にバッテリ消費量が増大し、充電の頻度が増大して搬送装置の稼働率が低下するという課題が生じる。 In addition, in the case where the transportation device uses a battery as a power source, the running resistance of the wheels increases, which increases battery consumption when starting or turning, increasing the frequency of charging and lowering the operation rate of the transportation device. occurs.
 また、車輪が弾性を有する材料で構成された場合、径方向の断面形状が円弧状の車輪では、摩耗の進行に伴って半径が縮小することで振動吸収能力が低下して、走行時に搬送する物品や搬送装置が受ける振動が増大し、また、搬送装置が床面に与える負荷も増大する、という課題がある。 In addition, when the wheel is made of a material having elasticity, the radius of the wheel with an arc-shaped cross-section in the radial direction decreases as the wear progresses, resulting in a decrease in the vibration absorption capacity, resulting in a decrease in the ability to absorb vibration during travel. There is a problem that the vibration received by the articles and the conveying device increases, and the load applied to the floor surface by the conveying device also increases.
 そこで、搬送装置の車輪の摩耗の進行が生じた場合でも、搬送する物品や搬送装置への振動を抑制し、床面に与える負荷を抑制することが可能な搬送システム、搬送方法及び制御装置を提供する。 Therefore, a transport system, a transport method, and a control device capable of suppressing the load on the floor surface by suppressing the vibration of the transported article and the transporting device even when the wear of the wheels of the transporting device progresses. offer.
 本発明は、物品を格納する移動棚を持ち上げて搬送可能な搬送装置と、ネットワークを介して前記搬送装置の移動を制御する制御装置と、を有する搬送システムであって、前記搬送装置は、当該搬送装置の重量を支持して床面上を移動可な車輪と、前記車輪の接地状態を検出する第1のセンサと、前記車輪の接地状態を前記制御装置へ送信する搬送制御部と、を有し、前記制御装置は、前記搬送制御部から受信した前記接地状態から前記車輪の接地幅を算出し、前記車輪の接地幅に応じて前記搬送装置の速度又は加速度を制御する。 The present invention is a transport system comprising a transport device capable of lifting and transporting a movable shelf storing articles, and a control device controlling movement of the transport device via a network, wherein the transport device comprises the A wheel capable of supporting the weight of the transport device and capable of moving on a floor surface, a first sensor detecting a ground contact state of the wheel, and a transport control unit transmitting the ground contact state of the wheel to the control device. The control device calculates the contact width of the wheel from the contact state received from the transfer control unit, and controls the speed or acceleration of the transfer device according to the contact width of the wheel.
 本発明によれば、搬送装置の車輪の摩耗の進行が生じた場合でも、搬送する物品や搬送装置への振動を抑制し、床面に与える負荷を抑制することが可能となる。 According to the present invention, even if the wear of the wheels of the conveying device progresses, it is possible to suppress the vibration of the articles to be conveyed and the conveying device, and to suppress the load applied to the floor surface.
 本明細書において開示される主題の、少なくとも一つの実施の詳細は、添付されている図面と以下の記述の中で述べられる。開示される主題のその他の特徴、態様、効果は、以下の開示、図面、請求項により明らかにされる。 The details of at least one implementation of the subject matter disclosed in this specification are set forth in the accompanying drawings and the description below. Other features, aspects, and advantages of the disclosed subject matter will become apparent from the following disclosure, drawings, and claims.
実施例1を示し、搬送システムの構成の一例を示すブロック図である。It is a block diagram which shows Example 1 and shows an example of a structure of a conveying system. 実施例1を示し、搬送装置と棚の一例を示す斜視図である。It is a perspective view which shows Example 1 and shows an example of a conveying apparatus and a shelf. 実施例1を示し、搬送装置の一例を示す底面図である。It is a bottom view which shows Example 1 and shows an example of a conveying apparatus. 実施例1を示し、搬送装置のフレームの底面の輪郭と駆動輪及び補助輪の一例を示す斜視図である。FIG. 3 is a perspective view showing Example 1 and showing an example of the outline of the bottom surface of the frame of the conveying device, the drive wheels, and the auxiliary wheels. 実施例1を示し、補助輪監視センサの取り付け位置の概略図である。FIG. 2 shows the first embodiment and is a schematic diagram of the mounting position of a safety wheel monitoring sensor. 実施例1を示し、補助輪の摩耗の様子を示す図である。FIG. 5 shows Example 1 and shows how the training wheels are worn. 実施例1を示し、オーダー情報の一例を示す図である。FIG. 10 shows Example 1 and shows an example of order information; 実施例1を示し、在庫情報の一例を示す図である。FIG. 10 shows Example 1 and shows an example of inventory information; 実施例1を示し、棚情報の一例を示す図である。FIG. 10 is a diagram showing Example 1 and showing an example of shelf information; 実施例1を示し、装置情報の一例を示す図である。FIG. 10 is a diagram showing the first embodiment and showing an example of device information; 実施例1を示し、補助輪テーブルの一例を示す図である。FIG. 10 shows the first embodiment and shows an example of a training wheel table; 実施例1を示し、摩耗度テーブルの一例を示す図である。FIG. 10 shows Example 1 and shows an example of a wear degree table; 実施例1を示し、速度制御テーブルの一例を示す図である。FIG. 10 shows the first embodiment and shows an example of a speed control table; 実施例1を示し、地図情報の一例を示す図である。FIG. 10 shows Example 1 and shows an example of map information; 実施例1を示し、床情報の一例を示す図である。It is a figure which shows Example 1 and shows an example of floor information. 実施例1を示し、搬送システムで行われる処理の一例を示すフローチャートである。5 is a flow chart showing Embodiment 1 and showing an example of processing performed in the transport system. 実施例1を示し、倉庫制御装置で行われる摩耗検出処理の一例を示すフローチャートである。4 is a flow chart showing Embodiment 1 and showing an example of wear detection processing performed by a warehouse control device. 実施例1を示し、倉庫制御装置で行われる摩耗レベルに応じた走行制御の一例を示すフローチャートである。4 is a flowchart showing Embodiment 1 and showing an example of travel control according to the wear level performed by the warehouse control device. 実施例1を示し、搬送装置で行われる移動処理の一例を示すフローチャートである。5 is a flow chart showing Embodiment 1 and showing an example of a movement process performed by a conveying device. 実施例1を示し、倉庫制御装置で行われる摩耗レベルに応じた速度制御の一例を示すグラフである。4 is a graph showing Example 1 and showing an example of speed control according to the wear level performed by the warehouse control device. 実施例2を示し、搬送システムの構成の一例を示すブロック図である。It is a block diagram which shows Example 2 and shows an example of a structure of a conveying system. 実施例2を示し、振動データの一例を示す図である。It is a figure which shows Example 2 and shows an example of vibration data. 実施例2を示し、振動波形の一例を示すグラフである。It is a graph which shows Example 2 and shows an example of a vibration waveform. 実施例2を示し、倉庫制御装置で行われる分析処理の一例を示すフローチャートである。FIG. 10 is a flow chart showing Example 2 and showing an example of analysis processing performed by a warehouse control device; FIG. 実施例2を示し、倉庫制御装置で行われる分析処理のうち、振動データの集計処理の一例を示すフローチャートである。FIG. 10 is a flow chart showing Example 2 and showing an example of a totaling process of vibration data among the analysis processes performed by the warehouse control device. FIG. 実施例2を示し、損傷度テーブルの一例を示す図である。FIG. 12 is a diagram showing Example 2 and showing an example of a damage degree table; 実施例2を示し、閾値テーブルの一例を示す図である。FIG. 10 is a diagram showing Example 2 and showing an example of a threshold table; 実施例2を示し、床面状態の可視化画面の一例を示す図である。FIG. 12 is a diagram showing Example 2 and showing an example of a floor state visualization screen;
 以下、図面を参照して本発明の実施形態を説明する。実施例は、本発明を説明するための例示であって、説明の明確化のため、適宜、省略及び簡略化がなされている。本発明は、他の種々の形態でも実施することが可能である。特に限定しない限り、各構成要素は単数でも複数でも構わない。 Hereinafter, embodiments of the present invention will be described with reference to the drawings. The examples are exemplifications for explaining the present invention, and are appropriately omitted and simplified for clarity of explanation. The present invention can also be implemented in various other forms. Unless otherwise specified, each component may be singular or plural.
 図面において示す各構成要素の位置、大きさ、形状、範囲などは、発明の理解を容易にするため、実際の位置、大きさ、形状、範囲などを表していない場合がある。このため、本発明は、必ずしも、図面に開示された位置、大きさ、形状、範囲などに限定されない。 The position, size, shape, range, etc. of each component shown in the drawings may not represent the actual position, size, shape, range, etc. in order to facilitate the understanding of the invention. As such, the present invention is not necessarily limited to the locations, sizes, shapes, extents, etc., disclosed in the drawings.
 各種情報の例として、「テーブル」、「リスト」、「キュー」等の表現にて説明することがあるが、各種情報はこれら以外のデータ構造で表現されてもよい。例えば、「XXテーブル」、「XXリスト」、「XXキュー」等の各種情報は、「XX情報」としてもよい。識別情報について説明する際に、「識別情報」、「識別子」、「名」、「ID」、「番号」等の表現を用いるが、これらについてはお互いに置換が可能である。 As examples of various types of information, expressions such as "table", "list", and "queue" may be used for explanation, but various types of information may be expressed in data structures other than these. For example, various information such as "XX table", "XX list", and "XX queue" may be referred to as "XX information". When describing identification information, expressions such as “identification information”, “identifier”, “name”, “ID”, and “number” are used, but these can be replaced with each other.
 同一あるいは同様の機能を有する構成要素が複数ある場合には、同一の符号に異なる添字を付して説明する場合がある。また、これらの複数の構成要素を区別する必要がない場合には、添字を省略して説明する場合がある。 When there are multiple components that have the same or similar functions, they may be described with the same reference numerals with different suffixes. Further, when there is no need to distinguish between these constituent elements, the subscripts may be omitted in the description.
 実施例において、プログラムを実行して行う処理について説明する場合がある。ここで、計算機は、プロセッサ(例えばCPU、GPU)によりプログラムを実行し、記憶資源(例えばメモリ)やインタフェースデバイス(例えば通信ポート)等を用いながら、プログラムで定められた処理を行う。そのため、プログラムを実行して行う処理の主体を、プロセッサとしてもよい。同様に、プログラムを実行して行う処理の主体が、プロセッサを有するコントローラ、装置、システム、計算機、ノードであってもよい。プログラムを実行して行う処理の主体は、演算部であればよく、特定の処理を行う専用回路を含んでいてもよい。ここで、専用回路とは、例えばFPGA(Field Programmable Gate Array)やASIC(Application Specific Integrated Circuit)、CPLD(Complex Programmable Logic Device)等である。 In the examples, the processing performed by executing the program may be explained. Here, the computer executes a program by means of a processor (eg, CPU, GPU) and performs processing determined by the program while using storage resources (eg, memory) and interface devices (eg, communication port). Therefore, the main body of the processing performed by executing the program may be the processor. Similarly, a main body of processing executed by executing a program may be a controller having a processor, a device, a system, a computer, or a node. The main body of processing performed by executing the program may be an arithmetic unit, and may include a dedicated circuit for performing specific processing. Here, the dedicated circuit is, for example, FPGA (Field Programmable Gate Array), ASIC (Application Specific Integrated Circuit), CPLD (Complex Programmable Logic Device), or the like.
 プログラムは、プログラムソースから計算機にインストールされてもよい。プログラムソースは、例えば、プログラム配布サーバ又は計算機が読み取り可能な記憶メディアであってもよい。プログラムソースがプログラム配布サーバの場合、プログラム配布サーバはプロセッサと配布対象のプログラムを記憶する記憶資源を含み、プログラム配布サーバのプロセッサが配布対象のプログラムを他の計算機に配布してもよい。また、実施例において、2以上のプログラムが1つのプログラムとして実現されてもよいし、1つのプログラムが2以上のプログラムとして実現されてもよい。 The program may be installed on the computer from the program source. The program source may be, for example, a program distribution server or a computer-readable storage medium. When the program source is a program distribution server, the program distribution server may include a processor and storage resources for storing the distribution target program, and the processor of the program distribution server may distribute the distribution target program to other computers. Also, in the embodiment, two or more programs may be implemented as one program, and one program may be implemented as two or more programs.
 図1は、実施例1における搬送システムの構成の一例を示すブロック図である。本実施例の搬送システムは、倉庫制御装置100と、ネットワーク90と、ネットワーク90を介して倉庫制御装置100と接続する複数の搬送装置1と、を備える。例えば、倉庫制御装置100が、搬送装置1に搬送させる棚7と、搬送先のピッキングステーションを指定した搬送指令を搬送装置1に送信して、搬送装置1に自動で搬送させる例を示す。 FIG. 1 is a block diagram showing an example of the configuration of a transport system according to the first embodiment. The transport system of this embodiment includes a warehouse control device 100 , a network 90 , and a plurality of transport devices 1 connected to the warehouse control device 100 via the network 90 . For example, an example in which the warehouse control device 100 transmits to the transport device 1 a transport command designating the shelf 7 to be transported by the transport device 1 and the picking station of the transport destination to cause the transport device 1 to automatically transport is shown.
 倉庫制御装置100は、演算装置110と、メモリ120と、入力装置130と、出力装置140と、記憶装置150と、通信インタフェース170を含む計算機である。 The warehouse control device 100 is a computer including an arithmetic device 110, a memory 120, an input device 130, an output device 140, a storage device 150, and a communication interface 170.
 記憶装置150は、不揮発性の記憶媒体を有し、演算装置110が実行するプログラムと、プログラムが使用するデータを格納する。プログラムの一例として、経路作成プログラム161と、データ入出力プログラム162と、データ分析プログラム163と、搬送装置制御プログラム164が記憶装置150に格納され、演算装置110は必要なプログラムをメモリ120にロードして実行する。 The storage device 150 has a non-volatile storage medium and stores programs executed by the arithmetic device 110 and data used by the programs. As an example of a program, a route creation program 161, a data input/output program 162, a data analysis program 163, and a transport device control program 164 are stored in the storage device 150, and the arithmetic device 110 loads necessary programs into the memory 120. to run.
 また、記憶装置150が格納するデータの一例としては、オーダー情報200と、在庫情報220と、棚情報230と、床情報240と、地図情報250と、装置情報260と、経路データ270と、計測データ280と、振動データ290と速度制御テーブル410(速度制御情報)と、摩耗度テーブル(摩耗度情報)420と、補助輪テーブル(補助輪情報)430が格納される。 Examples of data stored in the storage device 150 include order information 200, inventory information 220, shelf information 230, floor information 240, map information 250, device information 260, route data 270, and measurement data. Data 280, vibration data 290, a speed control table 410 (speed control information), a wear level table (wear level information) 420, and a training wheel table (training wheel information) 430 are stored.
 経路作成プログラム161は、搬送装置1が移動する経路を算出する。経路作成プログラム161は、例えば、ピッキング対象の物品(又は商品)の位置と、行き先のピッキングステーションの位置等から、搬送装置1が移動する経路を算出する。データ入出力プログラム162は、オーダー情報の受け付けや、搬送装置1からセンサデータの受け付け等を実施し、ピッキング対象の物品の情報の出力などを実施する。 The route creation program 161 calculates the route along which the transport device 1 moves. The route creation program 161 calculates the route along which the conveying device 1 moves from, for example, the position of the article (or product) to be picked and the position of the destination picking station. The data input/output program 162 receives order information, receives sensor data from the conveying apparatus 1, and outputs information on articles to be picked.
 データ分析プログラム163は、センサデータが搬送装置1を支持する補助輪の画像データの場合、搬送装置1の補助輪の接地幅を推定して装置情報260の更新などを実施する。あるいは、データ分析プログラム163は、センサデータが床面の振動データや床面の画像や映像の場合、搬送装置1が移動した経路の床面の状態を画像から分析して、床情報240の更新などを実施する。 When the sensor data is the image data of the auxiliary wheels that support the transport device 1, the data analysis program 163 estimates the contact width of the training wheels of the transport device 1 and updates the device information 260 and the like. Alternatively, the data analysis program 163 analyzes the state of the floor along the path along which the conveying apparatus 1 has moved from the image when the sensor data is floor vibration data or an image or video of the floor, and updates the floor information 240. etc.
 搬送装置制御プログラム164は、経路作成プログラム161が算出した経路と、床情報240や搬送装置1の状態を格納した装置情報260等に基づいて、利用可能な搬送装置1に対して搬送する棚7及び物品と、搬送先のピッキングステーションを指令する。 The transport device control program 164 selects the shelf 7 to be transported to the available transport device 1 based on the route calculated by the route creation program 161, the floor information 240, the device information 260 storing the state of the transport device 1, and the like. and command the goods and the picking station to which they are to be conveyed.
 オーダー情報200は、物品の出荷を要求するオーダーの情報で、ピッキング対象の物品の情報を格納する。在庫情報220は、物品の在庫に関し、物品が配置された棚の情報や、棚内の配置位置や、数量、重量等の情報を格納する。 The order information 200 is information of an order requesting shipment of goods, and stores information of goods to be picked. The inventory information 220 stores information regarding the inventory of articles, such as information on shelves where articles are arranged, arrangement positions within the shelves, quantity, weight, and the like.
 棚情報230は、棚の位置や重さ等の情報を格納する。床情報240は、床のエリア毎に、床面の状態を示す情報を格納する。地図情報250は、倉庫内の地図情報を格納する。装置情報260は、搬送装置1のそれぞれについての識別情報(識別子)や位置や稼働状態や補助輪の状態などを格納する。 The shelf information 230 stores information such as the position and weight of the shelf. The floor information 240 stores information indicating the state of the floor surface for each floor area. The map information 250 stores map information in the warehouse. The device information 260 stores the identification information (identifier), the position, the operating state, the state of the training wheels, and the like for each transport device 1 .
 経路データ270は、搬送装置1毎の経路の情報を格納する。計測データ280は、各搬送装置1から受信したセンサデータや位置情報や走行状態等を格納する。振動データ290は、搬送装置1に衝撃や振動が発生した位置と、衝撃や振動の大きさ及び走行状態を格納する。ここで、搬送装置1が床面を走行したときに、搬送装置や床面が受ける衝撃や振動について、以降の説明において「振動」と説明することがある。 The route data 270 stores route information for each transport device 1 . The measurement data 280 stores sensor data, position information, running state, and the like received from each transport device 1 . The vibration data 290 stores the position where the shock or vibration occurred in the conveying apparatus 1, the magnitude of the shock or vibration, and the running state. Here, in the following description, the shock and vibration received by the conveying device and the floor when the conveying device 1 travels on the floor may be referred to as "vibration".
 入力装置130は、キーボードやマウスあるいはタッチパネル等で構成される。出力装置140は、ディスプレイ等で構成される。通信インタフェース170は、無線によるネットワーク90を介して搬送装置1や他の計算機と通信を行う。なお、ネットワーク90は、有線のネットワークを含むことができる。 The input device 130 is composed of a keyboard, mouse, touch panel, or the like. The output device 140 is configured by a display or the like. The communication interface 170 communicates with the transport apparatus 1 and other computers via a wireless network 90 . Note that the network 90 can include a wired network.
 搬送装置1は、倉庫制御装置100からの指令に応じて物品を収容した棚7を自動的に搬送する自律移動体である。搬送装置1は、制御装置(制御部)2と、記憶装置4と、駆動装置(駆動部)3と、センサ5と、通信インタフェース6を有する自動搬送装置である。センサ5は、例えば、振動センサ(加速度センサ)51と、前方監視センサ52と、補助輪監視センサ53を含む。なお、前方監視センサ52と補助輪監視センサ53は、イメージセンサ等で構成される。補助輪監視センサ53は、例えば、補助輪において、搬送装置1が走行するときに床面と接する部分である接地部(接地面)の情報を取得可能なセンサである。補助輪監視センサ53は、例えば補助輪の接地部(接地面)の形状または状態の情報(例えば画像等)を取得可能なセンサである。 The transport device 1 is an autonomous mobile body that automatically transports the shelves 7 containing articles according to commands from the warehouse control device 100 . The transport device 1 is an automatic transport device having a control device (control section) 2 , a storage device 4 , a driving device (driving section) 3 , a sensor 5 and a communication interface 6 . The sensors 5 include, for example, a vibration sensor (acceleration sensor) 51, a forward monitoring sensor 52, and an auxiliary wheel monitoring sensor 53. The forward monitoring sensor 52 and the auxiliary wheel monitoring sensor 53 are configured by image sensors or the like. The auxiliary wheel monitoring sensor 53 is, for example, a sensor capable of acquiring information about a grounding portion (grounding surface), which is a portion of the auxiliary wheel that comes into contact with the floor surface when the transport device 1 travels. The training wheel monitoring sensor 53 is, for example, a sensor capable of acquiring information (for example, an image) of the shape or state of the ground contact portion (ground contact surface) of the training wheel.
 制御装置2は、演算装置21と、メモリ22を含む。メモリ22には自己位置推定プログラム23と、走行制御プログラム24と、計測プログラム25と、通信プログラム26がロードされて演算装置21によって実行される。演算装置21は、マイクロコンピュータやプロセッサで構成される。 The control device 2 includes an arithmetic device 21 and a memory 22. A self-position estimation program 23 , a travel control program 24 , a measurement program 25 and a communication program 26 are loaded into the memory 22 and executed by the arithmetic unit 21 . The arithmetic unit 21 is composed of a microcomputer and a processor.
 自己位置推定プログラム23は、前方監視センサ52から取得したイメージデータ(画像又は動画データ)等に基づいて搬送装置1の位置を算出する。なお、本実施例では、物流倉庫の床面に倉庫内の位置を示すマーカが予め表示(設置)されている例を示す。 The self-position estimation program 23 calculates the position of the transport device 1 based on the image data (image or video data) obtained from the forward monitoring sensor 52 or the like. Note that this embodiment shows an example in which markers indicating positions in the warehouse are displayed (installed) in advance on the floor of the distribution warehouse.
 前方監視センサ52が読み取ったマーカから自己位置推定プログラム23が搬送装置1の位置を算出する。物流倉庫の床面上に配置されたマーカは、搬送装置1のセンサ5により読み取り可能な情報であり、例えば、QRコード(登録商標)である。なお、搬送装置1の位置推定は、前方監視センサ52から取得したイメージデータ等を、倉庫制御装置100へ送信し、倉庫制御装置100が行うように構成されてもよい。マーカは、マークや基準マーカと呼ばれてもよい。 The self-position estimation program 23 calculates the position of the transport device 1 from the markers read by the forward monitoring sensor 52 . The markers placed on the floor of the distribution warehouse are information that can be read by the sensor 5 of the transport device 1, such as a QR code (registered trademark). Note that the position estimation of the transport device 1 may be configured such that the image data and the like obtained from the forward monitoring sensor 52 are transmitted to the warehouse control device 100 and the warehouse control device 100 performs the estimation. Markers may also be referred to as marks or fiducial markers.
 例えば、倉庫の床は、複数の区画で管理され、複数の区画それぞれに、当該区画の位置に関するマーカが表記されている。搬送装置1は、床を走行し、各区画上を通るときに当該区画の床に表記されたマーカを読み取って当該区画の位置に関する情報を取得する。マーカは、その区画の位置を特定するための情報を含んでいればよく、例えばその区画の位置情報でもよいし、その区画の位置情報と対応づけられている情報(例えばその区画の識別情報など)であってもよい。 For example, the floor of a warehouse is managed in multiple compartments, and each of the multiple compartments has a marker indicating the location of that compartment. The conveying device 1 travels on the floor and reads the markers written on the floor of each section when passing over each section to acquire information about the position of the section. The marker may contain information for specifying the position of the section, for example, the position information of the section, or information associated with the position information of the section (for example, the identification information of the section). ).
 走行制御プログラム24は、搬送装置1の現在位置と、倉庫制御装置100から受信した経路データ41に基づいて駆動装置3を制御する。なお、倉庫制御装置100は、経路作成プログラム161で生成された搬送装置1毎の経路データ270を、搬送装置1に送信する。 The travel control program 24 controls the drive device 3 based on the current position of the transport device 1 and the route data 41 received from the warehouse control device 100 . Note that the warehouse control device 100 transmits the route data 270 for each transport device 1 generated by the route creation program 161 to the transport device 1 .
 計測プログラム25は、センサ5から取得したセンサデータと、走行制御プログラム24から取得した走行速度や加速度と、自己位置推定プログラム23が算出した搬送装置1の位置を取得して倉庫制御装置100へ送信する。 The measurement program 25 acquires the sensor data acquired from the sensor 5, the travel speed and acceleration acquired from the travel control program 24, and the position of the transport device 1 calculated by the self-position estimation program 23, and transmits them to the warehouse control device 100. do.
 センサデータとしては、振動センサ51からの振動データと、前方監視センサ52からの床面の画像データと、補助輪監視センサ53からの補助輪の画像データが含まれる。また、計測プログラム25が倉庫制御装置100へセンサデータを送信するタイミングは、所定のタイミングや所定の周期(例えば、24時間毎)等に実施すればよい。 The sensor data includes vibration data from the vibration sensor 51, image data of the floor surface from the forward monitoring sensor 52, and image data of the training wheels from the training wheel monitoring sensor 53. Moreover, the timing at which the measurement program 25 transmits the sensor data to the warehouse control device 100 may be at a predetermined timing or at a predetermined cycle (for example, every 24 hours).
 なお、計測プログラム25が補助輪監視センサ53で補助輪の画像データを撮影するタイミングは、例えば、倉庫制御装置100からの指令を受けたとき等、所定のタイミングで実施すればよい。 The timing at which the measurement program 25 captures the image data of the training wheels with the training wheel monitoring sensor 53 may be performed at a predetermined timing, such as when receiving a command from the warehouse control device 100, for example.
 計測プログラム25は、センサ5や各プログラムから取得したデータを、一旦記憶装置4の計測データ43に蓄積してから倉庫制御装置100に送信してもよい。通信プログラム26は、ネットワーク90を介して倉庫制御装置100と通信を行う。 The measurement program 25 may store the data acquired from the sensor 5 and each program in the measurement data 43 of the storage device 4 once and then transmit it to the warehouse control device 100 . The communication program 26 communicates with the warehouse control device 100 via the network 90 .
 記憶装置4は、不揮発性の記憶媒体で構成されて、各プログラムや各プログラムが使用するデータを格納する。データの一例としては、経路データ41と、計測データ43と、装置情報44と、床情報46が含まれる。 The storage device 4 is composed of a non-volatile storage medium and stores each program and data used by each program. Examples of data include route data 41 , measurement data 43 , device information 44 and floor information 46 .
 経路データ41は、倉庫制御装置100から受信した経路データを格納する。計測データ43は、上述したセンサ5が取得したセンサデータや各プログラムが取得又は算出したデータを格納する。 The route data 41 stores the route data received from the warehouse control device 100. The measurement data 43 stores sensor data acquired by the sensor 5 described above and data acquired or calculated by each program.
 計測データ43に格納された後に倉庫制御装置100へ送信されるデータとしては、計測日時、装置ID、振動データ、画像データ、位置情報、走行モード、走行速度、走行加速度、棚の積載有無、搬送棚IDが1つのレコードに含まれる。 Data to be sent to the warehouse control device 100 after being stored in the measurement data 43 include measurement date and time, device ID, vibration data, image data, position information, travel mode, travel speed, travel acceleration, presence/absence of shelf loading, transport A shelf ID is included in one record.
 装置情報44は、搬送装置1の識別子(装置ID)や装置の状態、棚の積載有無に関する情報、装置の位置、バッテリ残量、累積走行距離、累積加速回数等を格納する。例えば、装置情報44は、装置情報260(後述)のうち、当該搬送装置1に関する情報と同等の情報であってもよい。 The device information 44 stores the identifier (device ID) of the conveying device 1, the state of the device, information about the presence or absence of loading on the shelf, the position of the device, the remaining battery capacity, the cumulative travel distance, the cumulative number of accelerations, and the like. For example, the device information 44 may be information equivalent to information about the conveying device 1 in the device information 260 (described later).
 床情報46は、倉庫制御装置100から受信した床情報240を格納する。制御装置2は、床情報46を参照することで搬送装置1が移動する床面の情報に基づいて、搬送装置1の加速条件等を決定することができる。 The floor information 46 stores the floor information 240 received from the warehouse control device 100. By referring to the floor information 46 , the control device 2 can determine acceleration conditions and the like of the transport device 1 based on information on the floor surface on which the transport device 1 moves.
