WO2024018616A1 - Control method for conveyance system, and conveyance system - Google Patents

Control method for conveyance system, and conveyance system Download PDF

Info

Publication number
WO2024018616A1
WO2024018616A1 PCT/JP2022/028470 JP2022028470W WO2024018616A1 WO 2024018616 A1 WO2024018616 A1 WO 2024018616A1 JP 2022028470 W JP2022028470 W JP 2022028470W WO 2024018616 A1 WO2024018616 A1 WO 2024018616A1
Authority
WO
WIPO (PCT)
Prior art keywords
transport
transport device
conveyance
management information
information
Prior art date
Application number
PCT/JP2022/028470
Other languages
French (fr)
Japanese (ja)
Inventor
久 遠藤
優和 青木
一弘 日向
由和 長島
Original Assignee
株式会社日立インダストリアルプロダクツ
株式会社日立製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社日立インダストリアルプロダクツ, 株式会社日立製作所 filed Critical 株式会社日立インダストリアルプロダクツ
Priority to PCT/JP2022/028470 priority Critical patent/WO2024018616A1/en
Publication of WO2024018616A1 publication Critical patent/WO2024018616A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65GTRANSPORT OR STORAGE DEVICES, e.g. CONVEYORS FOR LOADING OR TIPPING, SHOP CONVEYOR SYSTEMS OR PNEUMATIC TUBE CONVEYORS
    • B65G1/00Storing articles, individually or in orderly arrangement, in warehouses or magazines
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65GTRANSPORT OR STORAGE DEVICES, e.g. CONVEYORS FOR LOADING OR TIPPING, SHOP CONVEYOR SYSTEMS OR PNEUMATIC TUBE CONVEYORS
    • B65G1/00Storing articles, individually or in orderly arrangement, in warehouses or magazines
    • B65G1/02Storage devices
    • B65G1/04Storage devices mechanical
    • B65G1/137Storage devices mechanical with arrangements or automatic control means for selecting which articles are to be removed

