WO2022162802A1 - Information processing system, information processing device and method - Google Patents

Information processing system, information processing device and method Download PDF

Info

Publication number
WO2022162802A1
WO2022162802A1 PCT/JP2021/002911 JP2021002911W WO2022162802A1 WO 2022162802 A1 WO2022162802 A1 WO 2022162802A1 JP 2021002911 W JP2021002911 W JP 2021002911W WO 2022162802 A1 WO2022162802 A1 WO 2022162802A1
Authority
WO
WIPO (PCT)
Prior art keywords
error
information
transport
detected
state
Prior art date
Application number
PCT/JP2021/002911
Other languages
French (fr)
Japanese (ja)
Inventor
幸大 岡田
知生 嶋野
篤志 杉藤
Original Assignee
株式会社日立製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社日立製作所 filed Critical 株式会社日立製作所
Priority to PCT/JP2021/002911 priority Critical patent/WO2022162802A1/en
Priority to JP2022577892A priority patent/JPWO2022162802A1/ja
Publication of WO2022162802A1 publication Critical patent/WO2022162802A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65GTRANSPORT OR STORAGE DEVICES, e.g. CONVEYORS FOR LOADING OR TIPPING, SHOP CONVEYOR SYSTEMS OR PNEUMATIC TUBE CONVEYORS
    • B65G1/00Storing articles, individually or in orderly arrangement, in warehouses or magazines
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65GTRANSPORT OR STORAGE DEVICES, e.g. CONVEYORS FOR LOADING OR TIPPING, SHOP CONVEYOR SYSTEMS OR PNEUMATIC TUBE CONVEYORS
    • B65G1/00Storing articles, individually or in orderly arrangement, in warehouses or magazines
    • B65G1/02Storage devices
    • B65G1/04Storage devices mechanical
    • B65G1/10Storage devices mechanical with relatively movable racks to facilitate insertion or removal of articles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65GTRANSPORT OR STORAGE DEVICES, e.g. CONVEYORS FOR LOADING OR TIPPING, SHOP CONVEYOR SYSTEMS OR PNEUMATIC TUBE CONVEYORS
    • B65G1/00Storing articles, individually or in orderly arrangement, in warehouses or magazines
    • B65G1/02Storage devices
    • B65G1/04Storage devices mechanical
    • B65G1/137Storage devices mechanical with arrangements or automatic control means for selecting which articles are to be removed