 駆動装置3は、台車31と、駆動輪33と、テーブル32と、補助輪(キャスター)34と、駆動輪33やテーブル32を駆動する動力源としてのモータ38と、モータ38に電力を供給するバッテリ39を含む。駆動装置3の構成については後述する。なお、駆動輪33とテーブル32を駆動するモータ38は、それぞれ独立したモータで構成することができる。 The driving device 3 supplies electric power to the truck 31, the driving wheels 33, the table 32, the auxiliary wheels (casters) 34, the motor 38 as a power source for driving the driving wheels 33 and the table 32, and the motor 38. A battery 39 is included. The configuration of the driving device 3 will be described later. The motors 38 for driving the driving wheels 33 and the table 32 can be composed of independent motors.
 センサ5は、床面を撮影する前方監視センサ52(カメラ)や、振動を検出する振動センサ(加速度センサ)51や、補助輪34の接地幅を監視する補助輪監視センサ53等で構成される。 The sensor 5 is composed of a forward monitoring sensor 52 (camera) that captures the floor surface, a vibration sensor (acceleration sensor) 51 that detects vibration, and a training wheel monitoring sensor 53 that monitors the contact width of the training wheels 34. .
 床面にマークなどの位置情報や経路情報が付与されている場合、センサ5としての前方監視センサ52で床面を撮影し、自己位置推定プログラム23でマークを識別することで現在位置を特定することができる。また、前方監視センサ52で撮影した床面の画像データを倉庫制御装置100に送信し、床面の状態を分析することができる。また、補助輪監視センサ53は、搬送装置1の直進状態で補助輪34と床面の画像を撮影し、後述するように補助輪34の接地幅を監視する。また、補助輪監視センサ53は、搬送装置1の直進状態で補助輪34の接地部の計測データ(例えば画像等)を取得して、補助輪34の接地幅を監視してもよい。例えば、補助輪34の接地部の画像から、補助輪34の接地幅を判定してもよい。 When position information and route information such as marks are given to the floor surface, the floor surface is photographed by the forward monitoring sensor 52 as the sensor 5, and the current position is specified by identifying the mark with the self-position estimation program 23. be able to. In addition, image data of the floor captured by the forward monitoring sensor 52 can be transmitted to the warehouse control device 100 to analyze the state of the floor. Further, the training wheel monitoring sensor 53 takes an image of the training wheels 34 and the floor surface while the conveying apparatus 1 is moving straight, and monitors the contact width of the training wheels 34 as will be described later. Further, the training wheel monitoring sensor 53 may acquire measurement data (for example, an image) of the contact portion of the training wheels 34 while the conveying device 1 is moving straight ahead, and monitor the contact width of the training wheels 34 . For example, the grounding width of the training wheels 34 may be determined from the image of the grounding portion of the training wheels 34 .
 センサ5としての振動センサ51は、搬送装置1が床面上を移動することで、床面の状態に応じて搬送装置1に生じる、振動(加速度)を検出し、計測プログラム25は、床面の状態として振動の大きさと、振動が発生した床面の位置情報を倉庫制御装置100に通知することができる。 A vibration sensor 51 as the sensor 5 detects vibration (acceleration) generated in the transport device 1 according to the state of the floor surface as the transport device 1 moves on the floor surface. The warehouse control device 100 can be notified of the magnitude of the vibration and the position information of the floor surface where the vibration occurred as the state of .
 なお、本実施例の搬送装置1の移動(走行)については、少なくとも直進移動と、その場で車体の向きを回転させるように移動する旋回移動が含まれる。制御装置2は、算出された経路データ270(41)に対して、直進と旋回を切り替えて経路上を移動するものとする。 It should be noted that the movement (running) of the conveying device 1 of this embodiment includes at least straight movement and turning movement in which the vehicle body rotates on the spot. It is assumed that the control device 2 moves along the calculated route data 270 (41) by switching between going straight and turning.
 演算装置21は、各機能部のプログラムに従って処理を実行することによって、所定の機能を提供する機能部として稼働する。例えば、演算装置21は、走行制御プログラム24に従って処理を実行することで走行制御部として機能する。他のプログラムについても同様である。さらに、演算装置21は、各プログラムが実行する複数の処理のそれぞれの機能を提供する機能部としても稼働する。 The computing device 21 operates as a functional unit that provides a predetermined function by executing processing according to the program of each functional unit. For example, the arithmetic unit 21 functions as a travel control unit by executing processing according to the travel control program 24 . The same is true for other programs. Further, the arithmetic unit 21 also operates as a functional unit that provides functions of multiple processes executed by each program.
 図2は、搬送装置1と棚7の一例を示す斜視図である。搬送装置1は、直進及び旋回可能な直方体の台車31と、台車31の上面に配置されて昇降可能かつ旋回可能なテーブル32を含む自動走行装置である。搬送装置1は、例えば無人搬送車(AGV:Automated Guided Vehicle)であってもよいし、自律移動ロボット(AMR:Autonomous Mobile Robot)であってもよい。なお、台車31の前進方向の辺には、バンパ35と前方監視センサ52が配置される。 FIG. 2 is a perspective view showing an example of the conveying device 1 and the shelf 7. FIG. The conveying device 1 is an automatic traveling device including a rectangular parallelepiped carriage 31 that can move straight and turn, and a table 32 that is arranged on the upper surface of the carriage 31 and can move up and down and turn. The carrier device 1 may be, for example, an automated guided vehicle (AGV) or an autonomous mobile robot (AMR). A bumper 35 and a forward monitoring sensor 52 are arranged on the forward side of the carriage 31 .
 物品(又は商品)を格納する棚7は、側面に一対の開口部を有する直方体で構成され、床面から所定の高さで脚部71によって支持された底板72と、物品を載置する1以上の棚板73が配置される。 The shelf 7 for storing articles (or products) is composed of a rectangular parallelepiped having a pair of openings on the side surfaces, and includes a bottom plate 72 supported by legs 71 at a predetermined height from the floor surface, and a 1 on which articles are placed. The above shelf board 73 is arranged.
 搬送装置1は、テーブル32を下降した状態で棚7の底板72の下方に台車31を移動した後、テーブル32を上昇させて棚7を持ち上げる。搬送装置1は、テーブル32で棚7を持ち上げた状態で台車31を走行させることで、棚7の搬送を行う。 After moving the carriage 31 below the bottom plate 72 of the shelf 7 with the table 32 lowered, the transport device 1 raises the table 32 to lift the shelf 7 . The transport device 1 transports the shelf 7 by causing the cart 31 to travel while the shelf 7 is lifted by the table 32 .
 テーブル32は、台車31に対して旋回可能であり、台車31が床面上で旋回する際には、テーブル32を台車31に対して相対的に回転させることで、棚7の向きを保持して台車31の進行方向を変更することができる。 The table 32 can turn with respect to the carriage 31, and when the carriage 31 turns on the floor surface, the orientation of the shelf 7 is maintained by rotating the table 32 relative to the carriage 31. can be used to change the traveling direction of the carriage 31 .
 図示の例では、棚7が2つの開口面を有しているので、テーブル32を180°旋回させることで、異なる開口部をピッキングステーションに提供することができる。なお、棚7の構成は、図示の例に限定されるものではなく、4面の開口部を設けたり、ハンガーを設置した箱やパレット等で、テーブル32が持ち上げ可能な底板72を有するものであればよい。搬送車の搬送対象を、搬送物(例えば、棚やパレット等)と呼ぶことがある。 In the illustrated example, the shelf 7 has two opening surfaces, so that by rotating the table 32 by 180°, different openings can be provided to the picking station. The structure of the shelf 7 is not limited to the illustrated example, but may be a box, pallet, or the like having openings on four sides or having a bottom plate 72 on which the table 32 can be lifted. I wish I had. An object to be transported by the transport vehicle is sometimes called a transported object (for example, a shelf, a pallet, etc.).
 図3は、搬送装置1の一例を示す底面図である。台車31の底面はバンパ35側を前方とし、底面の前後方向の中間の左右には駆動輪33-L、33-Rが配置されて台車31を直進又は旋回させる。なお、以下の説明は、駆動輪の左右を特定しない場合には、「-」以降を省略した符号「33」を用いる。他の構成要素の符号についても同様である。 FIG. 3 is a bottom view showing an example of the transport device 1. FIG. The bumper 35 side of the bottom surface of the carriage 31 faces forward, and drive wheels 33-L and 33-R are arranged on the left and right sides of the bottom surface in the front-rear direction to move the carriage 31 straight or turn. In the following description, when the right and left driving wheels are not specified, the symbol "33" omitting "-" is used. The same applies to the codes of other constituent elements.
 駆動輪33-L、33-Rの前方と後方には、それぞれ補助輪34-FL、34-RL、34-FR、34-RRが配置されて台車31を支持する。各補助輪34は、ホルダ37を介して台車31の底面に設けた軸36まわりで旋回可能に支持される。なお、本実施例では、4つの補助輪34を配置する例を示すが、これに限定されるものではなく、1以上の補助輪34で構成することができる。 Auxiliary wheels 34-FL, 34-RL, 34-FR, and 34-RR are arranged in front and behind the drive wheels 33-L and 33-R, respectively, to support the truck 31. Each auxiliary wheel 34 is rotatably supported around a shaft 36 provided on the bottom surface of the carriage 31 via a holder 37 . Although this embodiment shows an example in which four auxiliary wheels 34 are arranged, the present invention is not limited to this, and one or more auxiliary wheels 34 can be used.
 また、軸36は、台座62を介して台車31の底面にそれぞれ取り付けられる。各補助輪34は、ホルダ37に支持された軸(図示省略)によって物流倉庫の床面上を回転自在に支持される。 Also, the shafts 36 are attached to the bottom surface of the carriage 31 via the pedestal 62 . Each auxiliary wheel 34 is rotatably supported on the floor surface of the distribution warehouse by a shaft (not shown) supported by a holder 37 .
 搬送装置1は、駆動輪33-Lと駆動輪33-Rを平行に配置して等速で回転させることで直進し、駆動輪33-Lと駆動輪33-Rの回転方向を逆方向にすることで台車31を信地旋回することができる。 The conveying device 1 moves straight by arranging the driving wheels 33-L and 33-R in parallel and rotating them at a constant speed, and rotates the driving wheels 33-L and 33-R in opposite directions. By doing so, the truck 31 can be pivoted.
 図4は、搬送装置1の台車31を構成するフレーム61の底面の輪郭の一部を簡略表示したものと駆動輪33及び補助輪34の一例を示す斜視図である。図5は、振動センサ51と補助輪監視センサ53の取り付け位置の概略図である。搬送装置1のフレーム61は、方形の枠状に構成されている。フレーム61の下部には、駆動輪33と補助輪34が取り付けられて物流倉庫の床面上を走行する。 FIG. 4 is a perspective view showing a simplified outline of part of the bottom surface of the frame 61 that constitutes the carriage 31 of the conveying device 1 and an example of the drive wheels 33 and auxiliary wheels 34 . FIG. 5 is a schematic diagram of the mounting positions of the vibration sensor 51 and the auxiliary wheel monitoring sensor 53. As shown in FIG. A frame 61 of the transport device 1 is configured in a square frame shape. A driving wheel 33 and an auxiliary wheel 34 are attached to the lower part of the frame 61 to run on the floor surface of the distribution warehouse.
 枠状のフレーム61の四隅の下部には、補助輪34を取り付ける台座62が設けられる。台座62の下面には補助輪34を支持するための軸36が取り付けられ、軸36の軸まわりで回転可能なホルダ37が取り付けられ、ホルダ37は補助輪34を床面上で回転自在に支持する。 A pedestal 62 for mounting the training wheels 34 is provided at the bottom of the four corners of the frame-shaped frame 61 . A shaft 36 for supporting the training wheel 34 is attached to the lower surface of the base 62, and a holder 37 rotatable around the axis of the shaft 36 is mounted, and the holder 37 supports the training wheel 34 rotatably on the floor surface. do.
 テーブル32に加わる荷重は、フレーム61と台座62を介して補助輪34と駆動輪33によって支持される。補助輪34に加わる荷重は、フレーム61から台座62、軸36及びホルダ37を介して伝達される。補助輪34を支持する台座62の上面には振動センサ51が取り付けられる。 A load applied to the table 32 is supported by the auxiliary wheels 34 and the driving wheels 33 via the frame 61 and the pedestal 62 . A load applied to the training wheel 34 is transmitted from the frame 61 via the pedestal 62 , the shaft 36 and the holder 37 . A vibration sensor 51 is attached to the upper surface of the pedestal 62 that supports the training wheel 34 .
 また、補助輪34-RRを支持する台座62の前方(バンパ35側)には補助輪34と接地位置を撮影する補助輪監視センサ53が取り付けられる。本実施例では、補助輪34-RRの前方に補助輪監視センサ53を設置する例を示したが、これに限定されるものではない。少なくとも1つの補助輪34に対して接地位置を撮影する補助輪監視センサ53を設ければよい。 Also, in front of the pedestal 62 that supports the training wheels 34-RR (bumper 35 side), a training wheel monitoring sensor 53 that captures the training wheels 34 and the contact position is attached. Although this embodiment shows an example in which the training wheel monitoring sensor 53 is installed in front of the training wheel 34-RR, it is not limited to this. An auxiliary wheel monitoring sensor 53 that captures the contact position of at least one auxiliary wheel 34 may be provided.
 また、本実施例では、搬送装置1の直進状態で補助輪34の設置位置を前方から撮影する場所に補助輪監視センサ53を設置する例を示すがこれに限定されるものではない。補助輪監視センサ53を設置する位置は、補助輪34が床面に接地する幅を撮影可能な位置であればよい。 Also, in this embodiment, an example is shown in which the training wheel monitoring sensor 53 is installed at a location where the installation position of the training wheel 34 is photographed from the front while the conveying device 1 is traveling straight, but the present invention is not limited to this. The position at which the training wheel monitoring sensor 53 is installed may be any position where the width at which the training wheel 34 touches the floor surface can be photographed.
 なお、本実施例では、前後の補助輪34-FRと34-RRが、搬送装置1の直進状態で同一の軌跡を転動する例を示し、床面上の当該軌跡と対向する台座62に補助輪監視センサ53を設けて、直進状態の補助輪34-RRを前方から撮影するが、補助輪34-RRの後方から撮影してもよい。 In this embodiment, the front and rear auxiliary wheels 34-FR and 34-RR roll on the same locus when the conveying device 1 moves straight. An auxiliary wheel monitoring sensor 53 is provided to photograph the straight-ahead auxiliary wheel 34-RR from the front, but it may also be photographed from the rear of the auxiliary wheel 34-RR.
 また、図4、図5の例では、フレーム61の右後方となる補助輪34-RRを支持する台座62の下面に補助輪監視センサ53を配置し、上面に振動センサ51を配置する例を示したが、これに限定されるものではなく、他の台座62に設けてもよい。 In the examples of FIGS. 4 and 5, the training wheel monitoring sensor 53 is arranged on the lower surface of the pedestal 62 supporting the training wheel 34-RR on the right rear of the frame 61, and the vibration sensor 51 is arranged on the upper surface. Although shown, it is not limited to this and may be provided on other pedestals 62 .
 また、振動センサ51を、補助輪34の上部、より好適には補助輪34を支持する台座62に設けることで、駆動輪33を駆動するモータ38の振動や、フレーム61の振動の影響を抑制して、床面からの振動を正確に測定することが可能となる。 By providing the vibration sensor 51 on the upper part of the training wheel 34, more preferably on the pedestal 62 that supports the training wheel 34, the influence of the vibration of the motor 38 that drives the drive wheel 33 and the vibration of the frame 61 can be suppressed. As a result, it is possible to accurately measure the vibration from the floor surface.
 図6は、補助輪監視センサ53が撮影した補助輪34の一例を示す図である。補助輪34を搬送装置1に取り付けた初期状態では、図中(A)のように補助輪34は接地幅W0で床面上を転動する。本実施例では、補助輪34の半径方向の断面は接地面へ向けて幅(補助輪34の回転軸方向の寸法)が減少する円弧状又は台形状で形成される。 FIG. 6 is a diagram showing an example of the training wheels 34 photographed by the training wheel monitoring sensor 53. FIG. In the initial state where the auxiliary wheels 34 are attached to the conveying apparatus 1, the auxiliary wheels 34 roll on the floor with a contact width W0 as shown in (A) in the figure. In this embodiment, the radial cross section of the training wheel 34 is formed in an arc shape or a trapezoidal shape in which the width (dimension of the training wheel 34 in the rotation axis direction) decreases toward the ground contact surface.
 補助輪34を取り付けてから搬送装置1を稼働させて走行距離が増大すると、補助輪34の外周の摩耗が進行して接地幅は増大し、図中(B)のように補助輪34は接地幅W1で転動する。 When the conveying device 1 is operated after attaching the training wheels 34 and the traveling distance increases, the wear of the outer periphery of the training wheels 34 progresses and the contact width increases, and the training wheels 34 contact the ground as shown in (B) in the figure. It rolls with width W1.
 走行距離が増大した補助輪34は、初期状態の接地幅W0から接地幅W0に接地幅が増大することで接地面積も増大するため、回転(走行)に要する抵抗も増大する。特に、搬送装置1が直進状態から停止して、左右の駆動輪33を等速で逆転させる転回(信地旋回)の際には、図3で示した直進状態の補助輪34を軸36まわりで旋回させるための摩擦抵抗が直進状態に比して増大する。 Since the contact width of the auxiliary wheel 34, which has increased the travel distance, increases from the contact width W0 in the initial state to the contact width W0, the contact area also increases, so the resistance required for rotation (running) also increases. In particular, when the conveying apparatus 1 stops from a straight-ahead state and rotates (pivot turn) in which the left and right driving wheels 33 are reversed at a constant speed, the auxiliary wheels 34 in the straight-ahead state shown in FIG. Frictional resistance for turning is increased compared to the straight running state.
 すなわち、直進状態から搬送装置1を旋回させる際には、補助輪34を回転させながら軸36まわりに旋回させるため、駆動輪33が必要とする駆動力は増大し、バッテリ消費量の増大又は旋回速度の低下が生じる。また、搬送装置1を旋回させた後に直進させる際にも同様の走行抵抗の増大が発生する。 That is, when the carrier device 1 is turned from a straight-ahead state, it is turned around the shaft 36 while the auxiliary wheels 34 are rotated. A slowdown occurs. A similar increase in running resistance also occurs when the conveying apparatus 1 is moved straight after being turned.
 補助輪34の走行抵抗の増大に伴って、搬送装置1の走行性能が低下して搬送時間が増大すると物流倉庫の作業効率が低下するという課題が発生する。あるいは、補助輪34の走行抵抗が増大した搬送装置1で走行性能を維持するためには、バッテリ消費量が増大するため搬送装置1の充電回数が増大(満充電での走行距離の減少)して、搬送装置1の稼働率が低下する。 As the running resistance of the training wheels 34 increases, the running performance of the transport device 1 decreases, and if the transport time increases, the work efficiency of the distribution warehouse will decrease. Alternatively, in order to maintain the running performance of the conveying apparatus 1 in which the running resistance of the auxiliary wheels 34 has increased, the battery consumption increases, so the number of charging times of the conveying apparatus 1 increases (reduces the traveling distance with a full charge). As a result, the operating rate of the transport device 1 decreases.
 さらに、補助輪34が接地幅W1に増大すると補助輪34の外径も縮小するため、補助輪34が弾性を有して半径方向の断面の幅が接地面へ向けて縮小する場合では、摩耗の進行に伴って半径が縮小することで振動吸収能力が低下して搬送する物品に与える振動が増大し、また、搬送装置1が床面に与える負荷も増大する、という課題があった。 Furthermore, when the training wheel 34 increases to the contact width W1, the outer diameter of the training wheel 34 also decreases. There is a problem that the vibration absorption capacity decreases due to the reduction of the radius with the progress of the movement, the vibration applied to the article to be conveyed increases, and the load applied to the floor surface by the conveying apparatus 1 also increases.
 本実施例では、上述のような課題を解決するため、搬送装置1を支持する補助輪34の摩耗の進行が生じた場合には、倉庫制御装置100が搬送装置1の走行性能を後述するように抑制することで搬送する物品への振動が増大するのを防ぎ、また、補助輪34が物流倉庫の床面に与えるダメージを抑制する。また、倉庫制御装置100が補助輪34の交換時期を出力装置140に通知することで、搬送装置1のメンテナンスを的確に行うことが可能となる。 In this embodiment, in order to solve the above-described problems, when the auxiliary wheels 34 that support the conveying device 1 wear out, the warehouse control device 100 controls the running performance of the conveying device 1 as will be described later. By suppressing the movement of the load to 100 degrees, it is possible to prevent an increase in vibration of the article to be conveyed, and to suppress the damage caused by the training wheels 34 to the floor surface of the distribution warehouse. In addition, since the warehouse control device 100 notifies the output device 140 of the replacement timing of the training wheels 34, maintenance of the transport device 1 can be performed accurately.
 <データの詳細>
 次に、倉庫制御装置100が使用するデータについて図7~図15で説明する。
<Details of data>
Next, data used by the warehouse control device 100 will be described with reference to FIGS. 7 to 15. FIG.
 図7は、オーダー情報200の一例を示す図である。オーダー情報200は、倉庫制御装置100が他の装置から受け付けた情報である。 FIG. 7 is a diagram showing an example of the order information 200. FIG. The order information 200 is information received by the warehouse control device 100 from another device.
 オーダー情報200は、シリアル番号201と、伝票番号202と、販売店名203と、販売店コード204と、商品名205と、商品コード206と、個数207と、納期208と、オーダー受信日時209と、作業日時210を1つのレコードに含む。 The order information 200 includes a serial number 201, a slip number 202, a store name 203, a store code 204, a product name 205, a product code 206, a quantity 207, a delivery date 208, and an order reception date and time 209. A work date and time 210 is included in one record.
 シリアル番号201は、倉庫制御装置100が付与したユニークな番号である。なお、他の情報のシリアル番号についても同様である。伝票番号202は、注文毎に倉庫制御装置100が付与した番号である。販売店名203は、物品の出荷先を示す。 The serial number 201 is a unique number assigned by the warehouse control device 100. The same applies to serial numbers of other information. The slip number 202 is a number assigned by the warehouse control device 100 to each order. The store name 203 indicates the shipping destination of the article.
 本実施例では、伝票番号202が同一でも、商品名205及び商品コード206が異なる場合は、異なるシリアル番号201を付与する例を示す。これは、商品名205及び商品コード206が異なる場合は、それぞれの商品が保管されている棚7が異なる可能性があるためである。 In this embodiment, even if the slip number 202 is the same, if the product name 205 and product code 206 are different, different serial numbers 201 are assigned. This is because if the product name 205 and the product code 206 are different, the shelf 7 storing each product may be different.
 個数207は、当該レコードの伝票番号202において、商品名205及び商品コード206で特定される商品が注文された数量を示す。作業日時210は、伝票番号202の商品名205に対して、ピッキング作業が行われる予定日時が格納される。作業日時210は、納期208に加えて、顧客の要望(納期より前に、早く出荷してほしい等の要望)や、倉庫の状況(当該商品を早く出荷したい事情がある場合など)に基づいて、決定される。 The quantity 207 indicates the number of ordered products specified by the product name 205 and product code 206 in the slip number 202 of the record. The date and time of work 210 stores the scheduled date and time of the picking work for the product name 205 of the slip number 202 . In addition to the delivery date 208, the work date and time 210 is based on the customer's request (such as a request for early shipment before the delivery date) and the warehouse situation (such as when there is a reason for wanting to ship the product early). ,It is determined.
 作業日時210は、倉庫制御装置100と連携する他のソフトウェア(例えば倉庫管理システム(WMS:Warehouse Management System))などにより、決められてもよいし、ユーザにより設定されてもよい。 The work date and time 210 may be determined by other software that cooperates with the warehouse control device 100 (for example, a warehouse management system (WMS: Warehouse Management System)), or may be set by the user.
 図8は、在庫情報220の一例を示す図である。在庫情報220は、予め設定された情報である。在庫情報220は、シリアル番号221と、商品名222と、商品コード223と、在庫数224と、棚ID225と、棚内の配置位置226を1つのレコードに含む。シリアル番号221と、商品名222と、商品コード223と、在庫数224は、上記オーダー情報200と同様である。 FIG. 8 is a diagram showing an example of inventory information 220. FIG. The inventory information 220 is preset information. The stock information 220 includes a serial number 221, a product name 222, a product code 223, a stock quantity 224, a shelf ID 225, and a shelf arrangement position 226 in one record. The serial number 221, product name 222, product code 223, and inventory quantity 224 are the same as in the order information 200 described above.
 棚ID225は、当該商品が格納されている棚7の識別子が格納される。棚内の配置位置226は、例えばピッキングステーションST(図14参照)で、人やロボットがピッキングする際に使用される情報を格納する。棚内の配置位置226は、例えば「U3R2」と記載しているレコードでは、棚7において、「上(U)から3番目の段で、右(R)から2番目の位置」に、対象の商品が配置されていることを示す。 The shelf ID 225 stores the identifier of the shelf 7 on which the product is stored. The arrangement position 226 in the shelf stores information used when a person or a robot picks, for example, at the picking station ST (see FIG. 14). For example, in a record that describes "U3R2", the placement position 226 in the shelf is "the third row from the top (U) and the second position from the right (R)" on the shelf 7. Indicates that the product is placed.
 図9は、棚情報230の一例を示す図である。棚情報230は、予め設定された情報である。棚情報230は、シリアル番号231と、棚ID232と、保管位置233と、棚重量234と、商品重量235を1つのレコードに含む。 FIG. 9 is a diagram showing an example of the shelf information 230. FIG. The shelf information 230 is preset information. The shelf information 230 includes serial number 231, shelf ID 232, storage position 233, shelf weight 234, and product weight 235 in one record.
 棚ID232は、各棚7に付与されたユニークな識別子が格納される。棚ID232としては、例えば倉庫制御装置100が付与した棚7の識別子を格納してもよい。保管位置233は棚7を保管する位置の情報が格納され、例えば地図情報250(後述)の座標が格納される。棚7が搬送中の場合には、保管位置233には「搬送中」が格納される。 A unique identifier given to each shelf 7 is stored in the shelf ID 232 . As the shelf ID 232, for example, the identifier of the shelf 7 given by the warehouse control device 100 may be stored. The storage position 233 stores the information of the storage position of the shelf 7, for example, the coordinates of the map information 250 (described later). When the shelf 7 is being transported, the storage position 233 stores “transporting”.
 棚重量234には、棚7自体の重さが格納され、商品重量235には棚7が搭載する物品(商品や商品を保管する容器など)の重さが格納される。搬送装置1が搬送する搬送物(棚+商品)の重さは、少なくとも「棚重量」と「商品重量」の和となる。 The shelf weight 234 stores the weight of the shelf 7 itself, and the product weight 235 stores the weight of the goods (products, containers that store the products, etc.) mounted on the shelf 7 . The weight of the goods (shelf + product) transported by the transport device 1 is at least the sum of the "shelf weight" and the "product weight".
 例えば、図8の在庫情報220等において、各商品の重さと在庫数などを記録しておき、例えば、搬送物(棚+商品)の重さを計算により求めてもよい。なお、「重さ」を計算により求める場合、実際の搬送物の重さと計算値の誤差の許容範囲内に収まるのであれば、棚7及び棚7が搭載する商品のうち、一部の重量について、計算に含めないとすることも可能である。 For example, in the inventory information 220 of FIG. 8, etc., the weight and inventory number of each product may be recorded, and the weight of the transported item (shelf + product) may be calculated. In addition, when calculating the "weight", if it falls within the allowable range of error between the actual weight of the transported item and the calculated value, the weight of some of the products on the shelf 7 and the products mounted on the shelf 7 , may be excluded from the calculation.
 また、別の例として、例えば、搬送装置1が搬送する「搬送物(棚+商品)の重さ」を測定可能な重量センサを搭載しており、ピッキング完了後の棚7を保管位置に戻す際などに重量を計測してもよい。このとき、搬送装置1で計測した重量を、倉庫制御装置100が受信し、棚情報230における当該「搬送物(棚+商品)の重さ」として記録してもよい。 As another example, for example, a weight sensor capable of measuring "the weight of the goods (shelf + product)" transported by the transport device 1 is installed, and after the completion of picking, the shelf 7 is returned to the storage position. Weight may be measured on occasion. At this time, the weight measured by the transport device 1 may be received by the warehouse control device 100 and recorded as the “weight of the transported article (shelf + product)” in the shelf information 230 .
 倉庫制御装置100は、図8の在庫情報220から取得した棚ID225の情報をキーとして、当該棚7の保管位置233を特定する。倉庫制御装置100は、例えば搬送装置1の中で「待機」状態にある装置の中で、棚7の保管位置に近い搬送装置1の位置と、棚7の保管位置233と、棚7の搬送先となるピッキングステーションSTの情報などから、当該搬送装置1の移動経路を算出する。 The warehouse control device 100 identifies the storage position 233 of the shelf 7 using the information of the shelf ID 225 obtained from the inventory information 220 of FIG. 8 as a key. For example, the warehouse control device 100 determines the position of the transport device 1 near the storage position of the shelf 7, the storage position 233 of the shelf 7, and the transport of the shelf 7 among the devices in the "standby" state in the transport device 1, for example. The moving route of the transport device 1 is calculated from the information of the picking station ST to be the destination.
 なお、倉庫制御装置100は、棚情報230を搬送装置1が搬送する物品の重量を特定する重量情報として扱うことができる。 It should be noted that the warehouse control device 100 can handle the shelf information 230 as weight information specifying the weight of the article that the transport device 1 transports.
 図10は、装置情報260の一例を示す図である。装置情報260は、シリアル番号261と、装置ID262と、装置の状態263と、棚の有無264と、装置の位置265と、バッテリ残量266と、累積走行距離267と、累積加速回数268と、補助輪コード269と、接地幅初期値2610と、接地幅現在値2611と、接地幅増大率2612と、摩耗レベル1613を1つのレコードに含む。 FIG. 10 is a diagram showing an example of the device information 260. FIG. The device information 260 includes a serial number 261, a device ID 262, a device state 263, presence/absence of a shelf 264, a device position 265, a remaining battery level 266, a cumulative travel distance 267, a cumulative acceleration count 268, and a A training wheel code 269, initial contact width value 2610, current contact width value 2611, contact width increase rate 2612, and wear level 1613 are included in one record.