Definitions

  • the present invention relates to a transport system using an unmanned transport device and a method of controlling the transport system.
  • a transport device In a logistics warehouse for e-commerce, etc., a transport device (AGV: Automatic Guided Vehicle) transports product shelves to the front of a sorting worker called a picker for product picking, and the worker takes out the products from the shelf. There is a system to do this.
  • a control system that controls the transport device is connected to the transport device via a wireless communication network and instructs the transport device to transport.
  • Background technology includes a movable mobile shelf, an automatic guided vehicle (AGV) that transports the mobile shelf, an AGV area where the AGV transports the mobile shelf, and a picking operation in which a worker works in contact with the AGV area.
  • AGV automatic guided vehicle
  • a transport device (hereinafter also referred to as a transport vehicle) is transporting a product shelf
  • a transport vehicle transporting a product shelf
  • This process in which the transport work is obstructed is recorded as log data of the operation history of the transport device, so that it can be used for dealing with fallen objects, etc., and efficient operation and maintenance can be performed.
  • log data By analyzing the log data in this manner, it is possible to detect abnormalities in the transport device and analyze the environment of the transport device (for example, the state of the travel path). In this analysis, image data obtained using the camera of the transport device can be utilized.
  • a control system hereinafter also referred to as a control device
  • the transmission and reception of control data such as priority transport instructions may be delayed.
  • the present invention provides a transport system that can reduce the processing load on the transport device and the load on the wireless communication network during communication between the transport device and the control device.
  • a typical example of the invention disclosed in this application is as follows. That is, a method for controlling a transport system including a transport device and a control device, wherein the transport device includes a secondary battery that supplies power for operation, and drives wheels using the power supplied from the secondary battery. and a drive mechanism, and the control method includes an information acquisition step in which the transport device acquires position information regarding the position of the transport device, a running environment of the transport device, or management information regarding the transport device while traveling. a first communication step in which the conveyance device transmits the acquired position information to the control device while traveling via a wireless communication network; and a first communication step in which the conveyance device transmits the management information acquired while traveling. and a second communication step of transmitting data to the control device while the secondary battery is being charged.
  • the present invention it is possible to reduce the processing load on the transport device and the load on the wireless communication network during communication between the transport device and the control device in the transport system. For example, it becomes possible to collect management information from a transport device without compressing the control data transmission/reception band in a wireless communication network.
  • FIG. 1 is a diagram showing the configuration of a conveyance system according to the present embodiment.
  • FIG. 3 is a diagram showing the configuration of areas in this embodiment. It is a figure showing the composition in the section of a present example. It is a figure showing the marker of this example.
  • FIG. 2 is a perspective view of the conveying device of the present embodiment seen from above. It is a bottom view of the conveyance device of a present Example. It is a figure which shows the conveyance of the shelf by the conveyance apparatus of a present Example.
  • FIG. 1 is a diagram illustrating an example of the overall configuration of a conveyance system according to the present embodiment. It is a figure showing the composition of the conveyance device and the charging device of a present example.
  • FIG. 1 is a diagram showing the configuration of a conveyance system according to the present embodiment. It is a figure showing the composition of the conveyance device and the charging device of a present example.
  • FIG. 2 is a diagram showing the configuration of a control device and a management device according to the present embodiment.
  • FIG. 2 is a diagram showing the configuration of a picking terminal according to the present embodiment.
  • FIG. 2 is a diagram showing an example of the structure of an order table according to the present embodiment. It is a figure showing an example of composition of an inventory table of a present example. It is a figure showing the example of composition of the shelf table of a present example.
  • FIG. 3 is a diagram illustrating an example of the configuration of a device management table according to the present embodiment. It is a figure showing an example of composition of a picking table of a present example. It is a figure which shows the floor table of a present Example. It is a flow chart of conveyance control processing of a present example.
  • FIG. 6 is a sequence diagram of a floor surface deterioration diagnosis process when the conveyance device of the present embodiment moves straight. It is a flowchart of the floor surface deterioration diagnosis process when the conveyance device of this embodiment rotates. It is a flowchart of marker abnormality detection processing of a present example. It is a flow chart of shelf shift detection processing of a present example.
  • FIG. 3 is a sequence diagram of foreign object detection processing according to the present embodiment. It is a flowchart of abnormal device diagnosis processing of a present example. It is a figure showing the positional relationship of the shelf and the magnetic sensor of a present example. It is a figure showing the state where the top board of a present example was removed from a conveyance device.
  • an "interface device” may be one or more interface devices.
  • the one or more interface devices may be at least one of the following: - One or more I/O (Input/Output) interface devices.
  • the I/O (Input/Output) interface device is an interface device for at least one of an I/O device and a remote display computer.
  • the I/O interface device for the display computer may be a communication interface device.
  • the at least one I/O device may be a user interface device, eg, an input device such as a keyboard and pointing device, or an output device such as a display device. - One or more communication interface devices.
  • the one or more communication interface devices may be one or more of the same type of communication interface device (for example, one or more NICs (Network Interface Cards)) or two or more different types of communication interface devices (for example, a NIC and an HBA (Host)). Bus Adapter)) may also be used.
  • NICs Network Interface Cards
  • HBA HBA
  • Bus Adapter Bus Adapter
  • memory refers to one or more memory devices that are an example of one or more “storage devices,” and may typically be a main storage device. At least one memory device in the memory may be a volatile memory device or a non-volatile memory device.
  • Persistent storage may be one or more persistent storage devices that are an example of one or more “storage devices.”
  • Persistent storage devices typically may be non-volatile storage devices (e.g. auxiliary storage devices), and specifically include, for example, HDDs (Hard Disk Drives), SSDs (Solid State Drives), NVMe (Non-Volatile Memory Express) drive or SCM (Storage Class Memory).
  • HDDs Hard Disk Drives
  • SSDs Solid State Drives
  • NVMe Non-Volatile Memory Express
  • SCM Storage Class Memory
  • a "processor” may refer to one or more processor devices.
  • the at least one processor device may typically be a microprocessor device such as a CPU (Central Processing Unit), but may also be another type of processor device such as a GPU (Graphics Processing Unit).
  • At least one processor device may be single-core or multi-core.
  • the at least one processor device may be a processor core.
  • At least one processor device is a circuit that is a collection of gate arrays (for example, FPGA (Field-Programmable Gate Array), CPLD (Complex Programmable Logic Device), or ASIC (Application It may also be a processor device in a broad sense such as Specific Integrated Circuit).
  • information such as an "xxx table” may be used to explain information that can be output in response to an input, but the information may be data of any structure (for example, It may be structured data or unstructured data), or it may be a learning model such as a neural network, genetic algorithm, or random forest that generates an output based on input. Therefore, the "xxx table” can be called "xxx information.”
  • the configuration of each table is an example, and one table may be divided into two or more tables, or all or part of two or more tables may be one table. .
  • program a program is executed by a processor to perform a prescribed process using a storage device and/or an interface device as appropriate.
  • the subject of the processing may be a processor (or a device or system including the processor).
  • a program may be installed on a device, such as a computer, from a program source.
  • the program source may be, for example, a program distribution server or a computer-readable recording medium (for example, a non-transitory recording medium).
  • two or more programs may be realized as one program, or one program may be realized as two or more programs.
  • any information may be employed as information for identifying an element (identification information, identifier).
  • the unit of "date and time” may be coarser or finer than the year, month, day, hour, and minute.
  • FIG. 1 is a diagram showing the configuration of the transport system of this embodiment.
  • one horizontal direction is defined as the x direction
  • a direction orthogonal to the x direction is defined as the y direction.
  • the transport system includes a plurality of transport devices 3 that travel within a warehouse 2 (an example of a storage space), and a control device 4 that remotely controls movement of each transport device 3.
  • movement of the transport device 3 refers to the general movement of the transport device 3 regardless of whether the shelves 5 are loaded or not.
  • “Movement” of the transport device 3 may be translated as “traveling" of the transport device 3.
  • “Movement” in a state where the transport device 3 is loaded with shelves 5 is particularly referred to as "transportation”.
  • the warehouse 2 is, for example, a storage warehouse used by a mail order company or a company in the equipment manufacturing industry to store goods.
  • the articles stored in the warehouse 2 may be products or parts.
  • an example of a product will be described as an example of the product stored in the warehouse 2.
  • a plurality of shelves 5 are movably installed in the area 200.
  • Each of the shelves 5 stores one or more articles (for example, products to be sold) at predetermined positions.
  • the shelf 5 is sometimes referred to as a moving shelf.
  • the area 200 is a part of the floor area of the warehouse 2, and is an area in which the transport device 3 travels.
  • the transport device 3 can travel in the area 200 and transport the shelves 5 to the picking station 6.
  • the picking station 6 is a place where work such as picking is performed. Note that picking is an example of a predetermined work related to transported objects. For example, at the picking station 6, warehousing work such as replenishing products to the shelves 5, inventory work, etc. may be performed, and the picking station 6 may be simply referred to as a station (or work station).
  • the transport destination is a predetermined position where the worker or the picking device can pick at the picking station 6 (for example, a predetermined position in front of the picking station 6). ) may be used.
  • the transport source (starting position) is a predetermined position where the operator or the picking device can pick at the picking station 6 (for example, in front of the picking station 6). ) is sufficient.
  • each transport device 3 When each transport device 3 receives a movement instruction associated with a transport task assigned to the transport device 3, it transports the shelf 5 existing in the area 200 in accordance with the movement instruction. According to the example shown in FIG. 1, the following is true. - After transporting the shelf 5A to the picking station 6, the transport device 3A is waiting for the picking of the products on the shelf 5A to be completed. After the operator or the picking device finishes picking at the picking station 6, the transport device 3A transports the shelf 5A from the picking station 6 to the storage position of the shelf 5A. - The transport device 3B that transports the shelves 5B to the picking station 6 is waiting for the transport device 3A to move. When the transport device 3A moves from the picking station 6, the transport device 3B can transport the shelf 5B to the picking station 6.
  • the transport device 3C is moving to transport the shelf 5C.
  • the conveyed object (including the shelf 5) may be a conveyed object with legs (transferred object with legs) or may be a conveyed object without legs (transferred object without legs).
  • a conveyed object without legs is stored, for example, on a pedestal. Whether the object to be transported has legs or is stored on a stand without legs, the transport device 3 can fit under the object, lift the object, and transport it. It is.
  • FIG. 2A is a diagram showing the configuration of area 200.
  • FIG. 2A schematically illustrates an area 200, and the area 200 illustrated in FIG. 2A does not completely match the area 200 illustrated in FIG.
  • the control device 4 manages an area (traveling area) 200 in which the transport device travels by dividing it into a plurality of rectangular sections 201 of a predetermined size.
  • the division 201 may be in a coordinate format such as division ( ⁇ , ⁇ , ⁇ ), for example.
  • is the x coordinate (section position along the x direction)
  • is the y coordinate (section position along the y direction)
  • is the z coordinate (area position in the height direction).
  • the area 200 includes areas on multiple floors or areas above and below a mezzanine, the area position in the height direction of each area can be expressed using the z coordinate.
  • transport between upper and lower mezzanines may be performed by, for example, a vertical transport machine.
  • a vertical transport machine only the shelf 5 may be transported by the vertical transport machine, or the shelf 5 and the transport device 3 may be transported by the vertical transport machine.
  • a marker 300 indicating the position of the section 201 may be provided, as shown in FIG. 2B.
  • the marker 300 only needs to include information for specifying the location of the section.
  • the marker 300 may be the location information of the section, or the information associated with the location information of the section (for example, the location of the section 201. identification information from which information can be derived).
  • the marker 300 is information that can be read by the sensor 14 of the transport device 3, and may be information such as a one-dimensional code, a two-dimensional code such as a QR code (registered trademark), or an RFID (Radio Frequency IDentifier) tag.
  • the marker 300 is composed of a plurality of two-dimensional codes (for example, M pieces), and a predetermined number (for example, N pieces, where M>N) or more of two-dimensional codes. If the dimensional code can be read correctly, the partition can be identified. For example, if any N of M two-dimensional codes can be read correctly, the partition can be identified by the read two-dimensional codes. For example, it is assumed that M two-dimensional codes of the same marker 300 each have the same or equivalent information.
  • the conveyance device 3 reads the marker 300, it determines whether a predetermined number (for example, k) or more of the M two-dimensional codes of the marker 300 have the same or equivalent information. In this case, it may be determined that the two-dimensional code can be read correctly.
  • the number of two-dimensional codes that can be read correctly is sometimes referred to as the "number of two-dimensional codes read" or the "number of readable codes.”
  • the transport device 3 reads the marker 300 provided in the section 201 that it passes through. While traveling, the transport device 3 transmits the identification information (device ID) of the transport device 3 and the read information of the marker 300 to the control device 4 via the wireless communication network. For example, the transport device 3 may transmit position information represented by the marker 300 or position information derived from the information represented by the marker 300 to the control device 4 as information about the read marker 300. The control device 4 identifies the position of the transport device 3 based on the information of the marker 300 received from the transport device 3. Even if a plate-like member is provided throughout the section 201, the conveying device 3 is movable from the section 201 to another adjacent section 201, and the conveying device 3 is rotatable in the section 201. good.
  • Area 200 includes shelf storage sections (3, 3), (3, 4), etc. (sections with the same pattern in FIG. 2A), which are sections where shelves 5 are stored (arranged) in plan view, and charging device 7. It includes a section (1, 1) and sections (6, 15) and (13, 15) where the picking station 6 is present.
  • the shelf 5 may have approximately the same size as one compartment 201 or may have a smaller size than one compartment 201.
  • Various modifications may be made to the method of setting the sections, and a section (for example, section (3, 1)) into which the transport device 3 is prohibited may be provided.
  • the direction in which the transport device 3 can move in each section 201 may be set as indicated by the arrow illustrated in FIG. 2A.
  • the transport device 3 not loaded with shelves 5 may be movable.
  • the transport device 3 loaded with the shelves 5 may be set not to be moved between shelf storage sections in order to prevent collisions with the shelves 5 stored in the shelf storage sections.
  • the sections 201 may be set to be movable in both directions, or may be set to be movable in only one direction. For example, by setting the sections 201 to be movable only in one direction, it is possible to suppress or reduce the occurrence of traffic jams in the transport device 3 and to improve the overall transport efficiency. In addition, if there are many sections 201 that can only move in one direction, the moving route of the transport devices 3 may become long, so the number of transport devices 3 in the area 200 or the position of each section 201 Depending on the type, etc., the movable direction of the transport device 3 may be set in advance, or such a direction may be dynamically set or changed by the control device 4. Note that the direction in which the transport device 3 can move is preferably set to the floor table 60. The control device 4 controls the movement of the transport device 3 including the direction of movement of the transport device 3 according to the floor table 60 .
  • the transport device 3 is a device that moves according to a movement instruction from the control device 4, and typically may be an AGV (Automatic Guided Vehicle).
  • the shelf 5 is an example of a conveyance target that can be conveyed by the conveyance device 3.
  • objects such as trays, pallets, or containers may be an example of objects to be transported.
  • the object to be transported is something that can carry one or more articles (for example, a shelf 5 or a pallet)
  • the object to be transported may be called a storage section (storage device) or a loading platform.
  • a case of a shelf 5 will be described as an example of a target to be transported by the transport device 3.
  • the object to be transported is sometimes called a transported object.
  • the transport device 3 lifts the shelf 5 specified in the movement instruction and transports the shelf 5 to the picking station 6 specified in the movement instruction. After the necessary products are taken out by the worker at the picking station 6 (that is, after picking), the shelves 5 transported to the picking station 6 are returned to the original shelf storage section (or another shelf storage section) by the transport device 3. ).
  • the transport path to the picking station 6 and the movement path from the picking station 6 to the original shelf storage section (or another shelf storage section) of the shelf 5 may be specified in one movement instruction, or may be specified in separate movements. May be specified in the instructions.
  • a shelf 5 that stores products that are frequently picked (for example, frequently) and is transported to the picking station 6 frequently (for example, frequently) is placed near the picking station 6. It may be installed in a certain shelf storage compartment.
  • the shelves 5 that are transported to the picking station 6 less frequently may be installed in a shelf storage section located far from the picking station 6. In this way, by changing the installation location of the shelves 5 depending on the number of times the items are transported to the picking station 6, the transport efficiency can be improved.
  • FIG. 3A and 3B are diagrams showing the appearance of the conveyance device 3.
  • FIG. 3A is a perspective view of the conveyance device 3 seen from above, and
  • FIG. 3B is a bottom view of the conveyance device 3.
  • the conveyance device 3 is formed into a rectangular parallelepiped shape as a whole.
  • driving wheels 20D for turning and moving the conveying device 3 forward are disposed on the lower surface (bottom surface) of the conveying device 3, and auxiliary wheels 20D are provided at the four corners of the lower surface of the conveying device 3.
  • 20A is installed.
  • a disk-shaped table 22 is provided at the center of the upper surface of the transport device 3 so as to be able to rise and fall and rotate freely.
  • At least one of the driving wheel 20D and the auxiliary wheel 20A is a "wheel" of the conveyance device 3.
  • the conveying device 3 rotates the driving wheels 20D to move to the lower side of the shelf 5 to be conveyed, and then raises the table 22 to lift the shelf 5.
  • the shelf 5 is conveyed by traveling through an area 200 in the warehouse 2 in a state in which the shelves 5 are kept in the same state.
  • the transport device 3 can change the direction of the shelf 5 by rotating the table 22 with the shelf 5 lifted.
  • the conveyance device 3 can rotate the table 22 in the opposite direction in response to the rotation of the main body, and can rotate the conveyance device 3 without rotating the lifted shelf 5.
  • the transport device 3 has a charging function and calculates the remaining amount based on the voltage of the mounted battery 80. When the remaining capacity of the battery 80 becomes low, the transport device 3 requests the control device 4 to charge it. Upon receiving the charging request, the control device 4 moves the transport device 3 to the charging device 7, connects it to the charging device 7, and charges the battery 80. During charging, the transport device 3 communicates with the control device 4 via the charging device 7 and transmits management information to the control device 4. Note that the device ID of the transport device 3 may be included as part of the management information.
  • the transport device 3 can communicate with the control device 4 by a signal superimposed on the power supply terminal that connects the transport device 3 and the charging device 7, or by high-speed short-range wireless communication or infrared communication that directly connects the transport device 3 and the charging device 7. High-speed communication is possible without going through the wireless communication network within the warehouse 2. Communication using signals superimposed on a power line can be realized by applying PLC technology, for example.
  • the transport device 3 is connected to the control device 4 via a wireless communication network provided within the warehouse 2.
  • a movement instruction is transmitted from the control device 4 to the transport device 3 that performs movement (including transportation), and the equipment that has received the movement instruction moves in accordance with the movement instruction.
  • the transport device 3 transmits management information to the control device 4 via a wireless communication network.
  • control device 4 can process multiple transport tasks in parallel for the transport system as a whole.
  • the picking operation may be performed in the order in which the shelves are transported to the picking station 6 (in the order of arrival).
  • the transport task is a task that indicates which shelf 5 is to be transported to which section, and the information representing the transport task is, for example, the shelf ID of the shelf 5 to be transported and the route along which the transport device 3 moves. It may include a moving route and a moving direction of the conveying device 3.
  • the movement route includes a route from the current section of the transport device 3 (the section to which the current position belongs) to the shelf section (the section where the shelf 5 to be transported exists), and a route from the shelf section to the destination section (for example, the picking station 6). It may also include a part of the route (for example, the route that is most recently scheduled to be traveled).
  • the control device 4 gives a "move instruction" to the transport device 3 to the designated position.
  • This movement route may further include a route from the picking station 6 to the specified position.
  • the compartment adjacent to the picking station 6 and the battery station at least the compartment adjacent to the picking station 6 may be an example of a target compartment (a compartment to which the target position belongs).
  • FIG. 5 is a diagram showing an example of the overall configuration of the transport system of this embodiment.
  • 6 is a diagram showing the configuration of the transport device 3 and the charging device 7
  • FIG. 7 is a diagram showing the configuration of the control device 4 and the management device 9
  • FIG. 8 is a diagram showing the configuration of the picking terminal 710. It is.
  • the transport system includes a control device 4, a transport device 3, a picking terminal 710, a charging device 7, a management device 9, and a network 551.
  • the conveying system may further include all or part of other conveying equipment (e.g., a vertical conveyor or conveyor), a multi-level area (e.g., a mezzanine), a trestle, shelves 5, and a picking station 6. good.
  • Each component of the transport system may be one or more.
  • the configuration illustrated in FIG. 1 may be realized by introducing a transportation system into the warehouse 2.
  • some or all of the components of the management device 9 may be located at the same site as the warehouse 2, or may be located at a different site from the warehouse 2 and configured to be remotely maintainable.
  • some or all of the components of the management device 9 may be realized as the control device 4.
  • the configuration of a part or all of the control device 4 and the management device 9 may be referred to as a control system or a control device.
  • the control device 4 can communicate with the transport device 3, the charging device 7, the management device 9, and the picking terminal 710 via the network 551.
  • the network 551 includes a wireless communication network provided within the warehouse 2 and a wired communication network (wired LAN) that connects fixedly installed devices.
  • the transport device 3 is connected to other devices via a wireless communication network provided in the warehouse 2 while moving within the area 200 .
  • the transport device 3 includes a drive device 11, a storage device 12, an interface device 13, a plurality of types of sensors 14, a battery 80, and a controller 10 connected thereto.
  • the controller 10 controls the operation of the transport device 3 according to movement instructions from the control device 4, the state of charge of the battery 80, and the like.
  • the drive device 11 has a drive mechanism 20 and a lifting mechanism 21.
  • the drive mechanism 20 includes actuators such as left and right motors 20M for independently rotationally driving each of the left and right drive wheels 20D, and an encoder 20E that detects the operation of each motor 20M.
  • the elevating mechanism 21 includes an actuator such as a motor 21M for raising and lowering the table 22, an actuator such as a motor 21R for rotating the table 22, an encoder 21E that detects the operation of the motor 21M, and an encoder 21E that detects the operation of the motor 21R. It has an encoder 21F.
  • the interface device 13 is a device for communicating with the control device 4 using a predetermined wireless communication method, and may include, for example, a wireless LAN (Local Area Network) card.
  • a wireless LAN Local Area Network
  • the sensor 14 is a device for collecting information on the floor surface on which the transport device 3 runs and various information regarding the transport device 3.
  • the plurality of types of sensors 14 may be cameras that read information from the markers 300 on the sections 201 on the floor.
  • the sensor 14 includes a camera that images the bottom surface of the shelf 5, a camera that images the surrounding state of the transport device 3, LiDAR, a front camera provided on the front surface of the transport device 3, a distance image camera, LiDAR, etc.
  • Ultrasonic sensors and infrared sensors that detect obstacles in front of the transport device 3; magnetic sensors that detect the distance to the shelf 5 and the structure of the shelf 5; and sensors that detect vibrations of the transport device 3 during movement.
  • a vibration sensor, an acceleration sensor that measures the acceleration of the transport device 3, a weight sensor that measures the weight of the loaded object, a gyro sensor that measures the orientation of the transport device 3, or the like may be used.
  • the controller 10 has an arithmetic unit that executes arithmetic processing and a memory that stores data and programs.
  • the memory of the controller 10 stores a communication program 29, a movement control program 30, a measurement program 31, and a position estimation program 32.
  • the arithmetic device executes the communication program 29, the movement control program 30, the measurement program 31, and the position estimation program 32, a communication section, a travel control section, a measurement section, and a position estimation section are respectively realized.
  • the storage device 12 stores, for example, a route table 23, a device table 24, a map table 25, a measurement table 27, and a performance table 28.
  • the route table 23 is a table in which information representing the movement route specified by the movement instruction received from the control device 4 is stored. and the date and time of the location of the parcel).
  • the device table 24 is a table in which the ID, current position (section), and status (for example, "standby", "moving", or "transporting") of the transport device 3 are stored.
  • the map table 25 is a table in which information representing the position and attributes of each section (for example, which region it belongs to) is stored. Note that as an example of the map table 25, information illustrated in FIG. 2A may be stored.
  • the measurement table 27 is a table in which values measured by a plurality of types of sensors 14 (for example, acceleration, turning, weight, position (value read from marker 300), photographed image of a section, etc.) are stored.
  • the performance table 28 is a table in which movement results including the route and date and time of the transport device 3 are stored.
  • the communication program 29 is a program that transmits and receives commands and information to and from the control device 4 via the interface device 13. For example, the communication program 29 transmits some or all of the information in the tables 23 to 25, 27, and 28 to the control device 4 in response to a request from the control device 4 (or without a request). Note that the communication program 29 may transmit this information to the control device 4 at regular or irregular timing.
  • the movement control program 30 is a program that controls movement of the transport device 3 in response to movement instructions received from the control device 4 through the communication program 29.
  • the movement control program 30 controls the drive device 11 to lift a specified shelf 5 and move it to the picking station 6 along a specified movement path in accordance with a movement instruction from the control device 4, or
  • the driving device 11 is controlled to move the shelf 5 to its original position (or another position) along the moving path.
  • the measurement program 31 registers the output (measurement result) of each sensor 14 in the measurement table 27.
  • the position estimation program 32 estimates the position of the transport device 3 based on the detection result of the marker 300 by the sensor 14.
  • the battery 80 is a secondary battery that supplies power to each part of the transport device 3, and is connected to electrodes 83 and 84 connected to the charging device 7 via a charging circuit (not shown).
  • a mixer 81 is provided on the power supply line between the electrodes 83, 84 and the battery 80, and a modulator 82 is connected to the mixer 81.
  • Data (management information) transferred by the communication program 29 during charging via the charging device 7 is modulated by the modulator 82, superimposed on the power supply line by the mixer 81, and transmitted to the charging device 7.
  • communication between the transport device 3 and the charging device 7 during charging is not limited to the method of superimposing the communication line on the power supply line, but can also be performed by using a communication line provided between the transport device 3 and the charging device 7 separately from the power supply line.
  • the communication may be via a wireless communication network different from the wireless communication network used when the moving transport device 3 communicates with the control device 4 (for example, short-range wireless communication or infrared communication).
  • the charging device 7 is a device that supplies power supplied from a power supply device 70 installed at the battery station to the transport device 3, and includes a controller 71, a storage device 72, a demodulator 75, and a communication interface 76.
  • the controller 71 has an arithmetic device that executes arithmetic processing and a memory that stores data and programs, and controls supply of power to the transport device 3 and communication between the transport device 3 and the charging device 7 .
  • the storage device 72 provides a non-volatile storage area and stores the management information transmitted from the transport device 3 as an operation log.
  • the communication interface 76 is connected to the network 551 and controls communication with other devices (for example, the control device 4).
  • the signal transmitted from the transport device 3 is extracted from the feeder line by the demodulator 75.
  • the demodulator 75 demodulates the data transmitted from the transport device 3 via the power supply line and stores it in the storage device 72 as an operation log.
  • the operation log stored in the storage device 72 is transferred to the control device 4 at
  • the charging device 7 When the charging device 7 receives a command to charge the transport device 3 from the control device 4, it communicates with the transport device 3 that approaches for charging, and the electrodes 83, 84 of the transport device 3 are connected to the electrodes 73, 73 of the charging device 7. After the mutual positions are adjusted so as to be connectable to the charging device 74, the electrodes 83, 84 of the transport device 3 and the electrodes 73, 74 of the charging device 7 are connected. The transport device 3 and the charging device 7 are connected by a power supply line. Thereafter, the charging device 7 supplies charging power to the transport device 3 via the power supply line, and charges the battery 80. The transport device 3 transmits data (management information) to the charging device 7 via the power supply line (overlaid on the power supply line) during charging.
  • the management information transmitted here is, for example, management information acquired while the transport device 3 is traveling, and is management information regarding the travel environment of the transport device 3 or the transport device 3 .
  • the charging device 7 transmits the management information to the control device 4. Further, the control device 4 associates the data (management information) with the transmitted identification information (device ID) of the conveyance device 3, transmits it to the management device 9, and stores it in the storage device.
  • data can be transmitted from the transport device 3 to the control device 4 without going through the wireless communication network used when the moving transport device 3 communicates with the control device 4, which can alleviate congestion in the wireless communication network and provide high-speed A large amount of data can be transferred to the control device 4.
  • the transmission of management information from the charging device 7 to the control device 4 and the transmission of management information from the control device 4 to the management device 9 are performed using wireless communication used when the moving transport device 3 communicates with the control device 4. This is done via a communication network (for example, a wired communication network) that is separate from the network. Furthermore, the transmission of management information from the charging device 7 to the control device 4 and the transmission of management information from the control device 4 to the management device 9 may be performed while the transport device 3 is being charged, or at other timings (e.g. (after charging).
  • the transport device 3 measures the voltage of the battery 80 being charged, and when the voltage of the battery 80 reaches a predetermined voltage, it stops charging and notifies the control device 4 of the completion of charging. Then, the conveyance device 3 disengages from the charging device 7 in accordance with the command from the control device 4 to return to the conveyance operation, and starts the normal conveyance operation of the shelves 5.
  • the control device 4 is a computer having hardware such as a processor 40, a memory 41, a storage device 42, an input device 43, an output device 44, and an interface device 45.
  • the control device 4 may be composed of one or more physical computers, or may be a virtual computer system (for example, a cloud computing system) implemented on one or more physical computers (for example, a cloud platform).
  • the devices constituting the control device 4 may be placed in one physical computer, or may be distributed and placed in a plurality of physical computers.
  • the programs and data stored in the storage device 42 may be stored in one storage device, or may be distributed and stored in multiple storage devices.
  • data input and output may be possible via a client system that can communicate through the interface device 45.
  • the processor 40 is a device that executes a program and controls the overall operation of the control device 4.
  • Memory 41 is used as a work memory for processor 40.
  • the storage device 42 stores programs and data.
  • the input device 43 includes, for example, a mouse and a keyboard, and is used by the operator to input necessary information and instructions to the control device 4.
  • the output device 44 may be a display device such as a liquid crystal display or an organic EL (Electro Luminescence) display.
  • the interface device 45 is a device that communicates with the transport device 3 and the picking terminal 710 using a predetermined communication method, and may be configured from, for example, a network interface card.
  • the storage device 42 stores, for example, a device management table 53, an inventory table 54, a shelf table 57, a map table 56, an order table 55, a picking table 58, and a floor table 60.
  • the map table 56 contains map information of the area 200 (for example, information indicating the position (coordinates) and attributes of each section (for example, whether it corresponds to a shelf storage section, picking station 6, or battery station) for the area 200). (The map table 56 may be distributed to the transport device 3 and stored as the map table 25 in the transport device 3).
  • the floor table 60 may be an example of area information.
  • the device management table 53 may be an example of transport management information (for example, information representing the assignment relationship between the transport task and the transport device 3).
  • the storage device 42 stores a storage program 50 and a processing program 51.
  • the processor 40 executes the storage program 50 and the processing program 51, a storage section and a processing section are realized.
  • the storage program 50 stores these tables 53 to 60 in the storage device 42.
  • the management device 9 is a computer having hardware such as a processor 90, a memory 91, a storage device 92, an input device 93, an output device 94, and an interface device 95.
  • the management device 9 may be configured with one or more physical computers, or may be a virtual computer system (for example, a cloud computing system) implemented on one or more physical computers (for example, a cloud infrastructure).
  • the devices configuring the management device 9 may be placed on one physical computer, or may be distributed and placed on a plurality of physical computers.
  • the programs and data stored in the storage device 92 may be stored in one storage device, or may be distributed and stored in multiple storage devices. Instead of the input device 93 and the output device 94, data input/output may be possible via a client system that can communicate through the interface device 95.
  • the processor 90 is a device that executes a program and controls the overall operation of the control device 4.
  • Memory 91 is used as a work memory for processor 90.
  • the storage device 42 stores programs and data.
  • the input device 93 includes, for example, a mouse and a keyboard, and is used by the operator to input necessary information and instructions to the management device 9.
  • the output device 94 may be a display device such as a liquid crystal display or an organic EL (Electro Luminescence) display.
  • the interface device 95 is a device that communicates with other devices using a predetermined communication method, and may be composed of, for example, a network interface card.
  • the storage device 92 stores, for example, management data (management information) collected from the transport device 3 as an operation log 99.
  • the storage device 92 also stores an analysis program 96.
  • An analysis section is realized by the processor 90 executing the analysis program 96, and the management device 9 analyzes the management information.
  • the picking terminal 710 is an information processing terminal for managing the picking work at the picking station 6.
  • Picking terminal 710 has an interface device 731, a storage device 732, and a processor 733. Interface device 731, storage device 732, and processor 733 are communicably connected.
  • the interface device 731 is a device for communicating with the control device 4 using a predetermined communication method, and may be composed of, for example, a wireless LAN card or a network interface card.
  • Storage device 732 stores picking table 770.
  • the picking table 770 is a table containing part or all of the same information as the picking table 58 of the control device 4 (for example, information for identifying orders to be processed, scheduled work time, and actual progress status). Table) is fine.
  • the processor 733 controls the overall operation of the picking terminal 710 based on the picking table 770, for example, by executing the program in the storage device 732.
  • the picking terminal 710 may have an input device and an output device.
  • the input device receives input of information regarding the picking work by the worker, such as completion of the picking work.
  • the output device outputs instructions regarding picking work to the worker.
  • FIG. 9 is a diagram showing a configuration example of the order table 55.
  • the order table 55 is a table in which various information regarding orders from customers is stored.
  • the order table 55 has a record for each order.
  • Each record holds information such as a process ID 601, a slip number 602, a store name 603, a store code 604, a product name 605, a product ID 606, a quantity 607, a delivery date 608, a reception date and time 609, and a work date and time 610.
  • the slip number 602 is the same, if the types of products (for example, product name 605 and product ID 606) are different, the orders are treated as different orders.
  • One order may be managed as two or more orders, or two or more orders may be managed as one order.
  • the process ID 601 represents the ID of the order of interest.
  • the slip number 602 represents a so-called slip number.
  • the store name 603 represents the name of the store to which the product specified in the noted order is shipped, and the store code 604 represents the code of the store.
  • the product name 605 represents the name of the product specified in the noted order
  • the product ID 606 represents the ID of the product
  • the number 607 represents the number of the product.
  • the delivery date 608 represents the deadline by which the product specified in the noted order will be delivered to the order destination (typically, the customer).
  • the processing program 51 may calculate the deadline for actual picking at the picking station 6 by counting backwards from the delivery date 608.
  • the processing program 51 may decide the timing to send the movement instruction to the transport device 3 based on the calculated deadline, or specify the date and time when the transport device 3 should arrive at the picking station 6 in the movement instruction. You can.
  • the reception date and time 609 represents the date and time when the noted order was received.
  • the work date and time 610 represents the date and time when the work of transporting the shelf 5 on which the product specified by the order of interest is placed to the picking station 6 is performed.
  • FIG. 10 is a diagram showing an example of the configuration of the inventory table 54.
  • the inventory table 54 is a table in which information regarding products is stored.
  • the inventory table 54 has records for each product. Each record holds information such as a product name 701, product ID 702, inventory quantity 703, shelf ID 704, product position 705, and number of times of picking 706.
  • Let's take one product as an example referred to as "attention product” in the explanation of FIG. 10). Note that if the same product is stored on different shelves, multiple records exist for the same product. Similarly, when the same product is stored in different product positions on the same shelf, multiple records exist for the same product.
  • the product name 701 represents the name of the product of interest.
  • the product ID 702 represents the ID of the product of interest.
  • the number of items in stock 703 represents the number of items in stock of the item of interest.
  • the shelf ID 704 represents the ID of the shelf 5 on which the product of interest is placed.
  • the product position 705 represents the position of the product of interest on the shelf 5.
  • "U3R2" means the third from the top (U) and the second from the right (R).
  • the number of picking times 706 represents the number of times the item of interest has been picked.
  • the number of times of picking 706 may be counted on a shelf-by-shelf basis, or may be the number of products picked.
  • the number of times of picking 706 may be used to rearrange the arrangement of the shelves 5, replace products on the shelves 5, and the like. Further, the number of picking times 706 may be reset or updated at regular intervals, for example, the number of pickings in a predetermined period of time, and therefore may be referred to as "picking frequency.”
  • FIG. 11 is a diagram showing an example of the configuration of the shelf table 57.
  • the shelf table 57 is a table in which information regarding the shelves 5 is stored.
  • the shelf table 57 has a record for each shelf 5.
  • Each record holds a shelf ID 801, a storage position 802, a shelf weight 803 (for example, in [kg]), a product weight 804 (for example, in [kg]), and a number of times of transportation 805.
  • the shelf ID 801 represents the ID of the shelf 5 of interest.
  • the storage position 802 represents the section where the shelf 5 of interest is arranged. When the shelf 5 of interest exists in a buffer section, the storage position 802 represents the position of the buffer section. If the shelf 5 of interest is being transported, the storage position 802 may represent the state of the shelf 5 of interest "transporting”. If the shelf of interest 5 is being picked, the storage position 802 may represent the state of the shelf of interest 5 as "picking".
  • the shelf weight 803 represents the weight of the shelf 5 of interest.
  • the product weight 804 represents the total weight of all products placed on the shelf 5 of interest.
  • the product weight 804 may be calculated by the processing program 51, for example, based on the inventory quantity 703 of the product corresponding to the shelf ID 704 of the shelf 5 of interest and the weight of the individual product.
  • the number of times of transportation 805 is information representing the number of times the transportation task of the shelf of interest 5 is executed. Every time the transport task for the shelf 5 of interest is executed, the number of transports 805 corresponding to the shelf 5 of interest is updated, for example, by the storage program 50. For example, shelf 5 with shelf ID “S634” is stored in a section where the transportation cost is high because the number of times it is transported 805 is small. The number of times of transportation 805 may be incremented each time the shelf 5 of interest is transported regardless of the destination section, or the number of times of transportation 805 may not be incremented depending on the destination section even if the shelf of interest 5 is transported.
  • the number of times of transportation 805 corresponding to the shelf of interest 5 may be updated each time a transportation task to the picking station 6 as the destination section is executed.
  • the "number of times of conveyance" may be reset or updated at regular intervals, for example, the number of times of conveyance in a predetermined period of time, and therefore may be referred to as the "frequency of conveyance.”
  • FIG. 12 is a diagram showing a configuration example of the device management table 53.
  • the device management table 53 is a table in which information acquired from each transport device 3 is stored.
  • the device management table 53 has a record for each transport device 3.
  • Each record holds information such as a device ID 1101, a shelf flag 1102, a position 1103, a remaining battery level 1104, a device status 1105, a shelf ID 1106, a destination position 1107, and an estimated arrival date and time 1108.
  • One transport device 3 will be taken as an example (in the description of FIG. 12, “target transport device 3”).
  • the device ID 1101 represents the ID of the transport device 3 of interest.
  • the shelf flag 1102 indicates whether or not the target conveyance device 3 is loading a shelf.
  • the position 1103 represents the coordinates of the section (that is, the current section) in which the conveyance device 3 of interest is located.
  • the battery remaining amount 1104 represents the remaining amount of the battery 80 of the target conveyance device 3.
  • the device status 1105 represents the status of the target transport device 3.
  • "Moving” means that the target transport device 3 is moving.
  • “Empty” means that a shelf ID (specifically, a transport task including a shelf ID) is not assigned to the transport device 3 of interest.
  • the shelf ID 1106 represents the shelf ID included in the transport task assigned to the transport device 3 of interest (that is, the ID of the shelf 5 to be transported specified by the transport task).
  • the destination position 1107 represents the location of the destination of the shelf 5 transported by the target transportation device 3, and includes location information such as the address (coordinates) of the destination, or an ID of the destination that can specify the location of the destination. It may also be information (ID) that identifies the previous partition.
  • the transport destination of the transport device 3 may be the ID of the picking station 6 (the position (coordinates) corresponding to the picking station 6 may be used) or the ID (or coordinates) of the storage position of the shelf 5.
  • the scheduled arrival date and time 1108 is the scheduled date and time when the transport device 3 of interest will arrive at the transport destination (for example, the picking station 6).
  • the expected arrival date and time 1108 may be, for example, a date and time calculated by the processing program 51 based on the movement route of the target transport device 3 to the transport destination.
  • the processing program 51 of the control device 4 refers to the device management table 53 and assigns a transportation task to the transportation device 3 whose device status 1105 is “vacant”. However, for example, even if the transport device 3 is currently in the device status 1105 as "moving", if the scheduled arrival date and time 1108 is near and the destination position 1107 is close to the destination of the next transport task, the next transport task There are times when the transport device 3 can carry out the transport faster than other transport devices 3. In that case, the processing program 51 may refer to the device management table 53 and assign (may reserve or manage) the next transport task to the "moving" transport device 3.
  • FIG. 13 is a diagram showing an example of the configuration of the picking table 58.
  • the picking table 58 is a table related to picking work.
  • the picking table 58 has a record for each picking operation.
  • Each record holds information such as picking station ID 1401, process ID 1402, device ID 1403, shelf ID 1404, product ID 1405, quantity 1406, scheduled start date and time 1407, scheduled end date and time 1408, and picking status 1409. Let us take one picking operation as an example (referred to as "notable picking operation" in the explanation of FIG. 13).
  • the picking station ID 1401 represents the ID of the picking station 6 where the picking task of interest is performed.
  • the picking station ID 1401 may not be provided, and a picking table 58 may be provided for each picking station 6.
  • the process ID 1402 is the process ID of the order corresponding to the picking task of interest.
  • the device ID 1403 is the ID of the transport device 3 that transports the shelves containing the products to be picked in the focused picking operation to the picking station 6.
  • the shelf ID 1404 represents the ID of the shelf containing the product to be picked in the focused picking task
  • the product ID 1405 represents the ID of the product
  • the quantity 1406 represents the number of products to be picked. According to the table 58 in which the records are arranged in ascending order of the scheduled start date and time 1407, if the same shelf ID 1404 is consecutive, different products corresponding to different processing IDs from one shelf 5 are picked consecutively. It is possible.
  • the scheduled start date and time 1407 represents the scheduled start date and time of the picking task of interest.
  • the scheduled end date and time 1408 represents the scheduled end date and time of the picking task of interest.
  • the scheduled start date and time 1407 is calculated by the processing program 51 based on the scheduled date and time when the transport device 3 will arrive at the picking station 6 along the movement route and the predicted time length required for the picking task to be performed before the picking task of interest. It's fine.
  • the scheduled end date and time 1408 may be calculated by the processing program 51 based on the scheduled start date and time 1407 and the predicted time length required for the picking operation.
  • the predicted time length required for picking work is based on at least one of the quantity of products to be picked, the average time required for picking work, and the past picking work history of the picking worker, It may be calculated by the processing program 51. Note that the picking work may be performed by a robot instead of or in addition to a worker.
  • the picking state 1409 represents the state of the picking task of interest. "Before work” means before the transport device 3 with the shelves 5 arrives at the picking station 6 and before the picking work is started. "Work in progress” means that the picking work has started, but the picking work has not been completed. “Complete” means that the picking operation has been completed. Note that the picking state 1409 may be changed based on an input from a picking worker, or may be automatically changed based on a value automatically detected regarding the picking task. For example, when the waiting transport device 3 transports the shelf 5 after the completion of the focused picking task, the picking status 1409 corresponding to the next picking task after the focused picking task changes from "Before work" to "Work in progress". may be changed to
  • FIG. 14 is a diagram showing the floor table 60.
  • the floor table 60 holds information for each section in the area 200.
  • the floor table 60 has records for each section. Each record holds information such as address 1501, section setting 1502, unusable flag 1503, turnability flag 1506, direction (no shelf) 1508, and direction (with shelf) 1509. Take one section as an example (referred to as "attention section" in the explanation of FIG. 14).
  • Address 1501 represents the address (location information) of the section of interest.
  • the section setting 1502 indicates what kind of section is set as the section of interest.
  • a "shelf storage section” is a section where shelves are stored (arranged).
  • the "transfer section” is a section in which the transport device 3 travels to transport the shelves.
  • the sections constituting the transport route may mainly be sections for movement.
  • the unusable flag 1503 is a flag indicating whether the section of interest is unusable (cannot become a component of the transport route). By setting the unusable flag 1503 of the focused section to "unavailable", the control device 4 can lock the focused section so that the transport device 3 does not pass through the focused section.
  • the turning possibility flag 1506 indicates whether or not the section of interest allows the transport device 3 to turn. If the section of interest cannot be turned, the turning permission flag 1506 is set to "impossible.” If the section of interest is turnable, the turnability flag 1506 can be set to "possible". For example, if the attention section is an unusable section, such as a battery station or shelf storage section, and is a section where turning should be prohibited or a section where turning is not desired, the turning permission flag 1506 is set to "unusable”. ” may be set.
  • the transportation cost 1507 is a value set when the attention section is a shelf storage section, and is the travel distance from the attention division to the picking station 6 (or the travel time when the travel speed of the transportation device 3 is set to the standard speed). represents the transportation cost as a value according to .
  • An may be coefficients that do not change depending on the section. Note that other factors not mentioned above may be included in the transportation cost (for example, if the path included in the travel route from the section of interest is a path where traffic congestion is likely to occur, the transportation cost may be high). . Alternatively, the distance traveled by the vertical transport machine or the number of floors traveled may be used as a factor related to the transport cost, and the larger the factor, the higher the transport cost. Note that the calculation formula for the transportation cost C is an example, and may be calculated by excluding some elements, for example. Other methods (another calculation formula or simulation) may be used to calculate the transportation cost.
  • Direction (no shelves) 1508 is the direction in which the transport device 3 without shelves (with no shelves 5 loaded) can move from the target section, and the directions in which the transport device 3 can move are logically restricted. It can be set to Similarly, the direction (with shelves) 1509 is the direction in which the transport device 3 in the state with shelves (loaded with shelves 5) can move from the compartment of interest, and the direction in which the transport device 3 can move is logically Can be set to limit.
  • the direction (without shelf) 1508 or the direction (with shelf) 1509 for example, among the directions in which the transport device 3 can physically move, movement in some directions is prohibited, and movement is performed only in the remaining directions. It is also possible to limit the possibility of traffic, for example, it is possible to set one-way traffic.
  • the movable directions are "+x”, “-x”, “+y”, “-y”, “ ⁇ x”, “ ⁇ y” for the direction (without shelf) 1508 and the direction (with shelf) 1509. or a combination thereof; however, it may be expressed in other ways.
  • the transport device 3 determines whether or not it can move with the shelves 5 loaded. It may also be set whether or not the vehicle can be moved when it is not loaded.
  • the storage program 50 stores the tables 53 to 60 in the storage device 42.
  • the storage program 50 of the control device 4 stores the corresponding portions of the tables 53 to 60 as appropriate based on information (for example, measured values of the sensor 14) received regularly or irregularly from the transport device 3 and each picking terminal 710. Update to.
  • FIG. 15 is a flowchart of the transport control process.
  • the conveyance control process is executed repeatedly (for example, periodically).
  • step S1501 the processing program 51 arranges orders (records in the order table 55) in ascending order of work date and time 610.
  • orders may be sorted in order of urgency or necessity of work.
  • the processes of steps S1502 to S1504 are executed for each sorted order.
  • the processing program 51 may combine a plurality of orders into one order, and perform the processes of steps S1502 to S1504 on the combined order.
  • the plurality of orders that are combined into one order may be orders that have a predetermined type of element in common, such as orders for products included on the same shelf.
  • one order will be explained as an example.
  • step S1502 the processing program 51 identifies the shelf 5 on which the product to be picked is mounted and the position of the shelf 5 based on the order to be processed (order of interest). For example, the processing program 51 selects a shelf ID 704 corresponding to a product name 701 and product ID 702 that match the product name 605 and product ID 606 specified in the noted order, based on the order table 55, inventory table 54, and shelf table 57. The storage position 802 corresponding to the shelf ID 801 that matches the identified shelf ID 704 is identified from the shelf table 57.
  • step S1503 the processing program 51 moves the order of interest to the shelf position (storage position 802 of shelf 5) specified in step S1502 based on the map table 56, device management table 53, shelf table 57, and floor table 60.
  • a transport device 3 that transports a certain shelf 5 is selected, and a movement route for transport by the transport device 3 is created. That is, in step S1503, the transport device 3 to which the transport task according to the noted order is assigned is determined.
  • the transport task may be a task of transporting the shelf 5 to be transported along the created movement route.
  • the processing program 51 may perform at least one of the following. - The processing program 51 selects one transport device 3 from one or more transport devices 3 that meet a predetermined condition.
  • the "predetermined condition” may be, for example, that the device status 1105 is "vacant".
  • the transport device 3 is selected based on the device status 1105, shelf flag 1102, position 1103 of each transport device 3, and storage position 802 of the shelf 5 to be transported (distance between the storage position 802 and the position of the destination section). Good.
  • the processing program 51 refers to the device management table 53 and determines, among the transportation devices 3 whose device status 1105 is “vacant,” the transportation device 3 located at the position 1103 closest to the storage position 802 of the shelf 5 to be transported. may be selected.
  • the processing program 51 determines the position 1103 of the selected transport device 3, the storage position 802 of the shelf 5 to be transported, the position of the destination section (for example, the position of the picking station 6), and the position and purpose of the selected transport device 3.
  • the floor table 60 is referred to, and records for each compartment on the route (for example, unusable flag 1503, turning availability flag 1506, direction (no shelf) 1508, and (with shelves) 1509), a movement route (including movement direction) is created.
  • the movement route may be, for example, a route from the position 1103 of the selected transport device 3 to the storage position 802 of the shelf 5 to be transported, or a route from the storage position 802 of the shelf 5 to be transported to the position of the destination section.
  • the processing program 51 may refer to the picking table 58.
  • the processing program 51 identifies a picking station 6 that is relatively vacant (for example, selects a picking station 6 with a small number of records corresponding to the picking table 58), and selects the vacant picking station 6 as a target.
  • priority may be given to the transport task to the target division.
  • step S1504 the processing program 51 transmits to the transport device 3 selected in step S1503 a movement instruction associated with the transport task assigned to the transport device 3 (transport task according to the order of interest).
  • the processing timing of the transport task for each order is determined and the process is executed so as to meet the delivery date 608 of each order.
  • FIG. 16 is a flowchart of the log data collection process.
  • the position estimation program 32 reads the marker 300 on the section 201 on the floor and acquires position information (S2002).
  • the measurement program 31 acquires the driving environment from various sensors (S2003). For example, information about objects around the transport device 3 detected by an infrared sensor that detects obstacles in front is acquired.
  • the measurement program 31 acquires the voltage value of the battery 80 (S2004), and compares the acquired battery voltage value with a predetermined threshold (S2005).
  • the communication program 29 transmits the management information via the wireless communication network provided within the warehouse 2 (S2006). On the other hand, if the battery voltage value is smaller than the predetermined threshold, charging processing is executed (S2007). Details of the charging process will be described later with reference to FIG. 17. After that, the process returns to step S2002 and repeats the process.
  • FIG. 17 is a flowchart of charging process S2007.
  • the movement control program 30 requests charging to the control device 4 (S2011), and moves the transport device 3 to the battery station according to the movement instruction from the control device 4 (S2012).
  • the movement control program 30 connects to the charging device 7 and starts supplying power from the charging device 7 to the transport device 3 (S2013).
  • the communication program 29 transmits management information through wired communication (S2014).
  • the management information may be transmitted superimposed on the power supply line, or may be transmitted via a communication line separate from the power supply line.
  • the management information during charging may be transmitted not only via wired communication but also via wireless communication other than the wireless communication network provided within the warehouse 2 (for example, short-range wireless communication or infrared communication).
  • the movement control program 30 releases the connection between the charging device 7 and the transportation device 3, and disconnects the charging device 7 from the transportation device 3.
  • the transport device 3 is moved so as to separate from the transport device 7 (S2016).
  • FIG. 18 is a sequence diagram of the floor surface deterioration diagnosis process when the transport device 3 moves straight.
  • FIG. 18 describes the log data collection process (FIG. 16) with respect to measurements of specific items, and the same applies to FIG. 22, which will be described later.
  • the transport device 3 may receive vibrations and shocks caused by the floor when passing through the damaged area, and these vibrations and shocks can cause problems such as malfunctions and poor communication of the transport device 3. There are problems that can cause this.
  • the transport device 3 may receive vibrations and shocks caused by the floor when passing through the damaged area, and these vibrations and shocks can cause problems such as malfunctions and poor communication of the transport device 3. There are problems that can cause this.
  • no-travel areas if areas where the floor surface is damaged and the floor is in poor condition are designated as no-travel areas, if the number of such no-travel areas increases, the system will detour around the no-travel areas. There is a problem in that the transport efficiency is lowered due to this.
  • the measurement program 31 of the conveyance device 3 acquires the rotation speed (number of pulses per unit time) of the drive wheel 20D from the encoder 20E (S2021), and calculates the speed of the conveyance device 3 from the acquired rotation speed (S2022).
  • the measurement program 31 compares the speed difference during a predetermined time (for example, the difference between the maximum value and the minimum value of speed in the past one second) with a predetermined threshold value 1 (S2023). As a result, if it is determined that the speed difference is smaller than the threshold value, the process returns to step S2021 and repeats the process of measuring the speed of the transport device 3.
  • the communication program 29 transmits management information to the control device 4 via the wireless communication network provided in the warehouse 2 (S2024).
  • the management information transmitted in step S2024 includes the position of the transport device 3 (section 201), the abnormality detection location (section 201), and the abnormality detection time.
  • the movement control program 30 determines that an abnormality that is inconvenient to the traveling of the transport device 3 has been detected, and stops the transport device 3 (S2025).
  • the control device 4 After acquiring the management information, the control device 4 identifies the abnormality detection section that caused the stoppage of the transport device 3 (S2026), and controls the use of the section so that other transport devices 3 do not pass through the abnormality detection section.
  • the disabled flag 1503 is set to "disabled” and the section is locked (S2027).
  • an image taken of the abnormality detection section may be transmitted from the transport device 3 to the management device 9 via the control device 4.
  • the administrator can check the status of the abnormality detection section by looking at the image of the abnormality detection section.
  • the control device 4 outputs a maintenance instruction (S2028). This maintenance instruction is transmitted to the management device 9, and the manager views the image of the abnormality detection section and performs maintenance work on the floor. Maintenance work may be performed immediately or outside of picking work hours. Furthermore, if the administrator does not operate the management device 9 even after a predetermined period of time has passed since the control device 4 outputs the maintenance instruction, the maintenance work may be performed automatically.
  • the transport device 3 when the conveyance device 3 detects an abnormality in which the speed difference during a predetermined time when traveling straight is larger than the predetermined threshold value 1 while traveling, the transport device 3 transmits information on the position where the abnormality is detected via the wireless communication network. The information is transmitted to the control device 4 to stop traveling. The control device 4 uses the information on the position where the abnormality is detected to restrict other transport devices from passing through the abnormality detection position that caused the stoppage of the transport device 3 .
  • the transport device 3 when the transport device 3 starts charging (S2031), it transmits management information (driving log) to the control device 4 via the charging device 7 (S2032).
  • the management device 9 acquires the driving log from the control device 4 (S2033).
  • the travel log transmitted during charging includes data on the speed of the transport device 3 over time.
  • the management device 9 selects one speed in time order for each section (S2034).
  • the management device 9 determines the speed difference during a predetermined period of time of the conveyance device 3 that traveled in the section (for example, the difference between the maximum value and minimum speed of the past one second from the time of the selected speed, or the difference between the speeds for a predetermined period of time).
  • the management device 9 records the position of the floor-damaged compartment in order to draw attention to the possibility that the floor of the compartment is damaged (S2036).
  • the position of the floor damaged section may be recorded, or if the speed difference is determined to be large for a predetermined number of times or more, the position of the floor damaged section may be recorded. If it is determined that the speed difference is large between several or more different conveyance devices 3, the position of the floor damaged section may be recorded. Furthermore, the position of the floor damaged section may be recorded when the rate of change of the speed difference in the plurality of transport devices 3 exceeds a predetermined threshold. Since the speed difference changes depending on individual differences in the conveyance device 3, damage to the floor can be accurately determined by focusing on the rate of change in the speed difference. By making the determination using the management information of the plurality of transport devices 3, it is possible to reduce erroneous determinations due to individual factors of the transport devices 3 (for example, abnormalities in the transport device 3), and improve the determination accuracy.
  • the management device 9 determines whether the speed difference determination has been completed for all sections (S2037), and if there is a section for which the speed difference determination has not been completed, the process returns to step S2034, and the speed difference determination for the remaining sections is completed. Repeat the difference determination. On the other hand, if the speed difference judgment has been completed for all sections, the section (position) that satisfies the judgment conditions is recorded as a floor damage section (floor damage position) (S2038), and the recorded floor damage section (floor damage position) is recorded as a floor damage section (floor damage position). For example, a list of damaged floor sections is output as information on the location (S2039). Note that the management device 9 may output a maintenance instruction for the floor-damaged section. Further, if it is determined that the transport device 3 cannot travel through the floor damaged section, the control device 4 may lock the section so that the transport device 3 does not pass through the floor damaged section.
  • FIG. 19 is a flowchart of the floor surface deterioration diagnosis process when the transport device 3 rotates. Note that FIG. 19 describes the process executed by the management device 9 in the log data collection process (FIG. 16), and the same applies to FIGS. 20 and 21 described later. Note that a marker 300 is provided at a predetermined position on the floor surface around which the transport device 3 rotates, and is located approximately at the center of the revolution of the transport device 3.
  • the management device 9 acquires from the control device 4 the marker image included in the management information transmitted from the transport device 3 during charging (S2041).
  • the marker image is an image of the marker 300 taken when the conveyance device 3 rotates.
  • the management device 9 selects a group of marker images during one turn (S2042). Note that it is preferable to select an arbitrary marker image group for the first time, and then select marker image groups in a predetermined order (for example, chronological order).
  • the center position of the marker 300 in each marker image is calculated (S2043). For example, a rectangle forming the outline of the marker 300 is extracted from the marker image, and the position where the diagonal lines of the rectangle intersect is calculated as the marker center position.
  • the management device 9 calculates the difference in the center positions of the markers 300 in the group of marker images (the amount of change in the center positions of the markers 300 when the transport device 3 rotates; the center position difference), and calculates the center position difference. and a predetermined threshold (S2044). As a result, if it is determined that the center position difference is smaller than the threshold value, the process returns to step S2042 and repeats the process of comparing the center position difference of the marker 300 at the next time with the threshold value. On the other hand, when it is determined that the center position difference is larger than the threshold, the management device 9 records the determined section (position where the amount of change in the center position is large) as a floor damaged section position (floor damaged position) (S2045 ).
  • the management device 9 determines whether the determination of the center position difference of the marker 300 has been completed for all marker images (S2046), and if there is any marker image for which the determination of the center position difference has not been completed, the process proceeds to step S2042. Returning, the determination of the center position difference is repeatedly executed for the remaining marker images. On the other hand, if the center position differences have been determined for all marker images, a floor damaged section list, which is a list of sections that satisfy the criteria for determining floor deterioration (floor damage), is output as floor damage position information. (S2047). Note that the management device 9 may output a maintenance instruction for the floor-damaged section. Further, if it is determined that the transport device 3 cannot travel through the floor damaged section, the control device 4 may lock the section so that the transport device 3 does not pass through the floor damaged section.
  • FIG. 20 is a flowchart of marker abnormality detection processing. For example, if an abnormality occurs in the marker 300 and the marker 300 becomes unreadable, the section where the marker 300 is located becomes impossible to travel, and the transport device 3 may come to an emergency stop due to an error, improving transport efficiency and picking. This results in a decrease in efficiency.
  • the marker abnormality detection process makes it possible to detect abnormalities in the marker 300 at an early stage, thereby preventing a decrease in transport efficiency and picking efficiency.
  • a marker 300 including a plurality of read codes (for example, two-dimensional codes) is provided at a predetermined position on the floor surface on which the transport device 3 runs, in order for the transport device 3 to detect the position.
  • the management device 9 acquires marker reading data included in the management information transmitted from the transport device 3 during charging from the control device 4 (S2051).
  • the marker read data may include the number of read codes read while the transport device 3 is traveling.
  • the management device 9 selects marker read data of one section (S2052). Note that it is preferable to select arbitrary marker reading data for the first time, and then select marker reading data in a predetermined order (for example, in the order of the identification information of the partition). Then, the number of read two-dimensional codes is compared with a predetermined threshold (S2053).
  • the process returns to step S2052, where the marker read data of the next section (the read two-dimensional code ) is compared with the threshold value.
  • the number of two-dimensional codes read is equal to or less than a predetermined threshold, it is determined that the marker 300 is abnormal, and the position of the marker (the section where the marker is located) is changed to the marker abnormal section position (marker abnormal position ) (S2054).
  • the position of the marker abnormal section may be recorded when it is determined that the marker is abnormal once, or the position of the marker abnormal section may be recorded when it is determined that the marker is abnormal a predetermined number of times, or If a marker abnormality is determined in a different conveyance device 3, the position of the marker abnormal section may be recorded.
  • the management device 9 determines whether the determination of the number of two-dimensional codes read for the marker read data of all sections has been completed (S2055), and if there is marker read data for which the determination has not been completed, step Returning to S2052, the number of two-dimensional codes read for the remaining marker read data is repeatedly determined. On the other hand, if the number of two-dimensional codes read for all marker read data has been determined, the marker abnormal section list, which is a list of sections that satisfy the marker abnormality judgment conditions, can be used as information on the marker abnormal position. Output (S2056). Note that the management device 9 may output a maintenance instruction for the marker abnormal section. Further, when it is determined that the transport device 3 cannot travel through the marker abnormal section, the control device 4 may lock the region so that the transport device 3 does not pass through the marker abnormal section.
  • FIG. 21 is a flowchart of the shelf shift detection process.
  • the position of the shelf 5 deviates significantly from its normal position, there is a possibility that it will collide with the transport device 3 or with other shelves 5 that the transport device 3 transports.
  • the transport device 3 which is in the normal position where the shelf 5 should be, lifts and transports the shelf 5 that has deviated greatly from the normal position, the shelf 5 may be transported in an unstable state and the shelf 5 may fall. There is a possibility that the items on the shelf 5 may fall, or there is a possibility that the shelf 5 and surrounding structures (including other shelves 5) collide.
  • shelf shift detection process shelf shifts of a predetermined amount or more can be detected at an early stage, and maintenance to eliminate shelf shifts can be performed. Therefore, it is possible to prevent failure of the conveyance system due to shelf displacement, prevent a decrease in conveyance efficiency and picking efficiency, and improve the reliability of the conveyance system.
  • the management device 9 acquires from the control device 4 a set of a marker image and a shelf bottom image included in the management information transmitted from the transport device 3 during charging (S2061).
  • the management device 9 selects the next marker image and shelf bottom image taken at the same position (S2062). Note that it is preferable to select a set of a marker image and a shelf bottom image taken at an arbitrary same position for the first time, and then select a set of a marker image and a shelf bottom image in a predetermined order (for example, in chronological order). Then, the marker center position and shelf center position are calculated (S2063). For example, a rectangle forming the outline of the marker 300 is extracted from the marker image, and the position where the diagonal lines of the rectangle intersect is calculated as the marker center position.
  • a rectangle forming the outline of the code indicating the shelf ID displayed at the center of the bottom surface of the shelf 5 is extracted from the shelf bottom image, and the position where the diagonal lines of the rectangle intersect is calculated as the shelf center position.
  • the management device 9 compares the difference between the marker center position and the shelf center position with a predetermined threshold (S2064). As a result, if the difference between the marker center position and the shelf center position is smaller than a predetermined threshold value, the position of the shelf 5 is determined to be normal, and the process returns to step S2062 to determine the next position of the shelf 5. repeat.
  • a misaligned shelf ID may be recorded when a misalignment is determined once, a misaligned shelf ID may be recorded when a misalignment is determined a predetermined number of times, or a misaligned shelf ID may be recorded when a misalignment occurs more than a predetermined number of times. If the conveyance device 3 determines that the shelf is misaligned, the misaligned shelf ID may be recorded.
  • the management device 9 determines whether determination of positional deviation has been completed for all marker images and shelf bottom images (S2066), and if there are marker images and shelf bottom images for which determination has not been completed, the process proceeds to step S2062. Returning, the determination of the positional deviation of the shelf 5 is repeatedly executed for the remaining marker images and shelf bottom images. On the other hand, if the determination of positional deviations has been completed for all marker images and shelf bottom images, a shelf deviation list, which is a list of shelves 5 whose positions have deviated from their normal positions, is output (S2067). The management device 9 may then output a maintenance instruction for shelf shift.
  • control device 4 instructs the transport device 3 to lift a shelf 5 that is out of position, move the shelf 5 by the difference between the marker center position and the shelf center position, and then lower the shelf 5.
  • the positional shift of the shelf 5 can be eliminated.
  • the worker who has viewed the output shelf shift list may move the misaligned shelf 5 by the amount of shift using a manned or remote-controlled forklift.
  • a conveyance object marker is provided approximately at the center of the bottom surface of the conveyance object conveyed by the conveyance device 3 .
  • a floor marker (marker 300) for detecting the position is provided at a predetermined position on the floor surface of the destination of the conveyance object by the conveyance device 3.
  • the management information transmitted from the transport device 3 to the control device 4 during charging includes an image of the transport object marker and an image of the floor marker taken when placing the transport object at the transport destination.
  • the management device 9 acquires the management information from the control device 4, and uses the acquired management information to calculate the difference between the position of the transported article marker and the position of the floor marker.
  • the management device 9 records that the position of the conveyed object for which the difference in position exceeds the predetermined range is shifted, and confirms that the recorded position is Outputs information about misaligned conveyed items.
  • FIG. 22 is a sequence diagram of foreign object detection processing. For example, if the transport device 3 comes into contact with a foreign object (including collision with a foreign object or getting caught in a foreign object), there is a possibility that an abnormality (including a failure) will occur in the transport device 3 and the transport device 3 will stop or become unusable. There is. Through the foreign object detection process, it is possible to detect foreign objects in the transport device 3 at an early stage and take countermeasures (for example, making the foreign object detection area impossible to drive, removing the foreign objects, etc.). Therefore, the possibility that an abnormality occurs in the transport device 3 and the transport device 3 stops or becomes unusable can be reduced, and a decrease in transport efficiency and picking efficiency can be prevented.
  • a foreign object including collision with a foreign object or getting caught in a foreign object
  • an abnormality including a failure
  • the transport device 3 includes a sensor 14 that can detect surrounding objects.
  • the measurement program 31 of the transport device 3 captures an image of the detected foreign object with the front camera 14.
  • the image is stored in the storage device 12 (S2072).
  • the foreign object may be, for example, an article ( fallen object) that has fallen from the shelf 5.
  • the measurement program 31 obtains the distance to the foreign object (S2073).
  • the distance to the foreign object is acquired based on the detection results of the distance image camera 14, the ultrasonic sensor 14, and the LiDAR 14.
  • the communication program 29 transmits the management information to the control device 4 via the wireless communication network provided in the warehouse 2 (S2074).
  • the management information transmitted in step S2074 includes the position of the transport device 3 (section 201), the distance to the foreign object, and the foreign object detection time.
  • the control device 4 Upon acquiring the management information, the control device 4 uses the position and orientation of the transport device 3 and the distance to the foreign object to identify the section where the foreign object has been detected (S2075), and the other transport devices 3 identify the section where the foreign object has been detected. The section is locked so that no one can pass through it (S2076). Then, the control device 4 outputs a maintenance instruction (S2077). This maintenance instruction is transmitted to the management device 9 together with the image of the foreign object detection section, and the administrator views the image of the foreign object detection section and performs maintenance work to remove the foreign object. Maintenance work may be performed immediately or outside of picking work hours. Furthermore, if the administrator does not operate the management device 9 even after a predetermined period of time has passed since the control device 4 outputs the maintenance instruction, the maintenance work may be performed automatically.
  • the image of the foreign object detection section may be transmitted from the transport device 3 to the control device 4 via a wireless communication network provided within the warehouse 2.
  • the transmission timing may be the timing of S2074 or a subsequent timing (eg, timing after S2076).
  • the image of the foreign object detection section is transferred from the transport device 3 to the charging device 7, as shown in FIG. It may also be transmitted to the control device 4 via.
  • the transmission timing may be a timing after S2074 (for example, a timing after S2076).
  • the transport device 3 transmits positional relationship information including the distance between the detected foreign object and the transport device 3 and the transport device 3 via the wireless communication network.
  • the location information is transmitted to the control device 4.
  • the control device 4 specifies the section where the foreign object has been detected based on at least the positional relationship information and the position information of the transport device 3, and sets the section where the foreign object has been detected so that the transport device 3 cannot run.
  • the transport device 3 may include an image sensor, and the transport device 3 may transmit an image including a foreign object acquired by the image sensor while traveling to the control device 4 via the charging device 7 during charging.
  • the transport device 3 starts charging (S2081) and transmits management information to the control device 4 via the charging device 7 (S2082).
  • the management device 9 acquires management information (surrounding images) from the control device 4 (S2083).
  • the management information transmitted during charging includes an image of the surroundings of the transport device 3 (for example, an image of the driving environment of the transport device 3 acquired while the transport device 3 is running), and data on a photographing position.
  • the management device 9 acquires one peripheral image (S2084). Note that it is preferable to acquire arbitrary peripheral images for the first time, and then acquire peripheral images in a predetermined order (for example, in chronological order).
  • the image recognition model uses the image recognition model to extract foreign objects that obstruct the movement of the transport device 3 from the acquired peripheral image (S2085).
  • the image recognition model a neural network model learned using images of a foreign object that obstructs the movement of the transport device 3 can be used.
  • the management device 9 determines whether a foreign object is detected in the surrounding image (S2086). As a result, if no foreign object is detected, the process returns to step S2084 and repeats the process of determining a foreign object in the next peripheral image.
  • the management device 9 uses the position and orientation of the transport device 3 and the distance to the foreign object to identify the section where the foreign object was detected (S2087), and other transport devices 3 The detection section is locked so that it does not pass through it (S2088). Note that the management device 9 may transmit an instruction to lock the section to the control device 4, and the control device 4 may lock the section. In this way, the management device 9 attempts to extract a foreign object from the surrounding image, and restricts other transport devices 3 from passing through the position of the foreign object extracted from the surrounding image.
  • the management device 9 determines whether foreign object determination has been completed for all peripheral images (S2089), and if there is a peripheral image for which foreign object determination has not been completed, the process returns to step S2084, and for the remaining peripheral images. Repeatedly perform foreign object determination.
  • a maintenance instruction to remove the foreign objects is output (S2090).
  • the administrator looks at the output maintenance instructions (for example, an image of the foreign object detection section, etc.) and performs maintenance work to remove the foreign object. Maintenance work may be performed immediately or outside of picking work hours. Furthermore, if the administrator does not operate the management device 9 even after a predetermined period of time has passed since the control device 4 outputs the maintenance instruction, the maintenance work may be performed automatically.
  • the control device 4 may receive a maintenance instruction from the management device 9 and determine whether the transport device 3 can move the foreign object. As a result, if the transport device 3 determines that the foreign object can be moved, the control device 4 instructs the transport device 3 to move the foreign object to a predetermined location that will not impede travel. Note that this transport device 3 only needs to be a device that can move foreign objects according to instructions from the control device 4, and may be a device different from the transport device 3 that transports the shelves 5, and is referred to as a foreign object moving device. You may be
  • FIG. 23 is a flowchart of abnormal device diagnosis processing.
  • the abnormal device diagnosis process makes it possible to detect an abnormality including deterioration of the transport device 3 at an early stage before the transport device 3 enters a failure state due to deterioration or the like. Therefore, it is possible to prevent the conveyance system from stopping due to a failure of the conveyance device 3 and to prevent a decrease in conveyance efficiency and picking efficiency, and to improve the reliability of the conveyance system.
  • the management device 9 acquires the device operation log included in the management information transmitted from the transport device 3 during charging from the control device 4 (S2091).
  • the management device 9 selects one device operation log (S2092). Note that it is preferable to select any device operation log for the first time, and then select the device operation logs in a predetermined order (for example, in chronological order).
  • the management device 9 then calculates the response time of the device indicated by the selected device operation log (S2093), and compares the calculated response time with an allowable range (S2094). As a result, if the calculated response time is within the allowable range, the device is determined to be normal, and the process returns to step S2092 to compare the response time calculated from the next device operation log with the allowable range. Repeat the process. On the other hand, if the calculated response time is outside the predetermined allowable range, the device is determined to be abnormal, and the identification information of the device is recorded in the abnormal device list (S2095).
  • This abnormal device diagnosis process can be applied to devices within the transport device 3, such as actuators such as motors, lighting lamps, and sensors 14.
  • actuators such as motors
  • the time from the timing of the operation control command signal until the sensor 14 detects the completion of the operation by the motor is measured, and if the time required to start the operation becomes longer, it is determined that the device has deteriorated.
  • the response time is the time from when the table lifting servo motor 22M that lifts and lowers the table 22 starts operating until the magnetic sensor 14 detects the contact of the table 22 with the bottom plate 502 of the shelf 5.
  • deterioration of the equipment is determined based on the response time from the start of motor operation to the detection of the end of operation. Further, deterioration of the sensor 14 can be determined based on the response time from the operation control command signal of the sensor 14 to the start of operation.
  • the operation of the device was determined using the response time, but it may be determined whether the operation of the device is normal by comparing the resistance value, current value, etc. of the device with a predetermined threshold value. For example, if the resistance value of the sensor 14 is greater than a predetermined threshold value, it may be determined to be normal, and if the current value of an actuator such as a motor is greater than a predetermined threshold value, it may be determined to be abnormal.
  • the management device 9 determines whether the response time determination has been completed for all device operation logs (S2096), and if there is any device operation log for which determination has not been completed, the process returns to step S2052 and the remaining device operation logs are processed. Repeatedly perform response time determination on logs. On the other hand, if the determination of the number of response times has been completed for all device operation logs, an abnormal device list is output (S2097).
  • the management information transmitted from the transport device 3 to the control device 4 during charging includes the response time of the installed equipment.
  • the management device 9 acquires the management information from the control device 4, and uses the acquired management information to record that there is an abnormality in the response time if the response time tolerance value is larger than a predetermined threshold. Outputs information about devices with abnormalities.
  • the administrator can create an appropriate maintenance plan. For example, if the target section is in a state that requires repair within three months, it is possible to avoid the busy season for picking work and make a plan to carry out the repair during the off-season. It is possible to create a maintenance plan that has less impact on picking efficiency. Furthermore, if a section that requires repair in one month and a section that requires repair in two months are close to each other, it may be more efficient to repair them all at once. In this way, efficient maintenance becomes possible by outputting the status of the object and the timing when maintenance or other measures are required. In addition, it is possible to suppress a decrease in the transport efficiency of the transport system and improve the reliability of the transport system through maintenance.
  • the management device 9 determines that there is no problem in the state of the target ( If each judgment is Yes), if the target value is T1 or higher and smaller than T2 (threshold value larger than T1), the target state is determined to be "abnormal level small", and if the target value is T2 or higher, the target state is The state may be determined to be "high abnormality level" (if each determination is No).
  • the management device 9 determines that maintenance is required by X months if the target status is "low abnormality level", and after Y months (earlier than X months) if the target status is "high abnormality level”. ), the state of the object and the time when maintenance is required may be associated and stored for each determination. Then, when outputting the list in S2039 of FIG. 18, S2047 of FIG. 19, S2056 of FIG. 20, S2067 of FIG. 21, and S2097 of FIG. The time when maintenance is required (maintenance deadline) corresponding to the target state may be output.
  • the management device 9 may be able to determine the state of the target in more detail by increasing the threshold value described above. Further, if the target is a floor (compartment) as shown in FIGS. 18 to 20, the ease with which the partition deteriorates depends on the material and position of the partition. Furthermore, in the abnormal device list shown in FIG. 23, the maintenance timing differs depending on the type of the device.
  • a threshold value and a corresponding maintenance deadline may be set depending on the type of target and usage environment.
  • the management device 9 analyzes correlations or trends from statistical data such as the type of object, usage environment, deterioration transition of the object's condition, etc., and determines the type of object based on the analyzed correlation or trend.
  • the maintenance deadline may be determined from information on the usage environment and the state of the target.
  • the management device 9 performs each determination in cases where the transport device 3 does not load the transported object and when the weight of the transported object loaded by the transport device 3 is less than or equal to a predetermined threshold. Also good. In addition, the management device 9 determines the balance of the transported object based on the structure and weight of the transported object and the position and weight of the products loaded on the transported object, and determines if the transported object is loaded with an unbalanced object. may be excluded from the scope of Thereby, the influence of the conveyed object can be eliminated or the influence of the conveyed object can be reduced.
  • the management device 9 performs each determination when the conveyance device 3 loads a conveyed object and when the weight of the conveyed object loaded by the conveyance device 3 is equal to or greater than a predetermined threshold value. Also good. For example, damage to the floor surface can be more easily detected when objects are loaded, and the determination accuracy may be improved.
  • the management device 9 obtains the information on the presence or absence of the transported object or the weight of the transported object at the time of acquiring the target log as management information from the transport device 3 via the charging device, etc., and makes the determination. Good too.
  • the management device 9 acquires logs regarding the device management table 53 and the shelf table 57 from the control device 4, and determines whether or not there is a transported object or not, and which corresponds to the time of the travel log that is subject to each determination of the transport device 3. The determination may be made by specifying information about the weight of the object.
  • FIG. 24 is a diagram showing the positional relationship between the shelf 5 and the magnetic sensor 14, and FIG. 25 is a diagram showing the top plate 22D removed from the transport device 3.
  • the shelf 5 has a bottom plate 502 supported by legs 501 at a predetermined height from the floor, and one or more shelf boards 503 on which articles are placed. A space into which the transport device 3 enters is provided at the bottom of the bottom plate 502 .
  • a top plate 22D is rotatably attached to the top surface of the transport device 3.
  • the top plate 22D is disposed on the upper ring 22A in engagement with the upper ring 22A, and the top plate 22D rotates as the upper ring 22A rotates.
  • the top plate 22D and the upper ring 22A are engaged with each other by a convex portion of the top plate 22D and a recessed portion of the upper ring 22A.
  • the upper ring 22A is visible as shown in FIG.
  • the upper ring 22A is engaged with a table rotation servo motor 22L.
  • a sprocket is provided inside the upper ring 22A, a gear is attached to the shaft of the table rotation servo motor 22L, and the sprocket and the gear are engaged. Therefore, the upper ring 22A rotates due to the rotation of the table rotation servo motor 22L, and the top plate 22D disposed on the upper ring 22A rotates.
  • a proximity sensor 14 is attached to the upper ring 22A. As described above, the proximity sensor 14 is, for example, a magnetic sensor, and observes the bottom plate 502 of the shelf 5 and measures the distance between the top plate 22D and the bottom plate 502.
  • a lower ring 22C is provided below the upper ring 22A.
  • a rolling bearing 22B is attached to the lower surface of the upper ring 22A, and the rolling bearing 22B supports the load of the upper ring 22A, and the rolling bearing 22B allows the upper ring 22A to rotate smoothly on the lower ring 22C. has been done.
  • the lower ring 22C is supported by a support column 22E.
  • the support column 22E is moved up and down by the table lifting servo motor 22M, and the lower ring 22C is moved up and down.
  • the support column 22E and the table lifting/lowering servo motor 22M constitute a ball screw.
  • a threaded shaft is formed on the support column 22E, and the threaded shaft is moved relative to the nut by rotating the nut engaged with the threaded shaft by the table lifting/lowering servo motor 22M.
  • the lower ring 22C, upper ring 22A, and top plate 22D can be moved up and down by the table lift servo motor 22M.
  • the table elevating servo motor 22M may be provided on one ball screw, and the ball screw provided with the table elevating servo motor 22M and other ball screws may be connected with a chain so that multiple ball screws operate synchronously. It is recommended to configure
  • the conveyance device 3 enters the space under the shelf 5, and lifts the shelf 5 by raising the top plate 22D by the table lifting/lowering servo motor 22M.
  • the proximity sensor 14 provided under the top plate 22D outputs a signal according to the distance to the bottom plate 502 of the shelf 5 (or the beam holding the bottom plate 502), and the output signal of the proximity sensor 14 determines the distance between the top plate 22D and the bottom plate. 502 can be measured, and contact of the top plate 22D to the bottom plate 502 can be detected.
  • the conveyance device 3 of this embodiment includes the secondary battery 80 that supplies power for operation, and the drive mechanism 20 that drives the wheels with the power supplied from the secondary battery 80. , acquires positional information regarding the position of the transporting device 3 and management information regarding the running environment of the transporting device 3 or the transporting device 3 while traveling, and transmits the acquired positional information to the control device 4 while traveling via a wireless communication network. Since the management information acquired during driving is transmitted to the control device 4 while the secondary battery 80 is being charged, the band for transmitting and receiving control data in the wireless communication network installed in the warehouse 2 is not compressed. , management information can be collected from the transport device 3.
  • one of the transport systems of the present embodiment includes a transport device 3 capable of transporting objects, a control device 4 that controls the operation of the transport device 3, and a charging device 7 that supplies charging power to the transport device 3. Equipped with.
  • the transport device 3 includes a secondary battery 80 that supplies power for operation, and a drive mechanism 20 that drives wheels using the power supplied from the secondary battery 80.
  • the transport device 3 acquires position information regarding the position of the transport device 3 and management information regarding the running environment of the transport device 3 or the transport device 3 while traveling.
  • the transport device 3 transmits the acquired position information to the control device 4 while traveling via a wireless communication network.
  • the transport device 3 transmits the management information acquired while traveling to the charging device 7 while the secondary battery 80 is being charged.
  • the charging device 7 transmits the management information to the control device 4.
  • the management information may be transmitted from the charging device 7 to the control device 4 during charging, or at other timings (for example, after charging). Thereby, management information can be collected from the transport device 3 without compressing the band for transmitting and receiving control data in the wireless communication network provided in the warehouse 2.
  • the shape of the partition is not limited to a rectangle, and may be any other shape.
  • sections of different sizes or shapes may coexist.
  • the location of the section may be specified by another type of method.
  • the storage program 50 and the processing program 51 may be executed by the transport device 3 instead of or in addition to the control device 4. Further, the transport device 3 may also serve as the control device 4.
  • the present invention can also be applied to a transportation system for transporting articles in factories, workshops, etc. other than storage warehouses used by companies such as online shopping companies to store their products.
  • the object to be transported by the transport device 3 may be an object other than the shelf 5, such as a tray, a box, a pallet, or an article.
  • the trays, boxes, and pallets may or may not contain articles (for example, when the trays, boxes, and pallets themselves are objects to be transported).
  • the work on the transported object may be other than picking work, such as processing, assembly, packaging, or inspection. In this case, it is only necessary to replace "picking" or "picking work” with "work”, so detailed explanation will be omitted.
  • the present invention is not limited to the embodiments described above, and includes various modifications and equivalent configurations within the scope of the appended claims.
  • the embodiments described above have been described in detail to explain the present invention in an easy-to-understand manner, and the present invention is not necessarily limited to having all the configurations described.
  • a part of the configuration of one embodiment may be replaced with the configuration of another embodiment.
  • the configuration of one embodiment may be added to the configuration of another embodiment.
  • other configurations may be added, deleted, or replaced with a part of the configuration of each embodiment.
  • each of the above-mentioned configurations, functions, processing units, processing means, etc. may be realized in part or in whole by hardware, for example by designing an integrated circuit, and a processor realizes each function. It may also be realized by software by interpreting and executing a program.
  • Information such as programs, tables, files, etc. that implement each function can be stored in a storage device such as a memory, hard disk, or SSD (Solid State Drive), or in a recording medium such as an IC card, SD card, or DVD.
  • a storage device such as a memory, hard disk, or SSD (Solid State Drive), or in a recording medium such as an IC card, SD card, or DVD.
  • control lines and information lines shown are those considered necessary for explanation, and do not necessarily show all control lines and information lines necessary for implementation. In reality, almost all configurations can be considered interconnected.

