JP2007022282A - Estimation method of wheel wear amount of automated guided vehicle, determination method of wheel exchange time and traveling control method of automated guided vehicle and its device - Google Patents

Estimation method of wheel wear amount of automated guided vehicle, determination method of wheel exchange time and traveling control method of automated guided vehicle and its device Download PDF

Info

Publication number
JP2007022282A
JP2007022282A JP2005206484A JP2005206484A JP2007022282A JP 2007022282 A JP2007022282 A JP 2007022282A JP 2005206484 A JP2005206484 A JP 2005206484A JP 2005206484 A JP2005206484 A JP 2005206484A JP 2007022282 A JP2007022282 A JP 2007022282A
Authority
JP
Japan
Prior art keywords
wheel
guided vehicle
automatic guided
straight section
calculated
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005206484A
Other languages
Japanese (ja)
Inventor
Ryohei Nakano
良平 中野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Bridgestone Corp
Original Assignee
Bridgestone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Bridgestone Corp filed Critical Bridgestone Corp
Priority to JP2005206484A priority Critical patent/JP2007022282A/en
Publication of JP2007022282A publication Critical patent/JP2007022282A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Platform Screen Doors And Railroad Systems (AREA)
  • Tires In General (AREA)
  • Control Of Driving Devices And Active Controlling Of Vehicle (AREA)
  • Control Of Position, Course, Altitude, Or Attitude Of Moving Bodies (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method which controls the traveling state by appropriately grasping the wear of a wheel of an automated guided vehicle, and properly determines the exchanging time of the wheel. <P>SOLUTION: A measuring section of a predetermined distance is provided in a straight section of the path of the automated guided vehicle 10. The operation to measure the number of revolutions of a wheel 12 by an encoder 14 when the automated guided vehicle 10 travels in the measuring section at a constant speed is repeated until the automated guided vehicle 10 passes through the measuring section N times. An average value P of the number of pulses Pi measured for each time is calculated, and the actual distance which the wheel 12 advances per unit pulse is calculated from the average value P and the actual distance Y of the measuring section. When this X becomes not larger than the exchange time distance Z per unit pulse which is obtained from a wheel diameter Rc of a predetermined exchange time and the average value P, it is determined that it is the wheel exchange time. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、物品を搬送するための無人搬送車の走行制御方法及びその装置に関するもので、特に、車輪の磨耗状態を推定して磨耗に伴う無人搬送車の走行距離の誤差を補正する方法に関する。   The present invention relates to a traveling control method and an apparatus for an automated guided vehicle for transporting articles, and more particularly, to a method for estimating an abrasion state of a wheel and correcting an error in a traveling distance of the automated guided vehicle due to wear. .

従来、生タイヤなどの半製品や加硫済みタイヤなどの製品を搬送・移載する際に、例えば、図5(a),(b)に示すような、自動走行装置51,51を備えた無人搬送車50が多く用いられている。この無人搬送車50は、図示しないリフト機構により昇降する荷物あるいは荷物を搭載した台車を支持するバー部材52,52が上面に設けられた矩形箱体状のケーシング53を備え、上記自動走行装置51,51により、床面に設けられた走行ライン54上に貼り付けられた反射テープ55を上記ケーシング53正面の左右に設けられた光電センサなどのライン検出センサ56a,56bにより検出しながら上記走行ライン54に沿って走行するもので、一般には、上記ライン検出センサ56a,56bの検出結果と、駆動モータ57,57により回転駆動する左右の車輪58a,58bの駆動軸に取付けられた図示しないエンコーダの出力から算出される車輪速度とに基づいて、上記車輪58a,58bの回転速度を制御する。このとき、上記左右の車輪56a,56bを独立に駆動するとともに、左右の車輪56a,56bの回転速度をそれぞれ調整することにより、カーブした走行ラインであっても安定した状態で上記無人搬送車50を走行させることが可能となる(例えば、特許文献1参照)。
また、上記無人搬送車を停止する際には、走行ラインの両側に別途に設けられた停止用のマーカを検出し、上記エンコーダの出力をカウントして上記無人搬送車の走行距離を積算しながら所定の速度まで減速し、その後、上記停止用のマーカーを検出してから所定の距離だけ走行させた後停止させるようにすれば、上記無人搬送車を停止位置に精度よく停止させることができる(例えば、特許文献2参照)。
特開平10−63337号公報 特開2000−10632号公報
Conventionally, when transporting / transferring a semi-finished product such as a raw tire or a product such as a vulcanized tire, automatic traveling devices 51 and 51 as shown in FIGS. 5A and 5B are provided, for example. Many automated guided vehicles 50 are used. The automatic guided vehicle 50 includes a rectangular box-shaped casing 53 provided with bar members 52 and 52 on the upper surface for supporting a load that is lifted or lowered by a lift mechanism (not shown) or a carriage on which the load is mounted. , 51, while the reflective tape 55 affixed on the travel line 54 provided on the floor surface is detected by line detection sensors 56 a, 56 b such as photoelectric sensors provided on the left and right of the front surface of the casing 53. 54. Generally, the detection results of the line detection sensors 56a and 56b and the encoders (not shown) attached to the drive shafts of the left and right wheels 58a and 58b that are driven to rotate by the drive motors 57 and 57 are used. Based on the wheel speed calculated from the output, the rotational speed of the wheels 58a and 58b is controlled. At this time, the left and right wheels 56a and 56b are independently driven, and the rotational speeds of the left and right wheels 56a and 56b are respectively adjusted, so that the automatic guided vehicle 50 can be kept stable even in a curved traveling line. Can be caused to travel (see, for example, Patent Document 1).
When stopping the automatic guided vehicle, a stop marker provided separately on both sides of the travel line is detected, and the output of the encoder is counted to accumulate the travel distance of the automatic guided vehicle. If the vehicle is decelerated to a predetermined speed and then stopped after detecting the stop marker and then running for a predetermined distance, the automatic guided vehicle can be accurately stopped at the stop position ( For example, see Patent Document 2).
JP-A-10-63337 JP 2000-10632 A

ところで、上記無人搬送車の走行速度の制御は、通常、車輪の回転速度に基づいて行なわれているが、車輪が磨耗してくると車輪の径が取付時の径よりも小さくなるため、実際の走行距離が車輪の回転速度から算出される走行距離よりも短くなってしまうことから、停止位置が当初の位置からずれてしまうなどのトラブルが発生していた。
そこで、定期点検の際に上記無人搬送車の径をそれぞれ計測して、磨耗が進んだ車輪を交換したり、走行距離の積算値が所定の値を超えているときには、車輪が磨耗しているとして車輪を交換することも考えられるが、無人搬送車の車輪の状態をすべてチェックすること効率的ではなく、また、走行距離の積算値を目安にして車輪交換を行うようにした場合には、交換時期を早めに見積もらないと、停止位置のずれをなくすことは困難である。
また、停止位置のずれが許容範囲を超えた場合には車輪が磨耗したとして上記車輪を交換する方法も考えられるが、この場合にも、車輪を早期に交換することになるため、コストアップになるといった問題点がある。
By the way, the control of the traveling speed of the automatic guided vehicle is usually performed based on the rotational speed of the wheel. However, since the wheel diameter becomes smaller than the diameter when the wheel is worn, Since the travel distance becomes shorter than the travel distance calculated from the rotational speed of the wheels, troubles such as the stop position deviating from the initial position have occurred.
Therefore, when the diameter of the automated guided vehicle is measured during regular inspections, the worn wheels are replaced, or when the accumulated value of the travel distance exceeds a predetermined value, the wheels are worn. It is also possible to replace the wheel as, but it is not efficient to check all the conditions of the wheel of the automatic guided vehicle, and if the wheel is replaced based on the integrated value of the travel distance, If the replacement time is not estimated early, it is difficult to eliminate the deviation of the stop position.
In addition, when the deviation of the stop position exceeds the allowable range, it is conceivable to replace the wheel because the wheel is worn, but in this case as well, the wheel is replaced early, which increases the cost. There is a problem that becomes.

本発明は、従来の問題点に鑑みてなされたもので、無人搬送車の車輪の磨耗量を適切に把握してその走行状態を制御するとともに、車輪の交換時期を適正に判定する方法を提供することを目的とする。   The present invention has been made in view of the conventional problems, and provides a method for appropriately grasping the amount of wear of the wheel of the automatic guided vehicle and controlling its running state and appropriately determining the replacement time of the wheel. The purpose is to do.