 装置ID262は、各搬送装置1に付与されたユニークな識別子を格納する。状態263は、各搬送装置1の状態に関する情報を格納する。状態としては、例えば、「待機」や、「移動中」、「充電中」、「故障」等の搬送装置1の状態が入力される。 The device ID 262 stores a unique identifier given to each transport device 1. The status 263 stores information about the status of each transport device 1 . As the status, for example, the status of the transport apparatus 1 such as "standby", "moving", "charging", and "broken" is input.
 なお、倉庫制御装置100が、例えば、ある搬送タスクを処理する(搬送指示する)搬送装置1を選択する際に、搬送効率などに基づいて選択することができる。例えば「移動中」の状態である搬送装置1であっても、早く現在のタスクが完了して、他と比べて早く、次の搬送タスク(上述の、ある搬送タスク)を処理できる場合には、選択される可能性がある。 It should be noted that, for example, when the warehouse control device 100 selects the transport device 1 that processes a certain transport task (instructs transport), the selection can be made based on the transport efficiency or the like. For example, even if the transport device 1 is in the "moving" state, if the current task is completed early and the next transport task (the above-mentioned certain transport task) can be processed earlier than the others. , may be selected.
 棚の有無264は、搬送装置1に搭載される棚7の有無を格納する。棚の有無264は、当該搬送装置1における棚7の積載有無に関する情報である。棚の有無264は、当該搬送装置1のテーブル32に棚7を積載しているか否かを示す情報である。 The presence/absence of shelf 264 stores the presence/absence of the shelf 7 mounted on the transport device 1 . The presence/absence of shelf 264 is information regarding the presence/absence of loading of the shelf 7 in the transport device 1 . The shelf presence/absence 264 is information indicating whether or not the shelf 7 is loaded on the table 32 of the transport device 1 .
 位置265は、各搬送装置1の位置に関する情報を格納する。例えば、搬送装置1は、前方監視センサ52で、各エリアの床面の所定の位置に付与されている情報(例:マーク)を読み取る。搬送装置1が読み取った情報には、当該エリアの位置に関する情報が含まれており、搬送装置1は自己位置を特定可能である。なお、自己位置の特定方法は、他の手法によるものであってもよい。各搬送装置1は、特定した位置と日時を倉庫制御装置100へ送信し、倉庫制御装置100のデータ入出力プログラム162が装置情報260へ格納することができる。 The position 265 stores information about the position of each transport device 1 . For example, the transport device 1 uses the forward monitoring sensor 52 to read information (eg, a mark) attached to a predetermined position on the floor surface of each area. The information read by the transport device 1 includes information about the position of the area, and the transport device 1 can specify its own position. Note that the self-position specifying method may be based on other techniques. Each transport device 1 can transmit the specified position and date and time to the warehouse control device 100 , and the data input/output program 162 of the warehouse control device 100 can store it in the device information 260 .
 バッテリ残量266は、各搬送装置1のバッテリ39の残量に関する情報である。搬送装置1はバッテリ残量266が所定のバッテリ残量以下となったときに、充電ステーションへ充電しに行ってもよい。 The remaining battery capacity 266 is information about the remaining capacity of the battery 39 of each transport device 1 . The carrier device 1 may go to the charging station for charging when the remaining battery charge 266 becomes equal to or less than a predetermined remaining battery charge.
 ただし、充電ステーションの空き状況(予約状況)や、搬送スケジュール、各搬送装置1のバッテリ残量などに応じて、充電に関するスケジュールが決められてもよい。例えば、多数の搬送装置1が、同じタイミングで充電すると、充電ステーションが混雑して、充電待ちが発生する可能性があるため、搬送効率を考慮したスケジュールが望ましい。 However, the charging schedule may be determined according to the availability of charging stations (reservation status), the transportation schedule, the remaining battery capacity of each transportation device 1, and the like. For example, if many transport devices 1 are charged at the same timing, the charging station may be crowded and waiting for charging may occur. Therefore, a schedule that takes transport efficiency into consideration is desirable.
 累積走行距離267は、搬送装置1がこれまでに走行した距離を格納する。累積加速回数268は、搬送装置1がこれまでに加速(又は減速)した回数を格納する。補助輪コード269は、補助輪34の種別(又は型式)を示す識別子で、搬送装置1毎に設定又は更新された値を格納する。 The cumulative travel distance 267 stores the distance traveled by the transport device 1 so far. The cumulative acceleration count 268 stores the number of times the conveying device 1 has accelerated (or decelerated) so far. The auxiliary wheel code 269 is an identifier that indicates the type (or model) of the auxiliary wheel 34 and stores a value that is set or updated for each conveying device 1 .
 接地幅初期値2610は、補助輪34を取り付け又は交換した時点の接地幅W0の値を格納する。接地幅初期値2610は、搬送装置1の導入時や補助輪34の交換後に補助輪監視センサ53で撮影した画像から検出した値(接地幅W0)を入力することができる。 The contact width initial value 2610 stores the value of the contact width W0 at the time when the safety wheels 34 are attached or replaced. As the ground contact width initial value 2610, a value (contact width W0) detected from an image taken by the training wheel monitoring sensor 53 when the conveying device 1 is introduced or after the training wheels 34 are replaced can be input.
 接地幅現在値2611は、補助輪監視センサ53が撮影した画像から検出した値(接地幅W1)を格納する。接地幅増大率2612は、接地幅現在値2611を接地幅初期値2610で除した値の百分率を格納する。摩耗レベル2613は、データ分析プログラム163が接地幅増大率2612に基づいて判定した値を格納する。摩耗レベル2613の値は、例えば、「A」が「新品」を示し、「B」が「使用可」を示し、「C」が「要点検」を示し、「D」が「要交換」を示す。 The contact width current value 2611 stores the value (contact width W1) detected from the image captured by the auxiliary wheel monitoring sensor 53. The contact width increase rate 2612 stores the percentage of the value obtained by dividing the contact width current value 2611 by the contact width initial value 2610 . The wear level 2613 stores the value determined by the data analysis program 163 based on the contact width increase rate 2612 . As for the value of the wear level 2613, for example, "A" indicates "new", "B" indicates "usable", "C" indicates "inspection required", and "D" indicates "replacement required". show.
 なお、接地幅初期値2610及び接地幅現在値2611は、倉庫制御装置100が搬送装置1から受信した画像を分析することにより接地幅を検出してもよいし、搬送装置1が補助輪監視センサ53の画像から検出した接地幅を倉庫制御装置100に送信してもよい。 Note that the contact width initial value 2610 and the contact width current value 2611 may be detected by analyzing the image received from the transport device 1 by the warehouse control device 100, or by the transport device 1 using the auxiliary wheel monitoring sensor. The contact width detected from the image of 53 may be transmitted to the warehouse control device 100 .
 装置情報260は、バッテリ残量266や、累積走行距離267や、累積加速回数268や、摩耗レベル2613などの経年劣化の度合いや、使用頻度などを示す搬送装置1の状態情報として扱うことができる。 The device information 260 can be handled as state information of the transport device 1 indicating the degree of deterioration over time such as the remaining battery capacity 266, the cumulative travel distance 267, the cumulative number of times of acceleration 268, the wear level 2613, and the frequency of use. .
 図11は、補助輪テーブル430の一例を示す図である。補助輪テーブル430は、予め設定された情報である。補助輪テーブル430は、補助輪コード431と、材質432と、硬度433と、接地面形状434と、変形量435と、補正係数436を1つのレコードに含む。 FIG. 11 is a diagram showing an example of the training wheel table 430. FIG. The auxiliary wheel table 430 is preset information. The training wheel table 430 includes training wheel code 431, material 432, hardness 433, ground surface shape 434, deformation amount 435, and correction coefficient 436 in one record.
 補助輪コード431は、補助輪34の種別を特定する識別子を格納する。補助輪コード431は、補助輪34の種類を特定する識別子を格納し、装置情報260の補助輪コード269の値である、材質432は、補助輪34を構成する主な素材の名称が格納される。 The auxiliary wheel code 431 stores an identifier that identifies the type of the auxiliary wheel 34. The auxiliary wheel code 431 stores an identifier that specifies the type of the auxiliary wheel 34, and the material 432, which is the value of the auxiliary wheel code 269 of the device information 260, stores the name of the main material that constitutes the auxiliary wheel 34. be.
 硬度433は、補助輪34の硬さを「大」、「中」、「小」の3段階に分類した値を格納する。接地面形状434は、補助輪34の半径方向の断面で接地面の形状を格納する。変形量435は、バネ定数の値を「大」、「中」、「小」の3段階に分類した値を格納する。 The hardness 433 stores a value that classifies the hardness of the training wheel 34 into three levels of "large", "medium", and "small". The tread shape 434 stores the shape of the tread in a radial cross-section of the training wheel 34 . The amount of deformation 435 stores values obtained by classifying the value of the spring constant into three levels of "large", "medium", and "small".
 補正係数436は、補助輪34の材質432や変形量435等に応じて予め設定された値を格納する。補正係数436は、補助輪34の特性(材質や形状)に応じて、後述の加速度(角加速度)又は速度(角速度)を補正するための値が設定される。 The correction coefficient 436 stores a preset value according to the material 432 of the training wheel 34, the amount of deformation 435, and the like. The correction coefficient 436 is set to a value for correcting acceleration (angular acceleration) or speed (angular velocity), which will be described later, according to the characteristics (material and shape) of the auxiliary wheels 34 .
 例えば、硬度433が中程度で、かつ変形量435が大きな補助輪34には、補正係数436=K4=「0.8」等の値が設定され、後述の速度制御テーブル410から取得した加速度又は速度に補正係数を乗じた値を、搬送装置1に対する速度の指令値とする。これにより、倉庫制御装置100は、接地幅に加えて補助輪34の材質432を加味して摩耗レベルに応じた搬送装置1の制御を実施することができる。 For example, a value such as correction coefficient 436=K4=“0.8” is set for the auxiliary wheel 34 having a moderate hardness 433 and a large amount of deformation 435, and the acceleration or A value obtained by multiplying the speed by a correction coefficient is used as a speed command value for the conveying device 1 . As a result, the warehouse control device 100 can control the transport device 1 in accordance with the wear level by considering the material 432 of the training wheels 34 in addition to the contact width.
 なお、補正係数436の具体例としては、硬度433が高くなるにつれて補正係数436を小さくなるように設定することで、加速度又は速度を抑制するように設定することができる。 As a specific example of the correction coefficient 436, the acceleration or speed can be suppressed by setting the correction coefficient 436 to decrease as the hardness 433 increases.
 また、接地面形状434のR(補助輪34の断面形状の半径)が大きくなるにつれて補正係数436を小さくなるように設定することで、加速度又は速度を抑制するように設定することができる。また、変形量435が大きくなるにつれて補正係数436を小さくなるように設定することで、加速度又は速度を抑制するように設定することができる。 Also, by setting the correction coefficient 436 to decrease as the R of the ground contact surface shape 434 (the radius of the cross-sectional shape of the training wheel 34) increases, it is possible to set the acceleration or speed to be suppressed. Also, by setting the correction coefficient 436 to decrease as the deformation amount 435 increases, the acceleration or speed can be set to be suppressed.
 図12は、摩耗度テーブル420の一例を示す図である。摩耗度テーブル420は、予め設定されて、補助輪34の摩耗レベルを判定するため情報である。摩耗度テーブル420は、接地幅増大率421と、摩耗レベル422を1つのレコードに含む。 FIG. 12 is a diagram showing an example of the wear degree table 420. FIG. The wear degree table 420 is preset information for determining the wear level of the training wheels 34 . A wear degree table 420 includes a contact width increase rate 421 and a wear level 422 in one record.
 接地幅増大率421は、装置情報260の接地幅増大率2612の値の範囲を格納する。摩耗レベル422は、接地幅増大率421に対応する摩耗の度合いが「A」~「D」の何れかを格納する。 The contact width increase rate 421 stores the range of values of the contact width increase rate 2612 of the device information 260 . The wear level 422 stores the degree of wear corresponding to the contact width increase rate 421, which is one of "A" to "D".
 図13は、速度制御テーブル410の一例を示す図である。速度制御テーブル410は、搬送装置1を駆動する速度又は加速度を走行モードと摩耗レベルに応じて予め設定した情報である。 FIG. 13 is a diagram showing an example of the speed control table 410. FIG. The speed control table 410 is information in which the speed or acceleration for driving the conveying device 1 is set in advance according to the traveling mode and wear level.
 速度制御テーブル410は、モード411と、摩耗レベル412と、走行速度413と、加速度414と、角速度415と、角加速度416を1つのレコードに含む。 The speed control table 410 includes mode 411, wear level 412, running speed 413, acceleration 414, angular velocity 415, and angular acceleration 416 in one record.
 モード411は、搬送装置1の走行モードを示し、「旋回」、「直進」、「加速(減速)」の何れかを格納する。摩耗レベル412は、モード411の走行モード毎に図12の摩耗度テーブル420で決定された摩耗レベル422の値「A」~「D」を格納する。 The mode 411 indicates the running mode of the transport device 1, and stores any one of "turn", "straight ahead", and "acceleration (deceleration)". The wear level 412 stores values “A” to “D” of the wear level 422 determined by the wear level table 420 of FIG. 12 for each running mode of the mode 411 .
 走行速度413は、搬送装置1を駆動する速度を格納する。加速度414は、搬送装置1を加速又は減速する際の加速度を格納する。角速度415は、搬送装置1を旋回させる際の角速度を格納する。角加速度416は、搬送装置1を旋回させる際の角加速度を格納する。 The traveling speed 413 stores the speed at which the conveying device 1 is driven. The acceleration 414 stores the acceleration when the transport device 1 is accelerated or decelerated. The angular velocity 415 stores the angular velocity at which the conveying device 1 is turned. The angular acceleration 416 stores the angular acceleration when the conveying device 1 is turned.
 なお、図示の例では、走行モードを「直進」と「加速・減速」に分けた例を示したが、「旋回」のように速度と加速度を対にして設定してもよい。 In the illustrated example, the driving mode is divided into "straight ahead" and "acceleration/deceleration", but speed and acceleration may be set as a pair such as "turning".
 図14は、地図情報の一例を示す図である。地図情報250は、物流倉庫内の位置を予め設定した情報である。 FIG. 14 is a diagram showing an example of map information. The map information 250 is information in which positions within the distribution warehouse are set in advance.
 地図情報250は、行番号251と、列番号252で指定される「エリア」の位置と用途を示す。各エリアは矩形領域で、後述する床情報240(図21)のエリア設定244に応じて、「通路エリア」、「棚保管エリア」、「走行禁止エリア」の何れかに設定される。 The map information 250 indicates the position and use of the "area" specified by the row number 251 and the column number 252. Each area is a rectangular area, and is set to any one of "passage area", "shelf storage area", and "travel prohibited area" according to area setting 244 of floor information 240 (FIG. 21), which will be described later.
 図15は、床情報240の一例を示す図である。床情報240は、計測データ280からデータ分析プログラム163が算出した物流倉庫内の床面の状態と位置を特定する情報である。 FIG. 15 is a diagram showing an example of the floor information 240. FIG. The floor information 240 is information specifying the state and position of the floor surface in the distribution warehouse calculated by the data analysis program 163 from the measurement data 280 .
 床情報240は、シリアル番号241と、エリア242と、床の状態243と、エリア設定244と、累積負荷245を1つのレコードに含む。 The floor information 240 includes a serial number 241, an area 242, a floor state 243, an area setting 244, and an accumulated load 245 in one record.
 エリア242は、倉庫の床の状態をエリア(区画)単位で管理しており、その各エリアを識別する情報が格納される。例えば、シリアル番号241=1の(a,A)は、図14の地図情報250において、左上の番地(a,A)を示す。 The area 242 manages the state of the warehouse floor in units of areas (sections), and stores information identifying each area. For example, (a, A) of the serial number 241=1 indicates the upper left address (a, A) in the map information 250 of FIG.
 床の状態243は、床の状態、特に損傷レベルを示す情報が格納される。例えば「正常状態」、「損傷程度 小」、「損傷程度 中」、「損傷程度 大」のようにレベル分けしてもよい。また、床の状態243は、例えば「正常状態」、「損傷程度 小」、「損傷程度 中」は走行可、「損傷程度 大」は走行不可(走行禁止)としてもよい。 The floor condition 243 stores information indicating the condition of the floor, especially the damage level. For example, it may be divided into levels such as "normal state", "low damage level", "medium damage level", and "large damage level". In addition, the floor state 243 may be, for example, "normal state", "low damage level", and "medium damage level" as travelable, and "large damage level" as travel disabled (prohibited travel).
 エリア設定244が「通路エリア」の場合、搬送装置1が走行可能な領域であり、棚7を搬送することも可能であることを示す。エリア設定244が「棚保管エリア」の場合、搬送装置1が搬送する棚7が置かれている領域、又は棚7の置き場所として確保されている領域を示す。 When the area setting 244 is "aisle area", it indicates that the transport device 1 can travel, and the shelf 7 can also be transported. When the area setting 244 is “shelf storage area”, it indicates an area where the shelf 7 transported by the transport device 1 is placed or an area secured as a place for placing the shelf 7 .
 棚7を搬送していない状態の搬送装置1は、棚7の下を通り抜けられるので走行可能だが、棚7を搬送している状態の搬送装置1は、他の棚7があるエリアは、棚7の衝突を避けるため走行しない。 The transport device 1 in a state where the shelf 7 is not transported can pass under the shelf 7, so it can travel, but the transport device 1 in a state where the shelf 7 is transported cannot move in the area where the other shelf 7 is located. Do not run to avoid collision with 7.
 エリア設定244が「走行禁止エリア」の場合は、搬送装置1の走行が制限されるエリアである。例えば「損傷程度 大」のエリアは、「走行禁止エリア」としてもよい。また、他にも、走行の障害となる障害物が検出された領域や、人や他の機器が作業するエリアなどが、この「走行禁止エリア」に設定されてもよい。所定の条件を満たすものを自動的に「走行禁止エリア」としてもよいし、ユーザが「走行禁止エリア」を設定してもよい。 When the area setting 244 is "travel prohibited area", this is an area in which travel of the transport device 1 is restricted. For example, an area with "severe damage" may be set as a "no-driving area". In addition, an area where an obstacle that hinders travel is detected, an area where people or other devices work, and the like may be set as the "no travel area". An area that satisfies a predetermined condition may automatically be set as the "no-travel area", or the user may set the "no-travel area".
 累積負荷245は、搬送装置1から当該エリアの床が受けた負荷を累積した値である。負荷としては、搬送装置1が通過したときの負荷(通過回数や通過時の重量など)、搬送装置1が旋回したときの負荷(回転回数や回転時の重量)や、搬送装置1が加速又は減速したときの負荷(加速回数や加速したときの重量、減速回数や減速したときの重量など)などがある。 The cumulative load 245 is a value obtained by accumulating the load received by the floor of the area from the transport device 1 . The load includes the load when the conveying device 1 passes (the number of passes, the weight when passing, etc.), the load when the conveying device 1 turns (the number of rotations, the weight when rotating), and the acceleration or weight of the conveying device 1. There is a load when decelerating (number of times of acceleration, weight when accelerating, number of times of deceleration, weight when decelerating, etc.).
 累積負荷245は、これらの負荷の一部又は全部の情報を基に算出された値であってもよい。例えば、通過時の重量を累積した合計重量値であってもよい。 The cumulative load 245 may be a value calculated based on information on some or all of these loads. For example, it may be a total weight value obtained by accumulating the weight when passing.
 <処理の詳細>
 図16は、倉庫制御装置100で行われる処理の一例を示すフローチャートである。この処理は、所定の周期やオーダーを受け付けたタイミングなど、所定のタイミングで実行される。
<Details of processing>
FIG. 16 is a flowchart showing an example of processing performed by the warehouse control device 100. As shown in FIG. This processing is executed at a predetermined timing such as a predetermined period or timing when an order is received.
 倉庫制御装置100では経路作成プログラム161が、オーダー情報200を作業日時210の昇順でソートして、先頭のレコードから順に以下の処理を実施する(S1)。経路作成プログラム161は、オーダー情報200を選択して、商品コード206から在庫情報220を検索して在庫数224の有無を判定する。在庫がある場合には経路作成プログラム161が棚ID225と棚内の配置位置226を取得して、棚情報230を検索して棚7の保管位置233を特定する(S2)。 In the warehouse control device 100, the route creation program 161 sorts the order information 200 in ascending order of the work date and time 210, and performs the following processing in order from the top record (S1). The route creation program 161 selects the order information 200, searches the inventory information 220 from the product code 206, and determines whether there is an inventory quantity 224 or not. If there is inventory, the route creation program 161 acquires the shelf ID 225 and the arrangement position 226 within the shelf, searches the shelf information 230, and specifies the storage position 233 of the shelf 7 (S2).
 経路作成プログラム161は、地図情報250と、床情報240のエリア設定244と、装置情報260を参照して、上述のように、棚7の保管位置233からピッキングステーションSTまでの搬送効率が最大となる搬送装置1を装置情報260から選択する。なお、搬送先のピッキングステーションSTは、発送先(販売店名203)に応じて予め設定されてもよいし、ピッキング作業を行う商品や商品の種類に応じて予め設定されてもよい。 The route creation program 161 refers to the map information 250, the area setting 244 of the floor information 240, and the device information 260 to determine the maximum transport efficiency from the storage position 233 of the shelf 7 to the picking station ST as described above. transport device 1 is selected from the device information 260 . Note that the picking station ST as the transport destination may be set in advance according to the shipping destination (the store name 203), or may be set in advance according to the product to be picked and the type of product.
 そして、経路作成プログラム161は、地図情報250と、床情報240のエリア設定244と、保管位置233とピッキングステーションSTの情報から搬送装置1の搬送経路を経路情報として作成する(S3)。 Then, the route creation program 161 creates the transport route of the transport device 1 as route information from the map information 250, the area setting 244 of the floor information 240, the storage position 233 and the picking station ST information (S3).
 次に、搬送装置制御プログラム164は、オーダー情報200の作業日時210で指定された日時で棚7を搬送する搬送装置1を決定して、上記作成された経路情報と、装置情報260の摩耗レベル412に応じた速度制御テーブル410の速度又は加速度で搬送する指令を送信する(S4)。 Next, the transport device control program 164 determines the transport device 1 that transports the shelf 7 on the date and time designated by the work date and time 210 of the order information 200, and determines the route information created above and the wear level of the device information 260. A command to convey at the speed or acceleration of the speed control table 410 corresponding to 412 is transmitted (S4).
 倉庫制御装置100から搬送の指令を受信した搬送装置1は、受け付けた経路を指定された速度又は加速度で走行して、指定された棚7をテーブル32に搭載して所定のピッキングステーションSTへ搬送する。 The transport device 1, which has received a transport command from the warehouse control device 100, travels along the received route at the specified speed or acceleration, mounts the specified shelf 7 on the table 32, and transports it to a predetermined picking station ST. do.
 ピッキング作業が完了した後は、搬送装置1が棚7を搭載して保管場所まで搬送し、棚7を床80に降ろす。その後、搬送装置1は、所定の待機場所へ移動して搬送のタスクを終了する。なお、ピッキング作業の完了は、倉庫制御装置100がピッキングステーションSTの作業員からの指示を受け付ける。このピッキング作業完了の指令に基づいて、倉庫制御装置100は搬送装置1を保管場所への移動を指令する。 After the picking work is completed, the transport device 1 loads the shelf 7, transports it to the storage location, and unloads the shelf 7 onto the floor 80. After that, the transport device 1 moves to a predetermined waiting place and ends the transport task. Note that the warehouse control device 100 receives an instruction from the worker at the picking station ST to complete the picking work. Based on this picking operation completion command, the warehouse control device 100 commands the transfer device 1 to move to the storage location.
 なお、搬送装置1が棚7を戻す位置は、元の保管場所に戻してもよいし、棚7の使用頻度などに基づいて、異なる位置に保管してもよい。例えば、使用頻度が高い棚7であれば、搬送装置1がピッキングステーションSTの近傍に棚7を置くようにしてもよい。 The position to which the transport device 1 returns the shelf 7 may be the original storage location, or may be stored in a different position based on the frequency of use of the shelf 7 or the like. For example, if the shelf 7 is frequently used, the transport device 1 may place the shelf 7 near the picking station ST.
 図17は、倉庫制御装置100で行われる摩耗検出処理の一例を示すフローチャートである。倉庫制御装置100のデータ分析プログラム163は、所定の周期(例えば、24時間毎)や管理者の指示などの所定のタイミングで計測データ280の分析処理を実行し、搬送装置1のそれぞれについて補助輪34の摩耗状態を判定する。 FIG. 17 is a flowchart showing an example of wear detection processing performed by the warehouse control device 100. FIG. The data analysis program 163 of the warehouse control device 100 executes analysis processing of the measurement data 280 at a predetermined cycle (for example, every 24 hours) or at a predetermined timing such as an instruction from an administrator, 34 to determine the state of wear.
 データ分析プログラム163は、装置情報260から搬送装置1の状態を示す情報を取得する(S11)。分析対象の搬送装置1は、例えば、装置情報260に登録されている搬送装置1を先頭から順次選択する。データ分析プログラム163は、分析対象の搬送装置1の装置情報260から装置ID262を取得して、ネットワーク90を介して搬送装置1の走行状態を問い合わせる。また、選択した装置情報260の棚の有無264を参照し、分析対象の搬送装置1が棚7を搬送中であるか否かを取得する。 The data analysis program 163 acquires information indicating the state of the transport device 1 from the device information 260 (S11). For the transport device 1 to be analyzed, for example, the transport devices 1 registered in the device information 260 are sequentially selected from the top. The data analysis program 163 acquires the device ID 262 from the device information 260 of the transport device 1 to be analyzed, and inquires about the running state of the transport device 1 via the network 90 . In addition, referring to the presence/absence of shelf 264 of the selected device information 260, it acquires whether the transport device 1 to be analyzed is transporting the shelf 7 or not.
 データ分析プログラム163は、分析対象の搬送装置1が棚7を搬送中であるか否かを判定する(S12)。搬送装置1が棚7を搬送していなければステップS13に進み、棚7を搬送中であれステップS11に戻って次の分析対象を選択する。 The data analysis program 163 determines whether or not the transport device 1 to be analyzed is transporting the shelf 7 (S12). If the transport device 1 has not transported the shelf 7, the process proceeds to step S13. If the shelf 7 is being transported, the process returns to step S11 to select the next analysis object.
 棚7を搬送中の場合は、搬送装置1の補助輪34に棚7の自重と物品の重量が加わって接地幅が増大するため、データ分析プログラム163は棚7を搬送中の搬送装置1を除外する。 When the shelf 7 is being conveyed, the weight of the shelf 7 and the weight of the article are added to the training wheels 34 of the conveying device 1, and the contact width increases. exclude.
 データ分析プログラム163は、分析対象の搬送装置1の走行状態が直進状態であるか判定する(S13)。データ分析プログラム163は、搬送装置1の走行状態が直進状態であればステップS15へ進み、直進状態でなければステップS11に戻って次の分析対象を選択する。 The data analysis program 163 determines whether the traveling state of the transport device 1 to be analyzed is straight (S13). The data analysis program 163 proceeds to step S15 if the traveling state of the transport device 1 is in a straight running state, and returns to step S11 if not in a straight running state to select the next analysis object.
 データ分析プログラム163は、分析対象の搬送装置1に対して補助輪34の画像を取得させる(S14)。搬送装置1は、補助輪監視センサ53で直進状態の補助輪34の画像データを取得して倉庫制御装置100に送信し、倉庫制御装置100のデータ入出力プログラム162は画像データを計測データ280に格納する。 The data analysis program 163 causes the transport device 1 to be analyzed to acquire an image of the training wheels 34 (S14). The transport device 1 acquires image data of the training wheels 34 in a straight-ahead state with the training wheel monitoring sensor 53 and transmits the image data to the warehouse control device 100 . Store.
 データ分析プログラム163は、分析対象の搬送装置1の補助輪34の画像データを計測データ280から取得して、補助輪34の接地幅を算出する(S15)。 The data analysis program 163 acquires the image data of the training wheels 34 of the transport device 1 to be analyzed from the measurement data 280, and calculates the contact width of the training wheels 34 (S15).
 なお、直進状態は搬送装置1の移動中、停止中の何れでもよく、補助輪34の向きが直進方向であればよい。また、搬送装置1の移動中の場合、加速中又は減速中の直進状態を回避するのが望ましい。加速中又は減速中の場合には、前方(進行方向側)の補助輪34と、後方の補助輪34に加わる荷重が均等ではなくなる場合があるため、直進状態で停止又は等速運動中に補助輪監視センサ53で補助輪34の画像を撮影することが望ましい。 It should be noted that the straight-ahead state may be either during movement or while the transport device 1 is stopped, as long as the direction of the training wheels 34 is in the straight-ahead direction. In addition, when the conveying device 1 is moving, it is desirable to avoid a straight-ahead state during acceleration or deceleration. When accelerating or decelerating, the load applied to the front (advance direction side) auxiliary wheel 34 and the rear auxiliary wheel 34 may not be even, so if the vehicle is stopped in a straight line or during uniform motion, the load may not be uniform. It is desirable to capture an image of the training wheels 34 with the wheel monitoring sensor 53 .
 次に、データ分析プログラム163は、装置情報260の接地幅初期値2610を取得して、接地幅初期値2610に値が設定されている場合には上記ステップS15で算出した接地幅を接地幅現在値2811に格納する。そして、データ分析プログラム163は、接地幅現在値2811を接地幅初期値2610で除した百分率の値を接地幅増大率2612に格納する(S16)。 Next, the data analysis program 163 acquires the contact width initial value 2610 of the device information 260, and if a value is set in the contact width initial value 2610, the contact width calculated in step S15 is calculated as the contact width current contact width. Store in value 2811. Then, the data analysis program 163 stores the percentage obtained by dividing the contact width current value 2811 by the contact width initial value 2610 in the contact width increase rate 2612 (S16).