Abstract

The present invention provides a control method for a conveyance system that comprises a conveyance device and a control device. The conveyance device includes: a secondary battery that supplies electric power for operation; and a drive mechanism that drives wheels by using the electric power supplied from the secondary battery. The control method comprises: an information acquisition step in which the conveyance device acquires, while traveling, position information regarding the position of the conveyance device and management information regarding the conveyance device or the traveling environment of the conveyance device; a first communication step in which the conveyance device transmits the acquired position information to the control device while traveling via a wireless communication network; and a second communication step in which the conveyance device transmits the management information acquired while traveling to the control device while the secondary battery is being charged.

Description

搬送システムの制御方法、及び搬送システムConveyance system control method and conveyance system
 本発明は、無人搬送装置を用いた搬送システム、搬送システムの制御方法に関する。 The present invention relates to a transport system using an unmanned transport device and a method of controlling the transport system.
 eコマース等の物流倉庫において、商品ピッキングのために、ピッカーと呼ばれる仕分け作業員の目前まで商品棚を搬送装置(AGV:Automatic Guided Vehicle)が搬送し、作業員が商品棚内の商品を取り出す作業を行うシステムがある。搬送装置を制御する制御システムは、搬送装置と無線通信ネットワークで接続され、搬送装置に搬送を指示する。 In a logistics warehouse for e-commerce, etc., a transport device (AGV: Automatic Guided Vehicle) transports product shelves to the front of a sorting worker called a picker for product picking, and the worker takes out the products from the shelf. There is a system to do this. A control system that controls the transport device is connected to the transport device via a wireless communication network and instructs the transport device to transport.
 背景技術として、移動可能な移動棚と、前記移動棚を搬送する無人搬送車(AGV)と、前記AGVが前記移動棚を搬送するAGVエリアと、前記AGVエリアに接し作業員がピッキング作業するピッキングエリアと、前記AGVエリア内の前記ピッキングエリアと接する位置に前記移動棚を一時的に設置する2つ以上のピッキングロケーションから構成されるピッキングシステムがある。例えば、特許文献1に記載の技術がある。 Background technology includes a movable mobile shelf, an automatic guided vehicle (AGV) that transports the mobile shelf, an AGV area where the AGV transports the mobile shelf, and a picking operation in which a worker works in contact with the AGV area. There is a picking system that includes an area and two or more picking locations in which the mobile shelves are temporarily installed at positions adjacent to the picking area within the AGV area. For example, there is a technique described in Patent Document 1.
国際公開2015/097736公報International Publication 2015/097736 Publication
 例えば、搬送装置(以下、搬送車とも呼ぶ)が商品棚を搬送中、当該商品棚に格納されている商品が走行路に落下する可能性があり、このような落下物は搬送装置の搬送作業を妨げる。この搬送作業が妨げられる過程は、搬送装置の動作履歴のログデータとして記録されることで、落下物の処置等に活用可能となり、効率的な運用保守を実行できる。このように、ログデータを分析することで、搬送装置の異常検出や、搬送装置の環境(例えば走行路の状態)を分析できる。この分析において、搬送装置のカメラを利用して取得した画像データを活用できる。しかし、無線で通信する搬送装置では、制御システム(以下、制御装置とも呼ぶ)に伝送するデータ量が多くなると、優先される搬送指示等の制御データの送受信が遅延することがある。 For example, when a transport device (hereinafter also referred to as a transport vehicle) is transporting a product shelf, there is a possibility that the products stored on the shelf may fall onto the travel path, and such falling objects may be removed from the transport work of the transport device. prevent. This process in which the transport work is obstructed is recorded as log data of the operation history of the transport device, so that it can be used for dealing with fallen objects, etc., and efficient operation and maintenance can be performed. By analyzing the log data in this manner, it is possible to detect abnormalities in the transport device and analyze the environment of the transport device (for example, the state of the travel path). In this analysis, image data obtained using the camera of the transport device can be utilized. However, in a transport device that communicates wirelessly, when the amount of data transmitted to a control system (hereinafter also referred to as a control device) increases, the transmission and reception of control data such as priority transport instructions may be delayed.
 このように、搬送システムの制御及び運用保守のために、走行中に搬送装置が、当該搬送装置を制御する制御装置に送信するデータが増えると、搬送装置の処理負荷及び無線通信ネットワークの負荷が増大する。また、搬送システムが複数の搬送装置を制御する場合、搬送装置からの通信量が増大して、搬送システムで制御指令に使用できる通信帯域が逼迫すると、通信の遅延や通信エラーが生じて、搬送システムの信頼性低下や搬送効率低下が生じるおそれがある。 As described above, when the amount of data that a transport device transmits to the control device that controls the transport device during movement increases for control, operation and maintenance of the transport system, the processing load on the transport device and the load on the wireless communication network increases. increase In addition, when a conveyance system controls multiple conveyance devices, if the amount of communication from the conveyance devices increases and the communication band that can be used for control commands in the conveyance system becomes tight, communication delays and communication errors may occur, resulting in There is a risk that the reliability of the system and the transport efficiency will decrease.
 そこで、本発明は、搬送装置と制御装置との通信における、搬送装置の処理負荷や無線通信ネットワークの負荷を低減可能な搬送システムの提供する。 Therefore, the present invention provides a transport system that can reduce the processing load on the transport device and the load on the wireless communication network during communication between the transport device and the control device.
 本願において開示される発明の代表的な一例を示せば以下の通りである。すなわち、搬送装置と制御装置を含む搬送システムの制御方法であって、前記搬送装置は、動作のための電力を供給する二次電池と、前記二次電池から供給される電力によって車輪を駆動する駆動機構とを有し、前記制御方法は、前記搬送装置が、当該搬送装置の位置に関する位置情報と、前記搬送装置の走行環境又は前記搬送装置に関する管理情報を、走行中に取得する情報取得ステップと、前記搬送装置が、無線通信ネットワークを介して、前記取得した位置情報を走行中に前記制御装置に送信する第1通信ステップと、前記搬送装置が、走行中に取得した前記管理情報を、前記二次電池の充電中に前記制御装置に送信する第2通信ステップと、を含む。 A typical example of the invention disclosed in this application is as follows. That is, a method for controlling a transport system including a transport device and a control device, wherein the transport device includes a secondary battery that supplies power for operation, and drives wheels using the power supplied from the secondary battery. and a drive mechanism, and the control method includes an information acquisition step in which the transport device acquires position information regarding the position of the transport device, a running environment of the transport device, or management information regarding the transport device while traveling. a first communication step in which the conveyance device transmits the acquired position information to the control device while traveling via a wireless communication network; and a first communication step in which the conveyance device transmits the management information acquired while traveling. and a second communication step of transmitting data to the control device while the secondary battery is being charged.
 本発明の一態様によれば、搬送システムにおいて搬送装置と制御装置との通信における、搬送装置の処理負荷や無線通信ネットワークの負荷を低減できる。例えば、無線通信ネットワークにおける制御データ送受信の帯域を圧迫することなく、搬送装置から管理情報を収集可能となる。前述した以外の課題、構成及び効果は、以下の実施例の説明によって明らかにされる。 According to one aspect of the present invention, it is possible to reduce the processing load on the transport device and the load on the wireless communication network during communication between the transport device and the control device in the transport system. For example, it becomes possible to collect management information from a transport device without compressing the control data transmission/reception band in a wireless communication network. Problems, configurations, and effects other than those described above will be made clear by the description of the following examples.
本実施例の搬送システムの構成を示す図である。FIG. 1 is a diagram showing the configuration of a conveyance system according to the present embodiment. 本実施例のエリアの構成を示す図である。FIG. 3 is a diagram showing the configuration of areas in this embodiment. 本実施例の区画内の構成を示す図である。It is a figure showing the composition in the section of a present example. 本実施例のマーカを示す図である。It is a figure showing the marker of this example. 本実施例の搬送装置を上方から見た斜視図である。FIG. 2 is a perspective view of the conveying device of the present embodiment seen from above. 本実施例の搬送装置の底面図である。It is a bottom view of the conveyance device of a present Example. 本実施例の搬送装置による棚の搬送を示す図である。It is a figure which shows the conveyance of the shelf by the conveyance apparatus of a present Example. 本実施例の搬送システムの全体の構成例を示す図である。FIG. 1 is a diagram illustrating an example of the overall configuration of a conveyance system according to the present embodiment. 本実施例の搬送装置及び充電装置の構成を示す図である。It is a figure showing the composition of the conveyance device and the charging device of a present example. 本実施例の制御装置及び管理装置の構成を示す図である。FIG. 2 is a diagram showing the configuration of a control device and a management device according to the present embodiment. 本実施例のピッキング端末の構成を示す図である。FIG. 2 is a diagram showing the configuration of a picking terminal according to the present embodiment. 本実施例のオーダテーブルの構成例を示す図であるFIG. 2 is a diagram showing an example of the structure of an order table according to the present embodiment. 本実施例の在庫テーブルの構成例を示す図である。It is a figure showing an example of composition of an inventory table of a present example. 本実施例の棚テーブルの構成例を示す図である。It is a figure showing the example of composition of the shelf table of a present example. 本実施例の装置管理テーブルの構成例を示す図である。FIG. 3 is a diagram illustrating an example of the configuration of a device management table according to the present embodiment. 本実施例のピッキングテーブルの構成例を示す図である。It is a figure showing an example of composition of a picking table of a present example. 本実施例の床テーブルを示す図である。It is a figure which shows the floor table of a present Example. 本実施例の搬送制御処理のフローチャートである。It is a flow chart of conveyance control processing of a present example. 本実施例のログデータ収集処理のフローチャートである。It is a flowchart of log data collection processing of a present example. 本実施例の充電処理のフローチャートである。It is a flowchart of the charging process of a present Example. 本実施例の搬送装置の直進時の床面劣化診断処理のシーケンス図である。FIG. 6 is a sequence diagram of a floor surface deterioration diagnosis process when the conveyance device of the present embodiment moves straight. 本実施例の搬送装置の旋回時の床面劣化診断処理のフローチャートである。It is a flowchart of the floor surface deterioration diagnosis process when the conveyance device of this embodiment rotates. 本実施例のマーカ異常検出処理のフローチャートである。It is a flowchart of marker abnormality detection processing of a present example. 本実施例の棚ずれ検出処理のフローチャートである。It is a flow chart of shelf shift detection processing of a present example. 本実施例の異物検出処理のシーケンス図である。FIG. 3 is a sequence diagram of foreign object detection processing according to the present embodiment. 本実施例の異常機器診断処理のフローチャートである。It is a flowchart of abnormal device diagnosis processing of a present example. 本実施例の棚と磁気センサの位置関係を示す図である。It is a figure showing the positional relationship of the shelf and the magnetic sensor of a present example. 本実施例の天板を搬送装置から取り外した状態を示す図である。It is a figure showing the state where the top board of a present example was removed from a conveyance device.
 以下の説明では、「インターフェース装置」は、一つ以上のインターフェースデバイスでよい。当該一つ以上のインターフェースデバイスは、下記のうちの少なくとも一つでよい。
・一つ以上のI/O(Input/Output)インターフェースデバイス。I/O(Input/Output)インターフェースデバイスは、I/Oデバイスと遠隔の表示用計算機とのうちの少なくとも一つに対するインターフェースデバイスである。表示用計算機に対するI/Oインターフェースデバイスは、通信インターフェースデバイスでよい。少なくとも一つのI/Oデバイスは、ユーザインターフェースデバイス、例えば、キーボード及びポインティングデバイスのような入力デバイスと、表示デバイスのような出力デバイスとのうちのいずれでもよい。
・一つ以上の通信インターフェースデバイス。一つ以上の通信インターフェースデバイスは、一つ以上の同種の通信インターフェースデバイス(例えば一つ以上のNIC(Network Interface Card))でもよいし二つ以上の異種の通信インターフェースデバイス(例えばNICとHBA(Host Bus Adapter))でもよい。
In the following description, an "interface device" may be one or more interface devices. The one or more interface devices may be at least one of the following:
- One or more I/O (Input/Output) interface devices. The I/O (Input/Output) interface device is an interface device for at least one of an I/O device and a remote display computer. The I/O interface device for the display computer may be a communication interface device. The at least one I/O device may be a user interface device, eg, an input device such as a keyboard and pointing device, or an output device such as a display device.
- One or more communication interface devices. The one or more communication interface devices may be one or more of the same type of communication interface device (for example, one or more NICs (Network Interface Cards)) or two or more different types of communication interface devices (for example, a NIC and an HBA (Host)). Bus Adapter)) may also be used.
 また、「メモリ」は、一つ以上の「記憶装置」の一例である一つ以上のメモリデバイスであり、典型的には主記憶デバイスでよい。メモリにおける少なくとも一つのメモリデバイスは、揮発性メモリデバイスでもよいし不揮発性メモリデバイスでもよい。 Furthermore, "memory" refers to one or more memory devices that are an example of one or more "storage devices," and may typically be a main storage device. At least one memory device in the memory may be a volatile memory device or a non-volatile memory device.
 また、「永続記憶装置」は、一つ以上の「記憶装置」の一例である一つ以上の永続記憶デバイスでよい。永続記憶デバイスは、典型的には、不揮発性の記憶デバイス(例えば補助記憶デバイス)でよく、具体的には、例えば、HDD(Hard Disk Drive)、SSD(Solid State Drive)、NVMe(Non-Volatile Memory Express)ドライブ、又は、SCM(Storage Class Memory)でよい。 Additionally, "persistent storage" may be one or more persistent storage devices that are an example of one or more "storage devices." Persistent storage devices typically may be non-volatile storage devices (e.g. auxiliary storage devices), and specifically include, for example, HDDs (Hard Disk Drives), SSDs (Solid State Drives), NVMe (Non-Volatile Memory Express) drive or SCM (Storage Class Memory).
 また、以下の説明では、「プロセッサ」は、一つ以上のプロセッサデバイスでよい。少なくとも一つのプロセッサデバイスは、典型的には、CPU(Central Processing Unit)のようなマイクロプロセッサデバイスでよいが、GPU(Graphics Processing Unit)のような他種のプロセッサデバイスでもよい。少なくとも一つのプロセッサデバイスは、シングルコアでもよいしマルチコアでもよい。少なくとも一つのプロセッサデバイスは、プロセッサコアでもよい。少なくとも一つのプロセッサデバイスは、処理の一部又は全部を行うハードウェア記述言語によりゲートアレイの集合体である回路(例えばFPGA(Field-Programmable Gate Array)、CPLD(Complex Programmable Logic Device)又はASIC(Application Specific Integrated Circuit))といった広義のプロセッサデバイスでもよい。 Also, in the following description, a "processor" may refer to one or more processor devices. The at least one processor device may typically be a microprocessor device such as a CPU (Central Processing Unit), but may also be another type of processor device such as a GPU (Graphics Processing Unit). At least one processor device may be single-core or multi-core. The at least one processor device may be a processor core. At least one processor device is a circuit that is a collection of gate arrays (for example, FPGA (Field-Programmable Gate Array), CPLD (Complex Programmable Logic Device), or ASIC (Application It may also be a processor device in a broad sense such as Specific Integrated Circuit).
 また、以下の説明では、「xxxテーブル」といった表現にて、入力に対して出力が得られる情報を説明することがあるが、当該情報は、どのような構造のデータでもよいし(例えば、構造化データでもよいし非構造化データでもよいし)、入力に対する出力を発生するニューラルネットワーク、遺伝的アルゴリズムやランダムフォレストに代表されるような学習モデルでもよい。従って、「xxxテーブル」を「xxx情報」と言うことができる。また、以下の説明において、各テーブルの構成は一例であり、一つのテーブルは、二つ以上のテーブルに分割されてもよいし、二つ以上のテーブルの全部又は一部が一つのテーブルでもよい。 In addition, in the following explanation, information such as an "xxx table" may be used to explain information that can be output in response to an input, but the information may be data of any structure (for example, It may be structured data or unstructured data), or it may be a learning model such as a neural network, genetic algorithm, or random forest that generates an output based on input. Therefore, the "xxx table" can be called "xxx information." In addition, in the following explanation, the configuration of each table is an example, and one table may be divided into two or more tables, or all or part of two or more tables may be one table. .
 また、以下の説明では、「プログラム」を主語として処理を説明する場合があるが、プログラムは、プロセッサによって実行されることで、定められた処理を、適宜に記憶装置及び/又はインターフェース装置を用いながら行うため、処理の主語が、プロセッサ(或いは、そのプロセッサを有する装置又はシステム)とされてもよい。プログラムは、プログラムソースから計算機のような装置にインストールされてもよい。プログラムソースは、例えば、プログラム配布サーバ又は計算機が読み取り可能な記録媒体(例えば非一時的な記録媒体)でもよい。また、以下の説明において、二つ以上のプログラムが一つのプログラムとして実現されてもよいし、一つのプログラムが二つ以上のプログラムとして実現されてもよい。 In addition, in the following explanation, processing may be explained using "program" as the subject, but a program is executed by a processor to perform a prescribed process using a storage device and/or an interface device as appropriate. The subject of the processing may be a processor (or a device or system including the processor). A program may be installed on a device, such as a computer, from a program source. The program source may be, for example, a program distribution server or a computer-readable recording medium (for example, a non-transitory recording medium). Furthermore, in the following description, two or more programs may be realized as one program, or one program may be realized as two or more programs.
 また、要素を識別するための情報(識別情報、識別子)として、任意の情報(例えば、「ID」、「名前」、及び「番号」のうちの少なくとも一つ)が採用されてよい。 Additionally, any information (for example, at least one of "ID", "name", and "number") may be employed as information for identifying an element (identification information, identifier).
 また、以下の説明では、同種の要素を区別しないで説明する場合には、参照符号のうちの共通符号を使用し、同種の要素を区別して説明する場合には、参照符号を使用することがある。 In addition, in the following explanation, common reference numerals are used when the same type of elements are described without distinguishing them, and reference numerals are used when the same type of elements are described separately. be.
 また、「日時」の単位は、年月日時分よりも粗い単位でも細かい単位でもよい。 Furthermore, the unit of "date and time" may be coarser or finer than the year, month, day, hour, and minute.
 図1は、本実施例の搬送システムの構成を示す図である。なお、便宜上、水平方向の一方向をx方向とし、x方向と直交する方向をy方向とする。 FIG. 1 is a diagram showing the configuration of the transport system of this embodiment. For convenience, one horizontal direction is defined as the x direction, and a direction orthogonal to the x direction is defined as the y direction.
 搬送システムは、倉庫2内(保管スペースの一例)を走行する複数の搬送装置3と、各搬送装置3の移動をリモート制御する制御装置4とを有する。なお、本実施例において、搬送装置3の「移動」とは、棚5の積載の有無にかかわらず搬送装置3の移動全般である。搬送装置3の「移動」は、搬送装置3の「走行」と言い換えられてもよい。搬送装置3が棚5を積載している状態での「移動」を特に「搬送」と称する。 The transport system includes a plurality of transport devices 3 that travel within a warehouse 2 (an example of a storage space), and a control device 4 that remotely controls movement of each transport device 3. In this embodiment, "movement" of the transport device 3 refers to the general movement of the transport device 3 regardless of whether the shelves 5 are loaded or not. "Movement" of the transport device 3 may be translated as "traveling" of the transport device 3. "Movement" in a state where the transport device 3 is loaded with shelves 5 is particularly referred to as "transportation".
 倉庫2は、例えば、通販会社や機器製造業の企業が物品を保管するために利用する保管庫である。倉庫2に保管されている物品は、商品でもよいし、部品でもよい。本実施例において、倉庫2に保管されている物品の一例として、商品の例を説明する。 The warehouse 2 is, for example, a storage warehouse used by a mail order company or a company in the equipment manufacturing industry to store goods. The articles stored in the warehouse 2 may be products or parts. In this embodiment, an example of a product will be described as an example of the product stored in the warehouse 2.
 エリア200には、複数の棚5が、移動可能な状態で設置されている。棚5の各々には、1又は複数の物品(例えば、販売すべき商品)が所定位置に収納される。棚5を移動棚と称することがある。 A plurality of shelves 5 are movably installed in the area 200. Each of the shelves 5 stores one or more articles (for example, products to be sold) at predetermined positions. The shelf 5 is sometimes referred to as a moving shelf.
 エリア200は、倉庫2の床のエリアの一部であり、搬送装置3が走行するエリアである。搬送装置3は、エリア200を走行して、棚5をピッキングステーション6へ搬送できる。ピッキングステーション6は、ピッキング等の作業が行われる場所である。なお、ピッキングは、搬送物に関する所定の作業の一例である。例えば、ピッキングステーション6で、棚5への商品補充などの入庫作業や棚卸などの作業が行われてもよく、単にステーション(又は作業ステーション)と呼ばれてもよい。 The area 200 is a part of the floor area of the warehouse 2, and is an area in which the transport device 3 travels. The transport device 3 can travel in the area 200 and transport the shelves 5 to the picking station 6. The picking station 6 is a place where work such as picking is performed. Note that picking is an example of a predetermined work related to transported objects. For example, at the picking station 6, warehousing work such as replenishing products to the shelves 5, inventory work, etc. may be performed, and the picking station 6 may be simply referred to as a station (or work station).
 なお、搬送装置3が棚5をピッキングステーション6へ搬送する場合、その搬送先(目的位置)は、ピッキングステーション6で作業者又はピッキング装置がピッキングが可能な所定の位置(例えばピッキングステーション6前の区画)でよい。 Note that when the transport device 3 transports the shelves 5 to the picking station 6, the transport destination (destination position) is a predetermined position where the worker or the picking device can pick at the picking station 6 (for example, a predetermined position in front of the picking station 6). ) may be used.
 同様に、搬送装置3がピッキングステーション6から棚5を搬送する場合、その搬送元(出発位置)は、ピッキングステーション6で作業者又はピッキング装置がピッキングが可能な所定の位置(例えばピッキングステーション6前の区画)でよい。 Similarly, when the transport device 3 transports the shelves 5 from the picking station 6, the transport source (starting position) is a predetermined position where the operator or the picking device can pick at the picking station 6 (for example, in front of the picking station 6). ) is sufficient.
 各搬送装置3は、当該搬送装置3に割り当てられた搬送タスクが関連付けられている移動指示を受けた場合、当該移動指示に従い、エリア200に存在する棚5を搬送する。図1に示す例によれば、下記の通りである。
・棚5Aをピッキングステーション6まで搬送し終えた搬送装置3Aは、棚5Aにおける商品のピッキングの終了待ちである。ピッキングステーション6で作業者又はピッキング装置によるピッキングが終了した後、搬送装置3Aは、棚5Aをピッキングステーション6から、棚5Aの保管位置まで搬送する。
・棚5Bをピッキングステーション6まで搬送する搬送装置3Bは、搬送装置3Aの移動待ちである。搬送装置3Aがピッキングステーション6から移動した場合、搬送装置3Bが棚5Bをピッキングステーション6に搬送することが可能となる。
・棚5Cを搬送するために、搬送装置3Cが移動中である。
・搬送物(棚5を含む)は、脚がある搬送物(脚付きの搬送物)でもよいし、脚がない搬送物(脚無しの搬送物)でもよい。脚無しの搬送物は、例えば架台上で保管される。搬送物が脚付きの搬送物である場合も、搬送物が架台上で保管される脚無しの搬送物である場合も、搬送装置3は搬送物の下に入り、搬送物を持ち上げて搬送可能である。
When each transport device 3 receives a movement instruction associated with a transport task assigned to the transport device 3, it transports the shelf 5 existing in the area 200 in accordance with the movement instruction. According to the example shown in FIG. 1, the following is true.
- After transporting the shelf 5A to the picking station 6, the transport device 3A is waiting for the picking of the products on the shelf 5A to be completed. After the operator or the picking device finishes picking at the picking station 6, the transport device 3A transports the shelf 5A from the picking station 6 to the storage position of the shelf 5A.
- The transport device 3B that transports the shelves 5B to the picking station 6 is waiting for the transport device 3A to move. When the transport device 3A moves from the picking station 6, the transport device 3B can transport the shelf 5B to the picking station 6.
- The transport device 3C is moving to transport the shelf 5C.
- The conveyed object (including the shelf 5) may be a conveyed object with legs (transferred object with legs) or may be a conveyed object without legs (transferred object without legs). A conveyed object without legs is stored, for example, on a pedestal. Whether the object to be transported has legs or is stored on a stand without legs, the transport device 3 can fit under the object, lift the object, and transport it. It is.
 図2Aは、エリア200の構成を示す図である。図2Aは、エリア200を模式的に例示しており、図2Aに例示されるエリア200は、図1に例示のエリア200と完全には一致しているものではない。 FIG. 2A is a diagram showing the configuration of area 200. FIG. 2A schematically illustrates an area 200, and the area 200 illustrated in FIG. 2A does not completely match the area 200 illustrated in FIG.
 制御装置4は、搬送装置が走行するエリア(走行エリア)200を、所定大きさの方形状の複数の区画201に区分して管理している。区画201は、例えば区画(α、β、γ)といった座標形式でもよい。αは、x座標(x方向に沿った区画位置)、βは、y座標(y方向に沿った区画位置)は、γは、z座標(高さ方向におけるエリア位置)である。例えば、エリア200が、複数のフロアのエリアを含む場合や、メザニンの上下のエリアを含む場合は、z座標を用いることで、各エリアの高さ方向におけるエリア位置を表現可能である。なお、エリア200が複数のフロアに及ぶ場合におけるフロア間の搬送や、メザニンを設けた場合におけるメザニン上下間の搬送は、例えば垂直搬送機により行われてもよい。このとき、垂直搬送機で棚5のみを搬送してもよいし、垂直搬送機で棚5と搬送装置3を搬送してもよい。 The control device 4 manages an area (traveling area) 200 in which the transport device travels by dividing it into a plurality of rectangular sections 201 of a predetermined size. The division 201 may be in a coordinate format such as division (α, β, γ), for example. α is the x coordinate (section position along the x direction), β is the y coordinate (section position along the y direction), and γ is the z coordinate (area position in the height direction). For example, if the area 200 includes areas on multiple floors or areas above and below a mezzanine, the area position in the height direction of each area can be expressed using the z coordinate. In addition, when the area 200 extends over a plurality of floors, transport between floors, or when a mezzanine is provided, transport between upper and lower mezzanines may be performed by, for example, a vertical transport machine. At this time, only the shelf 5 may be transported by the vertical transport machine, or the shelf 5 and the transport device 3 may be transported by the vertical transport machine.
 本実施例において、エリア200は同じ高さである例を説明し、各区画の位置を区画(α、β)の表現で説明することがある。 In this embodiment, an example will be explained in which the areas 200 have the same height, and the position of each section may be explained using the expression of sections (α, β).
 各区画201内には、図2Bに示すように、当該区画201の位置を表すマーカ300が設けられてよい。マーカ300は、その区画の位置を特定するための情報を含んでいればよく、例えば、その区画の位置情報でもよいし、その区画の位置情報と対応づけられている情報(例えば区画201の位置情報を導出可能な識別情報など)でもよい。マーカ300は、搬送装置3のセンサ14により読み取り可能な情報であり、例えば一次元コード、QRコード(登録商標)等の二次元コード、RFID(Radio Frequency IDentifier)タグ等の情報でもよい。 In each section 201, a marker 300 indicating the position of the section 201 may be provided, as shown in FIG. 2B. The marker 300 only needs to include information for specifying the location of the section. For example, the marker 300 may be the location information of the section, or the information associated with the location information of the section (for example, the location of the section 201. identification information from which information can be derived). The marker 300 is information that can be read by the sensor 14 of the transport device 3, and may be information such as a one-dimensional code, a two-dimensional code such as a QR code (registered trademark), or an RFID (Radio Frequency IDentifier) tag.
 マーカ300は、例えば、図2Cに示すように、複数(例えばM個とする)の二次元コードで構成されており、所定数(例えばN個とする。M>Nとする。)以上の二次元コードが正しく読み取れると区画が特定できるようになっている。例えば、M個の二次元コードのうち任意のN個が正しく読み取れれば、読み取れた二次元コードによって区画を特定できる。例えば、同じマーカ300のM個の二次元コードは、それぞれ同じ又は同等の情報を有するとする。搬送装置3は、マーカ300を読み取った際に、当該マーカ300のM個の二次元コードのうち、所定数(例えばk個とする)以上の二次元コードが同じ又は同等の情報を有していた場合、当該二次元コードは正しく読み取ることができたと判定してもよい。正しく読み取ることができた二次元コードの数を、「読み取られた二次元コードの数」や「可読コード数」と呼ぶことがある。 For example, as shown in FIG. 2C, the marker 300 is composed of a plurality of two-dimensional codes (for example, M pieces), and a predetermined number (for example, N pieces, where M>N) or more of two-dimensional codes. If the dimensional code can be read correctly, the partition can be identified. For example, if any N of M two-dimensional codes can be read correctly, the partition can be identified by the read two-dimensional codes. For example, it is assumed that M two-dimensional codes of the same marker 300 each have the same or equivalent information. When the conveyance device 3 reads the marker 300, it determines whether a predetermined number (for example, k) or more of the M two-dimensional codes of the marker 300 have the same or equivalent information. In this case, it may be determined that the two-dimensional code can be read correctly. The number of two-dimensional codes that can be read correctly is sometimes referred to as the "number of two-dimensional codes read" or the "number of readable codes."
 図2Cに図示した二次元コードでは、上段中の二次元コード300B、中段左の二次元コード300D、中段中の二次元コード300E、下段左の二次元コード300Gの4個は汚れが大きく、搬送装置3が正しく読み取れない。また、上段左の二次元コード300A、上段右の二次元コード300C、中段右の二次元コード300F、下段中の二次元コード300H、下段右の二次元コード300Iの3個は汚れが小さく、搬送装置3が正しく読み取れる。 Among the two-dimensional codes shown in FIG. 2C, four of the two-dimensional codes, 2-dimensional code 300B in the upper row, 2-dimensional code 300D in the middle left, 2-dimensional code 300E in the middle, and 2-dimensional code 300G in the lower left, are heavily soiled and are not transported. Device 3 cannot read correctly. In addition, the three 2D codes 300A on the upper left, 2D code 300C on the upper right, 2D code 300F on the middle right, 2D code 300H in the lower row, and 2D code 300I on the lower right were not very dirty and were transported. Device 3 can read correctly.
 例えば、搬送装置3は、通過する区画201に設けられたマーカ300を読み取る。搬送装置3は、走行中に、無線通信ネットワークを介して、搬送装置3の識別情報(装置ID)とともに、読み取ったマーカ300の情報を、制御装置4に送信する。例えば、搬送装置3は、読み取ったマーカ300の情報として、当該マーカ300に表された位置情報又は当該マーカ300に表された情報から導出される位置情報を、制御装置4に送信してよい。制御装置4は、搬送装置3から受信したマーカ300の情報に基づいて、搬送装置3の位置を特定する。区画201の全域に板状部材が設けられており、当該区画201から隣接する別の区画201へ搬送装置3が移動可能であり、また、当該区画201において搬送装置3が旋回可能であるとしてもよい。 For example, the transport device 3 reads the marker 300 provided in the section 201 that it passes through. While traveling, the transport device 3 transmits the identification information (device ID) of the transport device 3 and the read information of the marker 300 to the control device 4 via the wireless communication network. For example, the transport device 3 may transmit position information represented by the marker 300 or position information derived from the information represented by the marker 300 to the control device 4 as information about the read marker 300. The control device 4 identifies the position of the transport device 3 based on the information of the marker 300 received from the transport device 3. Even if a plate-like member is provided throughout the section 201, the conveying device 3 is movable from the section 201 to another adjacent section 201, and the conveying device 3 is rotatable in the section 201. good.
 エリア200は、平面視において棚5が保管(配置)される区画である棚保管区画(3,3)、(3,4)等(図2Aにおいて同一模様の区画)、充電装置7が存在する区画(1,1)、及び、ピッキングステーション6が存在する区画(6,15)、(13,15)を含む。棚5は、例えば一つの区画201とほぼ同じ大きさでもよいし、一つの区画201より小さいサイズでもよい。区画の設定方法は様々な変形例があってもよく、搬送装置3の進入が禁止される区画(例えば区画(3,1))が設けられてもよい。 Area 200 includes shelf storage sections (3, 3), (3, 4), etc. (sections with the same pattern in FIG. 2A), which are sections where shelves 5 are stored (arranged) in plan view, and charging device 7. It includes a section (1, 1) and sections (6, 15) and (13, 15) where the picking station 6 is present. For example, the shelf 5 may have approximately the same size as one compartment 201 or may have a smaller size than one compartment 201. Various modifications may be made to the method of setting the sections, and a section (for example, section (3, 1)) into which the transport device 3 is prohibited may be provided.
 エリア200の各区画201について、図2Aに例示する矢印の通り、搬送装置3が各区画201において移動可能な方向が設定されてもよい。例えば、+x方向、-x方向、+y方向及び-y方向の全ての方向、又は一部の方向を、搬送装置3が移動可能な方向として設定してもよい。棚保管区画間では、棚5を積載していない搬送装置3は、移動可能にしてもよい。一方、棚5を積載した搬送装置3は、棚保管区画に保管されている棚5との衝突を防ぐため、棚保管区画間の移動を不可と設定してもよい。 For each section 201 of the area 200, the direction in which the transport device 3 can move in each section 201 may be set as indicated by the arrow illustrated in FIG. 2A. For example, all or some of the +x direction, -x direction, +y direction, and -y direction may be set as the directions in which the transport device 3 can move. Between the shelf storage sections, the transport device 3 not loaded with shelves 5 may be movable. On the other hand, the transport device 3 loaded with the shelves 5 may be set not to be moved between shelf storage sections in order to prevent collisions with the shelves 5 stored in the shelf storage sections.
 また、各区画201間は、双方向に移動可能に設定されてもよいし、一方向のみに移動可能に設定されてもよい。例えば、一部の区画201間を一方向のみに移動可能な設定とすることで、搬送装置3の渋滞の発生を抑制又は低減し、全体の搬送効率の向上が期待できる。また、一方向のみにしか移動できない区画201間が多い場合には、搬送装置3の移動経路が長くなる可能性があるので、エリア200における搬送装置3の数、又は、各区画201の位置や種類等により、搬送装置3の移動可能な方向が予め設定されてもよいし、そのような方向が動的に制御装置4により設定又は変更されてもよい。なお、搬送装置3が移動可能な方向は、床テーブル60に設定されるとよい。制御装置4は、床テーブル60に従って、搬送装置3の移動方向を含む、搬送装置3の移動を制御する。 Additionally, the sections 201 may be set to be movable in both directions, or may be set to be movable in only one direction. For example, by setting the sections 201 to be movable only in one direction, it is possible to suppress or reduce the occurrence of traffic jams in the transport device 3 and to improve the overall transport efficiency. In addition, if there are many sections 201 that can only move in one direction, the moving route of the transport devices 3 may become long, so the number of transport devices 3 in the area 200 or the position of each section 201 Depending on the type, etc., the movable direction of the transport device 3 may be set in advance, or such a direction may be dynamically set or changed by the control device 4. Note that the direction in which the transport device 3 can move is preferably set to the floor table 60. The control device 4 controls the movement of the transport device 3 including the direction of movement of the transport device 3 according to the floor table 60 .
 再び図1を参照する。搬送装置3は、制御装置4からの移動指示に従い移動する装置であり、典型的には、AGV(Automatic Guided Vehicle)でよい。棚5は、搬送装置3によって搬送され得る搬送対象の一例である。棚5に代えて又は加えて、トレー、パレット又はコンテナといった物が、搬送対象の一例でもよい。搬送対象が1又は複数の物品を搭載可能なもの(例えば棚5やパレット)である場合、搬送対象を収納部(収納装置)や荷役台と呼んでもよい。本実施例においては、搬送装置3の搬送対象の一例として、棚5の場合を説明する。搬送対象を搬送物と呼ぶことがある。 Refer to FIG. 1 again. The transport device 3 is a device that moves according to a movement instruction from the control device 4, and typically may be an AGV (Automatic Guided Vehicle). The shelf 5 is an example of a conveyance target that can be conveyed by the conveyance device 3. Instead of or in addition to the shelves 5, objects such as trays, pallets, or containers may be an example of objects to be transported. When the object to be transported is something that can carry one or more articles (for example, a shelf 5 or a pallet), the object to be transported may be called a storage section (storage device) or a loading platform. In this embodiment, a case of a shelf 5 will be described as an example of a target to be transported by the transport device 3. The object to be transported is sometimes called a transported object.
 例えば、搬送装置3は、制御装置4からの移動指示に従い、当該移動指示において指定されている棚5を持ち上げ、当該移動指示において指定されているピッキングステーション6までその棚5を搬送する。ピッキングステーション6に搬送された棚5は、当該ピッキングステーション6において作業者により必要な商品が取り出された後に(つまりピッキングの後に)、搬送装置3により元の棚保管区画(又は別の棚保管区画)に戻される。 For example, in accordance with a movement instruction from the control device 4, the transport device 3 lifts the shelf 5 specified in the movement instruction and transports the shelf 5 to the picking station 6 specified in the movement instruction. After the necessary products are taken out by the worker at the picking station 6 (that is, after picking), the shelves 5 transported to the picking station 6 are returned to the original shelf storage section (or another shelf storage section) by the transport device 3. ).
 ピッキングステーション6への搬送経路と、ピッキングステーション6から棚5の元の棚保管区画(又は別の棚保管区画)への移動経路は、一つの移動指示において指定されてもよいし、別々の移動指示において指定されてもよい。この別の棚保管区画の例として、ピッキング回数(例えば頻度)が高い商品を収納しており、ピッキングステーション6へ搬送される回数(例えば頻度)が高い棚5は、ピッキングステーション6に近い位置にある棚保管区画に設置してもよい。ピッキングステーション6へ搬送される回数が低い棚5は、ピッキングステーション6から遠い位置にある棚保管区画に設置してもよい。このように、ピッキングステーション6へ搬送される回数に応じて、棚5の設置場所を変えることにより、搬送効率を向上できる。 The transport path to the picking station 6 and the movement path from the picking station 6 to the original shelf storage section (or another shelf storage section) of the shelf 5 may be specified in one movement instruction, or may be specified in separate movements. May be specified in the instructions. As an example of this separate shelf storage section, a shelf 5 that stores products that are frequently picked (for example, frequently) and is transported to the picking station 6 frequently (for example, frequently) is placed near the picking station 6. It may be installed in a certain shelf storage compartment. The shelves 5 that are transported to the picking station 6 less frequently may be installed in a shelf storage section located far from the picking station 6. In this way, by changing the installation location of the shelves 5 depending on the number of times the items are transported to the picking station 6, the transport efficiency can be improved.
 図3A、図3Bは、搬送装置3の外観を示す図であり、図3Aは、搬送装置3を上方から見た斜視図であり、図3Bは、搬送装置3の底面図である。 3A and 3B are diagrams showing the appearance of the conveyance device 3. FIG. 3A is a perspective view of the conveyance device 3 seen from above, and FIG. 3B is a bottom view of the conveyance device 3.
 搬送装置3は、図3Aに示すように、全体として直方体状に形成されている。そして搬送装置3の下面(底面)には、図3Bに示すように、搬送装置3が旋回及び前進するための駆動輪20Dが配設されると共に、搬送装置3の下面の四隅には補助輪20Aが配設されている。また、搬送装置3の上面中央部には昇降及び回転自在に円板状のテーブル22が設けられている。駆動輪20D及び補助輪20Aの少なくとも一方が搬送装置3の「車輪」である。 As shown in FIG. 3A, the conveyance device 3 is formed into a rectangular parallelepiped shape as a whole. As shown in FIG. 3B, driving wheels 20D for turning and moving the conveying device 3 forward are disposed on the lower surface (bottom surface) of the conveying device 3, and auxiliary wheels 20D are provided at the four corners of the lower surface of the conveying device 3. 20A is installed. Further, a disk-shaped table 22 is provided at the center of the upper surface of the transport device 3 so as to be able to rise and fall and rotate freely. At least one of the driving wheel 20D and the auxiliary wheel 20A is a "wheel" of the conveyance device 3.
 そして、搬送装置3は、図4に示すように、駆動輪20Dを回転駆動して搬送対象の棚5の下側にまで移動した後にテーブル22を上昇して棚5を持ち上げ、棚5を持ち上げた状態で倉庫2内のエリア200を走行して棚5を搬送する。搬送装置3は、棚5を持ち上げた状態でテーブル22を回転させて棚5の向きを変えることができる。搬送装置3は、本体の旋回に応じて、反対方向にテーブル22を回転して、持上げた棚5を回転せずに搬送装置3を旋回できる。 Then, as shown in FIG. 4, the conveying device 3 rotates the driving wheels 20D to move to the lower side of the shelf 5 to be conveyed, and then raises the table 22 to lift the shelf 5. The shelf 5 is conveyed by traveling through an area 200 in the warehouse 2 in a state in which the shelves 5 are kept in the same state. The transport device 3 can change the direction of the shelf 5 by rotating the table 22 with the shelf 5 lifted. The conveyance device 3 can rotate the table 22 in the opposite direction in response to the rotation of the main body, and can rotate the conveyance device 3 without rotating the lifted shelf 5.
 搬送装置3は、充電機能を有しており、搭載されたバッテリ80の電圧によって残量を計算する。搬送装置3は、バッテリ80の残量が少なくなると、制御装置4に充電を要求する。制御装置4は、充電要求を受信すると、搬送装置3を充電装置7に移動させ、充電装置7と接続させて、バッテリ80を充電する。搬送装置3は、充電中に、充電装置7を介して制御装置4と通信して、制御装置4に管理情報を送信する。なお、管理情報の一部として、当該搬送装置3の装置IDが含まれていてよい。例えば、搬送装置3と充電装置7を接続する給電端子に重畳した信号や、搬送装置3と充電装置7を直接接続する高速な近距離無線通信や赤外線通信によって、搬送装置3は制御装置4と倉庫2内の無線通信ネットワークを経由することなく高速で通信できる。電力線に重畳した信号による通信は、例えば、PLC技術を適用して実現できる。 The transport device 3 has a charging function and calculates the remaining amount based on the voltage of the mounted battery 80. When the remaining capacity of the battery 80 becomes low, the transport device 3 requests the control device 4 to charge it. Upon receiving the charging request, the control device 4 moves the transport device 3 to the charging device 7, connects it to the charging device 7, and charges the battery 80. During charging, the transport device 3 communicates with the control device 4 via the charging device 7 and transmits management information to the control device 4. Note that the device ID of the transport device 3 may be included as part of the management information. For example, the transport device 3 can communicate with the control device 4 by a signal superimposed on the power supply terminal that connects the transport device 3 and the charging device 7, or by high-speed short-range wireless communication or infrared communication that directly connects the transport device 3 and the charging device 7. High-speed communication is possible without going through the wireless communication network within the warehouse 2. Communication using signals superimposed on a power line can be realized by applying PLC technology, for example.
 搬送装置3は、倉庫2内に設けられた無線通信ネットワークを介して、制御装置4と接続される。制御装置4から、移動(搬送を含む)を行う搬送装置3に移動指示が送信され、その移動指示を受信した設備が移動指示に従って移動する。搬送装置3は、管理情報を無線通信ネットワークを経由して制御装置4に送信する。 The transport device 3 is connected to the control device 4 via a wireless communication network provided within the warehouse 2. A movement instruction is transmitted from the control device 4 to the transport device 3 that performs movement (including transportation), and the equipment that has received the movement instruction moves in accordance with the movement instruction. The transport device 3 transmits management information to the control device 4 via a wireless communication network.
 また、制御装置4は、搬送システム全体として複数の搬送タスクを並列で処理可能である。ピッキングステーション6では、ピッキングステーション6に棚が搬送された順(到着順)にピッキング作業を行ってもよい。 Additionally, the control device 4 can process multiple transport tasks in parallel for the transport system as a whole. At the picking station 6, the picking operation may be performed in the order in which the shelves are transported to the picking station 6 (in the order of arrival).
 なお、搬送装置3に送信される「移動指示」には、当該搬送装置3に割り当てられた搬送タスクを表す情報が関連付けられる。搬送タスクは、いずれの棚5をいずれの区画へ搬送するかを示すタスクであり、搬送タスクを表す情報は、例えば、搬送すべき棚5の棚IDと、搬送装置3が移動する経路である移動経路と、搬送装置3の移動方向とを含んでよい。移動経路は、搬送装置3の現在区画(現在位置が属する区画)から棚区画(搬送対象の棚5が存在する区画)までの経路と、棚区画から目的区画(例えばピッキングステーション6)までの経路とを含んでもよいし、その経路の一部(例えば直近で移動予定の経路)でもよい。また、ピッキングステーション6において作業者により棚5から商品がピッキングされた後には、棚5を指定位置に戻すために、制御装置4は、搬送装置3に指定位置への「移動指示」を与える。この移動経路は、更に、ピッキングステーション6から指定位置までの経路を含んでよい。ピッキングステーション6に隣接する区画及びバッテリステーションのうちの少なくともピッキングステーション6に隣接する区画が、目的区画(目的位置が属する区画)の一例でよい。 Note that the "movement instruction" sent to the transport device 3 is associated with information representing the transport task assigned to the transport device 3. The transport task is a task that indicates which shelf 5 is to be transported to which section, and the information representing the transport task is, for example, the shelf ID of the shelf 5 to be transported and the route along which the transport device 3 moves. It may include a moving route and a moving direction of the conveying device 3. The movement route includes a route from the current section of the transport device 3 (the section to which the current position belongs) to the shelf section (the section where the shelf 5 to be transported exists), and a route from the shelf section to the destination section (for example, the picking station 6). It may also include a part of the route (for example, the route that is most recently scheduled to be traveled). Further, after the product is picked from the shelf 5 by the worker at the picking station 6, in order to return the shelf 5 to the designated position, the control device 4 gives a "move instruction" to the transport device 3 to the designated position. This movement route may further include a route from the picking station 6 to the specified position. Of the compartments adjacent to the picking station 6 and the battery station, at least the compartment adjacent to the picking station 6 may be an example of a target compartment (a compartment to which the target position belongs).
 図5は、本実施例の搬送システムの全体の構成例を示す図である。図6は、搬送装置3及び充電装置7の構成を示す図であり、図7は、制御装置4及び管理装置9の構成を示す図であり、図8は、ピッキング端末710の構成を示す図である。 FIG. 5 is a diagram showing an example of the overall configuration of the transport system of this embodiment. 6 is a diagram showing the configuration of the transport device 3 and the charging device 7, FIG. 7 is a diagram showing the configuration of the control device 4 and the management device 9, and FIG. 8 is a diagram showing the configuration of the picking terminal 710. It is.
 搬送システムは、制御装置4と、搬送装置3と、ピッキング端末710と、充電装置7と、管理装置9と、ネットワーク551とを有する。また、搬送システムは、その他の搬送設備(例えば、垂直搬送機やコンベア)や、多段エリア(例えばメザニン)や、架台や、棚5や、ピッキングステーション6の全部又は一部をさらに有してもよい。搬送システムの各構成要素は、一つ又は複数でもよい。例えば、倉庫2に、搬送システムを導入することで、図1に例示する構成が実現されてもよい。なお、管理装置9の一部または全部の構成要素について、倉庫2と同じサイトであってもよいが、倉庫2とは異なるサイトにあって、リモート保守可能に構成されてもよい。また、管理装置9の一部または全部の構成要素について、制御装置4として実現されてもよい。制御装置4と管理装置9の一部または全部の構成について、制御システム、制御装置と呼ばれてもよい。 The transport system includes a control device 4, a transport device 3, a picking terminal 710, a charging device 7, a management device 9, and a network 551. In addition, the conveying system may further include all or part of other conveying equipment (e.g., a vertical conveyor or conveyor), a multi-level area (e.g., a mezzanine), a trestle, shelves 5, and a picking station 6. good. Each component of the transport system may be one or more. For example, the configuration illustrated in FIG. 1 may be realized by introducing a transportation system into the warehouse 2. Note that some or all of the components of the management device 9 may be located at the same site as the warehouse 2, or may be located at a different site from the warehouse 2 and configured to be remotely maintainable. Furthermore, some or all of the components of the management device 9 may be realized as the control device 4. The configuration of a part or all of the control device 4 and the management device 9 may be referred to as a control system or a control device.
 制御装置4は、搬送装置3、充電装置7、管理装置9及びピッキング端末710と、ネットワーク551を介して通信可能である。ネットワーク551は、倉庫2内に設けられる無線通信ネットワーク、及び固定的に設置された装置間を接続する有線通信ネットワーク(有線LAN)を含む。搬送装置3は、エリア200内を移動中に倉庫2内に設けられる無線通信ネットワークを介して他の装置と接続される。 The control device 4 can communicate with the transport device 3, the charging device 7, the management device 9, and the picking terminal 710 via the network 551. The network 551 includes a wireless communication network provided within the warehouse 2 and a wired communication network (wired LAN) that connects fixedly installed devices. The transport device 3 is connected to other devices via a wireless communication network provided in the warehouse 2 while moving within the area 200 .
 図6に示すように、搬送装置3は、駆動装置11、記憶装置12、インターフェース装置13、複数種類のセンサ14、バッテリ80、及び、それらに接続されたコントローラ10を有する。 As shown in FIG. 6, the transport device 3 includes a drive device 11, a storage device 12, an interface device 13, a plurality of types of sensors 14, a battery 80, and a controller 10 connected thereto.
 コントローラ10は、制御装置4からの移動指示やバッテリ80の充電状態などに応じて搬送装置3の動作を制御する。駆動装置11は、駆動機構20及び昇降機構21を有する。駆動機構20は、左右の駆動輪20Dの各々を独立して回転駆動するための左右のモータ20M等のアクチュエータと、各モータ20Mの動作を検出するエンコーダ20Eを有する。昇降機構21は、テーブル22を昇降するためのモータ21M等のアクチュエータと、テーブル22を回転するためのモータ21R等のアクチュエータと、モータ21Mの動作を検出するエンコーダ21Eと、モータ21Rの動作を検出するエンコーダ21Fを有する。 The controller 10 controls the operation of the transport device 3 according to movement instructions from the control device 4, the state of charge of the battery 80, and the like. The drive device 11 has a drive mechanism 20 and a lifting mechanism 21. The drive mechanism 20 includes actuators such as left and right motors 20M for independently rotationally driving each of the left and right drive wheels 20D, and an encoder 20E that detects the operation of each motor 20M. The elevating mechanism 21 includes an actuator such as a motor 21M for raising and lowering the table 22, an actuator such as a motor 21R for rotating the table 22, an encoder 21E that detects the operation of the motor 21M, and an encoder 21E that detects the operation of the motor 21R. It has an encoder 21F.
 インターフェース装置13は、所定の無線通信方式を用いて制御装置4と通信するための装置であり、例えば無線LAN(Local Area Network)カードなどから構成されてよい。 The interface device 13 is a device for communicating with the control device 4 using a predetermined wireless communication method, and may include, for example, a wireless LAN (Local Area Network) card.
 センサ14は、搬送装置3が走行する床面の情報や搬送装置3に関する各種情報を収集等するためのデバイスである。例えば、複数種類のセンサ14は、床面の区画201上のマーカ300の情報を読み取るカメラでよい。また、センサ14は、棚5の底面を撮像するカメラや、搬送装置3の周囲の状態を撮像するカメラ、LiDARや、搬送装置3の前面に設けられた前方カメラ、距離画像カメラ、LiDARや、搬送装置3の前方の障害物を検出する超音波センサ、赤外線センサや、棚5までの距離や棚5の構造物を検出する磁気センサや、移動中の搬送装置3の振動を検出するための振動センサや、搬送装置3の加速度を計測する加速度センサ、積載物の重量を計測する重量センサや、搬送装置3の向きを計測するジャイロセンサなどでよい。 The sensor 14 is a device for collecting information on the floor surface on which the transport device 3 runs and various information regarding the transport device 3. For example, the plurality of types of sensors 14 may be cameras that read information from the markers 300 on the sections 201 on the floor. In addition, the sensor 14 includes a camera that images the bottom surface of the shelf 5, a camera that images the surrounding state of the transport device 3, LiDAR, a front camera provided on the front surface of the transport device 3, a distance image camera, LiDAR, etc. Ultrasonic sensors and infrared sensors that detect obstacles in front of the transport device 3; magnetic sensors that detect the distance to the shelf 5 and the structure of the shelf 5; and sensors that detect vibrations of the transport device 3 during movement. A vibration sensor, an acceleration sensor that measures the acceleration of the transport device 3, a weight sensor that measures the weight of the loaded object, a gyro sensor that measures the orientation of the transport device 3, or the like may be used.
 コントローラ10は、演算処理を実行する演算装置とデータ及びプログラムを格納するメモリを有する。コントローラ10のメモリは、通信プログラム29、移動制御プログラム30、計測プログラム31及び位置推定プログラム32を格納する。演算装置が、通信プログラム29、移動制御プログラム30、計測プログラム31及び位置推定プログラム32を実行することによって、通信部、走行制御部、計測部及び位置推定部がそれぞれ実現される。 The controller 10 has an arithmetic unit that executes arithmetic processing and a memory that stores data and programs. The memory of the controller 10 stores a communication program 29, a movement control program 30, a measurement program 31, and a position estimation program 32. When the arithmetic device executes the communication program 29, the movement control program 30, the measurement program 31, and the position estimation program 32, a communication section, a travel control section, a measurement section, and a position estimation section are respectively realized.
 記憶装置12は、例えば、経路テーブル23、装置テーブル24、地図テーブル25、計測テーブル27及び実績テーブル28を格納する。経路テーブル23は、制御装置4から受信した移動指示で指定された移動経路を表す情報が格納されるテーブルである(移動経路を表す情報は、区画の保管位置の並びと、移動経路が属する各区画について当該区画に位置する日時とを含んでよい)。装置テーブル24は、搬送装置3のID、現在の位置(区画)、及び、状態(例えば、「待機」、「移動中」又は「搬送中」)が格納されるテーブルである。地図テーブル25は、区画毎の位置及び属性(例えば、いずれの領域に属するか)を表す情報が格納されるテーブルである。なお、地図テーブル25の一例として、図2Aに例示する情報が格納されてもよい。計測テーブル27は、複数種類のセンサ14が計測した値(例えば、加速度、旋回、重量、位置(マーカ300から読み取られた値)、区画の撮影画像等)が格納されるテーブルである。実績テーブル28は、搬送装置3が移動する経路及び日時を含む移動実績が格納されるテーブルである。 The storage device 12 stores, for example, a route table 23, a device table 24, a map table 25, a measurement table 27, and a performance table 28. The route table 23 is a table in which information representing the movement route specified by the movement instruction received from the control device 4 is stored. and the date and time of the location of the parcel). The device table 24 is a table in which the ID, current position (section), and status (for example, "standby", "moving", or "transporting") of the transport device 3 are stored. The map table 25 is a table in which information representing the position and attributes of each section (for example, which region it belongs to) is stored. Note that as an example of the map table 25, information illustrated in FIG. 2A may be stored. The measurement table 27 is a table in which values measured by a plurality of types of sensors 14 (for example, acceleration, turning, weight, position (value read from marker 300), photographed image of a section, etc.) are stored. The performance table 28 is a table in which movement results including the route and date and time of the transport device 3 are stored.
 通信プログラム29は、インターフェース装置13を介して制御装置4との間でコマンドや情報を送受信するプログラムである。例えば、通信プログラム29は、制御装置4からの要求に応じて(又は要求無しに)、テーブル23~25、27及び28の一部又は全部の情報を制御装置4に送信する。なお、通信プログラム29は、これらの情報を定期的又は不定期のタイミングで制御装置4に送信してもよい。 The communication program 29 is a program that transmits and receives commands and information to and from the control device 4 via the interface device 13. For example, the communication program 29 transmits some or all of the information in the tables 23 to 25, 27, and 28 to the control device 4 in response to a request from the control device 4 (or without a request). Note that the communication program 29 may transmit this information to the control device 4 at regular or irregular timing.
 移動制御プログラム30は、制御装置4から通信プログラム29を通じて受信した移動指示に応じて、搬送装置3の移動を制御するプログラムである。例えば、移動制御プログラム30は、制御装置4からの移動指示に従い、指定された棚5を持ち上げて指定された移動経路を通ってピッキングステーション6まで移動するよう駆動装置11を制御したり、指定された移動経路を通ってその棚5を元の位置(又は別の位置)に移動するよう駆動装置11を制御したりする。 The movement control program 30 is a program that controls movement of the transport device 3 in response to movement instructions received from the control device 4 through the communication program 29. For example, the movement control program 30 controls the drive device 11 to lift a specified shelf 5 and move it to the picking station 6 along a specified movement path in accordance with a movement instruction from the control device 4, or The driving device 11 is controlled to move the shelf 5 to its original position (or another position) along the moving path.
 計測プログラム31は、各センサ14の出力(計測結果)を計測テーブル27に登録する。位置推定プログラム32は、センサ14によるマーカ300の検出結果に基づいて搬送装置3の位置を推定する。 The measurement program 31 registers the output (measurement result) of each sensor 14 in the measurement table 27. The position estimation program 32 estimates the position of the transport device 3 based on the detection result of the marker 300 by the sensor 14.
 バッテリ80は、搬送装置3の各部に電源を供給する二次電池であり、充電装置7に接続される電極83、84に充電回路(図示省略)を介して接続される。電極83、84とバッテリ80との間の給電線には混合器81が設けられており、混合器81には変調器82が接続されている。通信プログラム29が充電装置7を介して充電中に転送するデータ(管理情報)は変調器82で変調され、混合器81で給電線に重畳され、充電装置7に送信される。なお、充電中の搬送装置3と充電装置7との間の通信は、給電線に重畳する方法に限らず、搬送装置3と充電装置7との間に給電線とは別に設けた通信線を介した通信でも、移動中の搬送装置3が制御装置4と通信するときに用いる無線通信ネットワークとは別の無線通信(例えば近距離無線通信や赤外線通信)でもよい。 The battery 80 is a secondary battery that supplies power to each part of the transport device 3, and is connected to electrodes 83 and 84 connected to the charging device 7 via a charging circuit (not shown). A mixer 81 is provided on the power supply line between the electrodes 83, 84 and the battery 80, and a modulator 82 is connected to the mixer 81. Data (management information) transferred by the communication program 29 during charging via the charging device 7 is modulated by the modulator 82, superimposed on the power supply line by the mixer 81, and transmitted to the charging device 7. Note that communication between the transport device 3 and the charging device 7 during charging is not limited to the method of superimposing the communication line on the power supply line, but can also be performed by using a communication line provided between the transport device 3 and the charging device 7 separately from the power supply line. The communication may be via a wireless communication network different from the wireless communication network used when the moving transport device 3 communicates with the control device 4 (for example, short-range wireless communication or infrared communication).
 充電装置7は、バッテリステーションに設置される電源装置70から供給された電力を搬送装置3に供給する装置であり、コントローラ71、記憶装置72、復調器75、及び通信インターフェース76を有する。コントローラ71は、演算処理を実行する演算装置とデータ及びプログラムを格納するメモリを有し、搬送装置3への電力の供給と、搬送装置3と充電装置7との間の通信を制御する。記憶装置72は、不揮発性の記憶領域を提供し、搬送装置3から送信された管理情報を動作ログとして格納する。通信インターフェース76は、ネットワーク551と接続し、他の装置(例えば制御装置4)との通信を制御する。搬送装置3から送信された信号は、復調器75によって給電線から抽出される。復調器75は、搬送装置3から給電線を介して送信されたデータを復調して、記憶装置72に動作ログとして格納する。記憶装置72に格納された動作ログは、所定のタイミングで制御装置4に転送される。 The charging device 7 is a device that supplies power supplied from a power supply device 70 installed at the battery station to the transport device 3, and includes a controller 71, a storage device 72, a demodulator 75, and a communication interface 76. The controller 71 has an arithmetic device that executes arithmetic processing and a memory that stores data and programs, and controls supply of power to the transport device 3 and communication between the transport device 3 and the charging device 7 . The storage device 72 provides a non-volatile storage area and stores the management information transmitted from the transport device 3 as an operation log. The communication interface 76 is connected to the network 551 and controls communication with other devices (for example, the control device 4). The signal transmitted from the transport device 3 is extracted from the feeder line by the demodulator 75. The demodulator 75 demodulates the data transmitted from the transport device 3 via the power supply line and stores it in the storage device 72 as an operation log. The operation log stored in the storage device 72 is transferred to the control device 4 at a predetermined timing.
 充電装置7は、制御装置4から搬送装置3を充電する指令を受けると、充電のために接近した搬送装置3と通信して、搬送装置3の電極83、84が充電装置7の電極73、74と接続可能なように相互位置が調整された後、搬送装置3の電極83、84と充電装置7の電極73、74とを接続する。搬送装置3と充電装置7は給電線で接続される。その後、充電装置7は、給電線を介して、搬送装置3に充電電力を供給し、バッテリ80を充電する。搬送装置3は、充電中に給電線を介して(給電線に重畳して)データ(管理情報)を、充電装置7を送信する。ここで送信される管理情報は、例えば搬送装置3が走行中に取得した管理情報であり、搬送装置3の走行環境又は搬送装置3に関する管理情報である。充電装置7は、制御装置4に当該管理情報を送信する。さらに、制御装置4は、データ(管理情報)を送信された搬送装置3の識別情報(装置ID)と関連付けて、管理装置9へ送信し記憶装置に格納する。充電中は、移動中の搬送装置3が制御装置4と通信するときに用いる無線通信ネットワークを経由しないで搬送装置3から制御装置4にデータを送信でき、無線通信ネットワークの混雑を緩和でき、高速に大量のデータを制御装置4に転送できる。 When the charging device 7 receives a command to charge the transport device 3 from the control device 4, it communicates with the transport device 3 that approaches for charging, and the electrodes 83, 84 of the transport device 3 are connected to the electrodes 73, 73 of the charging device 7. After the mutual positions are adjusted so as to be connectable to the charging device 74, the electrodes 83, 84 of the transport device 3 and the electrodes 73, 74 of the charging device 7 are connected. The transport device 3 and the charging device 7 are connected by a power supply line. Thereafter, the charging device 7 supplies charging power to the transport device 3 via the power supply line, and charges the battery 80. The transport device 3 transmits data (management information) to the charging device 7 via the power supply line (overlaid on the power supply line) during charging. The management information transmitted here is, for example, management information acquired while the transport device 3 is traveling, and is management information regarding the travel environment of the transport device 3 or the transport device 3 . The charging device 7 transmits the management information to the control device 4. Further, the control device 4 associates the data (management information) with the transmitted identification information (device ID) of the conveyance device 3, transmits it to the management device 9, and stores it in the storage device. During charging, data can be transmitted from the transport device 3 to the control device 4 without going through the wireless communication network used when the moving transport device 3 communicates with the control device 4, which can alleviate congestion in the wireless communication network and provide high-speed A large amount of data can be transferred to the control device 4.
 ここで、充電装置7から制御装置4への管理情報の送信、制御装置4から管理装置9への管理情報の送信は、移動中の搬送装置3が制御装置4と通信するときに用いる無線通信ネットワークとは別の通信ネットワーク(例えば有線通信ネットワーク)経由で行われる。また、充電装置7から制御装置4への管理情報の送信、制御装置4から管理装置9への管理情報の送信は、搬送装置3の充電中に行われてもよいし、その他のタイミング(例えば充電後)に行われてもよい。 Here, the transmission of management information from the charging device 7 to the control device 4 and the transmission of management information from the control device 4 to the management device 9 are performed using wireless communication used when the moving transport device 3 communicates with the control device 4. This is done via a communication network (for example, a wired communication network) that is separate from the network. Furthermore, the transmission of management information from the charging device 7 to the control device 4 and the transmission of management information from the control device 4 to the management device 9 may be performed while the transport device 3 is being charged, or at other timings (e.g. (after charging).
 搬送装置3は、充電中のバッテリ80の電圧を測定しており、バッテリ80の電圧が所定の電圧に到達すると充電を停止し、制御装置4に充電の完了を通知する。そして、搬送装置3は、制御装置4からの搬送作業への復帰指令に従って充電装置7から離脱し、通常の棚5の搬送作業を開始する。 The transport device 3 measures the voltage of the battery 80 being charged, and when the voltage of the battery 80 reaches a predetermined voltage, it stops charging and notifies the control device 4 of the completion of charging. Then, the conveyance device 3 disengages from the charging device 7 in accordance with the command from the control device 4 to return to the conveyance operation, and starts the normal conveyance operation of the shelves 5.
 図7に示すように、制御装置4は、プロセッサ40、メモリ41、記憶装置42、入力装置43、出力装置44、及びインターフェース装置45などのハードウェアを有する計算機である。制御装置4は、一つ以上の物理計算機で構成してもよいし、一つ以上の物理計算機(例えば、クラウド基盤)に実現された仮想計算機システム(例えば、クラウドコンピューティングシステム)でもよい。また、制御装置4を構成するデバイスは、一つの物理計算機に配置されてもよいし、複数の物理計算機に分散して配置されてもよい。記憶装置42が格納するプログラムやデータは、一つの記憶装置に格納されてもよいし、複数の記憶装置に分散して格納されてもよい。入力装置43及び出力装置44に代えて、インターフェース装置45を通じて通信可能なクライアントシステムを介してデータ入出力が可能でもよい。 As shown in FIG. 7, the control device 4 is a computer having hardware such as a processor 40, a memory 41, a storage device 42, an input device 43, an output device 44, and an interface device 45. The control device 4 may be composed of one or more physical computers, or may be a virtual computer system (for example, a cloud computing system) implemented on one or more physical computers (for example, a cloud platform). Furthermore, the devices constituting the control device 4 may be placed in one physical computer, or may be distributed and placed in a plurality of physical computers. The programs and data stored in the storage device 42 may be stored in one storage device, or may be distributed and stored in multiple storage devices. Instead of the input device 43 and the output device 44, data input and output may be possible via a client system that can communicate through the interface device 45.
 プロセッサ40は、プログラムを実行して、制御装置4全体の動作を制御するデバイスである。メモリ41は、プロセッサ40のワークメモリとして利用される。記憶装置42は、プログラムやデータを格納する。入力装置43は、例えばマウスやキーボードなどから構成され、オペレータが必要な情報や指示を制御装置4に入力するために利用される。出力装置44は、液晶ディスプレイや有機EL(Electro Luminescence)ディスプレイなどの表示装置でよい。インターフェース装置45は、所定の通信方式により搬送装置3、及びピッキング端末710と通信する装置であり、例えばネットワーク・インターフェース・カードから構成されてよい。 The processor 40 is a device that executes a program and controls the overall operation of the control device 4. Memory 41 is used as a work memory for processor 40. The storage device 42 stores programs and data. The input device 43 includes, for example, a mouse and a keyboard, and is used by the operator to input necessary information and instructions to the control device 4. The output device 44 may be a display device such as a liquid crystal display or an organic EL (Electro Luminescence) display. The interface device 45 is a device that communicates with the transport device 3 and the picking terminal 710 using a predetermined communication method, and may be configured from, for example, a network interface card.
 記憶装置42は、例えば、装置管理テーブル53、在庫テーブル54、棚テーブル57、地図テーブル56、オーダテーブル55、ピッキングテーブル58、及び床テーブル60を格納する。地図テーブル56は、エリア200の地図情報(例えば、エリア200について、区画毎の位置(座標)及び属性(例えば、棚保管区画、ピッキングステーション6、バッテリステーションのいずれに該当するか)を表す情報)が格納されるテーブルである(地図テーブル56は搬送装置3に配信され、搬送装置3において地図テーブル25として保存されてよい)。 The storage device 42 stores, for example, a device management table 53, an inventory table 54, a shelf table 57, a map table 56, an order table 55, a picking table 58, and a floor table 60. The map table 56 contains map information of the area 200 (for example, information indicating the position (coordinates) and attributes of each section (for example, whether it corresponds to a shelf storage section, picking station 6, or battery station) for the area 200). (The map table 56 may be distributed to the transport device 3 and stored as the map table 25 in the transport device 3).
 床テーブル60は、エリア情報の一例でよい。装置管理テーブル53は、搬送管理情報(例えば、搬送タスクと搬送装置3との割り当て関係を表す情報)の一例でよい。 The floor table 60 may be an example of area information. The device management table 53 may be an example of transport management information (for example, information representing the assignment relationship between the transport task and the transport device 3).
 記憶装置42は、格納プログラム50及び処理プログラム51を格納する。プロセッサ40が格納プログラム50及び処理プログラム51を実行することで、格納部及び処理部が実現される。格納プログラム50は、これらのテーブル53~60を、記憶装置42に格納する。 The storage device 42 stores a storage program 50 and a processing program 51. When the processor 40 executes the storage program 50 and the processing program 51, a storage section and a processing section are realized. The storage program 50 stores these tables 53 to 60 in the storage device 42.
 管理装置9は、プロセッサ90、メモリ91、記憶装置92、入力装置93、出力装置94、及びインターフェース装置95などのハードウェアを有する計算機である。管理装置9は、一つ以上の物理計算機で構成してもよいし、一つ以上の物理計算機(例えば、クラウド基盤)に実現された仮想計算機システム(例えば、クラウドコンピューティングシステム)でもよい。また、管理装置9を構成するデバイスは、一つの物理計算機に配置されてもよいし、複数の物理計算機に分散して配置されてもよい。記憶装置92が格納するプログラムやデータは、一つの記憶装置に格納されてもよいし、複数の記憶装置に分散して格納されてもよい。入力装置93及び出力装置94に代えて、インターフェース装置95を通じて通信可能なクライアントシステムを介してデータ入出力が可能でもよい。 The management device 9 is a computer having hardware such as a processor 90, a memory 91, a storage device 92, an input device 93, an output device 94, and an interface device 95. The management device 9 may be configured with one or more physical computers, or may be a virtual computer system (for example, a cloud computing system) implemented on one or more physical computers (for example, a cloud infrastructure). Furthermore, the devices configuring the management device 9 may be placed on one physical computer, or may be distributed and placed on a plurality of physical computers. The programs and data stored in the storage device 92 may be stored in one storage device, or may be distributed and stored in multiple storage devices. Instead of the input device 93 and the output device 94, data input/output may be possible via a client system that can communicate through the interface device 95.
 プロセッサ90は、プログラムを実行して、制御装置4全体の動作を制御するデバイスである。メモリ91は、プロセッサ90のワークメモリとして利用される。記憶装置42は、プログラムやデータを格納する。入力装置93は、例えばマウスやキーボードなどから構成され、オペレータが必要な情報や指示を管理装置9に入力するために利用される。出力装置94は、液晶ディスプレイや有機EL(Electro Luminescence)ディスプレイなどの表示装置でよい。インターフェース装置95は、所定の通信方式により他の装置と通信する装置であり、例えばネットワーク・インターフェース・カードから構成されてよい。 The processor 90 is a device that executes a program and controls the overall operation of the control device 4. Memory 91 is used as a work memory for processor 90. The storage device 42 stores programs and data. The input device 93 includes, for example, a mouse and a keyboard, and is used by the operator to input necessary information and instructions to the management device 9. The output device 94 may be a display device such as a liquid crystal display or an organic EL (Electro Luminescence) display. The interface device 95 is a device that communicates with other devices using a predetermined communication method, and may be composed of, for example, a network interface card.
 記憶装置92は、例えば、搬送装置3から収集した管理データ(管理情報)を動作ログ99として格納する。また、記憶装置92は、分析プログラム96を格納する。プロセッサ90が分析プログラム96を実行することで分析部が実現され、管理装置9は管理情報を分析する。 The storage device 92 stores, for example, management data (management information) collected from the transport device 3 as an operation log 99. The storage device 92 also stores an analysis program 96. An analysis section is realized by the processor 90 executing the analysis program 96, and the management device 9 analyzes the management information.
 図8に示すように、ピッキング端末710は、ピッキングステーション6におけるピッキング作業を管理するための情報処理端末である。ピッキング端末710は、インターフェース装置731、記憶装置732及びプロセッサ733を有する。インターフェース装置731、記憶装置732及びプロセッサ733は通信可能に接続されている。 As shown in FIG. 8, the picking terminal 710 is an information processing terminal for managing the picking work at the picking station 6. Picking terminal 710 has an interface device 731, a storage device 732, and a processor 733. Interface device 731, storage device 732, and processor 733 are communicably connected.
 インターフェース装置731は、所定の通信方式により制御装置4と通信を行うための装置であり、例えば無線LANカードやネットワーク・インターフェース・カードなどから構成されてよい。記憶装置732は、ピッキングテーブル770を格納する。ピッキングテーブル770は、制御装置4が有するピッキングテーブル58の一部又は全部と同じ情報を含むテーブル(例えば、処理対象のオーダを特定するための情報や、作業予定時間や、実際の進捗状況を表すテーブル)でよい。プロセッサ733は、記憶装置732内のプログラムを実行することで、例えばピッキングテーブル770に基づいて、ピッキング端末710全体の動作を制御する。 The interface device 731 is a device for communicating with the control device 4 using a predetermined communication method, and may be composed of, for example, a wireless LAN card or a network interface card. Storage device 732 stores picking table 770. The picking table 770 is a table containing part or all of the same information as the picking table 58 of the control device 4 (for example, information for identifying orders to be processed, scheduled work time, and actual progress status). Table) is fine. The processor 733 controls the overall operation of the picking terminal 710 based on the picking table 770, for example, by executing the program in the storage device 732.
 ピッキング端末710は、入力装置及び出力装置を有してもよい。入力装置は、ピッキング作業の完了等、作業者によるピッキング作業に関する情報の入力を受け付ける。出力装置は、作業者へのピッキング作業に関する指示等を出力する。 The picking terminal 710 may have an input device and an output device. The input device receives input of information regarding the picking work by the worker, such as completion of the picking work. The output device outputs instructions regarding picking work to the worker.
 図9は、オーダテーブル55の構成例を示す図である。 FIG. 9 is a diagram showing a configuration example of the order table 55.
 オーダテーブル55は、顧客からのオーダに関する各種情報が格納されるテーブルである。オーダテーブル55は、オーダ毎にレコードを有する。各レコードが、処理ID601、伝票番号602、店名603、店コード604、商品名605、商品ID606、個数607、納期608、受信日時609及び作業日時610といった情報を保持する。一つのオーダを例に取る(図9の説明において「注目オーダ」)。図9が示す例によれば、伝票番号602が同じでも、商品の種類(例えば、商品名605及び商品ID606)が違う場合は、別のオーダとして扱われる。一つのオーダが二つ以上のオーダに分けて管理されてもよいし、二つ以上のオーダが一つのオーダとして管理されてもよい。 The order table 55 is a table in which various information regarding orders from customers is stored. The order table 55 has a record for each order. Each record holds information such as a process ID 601, a slip number 602, a store name 603, a store code 604, a product name 605, a product ID 606, a quantity 607, a delivery date 608, a reception date and time 609, and a work date and time 610. Let's take one order as an example (referred to as "attention order" in the explanation of FIG. 9). According to the example shown in FIG. 9, even if the slip number 602 is the same, if the types of products (for example, product name 605 and product ID 606) are different, the orders are treated as different orders. One order may be managed as two or more orders, or two or more orders may be managed as one order.
 処理ID601は、注目オーダのIDを表す。伝票番号602は、いわゆる伝票の番号を表す。 The process ID 601 represents the ID of the order of interest. The slip number 602 represents a so-called slip number.
 店名603は、注目オーダで指定された商品の出荷先の店の名前を表し、店コード604は、当該店のコードを表す。 The store name 603 represents the name of the store to which the product specified in the noted order is shipped, and the store code 604 represents the code of the store.
 商品名605は、注目オーダで指定されている商品の名前を表し、商品ID606は、当該商品のIDを表し、個数607は、当該商品の数を表す。 The product name 605 represents the name of the product specified in the noted order, the product ID 606 represents the ID of the product, and the number 607 represents the number of the product.
 納期608は、注目オーダで指定されている商品が注文先(典型的には顧客)へ届けられる期限を表す。なお、処理プログラム51が、納期608から逆算して実際にピッキングステーション6でピッキングがされる期限を算出してよい。処理プログラム51は、当該算出された期限に基づいて、搬送装置3に移動指示を送信するタイミングを決定してもよいし、ピッキングステーション6に搬送装置3が到達すべき日時を移動指示に指定してもよい。 The delivery date 608 represents the deadline by which the product specified in the noted order will be delivered to the order destination (typically, the customer). Note that the processing program 51 may calculate the deadline for actual picking at the picking station 6 by counting backwards from the delivery date 608. The processing program 51 may decide the timing to send the movement instruction to the transport device 3 based on the calculated deadline, or specify the date and time when the transport device 3 should arrive at the picking station 6 in the movement instruction. You can.
 受信日時609は、注目オーダを受信した日時を表す。作業日時610は、注目オーダで指定されている商品が置かれている棚5をピッキングステーション6へ搬送する作業が行われる日時を表す。 The reception date and time 609 represents the date and time when the noted order was received. The work date and time 610 represents the date and time when the work of transporting the shelf 5 on which the product specified by the order of interest is placed to the picking station 6 is performed.
 図10は、在庫テーブル54の構成例を示す図である。 FIG. 10 is a diagram showing an example of the configuration of the inventory table 54.
 在庫テーブル54は、商品に関する情報が格納されるテーブルである。在庫テーブル54は、商品毎にレコードを有する。各レコードが、商品名701、商品ID702、在庫数703、棚ID704、商品位置705及びピッキング回数706といった情報を保持する。一つの商品を例に取る(図10の説明において「注目商品」)。なお、同一の商品が異なる棚に格納されている場合、同一の商品について複数のレコードが存在する。同様に、同一の商品が同一の棚における異なる商品位置に格納されている場合も、同一の商品について複数のレコードが存在する。 The inventory table 54 is a table in which information regarding products is stored. The inventory table 54 has records for each product. Each record holds information such as a product name 701, product ID 702, inventory quantity 703, shelf ID 704, product position 705, and number of times of picking 706. Let's take one product as an example (referred to as "attention product" in the explanation of FIG. 10). Note that if the same product is stored on different shelves, multiple records exist for the same product. Similarly, when the same product is stored in different product positions on the same shelf, multiple records exist for the same product.
 商品名701は、注目商品の名前を表す。商品ID702は、注目商品のIDを表す。在庫数703は、注目商品の在庫数を表す。棚ID704は、注目商品が配置されている棚5のIDを表す。商品位置705は、当該棚5における注目商品の位置を表す。例えば「U3R2」は、上(U)から3番目、右(R)から2番目を意味する。 The product name 701 represents the name of the product of interest. The product ID 702 represents the ID of the product of interest. The number of items in stock 703 represents the number of items in stock of the item of interest. The shelf ID 704 represents the ID of the shelf 5 on which the product of interest is placed. The product position 705 represents the position of the product of interest on the shelf 5. For example, "U3R2" means the third from the top (U) and the second from the right (R).
 ピッキング回数706は、注目商品がピッキングされた回数を表す。ピッキング回数706は、棚単位でカウントされてもよいし、ピッキングされた商品数でもよい。ピッキング回数706は、棚5の配置入れ替えや、棚5内の商品入れ替え等に利用されてよい。また、ピッキング回数706は、一定時間毎にリセット又は更新されてもよく、例えば所定期間におけるピッキング回数としてもよく、故に、「ピッキング頻度」と呼ばれてもよい。 The number of picking times 706 represents the number of times the item of interest has been picked. The number of times of picking 706 may be counted on a shelf-by-shelf basis, or may be the number of products picked. The number of times of picking 706 may be used to rearrange the arrangement of the shelves 5, replace products on the shelves 5, and the like. Further, the number of picking times 706 may be reset or updated at regular intervals, for example, the number of pickings in a predetermined period of time, and therefore may be referred to as "picking frequency."
 図11は、棚テーブル57の構成例を示す図である。 FIG. 11 is a diagram showing an example of the configuration of the shelf table 57.
 棚テーブル57は、棚5に関する情報が格納されるテーブルである。棚テーブル57は、棚5毎にレコードを有する。各レコードが、棚ID801、保管位置802、棚重量803(単位は例えば[kg])、商品重量804(単位は例えば[kg])及び搬送回数805を保持する。一つの棚5を例に取る(図11の説明において「注目棚5」)。 The shelf table 57 is a table in which information regarding the shelves 5 is stored. The shelf table 57 has a record for each shelf 5. Each record holds a shelf ID 801, a storage position 802, a shelf weight 803 (for example, in [kg]), a product weight 804 (for example, in [kg]), and a number of times of transportation 805. Let us take one shelf 5 as an example (referred to as "attention shelf 5" in the explanation of FIG. 11).
 棚ID801は、注目棚5のIDを表す。保管位置802は、注目棚5が配置されている区画を表す。注目棚5が、バッファ区画に存在する場合、保管位置802は、当該バッファ区画の位置を表す。注目棚5が搬送されている最中であれば、保管位置802は、注目棚5の状態”搬送中”を表してよい。注目棚5がピッキングされている最中であれば、保管位置802は、注目棚5の状態”ピッキング中”を表してよい。 The shelf ID 801 represents the ID of the shelf 5 of interest. The storage position 802 represents the section where the shelf 5 of interest is arranged. When the shelf 5 of interest exists in a buffer section, the storage position 802 represents the position of the buffer section. If the shelf 5 of interest is being transported, the storage position 802 may represent the state of the shelf 5 of interest "transporting". If the shelf of interest 5 is being picked, the storage position 802 may represent the state of the shelf of interest 5 as "picking".
 棚重量803は、注目棚5の重量を表す。商品重量804は、注目棚5に配置されている全商品の総重量を表す。商品重量804は、例えば、注目棚5の棚ID704に対応した商品の在庫数703と商品単体の重量とに基づいて処理プログラム51により算出されてよい。 The shelf weight 803 represents the weight of the shelf 5 of interest. The product weight 804 represents the total weight of all products placed on the shelf 5 of interest. The product weight 804 may be calculated by the processing program 51, for example, based on the inventory quantity 703 of the product corresponding to the shelf ID 704 of the shelf 5 of interest and the weight of the individual product.
 搬送回数805は、注目棚5の搬送タスクの実行回数を表す情報である。注目棚5の搬送タスクが実行される都度に、例えば格納プログラム50により、注目棚5に対応した搬送回数805が更新される。例えば、棚ID”S634”の棚5は、搬送回数805が少ないため、搬送コストが高い区画に保管される。目的区画にかかわらず注目棚5が搬送される都度に搬送回数805をインクリメントしてもよいし、目的区画によっては注目棚5の搬送がされても搬送回数805をインクリメントしなくてもよい。例えば、目的区画としてピッキングステーション6への搬送タスクが実行される都度に、注目棚5に対応した搬送回数805が更新されてもよい。なお、「搬送回数」は、一定時間毎にリセット又は更新されてもよく、例えば所定期間における搬送回数としてもよく、故に、「搬送頻度」と呼ばれてもよい。 The number of times of transportation 805 is information representing the number of times the transportation task of the shelf of interest 5 is executed. Every time the transport task for the shelf 5 of interest is executed, the number of transports 805 corresponding to the shelf 5 of interest is updated, for example, by the storage program 50. For example, shelf 5 with shelf ID “S634” is stored in a section where the transportation cost is high because the number of times it is transported 805 is small. The number of times of transportation 805 may be incremented each time the shelf 5 of interest is transported regardless of the destination section, or the number of times of transportation 805 may not be incremented depending on the destination section even if the shelf of interest 5 is transported. For example, the number of times of transportation 805 corresponding to the shelf of interest 5 may be updated each time a transportation task to the picking station 6 as the destination section is executed. Note that the "number of times of conveyance" may be reset or updated at regular intervals, for example, the number of times of conveyance in a predetermined period of time, and therefore may be referred to as the "frequency of conveyance."
 図12は、装置管理テーブル53の構成例を示す図である。 FIG. 12 is a diagram showing a configuration example of the device management table 53.
 装置管理テーブル53は、各搬送装置3から取得した情報が格納されたテーブルである。装置管理テーブル53は、搬送装置3毎にレコードを有する。各レコードが、装置ID1101、棚フラグ1102、位置1103、バッテリ残量1104、装置状態1105、棚ID1106、目的位置1107及び到着予定日時1108といった情報を保持する。一つの搬送装置3を例に取る(図12の説明において「注目搬送装置3」)。 The device management table 53 is a table in which information acquired from each transport device 3 is stored. The device management table 53 has a record for each transport device 3. Each record holds information such as a device ID 1101, a shelf flag 1102, a position 1103, a remaining battery level 1104, a device status 1105, a shelf ID 1106, a destination position 1107, and an estimated arrival date and time 1108. One transport device 3 will be taken as an example (in the description of FIG. 12, “target transport device 3”).
 装置ID1101は、注目搬送装置3のIDを表す。棚フラグ1102は、注目搬送装置3が棚を積載しているか否かを表す。位置1103は、注目搬送装置3が位置する区画(つまり現在区画)の座標を表す。バッテリ残量1104は、注目搬送装置3のバッテリ80の残量を表す。 The device ID 1101 represents the ID of the transport device 3 of interest. The shelf flag 1102 indicates whether or not the target conveyance device 3 is loading a shelf. The position 1103 represents the coordinates of the section (that is, the current section) in which the conveyance device 3 of interest is located. The battery remaining amount 1104 represents the remaining amount of the battery 80 of the target conveyance device 3.
 装置状態1105は、注目搬送装置3の状態を表す。”移動中”は、注目搬送装置3が移動していることを意味する。”空き”は、注目搬送装置3に棚ID(具体的には、棚IDを含んだ搬送タスク)が割り当てられていないことを意味する。棚ID1106は、注目搬送装置3に割り当てられている搬送タスクに含まれる棚ID(つまり、搬送タスクで指定された搬送対象の棚5のID)を表す。目的位置1107は、注目搬送装置3が搬送する棚5の搬送先の位置を表し、搬送先の番地(座標)等の位置情報、又は搬送先の位置を特定可能な搬送先のID等、搬送先の区画を識別する情報(ID)でもよい。例えば、搬送装置3の搬送先として、ピッキングステーション6のID(ピッキングステーション6に対応した位置(座標)でもよい)、棚5の保管位置のID(又は座標)でもよい。 The device status 1105 represents the status of the target transport device 3. "Moving" means that the target transport device 3 is moving. “Empty” means that a shelf ID (specifically, a transport task including a shelf ID) is not assigned to the transport device 3 of interest. The shelf ID 1106 represents the shelf ID included in the transport task assigned to the transport device 3 of interest (that is, the ID of the shelf 5 to be transported specified by the transport task). The destination position 1107 represents the location of the destination of the shelf 5 transported by the target transportation device 3, and includes location information such as the address (coordinates) of the destination, or an ID of the destination that can specify the location of the destination. It may also be information (ID) that identifies the previous partition. For example, the transport destination of the transport device 3 may be the ID of the picking station 6 (the position (coordinates) corresponding to the picking station 6 may be used) or the ID (or coordinates) of the storage position of the shelf 5.
 到着予定日時1108は、注目搬送装置3が搬送先(例えばピッキングステーション6)に到着する予定日時である。到着予定日時1108は、例えば、注目搬送装置3の搬送先への移動経路に基づいて処理プログラム51により算出された日時でよい。 The scheduled arrival date and time 1108 is the scheduled date and time when the transport device 3 of interest will arrive at the transport destination (for example, the picking station 6). The expected arrival date and time 1108 may be, for example, a date and time calculated by the processing program 51 based on the movement route of the target transport device 3 to the transport destination.
 制御装置4の処理プログラム51は、装置管理テーブル53を参照して、装置状態1105が「空き」の搬送装置3に、搬送タスクを割り当てる。ただし、例えば現時点で装置状態1105が「移動中」の搬送装置3でも、到着予定日時1108が近く、その目的位置1107が次の搬送タスクの移動先となる位置に近い場合、当該次の搬送タスクの搬送を他の搬送装置3より早く実行できるときがある。その場合、処理プログラム51は、装置管理テーブル53を参照して、当該「移動中」の搬送装置3に、次の搬送タスクとして割り当ててもよい(予約又は管理してもよい)。 The processing program 51 of the control device 4 refers to the device management table 53 and assigns a transportation task to the transportation device 3 whose device status 1105 is “vacant”. However, for example, even if the transport device 3 is currently in the device status 1105 as "moving", if the scheduled arrival date and time 1108 is near and the destination position 1107 is close to the destination of the next transport task, the next transport task There are times when the transport device 3 can carry out the transport faster than other transport devices 3. In that case, the processing program 51 may refer to the device management table 53 and assign (may reserve or manage) the next transport task to the "moving" transport device 3.
 図13は、ピッキングテーブル58の構成例を示す図である。 FIG. 13 is a diagram showing an example of the configuration of the picking table 58.
 ピッキングテーブル58は、ピッキング作業に関するテーブルである。ピッキングテーブル58は、ピッキング作業毎にレコードを有する。各レコードが、ピッキングステーションID1401、処理ID1402、装置ID1403、棚ID1404、商品ID1405、数量1406、開始予定日時1407、終了予定日時1408及びピッキング状態1409といった情報を保持する。一回のピッキング作業を例に取る(図13の説明において「注目ピッキング作業」)。 The picking table 58 is a table related to picking work. The picking table 58 has a record for each picking operation. Each record holds information such as picking station ID 1401, process ID 1402, device ID 1403, shelf ID 1404, product ID 1405, quantity 1406, scheduled start date and time 1407, scheduled end date and time 1408, and picking status 1409. Let us take one picking operation as an example (referred to as "notable picking operation" in the explanation of FIG. 13).
 ピッキングステーションID1401は、注目ピッキング作業が行われるピッキングステーション6のIDを表す。ピッキングステーションID1401は無くてもよく、ピッキングステーション6毎にピッキングテーブル58が設けられてもよい。 The picking station ID 1401 represents the ID of the picking station 6 where the picking task of interest is performed. The picking station ID 1401 may not be provided, and a picking table 58 may be provided for each picking station 6.
 処理ID1402は、注目ピッキング作業に対応したオーダの処理IDである。装置ID1403は、注目ピッキング作業においてピッキングされる商品を有する棚を、ピッキングステーション6に搬送する搬送装置3のIDである。 The process ID 1402 is the process ID of the order corresponding to the picking task of interest. The device ID 1403 is the ID of the transport device 3 that transports the shelves containing the products to be picked in the focused picking operation to the picking station 6.
 棚ID1404は、注目ピッキング作業においてピッキングされる商品を有する棚のIDを表し、商品ID1405は、当該商品のIDを表し、数量1406は、ピッキングされる商品の数を表す。なお、開始予定日時1407の昇順でレコードが並んでいるテーブル58によれば、同じ棚ID1404が連続している場合、1個の棚5から異なる処理IDに対応した異なる商品を、連続してピッキング可能である。 The shelf ID 1404 represents the ID of the shelf containing the product to be picked in the focused picking task, the product ID 1405 represents the ID of the product, and the quantity 1406 represents the number of products to be picked. According to the table 58 in which the records are arranged in ascending order of the scheduled start date and time 1407, if the same shelf ID 1404 is consecutive, different products corresponding to different processing IDs from one shelf 5 are picked consecutively. It is possible.
 開始予定日時1407は、注目ピッキング作業の開始予定日時を表す。終了予定日時1408は、注目ピッキング作業の終了予定日時を表す。開始予定日時1407は、移動経路に沿って搬送装置3がピッキングステーション6に到着する予定日時や、注目ピッキング作業より前に行われるピッキング作業に要する予測時間長に基づいて、処理プログラム51により算出されてよい。終了予定日時1408は、開始予定日時1407と、ピッキング作業に要する予測時間長とに基づいて処理プログラム51により算出されてよい。ピッキング作業に要する予測時間長は、ピッキング作業対象の商品の数量、ピッキング作業の平均的な所用時間、及び、ピッキング作業の作業者の過去のピッキング作業履歴、のうちの少なくとも一つに基づいて、処理プログラム51により算出されてよい。なお、ピッキング作業は、作業者に代えて又は加えてロボットによって行われてもよい。 The scheduled start date and time 1407 represents the scheduled start date and time of the picking task of interest. The scheduled end date and time 1408 represents the scheduled end date and time of the picking task of interest. The scheduled start date and time 1407 is calculated by the processing program 51 based on the scheduled date and time when the transport device 3 will arrive at the picking station 6 along the movement route and the predicted time length required for the picking task to be performed before the picking task of interest. It's fine. The scheduled end date and time 1408 may be calculated by the processing program 51 based on the scheduled start date and time 1407 and the predicted time length required for the picking operation. The predicted time length required for picking work is based on at least one of the quantity of products to be picked, the average time required for picking work, and the past picking work history of the picking worker, It may be calculated by the processing program 51. Note that the picking work may be performed by a robot instead of or in addition to a worker.
 ピッキング状態1409は、注目ピッキング作業の状態を表す。”作業前”は、棚5をもった搬送装置3がピッキングステーション6に到着しピッキング作業が開始される前であることを意味する。”作業中”は、ピッキング作業が開始されたがピッキング作業が完了していないことを意味する。”完了”は、ピッキング作業が完了したことを意味する。なお、ピッキング状態1409の変更は、ピッキング作業の作業者からの入力に基づいて行われてもよいし、ピッキング作業に関して自動検出された値に基づいて自動で行われてもよい。例えば、注目ピッキング作業の完了後の棚5を、待機していた搬送装置3が搬送した場合、注目ピッキング作業の次のピッキング作業に対応したピッキング状態1409が、”作業前”から”作業中”に変更されてもよい。 The picking state 1409 represents the state of the picking task of interest. "Before work" means before the transport device 3 with the shelves 5 arrives at the picking station 6 and before the picking work is started. "Work in progress" means that the picking work has started, but the picking work has not been completed. "Complete" means that the picking operation has been completed. Note that the picking state 1409 may be changed based on an input from a picking worker, or may be automatically changed based on a value automatically detected regarding the picking task. For example, when the waiting transport device 3 transports the shelf 5 after the completion of the focused picking task, the picking status 1409 corresponding to the next picking task after the focused picking task changes from "Before work" to "Work in progress". may be changed to
 図14は、床テーブル60を示す図である。 FIG. 14 is a diagram showing the floor table 60.
 床テーブル60は、エリア200における区画毎の情報を保持する。床テーブル60は、区画毎にレコードを有する。各レコードが、番地1501、区画設定1502、使用不可フラグ1503、旋回可否フラグ1506、方向(棚なし)1508及び方向(棚あり)1509といった情報を保持する。一つの区画を例に取る(図14の説明において「注目区画」)。 The floor table 60 holds information for each section in the area 200. The floor table 60 has records for each section. Each record holds information such as address 1501, section setting 1502, unusable flag 1503, turnability flag 1506, direction (no shelf) 1508, and direction (with shelf) 1509. Take one section as an example (referred to as "attention section" in the explanation of FIG. 14).
 番地1501は、注目区画の番地(位置情報)を表す。区画設定1502は、注目区画がどのような区画として設定されているかを表す。例えば、”棚保管区画”は、棚が保管(配置)される区画である。”移動用区画”とは、棚の搬送のために搬送装置3が走行する区画である。搬送経路を構成する区画は、主に移動用区画でよい。 Address 1501 represents the address (location information) of the section of interest. The section setting 1502 indicates what kind of section is set as the section of interest. For example, a "shelf storage section" is a section where shelves are stored (arranged). The "transfer section" is a section in which the transport device 3 travels to transport the shelves. The sections constituting the transport route may mainly be sections for movement.