Definitions

  • the present invention relates to an information processing system, information processing device and method, and is suitable for application to a transport system using a transport device.
  • the present invention provides a data acquisition device for acquiring a plurality of pieces of error information including detection locations of errors that have occurred in one or more transport devices, and a plurality of pieces of error information acquired by the error acquisition device. and an error analysis device that analyzes the error information and determines the state of the floor surface at the location where the error is detected.
  • a first step of acquiring a plurality of pieces of error information including a detection location of an error that occurred in the transportation device from one or a plurality of transportation devices; and a second step of determining the state of the floor surface at the detection location.
  • an information processing system it is possible to realize an information processing system, an information processing apparatus, and a method that can determine floor conditions that can cause errors and improve the reliability of the transportation system.
  • FIG. 1 is a conceptual diagram showing the overall configuration of a transport system according to first to third embodiments; FIG. It is a conceptual diagram for explaining the address of each section of the floor.
  • (A) is a perspective view showing the external configuration of the conveying device, and
  • (B) is a plan view showing the bottom configuration of the conveying device. It is a side view with which it uses for description of the conveyance method of the shelf by a conveyance apparatus. It is a block diagram which shows the structure of the conveying apparatus and operation control apparatus in the information processing system of 1st and 2nd embodiment.
  • 4 is a chart showing a configuration example of an error log information database; It is a chart which shows the structural example of a driving
  • FIG. 10 is a flow chart showing a processing procedure of a first error analysis process
  • FIG. 4 is a flowchart showing a processing procedure of damage degree determination processing
  • FIG. 10 is a flow chart showing a processing procedure of a second error analysis process
  • FIG. It is a block diagram which shows the structure of the conveying apparatus and operation control apparatus in the information processing system of 3rd Embodiment.
  • 9 is a flowchart showing a processing procedure of error cause estimation processing
  • FIG. 11 is a flow chart showing a processing procedure of a third error analysis process
  • FIG. FIG. 2 is a conceptual diagram showing the overall configuration of visualization of the floor state according to the first to third embodiments;
  • expressions such as “table”, “list”, and “queue” may be used for explanation, but various types of information may be expressed in data structures other than these.
  • various information such as “XX table”, “XX list”, and “XX queue” may be referred to as “XX information”.
  • identification information expressions such as “identification information”, “identifier”, “name”, “ID”, and “number” are used, but these can be replaced with each other.
  • the computer executes a program by means of a processor (eg, CPU, GPU) and performs processing determined by the program while using storage resources (eg, memory) and interface devices (eg, communication port). Therefore, the main body of the processing performed by executing the program may be the processor.
  • a processor eg, CPU, GPU
  • storage resources eg, memory
  • interface devices eg, communication port
  • the subject of processing performed by executing a program may be a controller, device, system, computer, or node having a processor.
  • the subject of the processing performed by executing the program may be an arithmetic unit, and may include a dedicated circuit for performing specific processing.
  • the dedicated circuit is, for example, FPGA (Field Programmable Gate Array), ASIC (Application Specific Integrated Circuit), CPLD (Complex Programmable Logic Device), or the like.
  • the program may be installed on the computer from the program source.
  • the program source may be, for example, a program distribution server or a computer-readable storage medium.
  • the program distribution server may include a processor and storage resources for storing the distribution target program, and the processor of the program distribution server may distribute the distribution target program to other computers.
  • two or more programs may be implemented as one program, and one program may be implemented as two or more programs.
  • the transportation system 1 includes a plurality of transportation devices 3 that travel within a warehouse 2 and an information processing device (hereinafter also referred to as an operation control device) 4 that remotely controls the operation of each transportation device 3. be.
  • an information processing device hereinafter also referred to as an operation control device 4 that remotely controls the operation of each transportation device 3.
  • the warehouse 2 is, for example, a warehouse used by a company such as an online shopping company to store goods.
  • the articles stored in the warehouse 2 may be commodities or parts.
  • an example of a product will be described as an example of an article stored in the warehouse 2.
  • the floor surface of the warehouse 2 is divided into a plurality of square sections (areas) 2A of a predetermined size and managed, and each section 2A has a marker 2B indicating the position of the section 2A.
  • the marker 2B may include information for specifying the position of the section 2A, for example, the position information of the section 2A, or information associated with the position information of the section 2A (for example, the section 2A identification information, etc.).
  • the marker 2B is information that can be read by the sensor 14 of the transport device 3, and may be information such as a one-dimensional code, a two-dimensional code such as a QR code (registered trademark), or an RFID (Radio Frequency Identifier) tag. .
  • a QR code registered trademark
  • RFID Radio Frequency Identifier
  • each transport device 3 reads the marker 2B in each section 2A when passing through each section 2A.
  • Each conveying device 3 transmits the information of the read marker 2B to the operation control device 4 together with the identification information of the own conveying device 3 .
  • the operation control device 4 identifies the position of each transport device 3 based on the identification information of the transport device 3 and the information of the marker 2B received from each transport device 3 .
  • each section 2A is x as the address of the upper left section 2A on the floor surface of the warehouse 2 is (1, 1), and the right section 2A is located.
  • the addresses are managed in the form of xy coordinates in which the direction value increases by 1 and the y direction value increases by 1 toward the lower section 2A. Therefore, for example, the position of the section 2A, which is two sections to the right and three sections downward from the section 2A of the address (1, 1), is the address (3, 4).
  • a plurality of shelves 5 are arranged so as to be positioned within the corresponding section 2A, and installed in a movable state.
  • Each shelf 5 stores one or a plurality of articles (for example, merchandise to be sold) at a predetermined position.
  • the shelf 5 is sometimes called a mobile shelf.
  • the shelf 5 may be approximately the same size as one compartment 2A, or may be smaller than one compartment 2A. Note that there may be various modifications of how to set the partitions.
  • the transport device 3 is an unmanned transport robot (unmanned transport vehicle) that can automatically transport objects to a position specified by the operation control device 4 .
  • the object to be transported is, for example, the shelf 5 or a pallet. If the object to be transported is an object on which one or more articles can be loaded (for example, the shelf 5 or a pallet), the object to be transported may be called a storage unit (storage device) or a loading platform. In this embodiment, the case of the shelf 5 will be described as an example of an object to be transported by the transport device 3 . An object to be conveyed is sometimes called an article to be conveyed.
  • the transport device 3 lifts the shelf 5 specified by the operation control device 4 and travels within the warehouse 2 to transport the shelf 5 to the picking station 6 provided at a predetermined position within the warehouse 2 .
  • the shelf 5 conveyed to the picking station 6 is returned to the designated position by the conveying device 3 after the necessary commodities are taken out (picked) by the operator at the picking station 6 .
  • This specified position is a position specified by the operation control device 4, and may be the original installation location of the shelf 5 or another location.
  • a shelf that stores products that are frequently picked and that is frequently transported to the picking station 6 may be placed in a shelf arrangement section close to the picking station 6. Shelves that are infrequently transported to the picking station 6 may be placed in a shelving section located far from the picking station 6 . In this way, by changing the installation location of the shelf according to the frequency of transportation to the picking station 6, transportation efficiency can be improved.
  • the conveying device 3 is formed in a rectangular parallelepiped shape with a square bottom as a whole.
  • two drive wheels 20 are arranged on the lower surface of the conveying device 3 for turning and advancing the conveying device 3.
  • a training wheel 21 At the four corners of the lower surface of the conveying device 3 is provided with a training wheel 21.
  • a columnar lifting/rotating body 22 that can be lifted and rotated is provided.
  • the conveying device 3 rotates the driving wheels 20 to move to the lower side of the shelf 5 to be conveyed, and then raises the lifting/rotating body 22 to lift the shelf 5.
  • the conveying device 3 can also change the direction of the lifted shelf 5 by rotating the lifting/rotating body 22 .
  • the conveying device 3 rotates (revolves) without rotating the lifted shelf 5 by rotating (swinging) the body other than the lifting/rotating body 22 with respect to the lifting/rotating body 22 . is also possible.
  • the transport device 3 is equipped with an automatic charging function, and when the remaining amount of the battery (not shown) included in the transport device 3 falls below a predetermined value, the transport device 3 is moved to a predetermined position (shown in the figure) in the warehouse 2. 1 and 2, it moves to the battery station 7 provided in the section 2A) of the address (1, 1) and is automatically charged.
  • the operation control device 4 is wirelessly connected to each transport device 3 in the warehouse 2 via a wireless communication line such as Wi-Fi (registered trademark).
  • the operation control device 4 identifies the shelf 5 in which the ordered product is stored according to the order from the customer, and picks the shelf 5 for the conveying device 3 that is vacant at that time, for example.
  • An instruction is given to transport to station 6 (such an instruction regarding transport is hereinafter referred to as a transport instruction).
  • the "transportation instruction” includes identification information (shelf ID) of the shelf 5 to be transported, and a path along which the transport device 3 should move at that time, as indicated by an arrow and a black circle in FIG. 2, for example. This is called a moving route of the transport device 3). Further, the “moving route of the transport device” includes the route from the current position of the transport device 3 to the rack 5 and the route from the rack 5 to the picking station 6 .
  • the operation control device 4 gives a "transportation instruction" to the transport device 3 to the specified position in order to return the shelf to the specified position.
  • the "transportation instruction” includes identification information (shelf ID) of the shelf 5 to be transported and information on the movement route.
  • This movement path includes the path from the picking station 6 to the designated location (eg, the original location of the shelf 5).
  • FIG. 5 is a diagram showing an example of the configuration of the transport system 1 according to this embodiment.
  • the transportation system 1 includes one or more transportation devices 3 and an operation control device 4 .
  • the transport device 3 comprises a control device 10 , a drive device 11 , a storage device 12 , a communication interface 13 and one or more types of sensors 14 .
  • the control device 10 is a controller that controls the operation and control of the transportation device 3 according to the transportation instruction from the operation control device 4 and the state of charge of the built-in battery.
  • the driving device 11 includes a first actuator (not shown) including a motor for rotationally driving the driving wheels 20, and a lifting/lowering wheel. and a second actuator (not shown) composed of a motor or the like for raising and lowering and rotating the rotating body 22 .
  • the storage device 12 is composed of, for example, a non-volatile semiconductor memory, a large-capacity non-volatile storage device such as a hard disk device or an SSD (Solid State Drive), and is used to retain necessary information for a long period of time.
  • the communication interface 13 is a communication device for communicating with the operation control device 4 by a predetermined wireless communication method, and is composed of, for example, a Wi-Fi (registered trademark) wireless LAN (Local Area Network) card.
  • the sensor 14 is a device for collecting information on the floor surface on which the transport device 3 travels and various types of information about the transport device 3. For example, the sensor 14 collects information on the markers 2B written in each section 2A of the floor surface. It is possible to read.
  • the conveying device 3 includes, as the sensor 14, a camera for imaging the state of the floor surface, a vibration sensor for detecting vibrations received by the conveying device 3 while traveling, and a speed for measuring the speed and acceleration of the conveying device 3 itself. Sensors such as sensors and acceleration sensors may be provided.
  • the storage device 12 of each transport device 3 includes a route data database 23, a device information database 24, a map information database 25, an error log information database 26, a measurement data database 27, and a running performance data database. 28 is stored.
  • a communication program 29, a running control program 30, a measurement program 31, and an error detection program 32 are stored in the control device 10.
  • the route data database 23 is a database that stores information on the movement route specified by the transport instruction given from the operation control device 4 .
  • the device information database 24 includes identification information, current position and state ("standby", “transporting”, “charging” or “failure") of the own transport device 3, and information on installed hardware and software. is a database in which various types of information (hereinbelow, collectively referred to as device information) related to the own transport device 3 are stored.
  • the map information database 25 contains information such as the state of the floor surface of the warehouse 2, the positions (addresses) of each shelf 5, the picking station 6 and the battery station 7 in the warehouse 2, and the travelable area of the transport device 3 such as aisles ( drivable area) and information such as the running direction of each passage (hereinafter collectively referred to as map information) are stored in the database.
  • error log information database 26 is a database in which error log information (hereinafter referred to as error log information) of various errors that have occurred in the transport device 3 is stored.
  • the measurement data database 27 stores the traveling speed and acceleration of the self-conveying device 3 measured by the sensor 14, the magnitude of vibration generated in the self-conveying device 3 during traveling, the position where the vibration occurred, and the shelf being lifted at that time.
  • This is a database in which data such as the total weight of 5 and image data of images captured by a camera, which is one of the sensors 14, are stored as measurement data.
  • the travel record data database 28 is a database that stores data relating to travel records such as the relationship between the route and time traveled by the transport device 3 (hereinafter referred to as "travel record data").
  • travel record data data relating to travel records such as the relationship between the route and time traveled by the transport device 3
  • the content of the marker 2B detected based on the image captured by the camera, which is one of the sensors 14, when the conveying device 3 travels based on the route data (for example, the address, the section, etc.) information for identifying the position of 2A) and information such as the time when the marker 2B was detected are stored as travel record data.
  • the communication program 29 is a program having a function of exchanging commands and information with the operation control device 4 via the communication interface 13.
  • the communication program 29 in response to a request from the operation control device 4, the error log information stored in the error log information database 26, various measurement data stored in the measurement data database 27, the travel performance data database 28 and the device information stored in the device information database 24 (for example, identification information, current position and state of the carrier device 3, etc.) are sent to the operation control device 4.
  • the communication program of each transport device 3 may transmit each of these pieces of information to the operation control device 4 at regular or irregular timings. As an example of this timing, for example, information may be acquired from each transportation device 3 before the operation control device 4 performs error analysis processing, or the operation control device 4 may You may send information.
  • the traveling control program 30 is a program having a function of controlling traveling of the own carrier device 3 according to a carrier instruction from the operation control device 4 received by the communication program 29 .
  • the traveling control program 30 lifts the designated shelf 5 and moves it to the picking station 6 along the designated movement route, or The driving device 11 is controlled so that the shelf 5 is returned to its original position through the designated movement route.
  • the travel control program 30 also registers information about travel at that time in the travel performance data database 28 as travel performance data.
  • the measurement program 31 is a program having a function of performing various measurements using each sensor 14 and registering the measurement results in the measurement data database 27 .
  • the measurement program 31 measures the vibration of the transport device 3 based on the output of a vibration sensor that is one of the sensors 14, The speed and acceleration of the conveying device 3 are measured, and these measurement results are registered in the measurement data database 27 .
  • the measurement program 31 also stores the image data of the image captured by the camera, which is one of the sensors, in the measurement data database 27 .
  • the error detection program 32 is a program having a function of detecting various errors that have occurred in the transport device 3.
  • the error detection program 32 detects an error that has occurred in the transport device 3
  • the error detection program 32 generates an error log of the error and registers the generated error log in the error log information database 26 as error log information.
  • the error detection program 32 may register the information at the timing when the error is detected with respect to the information related to the running performance data in the error log information (for example, the address 59F to the communication state 59P of the error log information).
  • the performance data database 28 the travel performance data of a date and time close to the error detection date and time may be acquired and registered.
  • the operation control device 4 is composed of a server device having a CPU (Central Processing Unit) 40 , a memory 41 , a storage device 42 , an input device 43 and an output device 44 , and a communication interface 45 .
  • the operation control device 4 is not limited to the configuration shown in FIG.
  • the operation control device 4 may be one server device, or may be composed of a plurality of servers.
  • each device included in the operation control device 4 may be arranged in one device, or may be arranged in a plurality of devices so as to be distributed.
  • Each program and each information that the storage device 42 has may be stored in one storage device, or may be divided and stored in a plurality of storage devices so as to be distributed.
  • the CPU 40 is a processor that controls the operation of the operation control device 4 as a whole.
  • the CPU 40 may be a processing device (processor), such as a GPU (Graphics Processing Unit), FPGA (Field Programmable Gate Array), ASIC (Application Specific Integrated Circuit), or the like.
  • the memory 41 is composed of, for example, a volatile semiconductor memory and used as a work memory for the CPU 40 .
  • the storage device 42 is composed of, for example, a large-capacity non-volatile storage device such as a hard disk device or an SSD.
  • the input device 43 is composed of, for example, a mouse and a keyboard, and is used by the operator (administrator) to input necessary information and instructions to the operation control device 4.
  • the output device 44 is composed of a display device such as a liquid crystal display or an organic EL (Electro Luminescence) display, and is used to display necessary information.
  • the communication interface 45 is a communication device for communicating with each conveying device 3 by a predetermined wireless communication method, and is composed of, for example, a Wi-Fi (registered trademark) wireless LAN card.
  • the storage device 42 of the operation control device 4 includes a device information database 53, a product information database 54, an order information database 55, a map information database 56, a route data database 57, a measurement data database 58, an error Databases such as a log information database 59 and a running record data database 60, and programs such as a data input/output program 50, an error analysis program 51, a measurement data analysis program 52, and a transport device control program (not shown) are stored. .
  • the device information database 53 is a database in which device information of each transport device 3 is stored.
  • the device information database 53 may include device information acquired from each transport device 3 .
  • the product information database 54 contains various information (hereinafter referred to as , which is called product information).
  • the order information database 55 is a database that stores various information (hereinafter referred to as order information) regarding orders from customers, such as identification information and quantity of ordered products.
  • the map information database 56 is a database in which map information similar to the map information database 25 of the conveying device 3 is stored.
  • the route data database 57 is a database that stores information about the movement route of each transport device 3 created by a transport device control program (not shown) of the operation control device 4 based on order information, product information, and map information. be.
  • the measurement data database 58 is a database in which measurement data obtained from each transport device 3 is stored.
  • the transport device control program is a program that manages and controls each transport device 3 , creates a moving route for each transport device 3 , and creates transport instructions for each transport device 3 .
  • error log information database 59 is a database in which error log information obtained from each transport device 3 is stored.
  • travel performance data database 60 is a database in which travel performance data acquired from each transport device 3 is stored.
  • the data input/output program 50 is a program having a function of exchanging necessary commands (including transport instructions) and information with each transport device 3 via the communication interface 45 .
  • the data input/output program 50 stores the device information, measurement data, error log information, and travel performance data acquired from each transport device 3 into a device information database 53, a measurement data database 58, an error log information database 59, or travel performance data, respectively. Each is stored in the database 60 .
  • the data input/output program 50 may also have a function of receiving input data from the input device 43 and transmitting (outputting) output data such as a display screen to the output device 44 .
  • the data input/output program 50 may be composed of a plurality of programs, and the programs may be selectively used according to the communication standard or the like. Details of the error analysis program 51 and the measurement data analysis program 52 will be described later.
  • FIG. 6 shows a specific configuration example of the error log information database 59 held by the operation control device 4.
  • the error log information database 59 of this embodiment includes an error log information identification number column 59X, an error detection date and time column 59A, a conveying apparatus ID column 59B, an error type column 59C, an error code column 59D, an error content column 59E, and an address column 59F.
  • mode column 59G transport shelf ID column 59H, shelf/merchandise weight column 59I, remaining battery capacity column 59J, running state column 59K, running speed column 59L, acceleration column 59M, cumulative travel distance column 59N, cumulative acceleration times column 59O and It has a table structure with a communication status column 59P.
  • one row corresponds to one error log information acquired from one of the conveying devices 3 .
  • a specific error detected by the transport device 3 has a correlation with the state of the floor surface.
  • a certain floor surface state for example, a floor surface with a large degree of damage
  • the occurrence frequency of a specific error is different on different floors. It was found that there are cases where it becomes significantly larger than the surface condition (for example, a normal floor surface, a floor surface with a small degree of damage, etc.).
  • the specific correlation between the error (type and frequency of error) and the state of the floor surface varies depending on, for example, the specific design of the transport device 3, the environmental factors of the warehouse 2 such as the material of the floor surface, and the like. May vary depending on factors.
  • the specific errors that are correlated with the state of the floor are caused by, for example, the transport device 3 traveling on a floor with a certain floor state (for example, a floor with a large degree of damage). (including turning), it may occur due to loads such as shocks and vibrations applied to the conveying device 3 .
  • the load such as shock and vibration applied to the transport device 3 is, for example, the mode of the transport device 3 (acceleration, deceleration, constant speed, turning, stop, etc.), the weight of the shelf and products transported by the transport device 3, the running state (Running, stopping, etc.), running speed, acceleration, etc. may change.
  • the relationship between the load such as shock and vibration applied to the transport device 3 and the specific error may vary depending on the state of the transport device 3 .
  • the cumulative traveling distance and the cumulative number of times of acceleration of the transport device 3 will be described. , etc., as long as it is an index related to resistance to load.
  • the index related to resistance to load may be an index that can be related to the deterioration of the conveying device 3 .
  • Errors detected by the transport device 3 may be caused by other factors regardless of the load such as impact or vibration applied to the transport device 3. Some errors may be caused by a combination of other factors. In order to identify the cause of an error, it may be necessary to comprehensively analyze the situation at the time of error occurrence. (including information indicating the remaining battery level and communication status).
  • error log information identification number column 59X an identification number unique to the error log information within the error log information database 59 given to the corresponding error log information (hereinafter referred to as an error log information identification number). is stored.
  • the transport device ID column 59B stores an identifier (transport device ID) unique to the transport device 3 assigned to the transport device 3 that generated the corresponding error log information
  • the error detection date and time column 59A stores the The time when the transport device 3 detected the corresponding error is stored.
  • error type column 59C stores the corresponding error type (error type). Error types include "measurement data-related” errors related to measurement data, "communication-related” errors related to communication, and "operation-related” errors related to operations.
  • the error code column 59D stores the error code of the corresponding error
  • the error content column 59E stores the specific content of the corresponding error
  • the address column 59F stores the corresponding conveying device 3.
  • the position (address) in the warehouse 2 at the time when the error was detected is stored.
  • the "time at which an error is detected” may be the time at which the error is detected, or the time at which the error occurs (or the time at which the error is presumed to have occurred). good too. This "time at which an error is detected” is sometimes referred to as the time at which an error is detected.
  • errors eg, some communication errors, etc.
  • the time when the error (or the event related to the error) occurred and the time when the error was detected various conditions such as the position of the transport device, the shelf being transported, the running state and mode of the transport device, etc. May change (there is a change in conditions to the extent that it affects the identification of floor conditions).
  • a communication error may be detected when communication is not possible for a predetermined period of time.
  • the time at which an error-related event for example, a state in which communication is not possible
  • the time at which the error is detected may be defined as "the time at which the error is detected.”
  • the operation mode (“acceleration”, “rotation”, “deceleration”, “shelf") of the transport device 3 when a corresponding error occurs in the corresponding transport device 3 (when the error is detected) is displayed. lift”, “lower shelf” or “stop”) are stored.
  • the transport shelf ID column 59H stores the identifier (shelf ID) of the shelf 5 when the corresponding transport device 3 transports the shelf 5 when the error occurs (when the error is detected).
  • the shelf/commodity weight column 59I stores the weight of the entire shelf 5 including the weight of the stored commodity.
  • the remaining battery capacity column 59J stores the remaining capacity of the battery mounted on the transport device 3 at the time when the error occurs (when the error is detected), and the running state column 59K stores the remaining capacity of the transport device at that time. 3 running states (“running” or “stopped”) are stored.
  • the traveling speed column 59L and the acceleration column 59M store the traveling speed and acceleration of the conveying device 3 at the time when each error occurs (when the error is detected).
  • the cumulative travel distance column 59N and the cumulative acceleration count column 59O store the cumulative travel distance and the cumulative acceleration count up to the time when the error of the corresponding transport device 3 occurs (when the error is detected). 59P stores the communication state of the transport device 3 at that time.
  • the error log information database 26 ( FIG. 5 ) held by each transport device 3 basically has the same configuration as the error log information database 59 held by the operation control device 4 . However, the error log information database 26 held by each transport device 3 stores only the error log information generated in that transport device 3 .
  • FIG. 7 shows a specific configuration example of the travel performance data database 60 held by the operation control device 4 .
  • the running record data database 60 has a table structure with a mark detection date column 60A, a carrier ID column 60B, an address column 60C, a carrier shelf ID column 60D, a shelf/product weight column 60E, and a running state column 60F.
  • One row of the travel record data database 60 corresponds to the state of the transport device 3 when the transport device 3 detects one marker 2B.
  • the operation mode of the transport device 3 "accelerate”, "turn”, “decelerate”, "lift the shelf”, “lower the shelf”, or "stop"
  • the travel performance data database 60 is stored.
  • the running record data at that time may be held.
  • the transport device ID of the corresponding transport device 3 is stored in the transport device ID column 60B, and the date and time when the transport device 3 detected the corresponding marker 2B is stored in the mark detection date and time column 60A.
  • the address column 60C stores the address indicated by the marker 2B (that is, the position of the conveying device 3 at that time). If the transport device 3 is transporting the shelf 5 at that time, the shelf ID of the shelf 5 is stored in the transport shelf ID column 60D.
  • the total weight of the shelf 5 and all the products stored on that shelf 5 is stored in the shelf/product weight column 60E.
  • the transport shelf ID column 60D and the shelf/product weight column 60E may store a predetermined value indicating that the shelf 5 is not transported. It does not have to be.
  • the running state column 60F stores the running state of the corresponding transport device 3 when the corresponding marker 2B is detected.
  • the transport device ID of the corresponding transport device 3 is "AGV0005", and "2020/01/20 11:36:15" is changed to " (4, 3)" is detected, and at that time, the transport device 3 is transporting a shelf 5 with a total weight of "400" [kg] and having a transport shelf ID of "SHE0006". It is indicated that the running state of the conveying device 3 at that time was "running".
  • each row of the travel record data database 60 indicates the operation mode (“acceleration”, “turning”, “deceleration”, “lift up shelf”) as the state of the transport device 3 when the transport device 3 detects one marker 2B. , ⁇ lower the shelf'' or ⁇ stop''), the remaining capacity of the battery mounted on the transport device 3, the traveling speed and acceleration of the transport device 3, the communication state of the transport device 3, and the marker 2B of the transport device 3.
  • the accumulated running distance and the number of times of acceleration up to the time of detection may be stored.
  • the travel performance data database 28 ( FIG. 5 ) held by each transport device 3 basically has the same configuration as the travel performance data database 60 held by the operation control device 4 . However, although the travel performance data database 60 held by the operation control device 4 stores the travel performance data of each transport device 3, the travel performance data database 28 held by each transport device 3 is stored in the transport device 3. Only the generated travel performance data is stored.
  • the control device 10 of each transport device 3 changes the timing of detecting the mark and the operation mode ("accelerate”, “turn”, “decelerate”, “lift the shelf”, “lower the shelf” or “stop”).
  • the driving performance data is recorded in the driving performance data database 28 at a predetermined timing such as the timing when the vehicle is detected or the timing when an error is detected.
  • This floor surface state determination function is a function for determining the floor surface state of the warehouse 2 based on measurement data, error log information, and running performance data collected from each transport device 3 .
  • the operation control device 4 periodically or irregularly collects measurement data, error log information, and travel performance data from each transport device 3, and stores them in a measurement data database 58, an error log information database 59, or a travel performance data database 60. accumulated in
  • the operation control device 4 issues a predetermined instruction to analyze the error log information registered in the error log information database 59 to determine the state of the floor surface of the warehouse 2 (hereinafter referred to as an error analysis instruction). ) is input by the user, based on the error code of each error log information accumulated in the error log information database 59, for each section 2A in the warehouse 2, one of the transport devices 3 in that section 2A The number of occurrences and the frequency of occurrence for each type of error that has occurred (hereafter referred to as error type) are counted.
  • error type The number of occurrences and the frequency of occurrence for each type of error that has occurred
  • the operation control device 4 If the number of occurrences or the frequency of occurrence of any error type exceeds a preset threshold for that error type, the operation control device 4 outputs an alert to that effect to the output device 44. The user is notified to that effect by displaying the
  • the operation control device 4 collects the total result and the measurement data collected from each transport device 3. , the degree of damage for each section 2A of the floor is determined based on the error log information and the actual running data. Then, the operation control device 4 generates a floor state determination result screen 70 described later with reference to FIG. 8 based on this determination result, and displays the generated floor state determination result screen 70 on the output device 44.
  • the error analysis program 51 is a program that has the function of analyzing each error log information stored in the error log information database 59 and determining the state of the floor surface of the warehouse 2 for each section 2A.
  • the error analysis program 51 notifies the user of an alert as described above based on the determination result of such determination, and displays a floor state determination result screen 70 (FIG. 8) on the output device 44, which will be described later. Alerts may notify external parties for external maintenance in addition to the user.
  • the measurement data analysis program 52 also analyzes the image data (image data, moving image data, etc.) from each transport device 3 stored in the measurement data database 58, and determines the presence or absence of color change and unevenness of the floor surface. It is a program having a function of displaying the judgment result on the output device 44. FIG.
  • the analysis and determination by the measurement data analysis program 52 are performed independently of the error analysis program 51, and the determination result is not used for the determination of the floor state by the error analysis program 51.
  • the error analysis program 51 may also use the analysis and determination results of the measurement data analysis program 52 to determine the floor condition.
  • the accuracy of the determination is improved.
  • even damage to the floor that cannot be detected by the measurement data analysis program 52 can be detected by the error analysis program 51 if it causes an error.
  • the measurement data analysis program 52 can detect even damage that does not cause an error (for example, small damage). In this way, the analysis and determination of the floor state by the error analysis program 51 may be performed independently. The results may also be used for comprehensive determination.
  • FIG. 8 shows a configuration example of the above-described floor condition determination result screen 70 displayed on the output device 44 by the error analysis program 51.
  • the floor condition determination result screen 70 comprises an account information display area 71 , a conveying device condition display area 72 , a floor damage situation visualization map display area 73 and an error data summary display area 74 .
  • the account information display area 71 the user name and user ID of the user who is logging in to the operation control device 4 at that time, the date and time when the user logged in to the operation control device 4 ("login date and time"), and finally The date and time when the error log information was updated (“data update date and time”) are displayed respectively.
  • the transport device status display area 72 the transport device IDs and statuses of all the transport devices 4 present in the warehouse 2 at that time are displayed.
  • the information of the transporting device status displayed in the transporting device status display area 72 may be configured based on the device information of the device information database 53 .
  • the floor damage status visualization map 75 is a map that visualizes the damage status of the floor surface of the warehouse 2, and has a plurality of areas 75A corresponding to the respective sections 2A of the floor surface. Then, the necessary areas 75A out of these areas 75A are indicated by images (for example, patterns or marks, coloring with colors or densities, etc.) according to the degree of damage of the sections 2A of the floor corresponding to the areas 75A.
  • the degree of damage to the floor surface is divided into “repair required” ("area requiring repair” in FIG. 8), which is severe enough to require repair, and “Large” ("Severe damage” in Figure 8), “Medium” (“Medium damage” in Figure 8) less than “Large” damage, and “Medium” damage It is divided into five stages: “small” (“small damage” in FIG. 8), and "normal state” in which the damage has not progressed to "small”.
  • the floor damage visualization map 75 the area 75A in which the degree of damage in the section 2A corresponding to the floor is "normal” is neither colored nor patterned, and the degree of damage in the section 2A corresponding to the floor is "small”.
  • , , , , , , , , or are indicated by colors, densities, and patterns according to their degrees of damage.
  • error data summary display area 74 information on errors that have occurred in the transport device 3 within the warehouse 2 is displayed in a table format. Specifically, for each error, the serial number ("#") given to the error, the position ("address") of the section 2A on the floor where the error occurred, and the error type ("error type”) ), the number of times an error of that error type has been detected in that section 2A (“error detection count”), a predetermined threshold for that error (“error detection count threshold”), and error log information for that error.
  • error detection count the number of times an error of that error type has been detected in that section 2A
  • error detection count threshold a predetermined threshold for that error
  • error log information for that error.
  • the error information displayed in the error data summary display area 74 can be scrolled by operating the scroll bar 74A.
  • the error information in the error data summary display area 74 may be sorted or filtered by error detection date/time, error type, error code, address, degree of damage, and the like.
  • the error information displayed in the error data summary display area 74 may be configured based on the error log information in the error log information database 59 .
  • the display screen can be switched to an error data detail screen 80 as shown in FIG.
  • This error data detail screen 80 displays the details of the error selected by this click. Since the details of the error displayed at this time are the same as the content of the error log information of the error registered in the error log information database 59, description thereof will be omitted here.
  • the operation control device 4 generates an error data detail screen 80 based on the error log information in the error log information database 59 and displays the generated error data detail screen 80 on the output device 44 .
  • FIG. 10 shows a series of processes of the first error analysis process executed by the error analysis program 51 of the operation control device 4 when the user inputs the error analysis instruction.
  • the first error analysis process may be executed periodically or irregularly, as well as when an error analysis instruction is input by the user.
  • the error analysis program 51 counts the number of error occurrences in the most recent predetermined period based on the error log information database 59, and when the number exceeds a predetermined threshold, the first error analysis process may be executed. good.
  • the error analysis program 51 starts the first error analysis process shown in FIG. (S1).
  • the range of error log information read out from the error log information database 59 by the error analysis program 51 is all the error log information registered in the error log information database 59. Only the error log information for the most recent predetermined period (for example, the most recent year) may be included.
  • the error analysis program 51 aggregates the number of occurrences and the frequency of occurrence for each error code (for each error type) in each section 2A of the floor of the warehouse 2 (S2).
  • the error analysis program 51 stores the address of the section 2A in the address column 59F of the error log information database 59 described above with reference to FIG. extract all entries (rows) that The error analysis program 51 classifies the extracted entries by the error code stored in the error code column 59D, thereby calculating the number of occurrences of each error code in each section 2A.
  • the error analysis program 51 calculates the "occurrence frequency of each error code" in each section 2A based on the number of occurrences of each error code in each section 2A thus obtained.
  • the number of occurrences of each error code in each section 2A is related to the number of times the section 2A has been passed. For example, if the number of passages through a section 2A is zero, the number of error occurrences in the section 2A is zero. If a certain section 2A has a large degree of damage, and an error is likely to occur when the conveying device 3 passes through, the number of occurrences of each error code increases as the number of passages through the section 2A increases. there is a possibility.
  • the number of occurrences of each error code in each section 2A is related to the aggregation period of the error log information. For example, if the period is zero, the number of error occurrences in each section 2A is zero. Basically, the longer the period, the higher the number of times of transport by the transport device 3 during the period, and the more likely the number of passes through each section 2A. Since the number of occurrences of each error code in each section 2A is related to the number of times the section 2A has been passed, it can be said that there is a correlation with the collection period of the error log information.
  • the "frequency of occurrence of each error code" in each section 2A is a value indicating the frequency of occurrence of each error code when passing through each section 2A. It may be a ratio of the number of occurrences for each code.
  • the error analysis program 51 calculates, for example, the number of occurrences of each error code in each section 2A during the period of the error log information read in step S1 (month, week, or number of days) to calculate the frequency of occurrence of each error code in each section 2A.
  • the “frequency of occurrence of each error code” in each section 2A may be the number of occurrences in the most recent predetermined period (for example, the most recent month or the most recent week) registered in the error log information database 59.
  • the error analysis program 51 compares the number of occurrences of each error code in each section 2A with a threshold set in advance for each error code (more precisely, each error type corresponding to each error code), and It is determined whether or not there is a section 2A in which the number of occurrences of any error code exceeds a threshold set for that error code (hereinafter referred to as an alert threshold) (S3).
  • the error analysis program 51 When the error analysis program 51 obtains a positive result in this determination, it generates an alert containing all the addresses of the section 2A in which the number of occurrences of any error code exceeds the alert threshold set for that error code.
  • the alert is displayed on the output device 44 and/or sent to the user's e-mail address registered in advance to notify the user (S4), and then the process proceeds to step S5.
  • step S5 based on the number of occurrences and the frequency of occurrence of each error code in each section 2A calculated in step S2, damage degree determination processing is executed to determine the degree of damage for each section 2A (S5).
  • the error analysis program 51 After that, the error analysis program 51 generates the floor state determination result screen 70 (FIG. 8) according to the determination result of step S5, and outputs the generated floor state determination result screen 70 to the output device 44 (FIG. 5). ) (S6).
  • the error analysis program 51 converts each area 75A in FIG. A floor damage situation visualization map 75 shown is generated.
  • the error analysis program 51 displays the generated floor damage situation visualization map 75, necessary information out of the error log information acquired in step S1, and other necessary information on the floor state determination result screen 70 ( FIG. 8).
  • the error analysis program 51 supplies the screen data of the floor condition determination result screen 70 thus generated to the output device 44 to display the floor condition determination result screen 70 on the output device 44 .
  • the error analysis program 51 then ends this first error analysis process.
  • S1, S2, S5, and S6 may be executed in order without executing S3 and S4 in the first error analysis process.
  • the floor condition determination result screen 70 of S6 is displayed on the output device 44 so that the user can grasp the floor damage status.
  • S1, S2, S3, S4, and S6, for example may be executed in order without executing S5.
  • the error analysis program 51 identifies all the addresses of the section 2A that exceed the alert threshold value as abnormal locations (for example, locations requiring repair or large damage, etc.) based on the determination result of S3.
  • a floor damage status visualization map 75 may be generated and the floor surface condition determination result screen 70 may be displayed on the output device 44 .
  • the frequency of error code occurrence may be used instead of the number of error code occurrences.
  • the error analysis program 51 compares the frequency of occurrence of each error code in each section 2A with threshold values set in advance for each error code (more precisely, each error type corresponding to each error code). By comparing, it may be determined whether or not there is a section 2A in which the occurrence frequency of any error code exceeds the threshold (alert threshold) set for that error code.
  • FIG. 11 shows specific processing contents of the error analysis program 51 in step S5 of the first error analysis process.
  • the error analysis program 51 starts the damage degree determination process shown in FIG. selects one unprocessed section 2A (S10).
  • the error analysis program 51 causes the partition (hereinafter referred to as the selected partition) 2A selected in step S10 to correspond to each error code tabulated in step S2 (FIG. 10) of the first error analysis process.
  • the total number of occurrences of errors that is, the total number of errors that occurred in any of the transport devices 3 in the selected section 2A, is the criterion for determining that there is no damage to the floor surface or there is a possibility that there is no damage to the floor surface. (S11).
  • the reason why the total number of error occurrences is included in the criteria for judging the degree of damage to the selected section 2A is that the sensor 14 (FIG. 5) mounted on each transfer device 3 detects the state of the floor surface. This is because, since it is not a dedicated sensor, it is possible to improve the accuracy of determination by determining the degree of damage to the selected section 2A based on a plurality of errors. However, this step S11 may be omitted.
  • step S11 may be that the total number of occurrences of the error exceeds the threshold for the total number of errors. By doing so, it is possible to reduce the influence of errors caused by the individual transport devices 3 and improve the determination accuracy.
  • step S11 judges that there is or is likely to be damage to the floor above a certain level, and , one error code that has not been processed after step S13 is selected (S12).
  • the error code selected at this time will be referred to as a selected error code.
  • the error analysis program 51 calculates the error occurrence count based on the number of occurrences of the error corresponding to the selected error code in the selected section 2A, which is obtained by counting in step S2 of the first error analysis process.
  • the damage degree of the selected section 2A is determined (S13).
  • the error analysis program 51 includes an upper limit threshold for the number of occurrences of errors corresponding to each error code for determining the degree of damage to the floor surface as a "normal state" (hereinafter referred to as a first upper limit threshold for the number of occurrences).
  • the upper limit threshold of the number of occurrences of errors corresponding to each error code for determining the degree of damage to the floor surface as "small” (hereinafter referred to as the second upper limit threshold of the number of occurrences), and the floor
  • the upper limit threshold for the number of occurrences of errors corresponding to each error code for determining the degree of damage to the surface as "medium” (hereinafter referred to as the third upper limit threshold for the number of occurrences), and the degree of damage to the floor surface as "
  • An upper limit threshold for the number of occurrences of an error corresponding to each error code for determining "large” (hereinafter referred to as a fourth upper limit threshold for the number of occurrences) is given in advance. It should be noted that these first to fourth upper limit values for the number of occurrences may be set for each section 2A of the floor surface.
  • the error analysis program 51 compares the number of error occurrences corresponding to the selected error code acquired in step S2 of the first error analysis process with the corresponding first to fourth occurrence number upper limit thresholds, respectively.
  • the degree of damage to the selected section 2A is determined from the number of occurrences of .
  • the error analysis program 51 determines that the degree of damage of the selected section 2A is "normal” when the number of occurrences of the error corresponding to the selected error code is equal to or less than the first upper limit threshold for the number of occurrences. If it is greater than the first upper limit threshold for the number of occurrences and equal to or less than the second upper limit threshold for the number of occurrences, the degree of damage to the selected section 2A is determined to be "small", and the number of occurrences is greater than the second upper limit threshold for the number of occurrences. is greater than or equal to the third upper limit threshold for the number of occurrences, the degree of damage to the selected section 2A is judged to be "medium".
  • the error analysis program 51 determines that the degree of damage of the selected section 2A is "large" when the number of occurrences is greater than the third upper limit threshold for the number of occurrences and equal to or less than the fourth upper limit threshold for the number of occurrences. If the number of occurrences is greater than the fourth upper limit threshold for the number of occurrences, the degree of damage to the selected section 2A is determined to be "repair required".
  • the degree of damage is determined to be "normal”, there is no damage beyond a certain level on the floor, or there is no possibility of damage (including cases where the damage is small enough not to cause an error). If the degree of damage is judged to be “small”, “medium” or “large”, it means that the floor surface has or is likely to be damaged beyond a certain level. In this case, the degree of damage is greater in “medium” than in “small” and greater in “large” than in “medium”. A determination that the degree of damage is “repair required” means that the damage to the floor surface is severe and that portion needs to be repaired. The same applies to the following.
  • the error analysis program 51 based on the frequency of occurrence of the error corresponding to the selected error code in the selected section 2A, which is obtained in step S2 of the first error analysis process, is viewed from the error occurrence frequency.
  • the damage degree of the selected section 2A is determined (S14).
  • the error analysis program 51 includes upper thresholds for the frequency of occurrence of errors corresponding to each error code for determining that the degree of damage to the floor is in a "normal state” ), the upper limit threshold of the frequency of occurrence of errors corresponding to each error code for determining the degree of damage to the floor surface as "small” (hereinafter referred to as the second upper limit threshold of occurrence frequency), and the floor
  • the upper limit threshold of the frequency of occurrence of errors corresponding to each error code for determining the degree of damage to the surface as "medium” hereinafter referred to as the third upper limit threshold of occurrence frequency
  • An upper limit threshold of the frequency of occurrence of errors corresponding to each error code (hereinafter referred to as a fourth upper limit threshold of occurrence frequency) for determining "large” is given in advance.
  • the first to fourth occurrence frequency upper limit values may be set for each section 2A of the floor surface.
  • the error analysis program 51 compares the error occurrence frequency corresponding to the selected error code acquired in step S2 of the first error analysis process with the corresponding first to fourth occurrence frequency upper limit thresholds, respectively.
  • the degree of damage to the selected section 2A is determined from the frequency of occurrence of .
  • the error analysis program 51 determines that the degree of damage of the selected section 2A is "normal" If the occurrence frequency is greater than the first occurrence frequency upper limit threshold and equal to or less than the second occurrence frequency upper limit threshold, the degree of damage to the selected section 2A is determined to be "small".
  • the error analysis program 51 determines that the degree of damage of the selected section 2A is "medium” when the frequency of occurrence is greater than the second upper limit threshold of occurrence frequency and equal to or less than the third upper limit threshold of occurrence frequency.
  • the degree of damage of the selected section 2A is determined to be "large”.
  • the error analysis program 51 determines that the degree of damage of the selected partition 2A is "repair required" when the occurrence frequency is greater than the fourth occurrence frequency upper limit threshold.
  • the error analysis program 51 determines whether or not the processes of steps S13 to S15 have been executed for all error codes of each error that occurred in the selected section 2A (S15).
  • step S12 If the error analysis program 51 obtains a negative result in this determination, it returns to step S, and thereafter, while sequentially switching the error code selected in step S12 to other error codes that have not been processed in steps S13 and subsequent steps, steps S12 to S15 are executed. repeat the process.
  • the damage degree of the selected section 2A based on the number of occurrences of each error occurring in the selected section 2A and the damage degree of the selected section 2A based on the frequency of occurrence of each error occurring in the selected section 2A are determined. be.
  • the error analysis program 51 eventually determines the degree of damage to the selected section 2A from the number of occurrences of all types of errors that have occurred in the selected section 2A, and the selected section from the frequency of occurrence of the errors. If a positive result is obtained in step S by obtaining the determination result of the damage degree of 2A, the final determination result of the damage degree of the selected section 2A is determined based on all the determination results of steps S12 to S15. (S16).
  • Various methods can be applied as a method for determining the final determination result of the damage degree of the selected section 2A. For example, among all the determination results obtained by the repeated processing of steps S12 to S15, the determination result with the highest degree of damage may be used as the final determination result of the degree of damage of the selected section 2A.
  • the judgment result of the degree of damage to the selected section 2A from the number of occurrences of specific types of errors that are likely to occur due to vibrations and shocks caused by the floor surface state, and the damage to the selected section 2A from the frequency of occurrence of the errors may be used as the final determination result of the degree of damage of the selected section 2A. By doing so, the accuracy of the determination result of the degree of damage can be improved.
  • the "specific type of error" may be of not only one type but also multiple types.
  • the error analysis program 51 also uses the analysis and judgment results of the measurement data analysis program 52 when determining the final judgment result of the damage degree of the selected section 2A to determine the floor surface state (damage degree).
  • the measurement data analysis program 52 analyzes the image data (image data, moving image data, etc.) from each conveying device 3 stored in the measurement data database 58, and determines the presence or absence of color change, unevenness, etc. of the floor surface. The degree of damage may be determined from
  • the error analysis program 51 determines whether or not the degree of damage has been determined for all sections 2A of the floor (S17). If the error analysis program 51 obtains a negative result in this determination, it returns to step S10, and after that, while sequentially switching the partition 2A selected in step S10 to other partitions 2A that have not been processed in step S11 and subsequent steps, The process of step S17 is repeated. Through this iterative process, the determination result of the degree of damage of all sections 2A of the floor surface in the warehouse 2 is determined.
  • step S17 when the error analysis program 51 obtains a positive result in step S17 by finishing determining the damage degree judgment results for all of the sections 2A, it terminates this damage degree judgment processing and performs the first error analysis shown in FIG. Return to processing.
  • the error analysis program 51 may record the damage degree determination results for all sections 2A in the map information database 56. Further, the final determination result of the damage degree of the selected section 2A in S16 is determined based on the information of the damage degree of the selected section 2A in the past damage degree determination results with reference to the map information database 56. may The error analysis program 51 may, for example, use the determination result with the greater degree of damage as the final determination result of the degree of damage of the selected section 2A. For example, regarding the section 2A that was determined to have a large degree of damage in the past, when the operation control device 4 performs travel control such as preventing the transport device 3 from passing through the section 2A, the number of error occurrences in the most recent predetermined period can become zero.
  • the operation control device 4 for example, the user or the person concerned with the maintenance inputs from the input device 43.
  • the information of the section 2A and the maintenance completion date and time are acquired.
  • the error analysis program 51 aggregates the number of occurrences and frequency of errors used in the error analysis process for judging the state of the floor, targeting errors occurring after the maintenance completion date and time for the section 2A where maintenance has been performed.
  • the section 2A that has undergone maintenance may be updated to a normal state.
  • the operation control device 4 acquires error log information from each transport device 3, and based on the acquired error log information to determine the state of the floor surface in the warehouse 2. Therefore, it is possible to realize an information processing system, an information processing apparatus, and a method that can determine a floor state that can cause an error and improve the reliability of the transport system. This enables the user to operate and maintain the system according to the state of the floor determined by the operation control device 4 . As a result, according to the transport system 1, it is possible to realize a highly reliable transport system that can suppress the occurrence of errors in the transport device 3 due to the state of the floor surface.
  • reference numeral 90 denotes an information processing system according to the second embodiment
  • reference numeral 91 denotes an information processing apparatus according to the second embodiment
  • An information processing system 90 (hereinafter referred to as a transport system 90) according to the present embodiment includes a second error analysis program 92 executed by an information processing device 91 (hereinafter referred to as an operation control device 91).
  • the error analysis process is partially different from the first error analysis process.
  • the transport system 90 is configured in the same manner as the transport system 1 of the first embodiment and can operate in the same manner.
  • FIG. 12 shows the flow of the second error analysis process executed by the error analysis program 92 of this embodiment when the user inputs the error analysis instruction to the operation control device 91 .
  • the error analysis program 92 starts the second error analysis process shown in FIG. 12.
  • the error log information registered in the error log information database 59 (FIG. 6) (S20).
  • the second error analysis process may be executed periodically or irregularly, as well as when an error analysis instruction is input by the user.
  • the error analysis program 92 counts the number of error occurrences in the most recent predetermined period based on the error log information database 59, and when the number exceeds a predetermined threshold, the second error analysis process may be executed. good.
  • the error analysis program 92 of the present embodiment excludes error log information of errors caused by causes other than the state of the floor from the error log information registered in the error log information database 59, and leaves the remaining error log information. (In other words, only the error log information of errors that can be caused by the floor surface condition is acquired).
  • the error analysis program 92 pre-records error information (for example, one or more error codes) that may be caused by the floor condition in each transport device 3 in the error log information database, and in S20 Get error log information about your code.
  • the range of the period of the error log information read out from the error log information database 59 by the error analysis program 51 is the entire period registered in the error log information database 59. It may be only for the most recent predetermined period (for example, the most recent one year).
  • the error analysis program 92 monitors the state (normal or abnormal) of each transport device 3 based on measurement data acquired from each transport device 3 accumulated in the measurement data database 58 . For example, if the value of some or all of the measurement data acquired from a certain transport device 3 continues to exceed a preset range, the transport device 3 is determined to be in an abnormal state, All or part of the error log information collected from the transport device 3 (for example, error log information collected from the transport device 3 after the timing at which the transport device 3 is determined to be abnormal) is acquired in step S20. Exclude from error log information.
  • the transport device 3 when an error is detected in the section 2A where the transport device 3 is located, under the same conditions as the running conditions when the error was detected (for example, the transport state of the shelf, the running direction, the running speed, the acceleration, etc.), other multiple 1 does not detect an error in the same section 2A and continues to detect an error even after the transfer apparatus 3 moves in the section 2A. If the transport device 3 is out of order and an error is detected even when the transport device 3 runs on a normal floor surface, such error log information is excluded, and the number and frequency of error occurrences are calculated. Aggregation is preferable.
  • the error analysis program 92 refers to the error log information database 59 and monitors the number of error log information acquired from each transport device 3, and determines the total number or frequency of error log information, or the error log of a specific error. For a transport device 3 whose total number or frequency of information exceeds a preset threshold, it is determined that the transport device 3 is in an abnormal state, and all or part of the error log information collected from the transport device 3 ( For example, the error log information of an error whose number of error log information exceeds a threshold value may be excluded from the error log information acquired in step S20.
  • the error analysis program 92 monitors the error log information for each conveying device 3, and determines the accumulated number of mode switching stored in the mode column 59G of the error log information and the running state stored in the running state column 59K. Cumulative number of switching, cumulative number of running speed switching stored in the running speed column 59L, cumulative number of acceleration switching stored in the acceleration column 59M, cumulative running distance stored in the cumulative running distance column 59N , and when any of the indexes related to the load of the conveying device 3, such as the accumulated number of accelerations stored in the accumulated number of accelerations column 59O, exceeds the preset threshold value for each of these indexes (the If the load exceeds a predetermined standard), all or part of the error log information acquired from the transport device 3 (for example, error log information related to the load after the index exceeds the threshold) is sent to step S20. may be excluded from the error log information acquired by .
  • the error log information to be excluded from the error log information acquired in step S20 may be determined by comprehensively judging the value of each index related to the load of the transport device 3.
  • the value of each index may be scored, and determination may be made based on whether or not the total value of the scores exceeds the threshold.
  • the error analysis program 92 executes the processes of steps S21 to S25 in the same manner as steps S2 to S6 of the first embodiment described above with reference to FIG. (FIG. 8) is displayed on the output device 44, after which the second error analysis process is terminated.
  • the transport system 90 from the error log information registered in the error log information database 59, error log information for errors caused by causes other than the state of the floor surface is excluded. Since the floor condition in the warehouse 2 is determined using the error log information of errors that may be caused by the floor condition, the floor condition can be determined with higher accuracy than the transport system 1 of the first embodiment. can judge. The reliability of the transport system 90 can be further improved as compared with the transport system 1 of the first embodiment.
  • reference numeral 100 denotes an information processing system according to a third embodiment.
  • This information processing system 100 (hereinafter referred to as a transport system 100) includes an information processing device 101 (hereinafter referred to as an operation control device 101), as shown in FIG. ) stores an error cause estimation program 102, and the error cause estimation program 102 performs error cause estimation processing, which is different from the transport system 1 of the first embodiment.
  • the third error analysis process executed by the error analysis program 103 is partially different from the first error analysis process. Except for these points, the transport system 100 is configured in the same manner as the transport system 1 of the first embodiment and can operate in the same manner.
  • the error cause estimating program 102 determines the location of the corresponding error, whether the transport device 3 is running, whether the transport device 3 is transporting the shelf 5, and so on. status of the transport device 3, the total weight of the shelf 5 and the product when the transport device 3 is transporting the shelf 5, information on the environment such as the communication state in the warehouse 2, and other compartments It is a program having a function of estimating the cause of the corresponding error based on at least one information of the error occurrence status in 2A and the error occurrence status in the other conveying device 3 .
  • the error cause estimating program 102 for each error log information registered in the error log information database 59 (FIG. 6), based on the error log information, determines whether the corresponding error is caused by the floor surface of the warehouse 2, the transport device, and so on. 3 itself, the total weight of the shelf 5 and the products, or the environment other than the floor surface in the warehouse 2.
  • the error cause estimation program 102 then notifies the error analysis program 103 of the estimated error cause.
  • learned artificial intelligence (AI) can be applied.
  • the error analysis program 103 determines that the cause of the error is the floor surface of the warehouse 2 by the error cause estimation program 102 among the error log information registered in the error log information database 59.
  • the state of each section of the floor surface of the warehouse 2 is determined based only on the error log information estimated to be .
  • FIG. 14 shows the flow of error cause estimation processing executed by the error cause estimation program 102 when the above error analysis instruction is input from the user to the operation control device 101 .
  • the error cause estimating program 102 starts the error cause estimating process shown in FIG.
  • One piece of error log information unprocessed after step S31 is selected (S30).
  • the error cause estimation process may be executed periodically or irregularly, as well as when an error analysis instruction is input by the user.
  • the error cause estimation program 102 (or the error analysis program 103) counts the number of error occurrences in the most recent predetermined period based on the error log information database 59, and when the number exceeds a predetermined threshold, error cause estimation processing may be performed.
  • the error cause estimation program 102 estimates the cause of the error corresponding to the error log information selected in step S30 (hereinafter referred to as selected error log information) (S31).
  • selected error log information the error log information selected in step S30
  • the error analysis program 103 together with the identification number of the selected error log information (error log information identification number) (S32).
  • the error cause estimation program 102 determines whether or not the error causes have been estimated for all the error log information registered in the error log information database 59 (S33). If the error cause estimation program 102 obtains a negative result in this determination, it returns to step S30. The processing from S30 to step S33 is repeated.
  • the error cause estimation program 102 When the error cause estimation program 102 eventually finishes estimating the error cause for all the error log information registered in the error log information database 59 and obtains a positive result in step S33, it terminates this error cause estimation process. .
  • FIG. 15 shows the flow of the third error analysis process executed by the error analysis program 103 of this embodiment.
  • the error analysis program 103 is notified of the estimation result of the error cause of the error corresponding to all the error log information registered in the error log information database 59 (FIG. 6)
  • the error cause estimation program 102 performs error cause estimation.
  • the process (FIG. 14) ends, the third error analysis process shown in FIG. 15 is started.
  • the error analysis program 103 first obtains the estimation that the corresponding error is caused by the floor surface of the warehouse 2 by the error cause estimation program 102 among all the error log information registered in the error log information database 59. Only the error log information obtained is acquired by reading all of it from the error log information database 59 (S40).
  • the error analysis program 103 processes steps S41 to S45 in the same way as steps S2 to S6 in FIG. 10, and then ends this third error analysis process.
  • the floor condition in the warehouse 2 is determined using only the error log information that is estimated to be caused by the floor condition of the warehouse 2. Therefore, compared with the transport system 1 of the first embodiment, the state of the floor surface can be determined with higher accuracy. Compared to the transport system 1 of the first embodiment, the reliability of the transport system 100 can be further improved.
  • FIG. It is a conceptual diagram showing.
  • the information processing devices 4, 91, and 101 of the information processing systems 1, 90, and 100 acquire, from one or a plurality of transport devices 3, a plurality of pieces of error information including detection locations of errors occurring in the transport devices 3.
  • An acquisition device and an error analysis device that analyzes a plurality of pieces of error information acquired by the error acquisition device and determines the state of the floor surface at the location where the error is detected.
  • the determination result of the floor state is displayed as a floor state determination result screen 70 on the output device 44, for example.
  • the information processing devices 4, 91, and 101 include a storage device 42 for recording a plurality of error information, including detection locations of errors occurring in one or a plurality of transport devices 3, and analyzing the plurality of error information, and an error analysis device that determines the state of the floor surface at the error detection location.
  • the detection location of the error occurring in the transport device 3 is, for example, the position of the transport device 3 at the time the transport device 3 detects the error. (for example, the address of the section 2A, etc.).
  • the error information is, for example, error log information.
  • the data acquisition device is a communication device such as the communication interface 45, for example.
  • the data acquisition device includes, for example, a communication interface 45 , a CPU 40 , a memory 41 , a storage device 42 , etc., and executes a data input/output program 50 to communicate with each conveying device 3 via the communication interface 45 . Commands and information can be exchanged.
  • the state of the floor surface at the error detection location is, for example, the degree of damage to the floor surface at the error detection location.
  • the error analysis device is, for example, a processing device that determines the state of the floor surface at the error detection location based on the plurality of error information.
  • the error analysis device may be realized by executing error analysis programs 51, 92, and 103, including, for example, a CPU 40, a memory 41, a storage device 42, and the like.
  • the error analysis device may execute the error cause estimation program 102, for example.
  • the state of the floor surface of the transportation system is visualized in real time and provided to the user.
  • the state of the floor floor surface condition
  • countermeasures for example, travel control, etc.
  • floor maintenance according to the degree of damage
  • the reliability of the transport system (information processing system) 1, 90, 100 is improved. can improve.
  • the error analysis device determines the state of the floor surface where the error is detected more than a predetermined number of times, which is at least two times, as having a certain level of damage or the possibility of damage. I judge. If more than a predetermined number of errors are detected at the same location, the error may be due to floor damage at that location. Judgment of the floor surface state based on a plurality of errors occurring at the location can improve the accuracy of floor surface state determination, rather than judging the floor surface state based on a single error that has occurred at the location.
  • the error information includes information about the type of error that occurred in the transport device 3.
  • the error analysis device determines the state of the floor surface at a location where more errors of at least one error type are detected than a predetermined number of times (predetermined threshold value) set for at least one error type. Determine that there is damage or that there is a possibility of damage.
  • the type of error may be an error code, for example.
  • Errors detected by the transport device 3 include errors caused by other factors, regardless of the load such as impact or vibration applied to the transport device 3 or the state of the floor surface.
  • certain types of errors detected in the transport device 3 are correlated with floor conditions. Therefore, by determining the state of the floor at a place where a specific type of error correlated with the state of the floor is detected more than a predetermined number of times as being damaged or possibly being damaged, It is possible to improve the determination accuracy of the state of the surface.
  • a plurality of transport devices 3 may exist.
  • the error analysis device determines the state of the floor surface at the location where the error occurred in each of the transport devices 3 is detected based on the error information acquired from the transport devices 3 .
  • an error detected only in a certain transport device 3 may be caused by an abnormality (including failure) of the transport device 3 regardless of the state of the floor surface. Therefore, if the state of the floor surface at the location is determined based on the errors detected by the different transport devices 3 at the same location, the effect of the error caused by the abnormality of the individual transport device 3 is reduced, and the floor surface is It is possible to improve the determination accuracy of the state of
  • the data acquisition device acquires transport information indicating whether or not the transport device 3 was transporting an object when the error was detected.
  • the error analysis device specifies error information of an error detected while the transport device 3 was transporting the product, and based on the specified error information, determines the location where the error was detected. to determine the condition of the floor surface.
  • the data acquisition device acquires transport information including information on the weight of the transported object transported by the transport device 3 when the error is detected.
  • the error analysis device identifies error information of an error detected when the weight of the product conveyed by the conveying device 3 exceeds a predetermined weight based on the conveying information, and identifies the error based on the identified error information. Determine the state of the floor surface at the detected location.
  • the transport information includes, for example, transport shelf ID 59H, shelf/product weight 59I information, mode 59G information, running state 59K information, and running speed 59L information of the error log information (see FIG. 6) related to the error. It may be part or all.
  • the error log information shown in FIG. This indicates that the conveying device 3 is not conveying the article when the error is detected.
  • the error log information shown in FIG. 6 in the error log information of the error, when the transport shelf ID is recorded in the information of the transport shelf ID 59H, or the weight is recorded in the information of the shelf/product weight 59I. In some cases, it indicates that the transport device 3 is transporting an object when the error is detected.
  • the transport device 3 may be transporting the article when the error is detected.
  • the information on the weight of the product conveyed by the conveying device 3 when an error is detected may be the information on the weight recorded in the information of "shelf/merchandise weight 59I" in the error log information of the error.
  • the travel performance at the date and time closest to the error detection date and time (or the date and time immediately before the error detection date and time) Information such as the transport shelf ID 60D, the shelf/merchandise weight 60E, and the running state 60F in the data may be used.
  • At least some of the specific errors that are correlated with the state of the floor are caused, for example, by the transport device 3 traveling (including turning) on a floor in a certain state (for example, a floor with a large degree of damage). ), this may occur when the load such as shock or vibration applied to the conveying device 3 is large.
  • the load such as shock and vibration applied to the conveying device 3 is greater when the conveying device 3 is conveying the conveyed object than when the conveying device 3 is not conveying the conveyed object. can increase due to the influence of
  • the load such as shock and vibration applied to the conveying device 3 may increase as the weight of the conveyed object increases.
  • an error detected when the transport device 3 is transporting an object or when the weight of the transport object transported by the transport device 3 exceeds a predetermined weight (predetermined threshold value) depends on the state of the floor surface. It can be said that the correlation becomes higher, and the accuracy of determining the state of the floor surface can be improved by using the error information.
  • the data acquisition device acquires transport information indicating whether or not the transport device 3 was transporting an object when the error was detected. Based on the transport information and the error information, the error analysis device determines the frequency of occurrence of errors (or the number of occurrences of errors) detected while the transport device 3 was transporting the product. If the frequency of occurrence of errors (or the number of occurrences of errors) detected while not transporting the Determine that there is. In addition, when the difference in the frequency of occurrence (or the number of occurrences) is greater than a predetermined threshold, the error analysis device determines the state of the floor surface where the error is detected to be damaged at a certain level or more, or possibly damaged. may be determined to be viable. This determination may be performed for the same transport device 3, or may be performed for a different transport device 3 as well.
  • the data acquisition device acquires transport information including information on the weight of the transported object transported by the transport device 3 when the error is detected. Based on the transportation information and the error information, the error analysis device determines the frequency of occurrence (or the number of occurrences) of errors detected when the transportation device 3 is transporting an object weighing more than the first weight. When the frequency of occurrence (or the number of occurrences) of errors detected when the conveying device 3 is in the process of conveying an object weighing less than the second weight or when the conveying device 3 is not conveying an object is greater than , the state of the floor surface where the error is detected is determined to be damaged to a certain extent or possibly damaged.
  • the error analysis device determines the state of the floor surface where the error is detected to be damaged at a certain level or more, or possibly damaged. may be determined to be viable.
  • the first weight predetermined first weight threshold
  • the second weight predetermined second weight threshold
  • the specific errors correlated with the state of the floor are caused by, for example, the transport device 3 traveling on a floor with a certain floor state (for example, a floor with a large degree of damage). In the case of (including turning), this may occur when the load such as impact or vibration applied to the conveying device 3 is large. Therefore, the frequency of occurrence of errors (or the number of occurrences of errors) detected while the conveying device 3 is conveying an object is equal to the frequency of occurrence of errors detected while the conveying device 3 is not conveying an object.
  • the frequency of occurrence (or the number of occurrences) of an error detected while the transport device 3 is transporting an object weighing more than the first weight is the second weight or less.
  • the frequency of occurrence (or the number of occurrences) of errors detected during transport of the transported product or when the transport device 3 is not transporting the transported product is greater than the frequency of occurrence (or the number of occurrences), or the difference in the frequency of occurrence (or the number of occurrences) is greater than a predetermined threshold, it is more likely that it is a specific error that correlates with floor conditions. Therefore, in these cases, it is possible to improve the accuracy of determining the state of the floor surface by determining that the state of the floor surface where the error is detected has or is likely to be damaged to a certain degree or more.
  • the information processing systems 1 , 90 , 100 include one or more transport devices 3 and information processing devices 4 , 91 , 101 .
  • the information processing devices 4 , 91 , 101 have data acquisition devices and error analysis devices, manage the floor of the warehouse 2 in a plurality of sections 2 ⁇ /b>A, and control one or a plurality of transport devices 3 .
  • One or a plurality of transport devices 3 run on the floor of the warehouse 2, and when passing over each section 2A, read the markers 2B written on the floor of the section 2A to acquire information regarding the position of the section 2A; It is an unmanned guided vehicle that transports objects that are movably installed in the warehouse 2 .
  • the transport device 3 that has detected the error sends error information including information about the position of the section 2A where the error was detected, which is the detection location of the error, and error code information about the error, to the information processing device. 4, 91, 101.
  • the information processing devices 4, 91, and 101 determine the state of the floor surface for each section 2A of the floor of the warehouse 2 based on a plurality of pieces of error information received from the transport device 3 that has detected the error. Information about the determination result of the state is output to the output device 44 .
  • the conveyed object is the shelf 5, for example.
  • the information processing method in the information processing systems 1, 90, and 100 includes, from one or a plurality of transport devices 3, information regarding the position of the section 2A where an error occurred in the transport device 3 is detected, and information regarding the error.
  • the transport device 3 that has detected the error may specify the detection location of the error.
  • a detection location may be specified.
  • one or more transport devices 3 travel on the floor of the warehouse 2 and read the markers 2B written on the floor of the section 2A when passing over each section 2A to read information about the position of the section 2A (for example, address), and information on the position of the section 2A, identification information (conveyance device ID) of the conveyance device 3, and the date and time when the marker 2B was detected (mark detection date and time) are sent to the data acquisition device.
  • the data acquisition device records the travel performance data acquired from each transport device 3 in the storage device 42 .
  • the transport device 3 that has detected an error provides information on the detection date and time of the error that occurred in the transport device 3, the type of the error (for example, an error code, etc.), and the identification information (transport device ID) of the transport device 3.
  • the error information it contains is sent to the data acquisition device.
  • the data acquisition device records the error information acquired from each transport device 3 in the storage device 42 .
  • the error analysis device acquires the identification information of the transport device 3 by referring to the error information, and, for example, the mark The travel performance data whose detection date and time is closest to the error detection date and time (or the date and time immediately before the error detection date and time) is specified.
  • the error analysis device may use information (for example, an address) regarding the position of the section 2A in the identified travel record data as the detection location of the error.
  • the error analysis device out of the error information acquired from the transport device 3, excludes the error information of errors that occur due to causes other than the condition of the floor surface, based on the remaining error information. determine the state.
  • the error analysis device removes the error information of the error detected after the abnormal state of the conveying device 3 from among the error information acquired from the conveying device 3, based on the remaining error information. , determine the state of the floor surface.
  • the information processing device 4, 91, 101, the transport device 3, another determination device, or the user determines that the transport device 3 is in an abnormal state
  • the transport device 3 is in an abnormal state.
  • after the conveying device 3 is in an abnormal state may be after it is determined that the conveying device 3 is in an abnormal state, or after the time when the abnormal state is estimated. For example, when the number or frequency of error information obtained from the transport device 3 exceeds a threshold, the error analysis device determines that the transport device 3 is in an abnormal state.
  • the error analysis device stores at least the error information of the error detected after the load exceeds the standard among the error information acquired from the transport device 3.
  • the state of the floor surface is determined based on the remaining error information excluded.
  • the information processing devices 4 , 91 , 101 of the information processing systems 1 , 90 , 100 each include an error cause estimating unit that estimates the cause of an error that has occurred in the conveying device 3 .
  • the error analysis device determines the state of the floor based on the error information of the error estimated to be caused by the state of the floor by the error cause estimating unit.
  • the error cause estimating unit may be realized by the error analysis device of the information processing devices 4, 91, 101 executing the error cause estimating program 102.
  • the error analyzer notifies an alert when the determined degree of floor damage exceeds a predetermined standard.
  • a transport system that transports products together with shelves 5 in a warehouse 2 used by a company such as an online shopping company to store products. 1, 90, and 100, but the present invention is not limited to this, and can be widely applied to various other transport systems such as a transport system for transporting parts in a factory. .
  • the operation control devices 4 and 91 that remotely control each transport device 3 function as information processing devices that determine the state of the floor surface on which the transport device 3 travels. , 101, but the present invention is not limited to this. good too.
  • the error log information is composed of the information such as the error detection date and time, the conveying device ID, the error type and the error code described above with reference to FIG. 6 has been described.
  • the present invention is not limited to this, and the error log information may be configured with other information in addition to or instead of these information.
  • each section 2A a case has been described in which the marker 2B representing the address of each section 2A on the floor of the warehouse 2 is displayed in each section 2A.
  • the position in each section 2A may be indicated as it is by a numerical value or the like, and as a method of notating the address of the section 2A in each section 2A on the floor surface, there are various other methods. The method can be widely applied.
  • the degree of damage to the floor surface is determined in five stages of "normal state", "small”, “medium”, “large” and “repair required".
  • the present invention is not limited to this, and the damage to the floor surface may be determined using a number of steps other than five.
  • step S1 in FIG. 10 all error log information registered in the error log information database 59 or error log information within a predetermined period is acquired (step S1 in FIG. 10), and the second and second In Embodiment 3, the case where the error log information of the error caused by the floor condition is acquired (step S20 in FIG. 12, step S40 in FIG. 15) has been described, but the present invention is limited to this.
  • the transport device 3 may receive greater vibrations and shocks when passing through the section 2A where the floor surface is severely damaged. Therefore, by also considering the running state at the time of error detection in judging the floor surface state, the probability that the cause of the error is caused by the floor surface state can be increased. Furthermore, when passing through the section 2A where the damage to the floor surface is large, the vibrations and shocks that the transport device 3 receives while transporting the shelf 5 are greater than when the shelf 5 is not transported, and the impact on the transport device 3 is large. may become large. Therefore, the probability that the cause of the error is caused by the floor surface condition can be increased. By doing so, it is possible to further improve the accuracy of determining the state of the floor surface.
  • the vibration at that time registered in the measurement data database 58 is a vibration of a certain level or more. may be set as the acquisition condition for the corresponding error log information.
  • the floor surface determination determined to be damaged is determined to be correct.
  • the present invention relates to an information processing system, and can be applied to a transport system having a transport device that transports an object while traveling on a floor surface.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)

Abstract

This invention involves a determination device that determines the state of a floor surface on which a transport device for transporting an object travels in a transport system, and a determination method executed by the determination device, wherein error information that includes a detection location where an error occurred in the transport device is acquired from the transport device and the state of the floor surface is determined by analyzing the acquired error information. This configuration makes it possible to achieve an information processing system, an information processing device, and a method that can improve the reliability of the transport system by enabling system operations or maintenance to be performed on the basis of said determination results for the state of the floor surface.

Description

情報処理システム、情報処理装置及び方法Information processing system, information processing device and method
 本発明は情報処理システム、情報処理装置及び方法に関し、搬送装置を用いた搬送システムに適用して好適なものである。 The present invention relates to an information processing system, information processing device and method, and is suitable for application to a transport system using a transport device.
 本技術分野の背景技術として、路面画像から路面の特徴を抽出する技術がある。例えば、特開2016-166853に記載の技術がある。 As a background technology in this technical field, there is a technology for extracting the features of the road surface from the road surface image. For example, there is a technique described in JP-A-2016-166853.
特開2016-166853JP 2016-166853
 倉庫や工場などにおける搬送装置を用いた搬送システムにおいて、搬送装置が走行する床面に凹凸がある場合、又は、床面の状態が悪い場合、搬送装置の動作不良や通信不良などのエラーの原因となり得ることを本願の発明者は見出した。従って、搬送システムの信頼性向上のためには、床面の状態に起因してエラーが発生した場合、エラー発生場所の床面の状態を把握でき、床面の状態に応じたシステム運用及びメンテナンスが可能であることが望まれる。ひいては、搬送システムにおける予期せぬ搬送効率の低下を防ぐことが望まれる。 In a transport system using transport equipment in warehouses and factories, if the floor surface on which the transport equipment runs is uneven or if the floor surface is in poor condition, it can cause errors such as malfunction of the transport equipment or communication failure. The inventors of the present application have found that Therefore, in order to improve the reliability of the transport system, when an error occurs due to the state of the floor, it is necessary to be able to grasp the state of the floor where the error occurred, and to operate and maintain the system according to the state of the floor. should be possible. As a result, it is desired to prevent unexpected deterioration in transport efficiency in the transport system.
 そこで、エラー発生原因となり得る床面の状態を特定することで、搬送システムの信頼性を向上させ得る情報処理システム、情報処理装置及び方法を提案する。 Therefore, we propose an information processing system, information processing device, and method that can improve the reliability of the transportation system by identifying the floor surface condition that can cause an error.
 かかる課題を解決するため本発明においては、1又は複数の搬送装置から当該搬送装置に発生したエラーの検知場所を含むエラー情報を複数取得するデータ取得装置と、前記エラー取得装置が取得した複数の前記エラー情報を分析し、前記エラーの検知場所における床面の状態を判定するエラー分析装置とを設けるようにした。 In order to solve this problem, the present invention provides a data acquisition device for acquiring a plurality of pieces of error information including detection locations of errors that have occurred in one or more transport devices, and a plurality of pieces of error information acquired by the error acquisition device. and an error analysis device that analyzes the error information and determines the state of the floor surface at the location where the error is detected.
 また本発明においては、1又は複数の搬送装置から当該搬送装置に発生したエラーの検知場所を含むエラー情報を複数取得する第1のステップと、取得した複数の前記エラー情報を分析し、前記エラーの検知場所における床面の状態を判定する第2のステップとを設けるようにした。 Further, in the present invention, a first step of acquiring a plurality of pieces of error information including a detection location of an error that occurred in the transportation device from one or a plurality of transportation devices; and a second step of determining the state of the floor surface at the detection location.
 本発明によれば、エラー発生原因となり得る床面状態を判定可能であり、搬送システムの信頼性を向上させ得る情報処理システム、情報処理装置及び方法を実現できる。 According to the present invention, it is possible to realize an information processing system, an information processing apparatus, and a method that can determine floor conditions that can cause errors and improve the reliability of the transportation system.
第1~第3の実施の形態による搬送システムの全体構成を示す概念図である。1 is a conceptual diagram showing the overall configuration of a transport system according to first to third embodiments; FIG. 床面の各区画の番地の説明に供する概念図である。It is a conceptual diagram for explaining the address of each section of the floor. (A)は搬送装置の外観構成を示す斜視図であり、(B)は搬送装置の底面構成を示す平面図である。(A) is a perspective view showing the external configuration of the conveying device, and (B) is a plan view showing the bottom configuration of the conveying device. 搬送装置による棚の搬送方法の説明に供する側面図である。It is a side view with which it uses for description of the conveyance method of the shelf by a conveyance apparatus. 第1及び第2の実施の形態の情報処理システムにおける搬送装置及び運行制御装置の構成を示すブロック図である。It is a block diagram which shows the structure of the conveying apparatus and operation control apparatus in the information processing system of 1st and 2nd embodiment. エラーログ情報データベースの構成例を示す図表である。4 is a chart showing a configuration example of an error log information database; 走行実績データデータベースの構成例を示す図表である。It is a chart which shows the structural example of a driving|running|working track record data database. 床面状態判定結果画面の画面構成を示す図である。It is a figure which shows the screen structure of a floor state determination result screen. エラーデータ詳細画面の画面構成を示す図である。It is a figure which shows the screen structure of an error data detail screen. 第1のエラー分析処理の処理手順を示すフローチャートである。FIG. 10 is a flow chart showing a processing procedure of a first error analysis process; FIG. 損傷度合判定処理の処理手順を示すフローチャートである。4 is a flowchart showing a processing procedure of damage degree determination processing; 第2のエラー分析処理の処理手順を示すフローチャートである。FIG. 10 is a flow chart showing a processing procedure of a second error analysis process; FIG. 第3の実施の形態の情報処理システムにおける搬送装置及び運行制御装置の構成を示すブロック図である。It is a block diagram which shows the structure of the conveying apparatus and operation control apparatus in the information processing system of 3rd Embodiment. エラー原因推定処理の処理手順を示すフローチャートである。9 is a flowchart showing a processing procedure of error cause estimation processing; 第3のエラー分析処理の処理手順を示すフローチャートである。FIG. 11 is a flow chart showing a processing procedure of a third error analysis process; FIG. 第1~第3の実施の形態による床面状態の可視化の全体構成を示す概念図である。FIG. 2 is a conceptual diagram showing the overall configuration of visualization of the floor state according to the first to third embodiments;
 以下、図面を参照して、本発明の一実施の形態を説明する。 An embodiment of the present invention will be described below with reference to the drawings.
 なお、以下に説明する実施の形態は、本発明を説明するための例示であって、説明の明確化のため、適宜、省略及び簡略化されている。本発明は、他の種々の形態でも実施することが可能である。特に限定しない限り、各構成要素は単数でも複数でも構わない。 It should be noted that the embodiments described below are examples for describing the present invention, and are appropriately omitted and simplified for clarity of description. The present invention can also be implemented in various other forms. Unless otherwise specified, each component may be singular or plural.
 図面において示す各構成要素の位置、大きさ、形状、範囲などは、発明の理解を容易にするため、実際の位置、大きさ、形状、範囲などを表していない場合がある。このため、本発明は、必ずしも、図面に開示された位置、大きさ、形状、範囲などに限定されない。 The position, size, shape, range, etc. of each component shown in the drawings may not represent the actual position, size, shape, range, etc. in order to facilitate the understanding of the invention. As such, the present invention is not necessarily limited to the locations, sizes, shapes, extents, etc., disclosed in the drawings.
 各種情報の例として、「テーブル」、「リスト」、「キュー」等の表現にて説明することがあるが、各種情報はこれら以外のデータ構造で表現されてもよい。例えば、「XXテーブル」、「XXリスト」、「XXキュー」等の各種情報は、「XX情報」としてもよい。識別情報について説明する際に、「識別情報」、「識別子」、「名」、「ID」、「番号」等の表現を用いるが、これらについてはお互いに置換が可能である。 As examples of various types of information, expressions such as "table", "list", and "queue" may be used for explanation, but various types of information may be expressed in data structures other than these. For example, various information such as "XX table", "XX list", and "XX queue" may be referred to as "XX information". When describing identification information, expressions such as “identification information”, “identifier”, “name”, “ID”, and “number” are used, but these can be replaced with each other.
 同一あるいは同様の機能を有する構成要素が複数ある場合には、同一の符号に異なる添字を付して説明する場合がある。また、これらの複数の構成要素を区別する必要がない場合には、添字を省略して説明する場合がある。 When there are multiple components that have the same or similar functions, they may be described with the same reference numerals with different suffixes. Further, when there is no need to distinguish between these constituent elements, the subscripts may be omitted in the description.
 実施の形態において、プログラムを実行して行う処理について説明する場合がある。ここで、計算機は、プロセッサ(例えばCPU、GPU)によりプログラムを実行し、記憶資源(例えばメモリ)やインターフェースデバイス(例えば通信ポート)等を用いながら、プログラムで定められた処理を行う。そのため、プログラムを実行して行う処理の主体を、プロセッサとしてもよい。 In the embodiment, there are cases where the processing performed by executing the program will be explained. Here, the computer executes a program by means of a processor (eg, CPU, GPU) and performs processing determined by the program while using storage resources (eg, memory) and interface devices (eg, communication port). Therefore, the main body of the processing performed by executing the program may be the processor.
 同様に、プログラムを実行して行う処理の主体が、プロセッサを有するコントローラ、装置、システム、計算機、ノードであってもよい。プログラムを実行して行う処理の主体は、演算部であれば良く、特定の処理を行う専用回路を含んでいてもよい。ここで、専用回路とは、例えばFPGA(Field Programmable Gate Array)やASIC(Application Specific Integrated Circuit)、CPLD(Complex Programmable Logic Device)等である。 Similarly, the subject of processing performed by executing a program may be a controller, device, system, computer, or node having a processor. The subject of the processing performed by executing the program may be an arithmetic unit, and may include a dedicated circuit for performing specific processing. Here, the dedicated circuit is, for example, FPGA (Field Programmable Gate Array), ASIC (Application Specific Integrated Circuit), CPLD (Complex Programmable Logic Device), or the like.
 プログラムは、プログラムソースから計算機にインストールされてもよい。プログラムソースは、例えば、プログラム配布サーバ又は計算機が読み取り可能な記憶メディアであってもよい。プログラムソースがプログラム配布サーバの場合、プログラム配布サーバはプロセッサと配布対象のプログラムを記憶する記憶資源を含み、プログラム配布サーバのプロセッサが配布対象のプログラムを他の計算機に配布してもよい。また、実施の形態において、2以上のプログラムが1つのプログラムとして実現されてもよいし、1つのプログラムが2以上のプログラムとして実現されてもよい。 The program may be installed on the computer from the program source. The program source may be, for example, a program distribution server or a computer-readable storage medium. When the program source is a program distribution server, the program distribution server may include a processor and storage resources for storing the distribution target program, and the processor of the program distribution server may distribute the distribution target program to other computers. Also, in the embodiment, two or more programs may be implemented as one program, and one program may be implemented as two or more programs.
(1)第1の実施の形態
(1―1)本実施の形態による搬送システムの構成
 図1は、本実施の形態による情報処理システム(以下、適宜、搬送システムとも呼ぶ)1の概略構成を示す。この搬送システム1は、倉庫2内を走行する複数の搬送装置3と、各搬送装置3の運行をリモート制御する情報処理装置(以下、適宜、運行制御装置とも呼ぶ)4とを備えて構成される。
(1) First Embodiment (1-1) Configuration of Transport System According to this Embodiment FIG. show. The transportation system 1 includes a plurality of transportation devices 3 that travel within a warehouse 2 and an information processing device (hereinafter also referred to as an operation control device) 4 that remotely controls the operation of each transportation device 3. be.
 倉庫2は、例えば、ネット通販会社等の企業が、物品を保管するために利用する保管庫である。倉庫2に保管されている物品は、商品であってもよいし、部品であってもよい。本実施の形態においては、倉庫2に保管されている物品の一例として、商品の例を説明する。 The warehouse 2 is, for example, a warehouse used by a company such as an online shopping company to store goods. The articles stored in the warehouse 2 may be commodities or parts. In this embodiment, an example of a product will be described as an example of an article stored in the warehouse 2. FIG.
 かかる倉庫2の床面は、所定大きさの方形状の複数の区画(エリア)2Aに区分されて管理され、各区画2A内にそれぞれその区画2Aの位置を表すマーカ2Bが表記されている。マーカ2Bは、その区画2Aの位置を特定するための情報を含んでいればよく、例えばその区画2Aの位置情報でもよいし、その区画2Aの位置情報と対応づけられている情報(例えば区画2Aの識別情報など)であってもよい。 The floor surface of the warehouse 2 is divided into a plurality of square sections (areas) 2A of a predetermined size and managed, and each section 2A has a marker 2B indicating the position of the section 2A. The marker 2B may include information for specifying the position of the section 2A, for example, the position information of the section 2A, or information associated with the position information of the section 2A (for example, the section 2A identification information, etc.).
 マーカ2Bは、搬送装置3のセンサ14により読み取り可能な情報であり、例えば一次元コード、QRコード(登録商標)等の二次元コード、RFID(Radio Frequency Identifier)タグ等の情報であってもよい。本実施の形態においては、マーカ2Bの一例として、QRコード(登録商標)の例を説明する。 The marker 2B is information that can be read by the sensor 14 of the transport device 3, and may be information such as a one-dimensional code, a two-dimensional code such as a QR code (registered trademark), or an RFID (Radio Frequency Identifier) tag. . In this embodiment, a QR code (registered trademark) will be described as an example of the marker 2B.
 例えば、各搬送装置3は、各区画2Aを通過時に、その区画2Aにあるマーカ2Bを読み取る。各搬送装置3は、自搬送装置3の識別情報とともに、読み取ったマーカ2Bの情報を、運行制御装置4に送信する。運行制御装置4は、各搬送装置3から受信した、搬送装置3の識別情報とマーカ2Bの情報を基に、各搬送装置3の位置を特定する。 For example, each transport device 3 reads the marker 2B in each section 2A when passing through each section 2A. Each conveying device 3 transmits the information of the read marker 2B to the operation control device 4 together with the identification information of the own conveying device 3 . The operation control device 4 identifies the position of each transport device 3 based on the identification information of the transport device 3 and the information of the marker 2B received from each transport device 3 .
 本実施の形態の場合、図2に示すように、各区画2Aの位置は、倉庫2の床面における左上の区画2Aの番地を(1,1)として、右方向の区画2Aに行くほどx方向の値が1ずつ大きくなり、下方向の区画2Aに行くほどy方向の値が1ずつ大きくなるxy座標形式の番地で管理される。従って、例えば(1,1)番地の区画2Aから右方向に2区画分、下方向に3区画分だけ進んだ区画2Aの位置は(3,4)という番地となる。 In the case of the present embodiment, as shown in FIG. 2, the position of each section 2A is x as the address of the upper left section 2A on the floor surface of the warehouse 2 is (1, 1), and the right section 2A is located. The addresses are managed in the form of xy coordinates in which the direction value increases by 1 and the y direction value increases by 1 toward the lower section 2A. Therefore, for example, the position of the section 2A, which is two sections to the right and three sections downward from the section 2A of the address (1, 1), is the address (3, 4).
 また倉庫2内には、複数の棚5が、それぞれ対応する区画2A内に位置するように整列されており、移動可能な状態に設置されている。そして、各棚5には、1又は複数の物品(例えば販売対象の商品)がそれぞれ所定位置に収納される。棚5を移動棚と呼ぶことがある。 Also, in the warehouse 2, a plurality of shelves 5 are arranged so as to be positioned within the corresponding section 2A, and installed in a movable state. Each shelf 5 stores one or a plurality of articles (for example, merchandise to be sold) at a predetermined position. The shelf 5 is sometimes called a mobile shelf.
 棚5は、例えば1つの区画2Aとほぼ同じ大きさであってもよいし、1つの区画2Aより小さいサイズであってもよい。なお、区画の設定の仕方は様々な変形例があってもよい。 For example, the shelf 5 may be approximately the same size as one compartment 2A, or may be smaller than one compartment 2A. Note that there may be various modifications of how to set the partitions.
 搬送装置3は、運行制御装置4により指定された位置まで、搬送対象を自動搬送できる無人搬送ロボット(無人搬送車)である。搬送対象とは、例えば棚5やパレットである。搬送対象が1又は複数の物品を搭載可能なもの(例えば棚5やパレット)である場合、搬送対象を収納部(収納装置)や荷役台と呼んでもよい。本実施の形態においては、搬送装置3の搬送対象の一例として、棚5の場合を説明する。搬送対象を搬送物と呼ぶことがある。 The transport device 3 is an unmanned transport robot (unmanned transport vehicle) that can automatically transport objects to a position specified by the operation control device 4 . The object to be transported is, for example, the shelf 5 or a pallet. If the object to be transported is an object on which one or more articles can be loaded (for example, the shelf 5 or a pallet), the object to be transported may be called a storage unit (storage device) or a loading platform. In this embodiment, the case of the shelf 5 will be described as an example of an object to be transported by the transport device 3 . An object to be conveyed is sometimes called an article to be conveyed.
 例えば、搬送装置3は、運行制御装置4により指定された棚5を持ち上げて倉庫2内を走行し、倉庫2内の所定位置に設けられたピッキングステーション6までその棚5を搬送する。ピッキングステーション6に搬送された棚5は、当該ピッキングステーション6において作業者により必要な商品が取り出された(ピッキングされた)後に、搬送装置3により指定位置に戻される。この指定位置は、運行制御装置4により指定された位置であって、棚5の元の設置場所でもよいし、別の場所であってもよい。 For example, the transport device 3 lifts the shelf 5 specified by the operation control device 4 and travels within the warehouse 2 to transport the shelf 5 to the picking station 6 provided at a predetermined position within the warehouse 2 . The shelf 5 conveyed to the picking station 6 is returned to the designated position by the conveying device 3 after the necessary commodities are taken out (picked) by the operator at the picking station 6 . This specified position is a position specified by the operation control device 4, and may be the original installation location of the shelf 5 or another location.
 この別の場所の例として、ピッキング頻度が高い商品を収納しており、ピッキングステーション6へ搬送される頻度が高い棚は、ピッキングステーション6に近い位置にある棚配置区画に設置してもよい。ピッキングステーション6へ搬送される頻度が低い棚は、ピッキングステーション6から遠い位置にある棚配置区画に設置してもよい。このように、ピッキングステーション6へ搬送される頻度に応じて、棚の設置場所を変えることにより、搬送効率を向上できる。 As an example of this different location, a shelf that stores products that are frequently picked and that is frequently transported to the picking station 6 may be placed in a shelf arrangement section close to the picking station 6. Shelves that are infrequently transported to the picking station 6 may be placed in a shelving section located far from the picking station 6 . In this way, by changing the installation location of the shelf according to the frequency of transportation to the picking station 6, transportation efficiency can be improved.
 搬送装置3の構成の一例について説明する。搬送装置3は、図3(A)に示すように、全体として底面が正方形の直方体状に形成されている。そして搬送装置3の下面には、図3(B)に示すように、それぞれ搬送装置3が旋回及び前進するための2つの駆動輪20が配設されると共に、搬送装置3の下面の四隅には補助輪21が配設されている。また搬送装置3の上面中央部には昇降及び回転可能な円柱状の昇降・回転体22が設けられている。 An example of the configuration of the transport device 3 will be described. As shown in FIG. 3A, the conveying device 3 is formed in a rectangular parallelepiped shape with a square bottom as a whole. As shown in FIG. 3(B), two drive wheels 20 are arranged on the lower surface of the conveying device 3 for turning and advancing the conveying device 3. At the four corners of the lower surface of the conveying device 3 is provided with a training wheel 21. In addition, in the central portion of the upper surface of the conveying device 3, a columnar lifting/rotating body 22 that can be lifted and rotated is provided.
 そして搬送装置3は、図4に示すように、駆動輪20を回転駆動させて搬送対象の棚5の下側にまで移動した後に昇降・回転体22を上昇させることでその棚5を持ち上げ、その状態で倉庫2内を走行することでその棚5を搬送する。この際、搬送装置3は、昇降・回転体22を回転させることで持ち上げた棚5の向きを変えることもできる。なお、搬送装置3は、昇降・回転体22に対し、昇降・回転体22以外の本体が回転(旋回)することで、持上げた棚5を回転させずに搬送装置を回転(旋回)することも可能である。 Then, as shown in FIG. 4, the conveying device 3 rotates the driving wheels 20 to move to the lower side of the shelf 5 to be conveyed, and then raises the lifting/rotating body 22 to lift the shelf 5. By traveling in the warehouse 2 in that state, the shelf 5 is conveyed. At this time, the conveying device 3 can also change the direction of the lifted shelf 5 by rotating the lifting/rotating body 22 . It should be noted that the conveying device 3 rotates (revolves) without rotating the lifted shelf 5 by rotating (swinging) the body other than the lifting/rotating body 22 with respect to the lifting/rotating body 22 . is also possible.
 また搬送装置3には自動充電機能が搭載されており、搬送装置3が備えるバッテリ(図示せず)の残量が所定値を下回った場合、搬送装置3は、倉庫2内の所定位置(図1及び図2では(1,1)番地の区画2A)に設けられたバッテリステーション7に移動して自動的に充電を行うようになされている。 In addition, the transport device 3 is equipped with an automatic charging function, and when the remaining amount of the battery (not shown) included in the transport device 3 falls below a predetermined value, the transport device 3 is moved to a predetermined position (shown in the figure) in the warehouse 2. 1 and 2, it moves to the battery station 7 provided in the section 2A) of the address (1, 1) and is automatically charged.
 運行制御装置4は、Wi-Fi(登録商標)などの無線通信回線を介して倉庫2内の各搬送装置3と無線通信接続される。運行制御装置4は、顧客からのオーダ(注文)に応じて、オーダされた商品が収納されている棚5を特定し、例えばそのとき空いている搬送装置3に対して、その棚5をピッキングステーション6まで搬送するよう指示(以下、このような搬送に関する指示を搬送指示と呼ぶ)を与える。 The operation control device 4 is wirelessly connected to each transport device 3 in the warehouse 2 via a wireless communication line such as Wi-Fi (registered trademark). The operation control device 4 identifies the shelf 5 in which the ordered product is stored according to the order from the customer, and picks the shelf 5 for the conveying device 3 that is vacant at that time, for example. An instruction is given to transport to station 6 (such an instruction regarding transport is hereinafter referred to as a transport instruction).
 なお、かかる「搬送指示」には、搬送すべき棚5の識別情報(棚ID)と、例えば図2において矢印及び黒丸印で示すような、そのとき搬送装置3が移動すべき経路(以下、これを搬送装置3の移動経路と呼ぶ)の情報とが含まれる。また「搬送装置の移動経路」には、その搬送装置3の現在位置からその棚5までの経路と、その棚5からピッキングステーション6までの経路とが含まれる。 The "transportation instruction" includes identification information (shelf ID) of the shelf 5 to be transported, and a path along which the transport device 3 should move at that time, as indicated by an arrow and a black circle in FIG. 2, for example. This is called a moving route of the transport device 3). Further, the “moving route of the transport device” includes the route from the current position of the transport device 3 to the rack 5 and the route from the rack 5 to the picking station 6 .
 また、ピッキングステーション6において作業者により棚5から商品がピッキングされた後には、棚を指定位置に戻すために、運行制御装置4は、搬送装置3に指定位置への「搬送指示」を与える。かかる「搬送指示」には、搬送すべき棚5の識別情報(棚ID)と、移動経路の情報とが含まれる。この移動経路には、ピッキングステーション6から指定位置(例えば、その棚5の元の位置)までの経路が含まれる。 In addition, after the worker picks the product from the shelf 5 at the picking station 6, the operation control device 4 gives a "transportation instruction" to the transport device 3 to the specified position in order to return the shelf to the specified position. The "transportation instruction" includes identification information (shelf ID) of the shelf 5 to be transported and information on the movement route. This movement path includes the path from the picking station 6 to the designated location (eg, the original location of the shelf 5).
 図5は、本実施の形態における搬送システム1の構成の一例を示す図である。搬送システム1は、1又は複数の搬送装置3と、運行制御装置4とを備える。搬送装置3は、制御装置10と、駆動装置11と、記憶装置12と、通信インタフェース13と、1又は複数の種類のセンサ14とを備えて構成される。 FIG. 5 is a diagram showing an example of the configuration of the transport system 1 according to this embodiment. The transportation system 1 includes one or more transportation devices 3 and an operation control device 4 . The transport device 3 comprises a control device 10 , a drive device 11 , a storage device 12 , a communication interface 13 and one or more types of sensors 14 .
 制御装置10は、運行制御装置4からの搬送指示や内蔵するバッテリの充電状態などに応じて搬送装置3の動作と制御を司るコントローラである。また駆動装置11は、上述した駆動輪20、補助輪21及び昇降・回転体22のほか、駆動輪20を回転駆動するためのモータ等からなる第1のアクチュエータ(図示せず)と、昇降・回転体22を昇降及び回転させるためのモータ等からなる第2のアクチュエータ(図示せず)とを備える。 The control device 10 is a controller that controls the operation and control of the transportation device 3 according to the transportation instruction from the operation control device 4 and the state of charge of the built-in battery. In addition to the driving wheels 20, the auxiliary wheels 21, and the lifting/rotating body 22, the driving device 11 includes a first actuator (not shown) including a motor for rotationally driving the driving wheels 20, and a lifting/lowering wheel. and a second actuator (not shown) composed of a motor or the like for raising and lowering and rotating the rotating body 22 .
 記憶装置12は、例えば、不揮発性の半導体メモリや、ハードディスク装置又はSSD(Solid state Drive)などの大容量の不揮発性の記憶装置から構成され、必要な情報を長期間保持するために利用される。通信インタフェース13は、所定の無線通信方式により運行制御装置4と通信を行うための通信装置であり、例えばWi-Fi(登録商標)の無線LAN(Local Area Network)カードなどから構成される。 The storage device 12 is composed of, for example, a non-volatile semiconductor memory, a large-capacity non-volatile storage device such as a hard disk device or an SSD (Solid State Drive), and is used to retain necessary information for a long period of time. . The communication interface 13 is a communication device for communicating with the operation control device 4 by a predetermined wireless communication method, and is composed of, for example, a Wi-Fi (registered trademark) wireless LAN (Local Area Network) card.
 センサ14は、自搬送装置3が走行する床面の情報や自搬送装置3に関する各種情報を収集等するためのデバイスであり、例えば床面の各区画2Aにそれぞれ表記されたマーカ2Bの情報を読み込むことが可能である。搬送装置3は、センサ14として、床面の状態を撮像するためのカメラや、走行中の搬送装置3が受ける振動を検出するための振動センサ、自搬送装置3の速度や加速度を計測する速度センサ及び加速度センサなどのセンサを備えていてもよい。 The sensor 14 is a device for collecting information on the floor surface on which the transport device 3 travels and various types of information about the transport device 3. For example, the sensor 14 collects information on the markers 2B written in each section 2A of the floor surface. It is possible to read. The conveying device 3 includes, as the sensor 14, a camera for imaging the state of the floor surface, a vibration sensor for detecting vibrations received by the conveying device 3 while traveling, and a speed for measuring the speed and acceleration of the conveying device 3 itself. Sensors such as sensors and acceleration sensors may be provided.
 なお、本実施の形態の場合、各搬送装置3の記憶装置12には、経路データデータベース23、装置情報データベース24、地図情報データベース25、エラーログ情報データベース26、計測データデータベース27及び走行実績データデータベース28が格納されている。制御装置10には、通信プログラム29、走行制御プログラム30、計測プログラム31及びエラー検出プログラム32が格納されている。 In this embodiment, the storage device 12 of each transport device 3 includes a route data database 23, a device information database 24, a map information database 25, an error log information database 26, a measurement data database 27, and a running performance data database. 28 is stored. A communication program 29, a running control program 30, a measurement program 31, and an error detection program 32 are stored in the control device 10. FIG.
 経路データデータベース23は、運行制御装置4から与えられた上述の搬送指示で指定された移動経路の情報が格納されるデータベースである。また装置情報データベース24は、自搬送装置3の識別情報、現在位置及び状態(「待機」、「搬送中」、「充電中」又は「故障」)や、搭載されたハードウェア及びソフトウェアに関する情報などの自搬送装置3に関する各種情報(以下、これらをまとめて装置情報と呼ぶ)が格納されたデータベースである。 The route data database 23 is a database that stores information on the movement route specified by the transport instruction given from the operation control device 4 . Further, the device information database 24 includes identification information, current position and state ("standby", "transporting", "charging" or "failure") of the own transport device 3, and information on installed hardware and software. is a database in which various types of information (hereinbelow, collectively referred to as device information) related to the own transport device 3 are stored.
 地図情報データベース25は、倉庫2の床面の状態や、倉庫2内の各棚5、ピッキングステーション6及びバッテリステーション7の位置(番地)、並びに、通路等の搬送装置3の走行可能な領域(走行可能領域)及び各通路の走行方向などの情報(以下、これらをまとめて地図情報と呼ぶ)が格納されたデータベースである。 The map information database 25 contains information such as the state of the floor surface of the warehouse 2, the positions (addresses) of each shelf 5, the picking station 6 and the battery station 7 in the warehouse 2, and the travelable area of the transport device 3 such as aisles ( drivable area) and information such as the running direction of each passage (hereinafter collectively referred to as map information) are stored in the database.
 さらにエラーログ情報データベース26は、自搬送装置3に発生した各種エラーのエラーログの情報(以下、これをエラーログ情報と呼ぶ)が格納されるデータベースである。計測データデータベース27は、センサ14により計測された自搬送装置3の走行速度及び加速度や、走行時に自搬送装置3に生じた振動の大きさ及びその振動が発生した位置、そのとき持ち上げている棚5の総重量などのデータや、センサ14の1つであるカメラの撮影映像の映像データなどが計測データとして格納されるデータベースである。 Furthermore, the error log information database 26 is a database in which error log information (hereinafter referred to as error log information) of various errors that have occurred in the transport device 3 is stored. The measurement data database 27 stores the traveling speed and acceleration of the self-conveying device 3 measured by the sensor 14, the magnitude of vibration generated in the self-conveying device 3 during traveling, the position where the vibration occurred, and the shelf being lifted at that time. This is a database in which data such as the total weight of 5 and image data of images captured by a camera, which is one of the sensors 14, are stored as measurement data.
 走行実績データデータベース28は、自搬送装置3が走行した経路及び時間の関係などの走行実績に関するデータ(以下、これを走行実績データと呼ぶ)が格納されるデータベースである。走行実績データデータベース28には、例えば経路データに基づいて搬送装置3が走行した際にセンサ14の1つであるカメラからの撮影映像に基づいて検知したマーカ2Bの内容(例えば番地等、その区画2Aの位置を特定するための情報)や、そのマーカ2Bを検出した時刻などの情報が走行実績データとして格納される。 The travel record data database 28 is a database that stores data relating to travel records such as the relationship between the route and time traveled by the transport device 3 (hereinafter referred to as "travel record data"). In the travel record data database 28, for example, the content of the marker 2B detected based on the image captured by the camera, which is one of the sensors 14, when the conveying device 3 travels based on the route data (for example, the address, the section, etc.) information for identifying the position of 2A) and information such as the time when the marker 2B was detected are stored as travel record data.
 通信プログラム29は、通信インタフェース13を介して運行制御装置4との間でコマンドや情報をやり取りする機能を有するプログラムである。例えば、通信プログラム29は、運行制御装置4からの要求に応じてエラーログ情報データベース26に格納されているエラーログ情報や、計測データデータベース27に格納されている各種計測データ、走行実績データデータベース28に格納されている走行実績データ、装置情報データベース24に格納されている装置情報(例えば自搬送装置3の識別情報、現在位置及び状態など)などを運行制御装置4に送信する。なお、各搬送装置3の通信プログラムは、これらの情報のそれぞれについて、定期的又は不定期のタイミングで運行制御装置4に送信してもよい。このタイミングの例としては、例えば運行制御装置4がエラー分析処理をする前に各搬送装置3から情報を取得してもよいし、各搬送装置3でエラーを検出したタイミングで運行制御装置4に情報を送信してもよい。 The communication program 29 is a program having a function of exchanging commands and information with the operation control device 4 via the communication interface 13. For example, the communication program 29, in response to a request from the operation control device 4, the error log information stored in the error log information database 26, various measurement data stored in the measurement data database 27, the travel performance data database 28 and the device information stored in the device information database 24 (for example, identification information, current position and state of the carrier device 3, etc.) are sent to the operation control device 4. In addition, the communication program of each transport device 3 may transmit each of these pieces of information to the operation control device 4 at regular or irregular timings. As an example of this timing, for example, information may be acquired from each transportation device 3 before the operation control device 4 performs error analysis processing, or the operation control device 4 may You may send information.
 走行制御プログラム30は、通信プログラム29が受信した運行制御装置4からの搬送指示などに応じて自搬送装置3の走行を制御する機能を有するプログラムである。例えば、走行制御プログラム30は、運行制御装置4からの搬送指示を通信プログラム29が受信すると、指定された棚5を持ち上げて指定された移動経路を通ってピッキングステーション6にまで移動したり、その棚5を指定された移動経路を通って元の位置に戻すよう駆動装置11を制御する。また走行制御プログラム30は、そのときの走行に関する情報を、走行実績データとして走行実績データデータベース28に登録する。 The traveling control program 30 is a program having a function of controlling traveling of the own carrier device 3 according to a carrier instruction from the operation control device 4 received by the communication program 29 . For example, when the communication program 29 receives a transportation instruction from the operation control device 4, the traveling control program 30 lifts the designated shelf 5 and moves it to the picking station 6 along the designated movement route, or The driving device 11 is controlled so that the shelf 5 is returned to its original position through the designated movement route. The travel control program 30 also registers information about travel at that time in the travel performance data database 28 as travel performance data.
 計測プログラム31は、各センサ14を用いて各種計測を行い、計測結果を計測データデータベース27に登録する機能を有するプログラムである。例えば、計測プログラム31は、センサ14の1つである振動センサの出力に基づいて自搬送装置3の振動を計測したり、センサ14の1つである速度センサや加速度センサの出力に基づいて自搬送装置3の速度や加速度を計測し、これらの計測結果を計測データデータベース27に登録する。また計測プログラム31は、センサの1つであるカメラの撮影映像の映像データを計測データデータベース27に格納する。 The measurement program 31 is a program having a function of performing various measurements using each sensor 14 and registering the measurement results in the measurement data database 27 . For example, the measurement program 31 measures the vibration of the transport device 3 based on the output of a vibration sensor that is one of the sensors 14, The speed and acceleration of the conveying device 3 are measured, and these measurement results are registered in the measurement data database 27 . The measurement program 31 also stores the image data of the image captured by the camera, which is one of the sensors, in the measurement data database 27 .
 エラー検出プログラム32は、搬送装置3に発生した各種エラーを検出する機能を有するプログラムである。エラー検出プログラム32は、自搬送装置3に発生した何らかのエラーを検出した場合、そのエラーログを生成し、生成したエラーログをエラーログ情報としてエラーログ情報データベース26に登録する。このとき、エラー検出プログラム32は、エラーログ情報における走行実績データに関する情報(例えばエラーログ情報の番地59F~通信状態59P)について、エラーを検知したタイミングでの情報を登録してもよいし、走行実績データデータベース28においてエラー検知日時に近い日時の走行実績データを取得して登録してもよい。 The error detection program 32 is a program having a function of detecting various errors that have occurred in the transport device 3. When the error detection program 32 detects an error that has occurred in the transport device 3, the error detection program 32 generates an error log of the error and registers the generated error log in the error log information database 26 as error log information. At this time, the error detection program 32 may register the information at the timing when the error is detected with respect to the information related to the running performance data in the error log information (for example, the address 59F to the communication state 59P of the error log information). In the performance data database 28, the travel performance data of a date and time close to the error detection date and time may be acquired and registered.
 一方、運行制御装置4は、CPU(Central Processing Unit)40、メモリ41、記憶装置42、入力装置43及び出力装置44と、通信インタフェース45とを備えたサーバ装置から構成される。なお、運行制御装置4は図5に示した構成に限られない。運行制御装置4は、1つのサーバ装置であってもよいし、複数のサーバから構成されてもよい。また、運行制御装置4が有する各装置については、1つの装置に配置されてもよいし、分散するように複数の装置に配置されてもよい。記憶装置42が有する各プログラムや各情報については、1つの記憶装置に格納されてもよいし、分散するように複数の記憶装置に分けて記憶されてもよい。 On the other hand, the operation control device 4 is composed of a server device having a CPU (Central Processing Unit) 40 , a memory 41 , a storage device 42 , an input device 43 and an output device 44 , and a communication interface 45 . Note that the operation control device 4 is not limited to the configuration shown in FIG. The operation control device 4 may be one server device, or may be composed of a plurality of servers. Moreover, each device included in the operation control device 4 may be arranged in one device, or may be arranged in a plurality of devices so as to be distributed. Each program and each information that the storage device 42 has may be stored in one storage device, or may be divided and stored in a plurality of storage devices so as to be distributed.
 CPU40は、運行制御装置4全体の動作制御を司るプロセッサである。CPU40は、処理装置(プロセッサ)であればよく、GPU(Graphics Processing Unit)やFPGA(Field Programmable Gate Array)やASIC(Application Specific Integrated Circuit)などであってもよい。またメモリ41は、例えば揮発性の半導体メモリから構成され、CPU40のワークメモリとして利用される。記憶装置42は、例えばハードディスク装置やSSDなどの大容量の不揮発性の記憶装置から構成される。 The CPU 40 is a processor that controls the operation of the operation control device 4 as a whole. The CPU 40 may be a processing device (processor), such as a GPU (Graphics Processing Unit), FPGA (Field Programmable Gate Array), ASIC (Application Specific Integrated Circuit), or the like. The memory 41 is composed of, for example, a volatile semiconductor memory and used as a work memory for the CPU 40 . The storage device 42 is composed of, for example, a large-capacity non-volatile storage device such as a hard disk device or an SSD.
 入力装置43は、例えばマウスやキーボードなどから構成され、オペレータ(管理者)が必要な情報や指示を運行制御装置4に入力するために利用される。また出力装置44は、液晶ディスプレイや有機EL(Electro Luminescence)ディスプレイなどの表示装置から構成され、必要な情報を表示するために利用される。さらに通信インタフェース45は、所定の無線通信方式により各搬送装置3と通信を行うための通信装置であり、例えばWi-Fi(登録商標)の無線LANカードなどから構成される。 The input device 43 is composed of, for example, a mouse and a keyboard, and is used by the operator (administrator) to input necessary information and instructions to the operation control device 4. The output device 44 is composed of a display device such as a liquid crystal display or an organic EL (Electro Luminescence) display, and is used to display necessary information. Further, the communication interface 45 is a communication device for communicating with each conveying device 3 by a predetermined wireless communication method, and is composed of, for example, a Wi-Fi (registered trademark) wireless LAN card.
 なお本実施の形態の場合、運行制御装置4の記憶装置42には、装置情報データベース53、商品情報データベース54、オーダ情報データベース55、地図情報データベース56、経路データデータベース57、計測データデータベース58、エラーログ情報データベース59及び走行実績データデータベース60などのデータベースと、データ入出力プログラム50、エラー分析プログラム51及び計測データ分析プログラム52、搬送装置制御プログラム(図示せず)などのプログラムとが格納されている。 In the case of this embodiment, the storage device 42 of the operation control device 4 includes a device information database 53, a product information database 54, an order information database 55, a map information database 56, a route data database 57, a measurement data database 58, an error Databases such as a log information database 59 and a running record data database 60, and programs such as a data input/output program 50, an error analysis program 51, a measurement data analysis program 52, and a transport device control program (not shown) are stored. .
 装置情報データベース53は、各搬送装置3の装置情報が格納されたデータベースである。装置情報データベース53は、各搬送装置3から取得した装置情報が含まれていてもよい。また商品情報データベース54は、商品ごとの在庫の有無、在庫数、収納されている棚5、その棚5の位置(番地)及び重量など、倉庫2内にストックされた各商品に関する各種情報(以下、これを商品情報と呼ぶ)が格納されたデータベースである。 The device information database 53 is a database in which device information of each transport device 3 is stored. The device information database 53 may include device information acquired from each transport device 3 . In addition, the product information database 54 contains various information (hereinafter referred to as , which is called product information).
 オーダ情報データベース55は、オーダされた商品の識別情報及び個数など、顧客からのオーダに関する各種情報(以下、これをオーダ情報と呼ぶ)が格納されるデータベースである。また地図情報データベース56は、搬送装置3の地図情報データベース25と同様の地図情報が格納されたデータベースである。 The order information database 55 is a database that stores various information (hereinafter referred to as order information) regarding orders from customers, such as identification information and quantity of ordered products. The map information database 56 is a database in which map information similar to the map information database 25 of the conveying device 3 is stored.
 経路データデータベース57は、オーダ情報、商品情報及び地図情報に基づいて運行制御装置4の搬送装置制御プログラム(図示せず)が作成した、搬送装置3ごとの移動経路に関する情報が格納されるデータベースである。また計測データデータベース58は、各搬送装置3からそれぞれ取得した計測データが格納されるデータベースである。搬送装置制御プログラムは、各搬送装置3を管理及び制御するプログラムであり、各搬送装置3の移動経路を作成し、各搬送装置3に対する搬送指示を作成する。 The route data database 57 is a database that stores information about the movement route of each transport device 3 created by a transport device control program (not shown) of the operation control device 4 based on order information, product information, and map information. be. The measurement data database 58 is a database in which measurement data obtained from each transport device 3 is stored. The transport device control program is a program that manages and controls each transport device 3 , creates a moving route for each transport device 3 , and creates transport instructions for each transport device 3 .
 さらにエラーログ情報データベース59は、各搬送装置3からそれぞれ取得したエラーログ情報が格納されるデータベースである。走行実績データデータベース60は、各搬送装置3からそれぞれ取得した走行実績データが格納されるデータベースである。 Furthermore, the error log information database 59 is a database in which error log information obtained from each transport device 3 is stored. The travel performance data database 60 is a database in which travel performance data acquired from each transport device 3 is stored.
 一方、データ入出力プログラム50は、通信インタフェース45を介して各搬送装置3との間で必要なコマンド(搬送指示を含む)や情報をやり取りする機能を有するプログラムである。データ入出力プログラム50は、各搬送装置3から取得した装置情報や、計測データ、エラーログ情報及び走行実績データを、それぞれ装置情報データベース53、計測データデータベース58、エラーログ情報データベース59又は走行実績データデータベース60にそれぞれ格納する。また、データ入出力プログラム50は、入力装置43からの入力データを受信し、出力装置44に表示画面などの出力データを送信(出力)する機能を有していてもよい。なお、データ入出力プログラム50は、複数のプログラムで構成されていてもよく、通信規格等に応じてプログラムが使い分けられてもよい。エラー分析プログラム51及び計測データ分析プログラム52の詳細については後述する。 On the other hand, the data input/output program 50 is a program having a function of exchanging necessary commands (including transport instructions) and information with each transport device 3 via the communication interface 45 . The data input/output program 50 stores the device information, measurement data, error log information, and travel performance data acquired from each transport device 3 into a device information database 53, a measurement data database 58, an error log information database 59, or travel performance data, respectively. Each is stored in the database 60 . The data input/output program 50 may also have a function of receiving input data from the input device 43 and transmitting (outputting) output data such as a display screen to the output device 44 . Note that the data input/output program 50 may be composed of a plurality of programs, and the programs may be selectively used according to the communication standard or the like. Details of the error analysis program 51 and the measurement data analysis program 52 will be described later.
 図6は、運行制御装置4が保持するエラーログ情報データベース59の具体的な構成例を示す。本実施の形態のエラーログ情報データベース59は、エラーログ情報識別番号欄59X、エラー検知日時欄59A、搬送装置ID欄59B、エラータイプ欄59C、エラーコード欄59D、エラー内容欄59E、番地欄59F、モード欄59G、搬送棚ID欄59H、棚・商品重量欄59I、バッテリ残量欄59J、走行状態欄59K、走行速度欄59L、加速度欄59M、累積走行距離欄59N、累積加速回数欄59O及び通信状態欄59Pを備えたテーブル構造を有する。エラーログ情報データベース59では、1つの行がいずれかの搬送装置3から取得した1つのエラーログ情報に対応する。 FIG. 6 shows a specific configuration example of the error log information database 59 held by the operation control device 4. FIG. The error log information database 59 of this embodiment includes an error log information identification number column 59X, an error detection date and time column 59A, a conveying apparatus ID column 59B, an error type column 59C, an error code column 59D, an error content column 59E, and an address column 59F. , mode column 59G, transport shelf ID column 59H, shelf/merchandise weight column 59I, remaining battery capacity column 59J, running state column 59K, running speed column 59L, acceleration column 59M, cumulative travel distance column 59N, cumulative acceleration times column 59O and It has a table structure with a communication status column 59P. In the error log information database 59 , one row corresponds to one error log information acquired from one of the conveying devices 3 .
 搬送装置3で検知される特定のエラーは、床面の状態と相関関係がある。そのような相関関係の一例として、ある床面状態(例えば損傷度合いが大きい床面等)の床で搬送装置3が走行(旋回を含む)する場合において、特定のエラーの発生頻度が、異なる床面状態(例えば正常な床面、損傷度合が小さい床面等)と比較して有意に大きくなる場合があることが分かった。なお、エラー(エラーの種類や頻度)と床面の状態の具体的な相関関係は、例えば、搬送装置3の具体的な設計や、床面の材質等の倉庫2の環境要因など、様々な要因によって変化し得る。 A specific error detected by the transport device 3 has a correlation with the state of the floor surface. As an example of such a correlation, when the transport device 3 travels (including turning) on a floor with a certain floor surface state (for example, a floor surface with a large degree of damage), the occurrence frequency of a specific error is different on different floors. It was found that there are cases where it becomes significantly larger than the surface condition (for example, a normal floor surface, a floor surface with a small degree of damage, etc.). The specific correlation between the error (type and frequency of error) and the state of the floor surface varies depending on, for example, the specific design of the transport device 3, the environmental factors of the warehouse 2 such as the material of the floor surface, and the like. May vary depending on factors.
 ここで、床面の状態と相関関係がある特定のエラーのうち、少なくとも一部のエラーは、例えば、ある床面状態(例えば損傷度合いが大きい床面等)の床で搬送装置3が走行(旋回を含む)する場合において、搬送装置3へかかる衝撃や振動等の負荷に起因して発生し得る。ここで、搬送装置3へかかる衝撃や振動等の負荷は、例えば搬送装置3のモード(加速、減速、定速、旋回、停止等)、搬送装置3が搬送する棚及び商品の重量、走行状態(走行、停止等)、走行速度、加速度等によって変化し得る。 Here, at least some of the specific errors that are correlated with the state of the floor are caused by, for example, the transport device 3 traveling on a floor with a certain floor state (for example, a floor with a large degree of damage). (including turning), it may occur due to loads such as shocks and vibrations applied to the conveying device 3 . Here, the load such as shock and vibration applied to the transport device 3 is, for example, the mode of the transport device 3 (acceleration, deceleration, constant speed, turning, stop, etc.), the weight of the shelf and products transported by the transport device 3, the running state (Running, stopping, etc.), running speed, acceleration, etc. may change.
 また、搬送装置3へかかる衝撃や振動等の負荷と特定のエラーとの関係は、搬送装置3の状態によっても異なり得る。本実施の形態では、そのような搬送装置3の状態を示す情報の一例として、搬送装置3の累積走行距離や累積加速回数を例として説明するが、搬送装置3の耐衝撃性や耐振動性など、負荷への耐性に関連する指標であればよい。なお、負荷への耐性に関連する指標は、搬送装置3の劣化に関係し得る指標であってもよい。 Also, the relationship between the load such as shock and vibration applied to the transport device 3 and the specific error may vary depending on the state of the transport device 3 . In this embodiment, as an example of the information indicating the state of the transport device 3, the cumulative traveling distance and the cumulative number of times of acceleration of the transport device 3 will be described. , etc., as long as it is an index related to resistance to load. Note that the index related to resistance to load may be an index that can be related to the deterioration of the conveying device 3 .
 また、搬送装置3で検知されるエラーは、搬送装置3へかかる衝撃や振動等の負荷とは関係なく他の要因により発生するエラーもあるし、搬送装置3へかかる衝撃や振動等の負荷と他の要因との組み合わせによって発生するエラーもあり得る。エラー発生原因を特定するためには、エラー発生時の状況を総合的に分析する必要がある場合もあり、エラーログ情報データベース59には、エラー発生時の状況を示す情報(例えば搬送装置3のバッテリ残量や通信状態を示す情報等を含む)が含まれている。 Errors detected by the transport device 3 may be caused by other factors regardless of the load such as impact or vibration applied to the transport device 3. Some errors may be caused by a combination of other factors. In order to identify the cause of an error, it may be necessary to comprehensively analyze the situation at the time of error occurrence. (including information indicating the remaining battery level and communication status).
 エラーログ情報識別番号欄59Xには、対応するエラーログ情報に対して付与されたエラーログ情報データベース59内で固有のそのエラーログ情報の識別番号(以下、これをエラーログ情報識別番号と呼ぶ)が格納される。 In the error log information identification number column 59X, an identification number unique to the error log information within the error log information database 59 given to the corresponding error log information (hereinafter referred to as an error log information identification number). is stored.
 また搬送装置ID欄59Bには、対応するエラーログ情報を生成した搬送装置3に付与されたその搬送装置3に固有の識別子(搬送装置ID)が格納され、エラー検知日時欄59Aには、その搬送装置3が対応するエラーを検知した時点の時刻が格納される。 Further, the transport device ID column 59B stores an identifier (transport device ID) unique to the transport device 3 assigned to the transport device 3 that generated the corresponding error log information, and the error detection date and time column 59A stores the The time when the transport device 3 detected the corresponding error is stored.
 またエラータイプ欄59Cには、対応するエラーのタイプ(エラータイプ)が格納される。なおエラータイプとしては、計測データに関するエラーである「計測データ関連」と、通信に関するエラーである「通信関連」と、動作に関するエラーである「動作関連」などがある。 The error type column 59C stores the corresponding error type (error type). Error types include "measurement data-related" errors related to measurement data, "communication-related" errors related to communication, and "operation-related" errors related to operations.
 さらにエラーコード欄59Dには、対応するエラーのエラーコードが格納され、エラー内容欄59Eには、対応するエラーの具体的な内容が格納され、番地欄59Fには、対応する搬送装置3が対応するエラーを検知した時点における、倉庫2内の位置(番地)が格納される。なお、本実施の形態において、「エラーを検知した時点」とは、エラーを検知した時刻であってもよいし、エラーが発生した時刻(又はエラーが発生したと推測される時刻)であってもよい。この「エラーを検知した時点」を、エラーの検知時と呼ぶことがある。 Further, the error code column 59D stores the error code of the corresponding error, the error content column 59E stores the specific content of the corresponding error, and the address column 59F stores the corresponding conveying device 3. The position (address) in the warehouse 2 at the time when the error was detected is stored. In this embodiment, the "time at which an error is detected" may be the time at which the error is detected, or the time at which the error occurs (or the time at which the error is presumed to have occurred). good too. This "time at which an error is detected" is sometimes referred to as the time at which an error is detected.
 例えば、エラーの種類によっては、エラーが発生した直後に検知できるエラー(少なくとも一部の動作エラー等)があり、エラーが発生した時刻とエラーを検知した時刻で、搬送装置の位置や、搬送している棚、搬送装置の走行状態やモードなど、種々の状況がほぼ変わらない(床面状態の特定に影響しない程度に、状況に変化がない)場合がある。この場合は、「エラーを検知した時点」として、エラーが発生した時刻とエラーを検知した時刻のどちらが採用されてもよい。 For example, depending on the type of error, there are errors that can be detected immediately after they occur (at least some operational errors, etc.). In some cases, various conditions, such as the shelf being placed on the floor, the running state and mode of the conveying device, do not change (there is no change in the state to the extent that it does not affect the identification of the floor surface state). In this case, either the time at which the error occurred or the time at which the error was detected may be used as the 'time at which the error was detected'.
 また、例えばエラーの種類によっては、エラー(又はエラーに関する事象)が発生してから所定時間経過後に検知するエラー(例えば一部の通信エラー等)がある。そのようなエラーにおいて、エラー(又はエラーに関する事象)が発生した時刻とエラーを検知した時刻で、搬送装置の位置や、搬送している棚、搬送装置の走行状態やモードなど、種々の状況が変わる(床面状態の特定に影響する程度に、状況に変化がある)場合がある。例えば、所定の時間、通信ができない状態が続いたときに、通信エラーと検知する場合がある。そのようなエラーの場合は、エラーに関する事象(例えば通信ができない状態)が発生又は検知した時点を、「エラーを検知した時点」としてもよい。 Also, for example, depending on the type of error, there are errors (eg, some communication errors, etc.) that are detected after a predetermined period of time has passed since the error (or event related to the error) occurred. In such an error, the time when the error (or the event related to the error) occurred and the time when the error was detected, various conditions such as the position of the transport device, the shelf being transported, the running state and mode of the transport device, etc. May change (there is a change in conditions to the extent that it affects the identification of floor conditions). For example, a communication error may be detected when communication is not possible for a predetermined period of time. In the case of such an error, the time at which an error-related event (for example, a state in which communication is not possible) occurs or is detected may be defined as "the time at which the error is detected."
 またモード欄59Gには、対応するエラーが対応する搬送装置3に発生したとき(エラーを検知した時点)のその搬送装置3の動作モード(「加速」、「旋回」、「減速」、「棚を持ち上げる」、「棚を降ろす」又は「停止」など)が格納される。 Also, in the mode column 59G, the operation mode ("acceleration", "rotation", "deceleration", "shelf") of the transport device 3 when a corresponding error occurs in the corresponding transport device 3 (when the error is detected) is displayed. lift", "lower shelf" or "stop") are stored.
 さらに搬送棚ID欄59Hには、そのエラーが発生したとき(エラーを検知した時点)に対応する搬送装置3が棚5を搬送していた場合にその棚5の識別子(棚ID)が格納され、棚・商品重量欄59Iには、収納されていた商品の重量を含むその棚5全体の重量が格納される。 Further, the transport shelf ID column 59H stores the identifier (shelf ID) of the shelf 5 when the corresponding transport device 3 transports the shelf 5 when the error occurs (when the error is detected). , the shelf/commodity weight column 59I stores the weight of the entire shelf 5 including the weight of the stored commodity.
 バッテリ残量欄59Jには、そのエラーが発生した時点(エラーを検知した時点)における搬送装置3に搭載されたバッテリの残容量が格納され、走行状態欄59Kには、そのときのその搬送装置3の走行状態(「走行」又は「停止」)が格納される。また走行速度欄59L及び加速度欄59Mには、それぞれのエラーが発生した時点(エラーを検知した時点)におけるその搬送装置3の走行速度や加速度が格納される。 The remaining battery capacity column 59J stores the remaining capacity of the battery mounted on the transport device 3 at the time when the error occurs (when the error is detected), and the running state column 59K stores the remaining capacity of the transport device at that time. 3 running states (“running” or “stopped”) are stored. The traveling speed column 59L and the acceleration column 59M store the traveling speed and acceleration of the conveying device 3 at the time when each error occurs (when the error is detected).
 累積走行距離欄59N及び累積加速回数欄59Oには、対応する搬送装置3のそのエラーが発生したとき(エラーを検知した時点)までの累積の走行距離や加速回数がそれぞれ格納され、通信状態欄59Pには、そのときの搬送装置3の通信状態が格納される。 The cumulative travel distance column 59N and the cumulative acceleration count column 59O store the cumulative travel distance and the cumulative acceleration count up to the time when the error of the corresponding transport device 3 occurs (when the error is detected). 59P stores the communication state of the transport device 3 at that time.
 なお各搬送装置3がそれぞれ保持するエラーログ情報データベース26(図5)も、基本的には運行制御装置4が保持するエラーログ情報データベース59と同様の構成を有する。ただし、各搬送装置3が保持するエラーログ情報データベース26には、その搬送装置3において生成されたエラーログ情報のみが格納される。 The error log information database 26 ( FIG. 5 ) held by each transport device 3 basically has the same configuration as the error log information database 59 held by the operation control device 4 . However, the error log information database 26 held by each transport device 3 stores only the error log information generated in that transport device 3 .
 また運行制御装置4が保持する走行実績データデータベース60の具体的な構成例を図7に示す。走行実績データデータベース60は、マーク検知日時欄60A、搬送装置ID欄60B、番地欄60C、搬送棚ID欄60D、棚・商品重量欄60E及び走行状態欄60Fを備えたテーブル構造を有する。走行実績データデータベース60の1つの行は、搬送装置3が1つのマーカ2Bを検知したときの搬送装置3の状態に対応する。なお、走行実績データデータベース60は、搬送装置3の動作モード(「加速」、「旋回」、「減速」、「棚を持ち上げる」、「棚を降ろす」又は「停止」など)が変化した場合に、そのときの走行実績データを保持してもよい。 Also, FIG. 7 shows a specific configuration example of the travel performance data database 60 held by the operation control device 4 . The running record data database 60 has a table structure with a mark detection date column 60A, a carrier ID column 60B, an address column 60C, a carrier shelf ID column 60D, a shelf/product weight column 60E, and a running state column 60F. One row of the travel record data database 60 corresponds to the state of the transport device 3 when the transport device 3 detects one marker 2B. In addition, when the operation mode of the transport device 3 ("accelerate", "turn", "decelerate", "lift the shelf", "lower the shelf", or "stop"), the travel performance data database 60 is stored. , the running record data at that time may be held.
 そして搬送装置ID欄60Bには、対応する搬送装置3の搬送装置IDが格納され、マーク検知日時欄60Aには、その搬送装置3が対応するマーカ2Bを検知した日時が格納される。また番地欄60Cには、そのマーカ2Bで表記された番地(つまりそのときのその搬送装置3の位置)が格納される。搬送棚ID欄60Dには、そのときその搬送装置3が棚5を搬送していた場合には、その棚5の棚IDが格納される。 The transport device ID of the corresponding transport device 3 is stored in the transport device ID column 60B, and the date and time when the transport device 3 detected the corresponding marker 2B is stored in the mark detection date and time column 60A. The address column 60C stores the address indicated by the marker 2B (that is, the position of the conveying device 3 at that time). If the transport device 3 is transporting the shelf 5 at that time, the shelf ID of the shelf 5 is stored in the transport shelf ID column 60D.
 さらに棚・商品重量欄60Eには、かかる棚5と、その棚5に収納されていたすべての商品との合計重量が格納される。なお、搬送装置3が棚5を搬送していない場合、搬送棚ID欄60D及び棚・商品重量欄60Eは、搬送していないことを示す所定の値が格納されてもよいし、値が格納されていなくてもよい。走行状態欄60Fには、対応するマーカ2Bを検知したときの対応する搬送装置3の走行状態が格納される。 Furthermore, the total weight of the shelf 5 and all the products stored on that shelf 5 is stored in the shelf/product weight column 60E. When the transport device 3 does not transport the shelf 5, the transport shelf ID column 60D and the shelf/product weight column 60E may store a predetermined value indicating that the shelf 5 is not transported. It does not have to be. The running state column 60F stores the running state of the corresponding transport device 3 when the corresponding marker 2B is detected.
 従って、図7の例の場合、上から9行目(#9)は、対応する搬送装置3の搬送装置IDは「AGV0005」であり、「2020/05/20 11:36:15」に「(4, 3)」という番地を表すマーカ2Bを検知し、そのときその搬送装置3は「SHE0006」という搬送棚IDが付与された合計重量が「400」〔kg〕の棚5を搬送中であり、そのときの搬送装置3の走行状態が「走行」であったことが示されている。 Therefore, in the example of FIG. 7, in the ninth line from the top (#9), the transport device ID of the corresponding transport device 3 is "AGV0005", and "2020/05/20 11:36:15" is changed to " (4, 3)" is detected, and at that time, the transport device 3 is transporting a shelf 5 with a total weight of "400" [kg] and having a transport shelf ID of "SHE0006". It is indicated that the running state of the conveying device 3 at that time was "running".
 また、走行実績データデータベース60の各行は、搬送装置3が1つのマーカ2Bを検知したときの搬送装置3の状態として、動作モード(「加速」、「旋回」、「減速」、「棚を持ち上げる」、「棚を降ろす」又は「停止」など)、搬送装置3に搭載されたバッテリの残容量、搬送装置3の走行速度や加速度、搬送装置3の通信状態、搬送装置3がそのマーカ2Bを検知したときまでの累積の走行距離や加速回数を格納してもよい。 Further, each row of the travel record data database 60 indicates the operation mode (“acceleration”, “turning”, “deceleration”, “lift up shelf”) as the state of the transport device 3 when the transport device 3 detects one marker 2B. , ``lower the shelf'' or ``stop''), the remaining capacity of the battery mounted on the transport device 3, the traveling speed and acceleration of the transport device 3, the communication state of the transport device 3, and the marker 2B of the transport device 3. The accumulated running distance and the number of times of acceleration up to the time of detection may be stored.
 なお各搬送装置3がそれぞれ保持する走行実績データデータベース28(図5)も、基本的には運行制御装置4が保持する走行実績データデータベース60と同様の構成を有する。ただし、運行制御装置4が保持する走行実績データデータベース60には、各搬送装置3の走行実績データが格納されるが、各搬送装置3が保持する走行実績データデータベース28は、その搬送装置3において生成された走行実績データのみが格納される。 The travel performance data database 28 ( FIG. 5 ) held by each transport device 3 basically has the same configuration as the travel performance data database 60 held by the operation control device 4 . However, although the travel performance data database 60 held by the operation control device 4 stores the travel performance data of each transport device 3, the travel performance data database 28 held by each transport device 3 is stored in the transport device 3. Only the generated travel performance data is stored.
 各搬送装置3の制御装置10は、マークを検知したタイミング、動作モード(「加速」、「旋回」、「減速」、「棚を持ち上げる」、「棚を降ろす」又は「停止」など)が変化したタイミング、エラーを検知したタイミング等、所定のタイミングで走行実績データを、走行実績データデータベース28に記録する。 The control device 10 of each transport device 3 changes the timing of detecting the mark and the operation mode ("accelerate", "turn", "decelerate", "lift the shelf", "lower the shelf" or "stop"). The driving performance data is recorded in the driving performance data database 28 at a predetermined timing such as the timing when the vehicle is detected or the timing when an error is detected.
(1-2)床面状態判定機能
 次に、運行制御装置4に搭載された床面状態判定機能について説明する。この床面状態判定機能は、各搬送装置3から収集した計測データやエラーログ情報や走行実績データに基づいて倉庫2の床面状態を判定する機能である。
(1-2) Floor State Determining Function Next, the floor state determining function installed in the operation control device 4 will be described. This floor surface state determination function is a function for determining the floor surface state of the warehouse 2 based on measurement data, error log information, and running performance data collected from each transport device 3 .
 運行制御装置4は、定期的又は不定期に、各搬送装置3から計測データ、エラーログ情報及び走行実績データを収集し、これらを計測データデータベース58、エラーログ情報データベース59又は走行実績データデータベース60に蓄積している。 The operation control device 4 periodically or irregularly collects measurement data, error log information, and travel performance data from each transport device 3, and stores them in a measurement data database 58, an error log information database 59, or a travel performance data database 60. accumulated in
 そして、運行制御装置4は、エラーログ情報データベース59に登録されたエラーログ情報を分析して倉庫2の床面の状態を判定すべき旨の所定の指示(以下、これをエラー分析指示と呼ぶ)がユーザにより入力されると、エラーログ情報データベース59に蓄積されている各エラーログ情報のエラーコードに基づいて、倉庫2内の区画2Aごとに、その区画2Aにおいていずれかの搬送装置3に発生したエラーの種類(以下、これをエラー種類と呼ぶ)ごとの発生回数及び発生頻度をそれぞれ集計する。 Then, the operation control device 4 issues a predetermined instruction to analyze the error log information registered in the error log information database 59 to determine the state of the floor surface of the warehouse 2 (hereinafter referred to as an error analysis instruction). ) is input by the user, based on the error code of each error log information accumulated in the error log information database 59, for each section 2A in the warehouse 2, one of the transport devices 3 in that section 2A The number of occurrences and the frequency of occurrence for each type of error that has occurred (hereafter referred to as error type) are counted.
 また運行制御装置4は、その集計結果に基づいて、いずれかのエラー種類の発生回数又は発生頻度がそのエラー種類について予め設定された閾値を超過した場合には、その旨のアラートを出力装置44に表示するなどしてユーザにその旨を通知する。 If the number of occurrences or the frequency of occurrence of any error type exceeds a preset threshold for that error type, the operation control device 4 outputs an alert to that effect to the output device 44. The user is notified to that effect by displaying the
 また運行制御装置4は、いずれのエラー種類の発生回数又は発生頻度もそのエラー種類について予め設定された閾値を超過していない場合には、かかる集計結果と、各搬送装置3から収集した計測データ、エラーログ情報及び走行実績データとに基づいて床面の区画2Aごとの損傷度合をそれぞれ判定する。そして運行制御装置4は、この判定結果に基づいて、図8について後述する床面状態判定結果画面70を生成し、生成した床面状態判定結果画面70を出力装置44に表示する。 In addition, when the number of occurrences or frequency of occurrence of any error type does not exceed a preset threshold value for that error type, the operation control device 4 collects the total result and the measurement data collected from each transport device 3. , the degree of damage for each section 2A of the floor is determined based on the error log information and the actual running data. Then, the operation control device 4 generates a floor state determination result screen 70 described later with reference to FIG. 8 based on this determination result, and displays the generated floor state determination result screen 70 on the output device 44.
 以上のような床面状態判定機能を実現するための手段として、図5に示すように、運行制御装置4の記憶装置42には、上述したデータ入出力プログラム50に加えて、エラー分析プログラム51及び計測データ分析プログラム52が格納されている。 As a means for realizing the floor condition determination function as described above, as shown in FIG. and a measurement data analysis program 52 are stored.
 エラー分析プログラム51は、エラーログ情報データベース59に格納されている各エラーログ情報を分析し、倉庫2の床面の状態を区画2Aごとにそれぞれ判定する機能を有するプログラムである。エラー分析プログラム51は、かかる判定の判定結果に基づいて上述のようにアラートをユーザに通知したり、後述の床面状態判定結果画面70(図8)を出力装置44に表示する。アラートは、ユーザのほか、外部メンテナンスのために外部の関係者へ通知するようにしてもよい。 The error analysis program 51 is a program that has the function of analyzing each error log information stored in the error log information database 59 and determining the state of the floor surface of the warehouse 2 for each section 2A. The error analysis program 51 notifies the user of an alert as described above based on the determination result of such determination, and displays a floor state determination result screen 70 (FIG. 8) on the output device 44, which will be described later. Alerts may notify external parties for external maintenance in addition to the user.
 また計測データ分析プログラム52は、計測データデータベース58に格納されている各搬送装置3からの映像データ(画像データや動画データなど)を分析し、床面の色の変化や凹凸の有無を判定して、判定結果を出力装置44に表示する機能を有するプログラムである。 The measurement data analysis program 52 also analyzes the image data (image data, moving image data, etc.) from each transport device 3 stored in the measurement data database 58, and determines the presence or absence of color change and unevenness of the floor surface. It is a program having a function of displaying the judgment result on the output device 44. FIG.
 なお本実施の形態では、計測データ分析プログラム52による分析及び判定がエラー分析プログラム51とは独立に行われ、その判定結果もエラー分析プログラム51による床面状態の判定に利用されないものとしているが、エラー分析プログラム51が計測データ分析プログラム52の分析及び判定結果をも利用して床面状態を判定するようにしてもよい。 In this embodiment, the analysis and determination by the measurement data analysis program 52 are performed independently of the error analysis program 51, and the determination result is not used for the determination of the floor state by the error analysis program 51. The error analysis program 51 may also use the analysis and determination results of the measurement data analysis program 52 to determine the floor condition.
 例えば、エラー分析プログラム51で損傷度合が大きいと判定された床面が、計測データ分析プログラム52でも同様に損傷度合が大きいと判定されれば、判定の精度が向上する。一方で、計測データ分析プログラム52では検知できないような床面の損傷であっても、エラーの要因となるような損傷は、エラー分析プログラム51で検知可能である。また、計測データ分析プログラム52は、エラーの要因とならない程度の損傷(例えば小さな損傷)であっても検知し得る。このように、エラー分析プログラム51による床面状態の分析及び判定は、独立に行われても良いが、床面状態の判定精度の向上を目的として、計測データ分析プログラム52による床面状態の判定結果をも利用して、総合的に判定してもよい。 For example, if the floor surface determined to be highly damaged by the error analysis program 51 is similarly determined to be highly damaged by the measurement data analysis program 52, the accuracy of the determination is improved. On the other hand, even damage to the floor that cannot be detected by the measurement data analysis program 52 can be detected by the error analysis program 51 if it causes an error. In addition, the measurement data analysis program 52 can detect even damage that does not cause an error (for example, small damage). In this way, the analysis and determination of the floor state by the error analysis program 51 may be performed independently. The results may also be used for comprehensive determination.
 図8は、エラー分析プログラム51により出力装置44に表示される上述の床面状態判定結果画面70の構成例を示す。この床面状態判定結果画面70は、アカウント情報表示領域71、搬送装置状態表示領域72、床損傷状況可視化マップ表示領域73及びエラーデータサマリ表示領域74を備えて構成される。 FIG. 8 shows a configuration example of the above-described floor condition determination result screen 70 displayed on the output device 44 by the error analysis program 51. FIG. The floor condition determination result screen 70 comprises an account information display area 71 , a conveying device condition display area 72 , a floor damage situation visualization map display area 73 and an error data summary display area 74 .
 そしてアカウント情報表示領域71には、そのとき運行制御装置4にログインしているユーザのユーザ名及びユーザIDと、そのユーザが運行制御装置4にログインした日時(「ログイン日時」)と、最後にエラーログ情報が更新された日時(「データ更新日時」)とがそれぞれ表示される。また搬送装置状態表示領域72には、そのとき倉庫2内に存在するすべての搬送装置4の搬送装置ID及び状態がそれぞれ表示される。搬送装置状態表示領域72に表示された搬送装置状態の情報は、装置情報データベース53の装置情報に基づいて構成されてもよい。 Then, in the account information display area 71, the user name and user ID of the user who is logging in to the operation control device 4 at that time, the date and time when the user logged in to the operation control device 4 ("login date and time"), and finally The date and time when the error log information was updated (“data update date and time”) are displayed respectively. Further, in the transport device status display area 72, the transport device IDs and statuses of all the transport devices 4 present in the warehouse 2 at that time are displayed. The information of the transporting device status displayed in the transporting device status display area 72 may be configured based on the device information of the device information database 53 .
 さらに床損傷状況可視化マップ表示領域73には、床損傷状況可視化マップ75が表示される。床損傷状況可視化マップ75は、倉庫2の床面の損傷状況を可視化したマップであり、かかる床面の各区画2Aにそれぞれ対応させた複数の領域75Aを有する。そして、これらの領域75Aのうちの必要な領域75Aがそれぞれをその領域75Aに対応する床面の区画2Aの損傷度合に応じた画像(例えば模様又はマーク、色又は濃度での着色等)により示される。 Furthermore, a floor damage visualization map 75 is displayed in the floor damage visualization map display area 73 . The floor damage status visualization map 75 is a map that visualizes the damage status of the floor surface of the warehouse 2, and has a plurality of areas 75A corresponding to the respective sections 2A of the floor surface. Then, the necessary areas 75A out of these areas 75A are indicated by images (for example, patterns or marks, coloring with colors or densities, etc.) according to the degree of damage of the sections 2A of the floor corresponding to the areas 75A. be
 具体的に、本実施の形態の場合、床面の損傷度合は、修復が必要な程度に損傷が大きい「要修復」(図8では「修復必要箇所」)と、修復の必要はないが損傷が大きい「大」(図8では「損傷度合大」)と、損傷が「大」よりも少ない「中」(図8では「損傷度合中」)と、損傷はあるがその度合が「中」よりも小さい「小」(図8では「損傷度合小」)と、損傷が「小」までは進行していない「正常状態」との5つの段階に区分されている。そして床損傷状況可視化マップ75では、床面の対応する区画2Aの損傷度合が「正常状態」である領域75Aについては着色や模様がなく、それぞれ床面の対応する区画2Aの損傷度合が「小」、「中」、「大」又は「要修復」である領域75Aについてはこれらの損傷度合に応じた色又は濃度、模様で示されている。 Specifically, in the case of the present embodiment, the degree of damage to the floor surface is divided into "repair required" ("area requiring repair" in FIG. 8), which is severe enough to require repair, and "Large" ("Severe damage" in Figure 8), "Medium" ("Medium damage" in Figure 8) less than "Large" damage, and "Medium" damage It is divided into five stages: "small" ("small damage" in FIG. 8), and "normal state" in which the damage has not progressed to "small". In the floor damage visualization map 75, the area 75A in which the degree of damage in the section 2A corresponding to the floor is "normal" is neither colored nor patterned, and the degree of damage in the section 2A corresponding to the floor is "small". , , , , , , , , , or , are indicated by colors, densities, and patterns according to their degrees of damage.
 さらにエラーデータサマリ表示領域74には、倉庫2内で搬送装置3に発生したエラーに関する情報がテーブル形式で表示される。具体的には、各エラーについて、そのエラーに付与された通し番号(「♯」)、そのエラーが発生した床面の区画2Aの位置(「番地」)、そのエラーのエラータイプ(「エラータイプ」)、それまでにその区画2Aでそのエラータイプのエラーを検知した回数(「エラー検知回数」)、そのエラーについて予め定められた閾値(「エラー検知回数閾値」)及びそのエラーのエラーログ情報が対応する搬送装置3のエラーログ情報データベース26に登録された日にち(「エラー情報更新日」)と、その番地の区画2Aに対する損傷度合の判定結果(「損傷度合」)とが一覧形式で表示される。なおエラーデータサマリ表示領域74に表示されたエラー情報は、スクロールバー74Aを操作することによってスクロールすることができる。なお、エラーデータサマリ表示領域74のエラーに関する情報は、エラー検知日時、エラータイプ、エラーコード、番地、損傷度合などでソートやフィルタリングが可能であってもよい。エラーデータサマリ表示領域74に表示されたエラー情報は、エラーログ情報データベース59のエラーログ情報に基づいて構成されてもよい。 Furthermore, in the error data summary display area 74, information on errors that have occurred in the transport device 3 within the warehouse 2 is displayed in a table format. Specifically, for each error, the serial number ("#") given to the error, the position ("address") of the section 2A on the floor where the error occurred, and the error type ("error type") ), the number of times an error of that error type has been detected in that section 2A (“error detection count”), a predetermined threshold for that error (“error detection count threshold”), and error log information for that error. The date (“error information update date”) registered in the error log information database 26 of the corresponding transport device 3 and the judgment result (“damage degree”) of the degree of damage to the section 2A at that address are displayed in a list format. be. The error information displayed in the error data summary display area 74 can be scrolled by operating the scroll bar 74A. The error information in the error data summary display area 74 may be sorted or filtered by error detection date/time, error type, error code, address, degree of damage, and the like. The error information displayed in the error data summary display area 74 may be configured based on the error log information in the error log information database 59 .
 そして床面状態判定結果画面70では、エラーデータサマリ表示領域74内に各種情報が表示された各エラーのうちの所望する1つのエラーに付与された整理番号(「♯」欄に表記された番号)をクリックすることによって、表示画面を図9に示すようなエラーデータ詳細画面80に切り換えることができる。 Then, on the floor surface condition determination result screen 70, the serial number assigned to the desired error among the various types of information displayed in the error data summary display area 74 (the number written in the "#" column) ), the display screen can be switched to an error data detail screen 80 as shown in FIG.
 このエラーデータ詳細画面80には、かかるクリックにより選択されたエラーの詳細を表示される。このとき表示されるエラーの詳細は、エラーログ情報データベース59に登録されているそのエラーのエラーログ情報の内容と同様であるため、ここでの説明は省略する。なお、運行制御装置4は、エラーログ情報データベース59のエラーログ情報に基づいてエラーデータ詳細画面80を生成し、生成したエラーデータ詳細画面80を出力装置44に表示する。 This error data detail screen 80 displays the details of the error selected by this click. Since the details of the error displayed at this time are the same as the content of the error log information of the error registered in the error log information database 59, description thereof will be omitted here. The operation control device 4 generates an error data detail screen 80 based on the error log information in the error log information database 59 and displays the generated error data detail screen 80 on the output device 44 .
(1-3)第1のエラー分析処理
 次に、かかる床面状態判定機能に関連して運行制御装置4のエラー分析プログラム51により実行される第1のエラー分析処理について説明する。なお、以下の説明においては、各処理の処理主体を「エラー分析プログラム」として説明するが、実際上は、エラー分析プログラム51に基づいて運行制御装置4のCPU40がその処理を実行することは言うまでもない。
(1-3) First Error Analysis Processing Next, the first error analysis processing executed by the error analysis program 51 of the operation control device 4 in relation to the floor state determination function will be described. In the following description, the subject of each process will be described as an "error analysis program", but in practice, it goes without saying that the CPU 40 of the operation control device 4 executes the process based on the error analysis program 51. stomach.
 図10は、ユーザにより上述のエラー分析指示が入力された場合に、運行制御装置4のエラー分析プログラム51により実行される第1のエラー分析処理の一連の処理の流れを示す。第1のエラー分析処理は、ユーザによるエラー分析指示が入力された場合の他、定期的又は不定期に実行されても良い。例えば、エラー分析プログラム51が、エラーログ情報データベース59を基に、直近の所定の期間におけるエラー発生回数をカウントし、所定の閾値を超えた場合に、第1のエラー分析処理を実行しても良い。 FIG. 10 shows a series of processes of the first error analysis process executed by the error analysis program 51 of the operation control device 4 when the user inputs the error analysis instruction. The first error analysis process may be executed periodically or irregularly, as well as when an error analysis instruction is input by the user. For example, the error analysis program 51 counts the number of error occurrences in the most recent predetermined period based on the error log information database 59, and when the number exceeds a predetermined threshold, the first error analysis process may be executed. good.
 エラー分析プログラム51は、かかる所定のエラー分析指示が入力されると、この図10に示す第1のエラー分析処理を開始し、まず、エラーログ情報データベース59に登録されているエラーログ情報を読み出すことにより取得する(S1)。 When such a predetermined error analysis instruction is input, the error analysis program 51 starts the first error analysis process shown in FIG. (S1).
 このときエラー分析プログラム51がエラーログ情報データベース59から読み出すエラーログ情報の範囲は、エラーログ情報データベース59に登録されているすべてのエラーログ情報であっても、エラーログ情報データベース59に登録されている直近の所定期間(例えば直近1年)のエラーログ情報のみであってもよい。 At this time, the range of error log information read out from the error log information database 59 by the error analysis program 51 is all the error log information registered in the error log information database 59. Only the error log information for the most recent predetermined period (for example, the most recent year) may be included.
 続いて、エラー分析プログラム51は、倉庫2の床面の各区画2Aにおけるエラーコードごと(エラー種類ごと)の発生回数及び発生頻度をそれぞれ集計する(S2)。 Subsequently, the error analysis program 51 aggregates the number of occurrences and the frequency of occurrence for each error code (for each error type) in each section 2A of the floor of the warehouse 2 (S2).
 具体的に、エラー分析プログラム51は、例えば、番地が(1,1)の区画2Aから順番に、その区画2Aの番地が図6について上述したエラーログ情報データベース59の番地欄59Fに格納されているエントリ(行)をすべて抽出する。そしてエラー分析プログラム51は、抽出した各エントリをエラーコード欄59Dに格納されたエラーコードごとに分類することにより、各区画2Aにおけるエラーコードごとの発生回数をそれぞれ算出する。 Specifically, the error analysis program 51 stores the address of the section 2A in the address column 59F of the error log information database 59 described above with reference to FIG. extract all entries (rows) that The error analysis program 51 classifies the extracted entries by the error code stored in the error code column 59D, thereby calculating the number of occurrences of each error code in each section 2A.
 また、エラー分析プログラム51は、このようにして得られた各区画2Aにおけるエラーコードごとの発生回数を基に、各区画2Aにおける「エラーコードごとの発生頻度」を算出する。 Also, the error analysis program 51 calculates the "occurrence frequency of each error code" in each section 2A based on the number of occurrences of each error code in each section 2A thus obtained.
 ここで、各区画2Aにおけるエラーコードごとの発生回数は、当該区画2Aを通過した回数と関連性がある。例えば、ある区画2Aを通過した回数がゼロであれば、当該区画2Aにおけるエラーの発生回数はゼロとなる。仮に、ある区画2Aが損傷度合いが大きく、搬送装置3が通過するときにエラーが発生しやすい状態となった場合には、当該区画2Aの通過回数が増えれば、エラーコードごとの発生回数が増える可能性がある。 Here, the number of occurrences of each error code in each section 2A is related to the number of times the section 2A has been passed. For example, if the number of passages through a section 2A is zero, the number of error occurrences in the section 2A is zero. If a certain section 2A has a large degree of damage, and an error is likely to occur when the conveying device 3 passes through, the number of occurrences of each error code increases as the number of passages through the section 2A increases. there is a possibility.
 また、各区画2Aにおけるエラーコードごとの発生回数は、エラーログ情報の集計期間との関連性がある。例えば、当該期間がゼロであれば、各区画2Aにおけるエラーの発生回数はゼロとなる。基本的には、当該期間が長ければ、当該期間における搬送装置3による搬送回数が増え、各区画2Aの通過回数も増加する可能性が高い。各区画2Aにおけるエラーコードごとの発生回数は、当該区画2Aを通過した回数と関連性があるため、エラーログ情報の集計期間との関連性があると言える。 Also, the number of occurrences of each error code in each section 2A is related to the aggregation period of the error log information. For example, if the period is zero, the number of error occurrences in each section 2A is zero. Basically, the longer the period, the higher the number of times of transport by the transport device 3 during the period, and the more likely the number of passes through each section 2A. Since the number of occurrences of each error code in each section 2A is related to the number of times the section 2A has been passed, it can be said that there is a correlation with the collection period of the error log information.
 そのため、各区画2Aにおける「エラーコードごとの発生頻度」は、各区画2Aを通過したときに各エラーコードが発生した頻度を示す値として、例えば所定の期間において、その区画を通過した回数に対するエラーコードごとの発生回数の割合であってもよい。 Therefore, the "frequency of occurrence of each error code" in each section 2A is a value indicating the frequency of occurrence of each error code when passing through each section 2A. It may be a ratio of the number of occurrences for each code.
 また、例えば、所定の期間に対するエラーコードごとの発生頻度として、エラー分析プログラム51は、例えば各区画2Aにおけるエラーコードごとの発生回数を、ステップS1で読み出したエラーログ情報の期間(月、週又は日数)でそれぞれ除算することにより、各区画2Aにおけるエラーコードごとの発生頻度を算出してもよい。また、例えば、各区画2Aにおける「エラーコードごとの発生頻度」を、エラーログ情報データベース59に登録されている直近の所定期間(例えば直近1カ月や直近1週間など)における発生回数としてもよい。 Further, for example, as the frequency of occurrence of each error code for a predetermined period, the error analysis program 51 calculates, for example, the number of occurrences of each error code in each section 2A during the period of the error log information read in step S1 (month, week, or number of days) to calculate the frequency of occurrence of each error code in each section 2A. Further, for example, the “frequency of occurrence of each error code” in each section 2A may be the number of occurrences in the most recent predetermined period (for example, the most recent month or the most recent week) registered in the error log information database 59.
 次いで、エラー分析プログラム51は、各区画2Aにおけるエラーコードごとの発生回数を、予めエラーコードごと(正確には、各エラーコードに対応するエラー種類ごと)にそれぞれ設定された閾値とそれぞれ比較し、いずれかのエラーコードの発生回数がそのエラーコードについて設定された閾値(以下、これをアラート用閾値と呼ぶ)を超過している区画2Aが存在するか否かを判断する(S3)。 Next, the error analysis program 51 compares the number of occurrences of each error code in each section 2A with a threshold set in advance for each error code (more precisely, each error type corresponding to each error code), and It is determined whether or not there is a section 2A in which the number of occurrences of any error code exceeds a threshold set for that error code (hereinafter referred to as an alert threshold) (S3).
 そしてエラー分析プログラム51は、この判断で肯定結果を得ると、いずれかのエラーコードの発生回数がそのエラーコードについて設定されたアラート用閾値を超過しているすべての区画2Aの番地を含むアラートを出力装置44に表示し、及び又は、かかるアラートを予め登録されたユーザのメールアドレスに送信するなどしてユーザに通知し(S4)、この後、ステップS5に進む。 When the error analysis program 51 obtains a positive result in this determination, it generates an alert containing all the addresses of the section 2A in which the number of occurrences of any error code exceeds the alert threshold set for that error code. The alert is displayed on the output device 44 and/or sent to the user's e-mail address registered in advance to notify the user (S4), and then the process proceeds to step S5.
 これに対してエラー分析プログラム51は、ステップS3の判断で否定結果を得ると、ステップS5に進む。ステップS5では、ステップS2で算出した各区画2Aにおけるエラーコードごとの発生回数及び発生頻度に基づいて、区画2Aごとにその損傷度合をそれぞれ判定する損傷度合判定処理を実行する(S5)。 On the other hand, if the error analysis program 51 obtains a negative result in step S3, it proceeds to step S5. In step S5, based on the number of occurrences and the frequency of occurrence of each error code in each section 2A calculated in step S2, damage degree determination processing is executed to determine the degree of damage for each section 2A (S5).
 この後、エラー分析プログラム51は、ステップS5の判定結果に応じた上述の床面状態判定結果画面70(図8)を生成し、生成した床面状態判定結果画面70を出力装置44(図5)に表示する(S6)。 After that, the error analysis program 51 generates the floor state determination result screen 70 (FIG. 8) according to the determination result of step S5, and outputs the generated floor state determination result screen 70 to the output device 44 (FIG. 5). ) (S6).
 具体的に、エラー分析プログラム51は、ステップS5の処理結果に基づいて、図8の各領域75Aをそれぞれその領域75Aに対応する区画2Aの損傷度合の判定結果に応じた色又は濃度、模様で示す床損傷状況可視化マップ75を生成する。またエラー分析プログラム51は、生成した床損傷状況可視化マップ75と、ステップS1で取得したエラーログ情報のうちの必要な情報と、その他の必要な情報とを掲載した床面状態判定結果画面70(図8)を生成する。そしてエラー分析プログラム51は、このようにして生成した床面状態判定結果画面70の画面データを出力装置44に与えることにより、当該床面状態判定結果画面70を出力装置44に表示させる。 Specifically, based on the processing result of step S5, the error analysis program 51 converts each area 75A in FIG. A floor damage situation visualization map 75 shown is generated. In addition, the error analysis program 51 displays the generated floor damage situation visualization map 75, necessary information out of the error log information acquired in step S1, and other necessary information on the floor state determination result screen 70 ( FIG. 8). The error analysis program 51 supplies the screen data of the floor condition determination result screen 70 thus generated to the output device 44 to display the floor condition determination result screen 70 on the output device 44 .
 そしてエラー分析プログラム51は、この後、この第1のエラー分析処理を終了する。
 ここで、変形例として、第1のエラー分析処理において、S3及びS4を実行せず、例えばS1、S2、S5、S6を順に実行してもよい。例えば、ユーザによるエラー分析指示が入力されて第1のエラー分析処理を実行する場合には、S6の床面状態判定結果画面70を出力装置44に表示すれば、ユーザは床損傷状況を把握できる。
 また、別の変形例として、第1のエラー分析処理において、S5を実行せず、例えばS1、S2、S3、S4、S6を順に実行してもよい。この場合、S6について、エラー分析プログラム51は、S3の判定結果を基に、アラート用閾値を超過しているすべての区画2Aの番地を、異常箇所(例えば修復必要箇所又は損傷度合大など)として床損傷状況可視化マップ75を生成し、床面状態判定結果画面70を出力装置44に表示してもよい。
The error analysis program 51 then ends this first error analysis process.
Here, as a modification, for example, S1, S2, S5, and S6 may be executed in order without executing S3 and S4 in the first error analysis process. For example, when an error analysis instruction is input by the user and the first error analysis process is executed, the floor condition determination result screen 70 of S6 is displayed on the output device 44 so that the user can grasp the floor damage status. .
As another modification, in the first error analysis process, S1, S2, S3, S4, and S6, for example, may be executed in order without executing S5. In this case, for S6, the error analysis program 51 identifies all the addresses of the section 2A that exceed the alert threshold value as abnormal locations (for example, locations requiring repair or large damage, etc.) based on the determination result of S3. A floor damage status visualization map 75 may be generated and the floor surface condition determination result screen 70 may be displayed on the output device 44 .
 また、別の変形例として、S3、S4について、エラーコードの発生回数の代わりに、エラーコードの発生頻度を用いてもよい。例えば、S3において、エラー分析プログラム51は、各区画2Aにおけるエラーコードごとの発生頻度を、予めエラーコードごと(正確には、各エラーコードに対応するエラー種類ごと)にそれぞれ設定された閾値とそれぞれ比較し、いずれかのエラーコードの発生頻度がそのエラーコードについて設定された閾値(アラート用閾値)を超過している区画2Aが存在するか否かを判断してもよい。 Also, as another modification, for S3 and S4, the frequency of error code occurrence may be used instead of the number of error code occurrences. For example, in S3, the error analysis program 51 compares the frequency of occurrence of each error code in each section 2A with threshold values set in advance for each error code (more precisely, each error type corresponding to each error code). By comparing, it may be determined whether or not there is a section 2A in which the occurrence frequency of any error code exceeds the threshold (alert threshold) set for that error code.
 図11は、かかる第1のエラー分析処理のステップS5におけるエラー分析プログラム51の具体的な処理内容を示す。エラー分析プログラム51は、第1のエラー分析処理のステップS5に進むと、この図11に示す損傷度合判定処理を開始し、まず、倉庫2内の床面の各区画2Aの中からステップS11以降が未処理の区画2Aを1つ選択する(S10)。 FIG. 11 shows specific processing contents of the error analysis program 51 in step S5 of the first error analysis process. When proceeding to step S5 of the first error analysis process, the error analysis program 51 starts the damage degree determination process shown in FIG. selects one unprocessed section 2A (S10).
 続いて、エラー分析プログラム51は、ステップS10で選択した区画(以下、これを選択区画と呼ぶ)2Aについて、第1のエラー分析処理のステップS2(図10)で集計した各エラーコードにそれぞれ対応するエラーの発生回数の合計値、つまり選択区画2Aでいずれかの搬送装置3に発生した何らかのエラーの総回数が、床面に損傷がない又は損傷がない可能性があると判断するための基準である所定の閾値(1回以上であり、以下、これをエラー総数閾値と呼ぶ)を超過しているか否かを判断する(S11)。 Subsequently, the error analysis program 51 causes the partition (hereinafter referred to as the selected partition) 2A selected in step S10 to correspond to each error code tabulated in step S2 (FIG. 10) of the first error analysis process. The total number of occurrences of errors, that is, the total number of errors that occurred in any of the transport devices 3 in the selected section 2A, is the criterion for determining that there is no damage to the floor surface or there is a possibility that there is no damage to the floor surface. (S11).
 なお、このようにエラーの発生回数の合計値を選択区画2Aの損傷度合の判断基準に含めるのは、各搬送装置3に搭載されたセンサ14(図5)が床面状態を検出するための専用のセンサでないため、複数回のエラーに基づいて選択区画2Aの損傷度合を判定した方がより判定精度を向上させ得るからである。ただし、このステップS11については省略してもよい。 The reason why the total number of error occurrences is included in the criteria for judging the degree of damage to the selected section 2A is that the sensor 14 (FIG. 5) mounted on each transfer device 3 detects the state of the floor surface. This is because, since it is not a dedicated sensor, it is possible to improve the accuracy of determination by determining the degree of damage to the selected section 2A based on a plurality of errors. However, this step S11 may be omitted.
 また選択区画2Aで発生したエラーの総数がエラー総数閾値を超過していることに加えて、2つ以上の搬送装置3にエラーが発生していることや、2つ以上の搬送装置3においてエラーの発生回数の合計値がエラー総数閾値を超過していることをこのステップS11で肯定結果を得るための条件としてもよい。このようにすることによって、個別の搬送装置3に起因するエラーの影響を低減でき、判定精度を向上させることができる。 In addition to the fact that the total number of errors that have occurred in the selected section 2A exceeds the error total threshold, the fact that two or more transport devices 3 have errors, or that two or more transport devices 3 have errors The condition for obtaining a positive result in step S11 may be that the total number of occurrences of the error exceeds the threshold for the total number of errors. By doing so, it is possible to reduce the influence of errors caused by the individual transport devices 3 and improve the determination accuracy.
 そしてエラー分析プログラム51は、ステップS11の判断で否定結果を得ると、選択区画2Aの損傷度合の判定結果を、床面に一定以上の損傷がない又は損傷の可能性がない(エラーの原因にならない程度に損傷が小さい場合も含む)ことを意味する「正常状態」に決定する(S16)。 Then, when the error analysis program 51 obtains a negative result in the judgment in step S11, the judgment result of the degree of damage of the selected section 2A is determined as follows: (S16).
 これに対してエラー分析プログラム51は、ステップS11の判断で肯定結果を得ると、床面に一定以上の損傷がある又は損傷の可能性があると判定して、選択区画2Aにおいて発生した各エラーのエラーコードのうち、ステップS13以降が未処理の1つのエラーコードを選択する(S12)。以下においては、このとき選択されたエラーコードを選択エラーコードと呼ぶ。 On the other hand, if the error analysis program 51 obtains a positive result in the judgment in step S11, it judges that there is or is likely to be damage to the floor above a certain level, and , one error code that has not been processed after step S13 is selected (S12). Hereinafter, the error code selected at this time will be referred to as a selected error code.
 続いて、エラー分析プログラム51は、第1のエラー分析処理のステップS2の集計で得られた、選択区画2Aにおいて選択エラーコードに対応するエラーが発生した回数に基づいて、エラーの発生回数から見た選択区画2Aの損傷度合を判定する(S13)。 Subsequently, the error analysis program 51 calculates the error occurrence count based on the number of occurrences of the error corresponding to the selected error code in the selected section 2A, which is obtained by counting in step S2 of the first error analysis process. The damage degree of the selected section 2A is determined (S13).
 実際上、エラー分析プログラム51には、床面の損傷度合を「正常状態」と判定するためのエラーコードごとの対応するエラーの発生回数の上限閾値(以下、これらを第1の発生回数上限閾値と呼ぶ)と、床面の損傷度合を「小」と判定するためのエラーコードごとの対応するエラーの発生回数の上限閾値(以下、これらを第2の発生回数上限閾値と呼ぶ)と、床面の損傷度合を「中」と判定するためのエラーコードごとの対応するエラーの発生回数の上限閾値(以下、これらを第3の発生回数上限閾値と呼ぶ)と、床面の損傷度合を「大」と判定するためのエラーコードごとの対応するエラーの発生回数の上限閾値(以下、これらを第4の発生回数上限閾値と呼ぶ)とが予め与えられている。なお、これら第1~第4の発生回数上限値は、床面の区画2Aごとにそれぞれ設定されていてもよい。 In practice, the error analysis program 51 includes an upper limit threshold for the number of occurrences of errors corresponding to each error code for determining the degree of damage to the floor surface as a "normal state" (hereinafter referred to as a first upper limit threshold for the number of occurrences). ), the upper limit threshold of the number of occurrences of errors corresponding to each error code for determining the degree of damage to the floor surface as "small" (hereinafter referred to as the second upper limit threshold of the number of occurrences), and the floor The upper limit threshold for the number of occurrences of errors corresponding to each error code for determining the degree of damage to the surface as "medium" (hereinafter referred to as the third upper limit threshold for the number of occurrences), and the degree of damage to the floor surface as " An upper limit threshold for the number of occurrences of an error corresponding to each error code for determining "large" (hereinafter referred to as a fourth upper limit threshold for the number of occurrences) is given in advance. It should be noted that these first to fourth upper limit values for the number of occurrences may be set for each section 2A of the floor surface.
 そしてエラー分析プログラム51は、第1のエラー分析処理のステップS2で取得した選択エラーコードに対応するエラーの発生回数を、対応する第1~第4の発生回数上限閾値とそれぞれ比較することによりエラーの発生回数から見た選択区画2Aの損傷度合を判定する。 Then, the error analysis program 51 compares the number of error occurrences corresponding to the selected error code acquired in step S2 of the first error analysis process with the corresponding first to fourth occurrence number upper limit thresholds, respectively. The degree of damage to the selected section 2A is determined from the number of occurrences of .
 具体的に、エラー分析プログラム51は、選択エラーコードに対応するエラーの発生回数が第1の発生回数上限閾値以下であった場合には選択区画2Aの損傷度合を「正常状態」と判定し、第1の発生回数上限閾値よりも大きく第2の発生回数上限閾値以下であった場合には選択区画2Aの損傷度合を「小」と判定し、当該発生回数が第2の発生回数上限閾値よりも大きく第3の発生回数上限閾値以下であった場合には選択区画2Aの損傷度合を「中」と判定する。 Specifically, the error analysis program 51 determines that the degree of damage of the selected section 2A is "normal" when the number of occurrences of the error corresponding to the selected error code is equal to or less than the first upper limit threshold for the number of occurrences. If it is greater than the first upper limit threshold for the number of occurrences and equal to or less than the second upper limit threshold for the number of occurrences, the degree of damage to the selected section 2A is determined to be "small", and the number of occurrences is greater than the second upper limit threshold for the number of occurrences. is greater than or equal to the third upper limit threshold for the number of occurrences, the degree of damage to the selected section 2A is judged to be "medium".
 またエラー分析プログラム51は、かかる発生回数が第3の発生回数上限閾値よりも大きく第4の発生回数上限閾値以下であった場合には選択区画2Aの損傷度合を「大」と判定し、当該発生回数が第4の発生回数上限閾値よりも大きい場合には選択区画2Aの損傷度合を「要修復」と判定する。 Further, the error analysis program 51 determines that the degree of damage of the selected section 2A is "large" when the number of occurrences is greater than the third upper limit threshold for the number of occurrences and equal to or less than the fourth upper limit threshold for the number of occurrences. If the number of occurrences is greater than the fourth upper limit threshold for the number of occurrences, the degree of damage to the selected section 2A is determined to be "repair required".
 なお、損傷度合が「正常状態」との判定がなされた場合には、床面に一定以上の損傷がない又は損傷の可能性がない(エラーの原因にならない程度に損傷が小さい場合も含む)ことを意味し、損傷度合が「小」、「中」又は「大」との判定がなされた場合には、床面に一定以上の損傷がある又は損傷の可能性があることを意味する。この場合、その損傷の程度は、「小」よりも「中」が大きく、「中」よりも「大」が大きい。また損傷度合が「要修復」との判定は、床面の損傷が大きく、その箇所の修復が必要であることを意味する。以下においても同様である。 In addition, if the degree of damage is determined to be "normal", there is no damage beyond a certain level on the floor, or there is no possibility of damage (including cases where the damage is small enough not to cause an error). If the degree of damage is judged to be "small", "medium" or "large", it means that the floor surface has or is likely to be damaged beyond a certain level. In this case, the degree of damage is greater in "medium" than in "small" and greater in "large" than in "medium". A determination that the degree of damage is “repair required” means that the damage to the floor surface is severe and that portion needs to be repaired. The same applies to the following.
 次いで、エラー分析プログラム51は、第1のエラー分析処理のステップS2の集計で得られた、選択区画2Aにおいて選択エラーコードに対応するエラーが発生した頻度に基づいて、エラーの発生頻度から見た選択区画2Aの損傷度合を判定する(S14)。 Next, the error analysis program 51, based on the frequency of occurrence of the error corresponding to the selected error code in the selected section 2A, which is obtained in step S2 of the first error analysis process, is viewed from the error occurrence frequency. The damage degree of the selected section 2A is determined (S14).
 実際上、エラー分析プログラム51には、床面の損傷度合を「正常状態」と判定するためのエラーコードごとの対応するエラーの発生頻度の上限閾値(以下、これらを第1の発生頻度上限閾値と呼ぶ)と、床面の損傷度合を「小」と判定するためのエラーコードごとの対応するエラーの発生頻度の上限閾値(以下、これらを第2の発生頻度上限閾値と呼ぶ)と、床面の損傷度合を「中」と判定するためのエラーコードごとの対応するエラーの発生頻度の上限閾値(以下、これらを第3の発生頻度上限閾値と呼ぶ)と、床面の損傷度合を「大」と判定するためのエラーコードごとの対応するエラーの発生頻度の上限閾値(以下、これらを第4の発生頻度上限閾値と呼ぶ)とが予め与えられている。なお、この第1~第4の発生頻度上限値は、床面の区画2Aごとにそれぞれ設定されていてもよい。 In practice, the error analysis program 51 includes upper thresholds for the frequency of occurrence of errors corresponding to each error code for determining that the degree of damage to the floor is in a "normal state" ), the upper limit threshold of the frequency of occurrence of errors corresponding to each error code for determining the degree of damage to the floor surface as "small" (hereinafter referred to as the second upper limit threshold of occurrence frequency), and the floor The upper limit threshold of the frequency of occurrence of errors corresponding to each error code for determining the degree of damage to the surface as "medium" (hereinafter referred to as the third upper limit threshold of occurrence frequency), and the degree of damage to the floor surface as " An upper limit threshold of the frequency of occurrence of errors corresponding to each error code (hereinafter referred to as a fourth upper limit threshold of occurrence frequency) for determining "large" is given in advance. Note that the first to fourth occurrence frequency upper limit values may be set for each section 2A of the floor surface.
 そしてエラー分析プログラム51は、第1のエラー分析処理のステップS2で取得した選択エラーコードに対応するエラーの発生頻度を、対応する第1~第4の発生頻度上限閾値とそれぞれ比較することによりエラーの発生頻度から見た選択区画2Aの損傷度合を判定する。 Then, the error analysis program 51 compares the error occurrence frequency corresponding to the selected error code acquired in step S2 of the first error analysis process with the corresponding first to fourth occurrence frequency upper limit thresholds, respectively. The degree of damage to the selected section 2A is determined from the frequency of occurrence of .
 具体的に、エラー分析プログラム51は、選択エラーコードに対応するエラーの発生頻度が第1の発生頻度上限閾値以下であった場合には選択区画2Aの損傷度合を「正常状態」と判定し、当該発生頻度が第1の発生頻度上限閾値よりも大きく第2の発生頻度上限閾値以下であった場合には選択区画2Aの損傷度合を「小」と判定する。 Specifically, when the error occurrence frequency corresponding to the selected error code is equal to or lower than the first occurrence frequency upper limit threshold, the error analysis program 51 determines that the degree of damage of the selected section 2A is "normal", If the occurrence frequency is greater than the first occurrence frequency upper limit threshold and equal to or less than the second occurrence frequency upper limit threshold, the degree of damage to the selected section 2A is determined to be "small".
 またエラー分析プログラム51は、かかる発生頻度が第2の発生頻度上限閾値よりも大きく第3の発生頻度上限閾値以下であった場合には選択区画2Aの損傷度合を「中」と判定し、当該発生頻度が第3の発生頻度上限閾値よりも大きく第4の発生頻度上限閾値以下であった場合には選択区画2Aの損傷度合を「大」と判定する。さらにエラー分析プログラム51は、かかる発生頻度が第4の発生頻度上限閾値よりも大きい場合には選択区画2Aの損傷度合を「要修復」と判定する。 Further, the error analysis program 51 determines that the degree of damage of the selected section 2A is "medium" when the frequency of occurrence is greater than the second upper limit threshold of occurrence frequency and equal to or less than the third upper limit threshold of occurrence frequency. When the occurrence frequency is greater than the third occurrence frequency upper limit threshold and equal to or less than the fourth occurrence frequency upper limit threshold, the degree of damage of the selected section 2A is determined to be "large". Further, the error analysis program 51 determines that the degree of damage of the selected partition 2A is "repair required" when the occurrence frequency is greater than the fourth occurrence frequency upper limit threshold.
 この後、エラー分析プログラム51は、選択区画2Aにおいて発生した各エラーのすべてのエラーコードについてステップS13~ステップS15の処理を実行し終えたか否かを判断する(S15)。 After that, the error analysis program 51 determines whether or not the processes of steps S13 to S15 have been executed for all error codes of each error that occurred in the selected section 2A (S15).
 エラー分析プログラム51は、この判断で否定結果を得るとステップSに戻り、この後、ステップS12で選択するエラーコードをステップS13以降が未処理の他のエラーコードに順次切り替えながらステップS12~ステップS15の処理を繰り返す。この繰返し処理により、選択区画2Aで発生した各エラーの発生回数から見た選択区画の損傷度合と、選択区画で発生した各エラーの発生頻度から見た選択区画2Aの損傷度合とがそれぞれ判定される。 If the error analysis program 51 obtains a negative result in this determination, it returns to step S, and thereafter, while sequentially switching the error code selected in step S12 to other error codes that have not been processed in steps S13 and subsequent steps, steps S12 to S15 are executed. repeat the process. By this iterative process, the damage degree of the selected section 2A based on the number of occurrences of each error occurring in the selected section 2A and the damage degree of the selected section 2A based on the frequency of occurrence of each error occurring in the selected section 2A are determined. be.
 そしてエラー分析プログラム51は、やがて選択区画2Aにおいて発生したすべての種類のエラーについて、そのエラーの発生回数から見た選択区画2Aの損傷度合の判定結果と、そのエラーの発生頻度から見た選択区画2Aの損傷度合の判定結果とを得ることによりステップSで肯定結果を得ると、ステップS12~ステップS15のすべての判定結果に基づいて、選択区画2Aの損傷度合の最終的な判定結果を決定する(S16)。 Then, the error analysis program 51 eventually determines the degree of damage to the selected section 2A from the number of occurrences of all types of errors that have occurred in the selected section 2A, and the selected section from the frequency of occurrence of the errors. If a positive result is obtained in step S by obtaining the determination result of the damage degree of 2A, the final determination result of the damage degree of the selected section 2A is determined based on all the determination results of steps S12 to S15. (S16).
 このような選択区画2Aの損傷度合の最終的な判定結果の決定方法としては、種々の方法を適用することができる。例えば、ステップS12~ステップS15の繰返し処理で得られたすべての判定結果のうち、損傷度合が最も大きい判定結果を選択区画2Aの損傷度合の最終的な判定結果とするようにしてもよい。 Various methods can be applied as a method for determining the final determination result of the damage degree of the selected section 2A. For example, among all the determination results obtained by the repeated processing of steps S12 to S15, the determination result with the highest degree of damage may be used as the final determination result of the degree of damage of the selected section 2A.
 また床面状態に起因して生じる振動や衝撃により発生しやすい特定種類のエラーの発生回数から見た選択区画2Aの損傷度合の判定結果と、当該エラーの発生頻度から見た選択区画2Aの損傷度合の判定結果とのみに基づいて、これらの判定結果のうち、損傷度合が最も大きい判定結果を選択区画2Aの損傷度合の最終的な判定結果とするようにしてもよい。このようにすることによって損傷度合の判定結果の精度を向上させることができる。なお、かかる「特定種類のエラー」は、1種類だけでなく、複数種類であってもよい。 In addition, the judgment result of the degree of damage to the selected section 2A from the number of occurrences of specific types of errors that are likely to occur due to vibrations and shocks caused by the floor surface state, and the damage to the selected section 2A from the frequency of occurrence of the errors. Of these determination results, the determination result with the highest degree of damage may be used as the final determination result of the degree of damage of the selected section 2A. By doing so, the accuracy of the determination result of the degree of damage can be improved. The "specific type of error" may be of not only one type but also multiple types.
 また、エラー分析プログラム51は、選択区画2Aの損傷度合の最終的な判定結果を決定する際に、計測データ分析プログラム52の分析及び判定結果をも利用して床面状態(損傷度合)を決定するようにしてもよい。ここで、計測データ分析プログラム52は、計測データデータベース58に格納されている各搬送装置3からの映像データ(画像データや動画データなど)を分析し、床面の色の変化や凹凸の有無等から損傷度合を判定してもよい。 In addition, the error analysis program 51 also uses the analysis and judgment results of the measurement data analysis program 52 when determining the final judgment result of the damage degree of the selected section 2A to determine the floor surface state (damage degree). You may make it Here, the measurement data analysis program 52 analyzes the image data (image data, moving image data, etc.) from each conveying device 3 stored in the measurement data database 58, and determines the presence or absence of color change, unevenness, etc. of the floor surface. The degree of damage may be determined from
 この後、エラー分析プログラム51は、床面のすべての区画2Aについて損傷度合を判定し終えたか否かを判断する(S17)。そしてエラー分析プログラム51は、この判断で否定結果を得るとステップS10に戻り、この後、ステップS10で選択する区画2AをステップS11以降が未処理の他の区画2Aに順次切り替えながら、ステップS10~ステップS17の処理を繰り返す。この繰返し処理により倉庫2内の床面のすべての区画2Aの損傷度合の判定結果が決定される。 After that, the error analysis program 51 determines whether or not the degree of damage has been determined for all sections 2A of the floor (S17). If the error analysis program 51 obtains a negative result in this determination, it returns to step S10, and after that, while sequentially switching the partition 2A selected in step S10 to other partitions 2A that have not been processed in step S11 and subsequent steps, The process of step S17 is repeated. Through this iterative process, the determination result of the degree of damage of all sections 2A of the floor surface in the warehouse 2 is determined.
 そしてエラー分析プログラム51は、やがてすべての区画2Aの損傷度合の判定結果を決定し終えることによりステップS17で肯定結果を得ると、この損傷度合判定処理を終了して図10の第1のエラー分析処理に戻る。 Then, when the error analysis program 51 obtains a positive result in step S17 by finishing determining the damage degree judgment results for all of the sections 2A, it terminates this damage degree judgment processing and performs the first error analysis shown in FIG. Return to processing.
 また、変形例として、損傷度合判定処理において、S13を実行しない場合又はS14を実行しない場合があってもよい。 Also, as a modification, there may be cases where S13 or S14 is not executed in the damage degree determination process.
 エラー分析プログラム51は、すべての区画2Aの損傷度合の判定結果を地図情報データベース56に記録してもよい。また、S16での選択区画2Aの損傷度合の最終的な判定結果は、地図情報データベース56を参照して、過去の損傷度合の判定結果における選択区画2Aの損傷度合の情報にも基づいて決定されてもよい。エラー分析プログラム51は、例えば、損傷度合がより大きい判定結果を選択区画2Aの損傷度合の最終的な判定結果とするようにしてもよい。例えば、過去に損傷度合が大きいと判定された区画2Aについて、運行制御装置4が当該区画2Aを搬送装置3が通過しないようにする等の走行制御をした場合、直近の所定期間におけるエラー発生回数がゼロになる可能性がある。このような場合には、選択区画2Aの損傷度合の最終的な判定結果について、直近の所定期間におけるエラーの発生回数や発生頻度に基づく損傷度合の判定結果に加えて、過去の損傷度合の判定結果における選択区画2Aの損傷度合の情報にも基づいて決定したほうが、判定精度が向上する可能性がある。 The error analysis program 51 may record the damage degree determination results for all sections 2A in the map information database 56. Further, the final determination result of the damage degree of the selected section 2A in S16 is determined based on the information of the damage degree of the selected section 2A in the past damage degree determination results with reference to the map information database 56. may The error analysis program 51 may, for example, use the determination result with the greater degree of damage as the final determination result of the degree of damage of the selected section 2A. For example, regarding the section 2A that was determined to have a large degree of damage in the past, when the operation control device 4 performs travel control such as preventing the transport device 3 from passing through the section 2A, the number of error occurrences in the most recent predetermined period can become zero. In such a case, regarding the final determination result of the degree of damage of the selected section 2A, in addition to the determination result of the degree of damage based on the number and frequency of occurrence of errors in the most recent predetermined period, the determination of the degree of damage in the past There is a possibility that determination accuracy will be improved if determination is made based on the information on the degree of damage of the selected section 2A in the results as well.
 また、一部又はすべての区画2Aの床面をメンテナンスして正常状態にした場合には、運行制御装置4は、例えばユーザやメンテナンスの関係者等が入力装置43から入力すること等により、メンテナンスした区画2Aの情報とメンテナンス完了日時を取得する。エラー分析プログラム51は、床面状態判定のためのエラー分析処理に用いるエラーの発生回数や発生頻度について、メンテナンスした区画2Aについては、メンテナンス完了日時以降に発生したエラーを対象に集計する。また、地図情報データベース56における過去の損傷度合の判定結果の情報について、メンテナンスした区画2Aについては、正常状態に更新してもよい。 Further, when the floor surface of part or all of the section 2A is maintained and brought into a normal state, the operation control device 4, for example, the user or the person concerned with the maintenance inputs from the input device 43. The information of the section 2A and the maintenance completion date and time are acquired. The error analysis program 51 aggregates the number of occurrences and frequency of errors used in the error analysis process for judging the state of the floor, targeting errors occurring after the maintenance completion date and time for the section 2A where maintenance has been performed. In addition, regarding the past damage degree determination result information in the map information database 56, the section 2A that has undergone maintenance may be updated to a normal state.
(1-4)本実施の形態の効果
 以上のように本実施の形態の搬送システム1では、運行制御装置4が各搬送装置3からエラーログ情報をそれぞれ取得し、取得したエラーログ情報に基づいて倉庫2内の床面の状態を判定する。そのため、エラー発生原因となり得る床面状態を判定可能であり、搬送システムの信頼性を向上させ得る情報処理システム、情報処理装置及び方法を実現できる。これにより、ユーザは運行制御装置4の判定した床面の状態に応じたシステム運用及びメンテナンスが可能となる。ひいては、本搬送システム1によれば、床面状態に起因して搬送装置3におけるエラーの発生を抑制し得る信頼性の高い搬送システムを実現できる。
(1-4) Effect of the present embodiment As described above, in the transport system 1 of the present embodiment, the operation control device 4 acquires error log information from each transport device 3, and based on the acquired error log information to determine the state of the floor surface in the warehouse 2. Therefore, it is possible to realize an information processing system, an information processing apparatus, and a method that can determine a floor state that can cause an error and improve the reliability of the transport system. This enables the user to operate and maintain the system according to the state of the floor determined by the operation control device 4 . As a result, according to the transport system 1, it is possible to realize a highly reliable transport system that can suppress the occurrence of errors in the transport device 3 due to the state of the floor surface.
(2)第2の実施の形態
 図1及び図5において、符号90は第2の実施の形態の情報処理システムを示し、符号91は第2の実施の形態による情報処理装置を示す。本実施の形態による情報処理システム90(以下、これを搬送システム90と呼ぶ)は、情報処理装置91(以下、これを運行制御装置91と呼ぶ)のエラー分析プログラム92により実行される第2のエラー分析処理が、第1のエラー分析処理と一部異なる点がある。搬送システム90は、この点を除けば第1の実施の形態の搬送システム1と同様に構成され、同様に動作可能である。
(2) Second Embodiment In FIGS. 1 and 5, reference numeral 90 denotes an information processing system according to the second embodiment, and reference numeral 91 denotes an information processing apparatus according to the second embodiment. An information processing system 90 (hereinafter referred to as a transport system 90) according to the present embodiment includes a second error analysis program 92 executed by an information processing device 91 (hereinafter referred to as an operation control device 91). The error analysis process is partially different from the first error analysis process. Except for this point, the transport system 90 is configured in the same manner as the transport system 1 of the first embodiment and can operate in the same manner.
 図12は、運行制御装置91に対してユーザから上述のエラー分析指示が入力された場合に本実施の形態のエラー分析プログラム92により実行される第2のエラー分析処理の流れを示す。エラー分析プログラム92は、かかるエラー分析指示が入力されると、この図12に示す第2のエラー分析処理を開始し、まず、エラーログ情報データベース59(図6)に登録されているエラーログ情報を読み込むことにより取得する(S20)。第2のエラー分析処理は、ユーザによるエラー分析指示が入力された場合の他、定期的又は不定期に実行されても良い。例えば、エラー分析プログラム92が、エラーログ情報データベース59を基に、直近の所定の期間におけるエラー発生回数をカウントし、所定の閾値を超えた場合に、第2のエラー分析処理を実行しても良い。 FIG. 12 shows the flow of the second error analysis process executed by the error analysis program 92 of this embodiment when the user inputs the error analysis instruction to the operation control device 91 . When the error analysis instruction is input, the error analysis program 92 starts the second error analysis process shown in FIG. 12. First, the error log information registered in the error log information database 59 (FIG. 6) (S20). The second error analysis process may be executed periodically or irregularly, as well as when an error analysis instruction is input by the user. For example, the error analysis program 92 counts the number of error occurrences in the most recent predetermined period based on the error log information database 59, and when the number exceeds a predetermined threshold, the second error analysis process may be executed. good.
 この際、本実施の形態のエラー分析プログラム92は、エラーログ情報データベース59に登録されているエラーログ情報の中から、床面状態以外の原因に起因するエラーのエラーログ情報を除外して残りのエラーログ情報を取得(つまり床面状態に起因し得るエラーのエラーログ情報のみを取得)する。例えば、エラー分析プログラム92は、各搬送装置3において床面状態の原因に起因し得るエラーの情報(例えば1又は複数のエラーコード)をエラーログ情報データベースにあらかじめ記録しておき、S20で当該エラーコードに関するエラーログ情報を取得する。このときエラー分析プログラム51がエラーログ情報データベース59から読み出すエラーログ情報の期間の範囲は、エラーログ情報データベース59に登録されているすべての期間であっても、エラーログ情報データベース59に登録されている直近の所定期間(例えば直近1年)のみであってもよい。 At this time, the error analysis program 92 of the present embodiment excludes error log information of errors caused by causes other than the state of the floor from the error log information registered in the error log information database 59, and leaves the remaining error log information. (In other words, only the error log information of errors that can be caused by the floor surface condition is acquired). For example, the error analysis program 92 pre-records error information (for example, one or more error codes) that may be caused by the floor condition in each transport device 3 in the error log information database, and in S20 Get error log information about your code. At this time, the range of the period of the error log information read out from the error log information database 59 by the error analysis program 51 is the entire period registered in the error log information database 59. It may be only for the most recent predetermined period (for example, the most recent one year).
 また、例えば、エラー分析プログラム92は、計測データデータベース58に蓄積されている各搬送装置3から取得した計測データなどに基づいて各搬送装置3の状態(正常又は異常)を監視する。例えば、ある搬送装置3から取得した一部又は全部の計測データの値が予め設定された所定範囲を超え続けているような場合には、その搬送装置3が異常状態であると判断して、その搬送装置3から収集したエラーログ情報の全部又は一部(例えば、その搬送装置3が異常であると判断されたタイミング以降に当該搬送装置3から収集したエラーログ情報)をステップS20で取得するエラーログ情報から除外する。 Also, for example, the error analysis program 92 monitors the state (normal or abnormal) of each transport device 3 based on measurement data acquired from each transport device 3 accumulated in the measurement data database 58 . For example, if the value of some or all of the measurement data acquired from a certain transport device 3 continues to exceed a preset range, the transport device 3 is determined to be in an abnormal state, All or part of the error log information collected from the transport device 3 (for example, error log information collected from the transport device 3 after the timing at which the transport device 3 is determined to be abnormal) is acquired in step S20. Exclude from error log information.
 例えば、当該搬送装置3がある区画2Aでエラーを検出した場合、エラーを検出した時の走行条件と同様の条件(例えば棚の搬送状態、走行方向、走行速度、加速度など)で、他の複数の搬送装置3が同じ区画2Aでエラーを検出せず、さらに当該搬送装置3が区画2Aを移動してもエラーを検出し続けている場合である。もし当該搬送装置3が故障しており、正常な状態の床面を走行してもエラーが検出されるならば、そのようなエラーログ情報は除外したうえで、エラーの発生回数や発生頻度を集計したほうが好ましい。 For example, when an error is detected in the section 2A where the transport device 3 is located, under the same conditions as the running conditions when the error was detected (for example, the transport state of the shelf, the running direction, the running speed, the acceleration, etc.), other multiple 1 does not detect an error in the same section 2A and continues to detect an error even after the transfer apparatus 3 moves in the section 2A. If the transport device 3 is out of order and an error is detected even when the transport device 3 runs on a normal floor surface, such error log information is excluded, and the number and frequency of error occurrences are calculated. Aggregation is preferable.
 またエラー分析プログラム92が、エラーログ情報データベース59を参照して、各搬送装置3からそれぞれ取得したエラーログ情報の数を監視し、エラーログ情報の総数若しくは頻度、又は、特定のエラーのエラーログ情報の総数若しくは頻度が予め設定された閾値を超過した搬送装置3については、その搬送装置3が異常状態であると判断して、その搬送装置3から収集したエラーログ情報の全部又は一部(例えば、エラーログ情報の数が閾値を超過したエラーのそのエラーログ情報)をステップS20で取得するエラーログ情報から除外するようにしてもよい。 Also, the error analysis program 92 refers to the error log information database 59 and monitors the number of error log information acquired from each transport device 3, and determines the total number or frequency of error log information, or the error log of a specific error. For a transport device 3 whose total number or frequency of information exceeds a preset threshold, it is determined that the transport device 3 is in an abnormal state, and all or part of the error log information collected from the transport device 3 ( For example, the error log information of an error whose number of error log information exceeds a threshold value may be excluded from the error log information acquired in step S20.
 さらにエラー分析プログラム92が、搬送装置3ごとのエラーログ情報を監視し、エラーログ情報のモード欄59Gに格納されているモードの切換えの累積回数、走行状態欄59Kに格納されている走行状態の切換えの累積回数、走行速度欄59Lに格納されている走行速度の切換えの累積回数、加速度欄59Mに格納されている加速の切換えの累積回数、累積走行距離欄59Nに格納されている累積走行距離、及び、累積加速回数欄59Oに格納されている累積加速回数など、搬送装置3の負荷に関する指標のいずれかがこれらの指標に対して予めそれぞれ設定された閾値を超過した場合(搬送装置3の負荷が所定の基準を超えた場合)に、その搬送装置3から取得したエラーログ情報の全部又は一部(例えば、指標が閾値を超過した後のその負荷に関連するエラーログ情報)をステップS20で取得するエラーログ情報から除外するようにしてもよい。 Further, the error analysis program 92 monitors the error log information for each conveying device 3, and determines the accumulated number of mode switching stored in the mode column 59G of the error log information and the running state stored in the running state column 59K. Cumulative number of switching, cumulative number of running speed switching stored in the running speed column 59L, cumulative number of acceleration switching stored in the acceleration column 59M, cumulative running distance stored in the cumulative running distance column 59N , and when any of the indexes related to the load of the conveying device 3, such as the accumulated number of accelerations stored in the accumulated number of accelerations column 59O, exceeds the preset threshold value for each of these indexes (the If the load exceeds a predetermined standard), all or part of the error log information acquired from the transport device 3 (for example, error log information related to the load after the index exceeds the threshold) is sent to step S20. may be excluded from the error log information acquired by .
 さらには、かかる搬送装置3の負荷に関する各指標の値を総合的に判定することによりステップS20で取得するエラーログ情報から除外するエラーログ情報を決定するようにしてもよい。この場合には、例えば、かかる各指標の値をスコア付けし、スコアの合計値が閾値を超過したか否かに基づいて判断するようにすればよい。 Furthermore, the error log information to be excluded from the error log information acquired in step S20 may be determined by comprehensively judging the value of each index related to the load of the transport device 3. In this case, for example, the value of each index may be scored, and determination may be made based on whether or not the total value of the scores exceeds the threshold.
 この後、エラー分析プログラム92は、ステップS21~ステップS25の処理を、図10について上述した第1の実施の形態のステップS2~ステップS6と同様に実行することにより、床面状態判定結果画面70(図8)を出力装置44に表示し、この後、この第2のエラー分析処理を終了する。 Thereafter, the error analysis program 92 executes the processes of steps S21 to S25 in the same manner as steps S2 to S6 of the first embodiment described above with reference to FIG. (FIG. 8) is displayed on the output device 44, after which the second error analysis process is terminated.
 以上のように本実施の形態による搬送システム90では、エラーログ情報データベース59に登録されているエラーログ情報の中から、床面状態以外の原因に起因するエラーのエラーログ情報を除外して、床面状態に起因し得るエラーのエラーログ情報を利用して倉庫2内の床面状態を判定するため、第1の実施の形態の搬送システム1と比べて、より精度高く床面の状態を判定することができる。第1の実施の形態の搬送システム1と比べて、より一層と搬送システム90の信頼性を向上させることができる。 As described above, in the transport system 90 according to the present embodiment, from the error log information registered in the error log information database 59, error log information for errors caused by causes other than the state of the floor surface is excluded. Since the floor condition in the warehouse 2 is determined using the error log information of errors that may be caused by the floor condition, the floor condition can be determined with higher accuracy than the transport system 1 of the first embodiment. can judge. The reliability of the transport system 90 can be further improved as compared with the transport system 1 of the first embodiment.
(3)第3の実施の形態
 図1において、符号100は、第3の実施の形態の情報処理システムを示す。この情報処理システム100(以下、これを搬送システム100と呼ぶ)は、図5との対応部分に同一符号を付した図13に示すように、情報処理装置101(以下、これを運行制御装置101と呼ぶ)の記憶装置42にエラー原因推定プログラム102が格納され、エラー原因推定プログラム102によりエラー原因推定処理を行う点が第1の実施の形態の搬送システム1と相違する。また、搬送システム100は、エラー分析プログラム103により実行される第3のエラー分析処理が、第1のエラー分析処理と一部異なる点がある。搬送システム100は、これらの点を除けば、第1の実施の形態の搬送システム1と同様に構成され、同様に動作可能である。
(3) Third Embodiment In FIG. 1, reference numeral 100 denotes an information processing system according to a third embodiment. This information processing system 100 (hereinafter referred to as a transport system 100) includes an information processing device 101 (hereinafter referred to as an operation control device 101), as shown in FIG. ) stores an error cause estimation program 102, and the error cause estimation program 102 performs error cause estimation processing, which is different from the transport system 1 of the first embodiment. Also, in the transport system 100, the third error analysis process executed by the error analysis program 103 is partially different from the first error analysis process. Except for these points, the transport system 100 is configured in the same manner as the transport system 1 of the first embodiment and can operate in the same manner.
 エラー原因推定プログラム102は、エラーログ情報データベース59に登録された各エラーログ情報について、対応するエラーの発生場所、搬送装置3が走行中であるか否か、搬送装置3が棚5を搬送中であるか否か、搬送装置3の状態、搬送装置3が棚5を搬送中である場合の棚5及び商品の総重量、及び、倉庫2内の通信状態などの環境に関する情報、他の区画2Aでのエラー発生状況、他の搬送装置3でのエラー発生状況のうちの少なくとも1つの情報に基づいて、対応するエラーのエラー原因を推定する機能を有するプログラムである。 The error cause estimating program 102, for each error log information registered in the error log information database 59, determines the location of the corresponding error, whether the transport device 3 is running, whether the transport device 3 is transporting the shelf 5, and so on. status of the transport device 3, the total weight of the shelf 5 and the product when the transport device 3 is transporting the shelf 5, information on the environment such as the communication state in the warehouse 2, and other compartments It is a program having a function of estimating the cause of the corresponding error based on at least one information of the error occurrence status in 2A and the error occurrence status in the other conveying device 3 .
 エラー原因推定プログラム102は、エラーログ情報データベース59(図6)に登録されたエラーログ情報ごとに、そのエラーログ情報に基づいて、対応するエラーが倉庫2の床面に起因するもの、搬送装置3自体に起因するもの、棚5及び商品の総重量に起因するもの、倉庫2内の床面以外の環境に起因するものなど、いずれのエラー原因に起因するエラーであるかを推定する。そしてエラー原因推定プログラム102は、推定したエラー原因をエラー分析プログラム103に通知する。なお、このようなエラー原因推定プログラム102として、例えば、学習済みの人口知能(AI:Artificial Intelligence)を適用することができる。 The error cause estimating program 102, for each error log information registered in the error log information database 59 (FIG. 6), based on the error log information, determines whether the corresponding error is caused by the floor surface of the warehouse 2, the transport device, and so on. 3 itself, the total weight of the shelf 5 and the products, or the environment other than the floor surface in the warehouse 2. The error cause estimation program 102 then notifies the error analysis program 103 of the estimated error cause. As such an error cause estimation program 102, for example, learned artificial intelligence (AI) can be applied.
 エラー分析プログラム103は、かかるエラー原因推定プログラム102からの通知に基づいて、エラーログ情報データベース59に登録された各エラーログ情報のうち、エラー原因推定プログラム102により、エラー原因が倉庫2の床面であると推定されたエラーログ情報のみに基づいて倉庫2の床面の各区画の状態を判定する。 Based on the notification from the error cause estimation program 102, the error analysis program 103 determines that the cause of the error is the floor surface of the warehouse 2 by the error cause estimation program 102 among the error log information registered in the error log information database 59. The state of each section of the floor surface of the warehouse 2 is determined based only on the error log information estimated to be .
 図14は、運行制御装置101に対してユーザから上述のエラー分析指示が入力された場合にエラー原因推定プログラム102により実行されるエラー原因推定処理の流れを示す。エラー原因推定プログラム102は、かかるエラー分析指示が入力されると、この図14に示すエラー原因推定処理を開始し、まず、エラーログ情報データベース59に登録されているすべてのエラーログ情報の中からステップS31以降が未処理のエラーログ情報を1つ選択する(S30)。エラー原因推定処理は、ユーザによるエラー分析指示が入力された場合の他、定期的又は不定期に実行されても良い。例えば、エラー原因推定プログラム102(又はエラー分析プログラム103)が、エラーログ情報データベース59を基に、直近の所定の期間におけるエラー発生回数をカウントし、所定の閾値を超えた場合に、エラー原因推定処理を実行しても良い。 FIG. 14 shows the flow of error cause estimation processing executed by the error cause estimation program 102 when the above error analysis instruction is input from the user to the operation control device 101 . When the error analysis instruction is input, the error cause estimating program 102 starts the error cause estimating process shown in FIG. One piece of error log information unprocessed after step S31 is selected (S30). The error cause estimation process may be executed periodically or irregularly, as well as when an error analysis instruction is input by the user. For example, the error cause estimation program 102 (or the error analysis program 103) counts the number of error occurrences in the most recent predetermined period based on the error log information database 59, and when the number exceeds a predetermined threshold, error cause estimation processing may be performed.
 続いて、エラー原因推定プログラム102は、ステップS30で選択したエラーログ情報(以下、これを選択エラーログ情報と呼ぶ)に対応するエラーの原因を推定する(S31)。このエラーの原因の推定は、例えば各エラーログ情報のエラーが床面状態に起因し得るエラーか、床面状態に起因しないエラーか推定できればよい。推定結果をその選択エラーログ情報の識別番号(エラーログ情報識別番号)と共にエラー分析プログラム103に通知する(S32)。 Subsequently, the error cause estimation program 102 estimates the cause of the error corresponding to the error log information selected in step S30 (hereinafter referred to as selected error log information) (S31). In order to estimate the cause of this error, for example, it is sufficient to estimate whether the error in each error log information is an error that can be caused by the floor state or an error that is not caused by the floor state. The estimation result is notified to the error analysis program 103 together with the identification number of the selected error log information (error log information identification number) (S32).
 次いで、エラー原因推定プログラム102は、エラーログ情報データベース59に登録されているすべてのエラーログ情報についてエラー原因を推定し終えたか否かを判断する(S33)。そしてエラー原因推定プログラム102は、この判断で否定結果を得るとステップS30に戻り、この後、ステップS30で選択するエラーログ情報をステップS31以降が未処理の他のエラーログ情報に順次切り替えながらステップS30~ステップS33の処理を繰り返す。 Next, the error cause estimation program 102 determines whether or not the error causes have been estimated for all the error log information registered in the error log information database 59 (S33). If the error cause estimation program 102 obtains a negative result in this determination, it returns to step S30. The processing from S30 to step S33 is repeated.
 そしてエラー原因推定プログラム102は、やがてエラーログ情報データベース59に登録されているすべてのエラーログ情報についてエラー原因を推定し終えることによりステップS33で肯定結果を得ると、このエラー原因推定処理を終了する。 When the error cause estimation program 102 eventually finishes estimating the error cause for all the error log information registered in the error log information database 59 and obtains a positive result in step S33, it terminates this error cause estimation process. .
 一方、図15は、本実施の形態のエラー分析プログラム103により実行される第3のエラー分析処理の流れを示す。エラー分析プログラム103は、エラーログ情報データベース59(図6)に登録されたすべてのエラーログ情報について対応するエラーのエラー原因の推定結果が通知されると、すなわちエラー原因推定プログラム102によるエラー原因推定処理(図14)が終了すると、この図15に示す第3のエラー分析処理を開始する。 On the other hand, FIG. 15 shows the flow of the third error analysis process executed by the error analysis program 103 of this embodiment. When the error analysis program 103 is notified of the estimation result of the error cause of the error corresponding to all the error log information registered in the error log information database 59 (FIG. 6), the error cause estimation program 102 performs error cause estimation. When the process (FIG. 14) ends, the third error analysis process shown in FIG. 15 is started.
 そしてエラー分析プログラム103は、まず、エラーログ情報データベース59に登録されているすべてのエラーログ情報のうち、エラー原因推定プログラム102により対応するエラーが倉庫2の床面に起因するとの推定が得られたエラーログ情報のみを、エラーログ情報データベース59からすべて読み出すことにより取得する(S40)。 Then, the error analysis program 103 first obtains the estimation that the corresponding error is caused by the floor surface of the warehouse 2 by the error cause estimation program 102 among all the error log information registered in the error log information database 59. Only the error log information obtained is acquired by reading all of it from the error log information database 59 (S40).
 そしてエラー分析プログラム103は、この後ステップS41~ステップS45の処理を図10のステップS2~ステップS6と同様に処理し、この後、この第3のエラー分析処理を終了する。 After that, the error analysis program 103 processes steps S41 to S45 in the same way as steps S2 to S6 in FIG. 10, and then ends this third error analysis process.
 以上のように本実施の形態の搬送システム100では、エラーが倉庫2の床面の状態に起因するとの推定が得られたエラーログ情報のみを利用して倉庫2内の床面状態を判定するため、第1の実施の形態の搬送システム1と比べて、より精度高く床面の状態を判定することができる。第1の実施の形態の搬送システム1と比べて、より一層と搬送システム100の信頼性を向上させることができる。 As described above, in the transport system 100 of the present embodiment, the floor condition in the warehouse 2 is determined using only the error log information that is estimated to be caused by the floor condition of the warehouse 2. Therefore, compared with the transport system 1 of the first embodiment, the state of the floor surface can be determined with higher accuracy. Compared to the transport system 1 of the first embodiment, the reliability of the transport system 100 can be further improved.
(4)第1~第3の実施の形態による床面状態判定及び表示機能に関する構成の例
 図16は、上述した第1~第3の実施の形態による床面状態判定及び表示機能に関する構成を示す概念図である。例えば、情報処理システム1,90,100の情報処理装置4,91,101は、1又は複数の搬送装置3から、当該搬送装置3に発生したエラーの検知場所を含むエラー情報を複数取得するデータ取得装置と、当該エラー取得装置が取得した複数のエラー情報を分析し、当該エラーの検知場所における床面の状態を判定するエラー分析装置とを備える。床面状態の判定結果は、例えば出力装置44に床面状態判定結果画面70として表示される。
(4) Examples of configurations relating to floor state determination and display functions according to the first to third embodiments FIG. It is a conceptual diagram showing. For example, the information processing devices 4, 91, and 101 of the information processing systems 1, 90, and 100 acquire, from one or a plurality of transport devices 3, a plurality of pieces of error information including detection locations of errors occurring in the transport devices 3. An acquisition device and an error analysis device that analyzes a plurality of pieces of error information acquired by the error acquisition device and determines the state of the floor surface at the location where the error is detected. The determination result of the floor state is displayed as a floor state determination result screen 70 on the output device 44, for example.
 例えば、情報処理装置4,91,101は、1又は複数の搬送装置3に発生したエラーの検知場所を含む、複数のエラー情報を記録する記憶装置42と、前記複数のエラー情報を分析し、前記エラーの検知場所における床面の状態を判定するエラー分析装置とを備える。 For example, the information processing devices 4, 91, and 101 include a storage device 42 for recording a plurality of error information, including detection locations of errors occurring in one or a plurality of transport devices 3, and analyzing the plurality of error information, and an error analysis device that determines the state of the floor surface at the error detection location.
 ここで、当該搬送装置3に発生したエラーの検知場所は、例えば当該搬送装置3が当該エラーを検知した時点における、当該搬送装置3の位置であり、例えば倉庫2内の区画2Aの位置に関する情報(例えば当該区画2Aの番地等)で表される。エラー情報は、例えばエラーログ情報である。データ取得装置は、例えば通信インタフェース45等の通信装置である。データ取得装置は、例えば、通信インタフェース45とCPU40とメモリ41と記憶装置42等を備え、データ入出力プログラム50を実行することにより、通信インタフェース45を介して各搬送装置3との間で必要なコマンドや情報をやり取りすることができる。エラーの検知場所における床面の状態は、例えば当該エラーの検知場所における床面の損傷度合である。エラー分析装置は、例えば当該複数のエラー情報に基づいて、当該エラーの検知場所における床面の状態を判定する処理装置である。エラー分析装置は、例えば、CPU40とメモリ41と記憶装置42等を備え、エラー分析プログラム51、92、103を実行することにより実現されてもよい。エラー分析装置は、例えばエラー原因推定プログラム102を実行してもよい。 Here, the detection location of the error occurring in the transport device 3 is, for example, the position of the transport device 3 at the time the transport device 3 detects the error. (for example, the address of the section 2A, etc.). The error information is, for example, error log information. The data acquisition device is a communication device such as the communication interface 45, for example. The data acquisition device includes, for example, a communication interface 45 , a CPU 40 , a memory 41 , a storage device 42 , etc., and executes a data input/output program 50 to communicate with each conveying device 3 via the communication interface 45 . Commands and information can be exchanged. The state of the floor surface at the error detection location is, for example, the degree of damage to the floor surface at the error detection location. The error analysis device is, for example, a processing device that determines the state of the floor surface at the error detection location based on the plurality of error information. The error analysis device may be realized by executing error analysis programs 51, 92, and 103, including, for example, a CPU 40, a memory 41, a storage device 42, and the like. The error analysis device may execute the error cause estimation program 102, for example.
 このように、第1~第3の実施の形態による床面状態判定及び表示機能によれば、搬送システムの床面の状態がリアルタイムに可視化されてユーザに提供される。床面の状態(床面状況)の見える化により、損傷度合に応じた対策(例えば走行制御等)や床のメンテナンスが可能となり、搬送システム(情報処理システム)1,90,100の信頼性を向上できる。 As described above, according to the floor surface state determination and display functions according to the first to third embodiments, the state of the floor surface of the transportation system is visualized in real time and provided to the user. By visualizing the state of the floor (floor surface condition), countermeasures (for example, travel control, etc.) and floor maintenance according to the degree of damage are possible, and the reliability of the transport system (information processing system) 1, 90, 100 is improved. can improve.
 例えば、エラー分析装置は、取得したエラー情報に基づいて、少なくとも2回以上の所定回数よりも多いエラーが検知された場所の床面の状態を一定以上の損傷がある又は損傷の可能性があると判定する。所定回数よりも多い複数のエラーが同じ場所で検知されている場合、その場所の床面の損傷に起因したエラーである可能性がある。当該場所で発生した1回のエラーで床面状態を判定するより、当該場所で発生した複数のエラーに基づいて床面状態を判定したほうが、床面状態の判定精度を向上可能である。 For example, based on the acquired error information, the error analysis device determines the state of the floor surface where the error is detected more than a predetermined number of times, which is at least two times, as having a certain level of damage or the possibility of damage. I judge. If more than a predetermined number of errors are detected at the same location, the error may be due to floor damage at that location. Judgment of the floor surface state based on a plurality of errors occurring at the location can improve the accuracy of floor surface state determination, rather than judging the floor surface state based on a single error that has occurred at the location.
 例えば、当該エラー情報は、搬送装置3に発生した当該エラーの種類に関する情報を含む。エラー分析装置は、少なくとも1つのエラーの種類に設定された所定回数(所定の閾値)より、当該少なくとも1つのエラーの種類であるエラーが多く検知された場所における床面の状態を、一定以上の損傷がある又は損傷の可能性があると判定する。ここで、エラーの種類は、例えばエラーコードであってもよい。 For example, the error information includes information about the type of error that occurred in the transport device 3. The error analysis device determines the state of the floor surface at a location where more errors of at least one error type are detected than a predetermined number of times (predetermined threshold value) set for at least one error type. Determine that there is damage or that there is a possibility of damage. Here, the type of error may be an error code, for example.
 搬送装置3で検知されるエラーには、搬送装置3へかかる衝撃や振動等の負荷や床面の状態とは関係なく、他の要因により発生するエラーもある。一方で、搬送装置3で検知される特定の種類のエラーは、床面の状態と相関関係がある。そこで、床面の状態と相関関係がある特定の種類のエラーが、所定回数より多く検知された場所における床面の状態を、損傷がある又は損傷の可能性があると判定することで、床面の状態の判定精度を向上可能である。 Errors detected by the transport device 3 include errors caused by other factors, regardless of the load such as impact or vibration applied to the transport device 3 or the state of the floor surface. On the other hand, certain types of errors detected in the transport device 3 are correlated with floor conditions. Therefore, by determining the state of the floor at a place where a specific type of error correlated with the state of the floor is detected more than a predetermined number of times as being damaged or possibly being damaged, It is possible to improve the determination accuracy of the state of the surface.
 例えば、搬送システム1,90,100において、搬送装置3が複数存在してもよい。エラー分析装置は、複数の搬送装置3から取得した複数のエラー情報に基づいて、複数の搬送装置3にそれぞれ発生したエラーが検知された場所の床面の状態を判定する。 For example, in the transport systems 1, 90, and 100, a plurality of transport devices 3 may exist. The error analysis device determines the state of the floor surface at the location where the error occurred in each of the transport devices 3 is detected based on the error information acquired from the transport devices 3 .
 例えば、ある搬送装置3のみで検出されるエラーは、床面の状態には関係なく、当該搬送装置3の異常(故障を含む)に起因する可能性がある。そこで、異なる搬送装置3が同じ場所で検出したエラーに基づいて当該場所の床面の状態を判定すれば、このような個別の搬送装置3の異常に起因するエラーの影響は低くなり、床面の状態の判定精度を向上できる。 For example, an error detected only in a certain transport device 3 may be caused by an abnormality (including failure) of the transport device 3 regardless of the state of the floor surface. Therefore, if the state of the floor surface at the location is determined based on the errors detected by the different transport devices 3 at the same location, the effect of the error caused by the abnormality of the individual transport device 3 is reduced, and the floor surface is It is possible to improve the determination accuracy of the state of
 例えば、データ取得装置は、当該エラーの検知時に搬送装置3が搬送物を搬送中であったか否かを表す搬送情報を取得する。エラー分析装置は、搬送情報に基づいて、搬送装置3が搬送物を搬送中であったときに検知したエラーのエラー情報を特定し、特定したエラー情報に基づいて、当該エラーが検知された場所の床面の状態を判定する。 For example, the data acquisition device acquires transport information indicating whether or not the transport device 3 was transporting an object when the error was detected. Based on the transport information, the error analysis device specifies error information of an error detected while the transport device 3 was transporting the product, and based on the specified error information, determines the location where the error was detected. to determine the condition of the floor surface.
 また、例えば、データ取得装置は、当該エラーの検知時に搬送装置3が搬送する搬送物の重量の情報を含む搬送情報を取得する。エラー分析装置は、搬送情報に基づいて、搬送装置3が搬送する搬送物の重量が所定の重量を超えるときに検知したエラーのエラー情報を特定し、特定したエラー情報に基づいて、当該エラーが検知された場所の床面の状態を判定する。 Also, for example, the data acquisition device acquires transport information including information on the weight of the transported object transported by the transport device 3 when the error is detected. The error analysis device identifies error information of an error detected when the weight of the product conveyed by the conveying device 3 exceeds a predetermined weight based on the conveying information, and identifies the error based on the identified error information. Determine the state of the floor surface at the detected location.
 ここで、搬送情報は、例えば当該エラーに関するエラーログ情報(図6参照)の搬送棚ID59H、棚・商品重量59Iの情報、モード59Gの情報、走行状態59Kの情報、走行速度59Lの情報等の一部又は全部であってもよい。例えば、図6に示すエラーログ情報では、当該エラーのエラーログ情報において、搬送棚ID59Hの情報が「無し」である場合や、棚・商品重量59Iの情報に重量の記録がない場合には、当該エラーの検知時に搬送装置3が搬送物を搬送中ではないことを表す。一方、例えば、図6に示すエラーログ情報では、当該エラーのエラーログ情報において、搬送棚ID59Hの情報に搬送棚IDが記録されている場合や、棚・商品重量59Iの情報に重量の記録がある場合には、当該エラーの検知時に搬送装置3が搬送物を搬送中であることを表す。さらに、例えば、当該エラーのエラーログ情報において、走行状態59Kの情報が「走行」である場合に、当該エラーの検知時に搬送装置3が搬送物を搬送中であるとしてもよい。一方、例えば、図6に示すエラーログ情報では、当該エラーのエラーログ情報において、モード59Gの情報が「停止」である場合、走行状態59Kの情報が「停止」である場合、走行速度59Lが「0」である場合等は、搬送装置3が搬送物を搬送中ではないとしてもよい。また、エラーの検知時に搬送装置3が搬送する搬送物の重量の情報は、当該エラーのエラーログ情報において、「棚・商品重量59I」の情報に記録された重量の情報であってもよい。なお、上述した搬送情報として、例えば走行実績データデータベース60の情報のうち、当該搬送装置3に関し、当該エラーの検知日時に一番近い日時(又は当該エラーの検知日時の直前の日時)の走行実績データにおける搬送棚ID60D、棚・商品重量60E、走行状態60Fの情報等が用いられてもよい。 Here, the transport information includes, for example, transport shelf ID 59H, shelf/product weight 59I information, mode 59G information, running state 59K information, and running speed 59L information of the error log information (see FIG. 6) related to the error. It may be part or all. For example, with the error log information shown in FIG. This indicates that the conveying device 3 is not conveying the article when the error is detected. On the other hand, for example, in the error log information shown in FIG. 6, in the error log information of the error, when the transport shelf ID is recorded in the information of the transport shelf ID 59H, or the weight is recorded in the information of the shelf/product weight 59I. In some cases, it indicates that the transport device 3 is transporting an object when the error is detected. Further, for example, in the error log information of the error, when the information of the running state 59K is "running", the transport device 3 may be transporting the article when the error is detected. On the other hand, for example, in the error log information shown in FIG. If it is "0", it may be assumed that the conveying device 3 is not conveying an object. Further, the information on the weight of the product conveyed by the conveying device 3 when an error is detected may be the information on the weight recorded in the information of "shelf/merchandise weight 59I" in the error log information of the error. Note that, as the above-described transportation information, for example, among the information in the travel performance data database 60, for the transport device 3, the travel performance at the date and time closest to the error detection date and time (or the date and time immediately before the error detection date and time) Information such as the transport shelf ID 60D, the shelf/merchandise weight 60E, and the running state 60F in the data may be used.
 床面の状態と相関関係がある特定のエラーのうち、少なくとも一部のエラーは、例えば、ある床面状態(例えば損傷度合いが大きい床面等)の床で搬送装置3が走行(旋回を含む)する場合において、搬送装置3へかかる衝撃や振動等の負荷が大きい場合に発生し得る。ここで、搬送装置3へかかる衝撃や振動等の負荷は、搬送装置3が搬送物を搬送していない場合より、搬送装置3が搬送物を搬送している場合のほうが、搬送物の重さの影響で大きくなり得る。また、搬送装置3へかかる衝撃や振動等の負荷は、搬送物の重さが重いほうが大きくなり得る。従って、搬送装置3が搬送物を搬送中であったときや、搬送装置3が搬送する搬送物の重量が所定の重量(所定の閾値)を超えるときに検知したエラーは、床面の状態と相関関係がより高くなると言え、そのエラー情報を用いることで床面の状態の判定精度を向上できる。 At least some of the specific errors that are correlated with the state of the floor are caused, for example, by the transport device 3 traveling (including turning) on a floor in a certain state (for example, a floor with a large degree of damage). ), this may occur when the load such as shock or vibration applied to the conveying device 3 is large. Here, the load such as shock and vibration applied to the conveying device 3 is greater when the conveying device 3 is conveying the conveyed object than when the conveying device 3 is not conveying the conveyed object. can increase due to the influence of In addition, the load such as shock and vibration applied to the conveying device 3 may increase as the weight of the conveyed object increases. Therefore, an error detected when the transport device 3 is transporting an object or when the weight of the transport object transported by the transport device 3 exceeds a predetermined weight (predetermined threshold value) depends on the state of the floor surface. It can be said that the correlation becomes higher, and the accuracy of determining the state of the floor surface can be improved by using the error information.
 例えば、データ取得装置は、当該エラーの検知時に搬送装置3が搬送物を搬送中であったか否かを表す搬送情報を取得する。エラー分析装置は、搬送情報と当該エラー情報に基づいて、搬送装置3が搬送物を搬送中であったときに検知したエラーの発生頻度(又はエラーの発生回数)が、搬送装置3が搬送物を搬送していないときに検知したエラーの発生頻度(又はエラーの発生回数)より多い場合に、当該エラーが検知された場所の床面の状態を一定以上の損傷がある又は損傷の可能性があると判定する。また、エラー分析装置は、それらの発生頻度(又は発生回数)の差が所定の閾値より大きい場合に、当該エラーが検知された場所の床面の状態を一定以上の損傷がある又は損傷の可能性があると判定してもよい。同じ搬送装置3を対象にこの判定を行ってもよいし、異なる搬送装置3も対象にして当該判定を行ってもよい。 For example, the data acquisition device acquires transport information indicating whether or not the transport device 3 was transporting an object when the error was detected. Based on the transport information and the error information, the error analysis device determines the frequency of occurrence of errors (or the number of occurrences of errors) detected while the transport device 3 was transporting the product. If the frequency of occurrence of errors (or the number of occurrences of errors) detected while not transporting the Determine that there is. In addition, when the difference in the frequency of occurrence (or the number of occurrences) is greater than a predetermined threshold, the error analysis device determines the state of the floor surface where the error is detected to be damaged at a certain level or more, or possibly damaged. may be determined to be viable. This determination may be performed for the same transport device 3, or may be performed for a different transport device 3 as well.
 また、例えば、データ取得装置は、当該エラーの検知時に搬送装置3が搬送する搬送物の重量の情報を含む搬送情報を取得する。エラー分析装置は、搬送情報と当該エラー情報に基づいて、搬送装置3が第一の重量を超える重量の搬送物を搬送中であったときに検知したエラーの発生頻度(又は発生回数)が、搬送装置3が第二の重量以下の重量の搬送物を搬送中であったとき又は搬送装置3が搬送物を搬送していないときに検知したエラーの発生頻度(又は発生回数)より多い場合に、当該エラーが検知された場所の床面の状態を一定以上の損傷がある又は損傷の可能性があると判定する。また、エラー分析装置は、それらの発生頻度(又は発生回数)の差が所定の閾値より大きい場合に、当該エラーが検知された場所の床面の状態を一定以上の損傷がある又は損傷の可能性があると判定してもよい。ここで、第一の重量(所定の第一の重量閾値)は、第二の重量(所定の第二の重量閾値)と比べて、同じ又は重い(大きい)。同じ搬送装置3を対象にこの判定を行ってもよいし、異なる搬送装置3も対象にして当該判定を行ってもよい。 Also, for example, the data acquisition device acquires transport information including information on the weight of the transported object transported by the transport device 3 when the error is detected. Based on the transportation information and the error information, the error analysis device determines the frequency of occurrence (or the number of occurrences) of errors detected when the transportation device 3 is transporting an object weighing more than the first weight. When the frequency of occurrence (or the number of occurrences) of errors detected when the conveying device 3 is in the process of conveying an object weighing less than the second weight or when the conveying device 3 is not conveying an object is greater than , the state of the floor surface where the error is detected is determined to be damaged to a certain extent or possibly damaged. In addition, when the difference in the frequency of occurrence (or the number of occurrences) is greater than a predetermined threshold, the error analysis device determines the state of the floor surface where the error is detected to be damaged at a certain level or more, or possibly damaged. may be determined to be viable. Here, the first weight (predetermined first weight threshold) is the same or heavier (greater) than the second weight (predetermined second weight threshold). This determination may be performed for the same transport device 3, or may be performed for a different transport device 3 as well.
 上述のとおり、床面の状態と相関関係がある特定のエラーのうち、少なくとも一部のエラーは、例えば、ある床面状態(例えば損傷度合いが大きい床面等)の床で搬送装置3が走行(旋回を含む)する場合において、搬送装置3へかかる衝撃や振動等の負荷が大きい場合に発生し得る。そのため、搬送装置3が搬送物を搬送中であったときに検知したエラーの発生頻度(又はエラーの発生回数)が、搬送装置3が搬送物を搬送していないときに検知したエラーの発生頻度(又はエラーの発生回数)より多い場合や、それらの発生頻度(又は発生回数)の差が所定の閾値より大きい場合には、床面の状態と相関関係がある特定のエラーである可能性が高くなる。同様に、搬送装置3が第一の重量を超える重量の搬送物を搬送中であったときに検知したエラーの発生頻度(又は発生回数)が、搬送装置3が第二の重量以下の重量の搬送物を搬送中であったとき又は搬送装置3が搬送物を搬送していないときに検知したエラーの発生頻度(又は発生回数)より多い場合や、それらの発生頻度(又は発生回数)の差が所定の閾値より大きい場合には、床面の状態と相関関係がある特定のエラーである可能性が高くなる。従って、これらの場合に、当該エラーが検知された場所の床面の状態を一定以上の損傷がある又は損傷の可能性があると判定することで、床面の状態の判定精度を向上できる。 As described above, at least some of the specific errors correlated with the state of the floor are caused by, for example, the transport device 3 traveling on a floor with a certain floor state (for example, a floor with a large degree of damage). In the case of (including turning), this may occur when the load such as impact or vibration applied to the conveying device 3 is large. Therefore, the frequency of occurrence of errors (or the number of occurrences of errors) detected while the conveying device 3 is conveying an object is equal to the frequency of occurrence of errors detected while the conveying device 3 is not conveying an object. (or the number of occurrences of errors), or if the difference between the frequencies of occurrence (or the number of occurrences) is greater than a predetermined threshold, there is a possibility that it is a specific error that is correlated with the state of the floor surface. get higher Similarly, the frequency of occurrence (or the number of occurrences) of an error detected while the transport device 3 is transporting an object weighing more than the first weight is the second weight or less. When the frequency of occurrence (or the number of occurrences) of errors detected during transport of the transported product or when the transport device 3 is not transporting the transported product is greater than the frequency of occurrence (or the number of occurrences), or the difference in the frequency of occurrence (or the number of occurrences) is greater than a predetermined threshold, it is more likely that it is a specific error that correlates with floor conditions. Therefore, in these cases, it is possible to improve the accuracy of determining the state of the floor surface by determining that the state of the floor surface where the error is detected has or is likely to be damaged to a certain degree or more.
 例えば、情報処理システム1,90,100は、1又は複数の搬送装置3と情報処理装置4,91,101とを備える。情報処理装置4,91,101は、データ取得装置とエラー分析装置を備え、倉庫2の床を複数の区画2Aで管理し、1又は複数の搬送装置3を制御する。倉庫2の床は、複数の区画2Aそれぞれに、当該区画2Aの位置に関するマーカ2Bが表記されている。1又は複数の搬送装置3は、倉庫2の床を走行し、各区画2A上を通るときに当該区画2Aの床に表記されたマーカ2Bを読み取って当該区画2Aの位置に関する情報を取得し、倉庫2に移動可能に設置された搬送物を搬送する無人搬送車である。エラーを検知した搬送装置3は、当該エラーの検知場所である、当該エラーを検知したときにいた区画2Aの位置に関する情報と、当該エラーに関するエラーコードの情報とを含むエラー情報を、情報処理装置4,91,101に送信する。情報処理装置4,91,101は、当該エラーを検知した搬送装置3から受信した複数のエラー情報に基づいて、倉庫2の床の区画2Aごとに床面の状態を判定し、前記床面の状態の判定結果に関する情報を出力装置44に出力する。搬送物は、例えば棚5である。 For example, the information processing systems 1 , 90 , 100 include one or more transport devices 3 and information processing devices 4 , 91 , 101 . The information processing devices 4 , 91 , 101 have data acquisition devices and error analysis devices, manage the floor of the warehouse 2 in a plurality of sections 2</b>A, and control one or a plurality of transport devices 3 . On the floor of the warehouse 2, each of a plurality of compartments 2A has a marker 2B indicating the position of the compartment 2A. One or a plurality of transport devices 3 run on the floor of the warehouse 2, and when passing over each section 2A, read the markers 2B written on the floor of the section 2A to acquire information regarding the position of the section 2A; It is an unmanned guided vehicle that transports objects that are movably installed in the warehouse 2 . The transport device 3 that has detected the error sends error information including information about the position of the section 2A where the error was detected, which is the detection location of the error, and error code information about the error, to the information processing device. 4, 91, 101. The information processing devices 4, 91, and 101 determine the state of the floor surface for each section 2A of the floor of the warehouse 2 based on a plurality of pieces of error information received from the transport device 3 that has detected the error. Information about the determination result of the state is output to the output device 44 . The conveyed object is the shelf 5, for example.
 また、例えば、情報処理システム1,90,100における情報処理方法は、1又は複数の搬送装置3から、当該搬送装置3に発生したエラーの検知場所の区画2Aの位置に関する情報と、当該エラーに関するエラーコードの情報とを含むエラー情報を複数取得する第1のステップと、取得した複数のエラー情報を分析し、当該エラーの検知場所の区画2Aを含む、倉庫2の床の区画2Aごとに床面の状態を判定する第2のステップと、当該床面の状態の判定結果に関する情報を出力装置44に出力する第3のステップと、を備える。 Further, for example, the information processing method in the information processing systems 1, 90, and 100 includes, from one or a plurality of transport devices 3, information regarding the position of the section 2A where an error occurred in the transport device 3 is detected, and information regarding the error. a first step of acquiring a plurality of error information including error code information; analyzing the acquired plurality of error information; It comprises a second step of judging the state of the surface, and a third step of outputting information about the judgment result of the state of the floor to the output device 44 .
 また、エラーを検知した搬送装置3が当該エラーの検知場所を特定してもよいが、情報処理装置4,91,101が当該搬送装置3からのエラー情報や走行実績データに基づいて、エラーの検知場所を特定してもよい。例えば、1又は複数の搬送装置3は、倉庫2の床を走行し、各区画2A上を通るときに当該区画2Aの床に表記されたマーカ2Bを読み取って当該区画2Aの位置に関する情報(例えば番地)を取得し、当該区画2Aの位置に関する情報と当該搬送装置3の識別情報(搬送装置ID)と当該マーカ2Bを検知した日時(マーク検知日時)を含む走行実績データを、データ取得装置に送信する。データ取得装置は、各搬送装置3から取得した走行実績データを、記憶装置42に記録する。また、エラーを検知した搬送装置3は、当該搬送装置3に発生した当該エラーの検知日時と当該エラーの種類に関する情報(例えばエラーコード等)と当該搬送装置3の識別情報(搬送装置ID)を含むエラー情報を、データ取得装置に送信する。データ取得装置は、各搬送装置3から取得したエラー情報を、記憶装置42に記録する。エラー分析装置は、このエラー情報を参照して当該搬送装置3の識別情報を取得し、例えば当該搬送装置3の走行実績データ(当該搬送装置3の識別情報を含む走行実績データ)のうち、マーク検知日時が当該エラーの検知日時と一番近い日時(又は当該エラーの検知日時の直前の日時)の走行実績データを特定する。エラー分析装置は、特定した走行実績データにおける当該区画2Aの位置に関する情報(例えば番地)を、当該エラーの検知場所としてもよい。 Alternatively, the transport device 3 that has detected the error may specify the detection location of the error. A detection location may be specified. For example, one or more transport devices 3 travel on the floor of the warehouse 2 and read the markers 2B written on the floor of the section 2A when passing over each section 2A to read information about the position of the section 2A (for example, address), and information on the position of the section 2A, identification information (conveyance device ID) of the conveyance device 3, and the date and time when the marker 2B was detected (mark detection date and time) are sent to the data acquisition device. Send. The data acquisition device records the travel performance data acquired from each transport device 3 in the storage device 42 . In addition, the transport device 3 that has detected an error provides information on the detection date and time of the error that occurred in the transport device 3, the type of the error (for example, an error code, etc.), and the identification information (transport device ID) of the transport device 3. The error information it contains is sent to the data acquisition device. The data acquisition device records the error information acquired from each transport device 3 in the storage device 42 . The error analysis device acquires the identification information of the transport device 3 by referring to the error information, and, for example, the mark The travel performance data whose detection date and time is closest to the error detection date and time (or the date and time immediately before the error detection date and time) is specified. The error analysis device may use information (for example, an address) regarding the position of the section 2A in the identified travel record data as the detection location of the error.
 例えば、エラー分析装置は、搬送装置3から取得したエラー情報のうち、床面の状態以外の原因に起因して発生するエラーのエラー情報を除外した、残りのエラー情報に基づいて、床面の状態を判定する。 For example, the error analysis device, out of the error information acquired from the transport device 3, excludes the error information of errors that occur due to causes other than the condition of the floor surface, based on the remaining error information. determine the state.
 例えば、エラー分析装置は、搬送装置3から取得したエラー情報のうち、異常状態となった搬送装置3が異常状態となった後に検知したエラーのエラー情報を除外した、残りのエラー情報に基づいて、床面の状態を判定する。ここで、例えば情報処理装置4,91,101、当該搬送装置3、他の判定装置、又はユーザ等が、当該搬送装置3を異常状態と判定した場合に、当該搬送装置3が異常状態となったこととしてもよい。また、例えば、搬送装置3が異常状態となった後とは、当該搬送装置3を異常状態と判定した後でもよいし、異常状態になったと推定される時間の後でもよい。例えば、エラー分析装置は、搬送装置3から取得したエラー情報の数又は頻度が閾値を超過した場合に、当該搬送装置3を異常状態と判定する。 For example, the error analysis device removes the error information of the error detected after the abnormal state of the conveying device 3 from among the error information acquired from the conveying device 3, based on the remaining error information. , determine the state of the floor surface. Here, for example, when the information processing device 4, 91, 101, the transport device 3, another determination device, or the user determines that the transport device 3 is in an abnormal state, the transport device 3 is in an abnormal state. It can be said that Further, for example, after the conveying device 3 is in an abnormal state may be after it is determined that the conveying device 3 is in an abnormal state, or after the time when the abnormal state is estimated. For example, when the number or frequency of error information obtained from the transport device 3 exceeds a threshold, the error analysis device determines that the transport device 3 is in an abnormal state.
 例えば、エラー分析装置は、搬送装置3の負荷が所定の基準を超えた場合に、当該搬送装置3から取得したエラー情報のうち、少なくとも当該負荷が基準を超えた後に検知したエラーのエラー情報を除外した、残りのエラー情報に基づいて、床面の状態を判定する。 For example, when the load of the transport device 3 exceeds a predetermined standard, the error analysis device stores at least the error information of the error detected after the load exceeds the standard among the error information acquired from the transport device 3. The state of the floor surface is determined based on the remaining error information excluded.
 例えば、情報処理システム1,90,100の情報処理装置4,91,101は、搬送装置3に発生したエラーのエラー原因を推定するエラー原因推定部を備える。エラー分析装置は、当該エラー原因推定部により床面の状態に起因すると推定されたエラーのエラー情報に基づいて床面の状態を判定する。情報処理装置4,91,101のエラー分析装置が、エラー原因推定プログラム102を実行することで、エラー原因推定部を実現してもよい。 For example, the information processing devices 4 , 91 , 101 of the information processing systems 1 , 90 , 100 each include an error cause estimating unit that estimates the cause of an error that has occurred in the conveying device 3 . The error analysis device determines the state of the floor based on the error information of the error estimated to be caused by the state of the floor by the error cause estimating unit. The error cause estimating unit may be realized by the error analysis device of the information processing devices 4, 91, 101 executing the error cause estimating program 102. FIG.
 例えば、エラー分析装置は、判定した床面の損傷度合が所定の基準を超える場合にアラートを通知する。 For example, the error analyzer notifies an alert when the determined degree of floor damage exceeds a predetermined standard.
(5)他の実施の形態
 上述の第1~第3の実施の形態においては、ネット通販会社等の企業が商品を保管するために利用する倉庫2内において商品を棚5ごと搬送する搬送システム1,90,100に適用するようにした場合について述べたが、本発明はこれに限らず、例えば、工場において部品を搬送する搬送システムなど、この他種々の搬送システムに広く適用することができる。
(5) Other Embodiments In the above-described first to third embodiments, a transport system that transports products together with shelves 5 in a warehouse 2 used by a company such as an online shopping company to store products. 1, 90, and 100, but the present invention is not limited to this, and can be widely applied to various other transport systems such as a transport system for transporting parts in a factory. .
 また上述の第1~第3の実施の形態においては、搬送装置3が走行する床面の状態を判定する情報処理装置としての機能を、各搬送装置3をリモート制御する運行制御装置4,91,101に搭載するようにした場合について述べたが、本発明はこれに限らず、かかる情報処理装置としての機能を搭載した装置を運行制御装置4,91,101とは別個に設けるようにしてもよい。 Further, in the above-described first to third embodiments, the operation control devices 4 and 91 that remotely control each transport device 3 function as information processing devices that determine the state of the floor surface on which the transport device 3 travels. , 101, but the present invention is not limited to this. good too.
 さらに上述の第1~第3の実施の形態においては、エラーログ情報を図6について上述したエラー検知日時、搬送装置ID、エラータイプ及びエラーコードなどの情報から構成するようにした場合について述べたが、本発明はこれに限らず、これらの情報に加えて又は代えて他の情報によりエラーログ情報を構成するようにしてもよい。 Further, in the first to third embodiments described above, the case where the error log information is composed of the information such as the error detection date and time, the conveying device ID, the error type and the error code described above with reference to FIG. 6 has been described. However, the present invention is not limited to this, and the error log information may be configured with other information in addition to or instead of these information.
 さらに上述の第1~第3の実施の形態においては、倉庫2の床面の各区画2Aにそれぞれその区画2Aの番地を表すマーカ2Bを表示するようにした場合について述べたが、本発明はこれに限らず、各区画2Aにおいてその位置を数値などで番地をそのまま表記するようにしてもよく、床面の各区画2A内にその区画2Aの番地を表記する方法としては、この他種々の方法を広く適用することができる。 Furthermore, in the above-described first to third embodiments, a case has been described in which the marker 2B representing the address of each section 2A on the floor of the warehouse 2 is displayed in each section 2A. Not limited to this, the position in each section 2A may be indicated as it is by a numerical value or the like, and as a method of notating the address of the section 2A in each section 2A on the floor surface, there are various other methods. The method can be widely applied.
 さらに上述の第1~第3の実施の形態においては、床面の損傷度合を「正常状態」、「小」、「中」、「大」及び「要修復」の5段階で判定するようにした場合について述べたが、本発明はこれに限らず、5段階以外の段階数で床面の損傷を判定するようにしてもよい。 Furthermore, in the above-described first to third embodiments, the degree of damage to the floor surface is determined in five stages of "normal state", "small", "medium", "large" and "repair required". Although the case has been described, the present invention is not limited to this, and the damage to the floor surface may be determined using a number of steps other than five.
 さらに上述の第1~第3の実施の形態においては、搬送装置3に発生したエラーに関するエラー情報としてのエラーログ情報の内容を図6のようにする場合について述べたが、本発明はこれに限らず、エラーログ情報の内容としてはこの他種々の内容を適用することができる。 Furthermore, in the above-described first to third embodiments, a case was described in which the contents of the error log information as error information relating to the error that occurred in the conveying device 3 are shown in FIG. Various other contents can be applied as the contents of the error log information.
 さらに上述の第1の実施の形態においては、エラーログ情報データベース59に登録されているすべてのエラーログ情報又は所定期間内のエラーログ情報を取得し(図10のステップS1)、第2及び第3の実施の形態においては、床面状態に起因するエラーのエラーログ情報を取得する(図12のステップS20、図15のステップS40)ようにした場合について述べたが、本発明はこれに限らず、エラー検知時に特定の走行状態であった搬送装置3に発生したエラーのエラーログ情報という条件や、搬送装置3が棚5を搬送中に発生したエラーのエラーログ情報という条件などをもエラーログ情報の取得条件として加えるようにしてもよい。 Furthermore, in the above-described first embodiment, all error log information registered in the error log information database 59 or error log information within a predetermined period is acquired (step S1 in FIG. 10), and the second and second In Embodiment 3, the case where the error log information of the error caused by the floor condition is acquired (step S20 in FIG. 12, step S40 in FIG. 15) has been described, but the present invention is limited to this. First, the condition of error log information of an error that occurred in the transport device 3 that was in a specific running state at the time of error detection, the condition of error log information of an error that occurred while the transport device 3 was transporting the shelf 5, etc. You may make it add as acquisition conditions of log information.
 これは、走行状態について、例えば、搬送装置3がより大きい速度で移動する場合、床面の損傷が大きい区画2Aを通過するときに搬送装置3が受ける振動や衝撃がより大きくなる場合がある。そのため、床面状態の判定においてエラー検知時の走行状態を併せて考慮することで、そのエラーの原因が床面状態に起因する確率が高くなり得る。
 さらに、床面の損傷が大きい区画2Aを通過するときに搬送装置3が棚5の搬送中に受ける振動や衝撃は、棚5を搬送していないときに比べて大きく、搬送装置3に与える影響が大きくなる場合がある。そのため、そのエラーの原因が床面状態に起因する確率が高くなり得る。このようにすることによって、より床面状態の判定精度を向上させることができる。
As for the running state, for example, when the transport device 3 moves at a higher speed, the transport device 3 may receive greater vibrations and shocks when passing through the section 2A where the floor surface is severely damaged. Therefore, by also considering the running state at the time of error detection in judging the floor surface state, the probability that the cause of the error is caused by the floor surface state can be increased.
Furthermore, when passing through the section 2A where the damage to the floor surface is large, the vibrations and shocks that the transport device 3 receives while transporting the shelf 5 are greater than when the shelf 5 is not transported, and the impact on the transport device 3 is large. may become large. Therefore, the probability that the cause of the error is caused by the floor surface condition can be increased. By doing so, it is possible to further improve the accuracy of determining the state of the floor surface.
 また、搬送装置3が棚5を搬送中に発生したエラーのエラーログ情報という条件に加えて、計測データデータベース58(図5など)に登録されている、そのときの振動が一定レベル以上の振動であることを、対応するエラーログ情報の取得条件とするようにしてもよい。 In addition to the condition of error log information of an error that occurred while the transport device 3 was transporting the shelf 5, the vibration at that time registered in the measurement data database 58 (FIG. 5 etc.) is a vibration of a certain level or more. may be set as the acquisition condition for the corresponding error log information.
 また、過去の走行実績データ及び棚の搬送有無に関するデータから、搬送装置が過去に通過した地点における床面への累積負荷を推測する(算出する)ことが可能であり、エラー検知場所におけるエラー情報を用いた床面判定を行う際に、当該エラー検知場所における床面への累積負荷を組み合わせて考慮することで、より精度高く床面状態を把握することができる。一例として、損傷ありと判定された床面への累積負荷が所定の基準よりも大きい場合、その損傷ありとされた床面判定は正しい判定であると判断される。 In addition, it is possible to estimate (calculate) the cumulative load on the floor surface at the point where the transport device has passed in the past from the past running performance data and the data on whether or not the shelf has been transported. By considering the accumulated load on the floor surface at the error detection location in combination with the floor surface determination using , it is possible to grasp the floor surface state with higher accuracy. As an example, when the accumulated load on the floor surface determined to be damaged is greater than a predetermined standard, the floor surface determination determined to be damaged is determined to be correct.
 本発明は情報処理システムに関し、床面上を走行して対象物を搬送する搬送装置を有する搬送システムに適用することができる。 The present invention relates to an information processing system, and can be applied to a transport system having a transport device that transports an object while traveling on a floor surface.
 1,90,100……搬送システム(情報処理システム)、2……倉庫、2A……区画、2B……マーカ、3……搬送装置、4,91,101……運行制御装置(情報処理装置)、5……棚、40……CPU、44……出力装置、51,92,103……エラー分析プログラム、56……地図情報データベース、57……経路データデータベース、58……計測データデータベース、59……エラーログ情報データベース、60……走行実績データデータベース、70……床面状態判定結果画面、80……エラーデータ詳細画面、102……エラー原因推定プログラム。 1, 90, 100... Transport system (information processing system), 2... Warehouse, 2A... Section, 2B... Marker, 3... Transport device, 4, 91, 101... Operation control device (information processing device) ), 5... shelf, 40... CPU, 44... output device, 51, 92, 103... error analysis program, 56... map information database, 57... route data database, 58... measurement data database, 59... error log information database, 60... running record data database, 70... floor condition determination result screen, 80... error data detail screen, 102... error cause estimation program.

Claims (18)

  1.  1又は複数の搬送装置から、当該搬送装置に発生したエラーの検知場所を含むエラー情報を複数取得するデータ取得装置と、
     前記エラー取得装置が取得した複数の前記エラー情報を分析し、前記エラーの検知場所における床面の状態を判定するエラー分析装置と
     を備えることを特徴とする情報処理システム。
    a data acquisition device for acquiring a plurality of pieces of error information including detection locations of errors occurring in the transport devices from one or more transport devices;
    An information processing system, comprising: an error analysis device that analyzes a plurality of pieces of error information acquired by the error acquisition device and determines a state of a floor surface at the location where the error is detected.
  2.  前記エラー分析装置は、
     取得した前記エラー情報に基づいて、少なくとも2回以上の所定回数よりも多いエラーが検知された場所の前記床面の状態を一定以上の損傷がある又は損傷の可能性があると判定する
     ことを特徴とする請求項1に記載の情報処理システム。
    The error analyzer is
    Based on the acquired error information, the state of the floor surface where the error is detected more than a predetermined number of times, which is at least two times, is determined to be damaged or possibly damaged to a certain degree or more. 2. The information processing system according to claim 1.
  3.  前記エラー情報は、前記搬送装置に発生した前記エラーの種類に関する情報を含み、
     前記エラー分析装置は、
     少なくとも1つのエラーの種類に設定された所定回数より、当該少なくとも1つのエラーの種類であるエラーが多く検知された場所における床面の状態を、一定以上の損傷がある又は損傷の可能性があると判定する
     ことを特徴とする請求項2に記載の情報処理システム。
    The error information includes information about the type of error that occurred in the transport device,
    The error analyzer is
    The state of the floor surface at a location where more errors of at least one error type are detected than the predetermined number of times set for at least one error type is determined to be damaged to a certain degree or more or may be damaged. 3. The information processing system according to claim 2, wherein the determination is as follows.
  4.  前記搬送装置が複数存在し、
     前記エラー分析装置は、
     複数の前記搬送装置から取得した複数の前記エラー情報に基づいて、複数の前記搬送装置にそれぞれ発生した前記エラーが検知された場所の前記床面の状態を判定する
     ことを特徴とする請求項3に記載の情報処理システム。
    There are a plurality of the conveying devices,
    The error analyzer is
    3. The state of the floor surface at the location where the error occurring in each of the transport devices is detected is determined based on the plurality of error information acquired from the plurality of transport devices. The information processing system according to .
  5.  前記データ取得装置は、前記エラーの検知時に前記搬送装置が搬送物を搬送中であったか否かを表す搬送情報を取得し、
     前記エラー分析装置は、
     前記搬送情報に基づいて、前記搬送装置が搬送物を搬送中であったときに検知したエラーのエラー情報を特定し、前記特定したエラー情報に基づいて、当該エラーが検知された場所の前記床面の状態を判定する
     ことを特徴とする請求項3に記載の情報処理システム。
    The data acquisition device acquires transport information indicating whether or not the transport device was transporting an object when the error was detected,
    The error analyzer is
    Based on the transport information, the error information of the error detected while the transport device was transporting the transported object is specified, and based on the specified error information, the floor at the location where the error was detected is detected. 4. The information processing system according to claim 3, wherein the surface state is determined.
  6.  前記データ取得装置は、前記エラーの検知時に前記搬送装置が搬送する搬送物の重量の情報を含む搬送情報を取得し、
     前記エラー分析装置は、
     前記搬送情報に基づいて、前記搬送装置が搬送する搬送物の重量が所定の重量を超えるときに検知したエラーのエラー情報を特定し、前記特定したエラー情報に基づいて、当該エラーが検知された場所の前記床面の状態を判定する
     ことを特徴とする請求項3に記載の情報処理システム。
    The data acquisition device acquires transport information including weight information of a transported object transported by the transport device when the error is detected,
    The error analyzer is
    Based on the transport information, error information of an error detected when the weight of the transported object transported by the transport device exceeds a predetermined weight is specified, and the error is detected based on the specified error information. 4. The information processing system according to claim 3, wherein the state of the floor surface of the place is determined.
  7.  前記データ取得装置は、前記エラーの検知時に前記搬送装置が搬送物を搬送中であったか否かを表す搬送情報を取得し、
     前記エラー分析装置は、
     前記搬送情報と前記エラー情報に基づいて、前記搬送装置が搬送物を搬送中であったときに検知したエラーの発生頻度が、前記搬送装置が搬送物を搬送していないときに検知したエラーの発生頻度より多い場合に、当該エラーが検知された場所の前記床面の状態を一定以上の損傷がある又は損傷の可能性があると判定する
     ことを特徴とする請求項3に記載の情報処理システム。
    The data acquisition device acquires transport information indicating whether or not the transport device was transporting an object when the error was detected,
    The error analyzer is
    Based on the conveying information and the error information, the frequency of occurrence of errors detected while the conveying apparatus is conveying an article is determined as the number of errors detected while the conveying apparatus is not conveying an article. 4. The information processing according to claim 3, characterized in that if the number of occurrences is higher than the frequency of occurrence, the state of the floor surface where the error was detected is determined to be damaged or possibly damaged to a certain degree or more. system.
  8.  前記データ取得装置は、前記エラーの検知時に前記搬送装置が搬送する搬送物の重量の情報を含む搬送情報を取得し、
     前記エラー分析装置は、
     前記搬送情報と当該エラー情報に基づいて、前記搬送装置が第一の重量を超える重量の搬送物を搬送中であったときに検知したエラーの発生頻度が、前記搬送装置が第二の重量以下の重量の搬送物を搬送中であったとき又は前記搬送装置が搬送物を搬送していないときに検知したエラーの発生頻度より多い場合に、当該エラーが検知された場所の前記床面の状態を一定以上の損傷がある又は損傷の可能性があると判定する
     ことを特徴とする請求項3に記載の情報処理システム。
    The data acquisition device acquires transport information including weight information of a transported object transported by the transport device when the error is detected,
    The error analyzer is
    Based on the transport information and the error information, the frequency of occurrence of errors detected when the transport device is transporting an object weighing more than a first weight is less than or equal to a second weight of the transport device. condition of the floor at the location where the error was detected when the frequency of occurrence of the error detected when the transport device was not transporting the transported object was higher than the frequency of occurrence of the error detected when the transported object was transported 4. The information processing system according to claim 3, wherein the information processing system determines that there is a certain amount of damage or that there is a possibility of damage.
  9.  前記データ取得装置は、
     前記エラーの検知時に前記搬送装置が搬送物を搬送中であったか否かを表す情報と、前記エラーの検知時における前記搬送装置の走行状態に関する情報を含む、搬送情報を取得し、
     前記エラー分析装置は、
     少なくとも複数の前記エラー情報と、前記搬送情報とに基づいて、搬送物を搬送中の前記搬送装置に発生した前記エラーが検知された場所の前記床面の状態を判定する
     ことを特徴とする請求項3に記載の情報処理システム。
    The data acquisition device is
    Acquiring transport information including information indicating whether or not the transport device was transporting an object when the error was detected and information about the running state of the transport device when the error was detected;
    The error analyzer is
    determining the state of the floor surface at the location where the error occurred in the conveying device while conveying the article was detected, based on at least a plurality of pieces of the error information and the conveying information; Item 4. The information processing system according to item 3.
  10.  前記情報処理システムは、前記1又は複数の搬送装置と情報処理装置とを備え、
     前記情報処理装置は、前記データ取得装置と前記エラー分析装置を備え、倉庫の床を複数の区画で管理し、前記1又は複数の搬送装置を制御し、
     前記倉庫の床は、前記複数の区画それぞれに、当該区画の位置に関するマーカが表記され、
     前記1又は複数の搬送装置は、前記倉庫の床を走行し、各区画上を通るときに当該区画の床に表記されたマーカを読み取って当該区画の位置に関する情報を取得し、前記倉庫に移動可能に設置された棚を搬送する無人搬送車であり、
     前記エラーを検知した搬送装置は、前記エラーの検知場所である、前記エラーを検知したときにいた区画の位置に関する情報と、前記エラーに関するエラーコードの情報とを含むエラー情報を、前記情報処理装置に送信し、
     前記情報処理装置は、前記エラーを検知した搬送装置から受信した複数のエラー情報に基づいて、前記倉庫の床の区画ごとに床面の状態を判定し、前記床面の状態の判定結果に関する情報を出力装置に出力する
     ことを特徴とする請求項1に記載の情報処理システム。
    The information processing system includes the one or more transport devices and an information processing device,
    The information processing device includes the data acquisition device and the error analysis device, manages the floor of the warehouse in a plurality of sections, controls the one or more transport devices,
    The floor of the warehouse is marked with a marker relating to the position of each of the plurality of compartments,
    The one or more transport devices run on the floor of the warehouse, read the markers written on the floor of the compartment when passing over each compartment, acquire information about the position of the compartment, and move to the warehouse. It is an automated guided vehicle that transports shelves that can be installed,
    The conveying device that has detected the error transmits error information including information about the position of the section where the error was detected, which is the detection location of the error, and error code information about the error, to the information processing device. send to
    The information processing device determines the state of the floor surface for each section of the floor of the warehouse based on a plurality of pieces of error information received from the transport device that has detected the error, and provides information on the determination result of the state of the floor surface. The information processing system according to claim 1, wherein is output to an output device.
  11.  前記エラー分析装置は、
     前記搬送装置から取得した前記エラー情報のうち、前記床面の状態以外の原因に起因して発生するエラーの前記エラー情報を除外した、残りの前記エラー情報に基づいて、前記床面の状態を判定する
     ことを特徴とする請求項1に記載の情報処理システム。
    The error analyzer is
    The state of the floor surface is determined based on the remaining error information obtained from the transfer device, excluding the error information of errors caused by causes other than the state of the floor surface. The information processing system according to claim 1, characterized by determining.
  12.  前記エラー分析装置は、
     前記搬送装置から取得した前記エラー情報のうち、異常状態となった前記搬送装置が前記異常状態となった後に検知したエラーのエラー情報を除外した、残りの前記エラー情報に基づいて、前記床面の状態を判定する
     ことを特徴とする請求項11に記載の情報処理システム。
    The error analyzer is
    Based on the remaining error information excluding the error information of the error detected after the abnormal state of the conveying device from among the error information acquired from the conveying device, the floor surface 12. The information processing system according to claim 11, wherein the state of is determined.
  13.  前記エラー分析装置は、
     前記搬送装置から取得した前記エラー情報の数又は頻度が閾値を超過した場合に、当該搬送装置を異常状態と判定する
     ことを特徴とする請求項12に記載の情報処理システム。
    The error analyzer is
    13. The information processing system according to claim 12, wherein when the number or frequency of said error information acquired from said transport device exceeds a threshold value, said transport device is determined to be in an abnormal state.
  14.  前記エラー分析装置は、
     前記搬送装置の負荷が所定の基準を超えた場合に、当該搬送装置から取得した前記エラー情報のうち、少なくとも前記負荷が前記基準を超えた後に検知したエラーのエラー情報を除外した、残りの前記エラー情報に基づいて、前記床面の状態を判定する
     ことを特徴とする請求項11に記載の情報処理システム。
    The error analyzer is
    When the load of the transport device exceeds a predetermined standard, the remaining error information obtained by excluding at least the error information detected after the load exceeds the standard among the error information acquired from the transport device. The information processing system according to claim 11, wherein the state of the floor surface is determined based on error information.
  15.  前記搬送装置に発生した前記エラーのエラー原因を推定するエラー原因推定部をさらに備え、
     前記エラー分析装置は、
     前記エラー原因推定部により床面の状態に起因すると推定された前記エラーの前記エラー情報に基づいて床面の状態を判定する
     ことを特徴とする請求項1に記載の情報処理システム。
    further comprising an error cause estimating unit for estimating the cause of the error occurring in the transport device;
    The error analyzer is
    The information processing system according to claim 1, wherein the state of the floor surface is determined based on the error information of the error estimated to be caused by the state of the floor surface by the error cause estimation unit.
  16.  前記エラー分析装置は、
     判定した床面の損傷度合が所定の基準を超える場合にアラートを通知する
     ことを特徴とする請求項1に記載の情報処理システム。
    The error analyzer is
    2. The information processing system according to claim 1, wherein an alert is notified when the determined degree of damage to the floor surface exceeds a predetermined standard.
  17.  1又は複数の搬送装置に発生したエラーの検知場所を含む、複数のエラー情報を記録する記憶装置と、
     前記複数のエラー情報を分析し、前記エラーの検知場所における床面の状態を判定するエラー分析装置と
     を備えることを特徴とする情報処理装置。
    a storage device for recording a plurality of error information, including detection locations of errors occurring in one or more transport devices;
    An information processing apparatus comprising: an error analysis device that analyzes the plurality of pieces of error information and determines a state of a floor surface at the location where the error is detected.
  18.  倉庫の床を走行する1又は複数の搬送装置と情報処理装置とを備える情報処理システムにおける情報処理方法であって、
     前記情報処理装置は、前記倉庫の床を複数の区画で管理し、前記1又は複数の搬送装置を制御し、
     前記倉庫の床は、前記複数の区画それぞれに、当該区画の位置に関するマーカが表記され、
     前記1又は複数の搬送装置は、各区画上を通るときに当該区画の床に表記されたマーカを読み取って当該区画の位置に関する情報を取得し、前記倉庫に移動可能に設置された搬送物を搬送する無人搬送車であり、
     前記情報処理方法は、
     前記1又は複数の搬送装置から、当該搬送装置に発生したエラーの検知場所の区画の位置に関する情報と、前記エラーに関するエラーコードの情報とを含むエラー情報を複数取得する第1のステップと、
     前記取得した複数のエラー情報を分析し、前記エラーの検知場所の区画を含む、前記倉庫の床の区画ごとに床面の状態を判定する第2のステップと、
     前記床面の状態の判定結果に関する情報を出力装置に出力する第3のステップと、
     を備えることを特徴とする情報処理方法。
     
    An information processing method in an information processing system comprising one or more conveying devices traveling on a warehouse floor and an information processing device, comprising:
    The information processing device manages the floor of the warehouse in a plurality of sections, controls the one or more transport devices,
    The floor of the warehouse is marked with a marker relating to the position of each of the plurality of compartments,
    The one or more transport devices acquire information about the position of the compartment by reading the markers written on the floor of the compartment when passing over each compartment, and transport the goods movably installed in the warehouse. It is an automated guided vehicle that transports
    The information processing method includes:
    a first step of acquiring a plurality of pieces of error information including information on the position of a section where an error occurring in the transport device is detected and error code information on the error from the one or more transport devices;
    a second step of analyzing the acquired plurality of error information and determining the state of the floor surface for each section of the floor of the warehouse, including the section of the error detection location;
    a third step of outputting information about the determination result of the state of the floor to an output device;
    An information processing method comprising:
PCT/JP2021/002911 2021-01-27 2021-01-27 Information processing system, information processing device and method WO2022162802A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/JP2021/002911 WO2022162802A1 (en) 2021-01-27 2021-01-27 Information processing system, information processing device and method
JP2022577892A JPWO2022162802A1 (en) 2021-01-27 2021-01-27

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2021/002911 WO2022162802A1 (en) 2021-01-27 2021-01-27 Information processing system, information processing device and method

Publications (1)

Publication Number Publication Date
WO2022162802A1 true WO2022162802A1 (en) 2022-08-04

Family

ID=82653115

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/002911 WO2022162802A1 (en) 2021-01-27 2021-01-27 Information processing system, information processing device and method

Country Status (2)

Country Link
JP (1) JPWO2022162802A1 (en)
WO (1) WO2022162802A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1049228A (en) * 1996-08-07 1998-02-20 Komatsu Ltd Travel guide tape, breakage decision device and repairing method for the tape
JP2002347618A (en) * 2001-05-30 2002-12-04 Sharp Corp Automatic guided vehicle and article carrier equipment
JP2014186694A (en) * 2013-03-25 2014-10-02 Murata Mach Ltd Autonomously mobile unmanned carrier, and autonomously mobile unmanned carrying system
JP2015213318A (en) * 2014-05-02 2015-11-26 オ,ハクソ Data transmission system for automatic transfer system
JP2020121813A (en) * 2019-01-29 2020-08-13 株式会社日立インダストリアルプロダクツ Physical distribution management device, physical distribution management method, and physical distribution management program

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1049228A (en) * 1996-08-07 1998-02-20 Komatsu Ltd Travel guide tape, breakage decision device and repairing method for the tape
JP2002347618A (en) * 2001-05-30 2002-12-04 Sharp Corp Automatic guided vehicle and article carrier equipment
JP2014186694A (en) * 2013-03-25 2014-10-02 Murata Mach Ltd Autonomously mobile unmanned carrier, and autonomously mobile unmanned carrying system
JP2015213318A (en) * 2014-05-02 2015-11-26 オ,ハクソ Data transmission system for automatic transfer system
JP2020121813A (en) * 2019-01-29 2020-08-13 株式会社日立インダストリアルプロダクツ Physical distribution management device, physical distribution management method, and physical distribution management program

Also Published As

Publication number Publication date
JPWO2022162802A1 (en) 2022-08-04

Similar Documents

Publication Publication Date Title
CN108349079B (en) Information communication about a robot using an optical identifier
US11615655B2 (en) Dynamic industrial vehicle measure
US11914354B2 (en) Systems and methods for automated guided vehicle control
CN103782247B (en) Method and apparatus for using pre-positioned objects to localize an industrial vehicle
EP2753992B1 (en) Storage and retrieval system case unit detection
KR20180127534A (en) Inventory Management
CN115806143B (en) Full-automatic stereoscopic warehouse of printing plate roller and high-speed warehouse-in and warehouse-out management method
JP2023537400A (en) System and method for detection of anomalies in tracks on a three-dimensional storage system
CN112896903A (en) Transfer robot-based checking method, transfer robot and checking system
WO2022162802A1 (en) Information processing system, information processing device and method
WO2022163095A1 (en) Transport system, method for controlling transport system, and transport device
JP2003321106A (en) Article sorting system, method and program for sorting operation management
WO2023053645A1 (en) Transport system, transport method, and control device
JP7489943B2 (en) Information processing device and information processing method
WO2023084732A1 (en) Information processing system, method, and control system
WO2024018616A1 (en) Control method for conveyance system, and conveyance system
JP7454710B2 (en) Conveying system and method
US20230333545A1 (en) Management System Based on Spatial Address and Workpiece Tracking System Using Spatial Address
JP2023123098A (en) Control system, conveyance system, and control method
JP2023169535A (en) Warehouse operation execution apparatus, warehouse operation execution method, and computer program for executing warehouse operation
BR102022006493A2 (en) INVENTORY MANAGEMENT SYSTEM WITH REAL-TIME TRACEABILITY LEVEL
US20210149416A1 (en) Method and system for facilitating operations in storage facilities
JP2024521980A (en) SYSTEM AND METHOD FOR DISTRIBUTION OF ITEMS - Patent application
JP2023002888A (en) Information processing system, method for managing warehouse, and warehouse control device
JP2023129906A (en) warehouse management system

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21922823

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022577892

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21922823

Country of ref document: EP

Kind code of ref document: A1