 なお、データ分析プログラム163は、装置情報260の接地幅初期値2610に値が設定されていない場合には、上記ステップS15で算出した接地幅を接地幅初期値2810に格納する。 It should be noted that the data analysis program 163 stores the contact width calculated in step S15 in the contact width initial value 2810 when no value is set in the contact width initial value 2610 of the device information 260 .
 データ分析プログラム163は、上記ステップS16で算出した接地幅増大率2612で図12に示した摩耗度テーブル420を検索し、接地幅増大率2612に該当する接地幅増大率421のレコードを決定し、当該レコードの摩耗レベル412を当該搬送装置1の補助輪34の摩耗レベル412として決定する(S17)。 The data analysis program 163 searches the wear degree table 420 shown in FIG. 12 with the contact width increase rate 2612 calculated in step S16, determines the record of the contact width increase rate 421 corresponding to the contact width increase rate 2612, The wear level 412 of the record is determined as the wear level 412 of the training wheels 34 of the transport device 1 (S17).
 次に、データ分析プログラム163は、決定された摩耗レベル412が「D」=「要交換」であるか否を判定する(S18)。摩耗レベル412が「D」の場合にはステップS19へ進み補助輪34の交換が必要であることを出力装置140に出力する。一方、摩耗レベル412が「A」~「C」の場合にはステップS20に進んで、補助輪34の摩耗度合いが使用可能な範囲内であることを決定する。 Next, the data analysis program 163 determines whether the determined wear level 412 is "D"="replacement required" (S18). If the wear level 412 is "D", the process advances to step S19 to output to the output device 140 that the training wheels 34 need to be replaced. On the other hand, if the wear level 412 is between "A" and "C", the process proceeds to step S20 to determine that the degree of wear of the auxiliary wheels 34 is within the usable range.
 なお、データ分析プログラム163は、決定された摩耗レベル412が「C」の場合には「要点検」であるので、点検の予約を管理するテーブル(図示省略)に当該搬送装置1の装置ID262を追加するようにしてもよい。 If the determined wear level 412 is "C", the data analysis program 163 adds the device ID 262 of the transport device 1 to the table (not shown) for managing the reservation of inspection because it is "inspection required". You may make it add.
 ステップS21では、データ分析プログラム163が算出された摩耗レベルを装置情報260の摩耗レベル2613に設定して装置情報260を更新する。ステップS22ではデータ分析プログラム163が、上記処理を装置情報260の全てのレコードについて完了したか否かを判定し、完了していなければステップ11に戻って次の搬送装置1の装置ID262について上記処理を繰り返し、完了していれば処理を終了する。 In step S21, the wear level calculated by the data analysis program 163 is set as the wear level 2613 of the device information 260 and the device information 260 is updated. In step S22, the data analysis program 163 determines whether or not the above processing has been completed for all records of the device information 260. If not completed, the process returns to step 11 to perform the above processing for the device ID 262 of the next transport device 1. is repeated, and if completed, the process ends.
 上記処理により、搬送装置1が直進状態で撮影した補助輪34の画像データを取得した倉庫制御装置100は、画像データから補助輪34の接地幅を検出して接地幅増大率2612を算出する。そして、倉庫制御装置100は、接地幅増大率2612で摩耗度テーブル420を検索して当該搬送装置1の補助輪34の摩耗レベル2613を算出する。 Through the above process, the warehouse control device 100 that has acquired the image data of the training wheels 34 taken while the transport device 1 is moving straight detects the contact width of the training wheels 34 from the image data and calculates the contact width increase rate 2612. Then, the warehouse control device 100 searches the wear degree table 420 with the contact width increase rate 2612 to calculate the wear level 2613 of the training wheels 34 of the transport device 1 .
 なお、上記では倉庫制御装置100が搬送装置1に補助輪34の画像を撮影する指令を送信する例を示したが、これに限定されるものではない。例えば、搬送装置1が所定の周期(例えば、1日に1回)で補助輪監視センサ53によって補助輪34の画像を撮影して倉庫制御装置100に画像データを送信しておく。倉庫制御装置100は、搬送装置1から受信した画像データを計測データ280に蓄積しておき、所定の周期(例えば、24時間毎)でデータ分析プログラム163を起動して、計測データ280の画像データのうち未処理の画像データについて接地幅増大率2612の算出と摩耗レベル2613の更新を実施してもよい。 Although an example in which the warehouse control device 100 sends a command to the transport device 1 to take an image of the training wheels 34 is shown above, the present invention is not limited to this. For example, the transport device 1 captures an image of the training wheels 34 with the training wheel monitoring sensor 53 at a predetermined period (for example, once a day) and transmits the image data to the warehouse control device 100 . The warehouse control device 100 accumulates the image data received from the transport device 1 in the measurement data 280, activates the data analysis program 163 at predetermined intervals (for example, every 24 hours), and extracts the image data of the measurement data 280. The contact width increase rate 2612 and the wear level 2613 may be updated for the unprocessed image data.
 図18は、倉庫制御装置100で行われる走行制御の一例を示すフローチャートである。この処理は、図16のステップS4で倉庫制御装置100の搬送装置制御プログラム164によって実施される。 FIG. 18 is a flowchart showing an example of travel control performed by the warehouse control device 100. FIG. This processing is executed by the transport device control program 164 of the warehouse control device 100 in step S4 of FIG.
 搬送装置制御プログラム164は、指定された搬送装置1の補助輪34の摩耗レベルや材質等の特性に応じた速度条件を算出して、経路データと速度条件を当該搬送装置1に送信して、棚7の搬送を指令する。 The transport device control program 164 calculates the speed conditions according to the characteristics such as the wear level and material of the training wheels 34 of the designated transport device 1, and transmits the route data and the speed conditions to the transport device 1. Commands the transport of the shelf 7.
 搬送装置制御プログラム164は、搬送装置1が搬送する棚7の情報と、ピッキングステーションSTの情報から経路作成プログラム161に経路データを算出させて経路データ270に格納させ、経路データ270から搬送装置1で使用する経路データを取得する(S31)。 The transport device control program 164 causes the route creation program 161 to calculate route data from the information of the rack 7 transported by the transport device 1 and the information of the picking station ST, store it in the route data 270, obtain route data to be used in (S31).
 搬送装置制御プログラム164は、棚7を搬送する搬送装置1の識別子で装置情報260の装置ID262を検索し、該当する搬送装置1の摩耗レベル2613を取得する(S32)。 The transport device control program 164 searches the device ID 262 of the device information 260 with the identifier of the transport device 1 that transports the shelf 7, and acquires the wear level 2613 of the corresponding transport device 1 (S32).
 搬送装置制御プログラム164は、取得した摩耗レベル2613で速度制御テーブル410を検索し、該当する摩耗レベル412のレコードからモード411に対応する走行速度413、加速度414、角速度415、角加速度416を速度条件として取得する(S33)。 The transport device control program 164 searches the speed control table 410 with the acquired wear level 2613, and sets the travel speed 413, acceleration 414, angular velocity 415, and angular acceleration 416 corresponding to the mode 411 from the record of the corresponding wear level 412 as speed conditions. (S33).
 次に、搬送装置制御プログラム164は、搬送装置1の識別子で装置情報260を参照して補助輪コード269を取得する。そして、搬送装置制御プログラム164は、補助輪コード269で補助輪テーブル430を検索して補助輪34の材質や特性に応じた補正係数436を取得する(S34)。 Next, the transport device control program 164 acquires a training wheel code 269 by referring to the device information 260 using the identifier of the transport device 1 . Then, the transport device control program 164 searches the auxiliary wheel table 430 with the auxiliary wheel code 269 to obtain the correction coefficient 436 corresponding to the material and characteristics of the auxiliary wheel 34 (S34).
 搬送装置制御プログラム164は、取得した補正係数436を上記ステップS33で算出した速度条件に乗じて補正速度条件を算出する(S35)。補正速度条件は、速度条件のモード毎の速度又は加速度のそれぞれについて補正係数436を乗じて算出される。 The transport device control program 164 calculates the corrected speed condition by multiplying the speed condition calculated in step S33 by the acquired correction coefficient 436 (S35). The corrected speed condition is calculated by multiplying the speed or acceleration for each mode of the speed condition by a correction coefficient 436 .
 搬送装置制御プログラム164は、上記算出された補正速度条件と、上記取得した経路データを搬送装置1に送信する(S36)。 The transport device control program 164 transmits the calculated corrected speed condition and the acquired route data to the transport device 1 (S36).
 上記処理によって、棚7の搬送を行う搬送装置1には、補助輪34の摩耗レベルと材質等の補助輪34の特性を加味した補正速度条件が指令され、搬送装置1は指定された経路データ上を補正速度条件で移動することができる。 Through the above process, the conveying device 1 that conveys the shelf 7 is commanded with correction speed conditions that take into account the wear level of the training wheels 34 and the characteristics of the training wheels 34 such as the material, and the conveying device 1 receives the specified route data. You can move above with the corrected speed condition.
 図19は、搬送装置1の制御装置2で行われる移動処理の一例を示すフローチャートである。この処理は、経路データと補正速度条件を受信した搬送装置1の走行制御プログラム24で行われる。図19では、搬送装置1が停止している状態から発進する際の制御の一例を示す。 FIG. 19 is a flowchart showing an example of movement processing performed by the control device 2 of the transport device 1. FIG. This processing is performed by the traveling control program 24 of the conveying device 1 that has received the route data and the corrected speed conditions. FIG. 19 shows an example of control when the conveying device 1 starts from a stopped state.
 搬送装置1の制御装置2は、駆動輪33-L、33-Rを等速で駆動する直進モードと、駆動輪33-L、33-Rを逆方向に回転する旋回モードの2つの走行モード(又は搬送モード)を切り替えて台車31を移動させる。なお、旋回モードでは、台車31の旋回とは逆方向にテーブル32を旋回させることで、棚7の向きを保持することができる。なお、駆動輪33-L、33-Rを同一の回転方向の異なる速度で駆動した場合は、走行しながら台車31を旋回させることができる。 The control device 2 of the conveying device 1 has two running modes: a straight mode in which the driving wheels 33-L and 33-R are driven at a constant speed, and a turning mode in which the driving wheels 33-L and 33-R are rotated in the opposite direction. (or transport mode) to move the carriage 31 . In the turning mode, the orientation of the shelf 7 can be maintained by turning the table 32 in the direction opposite to the turning direction of the carriage 31 . If the drive wheels 33-L and 33-R are driven at different speeds in the same rotational direction, the truck 31 can be turned while traveling.
 駆動輪33-L、33-Rを逆方向に駆動する旋回モードは、信地旋回(Spin Turn)であり、例えば、台車31の底面の中心を軸として旋回する。以下では、信地旋回を単に旋回という。 The turning mode in which the drive wheels 33-L and 33-R are driven in the opposite direction is the spin turn, and for example, it turns around the center of the bottom surface of the carriage 31. Hereinafter, the pivot turn is simply referred to as a turn.
 制御装置2は、倉庫制御装置100から受信した経路データ41と、自己位置推定プログラム23が検出した台車31の現在位置に基づいて、上記走行モードを決定して駆動輪33を制御する。 Based on the route data 41 received from the warehouse control device 100 and the current position of the truck 31 detected by the self-position estimation program 23, the control device 2 determines the above travel mode and controls the drive wheels 33.
 制御装置2は、テーブル32に棚7を積載しているか否かを判定する(S41)。棚7の有無については、例えば、テーブル32の上に棚7等の物品を検出するセンサを設けて、センサの出力が所定の条件を満たしていれば制御装置2はテーブル32に棚7を積載していると判定してステップS42へ進む。一方、所定の条件を満たしていなければ、制御装置2はテーブル32が棚7を積載していないと判定してステップS45へ進む。 The control device 2 determines whether or not the shelf 7 is loaded on the table 32 (S41). Regarding the presence or absence of the shelf 7, for example, a sensor for detecting articles such as the shelf 7 is provided on the table 32, and if the output of the sensor satisfies a predetermined condition, the control device 2 loads the shelf 7 on the table 32. It is determined that it is, and the process proceeds to step S42. On the other hand, if the predetermined condition is not satisfied, the control device 2 determines that the table 32 is not loaded with the shelf 7, and proceeds to step S45.
 ステップS42では、制御装置2が、直前の走行モードと次の走行モードが同一であるか否かを判定する。この判定は、制御装置2が経路データ41の直前の走行モードと次の走行モードを比較することで行われる。直前の走行モードと次の走行モードが同一である場合にはステップS43へ進み、直前の走行モードと次の走行モードが異なる場合にはステップS44へ進む。 In step S42, the control device 2 determines whether or not the previous running mode and the next running mode are the same. This determination is made by the control device 2 comparing the previous running mode of the route data 41 with the next running mode. When the immediately preceding driving mode and the next driving mode are the same, the process proceeds to step S43, and when the immediately preceding driving mode and the next driving mode are different, the process proceeds to step S44.
 ステップS45の棚7を積載していない場合、制御装置2は、最大の加速度Aを選択して駆動輪33又はテーブル32を駆動する。搬送装置1が棚7を積載し、かつ走行モードが直前と同一の場合には、ステップS43で制御装置2は加速度Aよりも小さい補正速度条件で駆動輪33又はテーブル32を駆動する。なお、加速度Aは、図13の速度制御テーブル410では定義してはいないが、搬送装置1が棚7を搬送していない場合の最大加速度(又は最大角加速度)として予め設定された値である。 If the shelf 7 in step S45 is not loaded, the control device 2 selects the maximum acceleration A to drive the drive wheels 33 or the table 32. When the conveying device 1 loads the shelf 7 and the traveling mode is the same as before, the control device 2 drives the driving wheels 33 or the table 32 under the corrected speed condition smaller than the acceleration A in step S43. Although the acceleration A is not defined in the speed control table 410 of FIG. 13, it is a value preset as the maximum acceleration (or maximum angular acceleration) when the transport device 1 is not transporting the shelf 7. .
 一方、搬送装置1が棚7を積載し、かつ走行モードが直前との走行モードと異なる場合には、制御装置2が補正速度条件に所定の低減係数(例えば、0.7)を乗じた第2補正速度条件を算出し、第2補正速度条件で駆動輪33又はテーブル32を駆動する。 On the other hand, when the transport device 1 loads the shelf 7 and the traveling mode is different from the previous traveling mode, the control device 2 multiplies the corrected speed condition by a predetermined reduction coefficient (for example, 0.7). A second correction speed condition is calculated, and the driving wheels 33 or the table 32 is driven under the second correction speed condition.
 以上の処理によって、制御装置2は、搬送装置1の走行モードが切り替わると、補助輪34の旋回によって床面の間の摩擦が増大し、移動開始時のモータ38の負荷が増大する。 According to the above processing, when the traveling mode of the transport device 1 is switched, the control device 2 increases the friction between the floor surfaces due to the rotation of the auxiliary wheels 34 and increases the load on the motor 38 at the start of movement.
 そこで、搬送装置1は、直前の走行モードと次回の走行モードが切り替わり、かつ、棚7を積載している場合には、加速度又は速度を低減した第2補正速度条件で移動(又は旋回)を開始することで、駆動力を低減してバッテリ39の消費を抑制することができる。また、上記制御によって搬送装置1や床面へかかる負荷を低減することができる。なお、棚7を積載していない場合には、最大の加速度Aで移動(又は旋回)を開始することで、移動に要する時間を短縮して搬送処理の効率を向上させることができる。 Therefore, when the previous traveling mode and the next traveling mode are switched and the shelf 7 is loaded, the conveying device 1 moves (or turns) under the second corrected speed condition in which the acceleration or speed is reduced. By starting, the driving force can be reduced and the consumption of the battery 39 can be suppressed. Moreover, the load applied to the conveying device 1 and the floor surface can be reduced by the above control. When the shelf 7 is not loaded, the movement (or turning) is started with the maximum acceleration A, thereby shortening the time required for movement and improving the efficiency of the transport process.
 上記では、搬送装置1が加速度及び速度を制御する例を示したが、これに限定されるものではない。例えば、倉庫制御装置100が、経路データ又は装置情報260から搬送装置1における棚7の積載の有無を判定し速度条件と補正速度条件を決定して、搬送装置1へ指令することができる。 Although the example in which the transport device 1 controls the acceleration and speed has been described above, it is not limited to this. For example, the warehouse control device 100 can determine whether or not the shelf 7 is loaded on the transport device 1 from the route data or the device information 260, determine the speed condition and the correction speed condition, and issue a command to the transport device 1.
 図20は、搬送装置1で行われる速度制御の一例を示すグラフで、時間と速度の関係を示す。図示の例は補助輪34の摩耗レベルに応じた速度条件の一例を示す。 FIG. 20 is a graph showing an example of speed control performed in the conveying device 1, showing the relationship between time and speed. The illustrated example shows an example of speed conditions according to the level of wear of the auxiliary wheels 34 .
 補助輪34の摩耗が最も少ない摩耗レベルAでは、加速度及び速度が最大となって搬送装置1を効率よく稼働させて、物流倉庫の作業効率を向上させることができる。補助輪34の摩耗が進んで摩耗レベルB、摩耗レベルCへ進行するにつれて、加速度と速度が抑制されて、摩擦抵抗の増大に伴うバッテリ消費量の増大の抑制と床面に対する負荷の増大を抑制し、補助輪34の外径縮小に伴う物品への振動の増大を抑制することが可能となる。 At wear level A, where the training wheel 34 is least worn, the acceleration and speed are maximized, and the transport device 1 can be operated efficiently, improving the work efficiency of the distribution warehouse. As the wear of the training wheel 34 progresses to wear level B and wear level C, the acceleration and speed are suppressed, suppressing the increase in battery consumption due to the increase in frictional resistance and suppressing the increase in the load on the floor surface. As a result, it is possible to suppress an increase in vibration of the article due to the reduction in the outer diameter of the auxiliary wheel 34 .
 補助輪34の摩耗が最大に近づく摩耗レベルDでは、補助輪34の交換を通知し、加速度及び速度は最小となって、緩やかに加速することで摩擦抵抗の増大に伴うバッテリ消費量の増大の抑制と床面に対する負荷の増大を抑制し、補助輪34の外径縮小に伴う物品への振動の増大を抑制することができる。 At the wear level D where the wear of the training wheel 34 approaches maximum, the replacement of the training wheel 34 is notified, the acceleration and speed are minimized, and the moderate acceleration reduces the increase in battery consumption due to the increase in frictional resistance. It is possible to suppress an increase in the load on the floor surface and suppress an increase in vibration to the article due to the reduction in the outer diameter of the training wheels 34 .
 以上のように、本実施例の倉庫制御装置100は、搬送装置1の補助輪34が摩耗の進行に応じて接地面積が増大して走行抵抗が増大する場合には、搬送装置1の加速度及び速度を抑制して、バッテリ消費量の増大や床面に与える負荷や搬送する物品への振動を抑制することが可能となる。 As described above, the warehouse control device 100 of the present embodiment is capable of controlling the acceleration and By suppressing the speed, it is possible to suppress the increase in battery consumption, the load on the floor surface, and the vibration of the conveyed article.
 なお、上記実施例1では、補助輪34の形状が摩耗の進行に応じて接地幅W1が増大する例を示したが、これに限定されるものではない。例えば、駆動輪33の形状が摩耗の進行に応じて接地幅が増大する場合には、駆動輪33の接地幅を監視して搬送装置1の速度条件を変更するようにしてもよく、搬送装置1の重量を支持する車輪の摩耗状態に応じて速度条件を制御することができる。 In the first embodiment, the shape of the auxiliary wheel 34 shows an example in which the contact width W1 increases as the wear progresses, but the present invention is not limited to this. For example, when the contact width of the drive wheel 33 increases as the shape of the drive wheel 33 wears, the contact width of the drive wheel 33 may be monitored to change the speed condition of the transport device 1. The speed conditions can be controlled according to the wear condition of the weight bearing wheels.
 また、上記実施例1では、補助輪34の接地幅W1を搬送装置1に搭載した補助輪監視センサ53(イメージセンサ)で撮影した画像データから摩耗の進行を測定する例を示したが、これに限定されるものではない。例えば、物流倉庫の床面の所定の位置に補助輪監視センサ53を配置して補助輪34の接地幅W1を測定してもよい。例えば、床面の一部を透明な部材で構成し、透明な部材の上面を搬送装置1に直進させて、透明な部材の下面に配置した補助輪監視センサ53で補助輪34の接地幅W1を撮影してもよい。 Further, in the above-described first embodiment, an example is shown in which the progress of wear is measured from image data of the contact width W1 of the training wheels 34 captured by the training wheel monitoring sensor 53 (image sensor) mounted on the conveying device 1. is not limited to For example, the training wheel monitoring sensor 53 may be arranged at a predetermined position on the floor of the distribution warehouse to measure the contact width W1 of the training wheels 34 . For example, a part of the floor surface is made of a transparent member, the upper surface of the transparent member is moved straight to the transport device 1, and the auxiliary wheel monitoring sensor 53 arranged on the lower surface of the transparent member detects the contact width W1 of the auxiliary wheel 34. can be taken.
 また、上記実施例1では、補助輪34の摩耗レベル2613を倉庫制御装置100で算出する例を示したが、これに限定されるものではない。例えば、データ分析プログラム163と摩耗度テーブル420及び速度制御テーブル410を搬送装置1に搭載して、搬送装置1が補助輪34の摩耗レベルを算出して速度条件を調整してもよい。 Also, in the first embodiment, an example is shown in which the wear level 2613 of the training wheels 34 is calculated by the warehouse control device 100, but the present invention is not limited to this. For example, the data analysis program 163, the wear degree table 420, and the speed control table 410 may be installed in the transport device 1 so that the transport device 1 calculates the wear level of the training wheels 34 and adjusts the speed conditions.
 物流倉庫では棚7を搭載した搬送装置1の通過や、加速、減速あるいは旋回等により床面の損傷や劣化が生じ、通過する搬送装置1や棚7の物品に振動を与える場合がある。棚7の物品に振動を与えるのを抑制するため、物流倉庫内の床面の状態を把握しておき、床面の状態が悪い場所や床面に凹凸がある場所を走行する場合、搬送装置1の速度を抑制したり、搬送装置1を迂回させる必要が生じる。 In the distribution warehouse, the passage, acceleration, deceleration, or rotation of the transport device 1 on which the shelves 7 are mounted may damage or deteriorate the floor surface, and may vibrate the passing transport devices 1 and the articles on the shelves 7. In order to suppress the vibration of the articles on the shelf 7, the state of the floor surface in the distribution warehouse is grasped, and when traveling on a place where the floor surface is in poor condition or where the floor surface is uneven, the transport device It becomes necessary to suppress the speed of the conveying device 1 or to detour the conveying device 1 .
 物流倉庫内の床面の状態は、前記実施例1に示した搬送装置1の振動センサ51や前方監視センサ52によって取得して、振動の多寡や損傷の有無を床情報240に蓄積しておき、経路作成プログラム161が搬送装置1の走行経路を算出する際に、速度の抑制や迂回する位置を特定するのに床情報240を利用することができる。 The state of the floor surface in the distribution warehouse is acquired by the vibration sensor 51 and the forward monitoring sensor 52 of the transport device 1 shown in the first embodiment, and the amount of vibration and the presence or absence of damage are accumulated in the floor information 240. When the route creation program 161 calculates the travel route of the conveying device 1, the floor information 240 can be used to specify speed suppression and detour positions.
 上記実施例1で述べたように、補助輪34の摩耗の進行に伴って補助輪34の衝撃吸収能力は低下する。そこで、本実施例では、床情報240を生成する際に、補助輪34の摩耗の進行度合いに応じて、振動の判定基準を変更して摩耗の進行の影響を抑制して正確な床情報240を生成し、経路データの生成及び搬送装置1の走行制御の精度を向上させる。 As described in Embodiment 1 above, the shock absorbing ability of the auxiliary wheels 34 decreases as the wear of the auxiliary wheels 34 progresses. Therefore, in the present embodiment, when the floor information 240 is generated, the vibration determination criterion is changed according to the degree of progress of wear of the training wheels 34 to suppress the influence of the progress of wear, thereby obtaining accurate floor information 240. to improve the accuracy of route data generation and travel control of the transport device 1 .
 図21は、実施例2の搬送システムの構成の一例を示すブロック図である。搬送システムは、前記上記実施例1の倉庫制御装置100に閾値テーブル310と損傷度テーブル320を加えたもので、その他の構成は前記実施例1と同様である。 FIG. 21 is a block diagram showing an example of the configuration of the transport system of the second embodiment. The transportation system is obtained by adding a threshold value table 310 and a damage degree table 320 to the warehouse control device 100 of the first embodiment, and the rest of the configuration is the same as that of the first embodiment.
 図22は、振動データ290の一例を示す図である。振動データ290は、搬送装置1から受信した振動データを倉庫制御装置100のデータ入出力プログラム162が格納し、さらに、後述するデータ分析プログラム163が算出した振動データ閾値を格納する。 FIG. 22 is a diagram showing an example of vibration data 290. FIG. The vibration data 290 stores the vibration data received from the transport device 1 by the data input/output program 162 of the warehouse control device 100, and further stores the vibration data threshold value calculated by the data analysis program 163, which will be described later.
 なお、移動中の搬送装置1に発生した振動についての振動データ290には、床面の状態と相関関係がある。そのような相関関係の一例として、ある床面状態(例えば損傷度合いが大きい床面等)の床で搬送装置1が走行(旋回を含む)する場合において、移動中の搬送装置1にかかる振動が異なる床面状態(例えば正常な床面、損傷度合いが小さい床面等)と比較して有意に大きくなる場合があることが分かった。なお、振動データ290と床面の状態の具体的な相関関係は、例えば、搬送装置1の具体的な設計や床面の材質、通信環境等の種々の環境要因によって変化し得る。 It should be noted that the vibration data 290 regarding the vibration generated in the conveying device 1 during movement has a correlation with the state of the floor surface. As an example of such a correlation, when the transport device 1 travels (including turning) on a floor with a certain floor surface state (for example, a floor surface with a large degree of damage), the vibration applied to the transport device 1 during movement is It has been found that it may be significantly larger compared to different floor conditions (eg, normal floor, less damaged floor, etc.). Note that the specific correlation between the vibration data 290 and the state of the floor surface may change depending on various environmental factors such as the specific design of the transport apparatus 1, the material of the floor surface, and the communication environment.
 振動データ290は、シリアル番号291と、振動データ計測日時292と、装置ID293と、計測振動データ294と、振動データ閾値295と、装置の位置296と、棚の積載有無297と、搬送棚ID298と、棚・商品重量299と、バッテリ残量300と、モード301と、走行速度302と、走行加速度303と、累積走行距離304と、累積加速回数305を1つのレコードに含む。 Vibration data 290 includes serial number 291, vibration data measurement date and time 292, device ID 293, measured vibration data 294, vibration data threshold value 295, device position 296, shelf loading/unloading 297, and transport shelf ID 298. , shelf/commodity weight 299, remaining battery capacity 300, mode 301, running speed 302, running acceleration 303, cumulative running distance 304, and cumulative number of accelerations 305 are included in one record.
 振動データ計測日時292は、搬送装置1の振動センサ51で振動データを測定した日時を格納する。装置ID293は、搬送装置1に予め設定された識別子を格納する。計測振動データ294は、振動センサ51が測定した振動の大きさを加速度(m/s^2)として格納する。なお、計測振動データ294の形式については上記した例に限られず、他の振動の大きさを表す指標で代替可能である。 The vibration data measurement date and time 292 stores the date and time when the vibration data was measured by the vibration sensor 51 of the transport device 1 . The device ID 293 stores an identifier preset for the transport device 1 . The measured vibration data 294 stores the magnitude of vibration measured by the vibration sensor 51 as acceleration (m/s^2). It should be noted that the format of the measured vibration data 294 is not limited to the example described above, and may be replaced by another index representing the magnitude of vibration.
 振動データ閾値295には、後述するように、搬送装置1の走行状態や搬送状態等に基づいて倉庫制御装置100のデータ分析プログラム163が算出した閾値が格納される。データ分析プログラム163は、計測振動データ294を取得したときの搬送装置1の走行状態と補助輪34の摩耗レベルに応じて適用する加速度の閾値を変更する。 The vibration data threshold value 295 stores a threshold value calculated by the data analysis program 163 of the warehouse control device 100 based on the running state, transportation state, etc. of the transport device 1, as will be described later. The data analysis program 163 changes the acceleration threshold to be applied according to the running state of the conveying device 1 and the wear level of the auxiliary wheels 34 when the measured vibration data 294 is acquired.
 装置の位置296は、搬送装置1の自己位置推定プログラム23が算出した地図情報250上のエリアの座標(位置情報)を格納する。棚の積載有無297は、振動データ計測日時292において搬送装置1が棚7を搬送していたか否かを示す値を格納する。棚の積載有無297の値は、搬送装置1で検出された値又は装置情報260の値を用いることができる。 The device position 296 stores the coordinates (position information) of the area on the map information 250 calculated by the self-position estimation program 23 of the transport device 1 . The shelf load presence/absence 297 stores a value indicating whether or not the transport device 1 transported the shelf 7 at the vibration data measurement date/time 292 . A value detected by the conveying device 1 or a value of the device information 260 can be used as the value of the presence/absence of stacking on the shelf 297 .
 搬送棚ID298は、搬送装置1への搭載が指定された棚7の識別子を格納する。搬送棚ID298は、振動データ計測日時292において搬送装置1が搬送していた棚7の識別子である。棚・商品重量299は、搬送棚ID298に対応する棚情報230の棚重量234と商品重量235の総和を格納する。 The transport shelf ID 298 stores the identifier of the shelf 7 designated to be loaded on the transport device 1 . The transport shelf ID 298 is the identifier of the shelf 7 transported by the transport apparatus 1 at the vibration data measurement date and time 292 . The shelf/product weight 299 stores the sum of the shelf weight 234 and the product weight 235 of the shelf information 230 corresponding to the transfer shelf ID 298 .
 バッテリ残量300は、搬送装置1の計測プログラム25が測定したバッテリ39の残量を格納する。モード301は、振動データ計測日時292における搬送装置1の走行モードを格納する。走行モードは、搬送装置1の走行制御プログラム24が決定した値を計測プログラム25が取得して、振動データに含めて倉庫制御装置100へ送信することができる。 The remaining battery capacity 300 stores the remaining capacity of the battery 39 measured by the measurement program 25 of the transport device 1 . The mode 301 stores the travel mode of the transport device 1 at the vibration data measurement date and time 292 . As for the travel mode, a value determined by the travel control program 24 of the transport device 1 can be acquired by the measurement program 25 and transmitted to the warehouse control device 100 by being included in the vibration data.
 走行速度302は、搬送装置1が検出した走行速度(又は角速度)を格納する。走行加速度303は、搬送装置1が検出した加速度(又は角加速度)を格納する。累積走行距離304は、搬送装置1が検出した累積走行距離を格納する。累積加速回数305は、搬送装置1が検出した加速(又は減速)の累積回数である。 The travel speed 302 stores the travel speed (or angular velocity) detected by the conveying device 1 . The travel acceleration 303 stores the acceleration (or angular acceleration) detected by the transport device 1 . The cumulative travel distance 304 stores the cumulative travel distance detected by the conveying device 1 . The cumulative acceleration count 305 is the cumulative count of acceleration (or deceleration) detected by the transport device 1 .
 累積走行距離304と累積加速回数305は、搬送装置1の走行実績を表すデータであり、搬送装置1に蓄積された負荷の指標となる。累積走行距離304又は累積加速回数305が一定の基準値を上回る搬送装置1は、負荷の累積による補助輪34の劣化が予測されるため、床面の損傷度の判定から除外してもよい。 The cumulative travel distance 304 and the cumulative number of acceleration times 305 are data representing the travel record of the transport device 1 and serve as indicators of the load accumulated in the transport device 1 . Since deterioration of the auxiliary wheels 34 due to load accumulation is predicted for the conveying apparatus 1 in which the cumulative travel distance 304 or the cumulative number of acceleration times 305 exceeds a certain reference value, it may be excluded from the determination of the degree of damage to the floor surface.
 振動データ290は、倉庫制御装置100のデータ入出力プログラム162が搬送装置1から受け付けたデータを格納したものであり、格納された時点では振動データ閾値295以外のデータが設定される。振動データ閾値295は、後述する処理によって設定される。なお、棚・商品重量299は、搬送棚ID298に基づいてデータ入出力プログラム162が棚情報230から取得して設定してもよい。また、累積走行距離304と、累積加速回数305は、装置ID291に基づいてデータ入出力プログラム162が装置情報260から取得してもよい。 The vibration data 290 stores data received from the transport device 1 by the data input/output program 162 of the warehouse control device 100, and data other than the vibration data threshold value 295 are set at the time of storage. The vibration data threshold 295 is set by a process described later. Note that the shelf/merchandise weight 299 may be obtained and set by the data input/output program 162 from the shelf information 230 based on the transfer shelf ID 298 . Also, the cumulative traveled distance 304 and the cumulative number of times of acceleration 305 may be acquired from the device information 260 by the data input/output program 162 based on the device ID 291 .
 搬送装置1は、所定のサンプリング周期で振動センサ51が測定した振動データに走行状態や搬送状態を付加して倉庫制御装置100へ送信する例を示したが、これに限定されるものではない。例えば、振動センサ51が測定した所定の期間の振動データの統計値(平均値、最大値等)をエリア毎に算出して倉庫制御装置100へ送信してもよい。 Although the transportation device 1 adds the traveling state and the transportation state to the vibration data measured by the vibration sensor 51 at a predetermined sampling period and transmits it to the warehouse control device 100, it is not limited to this. For example, statistical values (average value, maximum value, etc.) of vibration data measured by the vibration sensor 51 for a predetermined period may be calculated for each area and transmitted to the warehouse control device 100 .
 なお、倉庫制御装置100のデータ分析プログラム163は、計測振動データ294のみでも各エリアの損傷程度を算出することができるが、振動データ290に含まれる棚の積載有無297、搬送棚ID298、棚・商品重量299からなる搬送状態と、モード301、バッテリ残量300、走行速度302、走行加速度3030、累積走行距離304、累積加速回数305の情報も併せて分析することで、床面の損傷度の判定精度を向上できる。 The data analysis program 163 of the warehouse control device 100 can calculate the degree of damage in each area using only the measured vibration data 294. By also analyzing the transportation state consisting of product weight 299, mode 301, remaining battery capacity 300, traveling speed 302, traveling acceleration 3030, cumulative travel distance 304, and cumulative acceleration times 305, the degree of floor damage can be determined. It is possible to improve the judgment accuracy.
 棚の積載有無297は、搬送装置1が棚7を搬送中の場合は、搬送中でない場合に比べて、搬送装置1が検出する振動の指標は大きくなる。従って、床面の状態を判定する場合に、棚7の有無に応じて異なる閾値を設定すると、より床面の損傷程度の判定精度が向上する。また、棚・商品重量299を加味することで、床面の損傷度の判定精度をさらに向上させる。 With respect to whether the shelf is loaded or not 297, when the transport device 1 is transporting the shelf 7, the index of vibration detected by the transport device 1 is larger than when the transport device 1 is not transporting. Therefore, when determining the state of the floor surface, if different thresholds are set according to the presence or absence of the shelf 7, the accuracy of determining the degree of damage to the floor surface can be improved. Further, by adding the weight of the shelf/commodity 299, the accuracy of determining the degree of damage to the floor is further improved.
 例えば、もしバッテリ残量300の低下が、装置由来の振動と関連する場合、そのような状態の搬送装置1の振動データは、床面の損傷度の判定対象から除外することも可能である。 For example, if the decrease in the remaining battery capacity 300 is associated with vibration originating from the device, the vibration data of the transport device 1 in such a state can be excluded from the objects for determining the degree of damage to the floor surface.
 モード301は、本実施例の搬送装置1の場合、「旋回」、「加速」、「減速」、「直進」の何れかが設定される。搬送装置1は、旋回中の場合よりも直進中の方が、減速中の場合よりも加速中の方が振動は大きくなる。速度、加速度についても、振動の大きさと関係がある。搬送装置1が振動を検出した場合のモード301と走行速度302と、走行加速度303に応じて異なる閾値を設定すると、より床面判定の精度が向上する。 The mode 301 is set to any one of "rotation", "acceleration", "deceleration", and "straight ahead" in the case of the transport device 1 of this embodiment. The transport device 1 vibrates more during straight movement than during turning, and during acceleration than during deceleration. Velocity and acceleration are also related to the magnitude of vibration. By setting different thresholds according to the mode 301, the travel speed 302, and the travel acceleration 303 when the transport device 1 detects vibration, the accuracy of the floor determination is further improved.
 また、上記では、計測振動データ294が振動データ閾値295を超えていないレコードを保持する例を示したが、計測振動データ294が振動データ閾値295を超えていなければ床情報240の更新を行わないので、データ分析プログラム163は、計測振動データ294が振動データ閾値295を超えていないレコードを削除することができる。例えば、図22で取り消し線を付加したシリアル番号291=3のレコードは、計測振動データ294が振動データ閾値295を超えていないので削除してもよい。 Also, in the above description, an example is shown in which a record in which the measured vibration data 294 does not exceed the vibration data threshold value 295 is held. However, if the measured vibration data 294 does not exceed the vibration data threshold value 295, the floor information 240 is not updated. Therefore, the data analysis program 163 can delete records in which the measured vibration data 294 do not exceed the vibration data threshold 295 . For example, the record with the serial number 291=3 which is crossed out in FIG. 22 may be deleted because the measured vibration data 294 does not exceed the vibration data threshold value 295 .
 図23は、振動センサ51が検出した振動波形の一例を示すグラフである。図23では、縦軸が加速度(振動の大きさ)で横軸が時刻を示す。 FIG. 23 is a graph showing an example of a vibration waveform detected by the vibration sensor 51. FIG. In FIG. 23, the vertical axis indicates acceleration (magnitude of vibration) and the horizontal axis indicates time.
 振動データは、床面の損傷度に応じて加速度(振動の大きさ)が増減する。また、データ分析プログラム163が算出する振動データ閾値295は、図中の閾値Thaや閾値Thbのように、走行速度や加速度あるいは走行モードや棚7の積載状態に応じて変化する。 For vibration data, the acceleration (magnitude of vibration) increases or decreases according to the degree of damage to the floor surface. Further, the vibration data threshold value 295 calculated by the data analysis program 163 changes according to the travel speed, acceleration, travel mode, and loading state of the shelf 7, like the threshold value Tha and the threshold value Thb in the figure.
 図24は、倉庫制御装置100で行われる分析処理の一例を示すフローチャートである。倉庫制御装置100のデータ分析プログラム163は、所定の周期(例えば、24時間毎)や管理者の指示などの所定のタイミングで振動データ290の分析処理を実行し、物流倉庫の床面の損傷度を搬送装置1が通過したエリア毎に判定する。 FIG. 24 is a flowchart showing an example of analysis processing performed by the warehouse control device 100. FIG. The data analysis program 163 of the warehouse control device 100 executes analysis processing of the vibration data 290 at a predetermined cycle (for example, every 24 hours) or at a predetermined timing such as a manager's instruction, and determines the degree of damage to the floor surface of the distribution warehouse. is determined for each area through which the conveying apparatus 1 has passed.
 データ分析プログラム163は、振動データ290から分析対象のデータを取得する(S51)。分析対象のデータは、例えば、24時間毎に処理を実行する場合、データ分析プログラム163は振動データ計測日時292が24時間以内のデータを抽出する。 The data analysis program 163 acquires data to be analyzed from the vibration data 290 (S51). For data to be analyzed, for example, when processing is executed every 24 hours, the data analysis program 163 extracts data whose vibration data measurement date and time 292 are within 24 hours.
 データ分析プログラム163は、振動データ290のそれぞれについて、走行状態や棚7の搬送状態に応じた振動データ閾値295を後述するように算出して振動データ290に格納する。そして、データ分析プログラム163は、装置の位置296(エリア)で振動データ290をソートしておく(S52)。 The data analysis program 163 calculates a vibration data threshold value 295 corresponding to the traveling state and the conveying state of the shelf 7 for each vibration data 290 as described later, and stores it in the vibration data 290 . Then, the data analysis program 163 sorts the vibration data 290 by the device position 296 (area) (S52).
 ステップS53~S59では、データ分析プログラム163が、上記ソートされたエリア毎に床面の損傷度を判定し、全てのデータについて繰り返して処理を行う。 In steps S53 to S59, the data analysis program 163 determines the degree of floor damage for each sorted area, and repeats the process for all data.
 まず、ステップS54では、データ分析プログラム163が計測振動データ294と振動データ閾値295を比較して、計測振動データ294が振動データ閾値295を超えているか否かを判定する。データ分析プログラム163は、計測振動データ294が振動データ閾値295を超えていればステップS55に進み、超えていない場合にはステップS57に進む。 First, in step S54, the data analysis program 163 compares the measured vibration data 294 and the vibration data threshold 295 to determine whether the measured vibration data 294 exceeds the vibration data threshold 295. If the measured vibration data 294 exceeds the vibration data threshold value 295, the data analysis program 163 proceeds to step S55, otherwise proceeds to step S57.
 ステップS55では、データ分析プログラム163が、計測振動データ294を振動データ閾値295で除した値の百分率を閾値超過率Exとして算出する。次に、データ分析プログラム163は、閾値超過率Exで損傷度テーブル320(後述)を検索して損傷度322を取得し、当該エリアの床面の損傷度とする(S56)。 In step S55, the data analysis program 163 calculates the percentage of the value obtained by dividing the measured vibration data 294 by the vibration data threshold value 295 as the threshold excess rate Ex. Next, the data analysis program 163 retrieves the damage level table 320 (described later) with the threshold excess rate Ex to obtain the damage level 322, which is used as the damage level of the floor surface of the area (S56).
 なお、本実施例では、計測振動データ294が振動データ閾値295を超過した比率で損傷度を算出する例を示すが、これに限定されるものではない。例えば、データ分析プログラム163が予め設定した関数やテーブルなどを用いて損傷度を算出すればよい。 Note that this embodiment shows an example in which the degree of damage is calculated based on the ratio of the measured vibration data 294 exceeding the vibration data threshold value 295, but the present invention is not limited to this. For example, the data analysis program 163 may calculate the degree of damage using a preset function, table, or the like.
 図26は、損傷度テーブル320の一例を示す図である。損傷度テーブル320は、予め設定されたテーブルである。 FIG. 26 is a diagram showing an example of the damage level table 320. FIG. The damage degree table 320 is a preset table.
 損傷度テーブル320は、閾値超過率Exの範囲を設定した閾値超過率321と、閾値超過率の範囲に応じた床面の損傷度を設定した損傷度322を1つのレコードに含む。本実施例では、床面の損傷度を4段階で判定する例を示すが、これに限定されるものではない。 The damage level table 320 includes, in one record, a threshold excess rate 321 that sets the range of the threshold excess rate Ex and a damage level 322 that sets the damage level of the floor according to the range of the threshold excess rate Ex. This embodiment shows an example in which the degree of floor damage is determined in four stages, but the present invention is not limited to this.
 床面の損傷度が大きいほど、搬送装置1が当該床面を走行したときに大きな振動又は衝撃が発生して閾値超過率が高くなる可能性が高い。そのため、損傷度テーブル320においても、閾値超過率が高いほど、損傷度が大きくなるように設定されている。例えば、「損傷程度 小」より「損傷程度 中」の損傷度の方が閾値超過率を高く、「損傷程度 中」より「損傷程度 大」の損傷度の方が閾値超過率を高く、「損傷程度 大」より「修復必要」の損傷度の方が閾値超過率を高くするように設定されている。 The greater the degree of damage to the floor surface, the higher the possibility that a large vibration or impact will occur when the transport device 1 travels on the floor surface and the threshold exceeding rate will increase. Therefore, the damage degree table 320 is also set such that the higher the threshold excess rate, the greater the damage degree. For example, the threshold excess rate is higher for "medium damage" than for "small damage", and the threshold excess rate is higher for "large damage" than for "medium damage". It is set so that the damage level of "repair required" is higher than the threshold exceeding rate.
 一方、図24のステップS57では、計測振動データ294は閾値以下であるので、データ分析プログラム163は当該エリアの床面の損傷度を「正常」と判定する。 On the other hand, in step S57 of FIG. 24, the measured vibration data 294 is less than or equal to the threshold, so the data analysis program 163 determines that the damage level of the floor surface in the area is "normal".
 ステップS58では、データ分析プログラム163が上記ステップS56又はS57で算出した損傷度を、現在処理しているエリアの床の状態243に書き込んで、床情報240を更新する。 In step S58, the data analysis program 163 writes the degree of damage calculated in step S56 or S57 into the floor state 243 of the area currently being processed, and updates the floor information 240.
 ステップS59では、全ての処理対象のエリアについて上記処理を繰り返してからステップS60へ進む。 In step S59, the above process is repeated for all areas to be processed, and then the process proceeds to step S60.
 ステップS60では、データ分析プログラム163が後述する図28の床面の損傷状況可視化マップ330を生成する。そして、ステップS61で、データ分析プログラム163は上記ステップS60で生成した損傷状況可視化マップ330と振動データ290から図28に示す可視化画面141を生成し、出力装置140に出力する。 In step S60, the data analysis program 163 generates a floor surface damage visualization map 330 in FIG. 28, which will be described later. Then, in step S61, the data analysis program 163 generates a visualization screen 141 shown in FIG.
 一例として、前記複数の区画に区分されて管理される物流倉庫内の床面において、当該区画毎に床面の状態を、「正常状態」、「損傷程度 小」、「損傷程度 中」、「損傷程度 大」、「修復必要」といった複数段階で判定し、その結果を出力装置140に出力する。 As an example, on the floor surface in the distribution warehouse that is divided and managed into the plurality of sections, the state of the floor surface for each section is classified into "normal state", "low damage level", "medium damage level", and " Determination is made in multiple stages such as "extent of damage" and "repair required", and the result is output to the output device 140.
 上記処理によって、倉庫制御装置100は複数の搬送装置1から収集した振動データ290について、振動センサ51が振動データを測定した時点の走行状態と搬送状態と補助輪34の摩耗レベルに基づいて振動データ閾値295を決定する。 Through the above processing, the warehouse control device 100 generates vibration data 290 collected from a plurality of transport devices 1 based on the running state, the transport state, and the wear level of the training wheels 34 at the time when the vibration sensor 51 measures the vibration data. A threshold 295 is determined.
 そして、データ分析プログラム163は、計測振動データ294が振動データ閾値295を超えるエリアについて損傷度を算出して床の状態243に書き込んで床情報240を更新する。 The data analysis program 163 then calculates the degree of damage for areas where the measured vibration data 294 exceeds the vibration data threshold value 295 and writes it to the floor state 243 to update the floor information 240 .
 更新された床情報240に基づいて、倉庫制御装置100の管理者等が床情報240のエリア設定244を走行禁止エリア等に変更したり、修復作業を行うことで、搬送装置1や床面にかかる負荷を低減することが可能となる。 Based on the updated floor information 240, the administrator or the like of the warehouse control device 100 changes the area setting 244 of the floor information 240 to a no-travel area or the like, or performs repair work so that the transfer device 1 or the floor surface This load can be reduced.
 また、データ分析プログラム163は、床情報240を更新した後に、可視化画面141を生成して出力装置140に表示することで、補修が必要なエリアを明示することができる。また、可視化画面141では、損傷度の大きさをエリア毎に表示することで、床面の補修計画などを立案することが可能となる。 In addition, after updating the floor information 240, the data analysis program 163 generates a visualization screen 141 and displays it on the output device 140, thereby clearly indicating an area that requires repair. Also, on the visualization screen 141, by displaying the degree of damage for each area, it is possible to draw up a repair plan for the floor surface.
 また、データ分析プログラム163は、1つのエリアについて複数の振動データが存在する場合、複数の計測振動データ294が振動データ閾値295を超える場合に、当該エリアの床面の状態に損傷があると判定してもよい。複数の振動データで判定を行うことで、損傷度の精度を向上させることができる。 In addition, the data analysis program 163 determines that there is damage to the floor surface of the area when a plurality of measured vibration data 294 exceeds the vibration data threshold value 295 when a plurality of vibration data exist for one area. You may Accuracy of the degree of damage can be improved by performing determination using a plurality of vibration data.
 また、データ分析プログラム163は、1つのエリアについて複数の搬送装置1の計測振動データ294が振動データ閾値295を超える場合に、当該エリアの床面の状態に損傷があると判定してもよい。複数の搬送装置1が計測した振動データで判定を行うことで、損傷度の精度を向上させることができる。 In addition, the data analysis program 163 may determine that the floor condition of the area is damaged when the measured vibration data 294 of a plurality of transport devices 1 exceeds the vibration data threshold value 295 for one area. Accuracy of the degree of damage can be improved by performing determination using vibration data measured by a plurality of transport devices 1 .
 また、データ分析プログラム163は、算出した損傷度が所定の基準を超えた場合にアラートを通知するようにしてもよい。例えば、損傷度が「修復必要」の場合、データ分析プログラム163は出力装置140へエリアの位置と修復のアラートを表示することができる。また、当該アラートは外部メンテナンスのために外部の関係者へ通知するようにしてもよい。これにより、床面の損傷を管理者等がいち早く認識することができる。ひいては床面損傷度合いに応じた運用の変更を適宜行うことができる。 In addition, the data analysis program 163 may issue an alert when the calculated degree of damage exceeds a predetermined standard. For example, if the damage level is "needs repair," the data analysis program 163 can display the location of the area and an alert for repair to the output device 140 . Also, the alert may be notified to an external party for external maintenance. As a result, the manager or the like can quickly recognize the damage to the floor surface. As a result, it is possible to appropriately change the operation according to the degree of damage to the floor surface.
 なお、1つのエリア(又は地点)について複数の振動データが存在する場合、データ分析プログラム163は、当該エリアの代表値を算出し、この代表値で床面の損傷度を判定してもよい。なお、代表値としては、平均値や中央値、あるいは最大値や最小値などを適宜選択してもよい。 If there are multiple pieces of vibration data for one area (or point), the data analysis program 163 may calculate the representative value of the area and use this representative value to determine the degree of damage to the floor surface. As the representative value, an average value, a median value, a maximum value, a minimum value, or the like may be appropriately selected.
 次に、上記ステップS52で行われる振動データの集計処理について以下に説明する。まず、図27は、閾値テーブル310の一例を示す図である。閾値テーブル310は、予め設定されたテーブルである。閾値テーブル310は、走行速度311と、加速度312と、モード313と、棚の重量314と、摩耗レベル315と、閾値316を1つのレコードに含む。 Next, the vibration data counting process performed in step S52 will be described below. First, FIG. 27 is a diagram showing an example of the threshold table 310. As shown in FIG. The threshold table 310 is a preset table. The threshold table 310 includes travel speed 311, acceleration 312, mode 313, shelf weight 314, wear level 315, and threshold 316 in one record.
 走行速度311は、搬送装置1の走行速度の範囲が設定され、振動データ290の走行速度302の値に応じた閾値316を設定する。例えば、搬送装置1が同じ床面を走行したときであっても、走行速度が大きいほど、床面に起因する振動又は衝撃が大きくなり得る。そのため、閾値テーブル310においても、走行速度が大きいほど、閾値が大きくなるように設定してもよい。 For the travel speed 311, the travel speed range of the transport device 1 is set, and the threshold value 316 is set according to the value of the travel speed 302 of the vibration data 290. For example, even when the conveying apparatus 1 travels on the same floor surface, the higher the travel speed, the greater the vibration or impact caused by the floor surface. Therefore, the threshold value table 310 may also be set so that the threshold value increases as the traveling speed increases.
 加速度312は、搬送装置1の加速度の範囲が設定され、振動データ290の走行加速度303の値に応じた閾値316を設定する。例えば、搬送装置1が同じ床面を走行したときであっても、加速度が大きいほど、床面に起因する振動又は衝撃が大きくなり得る。そのため、閾値テーブル310においても、加速度が大きいほど、閾値が大きくなるように設定してもよい。 For the acceleration 312, the acceleration range of the transport device 1 is set, and the threshold 316 is set according to the value of the running acceleration 303 of the vibration data 290. For example, even when the conveying apparatus 1 travels on the same floor surface, the greater the acceleration, the greater the vibration or impact caused by the floor surface. Therefore, in the threshold table 310 as well, the threshold may be set to increase as the acceleration increases.
 モード313は、搬送装置1の走行モードに対応する閾値316を設定する。本実施例では、走行モードが旋回の場合には、閾値316=10m/s^2を設定する。棚の重量314は、搬送装置1が搬送する棚と商品の重量の合計値に対応する閾値316を設定する。例えば、搬送装置1が同じ床面を走行したときであっても、搬送物の重さ(棚及び商品の重量の合計値)が重いほど、床面に起因する振動又は衝撃が大きくなり得る。そのため、閾値テーブル310においても、搬送物の重さが重いほど、閾値が大きくなるように設定してもよい。 A mode 313 sets a threshold value 316 corresponding to the travel mode of the transport device 1 . In this embodiment, the threshold value 316 is set to 10 m/s^2 when the travel mode is turning. For the shelf weight 314, a threshold 316 corresponding to the total weight of the shelf and the product transported by the transport device 1 is set. For example, even when the conveying apparatus 1 travels on the same floor surface, vibration or impact caused by the floor surface may increase as the weight of the conveyed object (the total weight of the shelf and the product) increases. Therefore, the threshold table 310 may also be set such that the heavier the object to be transported, the larger the threshold.
 同様に、例えば搬送装置1が同じ床面を走行したときであっても、搬送物を搬送している場合の方が、搬送物を搬送していない場合より、床面に起因する振動又は衝撃が大きくなり得る。そのため、閾値テーブル310においても、搬送物を搬送している場合には、搬送物を搬送していない場合より、閾値が大きくなるように設定してもよい。 Similarly, for example, even when the conveying device 1 travels on the same floor surface, the vibration or impact caused by the floor surface is greater when conveying an object than when not conveying an object. can be large. Therefore, in the threshold table 310 as well, the threshold may be set to be larger when the article is being conveyed than when the article is not being conveyed.
 摩耗レベル315は、補助輪34の摩耗レベル2613に対応する閾値316を設定する。例えば、摩耗レベル315が「A」の新品に近い状態では、閾値316は「0」に設定されて、摩耗レベルによって加算する閾値は「0」であることを示す。一方、摩耗レベル315が「B」の摩耗が進行した状態では、閾値316が「2」に設定されて、摩耗レベルによって加算する閾値は「2」であることを示す。 The wear level 315 sets the threshold 316 corresponding to the wear level 2613 of the training wheels 34 . For example, when the wear level 315 is "A", the threshold value 316 is set to "0", indicating that the threshold value added by the wear level is "0". On the other hand, when the wear level 315 is "B" and wear has progressed, the threshold value 316 is set to "2", indicating that the threshold value to be added according to the wear level is "2".
 本実施例では、走行速度311や加速度312や棚の重量314を3段階で分類する例を示したが、これに限定されるものではない。 In this embodiment, an example is shown in which the traveling speed 311, the acceleration 312, and the shelf weight 314 are classified into three stages, but the classification is not limited to this.
 また、モード313の欄が空欄のレコードは、全ての走行モードに対応することを示す。したがって、棚の重量314は搬送装置1の走行モードにかかわらず閾値316を設定する。また、モード313=「加速」又は「減速」の場合は、走行速度311に応じた閾値316と、加速度312に応じた閾値316を加算することを意味する。 Also, a record in which the column of mode 313 is blank indicates that all driving modes are supported. Therefore, the shelf weight 314 sets the threshold 316 regardless of the travel mode of the transport device 1 . If the mode 313=“acceleration” or “deceleration”, it means that the threshold 316 corresponding to the travel speed 311 and the threshold 316 corresponding to the acceleration 312 are added.
 図25は、倉庫制御装置100で行われる分析処理のうち、上記ステップS52で行われる振動データの集計処理の一例を示すフローチャートである。 FIG. 25 is a flow chart showing an example of the vibration data aggregation process performed in step S52, among the analysis processes performed by the warehouse control device 100. FIG.
 データ分析プログラム163は、分析対象のデータについてステップS71~S77の処理を振動データ290のレコード毎に繰り返す(S71)。データ分析プログラム163は、振動データ290のモード301を取得して、搬送装置1が振動データを測定したときのモード301の値で閾値テーブル310のモード313を検索して該当する閾値316を取得し、変数としての閾値Th1に設定する(S72)。 The data analysis program 163 repeats the processing of steps S71 to S77 for each record of the vibration data 290 for the data to be analyzed (S71). The data analysis program 163 acquires the mode 301 of the vibration data 290, searches the mode 313 of the threshold table 310 with the value of the mode 301 when the transport apparatus 1 measured the vibration data, and acquires the corresponding threshold 316. , is set as a threshold value Th1 as a variable (S72).
 次に、データ分析プログラム163は、振動データ290の走行速度302を取得して、走行速度302の値で閾値テーブル310の走行速度311を検索して該当する閾値316を取得し、変数としての閾値Th2に設定する(S73)。 Next, the data analysis program 163 acquires the running speed 302 of the vibration data 290, searches the running speed 311 of the threshold table 310 with the value of the running speed 302, acquires the corresponding threshold 316, and obtains the threshold 316 as a variable. Th2 is set (S73).
 データ分析プログラム163は、振動データ290の走行加速度303を取得して、走行加速度303の値で閾値テーブル310の加速度312を検索して該当する閾値316を取得し、変数としての閾値Th3に設定する(S74)。 The data analysis program 163 acquires the running acceleration 303 of the vibration data 290, searches the acceleration 312 of the threshold table 310 with the value of the running acceleration 303, acquires the corresponding threshold 316, and sets the threshold Th3 as a variable. (S74).
 データ分析プログラム163は、振動データ290の棚・商品重量299を取得して、棚・商品重量299の値で閾値テーブル310の棚の重量314を検索して該当する閾値316を取得し、変数としての閾値Th4に設定する(S75)。 The data analysis program 163 acquires the shelf/product weight 299 of the vibration data 290, searches the shelf weight 314 of the threshold table 310 with the value of the shelf/product weight 299, acquires the corresponding threshold 316, and uses is set to the threshold value Th4 (S75).