 使用不可フラグ1503は、注目区画が使用不可(搬送経路の構成要素になり得ない)か否かを表すフラグである。制御装置4は、注目区画の使用不可フラグ1503を「不可」に設定することにより、搬送装置3が注目区画を通過しないように、注目区画をロックすることができる。 The unusable flag 1503 is a flag indicating whether the section of interest is unusable (cannot become a component of the transport route). By setting the unusable flag 1503 of the focused section to "unavailable", the control device 4 can lock the focused section so that the transport device 3 does not pass through the focused section.
 旋回可否フラグ1506は、注目区画が搬送装置3の旋回が可能であるか否かを表す。注目区画が旋回不可である場合、旋回可否フラグ1506は”不可”と設定される。注目区画が旋回可能である場合、旋回可否フラグ1506は”可能”と設定できる。例えば、注目区画が使用不可の区画として、バッテリステーション、棚保管区画など、特定の区画において、旋回を禁止すべき区画又は旋回をさせたくない区画である場合には、旋回可否フラグ1506が”不可”と設定されてもよい。 The turning possibility flag 1506 indicates whether or not the section of interest allows the transport device 3 to turn. If the section of interest cannot be turned, the turning permission flag 1506 is set to "impossible." If the section of interest is turnable, the turnability flag 1506 can be set to "possible". For example, if the attention section is an unusable section, such as a battery station or shelf storage section, and is a section where turning should be prohibited or a section where turning is not desired, the turning permission flag 1506 is set to "unusable". ” may be set.
 搬送コスト1507は、注目区画が棚保管区画の場合に設定される値であり、注目区画からピッキングステーション6までの移動距離(又は、搬送装置3の移動速度を標準速度とした場合の移動時間)に従う値としての搬送コストを表す。 The transportation cost 1507 is a value set when the attention section is a shelf storage section, and is the travel distance from the attention division to the picking station 6 (or the travel time when the travel speed of the transportation device 3 is set to the standard speed). represents the transportation cost as a value according to .
 注目区画の搬送コストは、例えば、ピッキングステーション6までの移動距離(例えば、ピッキングステーション6に到達するまでに通過する区画の数)X1と、旋回回数X2と、垂直搬送機の使用回数X3等に基づいて算出されてもよい。このように、注目区画によって搬送コストに関わる要素をXiとし、各要素の係数をAiとすると、要素i=1~nに関して、制御装置4の処理プログラム51が、注目区画の搬送コストCを、下記式で算出してよい。
C=A1*X1+A2*X2+A3*X3+・・・+An*Xn
 A1,A2,・・・,Anは、区画によって変わらない係数でもよい。なお、前述にない他の要素が更に搬送コストの要素とされてよい(例えば、注目区画からの移動経路に含まれる通路が渋滞が起きやすい通路である場合には搬送コストが高くなってよい)。また、垂直搬送機での移動距離又は移動した階数を、搬送コストに関わる要素として採用し、当該要素が大きいほど、搬送コストが高くなってもよい。なお、搬送コストCの計算式は例示であって、例えば一部の要素を除いて計算されてもよい。搬送コストの計算方法は他の方法(別の計算式やシミュレーション)が採用されてもよい。
The transportation cost of the section of interest is, for example, the travel distance to the picking station 6 (for example, the number of sections passed before reaching the picking station 6) X1, the number of turns X2, the number of times the vertical conveyor is used X3, etc. It may be calculated based on In this way, if the factor related to the transportation cost depending on the section of interest is Xi, and the coefficient of each element is Ai, the processing program 51 of the control device 4 calculates the transportation cost C of the section of interest with respect to elements i = 1 to n. It may be calculated using the following formula.
C=A1*X1+A2*X2+A3*X3+...+An*Xn
A1, A2, . . . , An may be coefficients that do not change depending on the section. Note that other factors not mentioned above may be included in the transportation cost (for example, if the path included in the travel route from the section of interest is a path where traffic congestion is likely to occur, the transportation cost may be high). . Alternatively, the distance traveled by the vertical transport machine or the number of floors traveled may be used as a factor related to the transport cost, and the larger the factor, the higher the transport cost. Note that the calculation formula for the transportation cost C is an example, and may be calculated by excluding some elements, for example. Other methods (another calculation formula or simulation) may be used to calculate the transportation cost.
 方向(棚なし)1508は、注目区画から棚なしの状態(棚5を積載していない状態)の搬送装置3が移動可能な方向であり、搬送装置3の移動可能な方向を論理的に制限するように設定可能である。同様に、方向(棚あり)1509は、注目区画から棚ありの状態(棚5を積載した状態)の搬送装置3が移動可能な方向であり、搬送装置3の移動可能な方向を論理的に制限するように設定可能である。方向(棚なし)1508や方向(棚あり)1509の設定により、例えば、物理的に搬送装置3の移動可能な方向のうち、一部の方向への移動を禁止して、残りの方向のみ移動可能と制限することもでき、例えば一方通行等を設定可能である。 Direction (no shelves) 1508 is the direction in which the transport device 3 without shelves (with no shelves 5 loaded) can move from the target section, and the directions in which the transport device 3 can move are logically restricted. It can be set to Similarly, the direction (with shelves) 1509 is the direction in which the transport device 3 in the state with shelves (loaded with shelves 5) can move from the compartment of interest, and the direction in which the transport device 3 can move is logically Can be set to limit. By setting the direction (without shelf) 1508 or the direction (with shelf) 1509, for example, among the directions in which the transport device 3 can physically move, movement in some directions is prohibited, and movement is performed only in the remaining directions. It is also possible to limit the possibility of traffic, for example, it is possible to set one-way traffic.
 なお、図14の例では、方向(棚なし)1508や方向(棚あり)1509について、移動可能な方向を「+x」「-x」「+y」「-y」「±x」「±y」のいずれか、又はそれらの組み合わせで表現しているが、他の方法で表現されてもよい。例えば、各区画について、「+x方向」「-x方向」「+y方向」「-y方向」のそれぞれについて、搬送装置3が棚5を積載した状態での移動可否と、搬送装置3が棚5を積載していない状態での移動可否とが設定されてもよい。 In the example of FIG. 14, the movable directions are "+x", "-x", "+y", "-y", "±x", "±y" for the direction (without shelf) 1508 and the direction (with shelf) 1509. or a combination thereof; however, it may be expressed in other ways. For example, for each section, for each of the "+x direction," "-x direction," "+y direction," and "-y direction," the transport device 3 determines whether or not it can move with the shelves 5 loaded. It may also be set whether or not the vehicle can be moved when it is not loaded.
 以下、本実施例で実行される処理の例を説明する。なお、本実施例では、格納プログラム50が、テーブル53~60を記憶装置42に格納する。制御装置4の格納プログラム50は、搬送装置3及び各ピッキング端末710から定期的又は不定期的に受信する情報(例えば、センサ14の計測値)に基づいて、テーブル53~60の該当部分を適宜に更新する。 Hereinafter, an example of the processing executed in this embodiment will be described. Note that in this embodiment, the storage program 50 stores the tables 53 to 60 in the storage device 42. The storage program 50 of the control device 4 stores the corresponding portions of the tables 53 to 60 as appropriate based on information (for example, measured values of the sensor 14) received regularly or irregularly from the transport device 3 and each picking terminal 710. Update to.
 図15は、搬送制御処理のフローチャートである。搬送制御処理は、繰り返し(例えば定期的に)実行される。 FIG. 15 is a flowchart of the transport control process. The conveyance control process is executed repeatedly (for example, periodically).
 ステップS1501で、処理プログラム51が、オーダ(オーダテーブル55のレコード)を、作業日時610の昇順に並べる。作業日時610の昇順以外に、作業の緊急度や必要度の順序にオーダがソートされてもよい。ソートされた各オーダについて、ステップS1502~S1504の処理が実行される。また、処理プログラム51が、複数のオーダを一つのオーダに纏め、纏められたオーダについてステップS1502~S1504の処理が実行されてもよい。一つのオーダに纏められる複数のオーダは、同じ棚に含まれる商品のオーダであるといった所定種類の要素が共通するオーダでよい。ここでは、一つのオーダを例にして説明する。 In step S1501, the processing program 51 arranges orders (records in the order table 55) in ascending order of work date and time 610. In addition to the ascending order of work date and time 610, orders may be sorted in order of urgency or necessity of work. The processes of steps S1502 to S1504 are executed for each sorted order. Further, the processing program 51 may combine a plurality of orders into one order, and perform the processes of steps S1502 to S1504 on the combined order. The plurality of orders that are combined into one order may be orders that have a predetermined type of element in common, such as orders for products included on the same shelf. Here, one order will be explained as an example.
 ステップS1502で、処理プログラム51が、処理すべきオーダ(注目オーダ)に基づいて、ピッキング対象となる商品を搭載する棚5と、当該棚5の位置とを特定する。例えば、処理プログラム51が、オーダテーブル55、在庫テーブル54及び棚テーブル57に基づいて、注目オーダで指定されている商品名605及び商品ID606に一致する商品名701及び商品ID702に対応した棚ID704を在庫テーブル54から特定し、特定した棚ID704に一致する棚ID801に対応した保管位置802を棚テーブル57から特定する。 In step S1502, the processing program 51 identifies the shelf 5 on which the product to be picked is mounted and the position of the shelf 5 based on the order to be processed (order of interest). For example, the processing program 51 selects a shelf ID 704 corresponding to a product name 701 and product ID 702 that match the product name 605 and product ID 606 specified in the noted order, based on the order table 55, inventory table 54, and shelf table 57. The storage position 802 corresponding to the shelf ID 801 that matches the identified shelf ID 704 is identified from the shelf table 57.
 ステップS1503で、処理プログラム51が、注目オーダについて、地図テーブル56、装置管理テーブル53、棚テーブル57及び床テーブル60に基づいて、ステップS1502で特定された棚位置(棚5の保管位置802)にある棚5を搬送する搬送装置3を選択し、且つ、当該搬送装置3による搬送の移動経路を作成する。つまり、ステップS1503では、注目オーダに従った搬送タスクの割り当て先の搬送装置3が決定される。搬送タスクは、搬送対象の棚5を、作成された移動経路に従って搬送するタスクでよい。ステップS1503では、具体的には、例えば、処理プログラム51は、下記のうちの少なくとも一つを行ってよい。
・処理プログラム51は、所定の条件に該当する一つ以上の搬送装置3から一つの搬送装置3を選択する。「所定の条件」は、例えば装置状態1105が「空き」であることでよい。搬送装置3は、各搬送装置3の装置状態1105、棚フラグ1102、位置1103、及び搬送対象の棚5の保管位置802(保管位置802と目的区画の位置との距離)に基づいて選択されるとよい。例えば、処理プログラム51は、装置管理テーブル53を参照して、装置状態1105が「空き」である搬送装置3のうち、搬送すべき棚5の保管位置802に最も近い位置1103にある搬送装置3を選択してもよい。
・処理プログラム51は、選択された搬送装置3の位置1103、搬送対象の棚5の保管位置802、目的区画の位置(例えばピッキングステーション6の位置)、及び選択された搬送装置3の位置と目的区画の位置とを結ぶ複数通りの経路の各々について、床テーブル60を参照して、当該経路における区画毎のレコード(例えば、使用不可フラグ1503、旋回可否フラグ1506、方向(棚なし)1508及び方向(棚あり)1509)に基づいて、移動経路(移動方向を含む)を作成する。移動経路は、例えば、選択された搬送装置3の位置1103から搬送対象の棚5の保管位置802への経路、搬送対象の棚5の保管位置802から目的区画の位置への経路でよい。
・処理プログラム51は、ピッキングテーブル58を参照してよい。例えば、処理プログラム51は、相対的に空いているピッキングステーション6を特定し(例えば、ピッキングテーブル58に対応するレコードの数が少ないピッキングステーション6を選択し)、当該空いているピッキングステーション6を目的区画として、当該目的区画への搬送タスクを優先してもよい。
In step S1503, the processing program 51 moves the order of interest to the shelf position (storage position 802 of shelf 5) specified in step S1502 based on the map table 56, device management table 53, shelf table 57, and floor table 60. A transport device 3 that transports a certain shelf 5 is selected, and a movement route for transport by the transport device 3 is created. That is, in step S1503, the transport device 3 to which the transport task according to the noted order is assigned is determined. The transport task may be a task of transporting the shelf 5 to be transported along the created movement route. Specifically, in step S1503, for example, the processing program 51 may perform at least one of the following.
- The processing program 51 selects one transport device 3 from one or more transport devices 3 that meet a predetermined condition. The "predetermined condition" may be, for example, that the device status 1105 is "vacant". The transport device 3 is selected based on the device status 1105, shelf flag 1102, position 1103 of each transport device 3, and storage position 802 of the shelf 5 to be transported (distance between the storage position 802 and the position of the destination section). Good. For example, the processing program 51 refers to the device management table 53 and determines, among the transportation devices 3 whose device status 1105 is “vacant,” the transportation device 3 located at the position 1103 closest to the storage position 802 of the shelf 5 to be transported. may be selected.
- The processing program 51 determines the position 1103 of the selected transport device 3, the storage position 802 of the shelf 5 to be transported, the position of the destination section (for example, the position of the picking station 6), and the position and purpose of the selected transport device 3. For each of the plurality of routes connecting the compartment positions, the floor table 60 is referred to, and records for each compartment on the route (for example, unusable flag 1503, turning availability flag 1506, direction (no shelf) 1508, and (with shelves) 1509), a movement route (including movement direction) is created. The movement route may be, for example, a route from the position 1103 of the selected transport device 3 to the storage position 802 of the shelf 5 to be transported, or a route from the storage position 802 of the shelf 5 to be transported to the position of the destination section.
- The processing program 51 may refer to the picking table 58. For example, the processing program 51 identifies a picking station 6 that is relatively vacant (for example, selects a picking station 6 with a small number of records corresponding to the picking table 58), and selects the vacant picking station 6 as a target. As for the division, priority may be given to the transport task to the target division.
 ステップS1504で、処理プログラム51は、ステップS1503で選択された搬送装置3に、当該搬送装置3に割り当てられた搬送タスク(注目オーダに従う搬送タスク)が関連付けられた移動指示を送信する。 In step S1504, the processing program 51 transmits to the transport device 3 selected in step S1503 a movement instruction associated with the transport task assigned to the transport device 3 (transport task according to the order of interest).
 図15に示す搬送制御処理では、各オーダの納期608を守るように、当該オーダに関する搬送タスクの処理タイミングが決定されて、処理が実行される。 In the transport control process shown in FIG. 15, the processing timing of the transport task for each order is determined and the process is executed so as to meet the delivery date 608 of each order.
 図16は、ログデータ収集処理のフローチャートである。 FIG. 16 is a flowchart of the log data collection process.
 搬送装置3が走行を開始すると(S2001)、位置推定プログラム32が、床面の区画201上のマーカ300を読み取って位置情報を取得する(S2002)。 When the transport device 3 starts traveling (S2001), the position estimation program 32 reads the marker 300 on the section 201 on the floor and acquires position information (S2002).
 そして、計測プログラム31は、各種センサから走行環境を取得する(S2003)。例えば、前方の障害物を検出する赤外線センサが検出した搬送装置3の周囲の物体の情報を取得する。 Then, the measurement program 31 acquires the driving environment from various sensors (S2003). For example, information about objects around the transport device 3 detected by an infrared sensor that detects obstacles in front is acquired.
 そして、計測プログラム31は、バッテリ80の電圧値を取得し(S2004)、取得したバッテリ電圧値と所定の閾値とを比較する(S2005)。 Then, the measurement program 31 acquires the voltage value of the battery 80 (S2004), and compares the acquired battery voltage value with a predetermined threshold (S2005).
 バッテリ電圧値が所定の閾値より以上であれば、通信プログラム29は、倉庫2内に設けられる無線通信ネットワークを経由して管理情報を送信する(S2006)。一方、バッテリ電圧値が所定の閾値より小さければ、充電処理を実行する(S2007)。充電処理の詳細は図17を参照して後述する。その後、ステップS2002に戻って、処理を繰り返す。 If the battery voltage value is greater than or equal to the predetermined threshold, the communication program 29 transmits the management information via the wireless communication network provided within the warehouse 2 (S2006). On the other hand, if the battery voltage value is smaller than the predetermined threshold, charging processing is executed (S2007). Details of the charging process will be described later with reference to FIG. 17. After that, the process returns to step S2002 and repeats the process.
 図17は、充電処理S2007のフローチャートである。 FIG. 17 is a flowchart of charging process S2007.
 移動制御プログラム30は、制御装置4に充電を要求し(S2011)、制御装置4からの移動指示に従って、搬送装置3をバッテリステーションへ移動する(S2012)。 The movement control program 30 requests charging to the control device 4 (S2011), and moves the transport device 3 to the battery station according to the movement instruction from the control device 4 (S2012).
 移動制御プログラム30は、バッテリステーションへの移動が完了すると、充電装置7と接続し、充電装置7から搬送装置3への給電を開始する(S2013)。 When the movement to the battery station is completed, the movement control program 30 connects to the charging device 7 and starts supplying power from the charging device 7 to the transport device 3 (S2013).
 通信プログラム29は、有線通信によって管理情報を送信する(S2014)。管理情報は給電線に重畳して送信しても、給電線とは別の通信線を経由して送信してもよい。充電中の管理情報の送信は、有線通信を経由する他に、倉庫2内に設けられる無線通信ネットワーク以外の無線通信(例えば近距離無線通信や赤外線通信)を経由してもよい。 The communication program 29 transmits management information through wired communication (S2014). The management information may be transmitted superimposed on the power supply line, or may be transmitted via a communication line separate from the power supply line. The management information during charging may be transmitted not only via wired communication but also via wireless communication other than the wireless communication network provided within the warehouse 2 (for example, short-range wireless communication or infrared communication).
 通信プログラム29が管理情報の送信を完了し(S2015)、充電装置7から搬送装置3への給電が完了すると、移動制御プログラム30は、充電装置7と搬送装置3の接続を解除し、充電装置7から離脱するように搬送装置3を移動する(S2016)。 When the communication program 29 completes the transmission of the management information (S2015) and the power supply from the charging device 7 to the transportation device 3 is completed, the movement control program 30 releases the connection between the charging device 7 and the transportation device 3, and disconnects the charging device 7 from the transportation device 3. The transport device 3 is moved so as to separate from the transport device 7 (S2016).
 図18は、搬送装置3の直進時の床面劣化診断処理のシーケンス図である。図18は、ログデータ収集処理(図16)を特定の項目の計測及び測定について記述するものであり、後述する図22も同様である。 FIG. 18 is a sequence diagram of the floor surface deterioration diagnosis process when the transport device 3 moves straight. FIG. 18 describes the log data collection process (FIG. 16) with respect to measurements of specific items, and the same applies to FIG. 22, which will be described later.
 例えば、搬送装置3の走行が繰り返されるうちに、搬送による負荷などで床面に損傷が発生する場合がある。そして、床面の損傷状態によっては、搬送装置3がその損傷個所を通過する際に床に起因した振動や衝撃を受け、これらの振動や衝撃が搬送装置3の動作不良や通信不良などの不具合の原因となり得る問題がある。また、このような不具合の発生を回避するため、床面に損傷が生じて床の状態が悪いエリアを走行禁止エリアとする場合、このような走行禁止エリアが増えると、走行禁止エリアを迂回することによる搬送効率の低下を招く問題がある。また、搬送効率が低下すると、ピッキングステーションで搬送装置3の搬送待ちが生じて、ピッキング効率が低下する可能性がある。図18及び図19で説明する床面劣化診断処理により、床面の損傷を早期に検出することが可能となり、搬送効率及びピッキング効率の低下を防ぐことができ、また搬送システムの信頼性を向上できる。 For example, as the transport device 3 repeatedly travels, damage may occur to the floor surface due to the load caused by transport. Depending on the state of damage to the floor surface, the transport device 3 may receive vibrations and shocks caused by the floor when passing through the damaged area, and these vibrations and shocks can cause problems such as malfunctions and poor communication of the transport device 3. There are problems that can cause this. In addition, in order to avoid such problems, if areas where the floor surface is damaged and the floor is in poor condition are designated as no-travel areas, if the number of such no-travel areas increases, the system will detour around the no-travel areas. There is a problem in that the transport efficiency is lowered due to this. Furthermore, if the transport efficiency decreases, there is a possibility that the transport device 3 is waiting for transport at the picking station, and the picking efficiency decreases. The floor surface deterioration diagnosis process explained in Figures 18 and 19 makes it possible to detect floor damage at an early stage, prevent a decline in transport efficiency and picking efficiency, and improve the reliability of the transport system. can.
 搬送装置3の計測プログラム31は、エンコーダ20Eから駆動輪20Dの回転数(単位時間当たりのパルス数)を取得し(S2021)、取得した回転数から搬送装置3の速度を計算する(S2022)。計測プログラム31は、所定時間中の速度差(例えば、過去1秒間の速度の最大値と最小値との差)を所定の閾値1と比較する(S2023)。その結果、速度差が閾値より小さいと判定されると、ステップS2021に戻って、搬送装置3の速度を計測する処理を繰り返す。一方、速度差が閾値より大きいと判定されると、通信プログラム29は、倉庫2内に設けられる無線通信ネットワークを経由して管理情報を制御装置4に送信する(S2024)。ステップS2024で送信される管理情報は、搬送装置3の位置(区画201)、異常検出箇所(区画201)、及び異常検出時刻を含む。計測プログラム31によって速度差が大きいと判定されると、移動制御プログラム30は、搬送装置3の走行に不都合な異常を検出したと判定して、搬送装置3を停止する(S2025)。 The measurement program 31 of the conveyance device 3 acquires the rotation speed (number of pulses per unit time) of the drive wheel 20D from the encoder 20E (S2021), and calculates the speed of the conveyance device 3 from the acquired rotation speed (S2022). The measurement program 31 compares the speed difference during a predetermined time (for example, the difference between the maximum value and the minimum value of speed in the past one second) with a predetermined threshold value 1 (S2023). As a result, if it is determined that the speed difference is smaller than the threshold value, the process returns to step S2021 and repeats the process of measuring the speed of the transport device 3. On the other hand, if it is determined that the speed difference is larger than the threshold value, the communication program 29 transmits management information to the control device 4 via the wireless communication network provided in the warehouse 2 (S2024). The management information transmitted in step S2024 includes the position of the transport device 3 (section 201), the abnormality detection location (section 201), and the abnormality detection time. When the measurement program 31 determines that the speed difference is large, the movement control program 30 determines that an abnormality that is inconvenient to the traveling of the transport device 3 has been detected, and stops the transport device 3 (S2025).
 制御装置4は、管理情報を取得すると、搬送装置3の停止の原因となった異常検出区画を特定し(S2026)、他の搬送装置3が異常検出区画を通過しないように、当該区画の使用不可フラグ1503を「不可」に設定して、当該区画をロックする(S2027)。このとき、搬送装置3から、異常検出区画を撮影した画像を制御装置4を経由して管理装置9に送信してもよい。管理者は、異常検出区画の画像によって、異常検出区画の状態を確認できる。そして、制御装置4は、メンテナンス指示を出力する(S2028)。このメンテナンス指示は、管理装置9に伝達され、管理者が、異常検出区画の画像を見て、床のメンテナンス作業を行う。メンテナンス作業は、直ちに行ってもよいが、ピッキング作業時間外に行ってもよい。また、制御装置4がメンテナンス指示を出力して所定時間経過しても、管理者が管理装置9を操作しない場合、自動的にメンテナンス作業を行ってもよい。 After acquiring the management information, the control device 4 identifies the abnormality detection section that caused the stoppage of the transport device 3 (S2026), and controls the use of the section so that other transport devices 3 do not pass through the abnormality detection section. The disabled flag 1503 is set to "disabled" and the section is locked (S2027). At this time, an image taken of the abnormality detection section may be transmitted from the transport device 3 to the management device 9 via the control device 4. The administrator can check the status of the abnormality detection section by looking at the image of the abnormality detection section. Then, the control device 4 outputs a maintenance instruction (S2028). This maintenance instruction is transmitted to the management device 9, and the manager views the image of the abnormality detection section and performs maintenance work on the floor. Maintenance work may be performed immediately or outside of picking work hours. Furthermore, if the administrator does not operate the management device 9 even after a predetermined period of time has passed since the control device 4 outputs the maintenance instruction, the maintenance work may be performed automatically.
 上述のように、搬送装置3は、走行中に、直進時における所定時間中の速度差が所定の閾値1より大きい異常を検出すると、無線通信ネットワークを介して、異常を検出した位置の情報を制御装置4に送信して、走行を停止する。制御装置4は、異常を検出した位置の情報を用いて、搬送装置3の停止の原因となった異常検出位置を他の搬送装置が通過しないように制限する。 As described above, when the conveyance device 3 detects an abnormality in which the speed difference during a predetermined time when traveling straight is larger than the predetermined threshold value 1 while traveling, the transport device 3 transmits information on the position where the abnormality is detected via the wireless communication network. The information is transmitted to the control device 4 to stop traveling. The control device 4 uses the information on the position where the abnormality is detected to restrict other transport devices from passing through the abnormality detection position that caused the stoppage of the transport device 3 .
 一方、搬送装置3は、充電を開始すると(S2031)、管理情報(走行ログ)を充電装置7を経由して制御装置4に送信する(S2032)。管理装置9は、制御装置4から走行ログを取得する(S2033)。充電中に送信される走行ログは、搬送装置3の経時的な速度のデータを含む。そして、管理装置9は、区画毎に、時刻順に速度を一つ選択する(S2034)。そして、管理装置9は、当該区画を走行した搬送装置3の所定時間中の速度差(例えば、選択された速度の時刻からから過去1秒間の速度の最大値と最小値との差や所定時間中の速度の変化量)を計算し、速度差と所定の閾値2とを比較する(S2035)。その結果、速度差が閾値より小さいと判定されると、ステップS2034に戻って、次の時刻の搬送装置3の速度差を計算し、閾値と比較する処理を繰り返す。一方、速度差が閾値より大きいと判定されると、当該区画の床が損傷している可能性がある注意喚起のために、管理装置9は、床損傷区画の位置を記録する(S2036)。1回速度差が大きいと判定されると床損傷区画の位置を記録してもよいし、所定回数以上速度差が大きいと判定されると床損傷区画の位置を記録してもよいし、所定数以上の異なる搬送装置3で速度差が大きいと判定されると床損傷区画の位置を記録してもよい。さらに、複数の搬送装置3で速度差の変化率が所定の閾値を超えると床損傷区画の位置を記録してもよい。搬送装置3の個体差によって速度差が変化することから速度差の変化率に着目すると正確に床の損傷を判定できる。複数の搬送装置3の管理情報を用いて判定することにより、搬送装置3の個体要因(例えば搬送装置3の異常)による誤判定を減らすことができ、判定精度を向上可能である。 On the other hand, when the transport device 3 starts charging (S2031), it transmits management information (driving log) to the control device 4 via the charging device 7 (S2032). The management device 9 acquires the driving log from the control device 4 (S2033). The travel log transmitted during charging includes data on the speed of the transport device 3 over time. Then, the management device 9 selects one speed in time order for each section (S2034). Then, the management device 9 determines the speed difference during a predetermined period of time of the conveyance device 3 that traveled in the section (for example, the difference between the maximum value and minimum speed of the past one second from the time of the selected speed, or the difference between the speeds for a predetermined period of time). (the amount of change in speed) is calculated, and the speed difference is compared with a predetermined threshold value 2 (S2035). As a result, if it is determined that the speed difference is smaller than the threshold value, the process returns to step S2034 and repeats the process of calculating the speed difference of the transport device 3 at the next time and comparing it with the threshold value. On the other hand, if it is determined that the speed difference is larger than the threshold, the management device 9 records the position of the floor-damaged compartment in order to draw attention to the possibility that the floor of the compartment is damaged (S2036). If it is determined that the speed difference is large once, the position of the floor damaged section may be recorded, or if the speed difference is determined to be large for a predetermined number of times or more, the position of the floor damaged section may be recorded. If it is determined that the speed difference is large between several or more different conveyance devices 3, the position of the floor damaged section may be recorded. Furthermore, the position of the floor damaged section may be recorded when the rate of change of the speed difference in the plurality of transport devices 3 exceeds a predetermined threshold. Since the speed difference changes depending on individual differences in the conveyance device 3, damage to the floor can be accurately determined by focusing on the rate of change in the speed difference. By making the determination using the management information of the plurality of transport devices 3, it is possible to reduce erroneous determinations due to individual factors of the transport devices 3 (for example, abnormalities in the transport device 3), and improve the determination accuracy.
 そして、管理装置9は、全ての区画について速度差の判定を終了したかを判定し(S2037)、速度差の判定が終了していない区画があれば、ステップS2034に戻り、残りの区画について速度差の判定を繰り返し実行する。一方、全ての区画について速度差の判定を終了していれば、判定条件を満たす区画(位置)を床損傷区画(床損傷位置)として記録し(S2038)、記録された床損傷区画(床損傷位置)の情報として、例えば床損傷区画リストを出力する(S2039)。なお、管理装置9は、床損傷区画のメンテナンス指示を出力してもよい。さらに、当該床損傷区画を搬送装置3が走行不可能と判定されると、搬送装置3が床損傷区画を通過しないように、制御装置4が当該区画をロックしてもよい。 Then, the management device 9 determines whether the speed difference determination has been completed for all sections (S2037), and if there is a section for which the speed difference determination has not been completed, the process returns to step S2034, and the speed difference determination for the remaining sections is completed. Repeat the difference determination. On the other hand, if the speed difference judgment has been completed for all sections, the section (position) that satisfies the judgment conditions is recorded as a floor damage section (floor damage position) (S2038), and the recorded floor damage section (floor damage position) is recorded as a floor damage section (floor damage position). For example, a list of damaged floor sections is output as information on the location (S2039). Note that the management device 9 may output a maintenance instruction for the floor-damaged section. Further, if it is determined that the transport device 3 cannot travel through the floor damaged section, the control device 4 may lock the section so that the transport device 3 does not pass through the floor damaged section.
 図19は、搬送装置3の旋回時の床面劣化診断処理のフローチャートである。なお、図19は、ログデータ収集処理(図16)における管理装置9が実行する処理について記述するものであり、後述する図20、図21も同様である。なお、搬送装置3が旋回する床面の所定の位置には、搬送装置3の旋回の略中心に位置するマーカ300が設けられている。 FIG. 19 is a flowchart of the floor surface deterioration diagnosis process when the transport device 3 rotates. Note that FIG. 19 describes the process executed by the management device 9 in the log data collection process (FIG. 16), and the same applies to FIGS. 20 and 21 described later. Note that a marker 300 is provided at a predetermined position on the floor surface around which the transport device 3 rotates, and is located approximately at the center of the revolution of the transport device 3.
 管理装置9は、充電中に搬送装置3から送信された管理情報に含まれるマーカ画像を制御装置4から取得する(S2041)。マーカ画像は、搬送装置3の旋回時に撮影されたマーカ300の画像である。管理装置9は、一つの旋回時のマーカ画像群を選択する(S2042)。なお、初回は任意のマーカ画像群を選択し、その後、所定の順序(例えば時間順)でマーカ画像群を選択するとよい。各マーカ画像におけるマーカ300の中心位置を計算する(S2043)。例えば、マーカ画像からマーカ300の外形を構成する四角形を抽出し、当該四角形の対角線が交わる位置をマーカ中心位置として計算する。そして、管理装置9は、当該マーカ画像群内のマーカ300の中心位置の差(搬送装置3の旋回時におけるマーカ300の中心位置の変化量。中心位置差。)を計算し、当該中心位置差と所定の閾値とを比較する(S2044)。その結果、中心位置差が閾値より小さいと判定されると、ステップS2042に戻って、次の時刻のマーカ300の中心位置の差を閾値と比較する処理を繰り返す。一方、管理装置9は、中心位置差が閾値より大きいと判定されると、判定された区画(中心位置の変化量が大きい位置)を、床損傷区画位置(床損傷位置)として記録する(S2045)。 The management device 9 acquires from the control device 4 the marker image included in the management information transmitted from the transport device 3 during charging (S2041). The marker image is an image of the marker 300 taken when the conveyance device 3 rotates. The management device 9 selects a group of marker images during one turn (S2042). Note that it is preferable to select an arbitrary marker image group for the first time, and then select marker image groups in a predetermined order (for example, chronological order). The center position of the marker 300 in each marker image is calculated (S2043). For example, a rectangle forming the outline of the marker 300 is extracted from the marker image, and the position where the diagonal lines of the rectangle intersect is calculated as the marker center position. Then, the management device 9 calculates the difference in the center positions of the markers 300 in the group of marker images (the amount of change in the center positions of the markers 300 when the transport device 3 rotates; the center position difference), and calculates the center position difference. and a predetermined threshold (S2044). As a result, if it is determined that the center position difference is smaller than the threshold value, the process returns to step S2042 and repeats the process of comparing the center position difference of the marker 300 at the next time with the threshold value. On the other hand, when it is determined that the center position difference is larger than the threshold, the management device 9 records the determined section (position where the amount of change in the center position is large) as a floor damaged section position (floor damaged position) (S2045 ).
 そして、管理装置9は、全てのマーカ画像についてマーカ300の中心位置差の判定を終了したかを判定し(S2046)、中心位置差の判定が終了していないマーカ画像があれば、ステップS2042に戻り、残りのマーカ画像について中心位置差の判定を繰り返し実行する。一方、全てのマーカ画像について中心位置差の判定を終了していれば、床損傷位置の情報として、例えば床劣化(床損傷)の判定条件を満たす区画のリストである床損傷区画リストを出力する(S2047)。なお、管理装置9は、床損傷区画のメンテナンス指示を出力してもよい。さらに、当該床損傷区画を搬送装置3が走行不可能と判定されると、搬送装置3が床損傷区画を通過しないように、制御装置4が当該区画をロックしてもよい。 Then, the management device 9 determines whether the determination of the center position difference of the marker 300 has been completed for all marker images (S2046), and if there is any marker image for which the determination of the center position difference has not been completed, the process proceeds to step S2042. Returning, the determination of the center position difference is repeatedly executed for the remaining marker images. On the other hand, if the center position differences have been determined for all marker images, a floor damaged section list, which is a list of sections that satisfy the criteria for determining floor deterioration (floor damage), is output as floor damage position information. (S2047). Note that the management device 9 may output a maintenance instruction for the floor-damaged section. Further, if it is determined that the transport device 3 cannot travel through the floor damaged section, the control device 4 may lock the section so that the transport device 3 does not pass through the floor damaged section.
 図20は、マーカ異常検出処理のフローチャートである。例えば、マーカ300に異常が発生し、当該マーカ300が読み取り不能となる場合、当該マーカ300がある区画は走行不可となり、また搬送装置3がエラーにより緊急停止する可能性があり、搬送効率及びピッキング効率の低下を招く。マーカ異常検出処理により、マーカ300の異常を早期に検出することが可能となるため、搬送効率及びピッキング効率の低下を防ぐことができる。なお、搬送装置3が走行する床面の所定の位置には、搬送装置3が位置を検出するために、複数の読み取りコード(例えば二次元コード)を含むマーカ300が設けられている。 FIG. 20 is a flowchart of marker abnormality detection processing. For example, if an abnormality occurs in the marker 300 and the marker 300 becomes unreadable, the section where the marker 300 is located becomes impossible to travel, and the transport device 3 may come to an emergency stop due to an error, improving transport efficiency and picking. This results in a decrease in efficiency. The marker abnormality detection process makes it possible to detect abnormalities in the marker 300 at an early stage, thereby preventing a decrease in transport efficiency and picking efficiency. Note that a marker 300 including a plurality of read codes (for example, two-dimensional codes) is provided at a predetermined position on the floor surface on which the transport device 3 runs, in order for the transport device 3 to detect the position.
 管理装置9は、充電中に搬送装置3から送信された管理情報に含まれるマーカ読み取りデータを制御装置4から取得する(S2051)。マーカ読み取りデータは、搬送装置3の走行時に読み取られた読み取りコードの数を含んでいてよい。管理装置9は、一つの区画のマーカ読み取りデータを選択する(S2052)。なお、初回は任意のマーカ読み取りデータを選択し、その後、所定の順序(例えば区画の識別情報の順)でマーカ読み取りデータを選択するとよい。そして、読み取られた二次元コードの数と所定の閾値とを比較する(S2053)。その結果、読み取られた二次元コードの数が所定の閾値より大きければ、当該マーカ300は正常であると判定し、ステップS2052に戻って、次の区画のマーカ読み取りデータ(読み取られた二次元コードの数)を閾値と比較する処理を繰り返す。一方、読み取られた二次元コードの数が所定の閾値以下であれば、当該マーカ300は異常であると判定し、当該マーカの位置(当該マーカがある区画)をマーカ異常区画位置(マーカ異常位置)として記録する(S2054)。なお、1回マーカ異常と判定されるとマーカ異常区画の位置を記録してもよいし、所定回数以上マーカ異常と判定されるとマーカ異常区画の位置を記録してもよいし、所定数以上の異なる搬送装置3でマーカ異常と判定されるとマーカ異常区画の位置を記録してもよい。複数の搬送装置3の管理情報を用いて判定することにより、搬送装置3の個体要因(例えば搬送装置3の異常)による誤判定を減らすことができ、判定精度を向上可能である。なお、マーカ異常は、例えば、マーカの汚れや、マーカの損傷等により生じる可能性がある。 The management device 9 acquires marker reading data included in the management information transmitted from the transport device 3 during charging from the control device 4 (S2051). The marker read data may include the number of read codes read while the transport device 3 is traveling. The management device 9 selects marker read data of one section (S2052). Note that it is preferable to select arbitrary marker reading data for the first time, and then select marker reading data in a predetermined order (for example, in the order of the identification information of the partition). Then, the number of read two-dimensional codes is compared with a predetermined threshold (S2053). As a result, if the number of read two-dimensional codes is larger than a predetermined threshold, it is determined that the marker 300 is normal, and the process returns to step S2052, where the marker read data of the next section (the read two-dimensional code ) is compared with the threshold value. On the other hand, if the number of two-dimensional codes read is equal to or less than a predetermined threshold, it is determined that the marker 300 is abnormal, and the position of the marker (the section where the marker is located) is changed to the marker abnormal section position (marker abnormal position ) (S2054). Note that the position of the marker abnormal section may be recorded when it is determined that the marker is abnormal once, or the position of the marker abnormal section may be recorded when it is determined that the marker is abnormal a predetermined number of times, or If a marker abnormality is determined in a different conveyance device 3, the position of the marker abnormal section may be recorded. By making the determination using the management information of the plurality of transport devices 3, it is possible to reduce erroneous determinations due to individual factors of the transport devices 3 (for example, abnormalities in the transport device 3), and improve the determination accuracy. Note that marker abnormality may occur due to, for example, dirt on the marker or damage to the marker.
 そして、管理装置9は、全ての区画のマーカ読み取りデータについて読み取られた二次元コードの数の判定を終了したかを判定し(S2055)、判定が終了していないマーカ読み取りデータがあれば、ステップS2052に戻り、残りのマーカ読み取りデータについて読み取られた二次元コードの数の判定を繰り返し実行する。一方、全てのマーカ読み取りデータについて読み取られた二次元コードの数の判定を終了していれば、マーカ異常位置の情報として、例えばマーカ異常の判定条件を満たす区画のリストであるマーカ異常区画リストを出力する(S2056)。なお、管理装置9は、マーカ異常区画のメンテナンス指示を出力してもよい。さらに、当該マーカ異常区画を搬送装置3が走行不可能と判定されると、搬送装置3が当該マーカ異常区画を通過しないように、制御装置4が当該区画をロックしてもよい。 Then, the management device 9 determines whether the determination of the number of two-dimensional codes read for the marker read data of all sections has been completed (S2055), and if there is marker read data for which the determination has not been completed, step Returning to S2052, the number of two-dimensional codes read for the remaining marker read data is repeatedly determined. On the other hand, if the number of two-dimensional codes read for all marker read data has been determined, the marker abnormal section list, which is a list of sections that satisfy the marker abnormality judgment conditions, can be used as information on the marker abnormal position. Output (S2056). Note that the management device 9 may output a maintenance instruction for the marker abnormal section. Further, when it is determined that the transport device 3 cannot travel through the marker abnormal section, the control device 4 may lock the region so that the transport device 3 does not pass through the marker abnormal section.
 図21は、棚ずれ検出処理のフローチャートである。例えば、棚5の位置が正常な位置から大きくずれている場合、搬送装置3や搬送装置3が搬送する他の棚5と衝突する可能性がある。また、棚5があるべき正常な位置にいる搬送装置3が、当該正常な位置から大きくずれた棚5を持ち上げて搬送する場合、棚5が不安定な状態で搬送されて棚5が倒れたり、棚5内の物品が落下したりする可能性や、当該棚5と周囲の構造物(他の棚5を含む)とが衝突する可能性がある。すなわち、棚5の位置が正常な位置から大きくずれている場合、上述のような搬送システムの障害の原因となり得る。棚ずれ検出処理により、所定以上の棚ずれを早期に検出することができ、棚ずれを解消するメンテナンスが可能となる。そのため、棚ずれによる搬送システムの障害を防ぐことができ、搬送効率及びピッキング効率の低下を防ぎ、搬送システムの信頼性を向上可能である。 FIG. 21 is a flowchart of the shelf shift detection process. For example, if the position of the shelf 5 deviates significantly from its normal position, there is a possibility that it will collide with the transport device 3 or with other shelves 5 that the transport device 3 transports. In addition, when the transport device 3, which is in the normal position where the shelf 5 should be, lifts and transports the shelf 5 that has deviated greatly from the normal position, the shelf 5 may be transported in an unstable state and the shelf 5 may fall. There is a possibility that the items on the shelf 5 may fall, or there is a possibility that the shelf 5 and surrounding structures (including other shelves 5) collide. That is, if the position of the shelf 5 deviates significantly from its normal position, it may cause a failure of the conveyance system as described above. Through the shelf shift detection process, shelf shifts of a predetermined amount or more can be detected at an early stage, and maintenance to eliminate shelf shifts can be performed. Therefore, it is possible to prevent failure of the conveyance system due to shelf displacement, prevent a decrease in conveyance efficiency and picking efficiency, and improve the reliability of the conveyance system.
 管理装置9は、充電中に搬送装置3から送信された管理情報に含まれるマーカ画像及び棚底面画像の組を制御装置4から取得する(S2061)。管理装置9は、次の同位置で撮影されたマーカ画像及び棚底面画像を選択する(S2062)。なお、初回は任意の同位置で撮影されたマーカ画像及び棚底面画像の組を選択し、その後、所定の順序(例えば時間順)でマーカ画像及び棚底面画像の組を選択するとよい。そして、マーカ中心位置及び棚中心位置を計算する(S2063)。例えば、マーカ画像からマーカ300の外形を構成する四角形を抽出し、当該四角形の対角線が交わる位置をマーカ中心位置として計算する。同様に、棚底面画像から棚5の底面中央に表示された棚IDを示すコードの外形を構成する四角形を抽出し、当該四角形の対角線が交わる位置を棚中心位置として計算する。そして、管理装置9は、マーカ中心位置と棚中心位置との差を所定の閾値と比較する(S2064)。その結果、マーカ中心位置と棚中心位置との差が所定の閾値より小さければ、当該棚5の位置は正常であると判定し、ステップS2062に戻って、次の棚5の位置を判定する処理を繰り返す。一方、マーカ中心位置と棚中心位置との差が所定の閾値以上であれば、当該棚5の位置は正常な位置からずれている異常であると判定し、位置ずれ棚IDを記録する(S2065)。なお、1回位置ずれと判定されると位置ずれ棚IDを記録してもよいし、所定回数以上位置ずれと判定されると位置ずれ棚IDを記録してもよいし、所定数以上の異なる搬送装置3で位置ずれと判定されると位置ずれ棚IDを記録してもよい。複数の搬送装置3の管理情報を用いて判定することにより、搬送装置3の個体要因(例えば搬送装置3の異常)による誤判定を減らすことができ、判定精度を向上可能である。 The management device 9 acquires from the control device 4 a set of a marker image and a shelf bottom image included in the management information transmitted from the transport device 3 during charging (S2061). The management device 9 selects the next marker image and shelf bottom image taken at the same position (S2062). Note that it is preferable to select a set of a marker image and a shelf bottom image taken at an arbitrary same position for the first time, and then select a set of a marker image and a shelf bottom image in a predetermined order (for example, in chronological order). Then, the marker center position and shelf center position are calculated (S2063). For example, a rectangle forming the outline of the marker 300 is extracted from the marker image, and the position where the diagonal lines of the rectangle intersect is calculated as the marker center position. Similarly, a rectangle forming the outline of the code indicating the shelf ID displayed at the center of the bottom surface of the shelf 5 is extracted from the shelf bottom image, and the position where the diagonal lines of the rectangle intersect is calculated as the shelf center position. The management device 9 then compares the difference between the marker center position and the shelf center position with a predetermined threshold (S2064). As a result, if the difference between the marker center position and the shelf center position is smaller than a predetermined threshold value, the position of the shelf 5 is determined to be normal, and the process returns to step S2062 to determine the next position of the shelf 5. repeat. On the other hand, if the difference between the marker center position and the shelf center position is greater than or equal to the predetermined threshold, it is determined that the position of the shelf 5 is abnormal, deviating from the normal position, and a misaligned shelf ID is recorded (S2065 ). Note that a misaligned shelf ID may be recorded when a misalignment is determined once, a misaligned shelf ID may be recorded when a misalignment is determined a predetermined number of times, or a misaligned shelf ID may be recorded when a misalignment occurs more than a predetermined number of times. If the conveyance device 3 determines that the shelf is misaligned, the misaligned shelf ID may be recorded. By making the determination using the management information of the plurality of transport devices 3, it is possible to reduce erroneous determinations due to individual factors of the transport devices 3 (for example, abnormalities in the transport device 3), and improve the determination accuracy.
 そして、管理装置9は、全てのマーカ画像及び棚底面画像について位置ずれの判定を終了したかを判定し(S2066)、判定が終了していないマーカ画像及び棚底面画像があれば、ステップS2062に戻り、残りのマーカ画像及び棚底面画像について棚5の位置ずれの判定を繰り返し実行する。一方、全てのマーカ画像及び棚底面画像について位置ずれの判定を終了していれば、正常位置より位置がずれている棚5のリストである棚ずれリストを出力する(S2067)。そして、管理装置9は、棚ずれのメンテナンス指示を出力してもよい。例えば、搬送装置3が位置がずれている棚5を持ち上げて、マーカ中心位置と棚中心位置との差の分だけ棚5を移動して、棚5を下ろす指示を制御装置4が搬送装置3に送信する。搬送装置3による棚5の移動によって棚5の位置ずれを解消できる。また、出力された棚ずれリストを見た作業員が、有人又は遠隔操作のフォークリフトによって、位置がずれている棚5をずれ量分移動してもよい。 Then, the management device 9 determines whether determination of positional deviation has been completed for all marker images and shelf bottom images (S2066), and if there are marker images and shelf bottom images for which determination has not been completed, the process proceeds to step S2062. Returning, the determination of the positional deviation of the shelf 5 is repeatedly executed for the remaining marker images and shelf bottom images. On the other hand, if the determination of positional deviations has been completed for all marker images and shelf bottom images, a shelf deviation list, which is a list of shelves 5 whose positions have deviated from their normal positions, is output (S2067). The management device 9 may then output a maintenance instruction for shelf shift. For example, the control device 4 instructs the transport device 3 to lift a shelf 5 that is out of position, move the shelf 5 by the difference between the marker center position and the shelf center position, and then lower the shelf 5. Send to. By moving the shelf 5 by the transport device 3, the positional shift of the shelf 5 can be eliminated. Further, the worker who has viewed the output shelf shift list may move the misaligned shelf 5 by the amount of shift using a manned or remote-controlled forklift.
 棚ずれ検出処理に関する実施例の一つについて説明する。搬送装置3が搬送する搬送物の底面の略中心には搬送物マーカが設けられている。搬送装置3による搬送物の搬送先の床面の所定の位置には、位置を検出するための床マーカ(マーカ300)が設けられている。搬送装置3から充電中に制御装置4に送信される管理情報は、搬送物を搬送先に置く際に撮影した搬送物マーカの画像と床マーカの画像を含む。管理装置9は、当該管理情報を制御装置4から取得し、取得した管理情報を用いて、搬送物マーカの位置と床マーカの位置との差を計算する。管理装置9は、当該位置の差が所定の範囲を超えている場合、当該位置の差が所定の範囲を超えている搬送物の位置がずれていることを記録し、前記記録された位置がずれている搬送物の情報を出力する。 An example of shelf shift detection processing will be described. A conveyance object marker is provided approximately at the center of the bottom surface of the conveyance object conveyed by the conveyance device 3 . A floor marker (marker 300) for detecting the position is provided at a predetermined position on the floor surface of the destination of the conveyance object by the conveyance device 3. The management information transmitted from the transport device 3 to the control device 4 during charging includes an image of the transport object marker and an image of the floor marker taken when placing the transport object at the transport destination. The management device 9 acquires the management information from the control device 4, and uses the acquired management information to calculate the difference between the position of the transported article marker and the position of the floor marker. If the difference in position exceeds a predetermined range, the management device 9 records that the position of the conveyed object for which the difference in position exceeds the predetermined range is shifted, and confirms that the recorded position is Outputs information about misaligned conveyed items.
 図22は、異物検出処理のシーケンス図である。例えば、搬送装置3が異物と接触(異物との衝突や、異物の巻き込みを含む)すると、搬送装置3に異常(故障を含む)が発生して搬送装置3が停止または使用不能になる可能性がある。異物検出処理により、搬送装置3の異物を早期に検出して、対策すること(例えば異物検出エリアを走行不可とすることや、異物を除去すること等)ができる。そのため、搬送装置3に異常が発生して搬送装置3が停止または使用不能になる可能性を低減でき、搬送効率及びピッキング効率の低下を防ぐことができる。また、異物が棚5から落下した物品(例えば商品)である場合、当該物品が搬送装置3と接触して破損することを防ぐことができる。このように、搬送システムの信頼性を向上可能である。なお、搬送装置3は、周囲の物体を検出可能なセンサ14を有する。 FIG. 22 is a sequence diagram of foreign object detection processing. For example, if the transport device 3 comes into contact with a foreign object (including collision with a foreign object or getting caught in a foreign object), there is a possibility that an abnormality (including a failure) will occur in the transport device 3 and the transport device 3 will stop or become unusable. There is. Through the foreign object detection process, it is possible to detect foreign objects in the transport device 3 at an early stage and take countermeasures (for example, making the foreign object detection area impossible to drive, removing the foreign objects, etc.). Therefore, the possibility that an abnormality occurs in the transport device 3 and the transport device 3 stops or becomes unusable can be reduced, and a decrease in transport efficiency and picking efficiency can be prevented. Further, when the foreign object is an article (for example, a product) that has fallen from the shelf 5, it is possible to prevent the article from coming into contact with the conveyance device 3 and being damaged. In this way, the reliability of the transport system can be improved. Note that the transport device 3 includes a sensor 14 that can detect surrounding objects.
 搬送装置3の計測プログラム31は、センサ14(前面に設けられた前方カメラ)が走行予定経路上の異物を検出すると(S2071)、検出された異物の画像を前方カメラ14で撮影し、撮影した画像を記憶装置12に格納する(S2072)。ここで、異物とは、例えば棚5から落下した物品(落下物)等であってもよい。そして、計測プログラム31は、異物までの距離を取得する(S2073)。例えば、距離画像カメラ14や超音波センサ14やLiDAR14の検出結果によって異物までの距離を取得する。通信プログラム29は、倉庫2内に設けられる無線通信ネットワークを経由して管理情報を制御装置4に送信する(S2074)。ステップS2074で送信される管理情報は、搬送装置3の位置(区画201)、異物までの距離、及び異物検出時刻を含む。 When the sensor 14 (front camera provided on the front) detects a foreign object on the planned travel route (S2071), the measurement program 31 of the transport device 3 captures an image of the detected foreign object with the front camera 14. The image is stored in the storage device 12 (S2072). Here, the foreign object may be, for example, an article (fallen object) that has fallen from the shelf 5. Then, the measurement program 31 obtains the distance to the foreign object (S2073). For example, the distance to the foreign object is acquired based on the detection results of the distance image camera 14, the ultrasonic sensor 14, and the LiDAR 14. The communication program 29 transmits the management information to the control device 4 via the wireless communication network provided in the warehouse 2 (S2074). The management information transmitted in step S2074 includes the position of the transport device 3 (section 201), the distance to the foreign object, and the foreign object detection time.
 制御装置4は、管理情報を取得すると、搬送装置3の位置及び向きと、異物までの距離を用いて異物が検出された区画を特定し(S2075)、他の搬送装置3が異物検出区画を通過しないように、当該区画をロックする(S2076)。そして、制御装置4は、メンテナンス指示を出力する(S2077)。このメンテナンス指示は、異物検出区画の画像と共に管理装置9に伝達され、管理者が、異物検出区画の画像を見て、異物を除去するメンテナンス作業を行う。メンテナンス作業は、直ちに行ってもよいが、ピッキング作業時間外に行ってもよい。また、制御装置4がメンテナンス指示を出力して所定時間経過しても、管理者が管理装置9を操作しない場合、自動的にメンテナンス作業を行ってもよい。 Upon acquiring the management information, the control device 4 uses the position and orientation of the transport device 3 and the distance to the foreign object to identify the section where the foreign object has been detected (S2075), and the other transport devices 3 identify the section where the foreign object has been detected. The section is locked so that no one can pass through it (S2076). Then, the control device 4 outputs a maintenance instruction (S2077). This maintenance instruction is transmitted to the management device 9 together with the image of the foreign object detection section, and the administrator views the image of the foreign object detection section and performs maintenance work to remove the foreign object. Maintenance work may be performed immediately or outside of picking work hours. Furthermore, if the administrator does not operate the management device 9 even after a predetermined period of time has passed since the control device 4 outputs the maintenance instruction, the maintenance work may be performed automatically.
 なお、異物検出区画の画像は、搬送装置3から、倉庫2内に設けられる無線通信ネットワークを経由して制御装置4に送信されてもよい。送信タイミングは、S2074のタイミングまたはその後のタイミング(例えばS2076の後のタイミング)でもよい。また、異物検出区画の画像により、無線通信ネットワークを使用した他の通信に影響を与えないように、図17に示されるように、異物検出区画の画像は、搬送装置3から、充電装置7を経由して制御装置4に送信されてもよい。送信タイミングは、S2074の後のタイミング(例えばS2076の後のタイミング)でもよい。 Note that the image of the foreign object detection section may be transmitted from the transport device 3 to the control device 4 via a wireless communication network provided within the warehouse 2. The transmission timing may be the timing of S2074 or a subsequent timing (eg, timing after S2076). Furthermore, in order to prevent the image of the foreign object detection section from affecting other communications using the wireless communication network, the image of the foreign object detection section is transferred from the transport device 3 to the charging device 7, as shown in FIG. It may also be transmitted to the control device 4 via. The transmission timing may be a timing after S2074 (for example, a timing after S2076).
 上述のように、搬送装置3は、走行中にセンサ14により異物を検出した場合、無線通信ネットワークを介して、検出された異物と搬送装置3との距離を含む位置関係情報と、搬送装置3の位置情報とを制御装置4に送信する。制御装置4は、少なくとも位置関係情報と搬送装置3の位置情報に基づいて、異物が検出された区画を特定し、異物が検出された区画を搬送装置3が走行不可に設定する。また、搬送装置3は画像センサを有し、搬送装置3が、走行中に画像センサで取得した異物を含む画像を、充電中に充電装置7を介して制御装置4に送信してもよい。 As described above, when a foreign object is detected by the sensor 14 while traveling, the transport device 3 transmits positional relationship information including the distance between the detected foreign object and the transport device 3 and the transport device 3 via the wireless communication network. The location information is transmitted to the control device 4. The control device 4 specifies the section where the foreign object has been detected based on at least the positional relationship information and the position information of the transport device 3, and sets the section where the foreign object has been detected so that the transport device 3 cannot run. Further, the transport device 3 may include an image sensor, and the transport device 3 may transmit an image including a foreign object acquired by the image sensor while traveling to the control device 4 via the charging device 7 during charging.
 一方、搬送装置3は、充電を開始し(S2081)、管理情報を充電装置7を経由して制御装置4に送信する(S2082)。管理装置9は、制御装置4から管理情報(周辺画像)を取得する(S2083)。充電中に送信される管理情報は、搬送装置3の周辺画像(例えば、搬送装置3が走行中に取得した、搬送装置3の走行環境の画像)、撮影位置のデータを含む。そして、管理装置9は、一つの周辺画像を取得する(S2084)。なお、初回は任意の周辺画像を取得し、その後、所定の順序(例えば時間順)で周辺画像を取得するとよい。そして、画像認識モデルを用いて、取得した周辺画像から搬送装置3の走行を阻害する異物を抽出する(S2085)。例えば画像認識モデルには、搬送装置3の走行を阻害する異物の画像で学習したニューラルネットワークモデルを用いることができる。そして、管理装置9は、周辺画像中に異物が検出されたかを判定する(S2086)。その結果、異物が検出されなければ、ステップS2084に戻って、次の周辺画像の異物を判定する処理を繰り返す。一方、異物が検出されると、管理装置9は、搬送装置3の位置及び向きと、異物までの距離を用いて異物が検出された区画を特定し(S2087)、他の搬送装置3が異物検出区画を通過しないように、当該区画をロックする(S2088)。なお、管理装置9は、当該区画をロックする指示を制御装置4に送信し、制御装置4が当該区画をロックしてもよい。このように、管理装置9は、周辺画像から異物の抽出を試み、周辺画像から抽出された異物の位置を他の搬送装置3が通過しないように制限する。 On the other hand, the transport device 3 starts charging (S2081) and transmits management information to the control device 4 via the charging device 7 (S2082). The management device 9 acquires management information (surrounding images) from the control device 4 (S2083). The management information transmitted during charging includes an image of the surroundings of the transport device 3 (for example, an image of the driving environment of the transport device 3 acquired while the transport device 3 is running), and data on a photographing position. Then, the management device 9 acquires one peripheral image (S2084). Note that it is preferable to acquire arbitrary peripheral images for the first time, and then acquire peripheral images in a predetermined order (for example, in chronological order). Then, using the image recognition model, foreign objects that obstruct the movement of the transport device 3 are extracted from the acquired peripheral image (S2085). For example, as the image recognition model, a neural network model learned using images of a foreign object that obstructs the movement of the transport device 3 can be used. Then, the management device 9 determines whether a foreign object is detected in the surrounding image (S2086). As a result, if no foreign object is detected, the process returns to step S2084 and repeats the process of determining a foreign object in the next peripheral image. On the other hand, when a foreign object is detected, the management device 9 uses the position and orientation of the transport device 3 and the distance to the foreign object to identify the section where the foreign object was detected (S2087), and other transport devices 3 The detection section is locked so that it does not pass through it (S2088). Note that the management device 9 may transmit an instruction to lock the section to the control device 4, and the control device 4 may lock the section. In this way, the management device 9 attempts to extract a foreign object from the surrounding image, and restricts other transport devices 3 from passing through the position of the foreign object extracted from the surrounding image.
 そして、管理装置9は、全ての周辺画像ついて異物の判定を終了したかを判定し(S2089)、異物の判定が終了していない周辺画像があれば、ステップS2084に戻り、残りの周辺画像について異物の判定を繰り返し実行する。一方、全ての周辺画像について異物の判定を終了していれば、異物を除去するメンテナンス指示を出力する(S2090)。管理者が、出力されたメンテナンス指示(例えば異物検出区画の画像等)を見て、異物を除去するメンテナンス作業を行う。メンテナンス作業は、直ちに行ってもよいが、ピッキング作業時間外に行ってもよい。また、制御装置4がメンテナンス指示を出力して所定時間経過しても、管理者が管理装置9を操作しない場合、自動的にメンテナンス作業を行ってもよい。 Then, the management device 9 determines whether foreign object determination has been completed for all peripheral images (S2089), and if there is a peripheral image for which foreign object determination has not been completed, the process returns to step S2084, and for the remaining peripheral images. Repeatedly perform foreign object determination. On the other hand, if the determination of foreign objects has been completed for all peripheral images, a maintenance instruction to remove the foreign objects is output (S2090). The administrator looks at the output maintenance instructions (for example, an image of the foreign object detection section, etc.) and performs maintenance work to remove the foreign object. Maintenance work may be performed immediately or outside of picking work hours. Furthermore, if the administrator does not operate the management device 9 even after a predetermined period of time has passed since the control device 4 outputs the maintenance instruction, the maintenance work may be performed automatically.
 また、制御装置4が、管理装置9からメンテナンス指示を受け、搬送装置3により異物を移動可能かを判定してもよい。その結果、搬送装置3が異物を移動可能と判定すると、制御装置4は、走行を阻害しない所定の場所に異物を移動するように、搬送装置3に指示する。なお、この搬送装置3は、制御装置4からの指示により異物を移動可能な装置であればよく、棚5を搬送する搬送装置3とは別の装置であってもよく、異物移動装置と呼ばれてもよい。 Alternatively, the control device 4 may receive a maintenance instruction from the management device 9 and determine whether the transport device 3 can move the foreign object. As a result, if the transport device 3 determines that the foreign object can be moved, the control device 4 instructs the transport device 3 to move the foreign object to a predetermined location that will not impede travel. Note that this transport device 3 only needs to be a device that can move foreign objects according to instructions from the control device 4, and may be a device different from the transport device 3 that transports the shelves 5, and is referred to as a foreign object moving device. You may be
 図23は、異常機器診断処理のフローチャートである。例えば、異常機器診断処理により、搬送装置3が劣化等により故障状態となる前に、搬送装置3の劣化を含む異常を早期に検出することが可能となる。そのため、搬送装置3の故障による搬送システムの停止や、搬送効率及びピッキング効率の低下を防ぐことができ、また搬送システムの信頼性を向上できる。 FIG. 23 is a flowchart of abnormal device diagnosis processing. For example, the abnormal device diagnosis process makes it possible to detect an abnormality including deterioration of the transport device 3 at an early stage before the transport device 3 enters a failure state due to deterioration or the like. Therefore, it is possible to prevent the conveyance system from stopping due to a failure of the conveyance device 3 and to prevent a decrease in conveyance efficiency and picking efficiency, and to improve the reliability of the conveyance system.
 管理装置9は、充電中に搬送装置3から送信された管理情報に含まれる機器動作ログを制御装置4から取得する(S2091)。管理装置9は、一つの機器動作ログを選択する(S2092)。なお、初回は任意の機器動作ログを選択し、その後、所定の順序(例えば時間順)で機器動作ログを選択するとよい。そして、管理装置9は、選択された機器動作ログが示す機器の応答時間を計算し(S2093)、計算された応答時間と許容範囲とを比較する(S2094)。その結果、計算された応答時間が許容範囲内であるならば、当該機器は正常であると判定し、ステップS2092に戻って、次の機器動作ログから計算された応答時間を許容範囲とを比較する処理を繰り返す。一方、計算された応答時間が所定の許容範囲の外であれば、当該機器は異常であると判定し、当該機器の識別情報を異常機器リストに記録する(S2095)。 The management device 9 acquires the device operation log included in the management information transmitted from the transport device 3 during charging from the control device 4 (S2091). The management device 9 selects one device operation log (S2092). Note that it is preferable to select any device operation log for the first time, and then select the device operation logs in a predetermined order (for example, in chronological order). The management device 9 then calculates the response time of the device indicated by the selected device operation log (S2093), and compares the calculated response time with an allowable range (S2094). As a result, if the calculated response time is within the allowable range, the device is determined to be normal, and the process returns to step S2092 to compare the response time calculated from the next device operation log with the allowable range. Repeat the process. On the other hand, if the calculated response time is outside the predetermined allowable range, the device is determined to be abnormal, and the identification information of the device is recorded in the abnormal device list (S2095).
 この異常機器診断処理は、搬送装置3内の機器であって、モータ等のアクチュエータ、照明ランプ、センサ14などの機器に対して適用できる。モータ等のアクチュエータでは動作制御指令信号のタイミングから当該モータによる動作の完了をセンサ14が検出するまでの時間を計測し、この動作開始に必要な時間が長くなると、機器が劣化していると判定できる。例えば、テーブル22を昇降するテーブル昇降サーボモータ22Mが動作を開始して、テーブル22の棚5の底板502への接触を磁気センサ14が検出するまでの時間が応答時間となる。同様に、テーブル22の回転や搬送装置3の走行駆動についても、モータの動作開始から動作終了の検出までの応答時間によって機器の劣化を判定する。また、センサ14の動作制御指令信号から動作開始までの応答時間によってセンサ14の劣化を判定できる。 This abnormal device diagnosis process can be applied to devices within the transport device 3, such as actuators such as motors, lighting lamps, and sensors 14. For actuators such as motors, the time from the timing of the operation control command signal until the sensor 14 detects the completion of the operation by the motor is measured, and if the time required to start the operation becomes longer, it is determined that the device has deteriorated. can. For example, the response time is the time from when the table lifting servo motor 22M that lifts and lowers the table 22 starts operating until the magnetic sensor 14 detects the contact of the table 22 with the bottom plate 502 of the shelf 5. Similarly, regarding the rotation of the table 22 and the running drive of the transport device 3, deterioration of the equipment is determined based on the response time from the start of motor operation to the detection of the end of operation. Further, deterioration of the sensor 14 can be determined based on the response time from the operation control command signal of the sensor 14 to the start of operation.
 前述では、応答時間を用いて機器の動作を判定したが、機器の抵抗値や電流値等を所定の閾値と比較して機器の動作が正常であるかを判定してもよい。例えば、センサ14の抵抗値が所定の閾値より大きければ正常であると判定し、モータ等のアクチュエータの電流値が所定の閾値より大きければ異常であると判定してもよい。 In the above, the operation of the device was determined using the response time, but it may be determined whether the operation of the device is normal by comparing the resistance value, current value, etc. of the device with a predetermined threshold value. For example, if the resistance value of the sensor 14 is greater than a predetermined threshold value, it may be determined to be normal, and if the current value of an actuator such as a motor is greater than a predetermined threshold value, it may be determined to be abnormal.
 そして、管理装置9は、全ての機器動作ログについて応答時間の判定を終了したかを判定し(S2096)、判定が終了していない機器動作ログがあれば、ステップS2052に戻り、残りの機器動作ログについて応答時間の判定を繰り返し実行する。一方、全ての機器動作ログについて応答時間数の判定を終了していれば、異常機器リストを出力する(S2097)。 The management device 9 then determines whether the response time determination has been completed for all device operation logs (S2096), and if there is any device operation log for which determination has not been completed, the process returns to step S2052 and the remaining device operation logs are processed. Repeatedly perform response time determination on logs. On the other hand, if the determination of the number of response times has been completed for all device operation logs, an abnormal device list is output (S2097).
 異常機器診断処理に関する実施例の一つについて説明する。搬送装置3から充電中に制御装置4に送信される管理情報は、実装される機器の応答時間を含む。管理装置9は、当該管理情報を制御装置4から取得し、取得した管理情報を用いて、応答時間の許容範囲値が所定の閾値より大きい場合、応答時間に異常があることを記録し、記録された異常がある機器の情報を出力する。 An example of an abnormal device diagnosis process will be described. The management information transmitted from the transport device 3 to the control device 4 during charging includes the response time of the installed equipment. The management device 9 acquires the management information from the control device 4, and uses the acquired management information to record that there is an abnormality in the response time if the response time tolerance value is larger than a predetermined threshold. Outputs information about devices with abnormalities.
 また、図18、図19の床損傷区画リスト、図20の異常マーカ区画リスト、図21の棚ずれリスト、図23の異常機器リストについて、対象(対象の区画、対象の棚、又は対象の機器(搬送装置))の状態や、メンテナンス等の対策が必要な時期を出力することで、管理者は適切なメンテナンス計画の作成が可能となる。例えば、対象の区画が3か月後までに補修が必要な状態である場合、ピッキング作業の繁忙期を避け、閑散期を狙って補修を行う計画をたてること等が可能となり、搬送効率及びピッキング効率が低下する影響が少ないメンテナンス計画を作成可能である。また、1か月後に補修が必要な区画と、2か月後に補修が必要な区画が近い場合には、纏めて補修したほうが効率的なケースもある。このように、対象の状態や、メンテナンス等の対策が必要な時期を出力することで、効率的なメンテナンスが可能となる。そして、搬送システムの搬送効率の低下を抑え、またメンテナンスにより搬送システムの信頼性を向上できる。 In addition, regarding the floor damaged section list in FIGS. 18 and 19, the abnormal marker section list in FIG. 20, the shelf shift list in FIG. 21, and the abnormal equipment list in FIG. By outputting the status of (transport device) and the timing when maintenance or other measures are required, the administrator can create an appropriate maintenance plan. For example, if the target section is in a state that requires repair within three months, it is possible to avoid the busy season for picking work and make a plan to carry out the repair during the off-season. It is possible to create a maintenance plan that has less impact on picking efficiency. Furthermore, if a section that requires repair in one month and a section that requires repair in two months are close to each other, it may be more efficient to repair them all at once. In this way, efficient maintenance becomes possible by outputting the status of the object and the timing when maintenance or other measures are required. In addition, it is possible to suppress a decrease in the transport efficiency of the transport system and improve the reliability of the transport system through maintenance.
 例えば、図18のS2035、図19のS2044、図20のS2053、図21のS2064、図23のS2094の各判定において、管理装置9は、複数段階の閾値を用いて、対象の状態を判定してもよい。例えば、管理装置9は、各判定で、閾値と比較する対象値(速度差、中心位置差、可読コード数、応答時間)が閾値T1より小さい場合には対象の状態は問題なしと判定し(各判定がYesの場合)、対象値がT1以上かつT2(T1より大きい閾値)より小さい場合には対象の状態は「異常レベル小」と判定し、対象値がT2以上の場合には対象の状態は「異常レベル大」と判定してもよい(各判定がNoの場合)。 For example, in each determination in S2035 in FIG. 18, S2044 in FIG. 19, S2053 in FIG. 20, S2064 in FIG. 21, and S2094 in FIG. You can. For example, in each determination, if the target value (speed difference, center position difference, number of readable codes, response time) to be compared with the threshold value is smaller than the threshold value T1, the management device 9 determines that there is no problem in the state of the target ( If each judgment is Yes), if the target value is T1 or higher and smaller than T2 (threshold value larger than T1), the target state is determined to be "abnormal level small", and if the target value is T2 or higher, the target state is The state may be determined to be "high abnormality level" (if each determination is No).
 また、管理装置9は、対象の状態が「異常レベル小」の場合はXか月後までにメンテナンスが必要として、「異常レベル大」の場合はYか月後(Xか月後より早い時期)までにメンテナンスが必要というように、各判定毎に対象の状態とメンテナンスが必要な時期を対応付けて記憶してもよい。そして、図18のS2039、図19のS2047、図20のS2056、図21のS2067、図23のS2097でリストを出力する際、管理装置9は、対象の識別情報とともに、対象の状態と、当該対象の状態に対応するメンテナンスが必要な時期(メンテナンス期限)を出力してもよい。 In addition, the management device 9 determines that maintenance is required by X months if the target status is "low abnormality level", and after Y months (earlier than X months) if the target status is "high abnormality level". ), the state of the object and the time when maintenance is required may be associated and stored for each determination. Then, when outputting the list in S2039 of FIG. 18, S2047 of FIG. 19, S2056 of FIG. 20, S2067 of FIG. 21, and S2097 of FIG. The time when maintenance is required (maintenance deadline) corresponding to the target state may be output.
 なお、上述した閾値を増やして、管理装置9が、対象の状態をより詳細に判定可能としてもよい。また、図18~図20のように対象が床(区画)であれば、区画の材質や位置によって、区画の劣化しやすさが異なる。また、図23の異常機器リストであれば、当該機器の種類により、メンテナンス時期が異なる。また、図18~21、図23のように、対象が区画、棚、機器のいずれの場合でも、その使用環境(例えば床の場合は搬送装置の通過回数等の負荷。例えば搬送装置の場合は搬送距離や搬送重量等の負荷。)によってメンテナンス時期が異なる。そのため、対象の種類や使用環境に応じて、閾値や対応するメンテナンス期限が設定されてもよい。また、例えば、管理装置9は、対象の種類、使用環境、対象の状態の劣化推移等の統計的なデータから相関関係または傾向を分析し、当該分析した相関関係または傾向に基づき、対象の種類、使用環境、対象の状態の情報から、メンテナンス期限を決定してもよい。 Note that the management device 9 may be able to determine the state of the target in more detail by increasing the threshold value described above. Further, if the target is a floor (compartment) as shown in FIGS. 18 to 20, the ease with which the partition deteriorates depends on the material and position of the partition. Furthermore, in the abnormal device list shown in FIG. 23, the maintenance timing differs depending on the type of the device. In addition, as shown in Figures 18 to 21 and 23, whether the target is a compartment, shelf, or equipment, the usage environment (for example, in the case of a floor, the load such as the number of passes of a conveyance device; for example, in the case of a conveyance device, The maintenance period differs depending on the load such as transportation distance and transportation weight.) Therefore, a threshold value and a corresponding maintenance deadline may be set depending on the type of target and usage environment. For example, the management device 9 analyzes correlations or trends from statistical data such as the type of object, usage environment, deterioration transition of the object's condition, etc., and determines the type of object based on the analyzed correlation or trend. The maintenance deadline may be determined from information on the usage environment and the state of the target.
 また、図18のS2023、S2035、図19のS2044、図23のS2094の各判定において、管理装置9は、対象のログ取得時の搬送物の有無又は搬送物の重量に応じた閾値を用いて判定してもよい。搬送装置3の走行(直進や旋回を含む)は、搬送物の有無、及びその搬送物の重量の影響を受ける。例えば、図19のS2044に関し、搬送装置3が旋回するとき、積載する搬送物のバランスが悪い場合、搬送物を積載しない場合と比較して、マーカの中心位置差が大きくなる可能性がある。また、図18のS2023、S2035に関して、搬送装置3が重い搬送物を積載している場合、搬送物を積載しない場合と比較して、床の損傷個所(例えば凹凸がある箇所)を通過したときに受ける振動や衝撃が大きくなる。したがって、上述の各判定において、管理情報から対象のログ取得時の搬送物の有無又は搬送物の重量に応じた閾値を用いて判定することで、判定精度を向上させることが可能である。 In addition, in each of the determinations in S2023 and S2035 in FIG. 18, S2044 in FIG. 19, and S2094 in FIG. You may judge. The traveling of the conveyance device 3 (including straight movement and turning) is affected by the presence or absence of a conveyed object and the weight of the conveyed object. For example, regarding S2044 in FIG. 19, when the transport device 3 rotates, if the loaded objects are unbalanced, there is a possibility that the difference in center position of the marker becomes larger than when no transported objects are loaded. Regarding S2023 and S2035 in FIG. 18, when the conveyance device 3 is loaded with a heavy conveyance object, compared to when the conveyance device 3 is loaded with no conveyance object, when it passes through a damaged part of the floor (for example, an uneven place). The vibrations and shocks received will increase. Therefore, in each of the above-mentioned determinations, it is possible to improve the determination accuracy by making the determination using a threshold value according to the presence or absence of the conveyed object or the weight of the conveyed object at the time of acquiring the target log from the management information.
 また、上述の判定について、管理装置9は、搬送装置3が搬送物を積載しない場合、搬送装置3が積載する搬送物の重量が所定の閾値以下の場合を対象にして、各判定を行っても良い。また、管理装置9は、搬送物の構造及び重量と、搬送物に積載される商品の位置と重量により、搬送物のバランスを判定し、バランスが悪い搬送物を積載している場合は、判定の対象外としてもよい。これにより、搬送物の影響をなくす、または搬送物の影響を小さくできる。 Furthermore, regarding the above-mentioned determinations, the management device 9 performs each determination in cases where the transport device 3 does not load the transported object and when the weight of the transported object loaded by the transport device 3 is less than or equal to a predetermined threshold. Also good. In addition, the management device 9 determines the balance of the transported object based on the structure and weight of the transported object and the position and weight of the products loaded on the transported object, and determines if the transported object is loaded with an unbalanced object. may be excluded from the scope of Thereby, the influence of the conveyed object can be eliminated or the influence of the conveyed object can be reduced.
 また、上述の判定について、管理装置9は、搬送装置3が搬送物を積載する場合、搬送装置3が積載する搬送物の重量が所定の閾値以上の場合を対象にして、各判定を行っても良い。例えば搬送物を積載した状態のほうが、床面の損傷を検出しやすい等、判定精度を向上可能となる場合がある。 Regarding the above-mentioned determinations, the management device 9 performs each determination when the conveyance device 3 loads a conveyed object and when the weight of the conveyed object loaded by the conveyance device 3 is equal to or greater than a predetermined threshold value. Also good. For example, damage to the floor surface can be more easily detected when objects are loaded, and the determination accuracy may be improved.
 なお、上述の判定において、管理装置9は、対象のログ取得時の搬送物の有無又は搬送物の重量の情報は、管理情報として搬送装置3から充電装置経由等で取得して、判定してもよい。また、管理装置9は、制御装置4から装置管理テーブル53や棚テーブル57についてのログを取得し、搬送装置3の各判定の対象となる走行ログの時点に対応する、搬送物の有無又は搬送物の重量の情報を特定して判定してもよい。 In addition, in the above-described determination, the management device 9 obtains the information on the presence or absence of the transported object or the weight of the transported object at the time of acquiring the target log as management information from the transport device 3 via the charging device, etc., and makes the determination. Good too. In addition, the management device 9 acquires logs regarding the device management table 53 and the shelf table 57 from the control device 4, and determines whether or not there is a transported object or not, and which corresponds to the time of the travel log that is subject to each determination of the transport device 3. The determination may be made by specifying information about the weight of the object.
 図24は、棚5と磁気センサ14の位置関係を示す図であり、図25は、天板22Dを搬送装置3から取り外した状態を示す図である。 FIG. 24 is a diagram showing the positional relationship between the shelf 5 and the magnetic sensor 14, and FIG. 25 is a diagram showing the top plate 22D removed from the transport device 3.
 棚5は、床面から所定の高さで脚部501によって支持された底板502と、物品を載置する1以上の棚板503を有する。底板502の下部には搬送装置3が入り込む空間が設けられる。 The shelf 5 has a bottom plate 502 supported by legs 501 at a predetermined height from the floor, and one or more shelf boards 503 on which articles are placed. A space into which the transport device 3 enters is provided at the bottom of the bottom plate 502 .
 搬送装置3の上面には、天板22Dが回転可能に取り付けられている。天板22Dは、上リング22Aと係合して、上リング22A上に配置されており、上リング22Aの回転に従って天板22Dが回転する。例えば、天板22Dの凸部と上リング22Aの凹部によって、天板22Dと上リング22Aが係合する。 A top plate 22D is rotatably attached to the top surface of the transport device 3. The top plate 22D is disposed on the upper ring 22A in engagement with the upper ring 22A, and the top plate 22D rotates as the upper ring 22A rotates. For example, the top plate 22D and the upper ring 22A are engaged with each other by a convex portion of the top plate 22D and a recessed portion of the upper ring 22A.
 すなわち、天板22Dを搬送装置3から取り外すと、図25に示すように、上リング22Aが見える。上リング22Aは、テーブル回転サーボモータ22Lと係合している。例えば、上リング22Aの内側にスプロケットを設け、テーブル回転サーボモータ22Lの軸に歯車を取り付け、スプロケットと歯車を係合させる。このため、テーブル回転サーボモータ22Lの回転によって上リング22Aが回転し、上リング22A上に配置される天板22Dが回転する。上リング22Aには、近接センサ14が取り付けられる。前述したように、近接センサ14は、例えば磁気センサであり、棚5の底板502を観測し、天板22Dと底板502の距離を測定する。 That is, when the top plate 22D is removed from the conveyance device 3, the upper ring 22A is visible as shown in FIG. The upper ring 22A is engaged with a table rotation servo motor 22L. For example, a sprocket is provided inside the upper ring 22A, a gear is attached to the shaft of the table rotation servo motor 22L, and the sprocket and the gear are engaged. Therefore, the upper ring 22A rotates due to the rotation of the table rotation servo motor 22L, and the top plate 22D disposed on the upper ring 22A rotates. A proximity sensor 14 is attached to the upper ring 22A. As described above, the proximity sensor 14 is, for example, a magnetic sensor, and observes the bottom plate 502 of the shelf 5 and measures the distance between the top plate 22D and the bottom plate 502.
 上リング22Aの下には、下リング22Cが設けられる。上リング22Aの下面には転がりベアリング22Bが取り付けられており、転がりベアリング22Bが上リング22Aの荷重を支持し、転がりベアリング22Bによって上リング22Aが下リング22Cの上でスムーズに回転できるように構成されている。 A lower ring 22C is provided below the upper ring 22A. A rolling bearing 22B is attached to the lower surface of the upper ring 22A, and the rolling bearing 22B supports the load of the upper ring 22A, and the rolling bearing 22B allows the upper ring 22A to rotate smoothly on the lower ring 22C. has been done.
 下リング22Cは、支柱22Eによって支えられている。支柱22Eはテーブル昇降サーボモータ22Mによって上下に移動し、下リング22Cを上下に移動する。例えば、支柱22Eとテーブル昇降サーボモータ22Mがボールネジを構成している。支柱22Eにネジ軸を形成し、該ネジ軸を係合したナットをテーブル昇降サーボモータ22Mで回転することによって、ナットに対してネジ軸が移動する。このように、テーブル昇降サーボモータ22Mによって、下リング22Cと上リング22Aと天板22Dを上下に移動できる。テーブル昇降サーボモータ22Mは、一つのボールネジに設ければよく、テーブル昇降サーボモータ22Mが設けられたボールネジと、他のボールネジとをチェーンで連結して、複数のボールネジが同期して動作するように構成するとよい。 The lower ring 22C is supported by a support column 22E. The support column 22E is moved up and down by the table lifting servo motor 22M, and the lower ring 22C is moved up and down. For example, the support column 22E and the table lifting/lowering servo motor 22M constitute a ball screw. A threaded shaft is formed on the support column 22E, and the threaded shaft is moved relative to the nut by rotating the nut engaged with the threaded shaft by the table lifting/lowering servo motor 22M. In this way, the lower ring 22C, upper ring 22A, and top plate 22D can be moved up and down by the table lift servo motor 22M. The table elevating servo motor 22M may be provided on one ball screw, and the ball screw provided with the table elevating servo motor 22M and other ball screws may be connected with a chain so that multiple ball screws operate synchronously. It is recommended to configure
 搬送装置3は棚5の下の空間に入り込み、テーブル昇降サーボモータ22Mによって天板22Dを上昇して、棚5を持ち上げる。天板22Dの下に設けられる近接センサ14は棚5の底板502(又は底板502を保持する梁)までの距離に応じた信号を出力し、近接センサ14の出力信号によって、天板22Dと底板502の距離を測定でき、天板22Dの底板502への接触を検出できる。 The conveyance device 3 enters the space under the shelf 5, and lifts the shelf 5 by raising the top plate 22D by the table lifting/lowering servo motor 22M. The proximity sensor 14 provided under the top plate 22D outputs a signal according to the distance to the bottom plate 502 of the shelf 5 (or the beam holding the bottom plate 502), and the output signal of the proximity sensor 14 determines the distance between the top plate 22D and the bottom plate. 502 can be measured, and contact of the top plate 22D to the bottom plate 502 can be detected.
 以上に説明したように、本実施例の搬送装置3は、動作のための電力を供給する二次電池80と、二次電池80から供給される電力によって車輪を駆動する駆動機構20を有し、搬送装置3の位置に関する位置情報と、搬送装置3の走行環境又は搬送装置3に関する管理情報を、走行中に取得し、無線通信ネットワークを介して、取得した位置情報を走行中に制御装置4に送信し、走行中に取得した管理情報を二次電池80の充電中に制御装置4に送信するので、倉庫2内に設けられた無線通信ネットワークにおいて制御データを送受信する帯域を圧迫することなく、搬送装置3から管理情報を収集できる。 As described above, the conveyance device 3 of this embodiment includes the secondary battery 80 that supplies power for operation, and the drive mechanism 20 that drives the wheels with the power supplied from the secondary battery 80. , acquires positional information regarding the position of the transporting device 3 and management information regarding the running environment of the transporting device 3 or the transporting device 3 while traveling, and transmits the acquired positional information to the control device 4 while traveling via a wireless communication network. Since the management information acquired during driving is transmitted to the control device 4 while the secondary battery 80 is being charged, the band for transmitting and receiving control data in the wireless communication network installed in the warehouse 2 is not compressed. , management information can be collected from the transport device 3.
 また、本実施例の一つの搬送システムは、搬送物を搬送可能な搬送装置3と、搬送装置3の動作を制御する制御装置4と、搬送装置3に充電電力を供給する充電装置7と、を備える。搬送装置3は、動作のための電力を供給する二次電池80と、二次電池80から供給される電力によって車輪を駆動する駆動機構20を有する。搬送装置3は、搬送装置3の位置に関する位置情報と、搬送装置3の走行環境又は搬送装置3に関する管理情報を、走行中に取得する。搬送装置3は、無線通信ネットワークを介して、取得した位置情報を走行中に制御装置4に送信する。搬送装置3は、走行中に取得した管理情報を、二次電池80の充電中に充電装置7に送信する。充電装置7は、制御装置4に当該管理情報を送信する。ここで、充電装置7から、制御装置4への管理情報の送信は、充電中に行われてもよいし、その他のタイミング(例えば充電後)に行われてもよい。これにより、倉庫2内に設けられた無線通信ネットワークにおいて制御データを送受信する帯域を圧迫することなく、搬送装置3から管理情報を収集できる。 Further, one of the transport systems of the present embodiment includes a transport device 3 capable of transporting objects, a control device 4 that controls the operation of the transport device 3, and a charging device 7 that supplies charging power to the transport device 3. Equipped with. The transport device 3 includes a secondary battery 80 that supplies power for operation, and a drive mechanism 20 that drives wheels using the power supplied from the secondary battery 80. The transport device 3 acquires position information regarding the position of the transport device 3 and management information regarding the running environment of the transport device 3 or the transport device 3 while traveling. The transport device 3 transmits the acquired position information to the control device 4 while traveling via a wireless communication network. The transport device 3 transmits the management information acquired while traveling to the charging device 7 while the secondary battery 80 is being charged. The charging device 7 transmits the management information to the control device 4. Here, the management information may be transmitted from the charging device 7 to the control device 4 during charging, or at other timings (for example, after charging). Thereby, management information can be collected from the transport device 3 without compressing the band for transmitting and receiving control data in the wireless communication network provided in the warehouse 2.
 以上、幾つかの実施例を説明したが、これらは本発明の説明のための例示であって、本発明の範囲をこれらの実施例にのみ限定する趣旨ではない。本発明は、他の種々の形態でも実施することが可能である。 Although several embodiments have been described above, these are illustrative examples for explaining the present invention, and are not intended to limit the scope of the present invention only to these embodiments. The present invention can also be implemented in various other forms.
 また、例えば、区画の形状は、方形に限られず、他の形状でもよい。また、異なる大きさ又は形状の区画が混在してもよい。また、区画の位置は、当該区画上の二次元バーコードから特定されることに代えて、他種の方法により特定されてもよい。 Furthermore, for example, the shape of the partition is not limited to a rectangle, and may be any other shape. Furthermore, sections of different sizes or shapes may coexist. Furthermore, instead of being specified from the two-dimensional barcode on the section, the location of the section may be specified by another type of method.
 また、例えば、格納プログラム50及び処理プログラム51は、制御装置4に代えて又は加えて搬送装置3で実行されてもよい。また、搬送装置3が制御装置4を兼ねてもよい。 Furthermore, for example, the storage program 50 and the processing program 51 may be executed by the transport device 3 instead of or in addition to the control device 4. Further, the transport device 3 may also serve as the control device 4.
 また、本発明は、ネット通販会社等の企業が商品を保管するために利用する保管庫以外の工場や作業場などにおいて物品を搬送するための搬送システムにも適用することができる。具体的には、搬送装置3の搬送物が、トレーやボックス、パレット又は物品などの棚5以外の物でもよい。この場合、トレー、ボックス及びパレットについては、物品を収納していてもよいし、物品を収納していなくてもよい(例えば、トレー、ボックス及びパレット自体が搬送物の場合)。なお、この場合には、「棚」を「搬送物」と置き換えればよいだけであるため、詳細な説明は省略する。また、かかる搬送物に対する作業がピッキング作業以外の加工、組み立て、梱包又は検品などの作業でもよい。この場合には、「ピッキング」や「ピッキング作業」を「作業」と置き換えればよいだけであるため、詳細な説明は省略する。 Furthermore, the present invention can also be applied to a transportation system for transporting articles in factories, workshops, etc. other than storage warehouses used by companies such as online shopping companies to store their products. Specifically, the object to be transported by the transport device 3 may be an object other than the shelf 5, such as a tray, a box, a pallet, or an article. In this case, the trays, boxes, and pallets may or may not contain articles (for example, when the trays, boxes, and pallets themselves are objects to be transported). Note that in this case, it is only necessary to replace "shelf" with "transferred object", so detailed explanation will be omitted. Further, the work on the transported object may be other than picking work, such as processing, assembly, packaging, or inspection. In this case, it is only necessary to replace "picking" or "picking work" with "work", so detailed explanation will be omitted.
 なお、本発明は前述した実施例に限定されるものではなく、添付した特許請求の範囲の趣旨内における様々な変形例及び同等の構成が含まれる。例えば、前述した実施例は本発明を分かりやすく説明するために詳細に説明したものであり、必ずしも説明した全ての構成を備えるものに本発明は限定されない。また、ある実施例の構成の一部を他の実施例の構成に置き換えてもよい。また、ある実施例の構成に他の実施例の構成を加えてもよい。また、各実施例の構成の一部について、他の構成の追加・削除・置換をしてもよい。 Note that the present invention is not limited to the embodiments described above, and includes various modifications and equivalent configurations within the scope of the appended claims. For example, the embodiments described above have been described in detail to explain the present invention in an easy-to-understand manner, and the present invention is not necessarily limited to having all the configurations described. Further, a part of the configuration of one embodiment may be replaced with the configuration of another embodiment. Further, the configuration of one embodiment may be added to the configuration of another embodiment. Further, other configurations may be added, deleted, or replaced with a part of the configuration of each embodiment.
 また、前述した各構成、機能、処理部、処理手段等は、それらの一部又は全部を、例えば集積回路で設計する等により、ハードウェアで実現してもよく、プロセッサがそれぞれの機能を実現するプログラムを解釈し実行することにより、ソフトウェアで実現してもよい。 Further, each of the above-mentioned configurations, functions, processing units, processing means, etc. may be realized in part or in whole by hardware, for example by designing an integrated circuit, and a processor realizes each function. It may also be realized by software by interpreting and executing a program.
 各機能を実現するプログラム、テーブル、ファイル等の情報は、メモリ、ハードディスク、SSD(Solid State Drive)等の記憶装置、又は、ICカード、SDカード、DVD等の記録媒体に格納することができる。 Information such as programs, tables, files, etc. that implement each function can be stored in a storage device such as a memory, hard disk, or SSD (Solid State Drive), or in a recording medium such as an IC card, SD card, or DVD.
 また、制御線や情報線は説明上必要と考えられるものを示しており、実装上必要な全ての制御線や情報線を示しているとは限らない。実際には、ほとんど全ての構成が相互に接続されていると考えてよい。 In addition, the control lines and information lines shown are those considered necessary for explanation, and do not necessarily show all control lines and information lines necessary for implementation. In reality, almost all configurations can be considered interconnected.
2 倉庫
3、3A、3B、3C 搬送装置
4 制御装置
5、5A、5B、5C 棚
6 ピッキングステーション
7 充電装置
9 管理装置
10 コントローラ
11 駆動装置
12 記憶装置
13 インターフェース装置
14 センサ
20 駆動機構
20A 補助輪
20D 駆動輪
20E エンコーダ
20M モータ
21 昇降機構
21E エンコーダ
21F エンコーダ
21M モータ
21R モータ
22 テーブル
22A 上リング
22B 転がりベアリング
22C 下リング
22D 天板
22E 支柱
22L テーブル回転サーボモータ
22M テーブル昇降サーボモータ
23 経路テーブル
24 装置テーブル
25 地図テーブル
27 計測テーブル
28 実績テーブル
29 通信プログラム
30 移動制御プログラム
31 計測プログラム
32 位置推定プログラム
40 プロセッサ
41 メモリ
42 記憶装置
43 入力装置
44 出力装置
45 インターフェース装置
50 格納プログラム
51 処理プログラム
53 装置管理テーブル
54 在庫テーブル
55 オーダテーブル
56 地図テーブル
57 棚テーブル
58 ピッキングテーブル
60 床テーブル
70 電源装置
71 コントローラ
72 記憶装置
73、74 電極
75 復調器
76 通信インターフェース
80 バッテリ
81 混合器
82 変調器
83、84 電極
90 プロセッサ
91 メモリ
92 記憶装置
93 入力装置
94 出力装置
95 インターフェース装置
96 変化分析プログラム
97 差異分析プログラム
98 変化分析プログラム
200 エリア
201 区画
300 マーカ
300A~300I 二次元コード
501 脚部
502 底板
503 棚板
551 ネットワーク
2 Warehouse 3, 3A, 3B, 3C Transport device 4 Control device 5, 5A, 5B, 5C Shelf 6 Picking station 7 Charging device 9 Management device 10 Controller 11 Drive device 12 Storage device 13 Interface device 14 Sensor 20 Drive mechanism 20A Auxiliary wheel 20D Drive wheel 20E Encoder 20M Motor 21 Lifting mechanism 21E Encoder 21F Encoder 21M Motor 21R Motor 22 Table 22A Upper ring 22B Rolling bearing 22C Lower ring 22D Top plate 22E Support column 22L Table rotation servo motor 22M Table lift servo motor 23 Route table 24 Device table 25 Map table 27 Measurement table 28 Performance table 29 Communication program 30 Movement control program 31 Measurement program 32 Position estimation program 40 Processor 41 Memory 42 Storage device 43 Input device 44 Output device 45 Interface device 50 Storage program 51 Processing program 53 Device management table 54 Inventory table 55 Order table 56 Map table 57 Shelf table 58 Picking table 60 Floor table 70 Power supply 71 Controller 72 Storage device 73, 74 Electrode 75 Demodulator 76 Communication interface 80 Battery 81 Mixer 82 Modulator 83, 84 Electrode 90 Processor 91 Memory 92 Storage device 93 Input device 94 Output device 95 Interface device 96 Change analysis program 97 Difference analysis program 98 Change analysis program 200 Area 201 Section 300 Markers 300A to 300I Two-dimensional code 501 Legs 502 Bottom plate 503 Shelf board 551 Network

Claims (16)

  1.  搬送装置と制御装置を含む搬送システムの制御方法であって、
     前記搬送装置は、動作のための電力を供給する二次電池と、前記二次電池から供給される電力によって車輪を駆動する駆動機構とを有し、
     前記制御方法は、
     前記搬送装置が、当該搬送装置の位置に関する位置情報と、前記搬送装置の走行環境又は前記搬送装置に関する管理情報を、走行中に取得する情報取得ステップと、
     前記搬送装置が、無線通信ネットワークを介して、前記取得した位置情報を走行中に前記制御装置に送信する第1通信ステップと、
     前記搬送装置が、走行中に取得した前記管理情報を、前記二次電池の充電中に前記制御装置に送信する第2通信ステップと、を含む制御方法。
    A method for controlling a conveyance system including a conveyance device and a control device, the method comprising:
    The transport device includes a secondary battery that supplies power for operation, and a drive mechanism that drives wheels with the power supplied from the secondary battery,
    The control method includes:
    an information acquisition step in which the conveyance device acquires position information regarding the position of the conveyance device, a running environment of the conveyance device, or management information regarding the conveyance device while traveling;
    a first communication step in which the transport device transmits the acquired position information to the control device while traveling via a wireless communication network;
    A control method comprising: a second communication step in which the transport device transmits the management information acquired during traveling to the control device while the secondary battery is being charged.
  2.  請求項1に記載の制御方法であって、
     前記第2通信ステップは、
     前記搬送装置が、前記搬送装置に充電電力を供給する充電装置に、走行中に取得した前記管理情報を送信するステップと、
     前記充電装置が、前記制御装置に前記管理情報を送信するステップと、を含む制御方法。
    The control method according to claim 1,
    The second communication step includes:
    a step in which the transport device transmits the management information acquired during traveling to a charging device that supplies charging power to the transport device;
    A control method including the step of the charging device transmitting the management information to the control device.
  3.  請求項2に記載の制御方法であって、
     前記第2通信ステップにおいて、
     前記搬送装置と前記充電装置は給電線で接続されており、
     前記充電装置は、前記給電線を介して、充電電力を前記搬送装置に供給し、
     前記搬送装置は、前記給電線を介して、走行中に取得した前記管理情報を前記充電装置に送信する制御方法。
    The control method according to claim 2,
    In the second communication step,
    The transport device and the charging device are connected by a power supply line,
    The charging device supplies charging power to the transport device via the power supply line,
    In the control method, the transport device transmits the management information acquired during traveling to the charging device via the power supply line.
  4.  請求項2に記載の制御方法であって、
     前記第2通信ステップにおいて、前記搬送装置は、無線を介して、走行中に取得した前記管理情報を前記充電装置に送信する制御方法。
    The control method according to claim 2,
    In the second communication step, the transport device wirelessly transmits the management information acquired during traveling to the charging device.
  5.  請求項3に記載の制御方法であって、
     前記搬送装置は、直進時における所定時間中の速度差が第1の所定の閾値より大きい異常を検出すると、第1通信ステップにおいて、前記異常を検出した位置の情報を前記制御装置に送信して、走行を停止し、
     前記制御装置は、前記異常を検出した位置の情報を用いて、前記搬送装置の停止の原因となった異常検出位置を他の搬送装置が通過しないように制限する制御方法。
    4. The control method according to claim 3,
    When the conveyance device detects an abnormality in which a speed difference during a predetermined time when traveling straight is larger than a first predetermined threshold value, the conveyance device transmits information on a position where the abnormality is detected to the control device in a first communication step. , stop running,
    A control method in which the control device uses information on the position where the abnormality is detected to prevent other transport devices from passing through the abnormality detection position that caused the stop of the transport device.
  6.  請求項5に記載の制御方法であって、
     前記搬送システムは、前記管理情報を分析する管理装置を含み、
     前記第2通信ステップにおいて前記搬送装置から送信される管理情報は、経時的な前記搬送装置の走行速度のデータを含み、
     前記管理装置は、
     前記管理情報を前記制御装置から取得し、
     前記取得した管理情報を用いて、前記搬送装置の速度の変化量を計算し、
     前記計算された速度の変化量が第2の所定の閾値より大きいと判定されると、前記判定された速度の変化量が大きい位置を床損傷位置として記録し、
     前記記録された床損傷位置の情報を出力する制御方法。
    6. The control method according to claim 5,
    The transport system includes a management device that analyzes the management information,
    The management information transmitted from the transport device in the second communication step includes data on the traveling speed of the transport device over time,
    The management device includes:
    acquiring the management information from the control device;
    Calculating the amount of change in the speed of the conveying device using the acquired management information,
    When it is determined that the calculated amount of change in speed is larger than a second predetermined threshold, a position where the determined amount of change in speed is large is recorded as a floor damage position,
    A control method for outputting information on the recorded floor damage position.
  7.  請求項6に記載の制御方法であって、
     前記搬送装置が旋回する床面の所定の位置には、前記搬送装置の旋回の略中心に位置するマーカが設けられており、
     前記第2通信ステップにおいて前記搬送装置から送信される管理情報は、前記搬送装置の旋回時に撮影された前記マーカの画像を含み、
     前記管理装置は、
     前記管理情報を前記制御装置から取得し、
     前記取得した管理情報を用いて、前記搬送装置の旋回時における前記マーカの中心位置の変化量を計算し、
     前記計算された中心位置の変化量が第3の所定の閾値より大きいと判定されると、前記判定された中心位置の変化量が大きい位置を床損傷位置として記録し、
     前記記録された床損傷位置の情報を出力する制御方法。
    7. The control method according to claim 6,
    A marker is provided at a predetermined position on the floor surface around which the conveyance device turns, and is located approximately at the center of the rotation of the conveyance device,
    The management information transmitted from the transport device in the second communication step includes an image of the marker taken when the transport device turns,
    The management device includes:
    acquiring the management information from the control device;
    Using the acquired management information, calculate the amount of change in the center position of the marker when the transport device turns;
    When it is determined that the calculated amount of change in the center position is larger than a third predetermined threshold, a position where the determined amount of change in the center position is large is recorded as a floor damage position;
    A control method for outputting information on the recorded floor damage position.
  8.  請求項3又は7に記載の制御方法であって、
     前記搬送システムは、前記管理情報を分析する管理装置を含み、
     前記搬送装置が走行する床面の所定の位置には、前記搬送装置が位置を検出するために、複数の読み取りコードを含むマーカが設けられており、
     前記第2通信ステップにおいて前記搬送装置から送信される管理情報は、前記搬送装置の走行時に読み取られた前記読み取りコードの数を含み、
     前記管理装置は、
     前記管理情報を前記制御装置から取得し、
     前記取得した管理情報を用いて、前記読み取られたコードの数が第4の所定の閾値より小さい場合、前記読み取られた読み取りコードの数が小さいマーカの位置をマーカ異常位置として記録し、
     前記記録されたマーカ異常位置の情報を出力する制御方法。
    The control method according to claim 3 or 7,
    The transport system includes a management device that analyzes the management information,
    A marker including a plurality of read codes is provided at a predetermined position on the floor surface on which the transport device runs, in order for the transport device to detect the position;
    The management information transmitted from the conveyance device in the second communication step includes the number of the read codes read while the conveyance device is traveling;
    The management device includes:
    acquiring the management information from the control device;
    Using the acquired management information, if the number of read codes is smaller than a fourth predetermined threshold, record the position of the marker where the number of read codes read is small as a marker abnormal position;
    A control method for outputting information on the recorded marker abnormal position.
  9.  請求項3に記載の制御方法であって、
     前記搬送システムは、前記管理情報を分析する管理装置を含み、
     前記搬送装置が搬送する搬送物の底面の略中心には搬送物マーカが設けられており、
     前記搬送装置による搬送物の搬送先の床面の所定の位置には、位置を検出するための床マーカが設けられており、
     前記第2通信ステップにおいて前記搬送装置から送信される管理情報は、前記搬送物を搬送先に置く際に撮影した前記搬送物マーカの画像と前記床マーカの画像を含み、
     前記管理装置は、
     前記管理情報を前記制御装置から取得し、
     前記取得した管理情報を用いて、前記搬送物マーカの位置と前記床マーカの位置との差を計算し、
     前記位置の差が所定の範囲を超えている場合、前記位置の差が所定の範囲を超えている搬送物の位置がずれていることを記録し、
     前記記録された位置がずれている搬送物の情報を出力する制御方法。
    4. The control method according to claim 3,
    The transport system includes a management device that analyzes the management information,
    A conveyance object marker is provided approximately at the center of the bottom surface of the conveyance object conveyed by the conveyance device,
    A floor marker for detecting the position is provided at a predetermined position on the floor surface of the destination of the conveyance object by the conveyance device,
    The management information transmitted from the transport device in the second communication step includes an image of the transport object marker and an image of the floor marker taken when placing the transport object at the transport destination,
    The management device includes:
    acquiring the management information from the control device;
    Using the acquired management information, calculate the difference between the position of the conveyed object marker and the position of the floor marker,
    If the difference in position exceeds a predetermined range, recording that the position of the conveyed object for which the difference in position exceeds the predetermined range is shifted;
    A control method for outputting information about a conveyed object whose recorded position is shifted.
  10.  請求項3に記載の制御方法であって、
     前記制御装置は、前記搬送装置が走行する走行エリアを、複数の区画に区分して管理しており、
     前記搬送装置は、周囲の物体を検出可能なセンサを有し、
     前記搬送装置は、走行中に前記センサにより異物を検出した場合、前記第1通信ステップにおいて、前記検出された異物と前記搬送装置との距離を含む位置関係情報と、前記搬送装置の位置情報とを前記制御装置に送信し、
     前記制御方法は、前記制御装置が、少なくとも前記位置関係情報と前記搬送装置の位置情報に基づいて、前記異物が検出された区画を特定し、前記異物が検出された区画を前記搬送装置が走行不可に設定するステップを含む制御方法。
    4. The control method according to claim 3,
    The control device manages a travel area in which the transport device travels by dividing it into a plurality of sections,
    The transport device has a sensor capable of detecting surrounding objects,
    When the conveyance device detects a foreign object with the sensor while traveling, the conveyance device transmits, in the first communication step, positional relationship information including a distance between the detected foreign object and the conveyance device, and position information of the conveyance device. to the control device,
    In the control method, the control device specifies a section where the foreign object is detected based on at least the positional relationship information and the position information of the transport device, and the transport device runs through the section where the foreign object was detected. A control method including a step of disabling.
  11.  請求項10に記載の制御方法であって、
     前記センサは、画像センサを有し、
     前記第2通信ステップにおいて、前記搬送装置は、前記画像センサが取得した前記異物を含む画像を、前記充電装置を介して前記制御装置に送信する制御方法。
    The control method according to claim 10,
    The sensor has an image sensor,
    In the second communication step, the transport device transmits an image including the foreign object acquired by the image sensor to the control device via the charging device.
  12.  請求項11に記載の制御方法であって、
     前記搬送システムは、前記管理情報を分析する管理装置を含み、
     前記搬送装置は、走行中に前記搬送装置の走行環境の画像を取得し、
     前記管理装置は、
     前記走行環境の画像を含む前記管理情報を前記制御装置から取得し、
     前記走行環境の画像から異物の抽出を試み、
     前記画像から抽出された異物の位置を他の搬送装置が通過しないように制限する制御方法。
    The control method according to claim 11,
    The transport system includes a management device that analyzes the management information,
    The conveying device acquires an image of the traveling environment of the conveying device while traveling,
    The management device includes:
    acquiring the management information including an image of the driving environment from the control device;
    Attempting to extract foreign objects from the image of the driving environment,
    A control method for restricting the position of a foreign object extracted from the image so that other conveyance devices do not pass through it.
  13.  請求項3に記載の制御方法であって、
     前記搬送システムは、前記管理情報を分析する管理装置を含み、
     前記第2通信ステップにおいて前記搬送装置から送信される管理情報は、実装される機器の応答時間を含み、
     前記管理装置は、
     前記管理情報を前記制御装置から取得し、
     前記取得した管理情報を用いて、前記応答時間の許容範囲値が第5の所定の閾値より大きい場合、前記応答時間に異常があることを記録し、
     前記記録された異常がある機器の情報を出力する制御方法。
    4. The control method according to claim 3,
    The transport system includes a management device that analyzes the management information,
    The management information transmitted from the transport device in the second communication step includes the response time of the device to be mounted,
    The management device includes:
    acquiring the management information from the control device;
    Using the acquired management information, if the allowable range value of the response time is greater than a fifth predetermined threshold, record that there is an abnormality in the response time;
    A control method for outputting information about the device having the recorded abnormality.
  14.  請求項3に記載の制御方法であって、
     前記制御装置は、前記搬送装置が走行する走行エリアを、複数の区画に区分して管理しており、
     前記区画の各々には、当該区画の位置を表すマーカが設けられており、
     前記搬送装置は、前記マーカを読み取り可能なセンサを有し、
     前記第1通信ステップにおいて、前記搬送装置は、前記マーカに表された位置情報又は前記マーカに表された情報から導出される位置情報を、前記制御装置に送信する制御方法。
    4. The control method according to claim 3,
    The control device manages a travel area in which the transport device travels by dividing it into a plurality of sections,
    Each of the sections is provided with a marker indicating the position of the section,
    The transport device has a sensor capable of reading the marker,
    In the first communication step, the transport device transmits position information represented by the marker or position information derived from the information represented by the marker to the control device.
  15.  搬送装置と制御装置と管理装置を含む搬送システムの制御方法であって、
     前記搬送装置は、動作のための電力を供給する二次電池と、前記二次電池から供給される電力によって車輪を駆動する駆動機構を有し、
     前記搬送装置が旋回する床面の所定の位置には、前記搬送装置の旋回の略中心に位置するマーカが設けられており、
     前記制御方法は、
     前記搬送装置が、当該搬送装置の位置に関する位置情報と、前記搬送装置の走行環境又は前記搬送装置に関する管理情報を、走行中に取得する情報取得ステップと、
     前記搬送装置が、無線通信ネットワークを介して、前記取得した位置情報を走行中に前記制御装置に送信する第1通信ステップと、
     前記搬送装置が、走行中に取得した前記管理情報を、前記二次電池の充電中に前記制御装置に送信する第2通信ステップと、を含み、
     前記第2通信ステップにおいて、
     前記搬送装置と前記搬送装置に充電電力を供給する充電装置は給電線で接続されており、
     前記充電装置は、前記給電線を介して、充電電力を前記搬送装置に供給し、
     前記搬送装置は、前記給電線を介して、走行中に取得した前記管理情報を前記充電装置に送信し、
     前記充電装置は、前記制御装置に前記管理情報を送信し、
     前記第2通信ステップにおいて前記搬送装置から送信される管理情報は、前記搬送装置の経時的な速度のデータと、旋回時に撮影した前記マーカの画像とを含み、
     前記搬送装置は、直進時における所定時間中の速度差が第1の所定の閾値より大きい異常を検出すると、第1通信ステップにおいて、前記異常を検出した位置の情報を前記制御装置に送信して、走行を停止し、
     前記制御装置は、前記異常を検出した位置の情報を用いて、前記搬送装置の停止の原因となった異常検出位置を他の搬送装置が通過しないように制限し、
     前記管理装置は、
     前記管理情報を前記制御装置から取得し、
     前記取得した管理情報を用いて、前記搬送装置の速度の変化量を計算し、
     前記計算された速度の変化量が第2の所定の閾値より大きいと判定されると、前記判定された速度の変化量が大きい位置を床損傷位置として記録し、
     前記記録された床損傷位置の情報を出力し、
     さらに、前記管理装置は、
     前記取得した管理情報を用いて、前記搬送装置の旋回時における前記マーカの中心位置の変化量を計算し、
     前記計算された中心位置の変化量が第3の所定の閾値より大きいと判定されると、前記判定された中心位置の変化量が大きい位置を床損傷位置として記録し、
     前記記録された床損傷位置の情報を出力する制御方法。
    A method for controlling a conveyance system including a conveyance device, a control device, and a management device, the method comprising:
    The transport device has a secondary battery that supplies power for operation, and a drive mechanism that drives wheels with the power supplied from the secondary battery,
    A marker is provided at a predetermined position on the floor surface around which the conveyance device turns, and is located approximately at the center of the rotation of the conveyance device,
    The control method includes:
    an information acquisition step in which the conveyance device acquires position information regarding the position of the conveyance device, a running environment of the conveyance device, or management information regarding the conveyance device while traveling;
    a first communication step in which the transport device transmits the acquired position information to the control device while traveling via a wireless communication network;
    a second communication step in which the transport device transmits the management information acquired while traveling to the control device while charging the secondary battery;
    In the second communication step,
    The transport device and a charging device that supplies charging power to the transport device are connected by a power supply line,
    The charging device supplies charging power to the transport device via the power supply line,
    The transport device transmits the management information acquired while traveling to the charging device via the power supply line,
    The charging device transmits the management information to the control device,
    The management information transmitted from the transport device in the second communication step includes data on the speed of the transport device over time and an image of the marker taken during turning,
    When the conveyance device detects an abnormality in which a speed difference during a predetermined time when traveling straight is larger than a first predetermined threshold value, the conveyance device transmits information on a position where the abnormality is detected to the control device in a first communication step. , stop running,
    The control device uses information on the position where the abnormality is detected to restrict other transport devices from passing through the abnormality detection position that caused the stop of the transport device,
    The management device includes:
    acquiring the management information from the control device;
    Calculating the amount of change in the speed of the conveying device using the acquired management information,
    When it is determined that the calculated amount of change in speed is larger than a second predetermined threshold, a position where the determined amount of change in speed is large is recorded as a floor damage position;
    outputting information on the recorded floor damage position;
    Furthermore, the management device
    Using the acquired management information, calculate the amount of change in the center position of the marker when the transport device turns;
    When it is determined that the calculated amount of change in the center position is larger than a third predetermined threshold, a position where the determined amount of change in the center position is large is recorded as a floor damage position;
    A control method for outputting information on the recorded floor damage position.
  16.  搬送システムであって、
     搬送物を搬送可能な搬送装置と、
     前記搬送装置の動作を制御する制御装置と、
     前記搬送装置に充電電力を供給する充電装置と、を備え、
     前記搬送装置は、
     動作のための電力を供給する二次電池と、前記二次電池から供給される電力によって車輪を駆動する駆動機構を有し、
     前記搬送装置の位置に関する位置情報と、前記搬送装置の走行環境又は前記搬送装置に関する管理情報を、走行中に取得し、
     無線通信ネットワークを介して、前記取得した位置情報を走行中に前記制御装置に送信し、
     走行中に取得した前記管理情報を、前記二次電池の充電中に前記充電装置に送信し、
     前記充電装置は、前記制御装置に前記管理情報を送信する搬送システム。
    A conveyance system,
    A transport device capable of transporting objects;
    a control device that controls the operation of the transport device;
    A charging device that supplies charging power to the transport device,
    The transport device is
    It has a secondary battery that supplies power for operation, and a drive mechanism that drives the wheels with the power supplied from the secondary battery,
    acquiring positional information regarding the position of the conveyance device, a running environment of the conveyance device, or management information regarding the conveyance device while traveling;
    transmitting the acquired position information to the control device while driving via a wireless communication network;
    transmitting the management information acquired while driving to the charging device while charging the secondary battery;
    The charging device is a transport system that transmits the management information to the control device.
PCT/JP2022/028470 2022-07-22 2022-07-22 Control method for conveyance system, and conveyance system WO2024018616A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2022/028470 WO2024018616A1 (en) 2022-07-22 2022-07-22 Control method for conveyance system, and conveyance system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2022/028470 WO2024018616A1 (en) 2022-07-22 2022-07-22 Control method for conveyance system, and conveyance system

Publications (1)

Publication Number Publication Date
WO2024018616A1 true WO2024018616A1 (en) 2024-01-25

Family

ID=89617297

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/028470 WO2024018616A1 (en) 2022-07-22 2022-07-22 Control method for conveyance system, and conveyance system

Country Status (1)

Country Link
WO (1) WO2024018616A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015097736A1 (en) * 2013-12-24 2015-07-02 株式会社日立製作所 Picking system
US10409281B1 (en) * 2017-06-09 2019-09-10 Amazon Technologies, Inc. Sensor controlled drive unit ingress and egress
WO2021124595A1 (en) * 2019-12-16 2021-06-24 株式会社日立製作所 Warehouse management system and moving body
WO2021124721A1 (en) * 2019-12-18 2021-06-24 パナソニックIpマネジメント株式会社 Transport device, charging system, and charging method
WO2022065107A1 (en) * 2020-09-23 2022-03-31 株式会社 東芝 Control device, and warehouse management system

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015097736A1 (en) * 2013-12-24 2015-07-02 株式会社日立製作所 Picking system
US10409281B1 (en) * 2017-06-09 2019-09-10 Amazon Technologies, Inc. Sensor controlled drive unit ingress and egress
WO2021124595A1 (en) * 2019-12-16 2021-06-24 株式会社日立製作所 Warehouse management system and moving body
WO2021124721A1 (en) * 2019-12-18 2021-06-24 パナソニックIpマネジメント株式会社 Transport device, charging system, and charging method
WO2022065107A1 (en) * 2020-09-23 2022-03-31 株式会社 東芝 Control device, and warehouse management system

Similar Documents

Publication Publication Date Title
US11767167B2 (en) Storage and retrieval system case unit detection
JP7269291B2 (en) Cooperative inventory monitoring
US10671088B2 (en) Communication of information regarding a robot using an optical identifier
AU2017301538B2 (en) Inventory management
CN107067206B (en) System for transporting and storing commodity box units and method thereof
WO2024018616A1 (en) Control method for conveyance system, and conveyance system
CN114728746B (en) Management system and article warehouse-in and warehouse-out management method
JP7454746B2 (en) Conveying system and method
JP7454710B2 (en) Conveying system and method
WO2024047937A1 (en) Transport system and maintenance method for transport device
WO2023181340A1 (en) Control system, conveyance system, and control method
JP2024048704A (en) Transport system, control device and control method
JP2023123098A (en) Control system, conveyance system, and control method
JP2023169535A (en) Warehouse operation execution apparatus, warehouse operation execution method, and computer program for executing warehouse operation

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22952000

Country of ref document: EP

Kind code of ref document: A1