本発明者らは、鋭意検討の結果、無人搬送車が所定の直進区間内を走行しているときの車輪の回転数を検出して、車輪の径が取付時の径(初期値)であるとして算出した走行距離と実際の走行距離とを比較すれば、車輪の磨耗量を精度よく推定することができることを見出し本発明に想到したものである。
すなわち、本願の請求項1に記載の発明は、走行中の無人搬送車の車輪の所定の直進区間内での回転数を検出し、上記直進区間の実際の距離と、上記検出された車輪回転数と上記車輪の径の初期値とから算出される走行距離算出値とを用いて、当該車輪の摩耗量を推定するようにしたことを特徴とするものである。
請求項2に記載の発明は、請求項1に記載の無人搬送車の車輪摩耗状態の推定方法において、上記直進区間内での無人搬送車の走行速度を一定速度としたことを特徴とする。
As a result of intensive studies, the present inventors have detected the number of rotations of the wheel when the automatic guided vehicle is traveling in a predetermined straight section, and the wheel diameter is the diameter at the time of attachment (initial value). As a result, the present inventors have found that the amount of wheel wear can be estimated with high accuracy by comparing the calculated travel distance with the actual travel distance.
That is, the invention according to claim 1 of the present application detects the number of rotations of a wheel of the automated guided vehicle in a predetermined straight section, and detects the actual distance of the straight section and the detected wheel rotation. The amount of wear of the wheel is estimated using the calculated distance and the distance calculated from the initial value of the wheel diameter.
According to a second aspect of the present invention, in the method for estimating the wheel wear state of the automatic guided vehicle according to the first aspect, the traveling speed of the automatic guided vehicle in the straight section is a constant speed.

また、請求項3に記載の発明は、無人搬送車の車輪の交換時期を判定する方法であって、走行中の無人搬送車の車輪の所定の直進区間内での回転数を検出し、上記直進区間の実際の距離と、上記検出された車輪回転数と上記車輪の径の初期値とから算出される走行距離算出値とを用いて、当該車輪の摩耗量を推定するとともに、上記摩耗量の推定値が予め設定した閾値を超えた場合に、上記車輪が交換時期に達したと判定することを特徴とするものである。
請求項4に記載の発明は、請求項3に記載の無人搬送車の車輪交換時期の判定方法において、上記摩耗量の推定値に代えて、上記直進区間におけ車輪の回転数と上記直進区間の実際の距離とから算出される単位角度当たりの走行距離と、上記車輪の径の初期値を用いて算出される単位角度当たりの走行距離との差を求め、上記差が予め設定した閾値を超えた場合に、上記車輪が交換時期に達したと判定することを特徴とする。
請求項5に記載の発明は、請求項3または請求項4に記載の無人搬送車の車輪交換時期の判定方法において、上記磨耗量の推定値もしくは上記単位角度当たりの走行距離の差が予め設定した閾値を超えた場合には、上記車輪の径を光学的に検出し、上記検出された車輪径が予め設定した車輪径に満たない場合に、上記車輪が交換時期に達したと判定することを特徴とする。
The invention according to claim 3 is a method for determining the replacement time of the wheel of the automatic guided vehicle, wherein the number of rotations of the wheel of the automatic guided vehicle in a predetermined straight section is detected, The wear amount of the wheel is estimated using the actual distance of the straight section, the travel distance calculation value calculated from the detected wheel rotation speed and the initial value of the wheel diameter, and the wear amount. When the estimated value exceeds a preset threshold value, it is determined that the wheel has reached the replacement time.
According to a fourth aspect of the present invention, in the wheel replacement timing determination method for the automatic guided vehicle according to the third aspect, in place of the estimated value of the wear amount, the rotational speed of the wheel in the straight traveling section and the straight traveling section The difference between the travel distance per unit angle calculated from the actual distance and the travel distance per unit angle calculated using the initial value of the wheel diameter is obtained, and the difference is set to a preset threshold value. When it exceeds, it determines with the said wheel having reached the replacement time, It is characterized by the above-mentioned.
According to a fifth aspect of the present invention, in the method for determining the wheel replacement timing of the automatic guided vehicle according to the third or fourth aspect, the estimated value of the wear amount or the difference in the travel distance per unit angle is preset. If the detected wheel diameter is exceeded, the wheel diameter is optically detected, and if the detected wheel diameter is less than the preset wheel diameter, it is determined that the wheel has reached the replacement time. It is characterized by.

請求項6に記載の発明は、無人搬送車の走行状態を制御する方法であって、走行中の無人搬送車の車輪の所定の直進区間内での回転数を検出し、上記直進区間の実際の距離と、上記検出された車輪回転数と上記車輪の径の初期値とから算出される走行距離算出値とを用いて、当該車輪の摩耗量を推定するとともに、上記推定された摩耗量に基づいて上記無人搬送車の車輪回転速度、または、当該搬送車の所定の経路での車輪の総回転数のいずれか一方、または両方を変更することにより、車輪の磨耗に伴って減少する当該搬送車の走行距離を補正するようにしたことを特徴とするものである。
請求項7に記載の発明は、請求項6に記載の無人搬送車の走行制御方法において、上記摩耗量の推定値に代えて、上記直進区間における車輪の回転数と上記直進区間の実際の距離とから算出される単位角度当たりの走行距離と、上記車輪の径の初期値を用いて算出される単位角度当たりの走行距離との差を求め、上記走行距離との差に基づいて上記無人搬送車の車輪回転速度、または、当該搬送車の所定の経路での車輪の総回転数のいずれか一方、または両方を変更するようにしたことを特徴とする。
また、請求項8に記載の発明は、無人搬送車の車輪の回転速度を制御して無人搬送車の走行状態を制御する無人搬送車の走行制御装置であって、
無人搬送車の車輪に取付けられた上記車輪の回転数を検出する手段と、
無人搬送車が所定の直進区間に進入する進入時間と上記直進区間を通過した通過時間とを検知する手段と、
上記直進区間内での上記車輪の回転数、上記車輪の径の初期値、及び、上記進入時間から上記通過時間までの時間間隔から上記車輪の走行距離の演算値を演算する走行距離演算手段と、
上記走行距離の演算値と上記直進区間の実際の距離との差に基づいて上記車輪の回転速度、または、当該搬送車の所定の経路での車輪の総回転数のいずれか一方、または両方を変更する手段、とを備え、
車輪の磨耗に伴って減少する当該搬送車の走行距離を補正して、上記無人搬送車を予め設定された所定の位置まで精度よく移動させることができるようにしたものである。
The invention according to claim 6 is a method for controlling the traveling state of the automatic guided vehicle, wherein the number of revolutions of a wheel of the automatic guided vehicle in the traveling is detected in a predetermined straight traveling section, and the actual traveling section is actually detected. And the estimated amount of wear of the wheel, and the estimated amount of wear. Based on the wheel rotation speed of the automatic guided vehicle or the total number of rotations of the wheel on the predetermined route of the guided vehicle, or the both, the conveyance that decreases with the wear of the wheel. The present invention is characterized in that the travel distance of the car is corrected.
According to a seventh aspect of the present invention, in the traveling control method for the automatic guided vehicle according to the sixth aspect, in place of the estimated value of the wear amount, the rotational speed of the wheel in the straight section and the actual distance in the straight section. The difference between the travel distance per unit angle calculated from the above and the travel distance per unit angle calculated using the initial value of the wheel diameter is obtained, and the unmanned conveyance is performed based on the difference from the travel distance. One or both of the wheel rotation speed of the vehicle and the total number of rotations of the wheel along a predetermined route of the transport vehicle are changed.
The invention described in claim 8 is a travel control device for an automatic guided vehicle that controls a traveling state of the automatic guided vehicle by controlling a rotation speed of a wheel of the automatic guided vehicle.
Means for detecting the rotational speed of the wheel attached to the wheel of the automatic guided vehicle;
Means for detecting an entry time when the automated guided vehicle enters a predetermined straight section and a passing time after passing through the straight section;
Travel distance calculating means for calculating the calculated value of the travel distance of the wheel from the rotation speed of the wheel in the straight section, the initial value of the diameter of the wheel, and the time interval from the entry time to the passing time; ,
Based on the difference between the calculated value of the travel distance and the actual distance of the straight section, either the rotational speed of the wheel or the total rotational speed of the wheel on a predetermined route of the carrier vehicle, or both And means for changing,
The travel distance of the transport vehicle that decreases with the wear of the wheels is corrected so that the automatic guided vehicle can be accurately moved to a predetermined position set in advance.

本発明によれば、走行中の無人搬送車の所定の直進区間内での車輪の回転数を検出し、上記直進区間の実際の距離と上記検出された車輪回転数と上記車輪の径の初期とを用いて算出した算出値とを用いて、当該車輪の摩耗量を推定するようにしたので、車輪の磨耗状態を精度よく検出できる。また、上記推定磨耗量、あるいは、上記推定磨耗量に対応する量である、直進区間における車輪の回転数と上記直進区間の実際の距離とから算出される単位角度当たりの走行距離と、上記車輪の径の初期値を用いて算出される単位角度当たりの走行距離との差に基づいて、上記無人搬送車の車輪回転速度、もしくは、当該搬送車の所定の経路での車輪の総回転数を変更するようにしたので、無人搬送車の走行距離の誤差をなくすことができ、車輪の取付時と同様の精度の高い走行制御を行うことができる。
また、上記磨耗量もしくは単位角度当たりの走行距離との差に対して閾値を設けて、上記推定された磨耗量あるいは走行距離との差が上記閾値を超えた場合には、上記車輪が交換時期に達したと判定するようにすれば、車輪を適正な時期に交換することができる。
また、上記車輪の径を光学的に検出し、上記検出された車輪径が予め設定した車輪径に満たない場合に、上記車輪が交換時期に達したと判定するようにすれば、車輪の交換時期の確実性を更に向上させることができる。
According to the present invention, the rotational speed of a wheel in a predetermined straight traveling section of a traveling automatic guided vehicle is detected, and the actual distance of the straight traveling section, the detected wheel rotational speed, and the initial diameter of the wheel are detected. Since the wear amount of the wheel is estimated using the calculated value calculated using and, the wear state of the wheel can be accurately detected. In addition, the estimated wear amount or a distance corresponding to the estimated wear amount, the travel distance per unit angle calculated from the rotational speed of the wheel in the straight section and the actual distance in the straight section, and the wheel Based on the difference from the travel distance per unit angle calculated using the initial value of the diameter of the wheel, the wheel rotation speed of the automatic guided vehicle or the total number of rotations of the wheel in a predetermined route of the transport vehicle is calculated. Since the change is made, it is possible to eliminate the error in the travel distance of the automatic guided vehicle, and it is possible to perform the travel control with the same accuracy as when the wheels are attached.
Further, when a threshold is provided for the difference between the wear amount or the travel distance per unit angle, and the difference between the estimated wear amount or the travel distance exceeds the threshold, the wheel is replaced. If it is determined that it has reached, the wheel can be replaced at an appropriate time.
If the wheel diameter is optically detected and the detected wheel diameter is less than a preset wheel diameter, it is determined that the wheel has reached the replacement time. The certainty of time can be further improved.

以下、本発明の最良の形態について、図面に基づき説明する。
図1は、本最良の形態に係る無人搬送車の車輪磨耗状態の推定方法を示す図で、図2は、本発明による無人搬送車10の制御コントローラの詳細を示す図である。各図において、10は無人搬送車の誘導路20上に貼り付けられた反射テープなどのマーカ21を車体の前方に取付けられた左右のマーカ検出用センサ11,11により検出しながら上記誘導路20に沿って走行する無人搬送車、30は予め設定された制御プログラム信号に基づいて上記無人搬送車10の走行状態を監視するとともに、上記無人搬送車10と図示しない他の無人搬送車との位置や走行速度など、多数の無人搬送車の走行状態を監視する上位コントローラである。
上記無人搬送車10は車輪12と、上記車輪12を駆動するモータ13と、上記車輪12の回転数を検出するエンコーダ14と、発光素子15aと受光素子15bとを有し上記車輪12の径を検出する車輪径検出センサ15と、後述する車輪磨耗状態を推定するために行う車輪回転数計測の計測開始及び計測終了を指示する計測開始トリガ及び計測終了トリガを検出するトリガ検出手段16と、上記モータ13を駆動・制御して上記無人搬送車10の発進・走行・停止などを制御する制御コントローラ17とを備えたもので、本例では、上記制御コントローラ17に、上記モータ13の回転速度を制御して上記無人搬送車10の走行速度を制御する走行制御手段17aと上記エンコーダ14の出力から上記無人搬送車10の走行距離を算出する走行距離算出手段17bとに加えて、車輪12の磨耗量の目安となる単位パルス当たりの走行距離を算出して車輪12の磨耗状態を推定する車輪磨耗状態推定手段17cと、予め設定された車輪交換の目安となる交換目安距離Wや車輪交換に値する単位パルス当たりに車輪12の進む距離Zなどの設定値を記憶し、上記車輪12の交換時期を判定する車輪交換時期判定手段17dとを備えている。
また、40a,40bは上記無人搬送車10の車輪12の直進区間に所定の距離だけ離隔して設けられた位置検出手段で、位置検出手段40aは無人搬送車10の先頭位置が上記直進区間に進入したときを検知し、位置検出手段40bは無人搬送車10の先頭位置が上記直進区間を通過したときを検知して、車輪磨耗状態を推定するために行う車輪回転数計測の計測開始あるいは計測終了のトリガーを発生し、このトリガーを上記無人搬送車10のトリガ検出手段16に送信する。このような位置検出手段40a,40bとしては、例えば、発光素子と受光素子とから成る光学式センサとトリガ発生手段とを備えたものを用いることができる。具体的には、上記光学式センサの発光素子と受光素子間を上記無人搬送車10の前側の側面に設けられた位置検出用バー18が通過したときに、上記トリガ発生手段が計測開始あるいは計測終了のトリガーを発生して上記無人搬送車10に送信し、上記無人搬送車10に計測開始位置に到達したことや、計測終了位置まで走行したことにを通知するように構成すればよい。
Hereinafter, the best mode of the present invention will be described with reference to the drawings.
FIG. 1 is a diagram showing a method for estimating the wheel wear state of an automated guided vehicle according to the best mode, and FIG. 2 is a diagram showing details of a control controller of the automated guided vehicle 10 according to the present invention. In each figure, reference numeral 10 denotes the guide path 20 while detecting a marker 21 such as a reflective tape affixed on the guide path 20 of the automatic guided vehicle by left and right marker detection sensors 11 and 11 attached to the front of the vehicle body. The automatic guided vehicle 30 that travels along the line 30 monitors the traveling state of the automatic guided vehicle 10 based on a preset control program signal, and positions of the automatic guided vehicle 10 and other automatic guided vehicles (not shown). It is a host controller that monitors the running state of a large number of automatic guided vehicles such as the traveling speed.
The automatic guided vehicle 10 includes a wheel 12, a motor 13 that drives the wheel 12, an encoder 14 that detects the number of rotations of the wheel 12, a light emitting element 15a, and a light receiving element 15b. A wheel diameter detection sensor 15 for detecting, a trigger detection means 16 for detecting a measurement start trigger and a measurement end trigger for instructing a measurement start and a measurement end of wheel rotation number measurement performed to estimate a wheel wear state to be described later; And a controller 17 for controlling the start / run / stop of the automatic guided vehicle 10 by driving / controlling the motor 13. In this example, the controller 17 controls the rotation speed of the motor 13. The travel distance of the automatic guided vehicle 10 is calculated from the output of the encoder 14 and the traveling control means 17a that controls the traveling speed of the automatic guided vehicle 10 to control. In addition to the travel distance calculation means 17b, a wheel wear state estimation means 17c that calculates a travel distance per unit pulse that is a measure of the wear amount of the wheel 12 and estimates the wear state of the wheel 12, and a preset wheel Wheel replacement time determination means 17d for storing a set value such as a replacement guide distance W that is a guide for replacement and a distance Z traveled by the wheel 12 per unit pulse worth the wheel replacement, and for determining the replacement time of the wheel 12 is provided. ing.
Reference numerals 40a and 40b denote position detection means provided at a predetermined distance in the straight section of the wheel 12 of the automatic guided vehicle 10, and the position detection means 40a is configured so that the leading position of the automatic guided vehicle 10 is in the straight section. When the vehicle enters the vehicle, the position detection means 40b detects when the leading position of the automatic guided vehicle 10 has passed through the straight section, and starts or measures the measurement of the wheel rotational speed for estimating the wheel wear state. An end trigger is generated, and this trigger is transmitted to the trigger detection means 16 of the automatic guided vehicle 10. As such position detection means 40a, 40b, for example, an apparatus provided with an optical sensor composed of a light emitting element and a light receiving element and a trigger generating means can be used. Specifically, when the position detection bar 18 provided on the front side surface of the automatic guided vehicle 10 passes between the light emitting element and the light receiving element of the optical sensor, the trigger generating means starts measurement or performs measurement. An end trigger may be generated and transmitted to the automatic guided vehicle 10 so as to notify the automatic guided vehicle 10 that the measurement start position has been reached or that the vehicle has traveled to the measurement end position.

次に、本発明による車輪磨耗量の推定方法について、図3のフローチャートに基づき説明する。
ここで、無人搬送車10の経路は、図1に示すような直進区間を有し、かつ、上記直進区間を一定速度で走行するような経路を有するものとする。本例では、上記直進区間内に所定の距離の計測区間を設けて、上記計測区間をN=20回通過したときのエンコーダ出力の平均値を算出して車輪12の磨耗量の目安となる単位パルス当たりの走行距離を算出する。なお、上記計測区間は、図1においては、上記位置検出手段40aと位置検出手段40bとの間の区間である。
まず、通過回数を計測する計測カウンタを予めi=0にリセットしておき(ステップS10)、無人搬送車10が上記計測区間に進入してきたかどうかを判定する。具体的には、トリガ検出手段16が位置検出手段40aからの計測開始トリガーを検出したかどうかを判定する(ステップS11)。トリガ検出手段16が計測開始トリガーを検出すると制御コントローラ17が上記エンコーダ14の検出したパルス数の計測を開始する(ステップS12)。これにより、車輪12の回転数に比例したパルス数が検出される。
制御コントローラ17は上記出力されたパルス列のパルス数の計測を、トリガ検出手段16が位置検出手段40bからの計測終了トリガーを検出するまで継続し、上記無人搬送車10が上記計測区間内を走行している間のパルス数を計測する(ステップS13)。このとき、上記パルス列の間隔を調べ、無人搬送車10が一定速度で走行しているかどうかを判定し(ステップS14)、速度が一定であることが確認された場合には、ステップS15に進んで上記計測したパルス数Piを記憶した後、計測カウンタを一つ進める(ステップS16)。なお、たまたま、車輪12に滑りが生じるなどして無人搬送車10の速度が一定にならなかった場合には、パルス数の計測を行わなかったものとして、計測回数に加えない。
そして、無人搬送車10が上記計測区間をN=20回通過するまで、上記ステップS11〜ステップS16までを繰り返し、各回数毎の計測パルス数Piを順次記憶する(ステップS17)。
N=20回の測定が完了すると、上記各パルス数Piの平均値Pを算出する(ステップS18)。上計測区間の実際の距離をYとすると、この距離Yを上記パルス数の平均値Pで除した値X=Y/Pは、単位パルス当たりに車輪12の進んだ距離を表わす。本例では、車輪12の摩耗量を直接求めるのではなく、上記の車輪12の摩耗量の目安となる、単位パルス当たりの距離X=Y/Pを算出する(ステップS19)。
ところで、車輪の磨耗量をx、車輪の取付時の半径をR0とし、かつ、エンコーダ14が車輪1回転で出力するパルス数をnすると、車輪12は(P/n)回転したので、上記距離Yは、Y=2π(R0−x)・(P/n)で求められる。したがって、図3に示すように、Xを算出するステップS19の後ろに、上記Xの値から車輪の磨耗量xを推定するステップS20を設けておけば、車輪の磨耗量xそのものも推定することができる。
Next, a method for estimating the amount of wheel wear according to the present invention will be described with reference to the flowchart of FIG.
Here, it is assumed that the route of the automatic guided vehicle 10 has a straight traveling section as shown in FIG. 1 and a route that travels in the straight traveling section at a constant speed. In this example, a measurement section of a predetermined distance is provided in the straight traveling section, and an average value of the encoder output when the measurement section is passed N = 20 times is calculated and becomes a reference for the wear amount of the wheel 12 Calculate the mileage per pulse. In addition, the said measurement area is an area between the said position detection means 40a and the position detection means 40b in FIG.
First, a measurement counter for measuring the number of passes is reset to i = 0 in advance (step S10), and it is determined whether the automatic guided vehicle 10 has entered the measurement section. Specifically, it is determined whether or not the trigger detection means 16 has detected a measurement start trigger from the position detection means 40a (step S11). When the trigger detection means 16 detects the measurement start trigger, the controller 17 starts measuring the number of pulses detected by the encoder 14 (step S12). Thereby, the pulse number proportional to the rotation speed of the wheel 12 is detected.
The controller 17 continues the measurement of the number of pulses of the output pulse train until the trigger detection unit 16 detects the measurement end trigger from the position detection unit 40b, and the automatic guided vehicle 10 travels in the measurement section. The number of pulses during measurement is measured (step S13). At this time, the interval between the pulse trains is examined to determine whether the automatic guided vehicle 10 is traveling at a constant speed (step S14). If it is confirmed that the speed is constant, the process proceeds to step S15. After storing the measured pulse number P i , the measurement counter is advanced by one (step S16). If the speed of the automatic guided vehicle 10 does not become constant due to the occurrence of slipping on the wheels 12, it is assumed that the number of pulses has not been measured and is not added to the number of measurements.
Then, the automatic guided vehicle 10 is the measurement interval so as to pass through N = 20 times, repeated until the step S11~ step S16, sequentially storing measured pulse number P i for each count (step S17).
When N = 20 measurements are completed, the average value P of the number of pulses P i is calculated (step S18). Assuming that the actual distance of the upper measurement section is Y, a value X = Y / P obtained by dividing the distance Y by the average value P of the number of pulses represents the distance traveled by the wheel 12 per unit pulse. In this example, the amount of wear of the wheel 12 is not directly calculated, but the distance X = Y / P per unit pulse, which is a measure of the amount of wear of the wheel 12, is calculated (step S19).
By the way, when the wear amount of the wheel is x, the radius when the wheel is mounted is R0, and the number of pulses output by the encoder 14 by one rotation of the wheel is n, the wheel 12 rotates (P / n). Y is obtained by Y = 2π (R0−x) · (P / n). Therefore, as shown in FIG. 3, if step S20 for estimating the wheel wear amount x from the value of X is provided after step S19 for calculating X, the wheel wear amount x itself is also estimated. Can do.

次に、車輪交換時期と車輪の磨耗に伴う走行距離の誤差を補正する方法について、図4のフローチャートに基づき説明する。
まず、車輪交換時期判定手段17dにて、無人搬送車10の積算走行距離Vと車輪交換の目安となる交換目安距離Wとを比較し(ステップS1)、V≧Wである場合には、この情報を上位コントローラ30に通知して(ステップS7)、当該無人搬送車10の車輪12を交換する。
ステップS1においてV<Wである場合には、ステップ2に進んで車輪12の磨耗量xを推定する。この磨耗量xの推定は、上記説明した図2のフローチャートに従って行う。なお、上記単位パルス当たりの距離Xと、車輪径の初期値R0と上記パルス数の平均値Pとから求められる、車輪12が磨耗していないとして算出した単位パルス当たりの基準距離X0との差Δ=X0−Xは、車輪の磨耗量xに比例するので、本例では、車輪の磨耗量xの算出を省略し、上記単位パルス当たりの距離Xと、予め設定された交換時期の車輪径Rcと上記パルス数の平均値Pとから求められる単位パルス当たりの距離である交換時期距離Zとを比較することにより、車輪交換時期を判定する(ステップS3)。
上記ステップS3においてX≦Zである場合、すなわち、上記算出された単位パルス当たりの距離Xが交換時期距離Z以下になった場合には、ステップS4に進み、車輪径検出センサ15を用いて車輪12の径を検出する(ステップS4)。具体的には、図2に示すように、車輪径検出センサ15の発光素子15aと受光素子15bとを車輪12の前方と後方に互いに対向して設置する。このとき、上記発光素子15aと受光素子15bを、車輪12の磨耗が少ない場合には発光素子15aからの光は車輪12に遮られて受光素子15bに入らないが、磨耗が進んで車輪12の径が小さくなり、車輪12が交換の目安となる車輪径Rcまで磨耗すると、上記発光素子15aからの光が受光素子15bに入るような位置に設置しておく。このように上記発光素子15aと受光素子15bとを設置しておけは、車輪12が上記車輪径Rcまで磨耗したときに受光素子15bに光が入光する。したがって、上記受光素子15bに流れる電流などの受光素子15bからの出力を検出すれば、車輪が所定の径まで磨耗したことを検出したことになるので、車輪12の径が交換の目安となる車輪径Rcになったことを検知することができる。
Next, a method of correcting the error of the travel distance accompanying the wheel replacement time and the wheel wear will be described based on the flowchart of FIG.
First, the wheel exchanging time determination means 17d compares the cumulative travel distance V of the automatic guided vehicle 10 with the exchanging guide distance W that serves as a guide for exchanging the wheels (step S1). Information is notified to the host controller 30 (step S7), and the wheel 12 of the automatic guided vehicle 10 is exchanged.
If V <W in step S1, the process proceeds to step 2 to estimate the wear amount x of the wheel 12. The estimation of the wear amount x is performed according to the flowchart of FIG. 2 described above. The difference between the distance X per unit pulse and the reference distance X0 per unit pulse calculated from the initial value R0 of the wheel diameter and the average value P of the number of pulses calculated as the wheel 12 is not worn. Since Δ = X0−X is proportional to the wheel wear amount x, in this example, calculation of the wheel wear amount x is omitted, and the distance X per unit pulse and the wheel diameter at a preset replacement time are omitted. The wheel replacement time is determined by comparing the replacement time distance Z, which is a distance per unit pulse, obtained from Rc and the average value P of the number of pulses (step S3).
If X ≦ Z in step S3, that is, if the calculated distance X per unit pulse is less than or equal to the replacement timing distance Z, the process proceeds to step S4, and the wheel diameter detection sensor 15 is used to The diameter of 12 is detected (step S4). Specifically, as shown in FIG. 2, the light-emitting element 15 a and the light-receiving element 15 b of the wheel diameter detection sensor 15 are installed facing the front and rear of the wheel 12. At this time, when the wear of the light emitting element 15a and the light receiving element 15b is small, the light from the light emitting element 15a is blocked by the wheel 12 and does not enter the light receiving element 15b. When the diameter is reduced and the wheel 12 is worn down to the wheel diameter Rc that serves as a guide for replacement, it is installed at a position where the light from the light emitting element 15a enters the light receiving element 15b. If the light emitting element 15a and the light receiving element 15b are thus installed, light enters the light receiving element 15b when the wheel 12 is worn down to the wheel diameter Rc. Therefore, if an output from the light receiving element 15b such as a current flowing through the light receiving element 15b is detected, it is detected that the wheel has been worn to a predetermined diameter. It can be detected that the diameter Rc has been reached.

したがって、ステップS5では、受光素子15bからの出力があった場合には、車輪12の交換が必要であると判定し、この情報を上位コントローラ30に通知する(ステップS6)。また、受光素子15bからの出力がない場合にはステップS2に戻って、上記計測区間での車輪12の単位パルス当たりの距離Xの算出を継続する。
一方、上記ステップS3においてX>Zである場合には、車輪交換時期には至っていないと判定し、ステップS7に進んで車輪回転数を増加させるかどうかを判定する。すなわち、車輪12の径は交換するほどは磨耗していないが、単位パルス当たりに車輪12の進む実際の距離Xは、初期状態である車輪を取付けたばかりの状態での単位パルス当たりに進む距離X0よりも短くなる。そこで、例えば、複数の設定値Xk(但し、Xk<Xk-1<X0)を設定し、X1≦X<X0のときには磨耗が進んでいないとして車輪回転数増加の指示を行わず、ステップS2に戻って、車輪12の磨耗量の測定を継続する。一方、X<X1の場合には、距離X0と距離Xとの誤差を解消するため、ステップS8に進んで、モータ13の回転数を増加させて車輪12の回転速度を上げ、上記無人搬送車10の走行速度を車輪12が磨耗してないときの速度になるように指示するとともに、ステップS2に戻って、車輪12の磨耗量の測定、すなわち、単位パルス当たりの距離Xの算出を継続する。そして、k回目の測定において、X<Xkであれば、モータ13の回転数を増加させて、車輪の回転速度をnk倍に増加させるようにすれば、無人搬送車10の走行速度を車輪12が磨耗してない時の速度に戻すことができるので、車輪12の磨耗による走行距離の誤差を確実になくすことができる。
Therefore, in step S5, when there is an output from the light receiving element 15b, it is determined that the wheel 12 needs to be replaced, and this information is notified to the host controller 30 (step S6). If there is no output from the light receiving element 15b, the process returns to step S2, and the calculation of the distance X per unit pulse of the wheel 12 in the measurement section is continued.
On the other hand, if X> Z in step S3, it is determined that the wheel replacement time has not been reached, and the process proceeds to step S7 to determine whether to increase the wheel rotation speed. In other words, the diameter of the wheel 12 is not worn enough to be replaced, but the actual distance X traveled by the wheel 12 per unit pulse is the distance X0 traveled per unit pulse in a state where the wheel in the initial state is just attached. Shorter than. Therefore, for example, a plurality of set values X k (where X k <X k-1 <X0) are set, and when X 1 ≦ X <X0, it is determined that wear has not progressed, and no instruction is given to increase the wheel speed. Returning to step S2, the measurement of the amount of wear of the wheel 12 is continued. On the other hand, in the case of X <X 1 , in order to eliminate the error between the distance X0 and the distance X, the process proceeds to step S8 to increase the rotational speed of the motor 13 to increase the rotational speed of the wheel 12, thereby The travel speed of the vehicle 10 is instructed to be the speed when the wheels 12 are not worn, and the process returns to step S2 to continue measuring the amount of wear of the wheels 12, that is, calculating the distance X per unit pulse. To do. In the k-th measurement, if X <X k , the rotational speed of the motor 13 is increased and the rotational speed of the wheel is increased by n k times. Since it is possible to return to the speed when the wheel 12 is not worn, it is possible to reliably eliminate the error in the travel distance due to the wear of the wheel 12.

このように、本最良の形態によれば、無人搬送車10の経路の直進区間内に所定の距離の計測区間を設けて、上記無人搬送車10が上記計測区間を一定の速度で走行したときの車輪12の回転数をエンコーダ14で計測する操作を、上記無人搬送車10が計測区間をN回通過するまで繰り返し、各回ごとに計測したパルス数Piをそれぞれ記憶した後、上記各パルス数Piの平均値Pを算出し、上計測区間の実際の距離をYと上記パルス数の平均値Pとを用いて、単位パルス当たりに車輪12の進む実際の距離X=Y/Pを算出し、このXが予め設定された交換時期の車輪径Rcと上記パルス数の平均値Pとから求められる単位パルス当たりの交換時期距離Z以下になった場合には車輪交換時期であると判定し、X>Zである場合には、このXと車輪12を取付けたばかりの状態での単位パルス当たりに進む距離X0との差に基づいて、車輪12の回転数を増加させるようにしたので、車輪12の交換時期を確実に判定することができるとともに、車輪12の磨耗による走行距離の誤差を確実になくすことができる。 Thus, according to this best mode, when the measurement section of a predetermined distance is provided in the straight section of the route of the automatic guided vehicle 10 and the automatic guided vehicle 10 travels in the measurement section at a constant speed. The operation of measuring the number of rotations of the wheels 12 with the encoder 14 is repeated until the automatic guided vehicle 10 passes through the measurement section N times, and the number of pulses P i measured each time is stored. calculates an average value P of the P i, calculate the actual distance above measurement interval by using the average value P of Y and the number of pulses, the actual distance X = Y / P of travel of the wheels 12 per unit pulse If this X is less than the replacement time distance Z per unit pulse obtained from the wheel diameter Rc of the preset replacement time and the average value P of the number of pulses, it is determined that it is the wheel replacement time. , X> Z, this X Since the number of revolutions of the wheel 12 is increased based on the difference between the distance X0 traveled per unit pulse with the wheel 12 just attached, the replacement time of the wheel 12 can be reliably determined. At the same time, an error in the travel distance due to wear of the wheels 12 can be reliably eliminated.

なお、上記最良の形態では、床面に貼り付けられた誘導路20に沿って移動する無人搬送車10について説明したが、本発明はこれに限るものではなく、壁面あるいは天井に設けられたレール上を走行するタイプの無人搬送車など、他の形態の無人搬送車にも適用可能である。
また、上記例では、車輪12の回転速度を増加させることにより車輪12の磨耗による走行距離の誤差をなくようにしたが、無人搬送車10の走行距離は、車輪12の径と総回転数により決まるので、車輪12の回転速度はそのままにして、無人搬送車10の経路を走行する際の車輪12の総回転数を増加させるようにしてもよい。すなわち、上記エンコーダ14で検出したパルス数が無人搬送車10の走行距離を示すので、始めに設定した無人搬送車10の走行開始から走行停止までの総パルス数を、上記算出した単位パルス当たりの距離Xに応じて増加させるように変更すれば、車輪12の磨耗による走行距離の誤差をなくことができる。なお、車輪12の磨耗による誤差は小さいので、上記車輪回転速度や総パルス数の変更は、必ずしも、当該無人搬送車10の往復する経路全てでなく、等速運転する経路のみで行っても十分に走行距離の誤差を調整することができる。
In the above-described best mode, the automatic guided vehicle 10 that moves along the guide path 20 affixed to the floor has been described. However, the present invention is not limited to this, and a rail provided on a wall surface or a ceiling. The present invention can also be applied to other forms of automatic guided vehicles such as a type of automatic guided vehicle that travels above.
In the above example, the rotational speed of the wheel 12 is increased to eliminate the error in the travel distance due to the wear of the wheel 12, but the travel distance of the automatic guided vehicle 10 depends on the diameter of the wheel 12 and the total number of rotations. Therefore, the total rotational speed of the wheels 12 when traveling on the route of the automatic guided vehicle 10 may be increased while the rotational speed of the wheels 12 is left as it is. That is, since the number of pulses detected by the encoder 14 indicates the travel distance of the automatic guided vehicle 10, the total number of pulses from the start of travel to the stop of travel of the automatic guided vehicle 10 set at the beginning is calculated per unit pulse. If it is changed so as to increase according to the distance X, the error in the travel distance due to wear of the wheels 12 can be eliminated. Since errors due to wear of the wheels 12 are small, it is sufficient to change the wheel rotation speed and the total number of pulses not only on the reciprocating path of the automatic guided vehicle 10 but only on the path of constant speed operation. The mileage error can be adjusted.

また、上記例では、パルスエンコーダ14を用いて車輪12の回転数を検出したが、車輪12の回転数を検出する方法としては、駆動軸に多極マグネットを取付け、これを磁気抵抗素子を用いて検出するタイプのものなど、周知の車輪速センサを用いてもよい。
また、上記例では、無人搬送車10が直進区間を20回通過させて車輪12の単位パルス当たりの距離X、あるいは、磨耗量xを算出したが、計測回数はこれに限るものではなく、無人搬送車10の走行速度や搭載する荷物の重さ、あるいは、車輪12の径などにより適宜決定されるものである。
なお、車輪12の単位パルス当たりの距離X、あるいは、磨耗量xを算出する際には、無人搬送車10の速度は必ずしも一定速度とする必要はなく、加減速する区間があっても良いが、上記距離X、あるいは、磨耗量xを正確に測定する推定するには、本例のように、一定速度でかつ直進する区間で行うことが好ましい。
In the above example, the rotational speed of the wheel 12 is detected by using the pulse encoder 14, but as a method of detecting the rotational speed of the wheel 12, a multipolar magnet is attached to the drive shaft and this is used as a magnetoresistive element. A well-known wheel speed sensor such as a type that detects the above may be used.
In the above example, the automatic guided vehicle 10 passes through the straight section 20 times to calculate the distance X per unit pulse of the wheel 12 or the wear amount x. However, the number of times of measurement is not limited to this. This is appropriately determined depending on the traveling speed of the transport vehicle 10, the weight of the load to be loaded, the diameter of the wheel 12, or the like.
Note that when calculating the distance X per unit pulse of the wheel 12 or the wear amount x, the speed of the automatic guided vehicle 10 does not necessarily have to be a constant speed, and there may be a section in which acceleration / deceleration occurs. In order to accurately estimate the distance X or the wear amount x, it is preferable to perform the estimation at a constant speed and in a straight line as in this example.

また、上記例では、無人搬送車10の走行路の側面側に光学式センサを備えた位置検出手段40a,40bを設けて、無人搬送車10の側面側に設けられた位置検出用バー18が上記光学式センサを通過したときに計測開始または計測終了のトリガーを無人搬送車10の制御コントローラ17に送るようにしたが、走行路の側面側に上記位置検出用バー18に相当するバーを設け、無人搬送車10の側面側に光学式センサを備えた位置検出手段40a,40bを設けてもよい。
また、位置検出手段としては、上記光学式センサと通過バーとの組み合わせの他に、磁気センサと金属あるいは磁性体から成るマーカの組合わせや距離センサと反射板の組合わせ、あるいは、タグリーダとIDタグの組合わせなど、他の手段を用いてもよい。
また、上記例では、一組の発光素子と受光素子とを用いて車輪12の径が所定の径まで磨耗したかどうかを検出することにより、車輪径が予め設定した閾値以下になったかどうかを判定したが、車輪12の回転面に対抗して距離センサを設置し、上記車輪12と距離センサとの距離を計測して車輪径を求めるようにしても良い。
なお、車輪径の計測は必ずしも必須事項ではないので、車輪径の計測を省略して、単位パルス当たりの距離Xが交換時期距離Z以下になった場合、あるいは、磨耗量xが所定量を超えたときに、直ちに車輪12の交換を行うようにしてもよい。
In the above example, the position detection means 40 a and 40 b provided with optical sensors are provided on the side surface side of the traveling path of the automatic guided vehicle 10, and the position detection bar 18 provided on the side surface side of the automatic guided vehicle 10 is provided. A trigger for starting or stopping measurement is sent to the controller 17 of the automatic guided vehicle 10 when the optical sensor is passed, but a bar corresponding to the position detection bar 18 is provided on the side of the traveling path. The position detection means 40a and 40b provided with optical sensors may be provided on the side surface side of the automatic guided vehicle 10.
As the position detection means, in addition to the combination of the optical sensor and the passing bar, a combination of a magnetic sensor and a marker made of metal or a magnetic material, a combination of a distance sensor and a reflector, or a tag reader and an ID Other means such as a combination of tags may be used.
In the above example, by detecting whether or not the diameter of the wheel 12 has been worn down to a predetermined diameter using a set of light emitting elements and light receiving elements, it is determined whether or not the wheel diameter has fallen below a preset threshold value. Although it has been determined, a distance sensor may be installed against the rotation surface of the wheel 12, and the distance between the wheel 12 and the distance sensor may be measured to obtain the wheel diameter.
Note that the measurement of the wheel diameter is not necessarily an essential matter. Therefore, when the measurement of the wheel diameter is omitted and the distance X per unit pulse is equal to or less than the replacement time distance Z, or the wear amount x exceeds the predetermined amount. The wheels 12 may be replaced immediately.

このように、本発明によれば、無人搬送車の径を全て計測することなく、車輪の交換時期を適切に判定することができるので、無人搬送車の保守が容易になるとともに、保守作業の効率化を図ることができる。
また、車輪の磨耗による走行距離の誤差を確実になくすことができるので、停止位置が当初の位置からずれてしまうなどのトラブルを未然に防ぐことができるとともに、車輪の取付時と同様の精度の高い走行制御を行うことができる。
As described above, according to the present invention, since it is possible to appropriately determine the replacement time of the wheels without measuring all the diameters of the automatic guided vehicle, maintenance of the automatic guided vehicle is facilitated, and maintenance work is performed. Efficiency can be improved.
In addition, since it is possible to eliminate the error in the mileage due to wheel wear, it is possible to prevent troubles such as the stop position from deviating from the original position, and the same accuracy as when the wheel is mounted. High traveling control can be performed.

本発明の最良の形態に係る無人搬送車の車輪磨耗状態の推定方法を示す図である。It is a figure which shows the estimation method of the wheel abrasion state of the automatic guided vehicle which concerns on the best form of this invention. 本発明による無人搬送車の制御コントローラの詳細を示す図である。It is a figure which shows the detail of the control controller of the automatic guided vehicle by this invention. 車輪磨耗量を推定するためのフローチャートを示す図である。It is a figure which shows the flowchart for estimating the amount of wheel wear. 車輪交換時期の決定と車輪の磨耗による走行距離の誤差補正を行うためのフローチャートを示す図である。It is a figure which shows the flowchart for performing the error correction of the determination of wheel replacement | exchange time, and the mileage by wear of a wheel. 従来の無人搬送車の構成を示す図である。It is a figure which shows the structure of the conventional automatic guided vehicle.

符号の説明Explanation of symbols

10 無人搬送車、11 マーカ検出用センサ、12 車輪、13 モータ、
14 エンコーダ、15 車輪径検出センサ、15a 発光素子、15b 受光素子、
16 トリガ検出手段、17 制御コントローラ、17a 走行制御手段、
17b 走行距離算出手段、17c 車輪磨耗状態推定手段、
17d 車輪交換時期判定手段、18 位置検出用バー、20 誘導路、21 マーカ、30 上位コントローラ、40a,40b 位置検出手段。
10 automatic guided vehicle, 11 marker detection sensor, 12 wheels, 13 motor,
14 Encoder, 15 Wheel diameter detection sensor, 15a Light emitting element, 15b Light receiving element,
16 trigger detection means, 17 control controller, 17a travel control means,
17b Travel distance calculation means, 17c Wheel wear state estimation means,
17d Wheel replacement time determination means, 18 position detection bar, 20 guideway, 21 marker, 30 host controller, 40a, 40b position detection means.

Claims (8)

走行中の無人搬送車の車輪の所定の直進区間内での回転数を検出し、上記直進区間の実際の距離と、上記検出された車輪回転数と上記車輪の径の初期値とから算出される走行距離算出値とを用いて、当該車輪の摩耗量を推定するようにしたことを特徴とする無人搬送車の車輪摩耗量の推定方法。   The number of revolutions of a traveling automatic guided vehicle wheel within a predetermined straight section is detected and calculated from the actual distance of the straight section, the detected wheel speed and the initial value of the wheel diameter. A method for estimating a wheel wear amount of an automated guided vehicle, wherein the wear amount of the wheel is estimated using a calculated travel distance. 上記直進区間内での無人搬送車の走行速度を一定速度としたことを特徴とする請求項1に記載の無人搬送車の車輪摩耗状態の推定方法。   The method for estimating a wheel wear state of an automatic guided vehicle according to claim 1, wherein a traveling speed of the automatic guided vehicle in the straight section is set to a constant speed. 走行中の無人搬送車の車輪の所定の直進区間内での回転数を検出し、上記直進区間の実際の距離と、上記検出された車輪回転数と上記車輪の径の初期値とから算出される走行距離算出値とを用いて、当該車輪の摩耗量を推定するとともに、上記摩耗量の推定値が予め設定した閾値を超えた場合に、上記車輪が交換時期に達したと判定することを特徴とする無人搬送車の車輪交換時期の判定方法。   The number of revolutions of a traveling automatic guided vehicle wheel within a predetermined straight section is detected and calculated from the actual distance of the straight section, the detected wheel speed and the initial value of the wheel diameter. Using the calculated travel distance, the wear amount of the wheel is estimated, and when the estimated value of the wear amount exceeds a preset threshold, it is determined that the wheel has reached the replacement time. A method for determining the wheel replacement time of a guided automatic guided vehicle. 上記摩耗量の推定値に代えて、上記直進区間におけ車輪の回転数と上記直進区間の実際の距離とから算出される単位角度当たりの走行距離と、上記車輪の径の初期値を用いて算出される単位角度当たりの走行距離との差を求め、上記差が予め設定した閾値を超えた場合に、上記車輪が交換時期に達したと判定することを特徴とする請求項3に記載の無人搬送車の車輪交換時期の判定方法。   Instead of the estimated amount of wear, using the travel distance per unit angle calculated from the rotation speed of the wheel in the straight section and the actual distance of the straight section, and the initial value of the diameter of the wheel The difference between the calculated travel distance per unit angle is obtained, and when the difference exceeds a preset threshold, it is determined that the wheel has reached the replacement time. Judgment method of wheel replacement time of automatic guided vehicle. 上記磨耗量の推定値もしくは上記単位角度当たりの走行距離の差が予め設定した閾値を超えた場合には、上記車輪の径を光学的に検出し、上記検出された車輪径が予め設定した車輪径に満たない場合に、上記車輪が交換時期に達したと判定することを特徴とする請求項3または請求項4に記載の無人搬送車の車輪交換時期の判定方法。   When the estimated value of the wear amount or the difference in travel distance per unit angle exceeds a preset threshold, the wheel diameter is optically detected, and the detected wheel diameter is a preset wheel. 5. The method for determining the wheel replacement time of an automatic guided vehicle according to claim 3 or 4, wherein the wheel is determined to have reached the replacement time when the diameter is not reached. 走行中の無人搬送車の車輪の所定の直進区間内での回転数を検出し、上記直進区間の実際の距離と、上記検出された車輪回転数と上記車輪の径の初期値とから算出される走行距離算出値とを用いて、当該車輪の摩耗量を推定するとともに、上記推定された摩耗量に基づいて上記無人搬送車の車輪回転速度、及び、当該搬送車の所定の経路での車輪の総回転数のいずれか一方、または両方を変更するようにしたことを特徴とする無人搬送車の走行制御方法。   The number of revolutions of a traveling automatic guided vehicle wheel within a predetermined straight section is detected and calculated from the actual distance of the straight section, the detected wheel speed and the initial value of the wheel diameter. The estimated amount of wear of the wheel is estimated using the calculated travel distance, and the wheel rotation speed of the automatic guided vehicle based on the estimated amount of wear and the wheel on the predetermined route of the transport vehicle. Any one or both of the total rotational speeds of the automatic guided vehicle are changed. 上記摩耗量の推定値に代えて、上記直進区間における車輪の回転数と上記直進区間の実際の距離とから算出される単位角度当たりの走行距離と、上記車輪の径の初期値を用いて算出される単位角度当たりの走行距離との差を求め、上記単位角度当たりの走行距離の差に基づいて上記無人搬送車の車輪回転速度、または、当該搬送車の所定の経路での車輪の総回転数のいずれか一方、または両方を変更するようにしたことを特徴とする請求項6に記載の無人搬送車の走行制御方法。   Instead of the estimated value of the amount of wear, the calculation is performed using the travel distance per unit angle calculated from the rotation speed of the wheel in the straight section and the actual distance in the straight section, and the initial value of the wheel diameter. The difference in the travel distance per unit angle is calculated, and the wheel rotation speed of the automatic guided vehicle based on the difference in travel distance per unit angle, or the total rotation of the wheel in a predetermined route of the transport vehicle. The traveling control method for an automatic guided vehicle according to claim 6, wherein either one or both of the numbers are changed. 無人搬送車の車輪に取付けられた上記車輪の回転数を検出する手段と、
無人搬送車が所定の直進区間に進入する進入時間と上記直進区間を通過した通過時間とを検知する手段と、
上記直進区間内での上記車輪の回転数、上記車輪の径の初期値、及び、上記進入時間から上記通過時間までの時間間隔から上記車輪の走行距離の演算値を演算する走行距離演算手段と、
上記走行距離の演算値と上記直進区間の実際の距離との差に基づいて上記車輪の回転速度、または、当該搬送車の所定の経路での車輪の総回転数のいずれか一方、または両方を変更する手段、
とを備えたことを特徴とする無人搬送車の走行制御装置。
Means for detecting the rotational speed of the wheel attached to the wheel of the automatic guided vehicle;
Means for detecting an entry time when the automated guided vehicle enters a predetermined straight section and a passing time after passing through the straight section;
Travel distance calculating means for calculating the calculated value of the travel distance of the wheel from the rotation speed of the wheel in the straight section, the initial value of the diameter of the wheel, and the time interval from the entry time to the passing time; ,
Based on the difference between the calculated value of the travel distance and the actual distance of the straight section, either the rotational speed of the wheel or the total rotational speed of the wheel on a predetermined route of the carrier vehicle, or both Means to change,
A travel control device for an automated guided vehicle.
JP2005206484A 2005-07-15 2005-07-15 Estimation method of wheel wear amount of automated guided vehicle, determination method of wheel exchange time and traveling control method of automated guided vehicle and its device Pending JP2007022282A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005206484A JP2007022282A (en) 2005-07-15 2005-07-15 Estimation method of wheel wear amount of automated guided vehicle, determination method of wheel exchange time and traveling control method of automated guided vehicle and its device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005206484A JP2007022282A (en) 2005-07-15 2005-07-15 Estimation method of wheel wear amount of automated guided vehicle, determination method of wheel exchange time and traveling control method of automated guided vehicle and its device

Publications (1)

Publication Number Publication Date
JP2007022282A true JP2007022282A (en) 2007-02-01

Family

ID=37783614

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005206484A Pending JP2007022282A (en) 2005-07-15 2005-07-15 Estimation method of wheel wear amount of automated guided vehicle, determination method of wheel exchange time and traveling control method of automated guided vehicle and its device

Country Status (1)

Country Link
JP (1) JP2007022282A (en)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008207755A (en) * 2007-02-28 2008-09-11 Hitachi Plant Technologies Ltd Travel monitoring system of carrying truck
CN102556076A (en) * 2010-10-13 2012-07-11 曼卡车和巴士股份公司 Method and device for operating a vehicle, in particular a commercial or motor vehicle
WO2015136985A1 (en) * 2014-03-10 2015-09-17 村田機械株式会社 Travel wheel degradation detection method and detection system, and travel carriage
JP2016224903A (en) * 2015-05-27 2016-12-28 日本車輌製造株式会社 Carrier vehicle
US20170025975A1 (en) * 2014-04-04 2017-01-26 Robert Bosch Gmbh Method, drive system and vehicle
WO2019022173A1 (en) * 2017-07-26 2019-01-31 株式会社アドヴィックス Vehicle stoppage assistance apparatus
CN109484104A (en) * 2018-11-26 2019-03-19 英华达(上海)科技有限公司 Wheel wear detection method and system, automatic guided vehicles ystem
CN112461555A (en) * 2020-11-13 2021-03-09 北京京东乾石科技有限公司 Wheel detection method, device, electronic apparatus, and medium for automatic guided vehicle
KR20210041348A (en) * 2019-10-07 2021-04-15 세메스 주식회사 Method of controlling operations of transport vehicle
DE102020110489A1 (en) * 2020-04-17 2021-06-10 Schaeffler Technologies AG & Co. KG Method for the automated replacement of at least one wheel unit of a vehicle, wheel unit for a vehicle, vehicle and replacement device for the automated replacement of a wheel unit of a vehicle
CN115402039A (en) * 2022-06-28 2022-11-29 岚图汽车科技有限公司 Method, system, equipment, storage medium and automobile for monitoring tire eccentric wear
WO2023053645A1 (en) * 2021-09-28 2023-04-06 株式会社日立インダストリアルプロダクツ Transport system, transport method, and control device

Cited By (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008207755A (en) * 2007-02-28 2008-09-11 Hitachi Plant Technologies Ltd Travel monitoring system of carrying truck
CN102556076B (en) * 2010-10-13 2016-05-11 曼卡车和巴士股份公司 For operating the method and apparatus of vehicle, especially motor vehicle or commercial car
CN102556076A (en) * 2010-10-13 2012-07-11 曼卡车和巴士股份公司 Method and device for operating a vehicle, in particular a commercial or motor vehicle
TWI642921B (en) * 2014-03-10 2018-12-01 日商村田機械股份有限公司 Deterioration detection method and system for traveling wheels, and traveling trolley
JP2015168398A (en) * 2014-03-10 2015-09-28 村田機械株式会社 Traveling wheel deterioration detection method, detection system and traveling bogie
CN105992939A (en) * 2014-03-10 2016-10-05 村田机械株式会社 Travel wheel degradation detection method and detection system, and travel carriage
KR101861746B1 (en) * 2014-03-10 2018-05-28 무라다기카이가부시끼가이샤 Travel wheel degradation detection method and detection system, and travel carriage
US10101243B2 (en) 2014-03-10 2018-10-16 Murata Machinery, Ltd. Travel wheel degradation detection method and detection system, and travel carriage
WO2015136985A1 (en) * 2014-03-10 2015-09-17 村田機械株式会社 Travel wheel degradation detection method and detection system, and travel carriage
US20170025975A1 (en) * 2014-04-04 2017-01-26 Robert Bosch Gmbh Method, drive system and vehicle
US10404195B2 (en) * 2014-04-04 2019-09-03 Robert Bosch Gmbh Method, drive system and vehicle
JP2016224903A (en) * 2015-05-27 2016-12-28 日本車輌製造株式会社 Carrier vehicle
JP2019025977A (en) * 2017-07-26 2019-02-21 株式会社アドヴィックス Vehicular stop support device
WO2019022173A1 (en) * 2017-07-26 2019-01-31 株式会社アドヴィックス Vehicle stoppage assistance apparatus
CN109484104A (en) * 2018-11-26 2019-03-19 英华达(上海)科技有限公司 Wheel wear detection method and system, automatic guided vehicles ystem
KR20210041348A (en) * 2019-10-07 2021-04-15 세메스 주식회사 Method of controlling operations of transport vehicle
KR102277215B1 (en) * 2019-10-07 2021-07-14 세메스 주식회사 Method of controlling operations of transport vehicle
DE102020110489A1 (en) * 2020-04-17 2021-06-10 Schaeffler Technologies AG & Co. KG Method for the automated replacement of at least one wheel unit of a vehicle, wheel unit for a vehicle, vehicle and replacement device for the automated replacement of a wheel unit of a vehicle
CN112461555A (en) * 2020-11-13 2021-03-09 北京京东乾石科技有限公司 Wheel detection method, device, electronic apparatus, and medium for automatic guided vehicle
WO2023053645A1 (en) * 2021-09-28 2023-04-06 株式会社日立インダストリアルプロダクツ Transport system, transport method, and control device
CN115402039A (en) * 2022-06-28 2022-11-29 岚图汽车科技有限公司 Method, system, equipment, storage medium and automobile for monitoring tire eccentric wear
CN115402039B (en) * 2022-06-28 2023-08-11 岚图汽车科技有限公司 Method, system, equipment, storage medium and automobile for monitoring tire bias wear

Similar Documents

Publication Publication Date Title
JP2007022282A (en) Estimation method of wheel wear amount of automated guided vehicle, determination method of wheel exchange time and traveling control method of automated guided vehicle and its device
JP5045705B2 (en) Transport vehicle system
US20070227831A1 (en) Elevator Car Positioning Determining System
JP2007210720A (en) Elevator
CN104692245B (en) A kind of door machine traveling system for automatically correcting and method
JP2014137710A (en) Control method of automatic guided vehicle
JP2013125350A (en) Electrically-driven carrier vehicle
JP2011118585A (en) Automated guided vehicle
JP2007048157A (en) Travel control system for automated guided carriage cart
JP2008207755A (en) Travel monitoring system of carrying truck
KR101913759B1 (en) Rail driving apparatus having a distance sensors
JP6157794B1 (en) Independent wheel drive controller
JP5252967B2 (en) Label feeder
CN113879799A (en) Transport vehicle attitude anomaly detection device and method and goods transport system
KR20210145681A (en) Article transport facility
JP4517506B2 (en) Double deck elevator
JP5170190B2 (en) Transport vehicle system
JP2010143724A (en) Crane positioning device and its control method
JP3127340B2 (en) Endless chain pitch measuring method and pitch measuring device
JP2005301649A (en) Controller and control method for conveyance carrier
JPH09169410A (en) Position detecting device for crane for use in automated warehouse
JPH10253344A (en) Method and device for checking wear of wheel of unmanned car
WO2017158956A1 (en) Independent wheel drive control device
US20210276213A1 (en) Identifying print media borders
JP2900774B2 (en) Travel control method and travel control device for tracked bogie