 そして、データ分析プログラム163は、装置情報260の摩耗レベル2613を取得して、棚・商品重量299の値で閾値テーブル310の摩耗レベル315を検索して該当する閾値316を取得し、変数としての閾値Th5に設定する(S76)。 Then, the data analysis program 163 acquires the wear level 2613 of the device information 260, searches the wear level 315 of the threshold table 310 with the value of the shelf/merchandise weight 299, acquires the corresponding threshold 316, and uses A threshold Th5 is set (S76).
 次に、データ分析プログラム163は、上記ステップS72~S76で設定した閾値Th1~T5の総和を算出して、当該レコードの振動データ290の振動データ閾値295に書き込む(S77)。 Next, the data analysis program 163 calculates the sum of the thresholds Th1 to T5 set in steps S72 to S76, and writes it to the vibration data threshold 295 of the vibration data 290 of the record (S77).
 ステップS78では、全ての振動データ290について上記処理を行った後、ステップS79へ進む。ステップS79では、データ分析プログラム163が振動データ290の装置の位置196の順序でソートを実施して、エリア順に並べ替えて図24の処理に戻る。 In step S78, after performing the above processing for all the vibration data 290, the process proceeds to step S79. In step S79, the data analysis program 163 sorts the vibration data 290 in the order of the device position 196, rearranges them in order of area, and returns to the process of FIG.
 以上の処理によって、データ分析プログラム163は、搬送装置1の振動センサ51が振動データを測定して時点の走行状態と搬送状態と補助輪34の摩耗レベルに基づいて振動データ閾値295を決定することができる。 Through the above processing, the data analysis program 163 determines the vibration data threshold value 295 based on the travel state, the transport state, and the wear level of the auxiliary wheels 34 at the time when the vibration sensor 51 of the transport device 1 measures the vibration data. can be done.
 図28は、床面の可視化画面141の一例を示す図である。可視化画面141は、物流倉庫の床面の損傷度を可視化した損傷状況可視化マップ330と、床面の損傷度に関するデータを表示する床面状況340を含む。 FIG. 28 is a diagram showing an example of the visualization screen 141 of the floor surface. The visualization screen 141 includes a damage status visualization map 330 that visualizes the degree of damage to the floor of the distribution warehouse, and a floor status 340 that displays data on the degree of damage to the floor.
 損傷状況可視化マップ330は、データ分析プログラム163によって更新された床情報240の床の状態243の値に応じたパターンを、地図情報250の各エリアに設定した図で、可視化画面141の上部に表示される。 The damage visualization map 330 is a diagram in which a pattern corresponding to the value of the floor condition 243 of the floor information 240 updated by the data analysis program 163 is set for each area of the map information 250, and is displayed at the top of the visualization screen 141. be done.
 損傷状況可視化マップ330は、地図情報250の行番号251と列番号252で特定されるエリア(行331と列332)に、床の状態(床情報240の床の状態243)が悪化するほど濃いパターンが設定され、正常なエリアはパターンのない白色で表示される。 In the damage visualization map 330, the area (row 331 and column 332) specified by the row number 251 and column number 252 of the map information 250 is darkened as the floor condition (floor condition 243 of the floor information 240) deteriorates. A pattern is set and normal areas are displayed in white with no pattern.
 倉庫制御装置100の管理者などは、出力装置140に表示された可視化画面141の損傷状況可視化マップ330を参照することで、修復が必要なエリアや走行禁止とすべきエリアなどを容易に把握することができる。 The manager of the warehouse control device 100 or the like can easily grasp the areas that require repair or the areas that should be banned from traveling by referring to the damage status visualization map 330 on the visualization screen 141 displayed on the output device 140. be able to.
 床面状況340は、シリアル番号341と、損傷程度342と、番地343と、計測振動データ344と、振動データ閾値345と、床面情報更新日346を、1つのレコードに含む表として可視化画面141の下部に表示される。 The floor condition 340 is visualized screen 141 as a table including serial number 341, degree of damage 342, address 343, measured vibration data 344, vibration data threshold 345, and floor information update date 346 in one record. displayed at the bottom of the
 損傷程度342と、番地343は、床情報240の床の状態243とエリア242の値が設定される。計測振動データ344と振動データ閾値345には、当該エリアの振動データ290の計測振動データ294と、振動データ閾値295が設定される。床面情報更新日346は、データ分析プログラム163が床情報240を更新した日時が設定される。 For the degree of damage 342 and the address 343, the values of the floor state 243 and area 242 of the floor information 240 are set. For the measured vibration data 344 and the vibration data threshold 345, the measured vibration data 294 and the vibration data threshold 295 of the vibration data 290 of the area are set. As the floor information update date 346, the date and time when the data analysis program 163 updated the floor information 240 is set.
 倉庫制御装置100の管理者は、床面状況340を参照することで、損傷程度342を決定した計測振動データ344や振動データ閾値345を確認することができる。 The administrator of the warehouse control device 100 can check the measured vibration data 344 and the vibration data threshold value 345 that determined the degree of damage 342 by referring to the floor condition 340 .
 以上のように、本実施例の倉庫制御装置100は、搬送装置1から収集した振動データと走行状態と搬送状態及び摩耗レベルに応じて振動データ閾値295を決定して、計測振動データ294による床面の損傷度を算出する。倉庫制御装置100の管理者などは、振動の大きさが閾値を超えた床面の位置を搬送装置1に振動が発生する床面として特定し、当該位置における搬送装置1の走行を抑制又は禁止することで、搬送装置1や床面の負荷を抑制することが可能となる。 As described above, the warehouse control device 100 of this embodiment determines the vibration data threshold value 295 according to the vibration data collected from the transfer device 1, the traveling state, the transfer state, and the wear level, Calculate the degree of surface damage. The manager of the warehouse control device 100 identifies the position of the floor where the magnitude of the vibration exceeds the threshold as the floor where the transport device 1 vibrates, and suppresses or prohibits the travel of the transport device 1 at that position. By doing so, it becomes possible to suppress the load on the conveying device 1 and the floor surface.
 なお、上記では、振動センサ51が測定した振動データに対して補助輪34の摩耗レベルに応じた閾値316を設定することで、補助輪34の劣化を加味して、床面の損傷度を算出することが可能となる。 In the above description, by setting the threshold 316 according to the wear level of the training wheels 34 for the vibration data measured by the vibration sensor 51, the degree of damage to the floor surface is calculated taking into account the deterioration of the training wheels 34. It becomes possible to
 補助輪34の摩耗レベルに応じた閾値316を用いることで、搬送装置1の経年劣化の影響を緩和して、床面の損傷の判定精度を向上させることができる。なお、損傷度テーブル320の閾値超過率321には、振動センサ51の検出値が異常となる所定の領域(例えば、閾値超過率321が1000以上)の振動データは、床面の損傷程度の算出対象から除外するのが望ましい。これにより、床面の損傷の判定精度をさらに向上させることができる。 By using the threshold value 316 according to the wear level of the training wheels 34, it is possible to mitigate the effects of aged deterioration of the transport device 1 and improve the accuracy of determining damage to the floor surface. In addition, in the threshold excess rate 321 of the damage level table 320, the vibration data of a predetermined area (for example, the threshold excess rate 321 is 1000 or more) where the detection value of the vibration sensor 51 is abnormal is used to calculate the degree of floor damage. It is desirable to exclude it from the target. As a result, it is possible to further improve the accuracy of determining damage to the floor surface.
 補助輪34の摩耗レベルが所定の閾値(131%を)超えた「D」の場合には、劣化が過度に進行しているため、当該搬送装置1を床面の損傷の判定から除外してもよい。これにより、補助輪34が交換時期となった搬送装置1を床面の損傷程度の算出対象から除外することで、床面の損傷度の判定精度をさらに向上させることができる。 If the wear level of the training wheel 34 exceeds a predetermined threshold value (131%), that is, "D", the deterioration progresses excessively. good too. As a result, the accuracy of determining the degree of damage to the floor can be further improved by excluding the transportation device 1 whose training wheel 34 has reached the replacement time from the calculation target of the degree of damage to the floor.
 また、データ分析プログラム163は、累積走行距離304又は累積加速回数305が一定の基準値を上回る搬送装置1や、バッテリ残量300が所定値以下の場合など、搬送装置1の状態情報(装置情報260)が特定の条件を満たす場合、床面の損傷度の判定から除外するようにしてもよい。搬送装置1の状態情報によっては、計測する振動の大きさが異なることが考えられるため、特定の条件に該当する搬送装置1の振動データは、処理対象から除外することで、床面の損傷の判定精度を向上させることができる。 In addition, the data analysis program 163 detects the status information (apparatus information 260) satisfies a specific condition, it may be excluded from the determination of the degree of damage to the floor surface. Depending on the state information of the transport device 1, the magnitude of the vibration to be measured may differ. Judgment accuracy can be improved.
 なお、上記実施例2では、補助輪34の形状が摩耗の進行に応じて接地幅W1が増大する例を示したが、これに限定されるものではない。例えば、駆動輪33の形状が摩耗の進行に応じて接地幅が増大する場合には、駆動輪33の接地幅を監視して搬送装置1の摩耗レベルを変更して閾値316を調整するようにしてもよく、搬送装置1の重量を支持する車輪の摩耗状態に応じて摩耗レベルを変更して閾値316を調整することができる。 In addition, in the second embodiment, an example is shown in which the ground contact width W1 increases as the shape of the auxiliary wheel 34 progresses in wear, but the present invention is not limited to this. For example, if the contact width of the drive wheel 33 increases as the shape of the drive wheel 33 wears, the contact width of the drive wheel 33 is monitored to change the wear level of the conveying device 1 and adjust the threshold value 316. Alternatively, the threshold 316 can be adjusted by changing the wear level according to the wear condition of the wheels that support the weight of the transport device 1 .
 また、実施例2では、上記の構成に加えて、補正係数436で摩耗レベル315に対応する閾値316を補正することができ、例えば、補助輪34の特性のうち、変形量435が大きい材質では補正係数436を小さく設定することで閾値316を小さく補正することが可能となる。すなわち、補助輪34が柔らかい材質の場合は、同一の床面でも振動が小さくなるので、閾値を低くすることで床面の損傷の判定精度を向上させることができる。 Further, in the second embodiment, in addition to the above configuration, the threshold value 316 corresponding to the wear level 315 can be corrected by the correction coefficient 436. By setting the correction coefficient 436 small, the threshold value 316 can be corrected to be small. That is, if the auxiliary wheels 34 are made of a soft material, the vibration will be small even on the same floor surface, so lowering the threshold value can improve the accuracy of determining damage to the floor surface.
 <結び>
 以上のように、上記実施例の搬送システムは次のような構成とすることができる。
<Conclusion>
As described above, the transport system of the above embodiment can be configured as follows.
 (1)物品を格納する移動棚(棚7)を持ち上げて搬送可能な搬送装置(1)と、ネットワーク(90)を介して前記搬送装置(1)の移動を制御する制御装置(倉庫制御装置100)と、を有する搬送システムであって、前記搬送装置(1)は、当該搬送装置(1)の重量を支持して床面上を移動可な車輪(補助輪34)と、前記車輪(34)の接地状態を検出する第1のセンサ(補助輪監視センサ53)と、前記車輪(34)の接地状態を前記制御装置(100)へ送信する搬送制御部(制御装置2)と、を有し、前記制御装置(100)は、前記搬送制御部(2)から受信した前記接地状態から前記車輪(34)の接地幅を算出し、前記車輪(34)の接地幅に応じて前記搬送装置(1)の速度又は加速度(速度制御テーブル410)を制御することを特徴とする搬送システム。
 また、物品を格納する移動棚を持ち上げて搬送可能な搬送装置を制御装置が制御する搬送方法であって、前記制御装置が、第1のセンサで検出された車輪の接地状態を前記搬送装置から受信する受信ステップと、前記制御装置が、受信した前記接地状態から前記車輪の接地幅を算出し、前記車輪の接地幅に応じて前記搬送装置の速度又は加速度を制御する制御ステップと、を含む搬送方法であってもよい。
 また、搬送物を搬送可能な搬送装置を制御する制御装置であって、前記搬送装置の車輪の接地部の計測データを前記搬送装置から受信し、受信した前記接地部の計測データから前記車輪の接地幅を算出し、前記車輪の接地幅に応じて前記搬送装置の速度又は加速度を制御する制御装置であってもよい。
(1) A transport device (1) capable of lifting and transporting a movable shelf (shelf 7) for storing articles, and a control device (warehouse control device) for controlling the movement of the transport device (1) via a network (90). 100), wherein the transport device (1) includes wheels (reinforcing wheels 34) that can move on the floor while supporting the weight of the transport device (1), and the wheels ( 34), a first sensor (retaining wheel monitoring sensor 53) for detecting the contact state of the wheel (34), and a transport control section (control device 2) for transmitting the contact state of the wheel (34) to the control device (100). The control device (100) calculates the contact width of the wheel (34) from the contact state received from the transport control unit (2), and adjusts the transfer according to the contact width of the wheel (34). A conveying system characterized by controlling the speed or acceleration (speed control table 410) of the device (1).
Further, in the conveying method, a control device controls a conveying device capable of lifting and conveying a movable shelf for storing articles, wherein the control device detects from the conveying device the grounding state of the wheels detected by a first sensor. a receiving step of receiving; and a control step of calculating the contact width of the wheel from the received contact state, and controlling the speed or acceleration of the conveying device according to the contact width of the wheel. It may be a transportation method.
Further, a control device for controlling a conveying device capable of conveying a conveyed object, which receives measurement data of a contact portion of a wheel of the conveying device from the conveying device, and uses the received measurement data of the contact portion to The control device may calculate a contact width and control the speed or acceleration of the conveying device according to the contact width of the wheel.
 上記構成により、搬送装置1を支持する車輪(補助輪34)の接地幅(W1)を監視することで、車輪(補助輪34)の摩耗によって走行抵抗が増大した場合には、走行抵抗の増大に応じて加速度や速度を速度制御テーブル410で制御することで搬送する搬送物(例えば物品)や搬送装置、また床面に与えるダメージ(例えば負荷、振動、衝撃、損傷等)を抑制することが可能となる。 With the above configuration, by monitoring the contact width (W1) of the wheels (the auxiliary wheels 34) that support the conveying device 1, when the running resistance increases due to the wear of the wheels (the auxiliary wheels 34), the running resistance increases. By controlling the acceleration and speed with the speed control table 410 according to the conditions, it is possible to suppress the damage (for example, load, vibration, impact, damage, etc.) to the conveyed object (for example, article), the conveying device, and the floor surface. It becomes possible.
 (2)上記(1)に記載の搬送システムであって、前記制御装置(100)は、前記車輪(34)の接地幅(W1)に応じて前記車輪(34)の交換時期の通知を行うことを特徴とする搬送システム。 (2) In the conveying system described in (1) above, the control device (100) notifies the replacement timing of the wheels (34) according to the contact width (W1) of the wheels (34). A transport system characterized by:
 また、搬送物を搬送可能な搬送装置を制御する制御装置であって、前記搬送装置の車輪の接地部の計測データを前記搬送装置から受信し、受信した前記接地部の計測データから前記車輪の接地幅を算出し、前記車輪の接地幅に応じて前記車輪の交換時期の通知を行う制御装置であってもよい。 Further, a control device for controlling a conveying device capable of conveying a conveyed object, which receives measurement data of a contact portion of a wheel of the conveying device from the conveying device, and uses the received measurement data of the contact portion to The control device may calculate a ground contact width and notify the replacement timing of the wheel according to the ground contact width of the wheel.
 上記構成により、搬送装置1を支持する車輪(補助輪34)の接地幅(W1)が過大になった場合には、交換時期を通知することでメンテナンスを正確に行うことが可能となる。 With the above configuration, when the contact width (W1) of the wheels (the auxiliary wheels 34) that support the conveying device 1 becomes excessive, maintenance can be performed accurately by notifying the replacement timing.
 (3)上記(1)に記載の搬送システムであって、前記第1のセンサ(53)は、イメージセンサで構成され、前記搬送制御部(2)は、前記搬送装置(1)が直進状態の場合に前記車輪(34)の接地状態を含む画像データを前記第1のセンサ(53)で取得して前記制御装置(100)へ送信し、前記制御装置(100)は、前記搬送装置(1)から受信した前記車輪(34)の接地状態を含む前記画像データから前記車輪(34)の接地幅を測定することを特徴とする搬送システム。 (3) In the conveying system described in (1) above, the first sensor (53) is an image sensor, and the conveying control section (2) controls the conveying device (1) in a straight advance state. In the case of, the first sensor (53) acquires image data including the ground contact state of the wheel (34) and transmits it to the control device (100), and the control device (100) controls the conveying device ( 1) A conveying system characterized by measuring the contact width of the wheel (34) from the image data including the contact state of the wheel (34) received from 1).
 上記構成により、補助輪監視センサ53は、搬送装置1が直進状態のときに補助輪34の接地状態を含む画像データを取得し、倉庫制御装置100は接地状態を含む画像データから補助輪34の接地幅W1を算出することで、接地幅W1の監視を高精度で行うことが可能となる。 With the above configuration, the training wheel monitoring sensor 53 acquires image data including the grounding state of the training wheels 34 when the transport device 1 is in a straight-ahead state, and the warehouse control device 100 detects the training wheels 34 from the image data including the grounding state. By calculating the contact width W1, it is possible to monitor the contact width W1 with high accuracy.
 (4)上記(3)に記載の搬送システムであって、前記搬送装置(1)は、前記車輪として複数の駆動輪(33)を平行に配置して、前記複数の駆動輪(33)を等速で駆動することで前記直進状態とすることを特徴とする搬送システム。 (4) In the conveying system described in (3) above, the conveying device (1) has a plurality of drive wheels (33) arranged in parallel as the wheels, and the plurality of drive wheels (33) are arranged in parallel. A transport system characterized in that the transport system is driven at a constant speed so as to be in the straight-ahead state.
 上記構成により、搬送装置1を正確に直進させることができる。 With the above configuration, the conveying device 1 can be accurately moved straight.
 (5)上記(4)に記載の搬送システムであって、前記搬送装置(1)は、前記車輪として複数の駆動輪(33)と、1以上の補助輪(34)を有し、前記第1のセンサ(53)は、前記搬送装置(1)の前記直進状態で前記補助輪(34)の接地位置を撮影可能な位置に配置され、前記補助輪(34)は、摩耗の進行に応じて前記接地幅(W1)が拡大することを特徴とする搬送システム。 (5) The conveying system described in (4) above, wherein the conveying device (1) has a plurality of drive wheels (33) and one or more auxiliary wheels (34) as the wheels; 1 sensor (53) is arranged at a position capable of photographing the contact position of the auxiliary wheel (34) in the straight-ahead state of the conveying device (1), and the auxiliary wheel (34) is adjusted according to the progress of wear. A conveying system characterized in that the ground contact width (W1) is expanded by
 上記構成により、補助輪監視センサ53は、直進状態で補助輪34の接地状態を撮影することができ、倉庫制御装置100は補助輪34の接地幅W1を正確に算出して摩耗の進行度合いを監視することができる。 With the above configuration, the training wheel monitoring sensor 53 can photograph the grounding state of the training wheels 34 in a straight-ahead state, and the warehouse control device 100 can accurately calculate the grounding width W1 of the training wheels 34 and measure the progress of wear. can be monitored.
 (6)上記(1)に記載の搬送システムであって、前記制御装置(100)は、前記接地幅(W1)の増大量に基づいて前記車輪(34)の摩耗の進行度合い(摩耗レベル2613)を算出し、前記摩耗の進行度合い(2613)に応じて前記加速度又は速度(速度制御テーブル410)を変更することを特徴とする搬送システム。 (6) In the transport system according to (1) above, the control device (100) controls the degree of progress of wear of the wheels (34) (a wear level 2613 ), and changes the acceleration or speed (speed control table 410) according to the degree of progress of wear (2613).
 上記構成により、倉庫制御装置100は、補助輪34の摩耗によって走行抵抗が増大した場合には、走行抵抗の増大に応じて加速度や速度を速度制御テーブル410で制御することで搬送する物品や床面に与えるダメージを抑制することが可能となる。 With the above configuration, the warehouse control device 100 controls the acceleration and speed according to the increase in running resistance by the speed control table 410 when the running resistance increases due to the wear of the training wheels 34, thereby controlling the goods to be transported and the floor to be transported. It is possible to suppress the damage given to the surface.
 (7)上記(6)に記載の搬送システムであって、前記制御装置(100)は、前記摩耗の進行度合いに応じて前記加速度又は速度を予め設定した速度制御情報(速度制御テーブル410)を有し、前記速度制御情報(410)は、前記摩耗が進行するにつれて前記加速度を低く設定したことを特徴とする搬送システム。 (7) In the transport system described in (6) above, the control device (100) stores speed control information (speed control table 410) in which the acceleration or speed is preset according to the degree of progress of the wear. and wherein the speed control information (410) sets the acceleration lower as the wear progresses.
 上記構成により、倉庫制御装置100は、補助輪34の摩耗レベルが進行するにつれて搬送装置1の加速度を抑制することで、棚7の物品に与える振動を低減し、床面に与える負荷を抑制することができる。 With the above configuration, the warehouse control device 100 suppresses the acceleration of the transport device 1 as the level of wear of the training wheels 34 progresses, thereby reducing the vibration applied to the articles on the shelves 7 and suppressing the load applied to the floor surface. be able to.
 (8)上記(6)に記載の搬送システムであって、前記制御装置(100)は、前記車輪(34)の特性(補助輪テーブル430)に応じて予め設定された補正係数(436)に応じて、前記加速度又は速度を補正することを特徴とする搬送システム。 (8) In the conveying system described in (6) above, the control device (100) adjusts a preset correction coefficient (436) according to the characteristics (relief wheel table 430) of the wheels (34). A transport system, characterized in that it corrects said acceleration or velocity accordingly.
 上記構成により、補助輪34の材質や外径等の特性に応じた補正係数436で加速度又は速度を補正することにより、補助輪34を交換した場合でも振動を抑制して物品の搬送を行うことが可能となる。 With the above configuration, by correcting the acceleration or speed with the correction coefficient 436 according to the characteristics such as the material and outer diameter of the training wheel 34, even when the training wheel 34 is replaced, the article can be conveyed while suppressing vibration. becomes possible.
 (9)上記(6)に記載の搬送システムであって、前記搬送装置(1)は、移動中の前記搬送装置(1)の振動を計測する第2のセンサ(振動センサ51)を有し、前記搬送制御部(2)は、床面上に配置されたマーカに基づいて前記搬送装置(1)の位置情報を推定する位置推定部(23)と、前記第2のセンサ(51)が計測した移動中の前記搬送装置(1)の振動の情報及び前記位置情報を前記制御装置(100)へ送信する通信部(26)と、を有し、前記制御装置(100)は、少なくとも前記第2のセンサ(51)が計測した移動中の前記搬送装置(1)の振動の情報と当該振動を計測したときの前記搬送装置(1)の位置情報とを含む振動データを前記搬送装置(1)から取得して、前記振動データと前記摩耗の進行度合いに応じて前記振動を計測したときの前記搬送装置(1)の位置における前記床面の状態を判定することを特徴とする搬送システム。 (9) In the transport system described in (6) above, the transport device (1) has a second sensor (vibration sensor 51) that measures vibration of the transport device (1) during movement. , the transport control unit (2) includes a position estimation unit (23) for estimating position information of the transport device (1) based on markers placed on the floor surface, and the second sensor (51). and a communication unit (26) that transmits information on the measured vibration of the conveying device (1) during movement and the position information to the control device (100), wherein the control device (100) at least Vibration data including information on the vibration of the conveying device (1) during movement measured by the second sensor (51) and position information of the conveying device (1) when the vibration was measured is transmitted to the conveying device ( 1), and determines the state of the floor surface at the position of the transport device (1) when the vibration is measured according to the vibration data and the degree of progress of the wear. .
 上記構成により、振動データの値の大きさに応じて床面の損傷を判定することで、床面の状態を車輪の摩耗の進行度合いに応じて正確に判定することができる。 With the above configuration, it is possible to accurately determine the state of the floor surface according to the degree of wear of the wheels by determining damage to the floor surface according to the magnitude of the vibration data value.
 (10)上記(9)に記載の搬送システムであって、前記制御装置(100)は、前記摩耗が進行するにつれて、振動閾値(316)が大きくなるように予め設定された閾値情報(閾値テーブル310)を有し、前記振動を計測したときの前記搬送装置(1)の位置における前記床面の状態を判定する際に、前記振動データの値が前記振動閾値(316)を超えた場合に、前記振動を計測したときの前記搬送装置(1)の位置における前記床面に損傷があると判定することを特徴とする搬送システム。 (10) In the transport system described in (9) above, the control device (100) includes threshold information (threshold table 310), and when determining the state of the floor surface at the position of the transport device (1) when the vibration is measured, if the value of the vibration data exceeds the vibration threshold value (316) 1. A transport system characterized in that it is determined that there is damage to the floor surface at the position of the transport device (1) when the vibration is measured.
 上記構成により、倉庫制御装置100は、補助輪34の摩耗の進行度合いに応じて値の異なる閾値を適用することで、床面の状態を正確に判定することができる。 With the above configuration, the warehouse control device 100 can accurately determine the state of the floor surface by applying different threshold values according to the progress of wear of the training wheels 34 .
 (11)上記(10)に記載の搬送システムであって、前記制御装置(100)は、前記車輪(34)の特性(補助輪テーブル430)に応じて予め設定された補正係数(438)に応じて、前記振動閾値(316)を補正することを特徴とする搬送システム。 (11) In the conveying system described in (10) above, the control device (100) adjusts the correction coefficient (438) preset according to the characteristics (relief wheel table 430) of the wheels (34). and correcting said vibration threshold (316) accordingly.
 上記構成により、倉庫制御装置100は、補助輪34の材質や外径等の特性に応じて振動の閾値を補正することで、床面の状態を正確に判定することができる。 With the above configuration, the warehouse control device 100 can accurately determine the state of the floor surface by correcting the vibration threshold according to the characteristics such as the material and outer diameter of the training wheels 34 .
 (12)上記(9)に記載の搬送システムであって、前記制御装置(100)は、前記摩耗の進行が所定の閾値を超えて前記車輪(34)の交換時期となった場合には、当該搬送装置(1)を前記床面の状態判定から除外することを特徴とする搬送システム。 (12) In the conveying system according to (9) above, when the progression of wear exceeds a predetermined threshold and it is time to replace the wheel (34), the control device (100) A transport system characterized in that the transport device (1) is excluded from the state determination of the floor surface.
 上記構成により、倉庫制御装置100は、交換時期となった補助輪34を有する搬送装置1を床面の状態判定から除外することで、床面の損傷度を正確に判定することができる。 With the above configuration, the warehouse control device 100 can accurately determine the degree of damage to the floor surface by excluding the transfer device 1 having the training wheels 34 that have reached the replacement time from the determination of the state of the floor surface.
 なお、本発明は上記した実施例に限定されるものではなく、様々な変形例が含まれる。例えば、上記した実施例は本発明を分かりやすく説明するために詳細に記載したものであり、必ずしも説明した全ての構成を備えるものに限定されるものではない。また、ある実施例の構成の一部を他の実施例の構成に置き換えることが可能であり、また、ある実施例の構成に他の実施例の構成を加えることも可能である。また、各実施例の構成の一部について、他の構成の追加、削除、又は置換の何れもが、単独で、又は組み合わせても適用可能である。 It should be noted that the present invention is not limited to the above-described embodiments, and includes various modifications. For example, the above embodiments are described in detail for easy understanding of the present invention, and are not necessarily limited to those having all the described configurations. In addition, it is possible to replace part of the configuration of one embodiment with the configuration of another embodiment, and it is also possible to add the configuration of another embodiment to the configuration of one embodiment. In addition, any addition, deletion, or replacement of other configurations for a part of the configuration of each embodiment can be applied singly or in combination.
 また、上記の各構成、機能、処理部、及び処理手段等は、それらの一部又は全部を、例えば集積回路で設計する等によりハードウェアで実現してもよい。また、上記の各構成、及び機能等は、プロセッサがそれぞれの機能を実現するプログラムを解釈し、実行することによりソフトウェアで実現してもよい。各機能を実現するプログラム、テーブル、ファイル等の情報は、メモリや、ハードディスク、SSD(Solid State Drive)等の記録装置、又は、ICカード、SDカード、DVD等の記録媒体に置くことができる。 In addition, each of the above configurations, functions, processing units, processing means, etc. may be implemented in hardware, for example, by designing a part or all of them in an integrated circuit. Further, each of the above configurations, functions, etc. may be realized by software by a processor interpreting and executing a program for realizing each function. Information such as programs, tables, and files that implement each function can be stored in a recording device such as a memory, a hard disk, an SSD (Solid State Drive), or a recording medium such as an IC card, SD card, or DVD.
 また、制御線や情報線は説明上必要と考えられるものを示しており、製品上必ずしも全ての制御線や情報線を示しているとは限らない。実際には殆ど全ての構成が相互に接続されていると考えてもよい。 In addition, control lines and information lines indicate what is considered necessary for explanation, and not all control lines and information lines are necessarily indicated on the product. In practice, it may be considered that almost all configurations are interconnected.

