WO2023053476A1 - Method and apparatus for producing semiconductor crystal wafer - Google Patents

Method and apparatus for producing semiconductor crystal wafer Download PDF

Info

Publication number
WO2023053476A1
WO2023053476A1 PCT/JP2022/004211 JP2022004211W WO2023053476A1 WO 2023053476 A1 WO2023053476 A1 WO 2023053476A1 JP 2022004211 W JP2022004211 W JP 2022004211W WO 2023053476 A1 WO2023053476 A1 WO 2023053476A1
Authority
WO
WIPO (PCT)
Prior art keywords
semiconductor crystal
wire
plate
cutting
crystal ingot
Prior art date
Application number
PCT/JP2022/004211
Other languages
French (fr)
Japanese (ja)
Inventor
愼介 酒井
哲也 千葉
Original Assignee
有限会社サクセス
有限会社ドライケミカルズ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2021160583A external-priority patent/JP7007625B1/en
Priority claimed from JP2021205895A external-priority patent/JP7041931B1/en
Application filed by 有限会社サクセス, 有限会社ドライケミカルズ filed Critical 有限会社サクセス
Publication of WO2023053476A1 publication Critical patent/WO2023053476A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24BMACHINES, DEVICES, OR PROCESSES FOR GRINDING OR POLISHING; DRESSING OR CONDITIONING OF ABRADING SURFACES; FEEDING OF GRINDING, POLISHING, OR LAPPING AGENTS
    • B24B27/00Other grinding machines or devices
    • B24B27/06Grinders for cutting-off
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24BMACHINES, DEVICES, OR PROCESSES FOR GRINDING OR POLISHING; DRESSING OR CONDITIONING OF ABRADING SURFACES; FEEDING OF GRINDING, POLISHING, OR LAPPING AGENTS
    • B24B7/00Machines or devices designed for grinding plane surfaces on work, including polishing plane glass surfaces; Accessories therefor
    • B24B7/20Machines or devices designed for grinding plane surfaces on work, including polishing plane glass surfaces; Accessories therefor characterised by a special design with respect to properties of the material of non-metallic articles to be ground
    • B24B7/22Machines or devices designed for grinding plane surfaces on work, including polishing plane glass surfaces; Accessories therefor characterised by a special design with respect to properties of the material of non-metallic articles to be ground for grinding inorganic material, e.g. stone, ceramics, porcelain
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B28WORKING CEMENT, CLAY, OR STONE
    • B28DWORKING STONE OR STONE-LIKE MATERIALS
    • B28D5/00Fine working of gems, jewels, crystals, e.g. of semiconductor material; apparatus or devices therefor
    • B28D5/04Fine working of gems, jewels, crystals, e.g. of semiconductor material; apparatus or devices therefor by tools other than rotary type, e.g. reciprocating tools
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/302Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to change their surface-physical characteristics or shape, e.g. etching, polishing, cutting
    • H01L21/304Mechanical treatment, e.g. grinding, polishing, cutting

Definitions

  • the present invention relates to a semiconductor crystal wafer manufacturing method and manufacturing apparatus in which the surface of a wafer sliced from a semiconductor crystal ingot ground into a cylindrical shape is subjected to high-precision grinding.
  • a mass of crystal-grown single-crystal SiC is processed into a columnar ingot, as shown in Patent Document 1 below.
  • the process-affected layer removal process includes a process-affected layer removal process for removing the process-affected layer introduced into the SiC wafer in the preceding process.
  • the mechanical action of the polishing pad and the chemical reaction of the slurry A SiC wafer manufacturing method is known that includes a chemical mechanical polishing (CMP) process in which polishing is performed using a combination of various effects.
  • CMP chemical mechanical polishing
  • an object of the present invention is to provide a semiconductor crystal wafer manufacturing method and manufacturing apparatus that can easily and reliably manufacture high-quality semiconductor crystal wafers.
  • a method for manufacturing a semiconductor crystal wafer according to a first aspect of the invention is a method for manufacturing a semiconductor crystal wafer in which wafers are cut into slices from a semiconductor crystal ingot ground into a cylindrical shape, a grooving step of forming a plurality of grooves extending around the entire side surface of the semiconductor crystal ingot;
  • the semiconductor crystal ingot is cut into slices by advancing the plurality of wires arranged in the plurality of recessed grooves formed in the grooving step while rotating them, and the semiconductor crystal ingot is cut into slices and arranged at respective rear positions of the plurality of wires.
  • the pedestal for advancing the wire and the pedestal for advancing the plate-like body are integrally configured, so that the cutting by the wire and the polishing by the plate-like body proceed simultaneously.
  • the grooves are formed in advance around the entire side surface of the semiconductor crystal ingot, so that the semiconductor crystal ingot is moved by the wire using the grooves as guides. It can be cut into slices with high accuracy.
  • a plate-like body that polishes the cut surface while swinging is arranged, and by advancing the plate-like body as the wire advances, cutting is performed at the same time as cutting. Surface undulations and streaks can be removed by polishing, so-called transfer can be prevented and a high-quality semiconductor crystal wafer can be obtained. It is possible to greatly simplify complicated manufacturing processes such as multiple times of lapping from the next to the fourth.
  • the semiconductor crystal wafer manufacturing method of the first invention it is possible to easily and reliably manufacture high-quality semiconductor crystal wafers.
  • a semiconductor crystal wafer manufacturing apparatus is a semiconductor crystal wafer manufacturing apparatus for cutting wafers into slices from a semiconductor crystal ingot ground into a cylindrical shape, a wire saw section for cutting the semiconductor crystal ingot, in which a plurality of grooves extending around the entire side surface are formed, by advancing and advancing a plurality of wires arranged in the plurality of grooves while rotating the wires; a band section for advancing while swinging a plate-shaped body arranged at each of the rear positions of the plurality of wires of the wire saw section, and polishing a cut surface with a side surface of the plate-shaped body;
  • the wire saw portion and the band portion are integrally configured with a pedestal for advancing the wire and a pedestal for advancing the plate-like body, so that cutting with the wire and polishing with the plate-like body are performed at the same time. characterized by
  • a semiconductor crystal wafer manufacturing apparatus is an apparatus for executing the method of manufacturing a semiconductor crystal wafer according to the first aspect of the invention, in which a pedestal for advancing a wire and a pedestal for advancing the plate-like body are integrally formed. , it is possible to realize cutting by the wire and polishing by the plate-like body at the same time.
  • the semiconductor crystal wafer manufacturing apparatus of the second invention it is possible to actually manufacture high-quality semiconductor crystal wafers easily and reliably.
  • the semiconductor crystal wafer manufacturing apparatus of the third invention is, in the second invention, The wire saw portion and the band portion are arranged outside the wire around which the semiconductor crystal ingot is wound so that the wire and the plate-like body advance toward the semiconductor crystal ingot circumferentially outward. Characterized by
  • the wire saw portion and the band portion are arranged outside the wire around which the semiconductor crystal ingot is wound, and the wire and the plate-like body are arranged outside the semiconductor crystal ingot in the circumferential direction.
  • the semiconductor crystal wafer manufacturing apparatus of the third invention it is possible to actually manufacture high-quality semiconductor crystal wafers easily and reliably.
  • the semiconductor crystal wafer manufacturing apparatus of the fourth invention is, in the second invention, The wire saw section and the band section are arranged inside the wire around which the semiconductor crystal ingot is wound so that the wire and the plate-like body advance toward the semiconductor crystal ingot in the circumferential direction. Characterized by
  • the wire saw section and the band section are arranged inside the wire around which the semiconductor crystal ingot is wound, and the wire and the plate-like body are arranged inside the semiconductor crystal ingot in the circumferential direction.
  • the semiconductor crystal wafer manufacturing apparatus of the fourth invention it is possible to actually manufacture high-quality semiconductor crystal wafers easily and reliably.
  • a method for manufacturing a semiconductor crystal wafer according to a fifth aspect of the present invention is a method for manufacturing a semiconductor crystal wafer by cutting a wafer into slices from a semiconductor crystal ingot ground into a cylindrical shape, a grooving step of forming a plurality of grooves extending around the entire side surface of the semiconductor crystal ingot;
  • the semiconductor crystal ingot is cut into slices by advancing the plurality of wires arranged in the plurality of recessed grooves formed in the grooving step while rotating them, and the semiconductor crystal ingot is cut into slices and arranged at respective rear positions of the plurality of wires.
  • the wire and the plate-like body are interlocked with each other at a constant interval, so that the cutting by the wire and the polishing by the plate-like body proceed simultaneously, and the semiconductor is It is characterized in that the crystal ingot is arranged on the outer side of the winding wire, and the wire and the plate-like body progress outward in the circumferential direction.
  • cutting by the wire and polishing by the plate-like body can be performed simultaneously by moving the wire and the plate-like body in conjunction with each other with a certain interval. can be realized.
  • polishing with a plate-like body can be specifically realized.
  • a method for manufacturing a semiconductor crystal wafer according to a sixth aspect of the present invention is a method for manufacturing a semiconductor crystal wafer in which wafers are cut into slices from a semiconductor crystal ingot ground into a cylindrical shape, a grooving step of forming a plurality of grooves extending around the entire side surface of the semiconductor crystal ingot;
  • the semiconductor crystal ingot is cut into slices by advancing the plurality of wires arranged in the plurality of recessed grooves formed in the grooving step while rotating them, and the semiconductor crystal ingot is cut into slices and arranged at respective rear positions of the plurality of wires.
  • the wire and the plate-like body are interlocked with each other at a constant interval, so that the cutting by the wire and the polishing by the plate-like body proceed simultaneously, and the semiconductor is It is characterized in that the crystal ingot is arranged inside the winding wire, and the wire and the plate-like body advance inward in the circumferential direction.
  • cutting by the wire and polishing by the plate-like body can be performed simultaneously by moving the wire and the plate-like body in conjunction with each other with a certain interval. can be realized.
  • the semiconductor crystal wafer manufacturing method of the sixth invention it is possible to actually manufacture a high-quality semiconductor crystal wafer easily and reliably.
  • a semiconductor crystal wafer manufacturing apparatus is a semiconductor crystal wafer manufacturing apparatus for cutting wafers into slices from a semiconductor crystal ingot ground into a cylindrical shape, a wire saw section for cutting the semiconductor crystal ingot, in which a plurality of grooves extending around the entire side surface are formed, by advancing and advancing a plurality of wires arranged in the plurality of grooves while rotating the wires; a band section for advancing while swinging a plate-shaped body arranged at each of the rear positions of the plurality of wires of the wire saw section, and polishing a cut surface with a side surface of the plate-shaped body; The wire saw section and the band section move the wire and the plate-like body in conjunction with each other at a constant interval, so that cutting by the wire and polishing by the plate-like body proceed simultaneously.
  • the semiconductor crystal ingot is arranged outside the winding wire, and the wire and the plate-like body advance toward the semiconductor crystal ingot circumferentially outward.
  • cutting by the wire and polishing by the plate-like body can be performed simultaneously by moving the wire and the plate-like body in conjunction with each other at a constant interval. can be realized.
  • the semiconductor crystal wafer manufacturing apparatus of the seventh invention it is possible to actually manufacture high-quality semiconductor crystal wafers easily and reliably.
  • a semiconductor crystal wafer manufacturing apparatus is a semiconductor crystal wafer manufacturing apparatus for cutting wafers into slices from a semiconductor crystal ingot ground into a cylindrical shape, a wire saw section for cutting the semiconductor crystal ingot, in which a plurality of grooves extending around the entire side surface are formed, by advancing and advancing a plurality of wires arranged in the plurality of grooves while rotating the wires; a band section for advancing while swinging a plate-shaped body arranged at each of the rear positions of the plurality of wires of the wire saw section, and polishing a cut surface with a side surface of the plate-shaped body; The wire saw section and the band section move the wire and the plate-like body in conjunction with each other at a constant interval, so that cutting by the wire and polishing by the plate-like body proceed simultaneously.
  • the semiconductor crystal ingot is arranged inside the winding wire, and the wire and the plate-like body advance toward the semiconductor crystal ingot in the circumferential direction.
  • cutting by the wire and polishing by the plate-like body can be performed simultaneously by moving the wire and the plate-like body in conjunction with each other with a certain interval. can be realized.
  • the semiconductor crystal wafer manufacturing apparatus of the eighth invention it is possible to actually manufacture high-quality semiconductor crystal wafers easily and reliably.
  • FIG. 4 is a flow chart showing the overall steps of a method for manufacturing a SiC wafer (semiconductor crystal wafer) according to the present embodiment
  • FIG. 2 is an explanatory diagram showing the contents of a groove processing step in the method of manufacturing the SiC wafer of FIG. 1
  • FIG. 2 is an explanatory view showing the content of a cutting and polishing step in the method of manufacturing the SiC wafer of FIG. 1
  • FIG. 2 is an explanatory diagram showing the contents of a first surface processing step and a second surface processing step in the method of manufacturing the SiC wafer of FIG. 1
  • FIG. 2 is an explanatory diagram showing a modification of the cutting and polishing step in the method of manufacturing the SiC wafer of FIG. 1
  • FIG. 4 is an explanatory view showing another modification of the cutting and polishing step in the method of manufacturing the SiC wafer of FIG. 1;
  • FIG. 4 is an explanatory view showing another modification of the cutting and polishing step in the method of manufacturing the SiC wafer of FIG. 1;
  • the method for manufacturing a SiC wafer which is a semiconductor crystal wafer, is obtained by slicing a SiC ingot that has been ground into a cylindrical shape, and subjecting the surface of the wafer to a high-precision grinding process.
  • a method for obtaining a SiC wafer comprising a groove processing step (STEP 100/FIG. 1), a cutting and polishing step (STEP 200/FIG. 1), a first surface processing step (STEP 300/FIG. 1), and a second surface processing step (STEP 300/FIG. 1). STEP 400/FIG. 1).
  • a cylindrical SiC ingot 10 obtained by determining the crystal orientation and applying cylindrical grinding to the pre-crystallized SiC crystal 1 in the ingot processing step is prepared. do.
  • a plurality of grooves 11 are formed around the entire side surface of the SiC ingot 10 .
  • the SiC ingot is formed while rotating the grooving drum grindstone 20, which has a plurality of convex portions 21 corresponding to the plurality of concave grooves 11 formed on the entire side surface, on a rotating shaft parallel to each other.
  • a concave groove 11 is formed by pressing against 10 .
  • the SiC ingot 10 (especially the grooves 11) obtained by the grooving process is subjected to non-damage mirror finishing by a chemical treatment technique.
  • SiC ingot 10 is cut into slices by moving forward while rotating, and plate-like body 41 of band portion 40, which is a polishing device, arranged at each rear position of a plurality of wires 31 is oscillated. By advancing while moving forward, the side surface of the plate-like body 41 is cut and polished to polish the cut surface.
  • a plurality of wires 31 are attached to fixing members 32 that fix both ends of the SiC ingot 10.
  • a wire saw unit 30 (wire saw device) that advances and cuts while rotating through a wire saw bobbin 33, a plate-like body 41 that polishes the cut surface, and the plate-like bodies provided at both ends of the plate-like body 41
  • a band section 40 (a device similar to a band saw device and not intended for cutting) having a swinging mechanism 42 (for example, an actuator device) for swinging the band 41 is provided.
  • the wire saw section 30 and the band section 40 are configured to be slidable relative to the fixing member 32 (the SiC ingot 10 and the fixing member 32 are fixed and do not move). Since the frames 34, 35 and the frames 34, 35, which are the pedestals for advancing the band portion 40, are integrally constructed in common, the cutting by the wire 31 and the polishing by the plate-like body 41 are performed at the same time.
  • SiC ingot 10 is aligned with a plurality of wires 31 using the plurality of grooves 11 as guides. It can be cut into slices with high accuracy by a circular process.
  • a plurality of plate-like bodies 41 that polish the cut surface while swinging.
  • undulations and streaks can be polished and removed from the cut surface by one-time treatment at the same time as cutting, and a high-quality SiC wafer 100 with extremely high surface smoothness can be obtained. Therefore, there is no need to perform a chamfering process or a reference surface machining process using one surface of the cut surface as a reference surface.
  • one surface 110 of one of the cut surfaces is used as a support surface, and the remaining other surface 120 is subjected to mechanical polishing (high-precision grinding).
  • mechanical polishing high-precision grinding
  • both of the two cut surfaces of the SiC ingot 10 obtained by the cutting and polishing step of STEP 200 have high smoothness, either of the cut surfaces can be used as a support surface (reference surface). be.
  • grinding is performed by a mechanical polishing device 50 (ultra-high synthetic high-precision grinding device) that performs mechanical polishing.
  • the mechanical polisher 50 includes a spindle 51 and a diamond grindstone 53 on a platen 52 which is a surface plate.
  • one surface 110 is used as the upper surface, and the other surface 120 is ground by the diamond grindstone 53 with the other surface 120 as the lower surface.
  • the spindle 51 and the diamond grindstone 53 are rotationally driven by a drive device (not shown), and the other surface 120 is ground by pressing the spindle 51 against the diamond grindstone 53 by a compressor (not shown) or the like.
  • the diamond grindstone 53 may be dressed by a dresser or the like.
  • the mechanical polisher 50 may have functional water supply pipes so that a plurality of functional waters can be used during processing, if necessary.
  • the other surface 120 which has been subjected to high-precision grinding in the first surface processing step, is used as the upper surface, and the one surface 110 is subjected to high-precision grinding similar to the first surface processing step. Grinding is applied.
  • the other surface 120 as the upper surface, it is attracted to the vacuum porous chuck 54 that is the suction plate of the spindle 51 , and the one surface 110 is ground with the diamond grindstone 53 with the one surface 110 as the lower surface.
  • dressing may be applied by pressing a dresser or the like against the diamond grindstone 53 as necessary.
  • either one of the transferless cut surfaces having high flatness obtained by the cutting and polishing step is used as a support surface (adsorption surface), and the remaining surfaces are sequentially subjected to mechanical polishing (high-precision grinding), so-called transfer can be prevented and a high-quality SiC wafer can be obtained. It is possible to greatly simplify a complicated manufacturing process such as free grinding, that is, lapping multiple times from primary to quaternary.
  • the size of the SiC wafer 100 is currently up to 8 inches, and the diameter of each wafer depends on the area of the head. It is then set (possibly up to 12 inches) and subjected to the precision grinding process.
  • CMP chemical mechanical polishing
  • the semiconductor crystal is not limited to SiC, and the semiconductor crystal is not limited to SiC.
  • Other compound semiconductors may be used.
  • the positional relationship between the wire saw portion 30 and the band portion 40 and the SiC ingot 10 is such that the wire 31 and the plate are disposed inside the wire 31 around which the SiC ingot 10 is wound.
  • the present invention is not limited to this.
  • the positional relationship between the wire saw portion 30 and the band portion 40 and the SiC ingot 10 may be arranged outside the wire 31 around which the SiC ingot 10 is wound.
  • the wire 31 and the plate-like body 41 advance circumferentially outward (lower side in the drawing) to cut and polish the SiC ingot 10 .
  • the positional relationship between the wire saw portion 30 and the band portion 40 and the SiC ingot 10 may be arranged inside the wire 31 around which the SiC ingot 10 is wound.
  • the wire 31 and the plate-like body 41 advance inward in the circumferential direction (lower side in the drawing) to cut and polish the SiC ingot 10 .
  • the plate-like body 41 of the band portion 40 has been described as being all provided behind the plurality of wires 31, but it is not limited to this.
  • the plate-like bodies 41 may be provided alternately.
  • the SiC wafer 100 obtained by cutting has two cut surfaces, one of which is a reference polished surface polished by the plate-shaped body 41, and the other unpolished surface that is not polished by the plate-shaped body 41. face. Therefore, in STEP 300 , the reference polishing surface 110 is set as the upper surface and is supported by the vacuum porous chuck 54 , which is the suction plate of the spindle 51 . Grind. As a result, even when the number of plate-like bodies 41 to be installed is reduced by half to simplify the device configuration of the band portion 40, the mechanical polishing device 50 can obtain a high-quality SiC wafer 100.
  • the wire saw section 30 and the band section 40 share the frames 34 and 35 as pedestals for advancing the wire saw section 30 and the frames 34 and 35 as pedestals for advancing the band section 40.
  • the case where it is configured as one body has been described (see FIG. 3), it is not limited to this.
  • the wire saw section 30 and the band section 40 are configured to be slidable relative to the fixing member 32 (the SiC ingot 10 and the fixing member 32 are fixed and do not move).
  • Frames 34' and 35' which are pedestals for advancing the portion 30, and frame 45', which is a pedestal for advancing the band portion 40, may be provided.
  • the frames 34' and 35' which are bases for advancing the wire saw section 30, and the frame 45', which is a base for advancing the band section 40, are moved in conjunction with each other at a constant interval.
  • the wire 31 and the plate-like body 41 are interlocked and moved with a certain interval therebetween.
  • these frames 35' and 45' move together with a certain interval. You may do so.
  • the frame 45' can be displaced in the same manner in accordance with the amount of movement of the frame 35' (for example, the number of steps of the stepping motor that displaces the frame 35'). (the number of steps of the stepping motor for displacing the frame 45') may be determined and moved.
  • SYMBOLS 1 SiC crystal (semiconductor crystal), 10... SiC ingot (semiconductor crystal ingot), 11... Groove, 20... Grooving drum grindstone, 21... Convex part, 30... Wire saw part, 31... Wire, 32... Fixing member , 33... Wire saw bobbin 34, 35... Frame (pedestal) 34', 35'... Wire saw part frame (pedestal) 40... Band part 41... Plate-like body 42... Swing mechanism 45'... Band portion frame (pedestal), 50... Mechanical polishing device (ultra-high synthetic high-precision grinding device), 51... Spindle, 52... Platen, 53... Diamond whetstone, 54... Vacuum porous chuck (adsorption plate), 100... SiC wafer (semiconductor crystal wafer), 110...one side, 120...other side.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Physics & Mathematics (AREA)
  • Power Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Chemical & Material Sciences (AREA)
  • Ceramic Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Mechanical Treatment Of Semiconductor (AREA)
  • Finish Polishing, Edge Sharpening, And Grinding By Specific Grinding Devices (AREA)
  • Processing Of Stones Or Stones Resemblance Materials (AREA)

Abstract

The purpose of the present invention is to provide a method and apparatus for producing a semiconductor crystal wafer, the method and apparatus being capable of easily and reliably producing a semiconductor crystal wafer of high quality. A method for producing an SiC wafer, which is a semiconductor crystal wafer, according to the present invention enables the achievement of an SiC wafer which is obtained by slicing an SiC ingot that has been ground into a cylindrical shape, with the surface of the SiC wafer being subjected to high accuracy grinding. This method for producing an SiC wafer comprises: a groove processing step (STEP 100 in Fig. 1); a cutting and polishing step (STEP 200 in Fig. 1); a first surface processing step (STEP 300 in Fig. 1); and a second surface processing step (STEP 400 in Fig. 1).

Description

半導体結晶ウェハの製造方法および製造装置Semiconductor crystal wafer manufacturing method and manufacturing apparatus
 本発明は、円筒形状に研削加工された半導体結晶インゴットからスライス状に切り出したウェハの表面に高精度研削加工を施した半導体結晶ウェハの製造方法および製造装置に関するものである。 The present invention relates to a semiconductor crystal wafer manufacturing method and manufacturing apparatus in which the surface of a wafer sliced from a semiconductor crystal ingot ground into a cylindrical shape is subjected to high-precision grinding.
 従来、この種の半導体結晶ウェハであるSiCウェハの製造方法としては、下記特許文献1に示すように、ウェハ形状形成工程として、結晶成長させた単結晶SiCの塊を円柱状のインゴットに加工するインゴット成形工程と、インゴットの結晶方位を示す目印となるよう、外周の一部に切欠きを形成する結晶方位成形工程と、単結晶SiCのインゴットをスライスして薄円板状のSiCウェハに加工するスライス工程と、修正モース硬度未満の砥粒を用いてSiCウェハを平坦化する平坦化工程と、刻印を形成する刻印形成工程と、外周部を面取りする面取り工程とを含み、次に、加工変質層除去工程として、先行の工程でSiCウェハに導入された加工変質層を除去する加工変質層除去工程を含み、最後に、鏡面研磨工程として、研磨パッドの機械的な作用とスラリーの化学的な作用を併用して研磨を行う化学機械研磨(CMP)工程を含むSiCウェハの製造方法が知られている。 Conventionally, as a method for manufacturing a SiC wafer, which is a semiconductor crystal wafer of this type, as a wafer shape forming step, a mass of crystal-grown single-crystal SiC is processed into a columnar ingot, as shown in Patent Document 1 below. An ingot forming process, a crystal orientation forming process of forming a notch in a part of the outer circumference so as to serve as a mark indicating the crystal orientation of the ingot, and slicing the single crystal SiC ingot and processing it into a thin disc-shaped SiC wafer. a slicing step, a flattening step of flattening the SiC wafer using abrasive grains less than the modified Mohs hardness, a stamp forming step of forming a stamp, and a chamfering step of chamfering the outer peripheral portion, and then processing The process-affected layer removal process includes a process-affected layer removal process for removing the process-affected layer introduced into the SiC wafer in the preceding process. Finally, as a mirror polishing process, the mechanical action of the polishing pad and the chemical reaction of the slurry A SiC wafer manufacturing method is known that includes a chemical mechanical polishing (CMP) process in which polishing is performed using a combination of various effects.
特開2020-15646号公報JP 2020-15646 A
 しかしながら、かかる従来のSiCウェハの製造方法では、製造工程が多く複雑であり、装置構成が複雑となり製造コストが嵩むという問題ある。 However, such a conventional SiC wafer manufacturing method involves a large number of complicated manufacturing steps, and has the problem of complicating the device configuration and increasing the manufacturing cost.
 一方で、製造工程を簡略化した場合には、SiCウェハに要求される品質を安定して得ることが困難となる。 On the other hand, if the manufacturing process is simplified, it will be difficult to stably obtain the quality required for SiC wafers.
 そこで、本発明は、高品質な半導体結晶ウェハを簡易かつ確実に製造することができる半導体結晶ウェハの製造方法および製造装置を提供することを目的とする。 Therefore, an object of the present invention is to provide a semiconductor crystal wafer manufacturing method and manufacturing apparatus that can easily and reliably manufacture high-quality semiconductor crystal wafers.
 第1発明の半導体結晶ウェハの製造方法は、円筒形状に研削加工された半導体結晶インゴットからスライス状にウェハを切り出す半導体結晶ウェハの製造方法であって、
 前記半導体結晶インゴットの側面全体に周回する複数の凹溝を形成する溝加工工程と、
 前記溝加工工程において形成された複数の凹溝に配置された複数のワイヤーを周回させながら前進させることにより前記半導体結晶インゴットをスライス状に切断すると共に、該複数のワイヤーの後方位置のそれぞれに配置された板状体を揺動させながら前進させることにより該板状体の側面で切断面を研磨する切断研磨工程と
を備え、
 前記切断研磨工程は、前記ワイヤーを前進させる台座と、前記板状体を前進させる台座とが一体に構成されることにより、該ワイヤーによる切断と該板状体による研磨とが同時に進行されることを特徴とする。
A method for manufacturing a semiconductor crystal wafer according to a first aspect of the invention is a method for manufacturing a semiconductor crystal wafer in which wafers are cut into slices from a semiconductor crystal ingot ground into a cylindrical shape,
a grooving step of forming a plurality of grooves extending around the entire side surface of the semiconductor crystal ingot;
The semiconductor crystal ingot is cut into slices by advancing the plurality of wires arranged in the plurality of recessed grooves formed in the grooving step while rotating them, and the semiconductor crystal ingot is cut into slices and arranged at respective rear positions of the plurality of wires. a cutting and polishing step of polishing the cut surface with the side surface of the plate-shaped body by advancing the plate-shaped body while rocking it;
In the cutting and polishing step, the pedestal for advancing the wire and the pedestal for advancing the plate-like body are integrally configured, so that the cutting by the wire and the polishing by the plate-like body proceed simultaneously. characterized by
 第1発明の半導体結晶ウェハの製造方法によれば、溝加工工程において、予め半導体結晶インゴットの側面全体に周回する凹溝を形成しておくことで、凹溝をガイドとしてワイヤーにより半導体結晶インゴットを精度よくスライス状に切断することができる。 According to the method for manufacturing a semiconductor crystal wafer of the first aspect of the present invention, in the grooving step, the grooves are formed in advance around the entire side surface of the semiconductor crystal ingot, so that the semiconductor crystal ingot is moved by the wire using the grooves as guides. It can be cut into slices with high accuracy.
 半導体結晶インゴットを周回しながら切断するワイヤーの後方には、その切断面を揺動しながら研磨する板状体を配置し、ワイヤーの進行と共に板状体を進行させることで、切断と同時にその切断面のうねりや筋を磨き上げて除去することができ、いわゆる転写を防止して高品質な半導体結晶ウェハを得ることができ、平坦化工程において一般的に行われている遊離砥石加工、すなわち1次~4次の複数回のラップなど複雑な製造工程を大幅に簡略化することができる。 Behind the wire that cuts the semiconductor crystal ingot while circling it, a plate-like body that polishes the cut surface while swinging is arranged, and by advancing the plate-like body as the wire advances, cutting is performed at the same time as cutting. Surface undulations and streaks can be removed by polishing, so-called transfer can be prevented and a high-quality semiconductor crystal wafer can be obtained. It is possible to greatly simplify complicated manufacturing processes such as multiple times of lapping from the next to the fourth.
 ここで、具体的にワイヤーを前進させる台座と前記板状体を前進させる台座とが一体に構成することで、ワイヤーによる切断と板状体による研磨との同時進行を実現することができる。 Here, by specifically integrating the pedestal for advancing the wire and the pedestal for advancing the plate-like body, it is possible to simultaneously progress cutting with the wire and polishing with the plate-like body.
 このように、第1発明の半導体結晶ウェハの製造方法によれば、高品質な半導体結晶ウェハを簡易かつ確実に製造することができる。 Thus, according to the semiconductor crystal wafer manufacturing method of the first invention, it is possible to easily and reliably manufacture high-quality semiconductor crystal wafers.
 第2発明の半導体結晶ウェハの製造装置は、円筒形状に研削加工された半導体結晶インゴットからスライス状にウェハを切り出す半導体結晶ウェハの製造装置であって、
 側面全体に周回する複数の凹溝が形成された前記半導体結晶インゴットに対して、複数の凹溝に配置された複数のワイヤーを周回させながら前進させて切断するワイヤーソー部と、
 前記ワイヤーソー部の前記複数のワイヤーの後方位置のそれぞれに配置された板状体を揺動させながら前進させて該板状体の側面で切断面を研磨するバンド部と
を備え、
 前記ワイヤーソー部と前記バンド部とは、前記ワイヤーを前進させる台座と前記板状体を前進させる台座とが一体に構成されることにより、ワイヤーによる切断と板状体による研磨とが同時に進行されることを特徴とする。
A semiconductor crystal wafer manufacturing apparatus according to a second aspect of the present invention is a semiconductor crystal wafer manufacturing apparatus for cutting wafers into slices from a semiconductor crystal ingot ground into a cylindrical shape,
a wire saw section for cutting the semiconductor crystal ingot, in which a plurality of grooves extending around the entire side surface are formed, by advancing and advancing a plurality of wires arranged in the plurality of grooves while rotating the wires;
a band section for advancing while swinging a plate-shaped body arranged at each of the rear positions of the plurality of wires of the wire saw section, and polishing a cut surface with a side surface of the plate-shaped body;
The wire saw portion and the band portion are integrally configured with a pedestal for advancing the wire and a pedestal for advancing the plate-like body, so that cutting with the wire and polishing with the plate-like body are performed at the same time. characterized by
 第2発明の半導体結晶ウェハの製造装置は、第1発明の半導体結晶ウェハの製造方法を実行する装置であって、具体的にワイヤーを前進させる台座と前記板状体を前進させる台座とが一体に構成することで、ワイヤーによる切断と板状体による研磨との同時進行を実現することができる。 A semiconductor crystal wafer manufacturing apparatus according to a second aspect of the invention is an apparatus for executing the method of manufacturing a semiconductor crystal wafer according to the first aspect of the invention, in which a pedestal for advancing a wire and a pedestal for advancing the plate-like body are integrally formed. , it is possible to realize cutting by the wire and polishing by the plate-like body at the same time.
 このように、第2発明の半導体結晶ウェハの製造装置によれば、実際に高品質な半導体結晶ウェハを簡易かつ確実に製造することができる。 Thus, according to the semiconductor crystal wafer manufacturing apparatus of the second invention, it is possible to actually manufacture high-quality semiconductor crystal wafers easily and reliably.
 第3発明の半導体結晶ウェハの製造装置は、第2発明において、
 前記ワイヤーソー部と前記バンド部とは、前記半導体結晶インゴットが周回する前記ワイヤーの外側に配置されて該ワイヤーおよび前記板状体が周方向外方の該半導体結晶インゴットへ向かって進行することを特徴とする。
The semiconductor crystal wafer manufacturing apparatus of the third invention is, in the second invention,
The wire saw portion and the band portion are arranged outside the wire around which the semiconductor crystal ingot is wound so that the wire and the plate-like body advance toward the semiconductor crystal ingot circumferentially outward. Characterized by
 第3発明の半導体結晶ウェハの製造装置によれば、ワイヤーソー部とバンド部とを、半導体結晶インゴットが周回するワイヤーの外側に配置し、ワイヤーおよび板状体を周方向外方の半導体結晶インゴットへ進行させることで、ワイヤーによる高精度の切断と板状体による研磨とを具体的に実現することができる。 According to the semiconductor crystal wafer manufacturing apparatus of the third invention, the wire saw portion and the band portion are arranged outside the wire around which the semiconductor crystal ingot is wound, and the wire and the plate-like body are arranged outside the semiconductor crystal ingot in the circumferential direction. By advancing to , high-precision cutting with a wire and polishing with a plate-like body can be specifically realized.
 このように、第3発明の半導体結晶ウェハの製造装置によれば、実際に高品質な半導体結晶ウェハを簡易かつ確実に製造することができる。 Thus, according to the semiconductor crystal wafer manufacturing apparatus of the third invention, it is possible to actually manufacture high-quality semiconductor crystal wafers easily and reliably.
 第4発明の半導体結晶ウェハの製造装置は、第2発明において、
 前記ワイヤーソー部と前記バンド部とは、前記半導体結晶インゴットが周回する前記ワイヤーの内側に配置されて該ワイヤーおよび前記板状体が周方向内方の該半導体結晶インゴットへ向かって進行することを特徴とする。
The semiconductor crystal wafer manufacturing apparatus of the fourth invention is, in the second invention,
The wire saw section and the band section are arranged inside the wire around which the semiconductor crystal ingot is wound so that the wire and the plate-like body advance toward the semiconductor crystal ingot in the circumferential direction. Characterized by
 第4発明の半導体結晶ウェハの製造装置によれば、ワイヤーソー部とバンド部とを、半導体結晶インゴットが周回するワイヤーの内側に配置し、ワイヤーおよび板状体を周方向内方の半導体結晶インゴットへ進行させることで、ワイヤーによる高精度の切断と板状体による研磨とを具体的に実現することができる。 According to the semiconductor crystal wafer manufacturing apparatus of the fourth invention, the wire saw section and the band section are arranged inside the wire around which the semiconductor crystal ingot is wound, and the wire and the plate-like body are arranged inside the semiconductor crystal ingot in the circumferential direction. By advancing to , high-precision cutting with a wire and polishing with a plate-like body can be specifically realized.
 このように、第4発明の半導体結晶ウェハの製造装置によれば、実際に高品質な半導体結晶ウェハを簡易かつ確実に製造することができる。 Thus, according to the semiconductor crystal wafer manufacturing apparatus of the fourth invention, it is possible to actually manufacture high-quality semiconductor crystal wafers easily and reliably.
 第5発明の半導体結晶ウェハの製造方法は、円筒形状に研削加工された半導体結晶インゴットからスライス状にウェハを切り出す半導体結晶ウェハの製造方法であって、
 前記半導体結晶インゴットの側面全体に周回する複数の凹溝を形成する溝加工工程と、
 前記溝加工工程において形成された複数の凹溝に配置された複数のワイヤーを周回させながら前進させることにより前記半導体結晶インゴットをスライス状に切断すると共に、該複数のワイヤーの後方位置のそれぞれに配置された板状体を揺動させながら前進させることにより該板状体の側面で切断面を研磨する切断研磨工程と
を備え、
 前記切断研磨工程は、前記ワイヤーと前記板状体とを一定の間隔を存して連動して移動させることにより、該ワイヤーによる切断と該板状体による研磨とが同時に進行すると共に、前記半導体結晶インゴットが周回する前記ワイヤーの外側に配置されて該ワイヤーおよび前記板状体が周方向外方に進行することを特徴とする。
A method for manufacturing a semiconductor crystal wafer according to a fifth aspect of the present invention is a method for manufacturing a semiconductor crystal wafer by cutting a wafer into slices from a semiconductor crystal ingot ground into a cylindrical shape,
a grooving step of forming a plurality of grooves extending around the entire side surface of the semiconductor crystal ingot;
The semiconductor crystal ingot is cut into slices by advancing the plurality of wires arranged in the plurality of recessed grooves formed in the grooving step while rotating them, and the semiconductor crystal ingot is cut into slices and arranged at respective rear positions of the plurality of wires. a cutting and polishing step of polishing the cut surface with the side surface of the plate-shaped body by advancing the plate-shaped body while rocking it;
In the cutting and polishing step, the wire and the plate-like body are interlocked with each other at a constant interval, so that the cutting by the wire and the polishing by the plate-like body proceed simultaneously, and the semiconductor is It is characterized in that the crystal ingot is arranged on the outer side of the winding wire, and the wire and the plate-like body progress outward in the circumferential direction.
 第5発明の半導体結晶ウェハの製造方法によれば、ワイヤーと板状体とを一定の間隔を存して連動して移動させることにより、ワイヤーによる切断と板状体による研磨との同時進行を実現することができる。 According to the method for manufacturing a semiconductor crystal wafer of the fifth aspect of the invention, cutting by the wire and polishing by the plate-like body can be performed simultaneously by moving the wire and the plate-like body in conjunction with each other with a certain interval. can be realized.
 さらに、ワイヤーと板状体とを、半導体結晶インゴットが周回するワイヤーの外側に配置し、ワイヤーおよび板状体を周方向外方の半導体結晶インゴットへ進行させることで、ワイヤーによる高精度の切断と板状体による研磨とを具体的に実現することができる。 Furthermore, by arranging the wire and the plate-like body outside the wire around which the semiconductor crystal ingot rotates, and advancing the wire and the plate-like body to the semiconductor crystal ingot circumferentially outward, high-precision cutting by the wire can be achieved. Polishing with a plate-like body can be specifically realized.
 このように、第5発明の半導体結晶ウェハの製造方法によれば、実際に高品質な半導体結晶ウェハを簡易かつ確実に製造することができる。 Thus, according to the method for manufacturing a semiconductor crystal wafer of the fifth invention, it is possible to actually manufacture a high-quality semiconductor crystal wafer easily and reliably.
 第6発明の半導体結晶ウェハの製造方法は、円筒形状に研削加工された半導体結晶インゴットからスライス状にウェハを切り出す半導体結晶ウェハの製造方法であって、
 前記半導体結晶インゴットの側面全体に周回する複数の凹溝を形成する溝加工工程と、
 前記溝加工工程において形成された複数の凹溝に配置された複数のワイヤーを周回させながら前進させることにより前記半導体結晶インゴットをスライス状に切断すると共に、該複数のワイヤーの後方位置のそれぞれに配置された板状体を揺動させながら前進させることにより該板状体の側面で切断面を研磨する切断研磨工程と
を備え、
 前記切断研磨工程は、前記ワイヤーと前記板状体とを一定の間隔を存して連動して移動させることにより、該ワイヤーによる切断と該板状体による研磨とが同時に進行すると共に、前記半導体結晶インゴットが周回する前記ワイヤーの内側に配置されて該ワイヤーおよび前記板状体が周方向内方に進行することを特徴とする。
A method for manufacturing a semiconductor crystal wafer according to a sixth aspect of the present invention is a method for manufacturing a semiconductor crystal wafer in which wafers are cut into slices from a semiconductor crystal ingot ground into a cylindrical shape,
a grooving step of forming a plurality of grooves extending around the entire side surface of the semiconductor crystal ingot;
The semiconductor crystal ingot is cut into slices by advancing the plurality of wires arranged in the plurality of recessed grooves formed in the grooving step while rotating them, and the semiconductor crystal ingot is cut into slices and arranged at respective rear positions of the plurality of wires. a cutting and polishing step of polishing the cut surface with the side surface of the plate-shaped body by advancing the plate-shaped body while rocking it;
In the cutting and polishing step, the wire and the plate-like body are interlocked with each other at a constant interval, so that the cutting by the wire and the polishing by the plate-like body proceed simultaneously, and the semiconductor is It is characterized in that the crystal ingot is arranged inside the winding wire, and the wire and the plate-like body advance inward in the circumferential direction.
 第6発明の半導体結晶ウェハの製造方法によれば、ワイヤーと板状体とを一定の間隔を存して連動して移動させることにより、ワイヤーによる切断と板状体による研磨との同時進行を実現することができる。 According to the method for manufacturing a semiconductor crystal wafer of the sixth aspect of the invention, cutting by the wire and polishing by the plate-like body can be performed simultaneously by moving the wire and the plate-like body in conjunction with each other with a certain interval. can be realized.
 さらに、ワイヤーと板状体とを、半導体結晶インゴットが周回するワイヤーの内側に配置し、ワイヤーおよび板状体を周方向内方の半導体結晶インゴットへ進行させることで、ワイヤーによる高精度の切断と板状体による研磨とを具体的に実現することができる。 Furthermore, by arranging the wire and the plate-like body inside the wire around which the semiconductor crystal ingot rotates, and advancing the wire and the plate-like body toward the semiconductor crystal ingot in the circumferential direction, high-precision cutting by the wire can be achieved. Polishing with a plate-like body can be specifically realized.
 このように、第6発明の半導体結晶ウェハの製造方法によれば、実際に高品質な半導体結晶ウェハを簡易かつ確実に製造することができる。 Thus, according to the semiconductor crystal wafer manufacturing method of the sixth invention, it is possible to actually manufacture a high-quality semiconductor crystal wafer easily and reliably.
 第7発明の半導体結晶ウェハの製造装置は、円筒形状に研削加工された半導体結晶インゴットからスライス状にウェハを切り出す半導体結晶ウェハの製造装置であって、
 側面全体に周回する複数の凹溝が形成された前記半導体結晶インゴットに対して、複数の凹溝に配置された複数のワイヤーを周回させながら前進させて切断するワイヤーソー部と、
 前記ワイヤーソー部の前記複数のワイヤーの後方位置のそれぞれに配置された板状体を揺動させながら前進させて該板状体の側面で切断面を研磨するバンド部と
を備え、
 前記ワイヤーソー部と前記バンド部とは、前記ワイヤーと前記板状体とを一定の間隔を存して連動して移動させることにより、該ワイヤーによる切断と該板状体による研磨とが同時に進行すると共に、前記半導体結晶インゴットが周回する前記ワイヤーの外側に配置されて該ワイヤーおよび前記板状体が周方向外方の該半導体結晶インゴットへ向かって進行することを特徴とする。
A semiconductor crystal wafer manufacturing apparatus according to a seventh aspect of the present invention is a semiconductor crystal wafer manufacturing apparatus for cutting wafers into slices from a semiconductor crystal ingot ground into a cylindrical shape,
a wire saw section for cutting the semiconductor crystal ingot, in which a plurality of grooves extending around the entire side surface are formed, by advancing and advancing a plurality of wires arranged in the plurality of grooves while rotating the wires;
a band section for advancing while swinging a plate-shaped body arranged at each of the rear positions of the plurality of wires of the wire saw section, and polishing a cut surface with a side surface of the plate-shaped body;
The wire saw section and the band section move the wire and the plate-like body in conjunction with each other at a constant interval, so that cutting by the wire and polishing by the plate-like body proceed simultaneously. In addition, the semiconductor crystal ingot is arranged outside the winding wire, and the wire and the plate-like body advance toward the semiconductor crystal ingot circumferentially outward.
 第7発明の半導体結晶ウェハの製造装置によれば、ワイヤーと板状体とを一定の間隔を存して連動して移動させることにより、ワイヤーによる切断と板状体による研磨との同時進行を実現することができる。 According to the semiconductor crystal wafer manufacturing apparatus of the seventh aspect of the invention, cutting by the wire and polishing by the plate-like body can be performed simultaneously by moving the wire and the plate-like body in conjunction with each other at a constant interval. can be realized.
 さらに、ワイヤーソー部とバンド部とを、半導体結晶インゴットが周回するワイヤーの外側に配置し、ワイヤーおよび板状体を周方向外方の半導体結晶インゴットへ進行させることで、ワイヤーによる高精度の切断と板状体による研磨とを具体的に実現することができる。 Furthermore, by arranging the wire saw part and the band part on the outside of the wire around which the semiconductor crystal ingot rotates, and advancing the wire and the plate-like body to the semiconductor crystal ingot on the outer side in the circumferential direction, high-precision cutting by the wire can be achieved. and polishing with a plate-like body can be specifically realized.
 このように、第7発明の半導体結晶ウェハの製造装置によれば、実際に高品質な半導体結晶ウェハを簡易かつ確実に製造することができる。 Thus, according to the semiconductor crystal wafer manufacturing apparatus of the seventh invention, it is possible to actually manufacture high-quality semiconductor crystal wafers easily and reliably.
 第8発明の半導体結晶ウェハの製造装置は、円筒形状に研削加工された半導体結晶インゴットからスライス状にウェハを切り出す半導体結晶ウェハの製造装置であって、
 側面全体に周回する複数の凹溝が形成された前記半導体結晶インゴットに対して、複数の凹溝に配置された複数のワイヤーを周回させながら前進させて切断するワイヤーソー部と、
 前記ワイヤーソー部の前記複数のワイヤーの後方位置のそれぞれに配置された板状体を揺動させながら前進させて該板状体の側面で切断面を研磨するバンド部と
を備え、
 前記ワイヤーソー部と前記バンド部とは、前記ワイヤーと前記板状体とを一定の間隔を存して連動して移動させることにより、該ワイヤーによる切断と該板状体による研磨とが同時に進行すると共に、前記半導体結晶インゴットが周回する前記ワイヤーの内側に配置されて該ワイヤーおよび前記板状体が周方向内方の該半導体結晶インゴットへ向かって進行することを特徴とする。
A semiconductor crystal wafer manufacturing apparatus according to an eighth aspect of the present invention is a semiconductor crystal wafer manufacturing apparatus for cutting wafers into slices from a semiconductor crystal ingot ground into a cylindrical shape,
a wire saw section for cutting the semiconductor crystal ingot, in which a plurality of grooves extending around the entire side surface are formed, by advancing and advancing a plurality of wires arranged in the plurality of grooves while rotating the wires;
a band section for advancing while swinging a plate-shaped body arranged at each of the rear positions of the plurality of wires of the wire saw section, and polishing a cut surface with a side surface of the plate-shaped body;
The wire saw section and the band section move the wire and the plate-like body in conjunction with each other at a constant interval, so that cutting by the wire and polishing by the plate-like body proceed simultaneously. In addition, the semiconductor crystal ingot is arranged inside the winding wire, and the wire and the plate-like body advance toward the semiconductor crystal ingot in the circumferential direction.
 第8発明の半導体結晶ウェハの製造装置によれば、ワイヤーと板状体とを一定の間隔を存して連動して移動させることにより、ワイヤーによる切断と板状体による研磨との同時進行を実現することができる。 According to the semiconductor crystal wafer manufacturing apparatus of the eighth aspect of the invention, cutting by the wire and polishing by the plate-like body can be performed simultaneously by moving the wire and the plate-like body in conjunction with each other with a certain interval. can be realized.
 さらに、ワイヤーソー部とバンド部とを、半導体結晶インゴットが周回するワイヤーの内側に配置し、ワイヤーおよび板状体を周方向内方の半導体結晶インゴットへ進行させることで、ワイヤーによる高精度の切断と板状体による研磨とを具体的に実現することができる。 Furthermore, by arranging the wire saw part and the band part inside the wire around which the semiconductor crystal ingot rotates, and advancing the wire and the plate-like body to the semiconductor crystal ingot in the circumferential direction, high-precision cutting by the wire can be achieved. and polishing with a plate-like body can be specifically realized.
 このように、第8発明の半導体結晶ウェハの製造装置によれば、実際に高品質な半導体結晶ウェハを簡易かつ確実に製造することができる。 Thus, according to the semiconductor crystal wafer manufacturing apparatus of the eighth invention, it is possible to actually manufacture high-quality semiconductor crystal wafers easily and reliably.
本実施形態のSiCウェハ(半導体結晶ウェハ)の製造方法の工程全体を示すフローチャート。4 is a flow chart showing the overall steps of a method for manufacturing a SiC wafer (semiconductor crystal wafer) according to the present embodiment; 図1のSiCウェハの製造方法における溝加工工程の内容を示す説明図。FIG. 2 is an explanatory diagram showing the contents of a groove processing step in the method of manufacturing the SiC wafer of FIG. 1; 図1のSiCウェハの製造方法における切断研磨工程の内容を示す説明図。FIG. 2 is an explanatory view showing the content of a cutting and polishing step in the method of manufacturing the SiC wafer of FIG. 1; 図1のSiCウェハの製造方法における第1面加工工程および第2面加工工程の内容を示す説明図。FIG. 2 is an explanatory diagram showing the contents of a first surface processing step and a second surface processing step in the method of manufacturing the SiC wafer of FIG. 1; 図1のSiCウェハの製造方法における切断研磨工程の変更例を示す説明図。FIG. 2 is an explanatory diagram showing a modification of the cutting and polishing step in the method of manufacturing the SiC wafer of FIG. 1; 図1のSiCウェハの製造方法における切断研磨工程の他の変更例を示す説明図。FIG. 4 is an explanatory view showing another modification of the cutting and polishing step in the method of manufacturing the SiC wafer of FIG. 1; 図1のSiCウェハの製造方法における切断研磨工程の他の変更例を示す説明図。FIG. 4 is an explanatory view showing another modification of the cutting and polishing step in the method of manufacturing the SiC wafer of FIG. 1;
 図1に示すように、本実施形態において、半導体結晶ウェハであるSiCウェハの製造方法は、円筒形状に研削加工されたSiCインゴットからスライス状に切り出したウェハの表面に高精度研削加工を施したSiCウェハを得る方法であって、溝加工工程(STEP100/図1)と、切断研磨工程(STEP200/図1)と、第1面加工工程(STEP300/図1)と、第2面加工工程(STEP400/図1)とを備える。 As shown in FIG. 1, in the present embodiment, the method for manufacturing a SiC wafer, which is a semiconductor crystal wafer, is obtained by slicing a SiC ingot that has been ground into a cylindrical shape, and subjecting the surface of the wafer to a high-precision grinding process. A method for obtaining a SiC wafer, comprising a groove processing step (STEP 100/FIG. 1), a cutting and polishing step (STEP 200/FIG. 1), a first surface processing step (STEP 300/FIG. 1), and a second surface processing step (STEP 300/FIG. 1). STEP 400/FIG. 1).
 図2~図5を参照して各工程の詳細について説明する。 The details of each process will be described with reference to FIGS.
 まず、図2に示すSTEP100の溝加工工程では、予め結晶させたSiC結晶1に対して、インゴット加工工程において、結晶方位を定めて円筒研削加工を施して得られる円筒形状のSiCインゴット10を準備する。 First, in the grooving step of STEP 100 shown in FIG. 2, a cylindrical SiC ingot 10 obtained by determining the crystal orientation and applying cylindrical grinding to the pre-crystallized SiC crystal 1 in the ingot processing step is prepared. do.
 そして、STEP100の溝加工工程では、かかるSiCインゴット10に対して、側面全体に周回する複数の凹溝11を形成する。 Then, in the grooving step of STEP 100 , a plurality of grooves 11 are formed around the entire side surface of the SiC ingot 10 .
 具体的に、STEP100の溝加工工程では、複数の凹溝11に対応した複数の凸部21が側面全体に形成された溝加工ドラム砥石20を互いに平行な回転軸上でそれぞれ回転させながらSiCインゴット10に圧接することにより凹溝11を形成する。 Specifically, in the grooving step of STEP 100, the SiC ingot is formed while rotating the grooving drum grindstone 20, which has a plurality of convex portions 21 corresponding to the plurality of concave grooves 11 formed on the entire side surface, on a rotating shaft parallel to each other. A concave groove 11 is formed by pressing against 10 .
 なお、溝加工工程により得られたSiCインゴット10(特に凹溝11)に対して化学処理的手法によりノンダメージの鏡面加工を施すことが望ましい。 It is desirable that the SiC ingot 10 (especially the grooves 11) obtained by the grooving process is subjected to non-damage mirror finishing by a chemical treatment technique.
 次に、図3に示すSTEP200の切断研磨工程では、STEP100の溝加工工程において形成された複数の凹溝11に、切断加工装置であるワイヤーソー部30の複数のワイヤー31を配置し、ワイヤー31を周回させながら前進させることによりSiCインゴット10をスライス状に切断すると共に、複数のワイヤー31の後方位置のそれぞれに配置された、研磨加工装置であるバンド部40の板状体41を揺動させながら前進させることにより該板状体41の側面で切断面を研磨する切断研磨する。 Next, in the cutting and polishing step of STEP 200 shown in FIG. SiC ingot 10 is cut into slices by moving forward while rotating, and plate-like body 41 of band portion 40, which is a polishing device, arranged at each rear position of a plurality of wires 31 is oscillated. By advancing while moving forward, the side surface of the plate-like body 41 is cut and polished to polish the cut surface.
 なお、STEP200の切断研磨工程を実現する、半導体結晶ウェハ(SiCウェハ)の製造装置(切断研磨装置)の構成としては、SiCインゴット10の両端を固定する固定部材32に対して、複数のワイヤー31をワイヤーソーボビン33を介して周回させながら前進させて切断するワイヤーソー部30(ワイヤーソー装置)と、切断面を研磨する板状体41と板状体41の両端に設けられ該板状体41を揺動させる揺動機構42(例えばアクチュエータ装置など)とを有するバンド部40(バンドソー装置と類似する構成であって切断を目的としない装置)と備える。 As a configuration of a semiconductor crystal wafer (SiC wafer) manufacturing apparatus (cutting and polishing apparatus) that realizes the cutting and polishing step of STEP 200, a plurality of wires 31 are attached to fixing members 32 that fix both ends of the SiC ingot 10. A wire saw unit 30 (wire saw device) that advances and cuts while rotating through a wire saw bobbin 33, a plate-like body 41 that polishes the cut surface, and the plate-like bodies provided at both ends of the plate-like body 41 A band section 40 (a device similar to a band saw device and not intended for cutting) having a swinging mechanism 42 (for example, an actuator device) for swinging the band 41 is provided.
 ワイヤーソー部30とバンド部40とは、固定部材32に対してスライド自在に構成された(SiCインゴット10および固定部材32は固定されて動かない)、ワイヤーソー部30を前進させる台座であるフレーム34,35と、バンド部40を前進させる台座であるフレーム34,35とが共通で一体として構成されることにより、ワイヤー31による切断と板状体41による研磨とが同時に進行される。 The wire saw section 30 and the band section 40 are configured to be slidable relative to the fixing member 32 (the SiC ingot 10 and the fixing member 32 are fixed and do not move). Since the frames 34, 35 and the frames 34, 35, which are the pedestals for advancing the band portion 40, are integrally constructed in common, the cutting by the wire 31 and the polishing by the plate-like body 41 are performed at the same time.
 これにより、STEP100の溝加工工程において、予めSiCインゴット10の側面全体に周回する複数の凹溝11が形成されているため、複数の凹溝11をガイドとして複数のワイヤー31によりSiCインゴット10を一回的処理で精度よくスライス状に切断することができる。 As a result, in the grooving step of STEP 100, since a plurality of grooves 11 are formed in advance around the entire side surface of SiC ingot 10, SiC ingot 10 is aligned with a plurality of wires 31 using the plurality of grooves 11 as guides. It can be cut into slices with high accuracy by a circular process.
 さらに、SiCインゴット10を周回しながら切断する複数のワイヤー31の後方には、その切断面を揺動しながら研磨する複数の板状体41が配置され、複数のワイヤー31の進行と共に複数の板状体41を進行させることで、切断と同時にその切断面を一回的処理でうねりや筋を磨き上げて除去することができ、表面平滑性の極めて高い高品質なSiCウェハ100を得ることができ、改めて面取り工程や切断面に一面を基準面とする基準面加工工程などを行う必要もない。 Furthermore, behind the plurality of wires 31 that cut the SiC ingot 10 while rotating, there are arranged a plurality of plate-like bodies 41 that polish the cut surface while swinging. By advancing the shaped body 41, undulations and streaks can be polished and removed from the cut surface by one-time treatment at the same time as cutting, and a high-quality SiC wafer 100 with extremely high surface smoothness can be obtained. Therefore, there is no need to perform a chamfering process or a reference surface machining process using one surface of the cut surface as a reference surface.
 次に、図4に示すように、STEP300の第1面加工工程では、切断面のいずれか一方の一面110を支持面として、残る他面120にメカニカルポリッシュ(高精度研削加工)を施す。ここで、STEP200の切断研磨工程により得られたSiCインゴット10は2つの切断面のいずれもが高い平滑性を有するため、いずれの切断面をも支持面(基準面)とすることができるためである。 Next, as shown in FIG. 4, in the first surface processing step of STEP 300, one surface 110 of one of the cut surfaces is used as a support surface, and the remaining other surface 120 is subjected to mechanical polishing (high-precision grinding). Here, since both of the two cut surfaces of the SiC ingot 10 obtained by the cutting and polishing step of STEP 200 have high smoothness, either of the cut surfaces can be used as a support surface (reference surface). be.
 具体的には、第1面加工工程では、メカニカルポリッシュを施すメカニカルポリッシュ装置50(超高合成高精度研削加工装置)により、研削加工を行う。 Specifically, in the first surface machining process, grinding is performed by a mechanical polishing device 50 (ultra-high synthetic high-precision grinding device) that performs mechanical polishing.
 メカニカルポリッシュ装置50は、スピンドル51と、定盤であるプラテン52上のダイアモンド砥石53とを備える。 The mechanical polisher 50 includes a spindle 51 and a diamond grindstone 53 on a platen 52 which is a surface plate.
 まず、ここで一面110を上面として、スピンドル51の吸着プレートである真空ポーラスチャック54に吸着させて支持させ、他面120を下面として、ダイアモンド砥石53により他面120を研削加工する。 First, one surface 110 is used as the upper surface, and the other surface 120 is ground by the diamond grindstone 53 with the other surface 120 as the lower surface.
 このとき、スピンドル51およびダイアモンド砥石53は、図示しない駆動装置により回転駆動されると共に、図示しないコンプレッサーなどによりスピンドル51がダイアモンド砥石53に押圧されることにより他面120に研削加工が施される。 At this time, the spindle 51 and the diamond grindstone 53 are rotationally driven by a drive device (not shown), and the other surface 120 is ground by pressing the spindle 51 against the diamond grindstone 53 by a compressor (not shown) or the like.
 なお、研削加工後には、ドレッサー等によりダイアモンド砥石53へのドレッシングが施されてもよい。 After grinding, the diamond grindstone 53 may be dressed by a dresser or the like.
 また、メカニカルポリッシュ装置50は、必要に応じて、加工時に複数の機能水を使用可能なように機能水供給配管を有してもよい。 In addition, the mechanical polisher 50 may have functional water supply pipes so that a plurality of functional waters can be used during processing, if necessary.
 次に、STEP400の第2面加工工程では、第1面加工工程により、高精度研削加工が施された他面120を上面として、一面110に対して、第1面加工工程と同様の高精度研削加工を施す。 Next, in the second surface processing step of STEP 400, the other surface 120, which has been subjected to high-precision grinding in the first surface processing step, is used as the upper surface, and the one surface 110 is subjected to high-precision grinding similar to the first surface processing step. Grinding is applied.
 すなわち、他面120を上面として、スピンドル51の吸着プレートである真空ポーラスチャック54に吸着させ、一面110を下面として、ダイアモンド砥石53により一面110を研削加工する。 That is, with the other surface 120 as the upper surface, it is attracted to the vacuum porous chuck 54 that is the suction plate of the spindle 51 , and the one surface 110 is ground with the diamond grindstone 53 with the one surface 110 as the lower surface.
 この場合にも、必要に応じて、ドレッサー等をダイアモンド砥石53に押圧することによりドレッシングが施されてもよい。 Also in this case, dressing may be applied by pressing a dresser or the like against the diamond grindstone 53 as necessary.
 かかるSTEP300の第1面加工工程およびSTEP400の第2面加工工程のメカニカルポリッシュ(高精度研削加工)処理によれば、切断研磨工程により得られた高い平坦性を有するトランスファレス切断面のいずれか一方を支持面(吸着面)として、残りの面に順次、メカニカルポリッシュ(高精度研削加工)を施していくことで、いわゆる転写を防止して高品質なSiCウェハを得ることができると共に、従来の遊離砥石加工、すなわち1次~4次の複数回のラップなど複雑な製造工程を大幅に簡略化することができる。 According to the mechanical polishing (high-precision grinding) processing of the first surface processing step of STEP 300 and the second surface processing step of STEP 400, either one of the transferless cut surfaces having high flatness obtained by the cutting and polishing step is used as a support surface (adsorption surface), and the remaining surfaces are sequentially subjected to mechanical polishing (high-precision grinding), so-called transfer can be prevented and a high-quality SiC wafer can be obtained. It is possible to greatly simplify a complicated manufacturing process such as free grinding, that is, lapping multiple times from primary to quaternary.
 より具体的には、砥石を替えて粗研削や複数回の仕上げ研削を行う必要がなく、例えば、♯30000以上の砥石により直接1回の研削加工により仕上げまで行うことができるため、簡易であるばかりでなく、SiCウェハ100から利用できる真性半導体層を大きく確保するすることができるという優位性がある。 More specifically, there is no need to perform rough grinding or finish grinding multiple times by changing the grindstone. In addition, there is an advantage that a large intrinsic semiconductor layer that can be used from the SiC wafer 100 can be secured.
 なお、STEP300の第1面加工工程およびSTEP400の第2面加工工程の高精度研削加工処理において、SiCウェハ100のサイズは、現在8インチまでであり、それぞれの口径のウェハはヘッドの面積に応じて、セットされ、(12インチまでが可能)高精度研削加工処理が行われる。 In the high-precision grinding process of the first surface processing step of STEP 300 and the second surface processing step of STEP 400, the size of the SiC wafer 100 is currently up to 8 inches, and the diameter of each wafer depends on the area of the head. It is then set (possibly up to 12 inches) and subjected to the precision grinding process.
 以上が本実施形態のSiCウェハの製造方法の詳細である。以上、詳しく説明したように、かかる本実施形態のSiCウェハの製造方法によれば、高品質なSiCウェハを簡易かつ確実に製造することができる。 The details of the method for manufacturing the SiC wafer of the present embodiment have been described above. As described above in detail, according to the SiC wafer manufacturing method of the present embodiment, a high-quality SiC wafer can be manufactured easily and reliably.
 なお、本実施形態のSiCウェハの製造方法において、上述の一連の処理の後、必要に応じて、化学機械研磨(CMP)工程やウェア洗浄工程が行われてもよい。 It should be noted that in the SiC wafer manufacturing method of the present embodiment, a chemical mechanical polishing (CMP) process and a ware cleaning process may be performed as necessary after the series of processes described above.
 また、本実施形態は、半導体結晶ウェハの製造方法として、SiCインゴットからSiCウェハを製造する場合について説明したが、半導体結晶は、SiCに限定されるものはなく、ガリヒソ、インジュウムリン、シリコン、その他の化合物半導体であってもよい。 In addition, in the present embodiment, as a method for manufacturing a semiconductor crystal wafer, a case of manufacturing a SiC wafer from a SiC ingot has been described, but the semiconductor crystal is not limited to SiC, and the semiconductor crystal is not limited to SiC. Other compound semiconductors may be used.
 また、本実施形態では、図3のように、ワイヤーソー部30およびバンド部40とSiCインゴット10との位置関係が、SiCインゴット10が周回するワイヤー31の内側に配置されて該ワイヤー31および板状体41が周方向内方(図中上側)に進行する場合について説明したが、これに限定されるものではない。 Further, in the present embodiment, as shown in FIG. 3, the positional relationship between the wire saw portion 30 and the band portion 40 and the SiC ingot 10 is such that the wire 31 and the plate are disposed inside the wire 31 around which the SiC ingot 10 is wound. Although the case where the shaped body 41 advances inward in the circumferential direction (upper side in the drawing) has been described, the present invention is not limited to this.
 例えば、図5に示すように、ワイヤーソー部30およびバンド部40とSiCインゴット10との位置関係は、SiCインゴット10が周回するワイヤー31の外側に配置されてもよい。この場合、ワイヤー31および板状体41は、周方向外方(図中下側)に進行して、SiCインゴット10を切断研磨する。 For example, as shown in FIG. 5, the positional relationship between the wire saw portion 30 and the band portion 40 and the SiC ingot 10 may be arranged outside the wire 31 around which the SiC ingot 10 is wound. In this case, the wire 31 and the plate-like body 41 advance circumferentially outward (lower side in the drawing) to cut and polish the SiC ingot 10 .
 また、例えば、図6に示すように、ワイヤーソー部30およびバンド部40とSiCインゴット10との位置関係は、SiCインゴット10が周回するワイヤー31の内側に配置されてもよい。この場合、ワイヤー31および板状体41は、周方向内方(図中下側)に進行して、SiCインゴット10を切断研磨する。 Further, for example, as shown in FIG. 6, the positional relationship between the wire saw portion 30 and the band portion 40 and the SiC ingot 10 may be arranged inside the wire 31 around which the SiC ingot 10 is wound. In this case, the wire 31 and the plate-like body 41 advance inward in the circumferential direction (lower side in the drawing) to cut and polish the SiC ingot 10 .
 さらに、本実施形態において、バンド部40の板状体41は、複数のワイヤー31の後方にすべて設ける場合について説明したが、これに限定されるものではない。例えば、図6に示すように、板状体41は、1つおきに設けるようにしてもよい。 Furthermore, in the present embodiment, the plate-like body 41 of the band portion 40 has been described as being all provided behind the plurality of wires 31, but it is not limited to this. For example, as shown in FIG. 6, the plate-like bodies 41 may be provided alternately.
 この場合、切断により得られたSiCウェハ100は、2つの切断面のうち一方が板状体41により研磨された基準研磨面であり、他面が板状体41による研磨がなされていない未研磨面となる。そのため、STEP300では、基準研磨面110を上面として、スピンドル51の吸着プレートである真空ポーラスチャック54に吸着させて支持させ、ワイヤー跡が残る他面120を下面として、ダイアモンド砥石53により他面120を研削加工する。これにより、複数の板状体41の設置数を半減させてバンド部40の装置構成を簡易にした場合でも、メカニカルポリッシュ装置50により高品質のSiCウェハ100を得ることができる。 In this case, the SiC wafer 100 obtained by cutting has two cut surfaces, one of which is a reference polished surface polished by the plate-shaped body 41, and the other unpolished surface that is not polished by the plate-shaped body 41. face. Therefore, in STEP 300 , the reference polishing surface 110 is set as the upper surface and is supported by the vacuum porous chuck 54 , which is the suction plate of the spindle 51 . Grind. As a result, even when the number of plate-like bodies 41 to be installed is reduced by half to simplify the device configuration of the band portion 40, the mechanical polishing device 50 can obtain a high-quality SiC wafer 100. FIG.
 また、本実施形態では、ワイヤーソー部30とバンド部40とについて、ワイヤーソー部30を前進させる台座であるフレーム34,35と、バンド部40を前進させる台座であるフレーム34,35とが共通で一体として構成される場合について説明したが(図3参照)、これに限定されるものではない。 In addition, in the present embodiment, the wire saw section 30 and the band section 40 share the frames 34 and 35 as pedestals for advancing the wire saw section 30 and the frames 34 and 35 as pedestals for advancing the band section 40. Although the case where it is configured as one body has been described (see FIG. 3), it is not limited to this.
 例えば、図7に示すように、ワイヤーソー部30とバンド部40とは、固定部材32に対してスライド自在に構成された(SiCインゴット10および固定部材32は固定されて動かない)、ワイヤーソー部30を前進させる台座であるフレーム34´,35´と、バンド部40を前進させる台座であるフレーム45´とを備えるようにしてもよい。 For example, as shown in FIG. 7, the wire saw section 30 and the band section 40 are configured to be slidable relative to the fixing member 32 (the SiC ingot 10 and the fixing member 32 are fixed and do not move). Frames 34' and 35', which are pedestals for advancing the portion 30, and frame 45', which is a pedestal for advancing the band portion 40, may be provided.
 ここで、ワイヤーソー部30を前進させる台座であるフレーム34´,35´と、バンド部40を前進させる台座であるフレーム45´とが一定の間隔を存して連動して移動することにより、ワイヤー31と板状体41とが一定の間隔を存して連動して移動する。 Here, the frames 34' and 35', which are bases for advancing the wire saw section 30, and the frame 45', which is a base for advancing the band section 40, are moved in conjunction with each other at a constant interval. The wire 31 and the plate-like body 41 are interlocked and moved with a certain interval therebetween.
 例えば、フレーム35´とフレーム45´とを直接または他の部材を介在させて間接的に連結することにより、これらのフレーム35´,45´とが一定の間隔を存して連動して移動するようにしてもよい。 For example, by connecting the frame 35' and the frame 45' directly or indirectly through another member, these frames 35' and 45' move together with a certain interval. You may do so.
 また、これらのフレーム35´,45´を連結しない場合でも、フレーム35´の移動量(例えば、フレーム35´を変位させるステッピングモータのステップ数)に対応させて、同一の変位となるフレーム45´の移動量(フレーム45´を変位させるステッピングモータのステップ数)を決定して移動させるようにしてもよい。 Further, even when these frames 35', 45' are not connected, the frame 45' can be displaced in the same manner in accordance with the amount of movement of the frame 35' (for example, the number of steps of the stepping motor that displaces the frame 35'). (the number of steps of the stepping motor for displacing the frame 45') may be determined and moved.
1…SiC結晶(半導体結晶)、10…SiCインゴット(半導体結晶インゴット)、11…凹溝、20…溝加工ドラム砥石、21…凸部、30…ワイヤーソー部、31…ワイヤー、32…固定部材、33…ワイヤーソーボビン、34,35…フレーム(台座)、34´,35´…ワイヤーソー部フレーム(台座)、40…バンド部、41…板状体、42…揺動機構、45´…バンド部フレーム(台座)、50…メカニカルポリッシュ装置(超高合成高精度研削加工装置)、51…スピンドル、52…プラテン、53…ダイアモンド砥石、54…真空ポーラスチャック(吸着プレート)、100…SiCウェハ(半導体結晶ウェハ)、110…一面、120…他面。 DESCRIPTION OF SYMBOLS 1... SiC crystal (semiconductor crystal), 10... SiC ingot (semiconductor crystal ingot), 11... Groove, 20... Grooving drum grindstone, 21... Convex part, 30... Wire saw part, 31... Wire, 32... Fixing member , 33... Wire saw bobbin 34, 35... Frame (pedestal) 34', 35'... Wire saw part frame (pedestal) 40... Band part 41... Plate-like body 42... Swing mechanism 45'... Band portion frame (pedestal), 50... Mechanical polishing device (ultra-high synthetic high-precision grinding device), 51... Spindle, 52... Platen, 53... Diamond whetstone, 54... Vacuum porous chuck (adsorption plate), 100... SiC wafer (semiconductor crystal wafer), 110...one side, 120...other side.

Claims (8)

  1.  円筒形状に研削加工された半導体結晶インゴットからスライス状にウェハを切り出す半導体結晶ウェハの製造方法であって、
     前記半導体結晶インゴットの側面全体に周回する複数の凹溝を形成する溝加工工程と、
     前記溝加工工程において形成された複数の凹溝に配置された複数のワイヤーを周回させながら前進させることにより前記半導体結晶インゴットをスライス状に切断すると共に、該複数のワイヤーの後方位置のそれぞれに配置された板状体を揺動させながら前進させることにより該板状体の側面で切断面を研磨する切断研磨工程と
    を備え、
     前記切断研磨工程は、前記ワイヤーを前進させる台座と、前記板状体を前進させる台座とが一体に構成されることにより、該ワイヤーによる切断と該板状体による研磨とが同時に進行されることを特徴とする半導体結晶ウェハの製造方法。
    A method for manufacturing a semiconductor crystal wafer by cutting a wafer into slices from a semiconductor crystal ingot ground into a cylindrical shape, comprising:
    a grooving step of forming a plurality of grooves extending around the entire side surface of the semiconductor crystal ingot;
    The semiconductor crystal ingot is cut into slices by advancing the plurality of wires arranged in the plurality of recessed grooves formed in the grooving step while rotating them, and the semiconductor crystal ingot is cut into slices and arranged at respective rear positions of the plurality of wires. a cutting and polishing step of polishing the cut surface with the side surface of the plate-shaped body by advancing the plate-shaped body while rocking it;
    In the cutting and polishing step, the pedestal for advancing the wire and the pedestal for advancing the plate-like body are integrally configured, so that the cutting by the wire and the polishing by the plate-like body proceed simultaneously. A method for manufacturing a semiconductor crystal wafer, characterized by:
  2.  円筒形状に研削加工された半導体結晶インゴットからスライス状にウェハを切り出す半導体結晶ウェハの製造装置であって、
     側面全体に周回する複数の凹溝が形成された前記半導体結晶インゴットに対して、複数の凹溝に配置された複数のワイヤーを周回させながら前進させて切断するワイヤーソー部と、
     前記ワイヤーソー部の前記複数のワイヤーの後方位置のそれぞれに配置された板状体を揺動させながら前進させて該板状体の側面で切断面を研磨するバンド部と
    を備え、
     前記ワイヤーソー部と前記バンド部とは、前記ワイヤーを前進させる台座と前記板状体を前進させる台座とが一体に構成されることにより、ワイヤーによる切断と板状体による研磨とが同時に進行されることを特徴とする半導体結晶ウェハの製造装置。
    A semiconductor crystal wafer manufacturing apparatus for cutting wafers into slices from a semiconductor crystal ingot ground into a cylindrical shape,
    a wire saw section for cutting the semiconductor crystal ingot, in which a plurality of grooves extending around the entire side surface are formed, by advancing and advancing a plurality of wires arranged in the plurality of grooves while rotating the wires;
    a band section for advancing while swinging a plate-shaped body arranged at each of the rear positions of the plurality of wires of the wire saw section, and polishing a cut surface with a side surface of the plate-shaped body;
    The wire saw portion and the band portion are integrally configured with a pedestal for advancing the wire and a pedestal for advancing the plate-like body, so that cutting with the wire and polishing with the plate-like body are performed at the same time. A semiconductor crystal wafer manufacturing apparatus characterized by:
  3.  請求項2記載の半導体結晶ウェハの製造装置において、
     前記ワイヤーソー部と前記バンド部とは、前記半導体結晶インゴットが周回する前記ワイヤーの外側に配置されて該ワイヤーおよび前記板状体が周方向外方の該半導体結晶インゴットへ向かって進行することを特徴とする半導体結晶ウェハの製造装置。
    In the semiconductor crystal wafer manufacturing apparatus according to claim 2,
    The wire saw portion and the band portion are arranged outside the wire around which the semiconductor crystal ingot is wound so that the wire and the plate-like body advance toward the semiconductor crystal ingot circumferentially outward. A semiconductor crystal wafer manufacturing apparatus characterized by:
  4.  請求項2記載の半導体結晶ウェハの製造装置において、
     前記ワイヤーソー部と前記バンド部とは、前記半導体結晶インゴットが周回する前記ワイヤーの内側に配置されて該ワイヤーおよび前記板状体が周方向内方の該半導体結晶インゴットへ向かって進行することを特徴とする半導体結晶ウェハの製造装置。
    In the semiconductor crystal wafer manufacturing apparatus according to claim 2,
    The wire saw section and the band section are arranged inside the wire around which the semiconductor crystal ingot is wound so that the wire and the plate-like body advance toward the semiconductor crystal ingot in the circumferential direction. A semiconductor crystal wafer manufacturing apparatus characterized by:
  5.  円筒形状に研削加工された半導体結晶インゴットからスライス状にウェハを切り出す半導体結晶ウェハの製造方法であって、
     前記半導体結晶インゴットの側面全体に周回する複数の凹溝を形成する溝加工工程と、
     前記溝加工工程において形成された複数の凹溝に配置された複数のワイヤーを周回させながら前進させることにより前記半導体結晶インゴットをスライス状に切断すると共に、該複数のワイヤーの後方位置のそれぞれに配置された板状体を揺動させながら前進させることにより該板状体の側面で切断面を研磨する切断研磨工程と
    を備え、
     前記切断研磨工程は、前記ワイヤーと前記板状体とを一定の間隔を存して連動して移動させることにより、該ワイヤーによる切断と該板状体による研磨とが同時に進行すると共に、前記半導体結晶インゴットが周回する前記ワイヤーの外側に配置されて該ワイヤーおよび前記板状体が周方向外方の該半導体結晶インゴットへ向かって進行することを特徴とする半導体結晶ウェハの製造方法。
    A method for manufacturing a semiconductor crystal wafer by cutting a wafer into slices from a semiconductor crystal ingot ground into a cylindrical shape, comprising:
    a grooving step of forming a plurality of grooves extending around the entire side surface of the semiconductor crystal ingot;
    The semiconductor crystal ingot is cut into slices by advancing the plurality of wires arranged in the plurality of recessed grooves formed in the grooving step while rotating them, and the semiconductor crystal ingot is cut into slices and arranged at respective rear positions of the plurality of wires. a cutting and polishing step of polishing the cut surface with the side surface of the plate-shaped body by advancing the plate-shaped body while rocking it;
    In the cutting and polishing step, the wire and the plate-like body are interlocked with each other at a constant interval, so that the cutting by the wire and the polishing by the plate-like body proceed simultaneously, and the semiconductor is A method of manufacturing a semiconductor crystal wafer, wherein a crystal ingot is arranged outside the winding wire, and the wire and the plate-shaped body advance toward the semiconductor crystal ingot circumferentially outward.
  6.  円筒形状に研削加工された半導体結晶インゴットからスライス状にウェハを切り出す半導体結晶ウェハの製造方法であって、
     前記半導体結晶インゴットの側面全体に周回する複数の凹溝を形成する溝加工工程と、
     前記溝加工工程において形成された複数の凹溝に配置された複数のワイヤーを周回させながら前進させることにより前記半導体結晶インゴットをスライス状に切断すると共に、該複数のワイヤーの後方位置のそれぞれに配置された板状体を揺動させながら前進させることにより該板状体の側面で切断面を研磨する切断研磨工程と
    を備え、
     前記切断研磨工程は、前記ワイヤーと前記板状体とを一定の間隔を存して連動して移動させることにより、該ワイヤーによる切断と該板状体による研磨とが同時に進行すると共に、前記半導体結晶インゴットが周回する前記ワイヤーの内側に配置されて該ワイヤーおよび前記板状体が周方向内方の該半導体結晶インゴットへ向かって進行することを特徴とする半導体結晶ウェハの製造方法。
    A method for manufacturing a semiconductor crystal wafer by cutting a wafer into slices from a semiconductor crystal ingot ground into a cylindrical shape, comprising:
    a grooving step of forming a plurality of grooves extending around the entire side surface of the semiconductor crystal ingot;
    The semiconductor crystal ingot is cut into slices by advancing the plurality of wires arranged in the plurality of recessed grooves formed in the grooving step while rotating them, and the semiconductor crystal ingot is cut into slices and arranged at respective rear positions of the plurality of wires. a cutting and polishing step of polishing the cut surface with the side surface of the plate-shaped body by advancing the plate-shaped body while rocking it;
    In the cutting and polishing step, the wire and the plate-like body are interlocked with each other at a constant interval, so that the cutting by the wire and the polishing by the plate-like body proceed simultaneously, and the semiconductor is A method of manufacturing a semiconductor crystal wafer, wherein a crystal ingot is arranged inside the winding wire, and the wire and the plate-shaped body advance toward the semiconductor crystal ingot circumferentially inward.
  7.  円筒形状に研削加工された半導体結晶インゴットからスライス状にウェハを切り出す半導体結晶ウェハの製造装置であって、
     側面全体に周回する複数の凹溝が形成された前記半導体結晶インゴットに対して、複数の凹溝に配置された複数のワイヤーを周回させながら前進させて切断するワイヤーソー部と、
     前記ワイヤーソー部の前記複数のワイヤーの後方位置のそれぞれに配置された板状体を揺動させながら前進させて該板状体の側面で切断面を研磨するバンド部と
    を備え、
     前記ワイヤーソー部と前記バンド部とは、前記ワイヤーと前記板状体とを一定の間隔を存して連動して移動させることにより、該ワイヤーによる切断と該板状体による研磨とが同時に進行すると共に、前記半導体結晶インゴットが周回する前記ワイヤーの外側に配置されて該ワイヤーおよび前記板状体が周方向外方の該半導体結晶インゴットへ向かって進行することを特徴とする半導体結晶ウェハの製造装置。
    A semiconductor crystal wafer manufacturing apparatus for cutting wafers into slices from a semiconductor crystal ingot ground into a cylindrical shape,
    a wire saw section for cutting the semiconductor crystal ingot, in which a plurality of grooves extending around the entire side surface are formed, by advancing and advancing a plurality of wires arranged in the plurality of grooves while rotating the wires;
    a band section for advancing while swinging a plate-shaped body arranged at each of the rear positions of the plurality of wires of the wire saw section, and polishing a cut surface with a side surface of the plate-shaped body;
    The wire saw section and the band section move the wire and the plate-like body in conjunction with each other at a constant interval, so that cutting by the wire and polishing by the plate-like body proceed simultaneously. In addition, the semiconductor crystal ingot is arranged outside the winding wire, and the wire and the plate-shaped body advance toward the semiconductor crystal ingot circumferentially outward. Device.
  8.  円筒形状に研削加工された半導体結晶インゴットからスライス状にウェハを切り出す半導体結晶ウェハの製造装置であって、
     側面全体に周回する複数の凹溝が形成された前記半導体結晶インゴットに対して、複数の凹溝に配置された複数のワイヤーを周回させながら前進させて切断するワイヤーソー部と、
     前記ワイヤーソー部の前記複数のワイヤーの後方位置のそれぞれに配置された板状体を揺動させながら前進させて該板状体の側面で切断面を研磨するバンド部と
    を備え、
     前記ワイヤーソー部と前記バンド部とは、前記ワイヤーと前記板状体とを一定の間隔を存して連動して移動させることにより、該ワイヤーによる切断と該板状体による研磨とが同時に進行すると共に、前記半導体結晶インゴットが周回する前記ワイヤーの内側に配置されて該ワイヤーおよび前記板状体が周方向内方の該半導体結晶インゴットへ向かって進行することを特徴とする半導体結晶ウェハの製造装置。
    A semiconductor crystal wafer manufacturing apparatus for cutting wafers into slices from a semiconductor crystal ingot ground into a cylindrical shape,
    a wire saw section for cutting the semiconductor crystal ingot, in which a plurality of grooves extending around the entire side surface are formed, by advancing and advancing a plurality of wires arranged in the plurality of grooves while rotating the wires;
    a band section for advancing while swinging a plate-shaped body arranged at each of the rear positions of the plurality of wires of the wire saw section, and polishing a cut surface with a side surface of the plate-shaped body;
    The wire saw section and the band section move the wire and the plate-like body in conjunction with each other at a constant interval, so that cutting by the wire and polishing by the plate-like body proceed simultaneously. In addition, the semiconductor crystal ingot is arranged inside the winding wire, and the wire and the plate-shaped body advance toward the semiconductor crystal ingot in the circumferential direction. Device.
PCT/JP2022/004211 2021-09-30 2022-02-03 Method and apparatus for producing semiconductor crystal wafer WO2023053476A1 (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2021160583A JP7007625B1 (en) 2021-09-30 2021-09-30 Manufacturing method and equipment for semiconductor crystal wafers
JP2021-160583 2021-09-30
JP2021205895A JP7041931B1 (en) 2021-12-20 2021-12-20 Manufacturing method and equipment for semiconductor crystal wafers
JP2021-205895 2021-12-20

Publications (1)

Publication Number Publication Date
WO2023053476A1 true WO2023053476A1 (en) 2023-04-06

Family

ID=85782148

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/004211 WO2023053476A1 (en) 2021-09-30 2022-02-03 Method and apparatus for producing semiconductor crystal wafer

Country Status (2)

Country Link
TW (1) TWI800336B (en)
WO (1) WO2023053476A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010099808A (en) * 2008-10-27 2010-05-06 Sumitomo Metal Fine Technology Co Ltd Wire saw device
JP2018064030A (en) * 2016-10-13 2018-04-19 株式会社Tkx Multiple wire saw device
JP2018075668A (en) * 2016-11-10 2018-05-17 株式会社Sumco Abrasive grain and evaluation method therefor and manufacturing method for wafer
JP2019188510A (en) * 2018-04-24 2019-10-31 住友電気工業株式会社 Method for manufacturing silicon carbide substrate

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4525353B2 (en) * 2005-01-07 2010-08-18 住友電気工業株式会社 Method for manufacturing group III nitride substrate

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010099808A (en) * 2008-10-27 2010-05-06 Sumitomo Metal Fine Technology Co Ltd Wire saw device
JP2018064030A (en) * 2016-10-13 2018-04-19 株式会社Tkx Multiple wire saw device
JP2018075668A (en) * 2016-11-10 2018-05-17 株式会社Sumco Abrasive grain and evaluation method therefor and manufacturing method for wafer
JP2019188510A (en) * 2018-04-24 2019-10-31 住友電気工業株式会社 Method for manufacturing silicon carbide substrate

Also Published As

Publication number Publication date
TW202316510A (en) 2023-04-16
TWI800336B (en) 2023-04-21

Similar Documents

Publication Publication Date Title
KR100955962B1 (en) Manufacturing method for semiconductor wafers and wire saw used for the same
US6093087A (en) Wafer processing machine and a processing method thereby
WO2023112345A1 (en) Semiconductor crystal wafer manufacturing device and manufacturing method
KR20150001611A (en) Machining process of semiconductor wafer
JPH10180599A (en) Thin plate work surface grinding device and method thereof
JP2016203342A (en) Method for manufacturing truer and method for manufacturing semiconductor wafer, and chamfering device for semiconductor wafer
WO2005070619A1 (en) Method of grinding wafer and wafer
JP2000031099A (en) Fabrication of semiconductor wafer
JP3924641B2 (en) Manufacturing method of semiconductor wafer
JP2010021394A (en) Method of manufacturing semiconductor wafer
WO2023053476A1 (en) Method and apparatus for producing semiconductor crystal wafer
JP7007625B1 (en) Manufacturing method and equipment for semiconductor crystal wafers
JP7041931B1 (en) Manufacturing method and equipment for semiconductor crystal wafers
JP7104909B1 (en) Semiconductor crystal wafer manufacturing method and manufacturing apparatus
JPH11348031A (en) Manufacture of semiconductor substrate, external surface processing device, and single crystal ingot
JPH08197400A (en) Chamfered part polishing method for semiconductor wafer
WO2023119684A1 (en) Method and device for producing semiconductor crystal wafer
JP7041932B1 (en) Manufacturing method and equipment for semiconductor crystal wafers
WO2023119703A1 (en) Method and apparatus for producing semiconductor crystal wafer
JP7100864B1 (en) Manufacturing method and equipment for semiconductor crystal wafers
JP7398852B1 (en) Semiconductor crystal wafer manufacturing equipment and manufacturing method
JP7243996B1 (en) Semiconductor crystal wafer manufacturing apparatus and manufacturing method
JP7429080B1 (en) Semiconductor crystal wafer manufacturing equipment and manufacturing method
JP7260889B1 (en) Semiconductor crystal wafer manufacturing apparatus and manufacturing method
JP7285507B1 (en) Grinding method for semiconductor crystal wafer

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22875360

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE