WO2023053300A1 - 電源装置、制御装置及び制御方法 - Google Patents

電源装置、制御装置及び制御方法 Download PDF

Info

Publication number
WO2023053300A1
WO2023053300A1 PCT/JP2021/035989 JP2021035989W WO2023053300A1 WO 2023053300 A1 WO2023053300 A1 WO 2023053300A1 JP 2021035989 W JP2021035989 W JP 2021035989W WO 2023053300 A1 WO2023053300 A1 WO 2023053300A1
Authority
WO
WIPO (PCT)
Prior art keywords
battery
unit
voltage value
power supply
voltage
Prior art date
Application number
PCT/JP2021/035989
Other languages
English (en)
French (fr)
Inventor
健次 柴田
達哉 神野
Original Assignee
本田技研工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 本田技研工業株式会社 filed Critical 本田技研工業株式会社
Priority to PCT/JP2021/035989 priority Critical patent/WO2023053300A1/ja
Publication of WO2023053300A1 publication Critical patent/WO2023053300A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries

Definitions

  • the present invention relates to a power supply device, control device and control method.
  • One of the functions required of a power supply device equipped with a battery, particularly a portable power supply device, is a function of maintaining a constant voltage output from the power supply device, that is, a so-called constant voltage output. Therefore, even in a power supply device equipped with a plurality of batteries, there is a demand for a technique for realizing constant power output while switching the connection state of these batteries between serial connection and parallel connection.
  • the technologies disclosed in Patent Documents 1 and 2 are power supply devices mounted on vehicles (that is, they are not intended for portable power supply devices), and therefore, they are not intended for load fluctuations and heat generation. It is a useful technique, but it does not provide a constant power output.
  • An exemplary object of the present invention is to provide a new technology related to a power supply device equipped with a plurality of batteries.
  • a power supply device as one aspect of the present invention is a power supply device that outputs a constant voltage to a load, comprising a first battery section including at least one battery and a second battery section including at least one battery. , a switching unit for switching the connection between the first battery unit and the second battery unit to series connection or parallel connection, and a control unit, wherein the control A first voltage value, which is the value of the voltage output from the first battery unit, and a second voltage value, which is the value of the voltage output from the second battery unit, are preset switching voltage values.
  • the switching unit is controlled so that the connection between the first battery unit and the second battery unit is parallel connection, and the first voltage value and the second voltage value are The switching unit is controlled so that the connection between the first battery unit and the second battery unit becomes a series connection when the voltage is not equal to or higher than the switching voltage value.
  • a control device comprises a power supply section having a first battery section including at least one battery and a second battery section including at least one battery, wherein a constant voltage across a load is provided.
  • a control device for controlling a power supply device that outputs a switching unit for switching the connection between the first battery unit and the second battery unit to series connection or parallel connection, and a control unit , wherein the control unit has a first voltage value that is the value of the voltage output from the first battery unit and a second voltage value that is the value of the voltage output from the second battery unit when the switching voltage is equal to or higher than a predetermined switching voltage value, controlling the switching unit such that the connection between the first battery unit and the second battery unit becomes a parallel connection, and the first voltage value and when the second voltage value is not equal to or greater than the switching voltage value, the switching unit is controlled such that the connection between the first battery unit and the second battery unit becomes a series connection.
  • a control method includes a power supply unit having a first battery unit including at least one battery and a second battery unit including at least one battery, wherein the load is constant
  • a control method for controlling a power supply device that outputs a voltage comprising the step of switching connection between the first battery unit and the second battery unit to series connection or parallel connection, wherein , a first voltage value, which is the value of the voltage output from the first battery unit, and a second voltage value, which is the value of the voltage output from the second battery unit, are equal to or greater than a predetermined switching voltage value;
  • the connection between the first battery section and the second battery section is switched to a parallel connection, and if the first voltage value and the second voltage value are not greater than or equal to the switching voltage value, the The connection between the first battery unit and the second battery unit is switched to a series connection.
  • FIG. 1 is a schematic diagram showing a configuration of a power supply device as one aspect of the present invention
  • FIG. It is a schematic diagram showing the configuration of a power supply device in the prior art. It is a schematic diagram showing the configuration of the power supply device in the present embodiment. It is a schematic diagram showing the configuration of the power supply device in the present embodiment. It is a schematic diagram showing the configuration of a power supply device in the prior art. It is a schematic diagram showing the configuration of the power supply device in the present embodiment. It is a schematic diagram showing the configuration of the power supply device in the present embodiment. It is a schematic diagram showing the configuration of the power supply device in the present embodiment. 2 is a flowchart for explaining the operation of the power supply device shown in FIG. 1;
  • FIG. 1 is a schematic diagram showing the configuration of a power supply device 1 as one aspect of the present invention.
  • the power supply device 1 supplies power to a load LD such as an electrical device connected to the power supply device 1 without requiring a commercial power supply.
  • the power supply device 1 is embodied as a constant voltage power supply that has a function of maintaining a constant voltage output from the power supply device 1 to the load LD (that realizes constant voltage output).
  • the power supply device 1 is suitable, for example, as a portable power supply device that is used in areas where power grids are not widespread or during power outages of commercial power sources.
  • the power supply device 1 includes a power supply section 10, a DC/DC converter 20, a DC/AC inverter 30, a switching section 40, a detection section 50, and a control section 60, as shown in FIG.
  • the power supply unit 10 is configured as a battery pack in which a plurality of batteries BT are mounted.
  • the power supply unit 10 has a first battery unit 110 including a plurality of batteries BT and a second battery unit 120 including a plurality of batteries BT in this embodiment.
  • each of the first battery section 110 and the second battery section 120 includes ten batteries BT in FIG. 1, the number is not limited as long as it includes at least one battery BT. Also, the number of batteries BT included in first battery section 110 and the number of batteries BT included in second battery section 120 may not be the same.
  • Battery BT is a storage battery (secondary battery) for supplying power to load LD.
  • the first battery unit 110 includes terminals for outputting electric power from the plurality of batteries BT included in the first battery unit 110, specifically, a terminal 112 on the positive electrode side (first electrode side) and a negative electrode side (first electrode side). 2-pole side) terminals 114 are provided.
  • the second battery unit 120 includes terminals for outputting electric power from the plurality of batteries BT included in the second battery unit 120, specifically, a terminal 122 on the positive electrode side (first electrode side) and a negative electrode terminal 122.
  • a terminal 124 on the side (second pole side) is provided.
  • the DC/DC converter 20 is provided between the power supply section 10 and the load LD, and between the power supply section 10 and the DC/AC inverter 40 in this embodiment.
  • the DC/DC converter 20 converts the DC voltage (voltage value) output from the power supply unit 10 into a preset voltage setting according to the standard value required by the load LD using electromagnetic induction generated by the coil. It is a boost converter that boosts the
  • the DC/DC converter 20 includes, for example, an internal power supply, a CPU, and a converter section having a circuit configuration including a coil, MOSFET (switch element), diode and capacitor.
  • the DC/AC inverter 30 is provided between the DC/DC converter 20 and the load LD.
  • the DC/AC inverter 30 converts the DC voltage that is input from the DC/DC converter 20 and boosted by the DC/DC converter 20 into an AC voltage, and outputs (supplies) the AC voltage to the load LD.
  • PWM Pulse Width Modulation
  • the DC/AC inverter 30 includes, for example, an internal power supply, a CPU, a driver, an H bridge circuit (four switch circuits) made up of transistors, and filters (LC filter, noise filter, etc.).
  • the switching unit 40 has a function of switching the connection between the first battery unit 110 and the second battery unit 120 in the power supply unit 10 to serial connection or parallel connection.
  • the switching unit 40 includes a first relay 410 and a second relay 420 in this embodiment.
  • First relay 410 is provided between first battery section 110 and second battery section 120 , and connects terminal 112 on the positive electrode side of first battery section 110 to the terminal on the positive electrode side of second battery section 120 .
  • 122 or a component (switch) for switching to the negative terminal 124 of the second battery section 120 .
  • the second relay 420 is provided between the first battery section 110 and the second battery section 120 and connects the negative terminal 114 of the first battery section 110 and the negative terminal 124 of the second battery section 120 .
  • the configuration of the switching unit 40 is not limited. However, as shown in FIG. 1, by configuring the switching unit 40 with the first relay 410 and the second relay 420, the connection between the first battery unit 110 and the second battery unit 120 can be achieved with a simple configuration. , series connection, or parallel connection can be implemented.
  • the detection unit 50 detects the voltage value output from the first battery unit 110 (hereinafter referred to as “first voltage value”) and the voltage value output from the second battery unit 120 (hereinafter referred to as “second voltage value”). voltage value).
  • the detection unit 50 includes a first voltage detection unit 510 provided for the first battery unit 110 and a second voltage detection unit 520 provided for the second battery unit 120 in this embodiment.
  • the first voltage detection unit 510 includes, for example, a moving-coil DC voltmeter configured with a permanent magnet and a coil, and detects the voltage value output from each battery BT included in the first battery unit 110. , to detect a first voltage value.
  • the second voltage detection unit 520 includes, for example, a moving-coil DC voltmeter configured with a permanent magnet and a coil, and detects the value of the voltage output from each battery BT included in the second battery unit 120. By doing so, the second voltage value is detected.
  • the control unit 60 is a control device including a processor represented by a CPU, a storage device such as a semiconductor memory, an interface, and the like.
  • the control unit 60 controls each unit of the power supply device 1 according to a program stored in the storage unit to operate the power supply device 1 .
  • the control unit 60 is configured separately from each unit of the power supply device 1, but is not limited to this, and may be configured integrally with the DC/DC converter 20, for example. .
  • the control section 60 controls the switching section 40 based on the first voltage value and the second voltage value detected by the detection section 50 in this embodiment.
  • the switching unit 40 may be controlled.
  • the first voltage value and the second voltage value do not necessarily have to be detected by the detector 50 . In this case, there is no need to provide the detection unit 50 in the power supply device 1, which contributes to reduction in size and cost of the power supply device 1 as a whole.
  • the detection unit 50 as in the present embodiment, the voltage value (first voltage value) output from the first battery unit 110 and the output from the second battery unit 120 during the operation of the power supply device 1 Since the value of the applied voltage (second voltage value) can always be detected, it is possible to control the switching unit 40, which will be described later, with high accuracy.
  • the control unit 60 controls the switching unit 40 so that the connection between the first battery unit 110 and the second battery unit 120 is parallel connection. Specifically, in order to connect the first battery unit 110 and the second battery unit 120 in parallel, the control unit 60 connects the positive terminal 112 of the first battery unit 110 to the second battery unit.
  • the first relay 410 is controlled so that the positive terminal 122 of the battery 120 is connected, and the connection between the negative terminal 114 of the first battery section 110 and the negative terminal 124 of the second battery section 120 is controlled.
  • the second relay 420 is controlled so that the state of is the connected state.
  • control unit 60 controls switching unit 40 such that the connection between first battery unit 110 and second battery unit 120 is a series connection. Specifically, in order to connect the first battery unit 110 and the second battery unit 120 in series, the control unit 60 connects the positive terminal 112 of the first battery unit 110 to the second battery unit.
  • the first relay 410 is controlled so that the negative terminal 124 of the battery 120 is connected to the negative terminal 124 of the first battery section 110 and the negative terminal 124 of the second battery section 120 .
  • the second relay 420 is controlled so that the state of is the non-connected state.
  • connection between the first battery section 110 and the second battery section 120 is connected in series while comparing with the prior art in which the connection between the first battery section and the second battery section is fixed by parallel connection.
  • Advantages (effects) obtained in the present embodiment that can be switched between parallel connection and parallel connection will be described.
  • FIG. 2 is a schematic diagram showing the configuration of a power supply device in the prior art, showing the connection state of a first battery section, a second battery section, a DC/DC converter, and a DC/AC inverter.
  • the connection between the first battery section and the second battery section is fixed in parallel connection and connected to the subsequent DC/DC converter and DC/AC inverter.
  • the usage conditions of each battery (single battery) included in each of the first battery unit and the second battery unit are, for example, upper limit (voltage upper limit): 4.2 V, lower limit (voltage lower limit): 3.0V.
  • each of the first battery section and the second battery section has a configuration in which 20 batteries are arranged in series (so-called 20 series).
  • the DC/DC converter boosts the voltage output from the power supply section having the first battery section and the second battery section to, for example, 164 V preset as a voltage setting value.
  • lower limit: 3.0 ⁇ 20 60V. Therefore, in the prior art, in the DC/DC converter, it is necessary to boost 60V (voltage lower limit value output from the power supply section) to 164V (voltage setting value).
  • FIG. 3 and 4 are schematic diagrams showing the configuration of the power supply device 1 according to the present embodiment, and FIG. 3 shows a state in which the first battery section 110 and the second battery section 120 are connected in parallel. , and FIG. 4 shows that the connection between the first battery section 110 and the second battery section 120 is a series connection. 3 and 4, in the present embodiment, as described above, the connection between the first battery section 110 and the second battery section 120 is configured to be switchable between series connection and parallel connection. It is connected to the DC/DC converter 20 and the DC/AC inverter 30 in the subsequent stage.
  • the usage conditions of each battery BT included in each of the first battery section 110 and the second battery section 120 are set to upper limit: 4.2V and lower limit: 3.0V.
  • each of the first battery section 110 and the second battery section 120 has a configuration in which 20 batteries BT are arranged in series (so-called 20 series).
  • the DC/DC converter 20 boosts the voltage output from the power supply unit 10 having the first battery unit 110 and the second battery unit 120 to 164 V preset as a voltage setting value.
  • the switching voltage value for switching the connection between the first battery unit 110 and the second battery unit 120 between series connection and parallel connection more specifically, switching from parallel connection to series connection
  • the voltage is set to 3.5 V, which is a voltage value between the voltage upper limit value and the voltage lower limit value, which are the usage conditions of the battery BT.
  • the voltage output from each battery BT included in each of the first battery unit 110 and the second battery unit 120 has a margin, that is, the first voltage value and the second voltage value are the switching voltage value.
  • the power supply device 1 has the DC/DC converter 20 as a component in FIG. 1, it is not limited to this, and the DC/DC converter 20 may not be included.
  • the DC/AC inverter 30 is provided between the power supply section 10 and the load LD, and converts the DC voltage output from the power supply section 10 into an AC voltage.
  • connection between the first battery section and the second battery section can be connected in parallel.
  • FIG. 5 is a schematic diagram showing the configuration of the power supply device in the prior art, showing the connection state of the first battery section, the second battery section, and the DC/AC inverter.
  • the connection between the first battery section and the second battery section is fixed in parallel connection and connected to the subsequent DC/AC inverter.
  • the usage conditions of each battery (single battery) included in each of the first battery unit and the second battery unit are, for example, upper limit (voltage upper limit): 4.2 V, lower limit (voltage lower limit): 3.0V.
  • the voltage (lower limit of voltage) output from the power supply unit having the first battery unit and the second battery unit depends on the standard value required by the load LD. It must be 164V or higher, which is a preset voltage setting value.
  • each of the first battery section and the second battery section has 55 batteries arranged in series. It must have a configuration (so-called 55 straight).
  • the voltage output from each battery BT included in each of the first battery unit 110 and the second battery unit 120 has a margin, that is, the first voltage value and the second voltage value are the switching voltage value.
  • the connection between the first battery section 110 and the second battery section 120 is parallel connection.
  • there is no margin in the voltage value output from each battery BT included in each of the first battery unit 110 and the second battery unit 120 that is, the first voltage value and the second voltage value are switched. If the voltage is not equal to or higher than the voltage value, the connection between the first battery section 110 and the second battery section 120 becomes a series connection as shown in FIG.
  • each of the first battery unit 110 and the second battery unit 120 By making it possible to switch the connection between the first battery unit 110 and the second battery unit 120 between the series connection and the parallel connection in this way, when the power supply device 1 does not have the DC/DC converter 20 , it is possible to reduce the number of batteries BT that each of the first battery unit 110 and the second battery unit 120 should include.
  • the usage conditions of each battery BT included in each of the first battery unit 110 and the second battery unit 120 are set to upper limit: 4.2V and lower limit: 3.0V.
  • the switching voltage value for switching the connection between the first battery unit 110 and the second battery unit 120 between series connection and parallel connection more specifically, switching from parallel connection to series connection
  • the voltage is set to 3.7 V, which is a voltage value between the voltage upper limit value and the voltage lower limit value, which are the usage conditions of the battery BT.
  • the first battery unit Each of 110 and second battery unit 120 may have at least a configuration in which 45 batteries are arranged in series (so-called 45 series).
  • Lower limit (switching voltage value): 3.7 ⁇ 45 166.5V.
  • each of the first battery section 110 and the second battery section 120 should include 55 lines, compared to the prior art that requires a configuration of 55 lines for each of the first battery section and the second battery section.
  • the number of batteries BT can be reduced. This leads to miniaturization and cost reduction of the power supply unit 10, and contributes to reduction of the size and cost of the power supply device 1 as a whole.
  • the power supply device 1 operates with the control unit 60 controlling each unit of the power supply device 1 in an integrated manner.
  • the description will focus particularly on the control (control method) for switching the connection between the first battery unit 110 and the second battery unit 120 between series connection and parallel connection.
  • the control unit 60 acquires a first voltage value, which is the value of the voltage output from the first battery unit 110, and a second voltage value, which is the value of the voltage output from the second battery unit 120. .
  • the control section 60 acquires the first voltage value detected by the first voltage detection section 510 and the second voltage value detected by the second voltage detection section 520 from the detection section 50 .
  • the control unit 60 determines whether the difference (voltage difference) between the first voltage value and the second voltage value acquired in S602 is within the allowable range. If the difference between the first voltage value and the second voltage value is not within the allowable range, the process proceeds to S606. On the other hand, if the difference between the first voltage value and the second voltage value is within the allowable range, the process proceeds to S608. Note that the allowable range of the difference between the first voltage value and the second voltage value is preset to an arbitrary voltage difference, such as 1V.
  • the control unit 60 controls charging and discharging between the first battery unit 110 and the second battery unit 120 so that the difference between the first voltage value and the second voltage value is within the allowable range. For example, the control unit 60 compares the first voltage value and the second voltage value acquired in S602, and selects only the battery unit with the higher voltage value among the first battery unit 110 and the second battery unit 120. Discharge. As a result, the power stored in the battery unit with the higher voltage value is supplied (charged) to the battery unit with the lower voltage value.
  • the first battery Overdischarge and overcharge in the unit 110 and the second battery unit 120 can be suppressed (prevented).
  • control unit 60 determines that the first voltage value and the second voltage value acquired in S602 are used to switch the connection between the first battery unit 110 and the second battery unit 120 from parallel connection to series connection. Determine whether the voltage is greater than or equal to the voltage value. When the first voltage value and the second voltage value are equal to or higher than the switching voltage value, the process proceeds to S610. On the other hand, when the first voltage value and the second voltage value are equal to or higher than the switching voltage value, the process proceeds to S612.
  • the control unit 60 controls the switching unit 40 so that the connection between the first battery unit 110 and the second battery unit 120 becomes parallel connection.
  • power is supplied to the load LD via the DC/DC converter 20 and the DC/AC converter 30 from the power supply unit 10 in which the first battery unit 110 and the second battery unit 120 are connected in parallel.
  • the switching unit 40 is controlled so that the connection between the first battery unit 110 and the second battery unit 120 becomes parallel connection, the first voltage value output from the first battery unit 110 and the second battery unit In order to acquire the second voltage value output from the unit 120, the process proceeds to S602.
  • the control unit 60 controls the switching unit 40 so that the connection between the first battery unit 110 and the second battery unit 120 becomes a series connection.
  • power is supplied to the load LD via the DC/DC converter 20 and the DC/AC converter 30 from the power supply unit 10 in which the first battery unit 110 and the second battery unit 120 are connected in series.
  • the switching unit 40 is controlled so that the connection between the first battery unit 110 and the second battery unit 120 becomes a series connection, the power request from the load LD is stopped or the power from the power supply unit 10 is stopped. (for example, each battery BT included in each of the first battery unit 110 and the second battery unit 120 reaches the voltage lower limit value under the conditions of use), the operation ends.
  • the first battery section 110 and the second battery section 120 A new technique for reducing the size and cost of the power supply device 1 as a whole can be provided by making it possible to switch between serial connection and parallel connection.
  • the power supply device of the above-described embodiment includes: A power supply device (e.g., 1) that outputs a constant voltage to a load (e.g., LD), a power supply unit (e.g., 10) having a first battery unit (e.g., 110) including at least one battery (e.g., BT) and a second battery unit (e.g., 120) including at least one battery; a switching unit (for example, 40) for switching the connection between the first battery unit and the second battery unit to serial connection or parallel connection; a control unit (e.g., 60);
  • the control unit A first voltage value, which is the value of the voltage output from the first battery unit, and a second voltage value, which is the value of the voltage output from the second battery unit, are equal to or greater than a predetermined switching voltage value.
  • controlling the switching unit so that the connection between the first battery unit and the second battery unit is parallel connection When the first voltage value and the second voltage value are not equal to or greater than the switching voltage value, the switching unit is switched such that the connection between the first battery unit and the second battery unit is a series connection. It is characterized by controlling.
  • the above power supply (e.g. 1), further comprising a detection unit (for example, 50) that detects the first voltage value and the second voltage value;
  • the control unit (for example, 60) determines whether the first voltage value and the second voltage value detected by the detection unit are greater than or equal to the switching voltage value.
  • the voltage value (first voltage value) output from the first battery unit and the voltage value (second voltage value) output from the second battery unit can always be detected.
  • the switching unit can be controlled with high accuracy.
  • a converter e.g., 20
  • the load e.g., LD
  • an inverter for example, 30
  • An inverter for example, 30 is provided between the power supply (for example, 10) and the load (for example, LD) and converts a DC voltage output from the power supply to an AC voltage. characterized by
  • the switching unit (for example, 40)
  • the first pole side terminal (for example, 112) of the first battery section (for example, 110) is connected to the first pole side terminal (for example, 122) of the second battery section (for example, 120),
  • a first relay eg, 410 for switching to a second pole side terminal (eg, 124) of the second battery unit;
  • a second terminal for switching the state between the terminal (for example, 114) on the second pole side of the first battery section and the terminal on the second pole side of the second battery section to a connected state or a non-connected state.
  • a relay unit (eg, 420); characterized by comprising
  • the function for switching the connection between the first battery unit and the second battery unit to series connection or parallel connection can be realized with a simple configuration.
  • the control unit (for example, 60) When the first voltage value and the second voltage value are equal to or higher than the switching voltage value, the terminal (eg, 112) on the first pole side of the first battery unit (eg, 110) and the second battery control the first relay (e.g., 410) so that the terminal (e.g., 122) on the first pole side of the unit (e.g., 120) is connected; controlling the second relay (e.g., 420) such that the state between the terminal (e.g., 114) and the terminal (e.g., 124) on the second pole side of the second battery unit is a connected state; When the first voltage value and the second voltage value are not equal to or greater than the switching voltage value, the terminal on the first pole side of the first battery section and the terminal on the second pole side of the second battery section are connected. and the state between the terminal on the second pole side of the first battery section and the terminal on the second pole side of the second battery section becomes a disconnected state.
  • the first voltage value and the second voltage value are not
  • connection between the first battery section and the second battery section can be switched between series connection and parallel connection, although the configuration is simple.
  • the control unit controls the first battery unit (eg 110) and the second battery unit (eg , 120).
  • over-discharging and over-charging in the first battery section and the second battery section can be suppressed (prevented).
  • the control device of the above-described embodiment includes: A power supply section (e.g., 10) having a first battery section (e.g., 110) including at least one battery (e.g., BT) and a second battery section (e.g., 120) including at least one battery.
  • a power supply section e.g., 10 having a first battery section (e.g., 110) including at least one battery (e.g., BT) and a second battery section (e.g., 120) including at least one battery.
  • a control device e.g., 60 that controls a power supply device (e.g., 1) that outputs a constant voltage to a load (e.g., LD), a switching unit (for example, 40) for switching the connection between the first battery unit and the second battery unit to series connection or parallel connection; a control unit (e.g., 60);
  • the control unit A first voltage value, which is the value of the voltage output from the first battery unit, and a second voltage value, which is the value of the voltage output from the second battery unit, are equal to or greater than a predetermined switching voltage value.
  • controlling the switching unit so that the connection between the first battery unit and the second battery unit is parallel connection When the first voltage value and the second voltage value are not equal to or greater than the switching voltage value, the switching unit is switched such that the connection between the first battery unit and the second battery unit is a series connection. It is characterized by controlling.
  • the control method of the above-described embodiment includes: A power supply section (e.g., 10) having a first battery section (e.g., 110) including at least one battery (e.g., BT) and a second battery section (e.g., 120) including at least one battery.
  • a power supply section e.g., 10 having a first battery section (e.g., 110) including at least one battery (e.g., BT) and a second battery section (e.g., 120) including at least one battery.
  • a control method for controlling a power supply device e.g., 1) that outputs a constant voltage to a load (e.g., LD), switching the connection between the first battery unit and the second battery unit to a series connection or a parallel connection;
  • a first voltage value which is the value of the voltage output from the first battery unit
  • a second voltage value which is the value of the voltage output from the second battery unit
  • Power supply unit 10 Power supply unit 20: DC/DC converter 30: DC/AC inverter 40: Switching unit 50: Detecting unit 60: Control unit 110: First battery unit 120: Second battery unit 410: First relay 420 : Second relay BT: Battery LD: Load

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)

Abstract

負荷に対して一定の電圧を出力する電源装置であって、少なくとも1つのバッテリを含む第1バッテリ部と、少なくとも1つのバッテリを含む第2バッテリ部と、を有する電源部と、前記第1バッテリ部と前記第2バッテリ部との間の接続を、直列接続、又は、並列接続に切り替えるための切替部と、制御部と、を有し、前記制御部は、前記第1バッテリ部から出力される電圧の値である第1電圧値、及び、前記第2バッテリ部から出力される電圧の値である第2電圧値が予め定められた切替電圧値以上である場合には、前記第1バッテリ部と前記第2バッテリ部との間の接続が並列接続となるように、前記切替部を制御し、前記第1電圧値及び前記第2電圧値が前記切替電圧値以上でない場合には、前記第1バッテリ部と前記第2バッテリ部との間の接続が直列接続となるように、前記切替部を制御することを特徴とする電源装置を提供する。

Description

電源装置、制御装置及び制御方法
 本発明は、電源装置、制御装置及び制御方法に関する。
 近年、地球温暖化などの環境問題への関心が高まるにつれて、送電網が普及していない地域や商用電源の停電時に有用な可搬式の電源装置として、内燃機関によって発電機(ジェネレータ)を駆動して電力を生成する電源装置に代えて、バッテリ(二次電池、蓄電池)に蓄電された電力を供給する電源装置が注目されてきている。このような電源装置の一例として、複数のバッテリを搭載し、これらのバッテリの接続状態を、直列接続、或いは、並列接続に切り替えることが可能な電源装置が提案されている(特許文献1及び2参照)。
特開2013-192278号公報 特開2012-60838号公報
 バッテリを搭載した電源装置において、特に、可搬式の電源装置において要求される機能の1つとして、電源装置から出力される電圧を一定に維持する機能、所謂、定電圧出力がある。従って、複数のバッテリを搭載する電源装置においても、これらのバッテリの接続状態を、直列接続、或いは、並列接続に切り替えながら、定電力出力を実現するための技術が求められている。なお、特許文献1及び2に開示された技術は、車両に搭載される電源装置であり(即ち、可搬式の電源装置を想定しているものではないため)、負荷の変動や発熱に対して有用な技術であるが、定電力出力を実現するものではない。
 本発明は、複数のバッテリを搭載する電源装置に関する新たな技術を提供することを例示的目的とする。
 本発明の一側面としての電源装置は、負荷に対して一定の電圧を出力する電源装置であって、少なくとも1つのバッテリを含む第1バッテリ部と、少なくとも1つのバッテリを含む第2バッテリ部と、を有する電源部と、前記第1バッテリ部と前記第2バッテリ部との間の接続を、直列接続、又は、並列接続に切り替えるための切替部と、制御部と、を有し、前記制御部は、前記第1バッテリ部から出力される電圧の値である第1電圧値、及び、前記第2バッテリ部から出力される電圧の値である第2電圧値が予め定められた切替電圧値以上である場合には、前記第1バッテリ部と前記第2バッテリ部との間の接続が並列接続となるように、前記切替部を制御し、前記第1電圧値及び前記第2電圧値が前記切替電圧値以上でない場合には、前記第1バッテリ部と前記第2バッテリ部との間の接続が直列接続となるように、前記切替部を制御することを特徴とする。
 本発明の別の側面としての制御装置は、少なくとも1つのバッテリを含む第1バッテリ部と、少なくとも1つのバッテリを含む第2バッテリ部と、を有する電源部を備え、負荷に対して一定の電圧を出力する電源装置を制御する制御装置であって、前記第1バッテリ部と前記第2バッテリ部との間の接続を、直列接続、又は、並列接続に切り替えるための切替部と、制御部と、を有し、前記制御部は、前記第1バッテリ部から出力される電圧の値である第1電圧値、及び、前記第2バッテリ部から出力される電圧の値である第2電圧値が予め定められた切替電圧値以上である場合には、前記第1バッテリ部と前記第2バッテリ部との間の接続が並列接続となるように、前記切替部を制御し、前記第1電圧値及び前記第2電圧値が前記切替電圧値以上でない場合には、前記第1バッテリ部と前記第2バッテリ部との間の接続が直列接続となるように、前記切替部を制御することを特徴とする。
 本発明の更に別の側面としての制御方法は、少なくとも1つのバッテリを含む第1バッテリ部と、少なくとも1つのバッテリを含む第2バッテリ部と、を有する電源部を備え、負荷に対して一定の電圧を出力する電源装置を制御する制御方法であって、前記第1バッテリ部と前記第2バッテリ部との間の接続を、直列接続、又は、並列接続に切り替える工程を有し、前記工程では、前記第1バッテリ部から出力される電圧の値である第1電圧値、及び、前記第2バッテリ部から出力される電圧の値である第2電圧値が予め定められた切替電圧値以上である場合には、前記第1バッテリ部と前記第2バッテリ部との間の接続を並列接続に切り替え、前記第1電圧値及び前記第2電圧値が前記切替電圧値以上でない場合には、前記第1バッテリ部と前記第2バッテリ部との間の接続を直列接続に切り替えることを特徴とする。
 本発明によれば、例えば、複数のバッテリを搭載する電源装置に関する新たな技術を提供することができる。
 本発明のその他の特徴及び利点は、添付図面を参照とした以下の説明により明らかになるであろう。なお、添付図面においては、同じ若しくは同様の構成には、同じ参照番号を付す。
 添付図面は明細書に含まれ、その一部を構成し、本発明の実施の形態を示し、その記述と共に本発明の原理を説明するために用いられる。
本発明の一側面としての電源装置の構成を示す概略図である。 従来技術における電源装置の構成を示す概略図である。 本実施形態における電源装置の構成を示す概略図である。 本実施形態における電源装置の構成を示す概略図である。 従来技術における電源装置の構成を示す概略図である。 本実施形態における電源装置の構成を示す概略図である。 本実施形態における電源装置の構成を示す概略図である。 図1に示す電源装置の動作を説明するためのフローチャートである。
 以下、添付図面を参照して実施形態を詳しく説明する。なお、以下の実施形態は特許請求の範囲に係る発明を限定するものでなく、また実施形態で説明されている特徴の組み合わせの全てが発明に必須のものとは限らない。実施形態で説明されている複数の特徴のうち二つ以上の特徴が任意に組み合わされてもよい。また、同一若しくは同様の構成には同一の参照番号を付し、重複した説明は省略する。
 図1は、本発明の一側面としての電源装置1の構成を示す概略図である。電源装置1は、商用電源を必要とせずに、電源装置1に接続された電気機器などの負荷LDに対して電力を供給する。電源装置1は、本実施形態では、電源装置1から負荷LDに出力される電圧を一定に維持する機能を有する(定電圧出力を実現する)定電圧電源として具現化される。電源装置1は、例えば、送電網が普及していない地域や商用電源の停電時に用いられる可搬式の電源装置として好適である。
 電源装置1は、図1に示すように、電源部10と、DC/DCコンバータ20と、DC/ACインバータ30と、切替部40と、検出部50と、制御部60と、を有する。
 電源部10は、複数のバッテリBTが搭載されるバッテリーパックとして構成される。電源部10は、本実施形態では、複数のバッテリBTを含む第1バッテリ部110と、複数のバッテリBTを含む第2バッテリ部120と、を有する。第1バッテリ部110及び第2バッテリ部120のそれぞれは、図1では、10のバッテリBTを含んでいるが、その数を限定するものではなく、少なくとも1つのバッテリBTを含んでいればよい。また、第1バッテリ部110が含むバッテリBTの数と第2バッテリ部120が含むバッテリBTの数とは、同じでなくてもよい。バッテリBTは、負荷LDに電力を供給するための蓄電池(二次電池)である。
 第1バッテリ部110には、第1バッテリ部110が含む複数のバッテリBTから電力を出力するための端子、具体的には、正極側(第1極側)の端子112と、負極側(第2極側)の端子114とが設けられている。
同様に、第2バッテリ部120には、第2バッテリ部120が含む複数のバッテリBTから電力を出力するための端子、具体的には、正極側(第1極側)の端子122と、負極側(第2極側)の端子124とが設けられている。
 DC/DCコンバータ20は、電源部10と負荷LDとの間、本実施形態では、電源部10とDC/ACインバータ40との間に設けられている。DC/DCコンバータ20は、コイルで生じる電磁誘導を利用して、電源部10から出力された直流の電圧(電圧値)を、負荷LDで要求される規格値に応じて予め設定された電圧設定値に昇圧する昇圧コンバータである。DC/DCコンバータ20は、例えば、内部電源と、CPUと、コイル、MOSFET(スイッチ素子)、ダイオード及びコンデンサを含む回路構成を有するコンバータ部と、で構成される。
 DC/ACインバータ30は、DC/DCコンバータ20と負荷LDとの間に設けられている。DC/ACインバータ30は、DC/DCコンバータ20から入力される、DC/DCコンバータ20で昇圧された直流の電圧を交流の電圧に変換して、負荷LDに出力(供給)する。DC/ACインバータ30は、直流の電圧を交流の電圧に変換する際に、例えば、PWM(Pulse Width Modulation)制御などを行うことで、出力のばらつきを抑制する。DC/ACインバータ30は、例えば、内部電源と、CPUと、ドライバと、トランジスタからなるHブリッジ回路(4つのスイッチ回路)と、フィルタ(LCフィルタ、ノイズフィルタなど)と、で構成される。
 切替部40は、電源部10において、第1バッテリ部110と第2バッテリ部120との間の接続を、直列接続、又は、並列接続に切り替えるための機能を有する。切替部40は、本実施形態では、第1リレー410と、第2リレー420と、を含む。第1リレー410は、第1バッテリ部110と第2バッテリ部120との間に設けられ、第1バッテリ部110の正極側の端子112の接続先を、第2バッテリ部120の正極側の端子122、又は、第2バッテリ部120の負極側の端子124に切り替えるための部品(スイッチ)である。第2リレー420は、第1バッテリ部110と第2バッテリ部120との間に設けられ、第1バッテリ部110の負極側の端子114と、第2バッテリ部120の負極側の端子124との間の状態を、接続状態又は非接続状態に切り替えるための部品(スイッチ)である。なお、切替部40の構成は、限定されるものではない。但し、図1に示すように、第1リレー410及び第2リレー420で切替部40を構成することによって、簡易な構成で、第1バッテリ部110と第2バッテリ部120との間の接続を、直列接続、又は、並列接続に切り替えるための機能を実現することができる。
 検出部50は、第1バッテリ部110から出力される電圧の値(以下、「第1電圧値」と称する)、及び、第2バッテリ部120から出力される電圧の値(以下、「第2電圧値」と称する)を検出する機能を有する。検出部50は、本実施形態では、第1バッテリ部110に対して設けられた第1電圧検出部510と、第2バッテリ部120に対して設けられた第2電圧検出部520と、を含む。第1電圧検出部510は、例えば、永久磁石及びコイルで構成された可動コイル型のDC電圧計を含み、第1バッテリ部110が含む各バッテリBTから出力される電圧の値を検出することで、第1電圧値を検出する。同様に、第2電圧検出部520は、例えば、永久磁石及びコイルで構成された可動コイル型のDC電圧計を含み、第2バッテリ部120が含む各バッテリBTから出力される電圧の値を検出することで、第2電圧値を検出する。
 制御部60は、CPUに代表されるプロセッサ、半導体メモリなどの記憶デバイス、インタフェースなどを含む制御装置である。制御部60は、例えば、記憶部に記憶されたプログラムに従って電源装置1の各部を統括的に制御して電源装置1を動作させる。制御部60は、本実施形態では、電源装置1の各部と別体で構成されているが、これに限定されるものではなく、例えば、DC/DCコンバータ20と一体で構成されていもてよい。
 制御部60は、電源装置1を動作させるにあたり、本実施形態では、検出部50で検出される第1電圧値及び第2電圧値に基づいて、切替部40を制御する。なお、第1電圧値及び第2電圧値が、例えば、外部装置などを用いて、予め検出されている場合には、かかる外部装置から取得される第1電圧値及び第2電圧値に基づいて、切替部40を制御してもよい。換言すれば、第1電圧値及び第2電圧値は、必ずしも検出部50で検出しなければならないものではない。この場合、電源装置1に検出部50を設ける必要がなくなるため、電源装置1の全体としてのサイズやコストの低減に寄与する。但し、本実施形態のように、検出部50を設けることで、電源装置1の動作中、第1バッテリ部110から出力される電圧の値(第1電圧値)及び第2バッテリ部120から出力される電圧の値(第2電圧値)を常に検出することができるため、後述する切替部40の制御を高精度に行うことが可能となる。
 例えば、第1バッテリ部110から出力される電圧の値である第1電圧値、及び、第2バッテリ部120から出力される電圧の値である第2電圧値が予め定められた切替電圧値以上である場合には、制御部60は、第1バッテリ部110と第2バッテリ部120との間の接続が並列接続となるように、切替部40を制御する。具体的には、第1バッテリ部110と第2バッテリ部120との間の接続を並列接続とするために、制御部60は、第1バッテリ部110の正極側の端子112と第2バッテリ部120の正極側の端子122とが接続されるように第1リレー410を制御し、且つ、第1バッテリ部110の負極側の端子114と第2バッテリ部120の負極側の端子124との間の状態が接続状態となるように第2リレー420を制御する。
 一方、第1バッテリ部110から出力される電圧の値である第1電圧値、及び、第2バッテリ部120から出力される電圧の値である第2電圧値が予め定められた切替電圧値以上でない場合には、制御部60は、第1バッテリ部110と第2バッテリ部120との間の接続が直列接続となるように、切替部40を制御する。具体的には、第1バッテリ部110と第2バッテリ部120との間の接続を直列接続とするために、制御部60は、第1バッテリ部110の正極側の端子112と第2バッテリ部120の負極側の端子124とが接続されるように第1リレー410を制御し、且つ、第1バッテリ部110の負極側の端子114と第2バッテリ部120の負極側の端子124との間の状態が非接続状態となるように第2リレー420を制御する。
 以下、第1バッテリ部と第2バッテリ部との間の接続を並列接続で固定している従来技術と比較しながら、第1バッテリ部110と第2バッテリ部120との間の接続を直列接続と並列接続とに切り替え可能とする本実施形態で得られる利点(効果)について説明する。
 図2は、従来技術における電源装置の構成を示す概略図であって、第1バッテリ部と、第2バッテリ部と、DC/DCコンバータと、DC/ACインバータとの接続状態を示している。図2に示すように、従来技術では、第1バッテリ部と第2バッテリ部との間の接続が並列接続に固定された状態で、後段のDC/DCコンバータ及びDC/ACインバータに接続されている。ここで、第1バッテリ部及び第2バッテリ部のそれぞれに含まれる各バッテリ(単一のバッテリ)の使用条件を、例えば、上限(電圧上限値):4.2V、下限(電圧下限値):3.0Vとする。第1バッテリ部及び第2バッテリ部のそれぞれは、20のバッテリが直列に配置された構成(所謂、20直)を有しているものとする。また、DC/DCコンバータは、第1バッテリ部及び第2バッテリ部を有する電源部から出力される電圧を、例えば、電圧設定値として予め設定された164Vに昇圧するものとする。従来技術では、第1バッテリ部と第2バッテリ部との間の接続が並列接続に固定されているため、電源部から出力される電圧(電圧値)は、上限:4.2×20=84V、下限:3.0×20=60Vとなる。従って、従来技術では、DC/DCコンバータにおいて、60V(電源部から出力される電圧下限値)を164V(電圧設定値)に昇圧する必要がある。換言すれば、従来技術では、DC/DCコンバータを、入力される電圧に対して、少なくとも、104V(=164V-60V)昇圧することができるように構成しなければならない。
 図3及び図4は、本実施形態における電源装置1の構成を示す概略図であって、図3は、第1バッテリ部110と第2バッテリ部120との間の接続が並列接続である状態を示し、図4は、第1バッテリ部110と第2バッテリ部120との間の接続が直列接続である状態を示している。図3及び図4を参照するに、本実施形態では、上述したように、第1バッテリ部110と第2バッテリ部120との間の接続が直列接続と並列接続とに切り替え可能に構成された状態で、後段のDC/DCコンバータ20及びDC/ACインバータ30に接続されている。ここで、従来技術と同様に、第1バッテリ部110及び第2バッテリ部120のそれぞれに含まれる各バッテリBTの使用条件を、上限:4.2V、下限:3.0Vとする。第1バッテリ部110及び第2バッテリ部120のそれぞれは、20のバッテリBTが直列に配置された構成(所謂、20直)を有しているものとする。また、DC/DCコンバータ20は、第1バッテリ部110及び第2バッテリ部120を有する電源部10から出力される電圧を、電圧設定値として予め設定された164Vに昇圧するものとする。なお、第1バッテリ部110と第2バッテリ部120との間の接続を、直列接続と並列接続との間で切り替える、詳細には、並列接続から直列接続に切り替えるための切替電圧値は、各バッテリBTの使用条件である電圧上限値と電圧下限値との間の電圧値である3.5Vに設定されているものとする。
 本実施形態では、第1バッテリ部110及び第2バッテリ部120のそれぞれに含まれる各バッテリBTから出力される電圧値に余裕がある、即ち、第1電圧値及び第2電圧値が切替電圧値以上である場合には、図3に示すように、第1バッテリ部110と第2バッテリ部120との間の接続が並列接続となるため、電源部10から出力される電圧(電圧値)は、上限:4.2×20=84V、下限(切替電圧値):3.5×20=70Vとなる。従って、本実施形態では、第1バッテリ部110と第2バッテリ部120との間の接続が並列接続である場合、DC/DCコンバータ20において、70V(電源部10から出力される電圧下限値)を164V(電圧設定値)に昇圧する必要がある。
 また、本実施形態では、第1バッテリ部110及び第2バッテリ部120のそれぞれに含まれる各バッテリBTから出力される電圧値に余裕がない、即ち、第1電圧値及び第2電圧値が切替電圧値以上でない場合には、図4に示すように、第1バッテリ部110と第2バッテリ部120との間の接続が直列接続となるため、電源部10から出力される電圧(電圧値)は、上限(切替電圧値):3.5×20×2=140V、下限:3.0×20×2=120Vとなる。従って、本実施形態では、第1バッテリ部110と第2バッテリ部120との間の接続が直列接続である場合、DC/DCコンバータ20において、120V(電源部10から出力される電圧下限値)を164V(電圧設定値)に昇圧する必要がある。
 このように、本実施形態では、電源部10から出力される電圧の下限値は、第1バッテリ部110と第2バッテリ部120との間の接続が並列接続である場合に電源部10から出力される電圧の下限値である70Vとなるため、DC/DCコンバータ20を、入力される電圧に対して、少なくとも、94V(=164V-70V)昇圧することができるように構成すればよい。従って、本実施形態では、DC/DCコンバータにおいて104Vの昇圧が必要となる従来技術と比較して、DC/DCコンバータ20に必要となる昇圧比を低減することができる。これにより、DC/DCコンバータ20の小型化及びコストの低減が可能となるとともに、電源装置1の全体としてのサイズやコストを低減することができる。また、本実施形態では、第1バッテリ部110と第2バッテリ部120との間の接続を直列接続に固定する場合と比較して、耐圧の設定を低くすることができる。
 なお、図1では、電源装置1は、構成要素として、DC/DCコンバータ20を有しているが、これに限定されるものではなく、DC/DCコンバータ20を有していなくてもよい。この場合、DC/ACインバータ30は、電源部10と負荷LDとの間に設けられ、電源部10から出力される直流の電圧を交流の電圧に変換する。
 以下、図5、図6及び図7を参照して、電源装置1がDC/DCコンバータ20を有していない場合において、第1バッテリ部と第2バッテリ部との間の接続を並列接続で固定している従来技術と比較しながら、第1バッテリ部110と第2バッテリ部120との間の接続を直列接続と並列接続とに切り替え可能とする本実施形態で得られる利点(効果)について説明する。
 図5は、従来技術における電源装置の構成を示す概略図であって、第1バッテリ部と、第2バッテリ部と、DC/ACインバータとの接続状態を示している。図5に示すように、従来技術では、第1バッテリ部と第2バッテリ部との間の接続が並列接続に固定された状態で、後段のDC/ACインバータに接続されている。ここで、第1バッテリ部及び第2バッテリ部のそれぞれに含まれる各バッテリ(単一のバッテリ)の使用条件を、例えば、上限(電圧上限値):4.2V、下限(電圧下限値):3.0Vとする。電源装置がDC/DCコンバータを有していない場合、第1バッテリ部及び第2バッテリ部を有する電源部から出力される電圧(電圧下限値)は、負荷LDで要求される規格値に応じて予め設定された電圧設定値である164V以上でなければならない。従って、第1バッテリ部と第2バッテリ部との間の接続が並列接続に固定されている従来技術では、第1バッテリ部及び第2バッテリ部のそれぞれは、55のバッテリが直列に配置された構成(所謂、55直)を有している必要がある。なお、電源部から出力される電圧(電圧値)は、上限:4.2×55=231V、下限:3.0×55=165Vとなる。
 本実施形態では、第1バッテリ部110及び第2バッテリ部120のそれぞれに含まれる各バッテリBTから出力される電圧値に余裕がある、即ち、第1電圧値及び第2電圧値が切替電圧値以上である場合には、図6に示すように、第1バッテリ部110と第2バッテリ部120との間の接続が並列接続となる。また、本実施形態では、第1バッテリ部110及び第2バッテリ部120のそれぞれに含まれる各バッテリBTから出力される電圧値に余裕がない、即ち、第1電圧値及び第2電圧値が切替電圧値以上でない場合には、図7に示すように、第1バッテリ部110と第2バッテリ部120との間の接続が直列接続となる。
 このように、第1バッテリ部110と第2バッテリ部120との間の接続を直列接続と並列接続とに切り替え可能とすることで、電源装置1がDC/DCコンバータ20を有していない場合においては、第1バッテリ部110及び第2バッテリ部120のそれぞれが含むべきバッテリBTの数を低減させることが可能となる。例えば、従来技術と同様に、第1バッテリ部110及び第2バッテリ部120のそれぞれに含まれる各バッテリBTの使用条件を、上限:4.2V、下限:3.0Vとする。また、第1バッテリ部110と第2バッテリ部120との間の接続を、直列接続と並列接続との間で切り替える、詳細には、並列接続から直列接続に切り替えるための切替電圧値は、各バッテリBTの使用条件である電圧上限値と電圧下限値との間の電圧値である3.7Vに設定されているものとする。この場合、第1バッテリ部110と第2バッテリ部120との間の接続が並列接続である場合に電源部10から出力される電圧の下限値を164V以上にするためには、第1バッテリ部110及び第2バッテリ部120のそれぞれは、少なくとも、45のバッテリが直列に配置された構成(所謂、45直)を有していればよい。これにより、第1バッテリ部110と第2バッテリ部120との間の接続が並列接続である場合に、電源部10から出力される電圧(電圧値)は、上限:4.2×45=189V、下限(切替電圧値):3.7×45=166.5Vとなる。また、第1バッテリ部110と第2バッテリ部120との間の接続が直列接続である場合に、電源部10から出力される電圧(電圧値)は、上限(切替電圧値):3.7×45×2=333V、下限:3.0×45×2=270Vとなる。従って、本実施形態では、第1バッテリ部及び第2バッテリ部のそれぞれに55直の構成が必要となる従来技術と比較して、第1バッテリ部110及び第2バッテリ部120のそれぞれが含むべきバッテリBTの数を低減することができる。これは、電源部10の小型化及びコストの低減につながり、電源装置1の全体としてのサイズやコストを低減することにも寄与する。
 以下、図8を参照して、電源装置1の動作の一例について説明する。電源装置1は、上述したように、制御部60が電源装置1の各部を統括的に制御することで動作する。ここでは、特に、第1バッテリ部110と第2バッテリ部120との間の接続を直列接続と並列接続とに切り替える制御(制御方法)に注目して説明する。
 S602において、制御部60は、第1バッテリ部110から出力される電圧の値である第1電圧値、及び、第2バッテリ部120から出力される電圧の値である第2電圧値を取得する。例えば、制御部60は、検出部50から、第1電圧検出部510で検出された第1電圧値、及び、第2電圧検出部520で検出された第2電圧値を取得する。
 S604において、制御部60は、S602で取得した第1電圧値と第2電圧値との差(電圧差)が許容範囲に収まっているかどうかを判定する。第1電圧値と第2電圧値との差が許容範囲に収まっていない場合には、S606に移行する。一方、第1電圧値と第2電圧値との差が許容範囲に収まっている場合には、S608に移行する。なお、第1電圧値と第2電圧値との差の許容範囲は、任意の電圧差、例えば、1Vなどに予め設定されている。
 S606において、制御部60は、第1電圧値と第2電圧値との差が許容範囲に収まるように、第1バッテリ部110と第2バッテリ部120との間の充放電を制御する。例えば、制御部60は、S602で取得した第1電圧値と第2電圧値とを比較して、第1バッテリ部110及び第2バッテリ部120のうち、電圧値が高い方のバッテリ部のみを放電させる。これにより、電圧値が高い方のバッテリ部に蓄電されている電力が、電圧値が低い方のバッテリ部に供給(充電)される。このように、第1電圧値と第2電圧値との差が許容範囲に収まるように、第1バッテリ部110と第2バッテリ部120との間の充放電を制御することで、第1バッテリ部110及び第2バッテリ部120における過放電及び過充電を抑制(防止)することができる。
 S608において、制御部60は、S602で取得した第1電圧値及び第2電圧値が、第1バッテリ部110と第2バッテリ部120との間の接続を並列接続から直列接続に切り替えるための切替電圧値以上であるかどうかを判定する。第1電圧値及び第2電圧値が切替電圧値以上である場合には、S610に移行する。一方、第1電圧値及び第2電圧値が切替電圧値以上である場合には、S612に移行する。
 S608からS610に移行する場合、第1バッテリ部110及び第2バッテリ部120のそれぞれに含まれる各バッテリBTから出力される電圧値に余裕があると考えられる。そこで、S610において、制御部60は、第1バッテリ部110と第2バッテリ部120との間の接続が並列接続となるように、切替部40を制御する。これにより、第1バッテリ部110と第2バッテリ部120とが並列接続された電源部10から、DC/DCコンバータ20及びDC/ACコンバータ30を介して、負荷LDに電力が供給される。なお、第1バッテリ部110と第2バッテリ部120との間の接続を並列接続するための具体的な制御は、上述した通りであるため、ここでの詳細な説明は省略する。また、第1バッテリ部110と第2バッテリ部120との間の接続が並列接続となるように切替部40を制御したら、第1バッテリ部110から出力され第1電圧値、及び、第2バッテリ部120から出力される第2電圧値を取得するために、S602に移行する。
 S608からS612に移行する場合、第1バッテリ部110及び第2バッテリ部120のそれぞれに含まれる各バッテリBTから出力される電圧値に余裕がないと考えられる。そこで、S612において、制御部60は、第1バッテリ部110と第2バッテリ部120との間の接続が直列接続となるように、切替部40を制御する。これにより、第1バッテリ部110と第2バッテリ部120とが直列接続された電源部10から、DC/DCコンバータ20及びDC/ACコンバータ30を介して、負荷LDに電力が供給される。なお、第1バッテリ部110と第2バッテリ部120との間の接続を直列接続するための具体的な制御は、上述した通りであるため、ここでの詳細な説明は省略する。また、第1バッテリ部110と第2バッテリ部120との間の接続が直列接続となるように切替部40を制御したら、負荷LDからの電力の要求の停止、或いは、電源部10からの電力の出力の不可(例えば、第1バッテリ部110及び第2バッテリ部120のそれぞれに含まれる各バッテリBTの使用条件における電圧下限値への到達)をもって、動作を終了する。
 以上、説明したように、本実施形態によれば、複数のバッテリBT(第1バッテリ部110及び第2バッテリ部120)を搭載する電源装置1において、第1バッテリ部110と第2バッテリ部120との間の接続を、直列接続、又は、並列接続に切り替え可能にすることで、電源装置1の全体としてのサイズやコストを低減する新たな技術を提供することができる。
 <実施形態のまとめ>
 1. 上述の実施形態の電源装置は、
 負荷(例えば、LD)に対して一定の電圧を出力する電源装置(例えば、1)であって、
 少なくとも1つのバッテリ(例えば、BT)を含む第1バッテリ部(例えば、110)と、少なくとも1つのバッテリを含む第2バッテリ部(例えば、120)と、を有する電源部(例えば、10)と、
 前記第1バッテリ部と前記第2バッテリ部との間の接続を、直列接続、又は、並列接続に切り替えるための切替部(例えば、40)と、
 制御部(例えば、60)と、を有し、
 前記制御部は、
  前記第1バッテリ部から出力される電圧の値である第1電圧値、及び、前記第2バッテリ部から出力される電圧の値である第2電圧値が予め定められた切替電圧値以上である場合には、前記第1バッテリ部と前記第2バッテリ部との間の接続が並列接続となるように、前記切替部を制御し、
  前記第1電圧値及び前記第2電圧値が前記切替電圧値以上でない場合には、前記第1バッテリ部と前記第2バッテリ部との間の接続が直列接続となるように、前記切替部を制御することを特徴とする。
 この実施形態によれば、電源装置の全体としてのサイズやコストを低減することが可能となる。
 2. 上述の電源装置(例えば、1)では、
 前記第1電圧値及び前記第2電圧値を検出する検出部(例えば、50)を更に有し、
 前記制御部(例えば、60)は、前記検出部で検出された前記第1電圧値及び前記第2電圧値が前記切替電圧値以上であるかどうかを判定することを特徴とする。
 この実施形態によれば、第1バッテリ部から出力される電圧の値(第1電圧値)及び第2バッテリ部から出力される電圧の値(第2電圧値)を常に検出することができるため、切替部の制御を高精度に行うことが可能となる。
 3. 上述の電源装置(例えば、1)では、
 前記電源部(例えば、10)と前記負荷(例えば、LD)との間に設けられ、前記電源部から出力された直流の電圧を昇圧するコンバータ(例えば、20)と、
 前記コンバータと前記負荷との間に設けられ、前記コンバータで昇圧された直流の電圧を交流の電圧に変換するインバータ(例えば、30)と、
 を更に有することを特徴とする。
 この実施形態によれば、コンバータの小型化及びコストの低減が可能となることで、電源装置の全体としてのサイズやコストを低減することができる。
 4. 上述の電源装置(例えば、1)では、
 前記電源部(例えば、10)と前記負荷(例えば、LD)との間に設けられ、前記電源部から出力される直流の電圧を交流の電圧に変換するインバータ(例えば、30)を更に有することを特徴とする。
 この実施形態によれば、第1バッテリ部及び第2バッテリ部のそれぞれが含むべきバッテリの数の低減が可能となることで、電源装置の全体としてのサイズやコストを低減することができる。
 5. 上述の電源装置(例えば、1)では、
 前記切替部(例えば、40)は、
  前記第1バッテリ部(例えば、110)の第1極側の端子(例えば、112)の接続先を、前記第2バッテリ部(例えば、120)の第1極側の端子(例えば、122)、又は、前記第2バッテリ部の第2極側の端子(例えば、124)に切り替えるための第1リレー(例えば、410)と、
  前記第1バッテリ部の第2極側の端子(例えば、114)と、前記第2バッテリ部の第2極側の端子との間の状態を、接続状態又は非接続状態に切り替えるための第2リレー部(例えば、420)と、
 を含むことを特徴とする。
 この実施形態によれば、第1バッテリ部と第2バッテリ部との間の接続を、直列接続、又は、並列接続に切り替えるための機能を簡易な構成で実現することができる。
 6. 上述の電源装置(例えば、1)では、
 前記制御部(例えば、60)は、
  前記第1電圧値及び前記第2電圧値が前記切替電圧値以上である場合には、前記第1バッテリ部(例えば、110)の第1極側の端子(例えば、112)と前記第2バッテリ部(例えば、120)の第1極側の端子(例えば、122)が接続されるように前記第1リレー(例えば、410)を制御し、且つ、前記第1バッテリ部の第2極側の端子(例えば、114)と前記第2バッテリ部の第2極側の端子(例えば、124)との間の状態が接続状態となるように前記第2リレー(例えば、420)を制御し、
  前記第1電圧値及び前記第2電圧値が前記切替電圧値以上でない場合には、前記第1バッテリ部の第1極側の端子と前記第2バッテリ部の第2極側の端子とが接続されるように前記第1リレーを制御し、且つ、前記第1バッテリ部の第2極側の端子と前記第2バッテリ部の第2極側の端子との間の状態が非接続状態となるように前記第2リレーを制御することを特徴とする。
 この実施形態によれば、簡易な構成でありながら、第1バッテリ部と第2バッテリ部との間の接続を、直列接続、又は、並列接続に切り替えることができる。
 7. 上述の電源装置(例えば、1)では、
 前記制御部(例えば、60)は、前記第1電圧値と前記第2電圧値との差が許容範囲に収まるように、前記第1バッテリ部(例えば、110)と前記第2バッテリ部(例えば、120)との間の充放電を制御することを特徴とする。
 この実施形態によれば、第1バッテリ部及び第2バッテリ部における過放電及び過充電を抑制(防止)することができる。
 8. 上述の実施形態の制御装置は、
 少なくとも1つのバッテリ(例えば、BT)を含む第1バッテリ部(例えば、110)と、少なくとも1つのバッテリを含む第2バッテリ部(例えば、120)と、を有する電源部(例えば、10)を備え、負荷(例えば、LD)に対して一定の電圧を出力する電源装置(例えば、1)を制御する制御装置(例えば、60)であって、
 前記第1バッテリ部と前記第2バッテリ部との間の接続を、直列接続、又は、並列接続に切り替えるための切替部(例えば、40)と、
 制御部(例えば、60)と、を有し、
 前記制御部は、
  前記第1バッテリ部から出力される電圧の値である第1電圧値、及び、前記第2バッテリ部から出力される電圧の値である第2電圧値が予め定められた切替電圧値以上である場合には、前記第1バッテリ部と前記第2バッテリ部との間の接続が並列接続となるように、前記切替部を制御し、
  前記第1電圧値及び前記第2電圧値が前記切替電圧値以上でない場合には、前記第1バッテリ部と前記第2バッテリ部との間の接続が直列接続となるように、前記切替部を制御することを特徴とする。
 この実施形態によれば、電源装置の全体としてのサイズやコストを低減することが可能となる。
 9. 上述の実施形態の制御方法は、
 少なくとも1つのバッテリ(例えば、BT)を含む第1バッテリ部(例えば、110)と、少なくとも1つのバッテリを含む第2バッテリ部(例えば、120)と、を有する電源部(例えば、10)を備え、負荷(例えば、LD)に対して一定の電圧を出力する電源装置(例えば、1)を制御する制御方法であって、
 前記第1バッテリ部と前記第2バッテリ部との間の接続を、直列接続、又は、並列接続に切り替える工程を有し、
 前記工程では、
  前記第1バッテリ部から出力される電圧の値である第1電圧値、及び、前記第2バッテリ部から出力される電圧の値である第2電圧値が予め定められた切替電圧値以上である場合には、前記第1バッテリ部と前記第2バッテリ部との間の接続を並列接続に切り替え、
  前記第1電圧値及び前記第2電圧値が前記切替電圧値以上でない場合には、前記第1バッテリ部と前記第2バッテリ部との間の接続を直列接続に切り替えることを特徴とする。
 この実施形態によれば、電源装置の全体としてのサイズやコストを低減することが可能となる。
 本発明は上記実施の形態に制限されるものではなく、本発明の精神及び範囲から離脱することなく、様々な変更及び変形が可能である。従って、本発明の範囲を公にするために、以下の請求項を添付する。
1:電源装置  10:電源部  20:DC/DCコンバータ  30:DC/ACインバータ  40:切替部  50:検出部  60:制御部  110:第1バッテリ部  120:第2バッテリ部  410:第1リレー  420:第2リレー  BT:バッテリ  LD:負荷

Claims (9)

  1.  負荷に対して一定の電圧を出力する電源装置であって、
     少なくとも1つのバッテリを含む第1バッテリ部と、少なくとも1つのバッテリを含む第2バッテリ部と、を有する電源部と、
     前記第1バッテリ部と前記第2バッテリ部との間の接続を、直列接続、又は、並列接続に切り替えるための切替部と、
     制御部と、を有し、
     前記制御部は、
      前記第1バッテリ部から出力される電圧の値である第1電圧値、及び、前記第2バッテリ部から出力される電圧の値である第2電圧値が予め定められた切替電圧値以上である場合には、前記第1バッテリ部と前記第2バッテリ部との間の接続が並列接続となるように、前記切替部を制御し、
      前記第1電圧値及び前記第2電圧値が前記切替電圧値以上でない場合には、前記第1バッテリ部と前記第2バッテリ部との間の接続が直列接続となるように、前記切替部を制御することを特徴とする電源装置。
  2.  前記第1電圧値及び前記第2電圧値を検出する検出部を更に有し、
     前記制御部は、前記検出部で検出された前記第1電圧値及び前記第2電圧値が前記切替電圧値以上であるかどうかを判定することを特徴とする請求項1に記載の電源装置。
  3.  前記電源部と前記負荷との間に設けられ、前記電源部から出力された直流の電圧を昇圧するコンバータと、
     前記コンバータと前記負荷との間に設けられ、前記コンバータで昇圧された直流の電圧を交流の電圧に変換するインバータと、
     を更に有することを特徴とする請求項1又は2に記載の電源装置。
  4.  前記電源部と前記負荷との間に設けられ、前記電源部から出力される直流の電圧を交流の電圧に変換するインバータを更に有することを特徴とする請求項1又は2に記載の電源装置。
  5.  前記切替部は、
      前記第1バッテリ部の第1極側の端子の接続先を、前記第2バッテリ部の第1極側の端子、又は、前記第2バッテリ部の第2極側の端子に切り替えるための第1リレーと、
      前記第1バッテリ部の第2極側の端子と、前記第2バッテリ部の第2極側の端子との間の状態を、接続状態又は非接続状態に切り替えるための第2リレー部と、
     を含むことを特徴とする請求項1乃至4のうちいずれか1項に記載の電源装置。
  6.  前記制御部は、
      前記第1電圧値及び前記第2電圧値が前記切替電圧値以上である場合には、前記第1バッテリ部の第1極側の端子と前記第2バッテリ部の第1極側の端子が接続されるように前記第1リレーを制御し、且つ、前記第1バッテリ部の第2極側の端子と前記第2バッテリ部の第2極側の端子との間の状態が接続状態となるように前記第2リレーを制御し、
      前記第1電圧値及び前記第2電圧値が前記切替電圧値以上でない場合には、前記第1バッテリ部の第1極側の端子と前記第2バッテリ部の第2極側の端子とが接続されるように前記第1リレーを制御し、且つ、前記第1バッテリ部の第2極側の端子と前記第2バッテリ部の第2極側の端子との間の状態が非接続状態となるように前記第2リレーを制御することを特徴とする請求項5に記載の電源装置。
  7.  前記制御部は、前記第1電圧値と前記第2電圧値との差が許容範囲に収まるように、前記第1バッテリ部と前記第2バッテリ部との間の充放電を制御することを特徴とする請求項1乃至6のうちいずれか1項に記載の電源装置。
  8.  少なくとも1つのバッテリを含む第1バッテリ部と、少なくとも1つのバッテリを含む第2バッテリ部と、を有する電源部を備え、負荷に対して一定の電圧を出力する電源装置を制御する制御装置であって、
     前記第1バッテリ部と前記第2バッテリ部との間の接続を、直列接続、又は、並列接続に切り替えるための切替部と、
     制御部と、を有し、
     前記制御部は、
      前記第1バッテリ部から出力される電圧の値である第1電圧値、及び、前記第2バッテリ部から出力される電圧の値である第2電圧値が予め定められた切替電圧値以上である場合には、前記第1バッテリ部と前記第2バッテリ部との間の接続が並列接続となるように、前記切替部を制御し、
      前記第1電圧値及び前記第2電圧値が前記切替電圧値以上でない場合には、前記第1バッテリ部と前記第2バッテリ部との間の接続が直列接続となるように、前記切替部を制御することを特徴とする制御装置。
  9.  少なくとも1つのバッテリを含む第1バッテリ部と、少なくとも1つのバッテリを含む第2バッテリ部と、を有する電源部を備え、負荷に対して一定の電圧を出力する電源装置を制御する制御方法であって、
     前記第1バッテリ部と前記第2バッテリ部との間の接続を、直列接続、又は、並列接続に切り替える工程を有し、
     前記工程では、
      前記第1バッテリ部から出力される電圧の値である第1電圧値、及び、前記第2バッテリ部から出力される電圧の値である第2電圧値が予め定められた切替電圧値以上である場合には、前記第1バッテリ部と前記第2バッテリ部との間の接続を並列接続に切り替え、
      前記第1電圧値及び前記第2電圧値が前記切替電圧値以上でない場合には、前記第1バッテリ部と前記第2バッテリ部との間の接続を直列接続に切り替えることを特徴とする制御方法。
PCT/JP2021/035989 2021-09-29 2021-09-29 電源装置、制御装置及び制御方法 WO2023053300A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2021/035989 WO2023053300A1 (ja) 2021-09-29 2021-09-29 電源装置、制御装置及び制御方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2021/035989 WO2023053300A1 (ja) 2021-09-29 2021-09-29 電源装置、制御装置及び制御方法

Publications (1)

Publication Number Publication Date
WO2023053300A1 true WO2023053300A1 (ja) 2023-04-06

Family

ID=85780498

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/035989 WO2023053300A1 (ja) 2021-09-29 2021-09-29 電源装置、制御装置及び制御方法

Country Status (1)

Country Link
WO (1) WO2023053300A1 (ja)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007236064A (ja) * 2006-02-28 2007-09-13 Daikin Ind Ltd 蓄電装置
JP2011045183A (ja) * 2009-08-20 2011-03-03 Ricoh Elemex Corp 充放電装置
JP2021132517A (ja) * 2020-02-21 2021-09-09 住友電気工業株式会社 切替装置、その装置を含む蓄電システム、そのシステムを含む車両、及び、切替方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007236064A (ja) * 2006-02-28 2007-09-13 Daikin Ind Ltd 蓄電装置
JP2011045183A (ja) * 2009-08-20 2011-03-03 Ricoh Elemex Corp 充放電装置
JP2021132517A (ja) * 2020-02-21 2021-09-09 住友電気工業株式会社 切替装置、その装置を含む蓄電システム、そのシステムを含む車両、及び、切替方法

Similar Documents

Publication Publication Date Title
US7800346B2 (en) Device and method for equalizing charges of series-connected energy stores
KR100969615B1 (ko) 2차 전지용 충전 회로, 2차 전지용 충전 회로에서의 전원전환 방법, 및 전원 유닛
US6657876B2 (en) Switched-capacitor-type stabilized power supply device
KR101865442B1 (ko) 배터리 시스템
US20090273321A1 (en) Device and method for charging an energy store
JP2008035588A (ja) モータ駆動装置
KR101734210B1 (ko) 양방향 직류-직류 컨버터
JP7459286B2 (ja) 双方向dc-dcコンバータ
KR101319284B1 (ko) Dc-dc 컨버터 및 전원 장치
TWI661642B (zh) 不斷電運行裝置
JP4001060B2 (ja) 電力変換装置
JP2009207328A (ja) 電源装置
JP2014171313A (ja) Dc/dcコンバータ
KR20050005108A (ko) 교류 전원 보상 방식의 무정전 전원 공급 장치
WO2023053300A1 (ja) 電源装置、制御装置及び制御方法
US20030227364A1 (en) Power transforming apparatus with multiple parallel-connected transformers
JP2015149801A (ja) バッテリ制御装置及び制御方法
US10305128B2 (en) Cell system and control method for cell system
US20190044327A1 (en) Multiple output battery system with alternator architectures
US20230025867A1 (en) Charger capable of bidirectional power transfer
JP2016220433A (ja) 電力変換装置及びこれを用いた電源システム
JP5604947B2 (ja) 電源装置及び電圧調整方法
US20190044347A1 (en) Multiple output battery system
WO2013005804A1 (ja) スイッチング装置
JP4329259B2 (ja) 直流昇降圧回路

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21958607

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 18696118

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21958607

Country of ref document: EP

Kind code of ref document: A1