Claims (15)

  1.  物品を格納する移動棚を持ち上げて搬送可能な搬送装置と、
     ネットワークを介して前記搬送装置の移動を制御する制御装置と、を有する搬送システムであって、
     前記搬送装置は、
     当該搬送装置の重量を支持して床面上を移動可な車輪と、
     前記車輪の接地状態を検出する第1のセンサと、
     前記車輪の接地状態を前記制御装置へ送信する搬送制御部と、を有し、
     前記制御装置は、
     前記搬送制御部から受信した前記接地状態から前記車輪の接地幅を算出し、前記車輪の接地幅に応じて前記搬送装置の速度又は加速度を制御することを特徴とする搬送システム。
    a transport device capable of lifting and transporting a mobile shelf storing articles;
    A transport system comprising a control device that controls movement of the transport device via a network,
    The conveying device is
    wheels capable of supporting the weight of the transport device and moving on the floor;
    a first sensor that detects a ground contact state of the wheel;
    a conveyance control unit that transmits the grounding state of the wheel to the control device;
    The control device is
    A conveying system, wherein a contact width of the wheel is calculated from the contact state received from the conveying control unit, and the speed or acceleration of the conveying device is controlled according to the contact width of the wheel.
  2.  請求項1に記載の搬送システムであって、
     前記制御装置は、
     前記車輪の接地幅に応じて前記車輪の交換時期の通知を行うことを特徴とする搬送システム。
    A transport system according to claim 1, wherein
    The control device is
    A conveying system, wherein notification of a replacement time of said wheel is made according to a contact width of said wheel.
  3.  請求項1に記載の搬送システムであって、
     前記第1のセンサは、イメージセンサで構成され、
     前記搬送制御部は、
     前記搬送装置が直進状態の場合に前記車輪の接地状態を含む画像データを前記第1のセンサで取得して前記制御装置へ送信し、
     前記制御装置は、
     前記搬送装置から受信した前記車輪の接地状態を含む前記画像データから前記車輪の接地幅を測定することを特徴とする搬送システム。
    A transport system according to claim 1, wherein
    The first sensor is composed of an image sensor,
    The transport control unit
    acquiring image data including the ground contact state of the wheels with the first sensor and transmitting the image data to the control device when the conveying device is in a straight-ahead state;
    The control device is
    A conveying system, wherein the contact width of the wheel is measured from the image data including the contact state of the wheel received from the conveying device.
  4.  請求項3に記載の搬送システムであって、
     前記搬送装置は、
     前記車輪として複数の駆動輪を平行に配置して、前記複数の駆動輪を等速で駆動することで前記直進状態とすることを特徴とする搬送システム。
    A transport system according to claim 3, wherein
    The conveying device is
    A conveying system, wherein a plurality of drive wheels are arranged in parallel as the wheels, and the straight traveling state is achieved by driving the plurality of drive wheels at a constant speed.
  5.  請求項4に記載の搬送システムであって、
     前記搬送装置は、
     前記車輪として複数の駆動輪と、1以上の補助輪を有し、
     前記第1のセンサは、前記搬送装置の前記直進状態で前記補助輪の接地位置を撮影可能な位置に配置され、
     前記補助輪は、
     摩耗の進行に応じて前記接地幅が拡大することを特徴とする搬送システム。
    A transport system according to claim 4,
    The conveying device is
    Having a plurality of driving wheels and one or more auxiliary wheels as the wheels,
    The first sensor is arranged at a position capable of photographing a contact position of the training wheel in the straight-ahead state of the conveying device,
    The auxiliary wheels are
    A conveying system, wherein the contact width increases as wear progresses.
  6.  請求項1に記載の搬送システムであって、
     前記制御装置は、
     前記接地幅の増大量に基づいて前記車輪の摩耗の進行度合いを算出し、前記摩耗の進行度合いに応じて前記加速度又は速度を変更することを特徴とする搬送システム。
    A transport system according to claim 1, wherein
    The control device is
    A conveying system, wherein the degree of progress of wear of the wheels is calculated based on the amount of increase in the contact width, and the acceleration or speed is changed according to the degree of progress of the wear.
  7.  請求項6に記載の搬送システムであって、
     前記制御装置は、
     前記摩耗の進行度合いに応じて前記加速度又は速度を予め設定した速度制御情報を有し、
     前記速度制御情報は、
     前記摩耗が進行するにつれて前記加速度を低く設定したことを特徴とする搬送システム。
    A transport system according to claim 6, wherein
    The control device is
    Having speed control information that presets the acceleration or speed according to the degree of progress of the wear,
    The speed control information is
    A conveying system, wherein the acceleration is set lower as the wear progresses.
  8.  請求項6に記載の搬送システムであって、
     前記制御装置は、
     前記車輪の特性に応じて予め設定された補正係数に応じて、前記加速度又は速度を補正することを特徴とする搬送システム。
    A transport system according to claim 6, wherein
    The control device is
    A conveying system, wherein the acceleration or speed is corrected according to a correction coefficient preset according to the characteristics of the wheels.
  9.  請求項6に記載の搬送システムであって、
     前記搬送装置は、
     移動中の前記搬送装置の振動を計測する第2のセンサを有し、
     前記搬送制御部は、
     床面上に配置されたマーカに基づいて前記搬送装置の位置情報を推定する位置推定部と、
     前記第2のセンサが計測した移動中の前記搬送装置の振動の情報及び前記位置情報を前記制御装置へ送信する通信部と、を有し、
     前記制御装置は、
     少なくとも前記第2のセンサが計測した移動中の前記搬送装置の振動の情報と当該振動を計測したときの前記搬送装置の位置情報とを含む振動データを前記搬送装置から取得して、前記振動データと前記摩耗の進行度合いに応じて前記振動を計測したときの前記搬送装置の位置における前記床面の状態を判定することを特徴とする搬送システム。
    A transport system according to claim 6, wherein
    The conveying device is
    a second sensor for measuring vibrations of the conveying device during movement;
    The transport control unit
    a position estimating unit for estimating position information of the transport device based on markers placed on the floor;
    a communication unit configured to transmit information about the vibration of the conveying device during movement measured by the second sensor and the position information to the control device;
    The control device is
    Vibration data including at least information about the vibration of the transport device during movement measured by the second sensor and position information of the transport device when the vibration was measured is acquired from the transport device, and the vibration data is obtained. and determining the state of the floor surface at the position of the transport device when the vibration is measured according to the degree of progress of the wear.
  10.  請求項9に記載の搬送システムであって、
     前記制御装置は、
     前記摩耗が進行するにつれて、振動閾値が大きくなるように予め設定された閾値情報を有し、前記振動を計測した時の前記搬送装置の位置における前記床面の状態を判定する際に、前記振動データの値が前記振動閾値を超えた場合に、前記振動を計測した時の前記搬送装置の位置における前記床面に損傷があると判定することを特徴とする搬送システム。
    A transport system according to claim 9, wherein
    The control device is
    It has threshold information preset so that the vibration threshold increases as the wear progresses, and when determining the state of the floor surface at the position of the transfer device when the vibration is measured, the vibration is determined. A transport system, wherein when a data value exceeds the vibration threshold, it is determined that there is damage to the floor surface at the position of the transport device when the vibration was measured.
  11.  請求項10に記載の搬送システムであって、
     前記制御装置は、
     前記車輪の特性に応じて予め設定された補正係数に応じて、前記振動閾値を補正することを特徴とする搬送システム。
    A transport system according to claim 10, wherein
    The control device is
    A conveying system, wherein the vibration threshold is corrected according to a correction coefficient preset according to the characteristics of the wheel.
  12.  請求項9に記載の搬送システムであって、
     前記制御装置は、
     前記摩耗の進行が所定の閾値を超えて前記車輪の交換時期となった場合には、当該搬送装置を前記床面の状態判定から除外することを特徴とする搬送システム。
    A transport system according to claim 9, wherein
    The control device is
    A conveying system, wherein the conveying device is excluded from the state determination of the floor surface when the progress of the wear exceeds a predetermined threshold value and it is time to replace the wheel.
  13.  物品を格納する移動棚を持ち上げて搬送可能な搬送装置を制御装置が制御する搬送方法であって、
     前記制御装置が、第1のセンサで検出された車輪の接地状態を前記搬送装置から受信する受信ステップと、
     前記制御装置が、受信した前記接地状態から前記車輪の接地幅を算出し、前記車輪の接地幅に応じて前記搬送装置の速度又は加速度を制御する制御ステップと、
    を含むことを特徴とする搬送方法。
    A conveying method in which a control device controls a conveying device capable of lifting and conveying a movable shelf storing articles,
    a receiving step in which the control device receives from the conveying device the ground contact state of the wheel detected by the first sensor;
    a control step in which the control device calculates the contact width of the wheel from the received contact state, and controls the speed or acceleration of the conveying device according to the contact width of the wheel;
    A conveying method comprising:
  14.  搬送物を搬送可能な搬送装置を制御する制御装置であって、
     前記搬送装置の車輪の接地部の計測データを前記搬送装置から受信し、受信した前記接地部の計測データから前記車輪の接地幅を算出し、前記車輪の接地幅に応じて前記搬送装置の速度又は加速度を制御することを特徴とする制御装置。
    A control device for controlling a conveying device capable of conveying a conveyed object,
    Receive measurement data of the contact portion of the wheel of the transport device from the transport device, calculate the contact width of the wheel from the received measurement data of the contact portion, and speed the transport device according to the contact width of the wheel. Or a control device characterized by controlling acceleration.
  15.  搬送物を搬送可能な搬送装置を制御する制御装置であって、
     前記搬送装置の車輪の接地部の計測データを前記搬送装置から受信し、受信した前記接地部の計測データから前記車輪の接地幅を算出し、前記車輪の接地幅に応じて前記車輪の交換時期の通知を行うことを特徴とする制御装置。
    A control device for controlling a conveying device capable of conveying a conveyed object,
    Receiving measurement data of the contact portion of the wheel of the conveying device from the conveying device, calculating the contact width of the wheel from the received measurement data of the contact portion, and replacing the wheel according to the contact width of the wheel. A control device characterized by notifying the
PCT/JP2022/026101 2021-09-28 2022-06-29 Transport system, transport method, and control device WO2023053645A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021-158485 2021-09-28
JP2021158485A JP2023048904A (en) 2021-09-28 2021-09-28 Conveying system, conveying method and control device

Publications (1)

Publication Number Publication Date
WO2023053645A1 true WO2023053645A1 (en) 2023-04-06

Family

ID=85779836

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/026101 WO2023053645A1 (en) 2021-09-28 2022-06-29 Transport system, transport method, and control device

Country Status (2)

Country Link
JP (1) JP2023048904A (en)
WO (1) WO2023053645A1 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06186008A (en) * 1992-09-02 1994-07-08 Toshiba Corp Wheel inspecting device
JP2005153785A (en) * 2003-11-27 2005-06-16 Toyota Motor Corp Tire condition estimating device and vehicular tire
JP2005349966A (en) * 2004-06-11 2005-12-22 Nippon Yusoki Co Ltd Tire wear sensor and industrial vehicle equipped therewith
JP2007022282A (en) * 2005-07-15 2007-02-01 Bridgestone Corp Estimation method of wheel wear amount of automated guided vehicle, determination method of wheel exchange time and traveling control method of automated guided vehicle and its device
JP2018132332A (en) * 2017-02-13 2018-08-23 株式会社ダイフク Inspection system
JP2019079171A (en) * 2017-10-23 2019-05-23 日本電産シンポ株式会社 Movable body

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06186008A (en) * 1992-09-02 1994-07-08 Toshiba Corp Wheel inspecting device
JP2005153785A (en) * 2003-11-27 2005-06-16 Toyota Motor Corp Tire condition estimating device and vehicular tire
JP2005349966A (en) * 2004-06-11 2005-12-22 Nippon Yusoki Co Ltd Tire wear sensor and industrial vehicle equipped therewith
JP2007022282A (en) * 2005-07-15 2007-02-01 Bridgestone Corp Estimation method of wheel wear amount of automated guided vehicle, determination method of wheel exchange time and traveling control method of automated guided vehicle and its device
JP2018132332A (en) * 2017-02-13 2018-08-23 株式会社ダイフク Inspection system
JP2019079171A (en) * 2017-10-23 2019-05-23 日本電産シンポ株式会社 Movable body

Also Published As

Publication number Publication date
JP2023048904A (en) 2023-04-07

Similar Documents

Publication Publication Date Title
CN108349079B (en) Information communication about a robot using an optical identifier
CN112499076B (en) Method and apparatus for automatic compression of pallet of articles in warehouse
US20230331486A1 (en) Controlling automated pallet movers
US9731641B2 (en) Tilting platform for stability control
US10122995B2 (en) Systems and methods for generating and displaying a 3D model of items in a warehouse
US9663296B1 (en) Mobile drive unit charging
US9890025B2 (en) Mechanical tipping assembly for mobile drive unit of inventory system
RU2542932C1 (en) Perfected procedure and system for processing of info of maps for navigation of industrial vehicles
JP6283753B2 (en) Transport vehicle and transport system
KR20200055042A (en) Transport method, transport device and transport system
US10315231B1 (en) Attribute-based container selection for inventory
WO2022163095A1 (en) Transport system, method for controlling transport system, and transport device
WO2023053645A1 (en) Transport system, transport method, and control device
US10755227B1 (en) Rapid workspace representation deployment for inventory systems
JP2023123098A (en) Control system, conveyance system, and control method
US20240045436A1 (en) Transport apparatus, transport system, and control method for transport apparatus
KR20230034394A (en) Controller and method for transport device
JP7454710B2 (en) Conveying system and method
WO2024018616A1 (en) Control method for conveyance system, and conveyance system
WO2023181340A1 (en) Control system, conveyance system, and control method
WO2022162802A1 (en) Information processing system, information processing device and method
WO2024047937A1 (en) Transport system and maintenance method for transport device
WO2023084732A1 (en) Information processing system, method, and control system
JP7454746B2 (en) Conveying system and method
JP2023169535A (en) Warehouse operation execution apparatus, warehouse operation execution method, and computer program for executing warehouse operation

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22875524

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE