WO2023051825A1 - 电子膨胀阀 - Google Patents

电子膨胀阀 Download PDF

Info

Publication number
WO2023051825A1
WO2023051825A1 PCT/CN2022/123584 CN2022123584W WO2023051825A1 WO 2023051825 A1 WO2023051825 A1 WO 2023051825A1 CN 2022123584 W CN2022123584 W CN 2022123584W WO 2023051825 A1 WO2023051825 A1 WO 2023051825A1
Authority
WO
WIPO (PCT)
Prior art keywords
rotor
section
electronic expansion
valve
expansion valve
Prior art date
Application number
PCT/CN2022/123584
Other languages
English (en)
French (fr)
Inventor
贺宇辰
徐冠军
陈勇好
黄鸿峰
Original Assignee
浙江盾安人工环境股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN202122411352.4U external-priority patent/CN216200581U/zh
Priority claimed from CN202122404589.XU external-priority patent/CN216200564U/zh
Priority claimed from CN202111166805.XA external-priority patent/CN115899278A/zh
Priority claimed from CN202122405095.3U external-priority patent/CN216200567U/zh
Application filed by 浙江盾安人工环境股份有限公司 filed Critical 浙江盾安人工环境股份有限公司
Publication of WO2023051825A1 publication Critical patent/WO2023051825A1/zh

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16KVALVES; TAPS; COCKS; ACTUATING-FLOATS; DEVICES FOR VENTING OR AERATING
    • F16K1/00Lift valves or globe valves, i.e. cut-off apparatus with closure members having at least a component of their opening and closing motion perpendicular to the closing faces
    • F16K1/32Details
    • F16K1/34Cutting-off parts, e.g. valve members, seats
    • F16K1/36Valve members
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16KVALVES; TAPS; COCKS; ACTUATING-FLOATS; DEVICES FOR VENTING OR AERATING
    • F16K31/00Actuating devices; Operating means; Releasing devices
    • F16K31/02Actuating devices; Operating means; Releasing devices electric; magnetic
    • F16K31/04Actuating devices; Operating means; Releasing devices electric; magnetic using a motor

Definitions

  • the application number is 202122405095.3, and the name of the invention is “electronic expansion valve”; the application number is 202122404589X, and the name of the invention is “electronic expansion valve”; the application number is 202111166805X , the name of the invention is “electronic expansion valve”; the priority of the patent application with the application number 2021224113524 and the name of the invention is “electronic expansion valve”.
  • the invention relates to the technical field of control valves, in particular to an electronic expansion valve.
  • the electronic expansion valve includes a valve body, a rotor, a stator assembly, a screw assembly, and a valve sleeve.
  • the valve body has a cavity and a valve port.
  • the rotor is arranged in the cavity. It is arranged outside the valve body, and the stator assembly and the rotor are arranged correspondingly.
  • the stator assembly and the rotor interact to make the rotor drive the screw assembly.
  • the rotor and the screw assembly move linearly along the axis of the valve body to drive the valve sleeve to block or open the valve port. The larger the facing area between the winding of the stator assembly and the rotor, the greater the driving force of the stator assembly and the rotor.
  • the position of the stator assembly and the rotor is generally designed so that when the valve port is in a fully closed state, the rotor and the rotor
  • the facing area of the stator assembly is the largest, and the driving force of the rotor to drive the movement of the screw assembly is the largest.
  • the above scheme will make the facing area of the rotor and the stator assembly too small when the valve body is fully open, resulting in out-of-step of the valve sleeve or failure to close the valve. mouth.
  • the present application provides an electronic expansion valve to solve the problem in the prior art that the driving force of the electronic expansion valve is weak when it is fully open.
  • the application provides an electronic expansion valve, comprising: a valve body, the valve body has a housing chamber and a valve port, the housing chamber communicates with the valve port; a rotor, the rotor is arranged in the housing chamber; a stator assembly, the stator assembly is sleeved on the valve body Externally, the stator assembly and the rotor are arranged correspondingly; the screw assembly, the screw assembly is arranged in the accommodation chamber, the screw assembly includes a screw and a nut sleeve, the nut sleeve is fixed on the valve body, the screw rod is passed through the nut sleeve and is threadedly connected with the nut sleeve, The rotor is fixedly connected with the end of the screw rod away from the valve port, and the rotor drives the screw rod to rotate along the nut sleeve, so that the screw rod and the rotor move toward or away from the valve port; the valve sleeve, the screw rod is connected with the valve
  • the driving force of the rotor is the largest when the valve port is close to the fully open state, that is, the driving force becomes weaker and weaker during the process of closing the valve port, resulting in slow or incomplete opening of the valve port. Therefore, if the relationship between A and B is set to 0.3*A ⁇ B ⁇ 0.7*A, the driving force of the rotor is the largest when the valve port is in a half-open state, so that the driving force is more balanced in the process of opening or closing the valve port, and then the It is more reliable to open or close the valve port, so that it can also open or close the valve port completely.
  • B 0.5*A.
  • the axial length of the rotor is L1
  • the stator assembly has an upper pole plate and a lower pole plate arranged at intervals in the axial direction, the distance between the upper pole plate and the lower pole plate is L2, and L2 is greater than L1. This enables the maximum driving force to continuously cover the stroke.
  • the outer diameter of the rotor is D1
  • the inner diameter of the accommodation cavity is D2, 0.3mm ⁇ D2-D1 ⁇ 1mm.
  • the outer diameter of the valve body is D3
  • the inner diameter of the stator assembly is D4, and 0.05mm ⁇ D4-D3 ⁇ 0.5mm.
  • a balance channel is provided in the valve sleeve, and the balance channel can connect the two ends of the valve sleeve.
  • the through hole includes a first hole segment, a second hole segment and a third hole segment arranged in sequence, the diameter of the first hole segment and the third hole segment is larger than that of the second hole segment, and the diameter of the screw rod
  • the end close to the valve port is installed in the third hole segment, and the end of the screw rod close to the valve port is fixedly connected with a fixing piece.
  • a connection hole is provided on the fixing piece, the end of the screw rod is pierced in the connection hole, and the side wall of the end of the screw rod close to the valve port is provided with a first sectional structure, and the first sectional structure extends to the second
  • a first gap between the first sectional structure and the inner wall of the through hole
  • a second gap is formed between the connecting hole and the first sectional structure, the first gap communicates with the second gap, and the first gap and the second gap are connected.
  • the second gap forms a balance channel to balance the air pressure at both ends of the valve sleeve.
  • Figure 1 shows a schematic structural view of the electronic expansion valve provided by the present application
  • FIG. 2 shows a schematic structural view of the stator assembly provided by the present application
  • Figure 3 shows a schematic structural view of the valve sleeve provided by the present application
  • Figure 4 shows a schematic structural view of the electronic expansion valve provided by the present application when it is at the maximum opening position
  • Fig. 5 shows a schematic structural view of the electronic expansion valve provided by the present application when it is in a blocked position
  • Fig. 6 shows another cross-sectional view of the electronic expansion valve provided by the present application.
  • Figure 7 shows a cross-sectional view of the assembled screw rod, fixing piece and valve sleeve provided by the present application
  • Fig. 8 shows a cross-sectional view of the assembled rotor connecting plate and rotor provided by the present application
  • Figure 9 shows a schematic structural view of the screw provided by the present application.
  • Figure 10 shows a schematic diagram of the dimensions at E in Figure 6;
  • Fig. 11 shows a schematic diagram of the dimensions of the screw provided in the present application.
  • Valve body 11. Accommodating cavity; 12. Valve port; 20. Rotor; 211. Rotor body; 221. Connecting end; 222. Driving end; 30. Stator assembly; 31. Upper plate; 32. Lower plate ;40, screw assembly; 41, screw; 411, first section structure; 42, nut cover; 43, first section; 44, second section; 45, third section; 46, second section structure; 50, Valve sleeve; 51, through hole; 511, first hole section; 512, second hole section; 513, third hole section; 60, fixing piece; 61, connecting hole; 80, rotor connecting plate; 81, mounting hole.
  • the embodiment of the present application provides an electronic expansion valve, including a valve body 10 , a rotor 20 , a stator assembly 30 , a screw assembly 40 and a valve sleeve 50 .
  • the valve body 10 has an accommodating chamber 11 and a valve port 12, the accommodating chamber 11 communicates with the valve port 12; the rotor 20 is disposed in the accommodating chamber 11; the stator assembly 30 is sleeved outside the valve body 10, and the stator assembly 30 is arranged correspondingly to the rotor 20;
  • the screw assembly 40 is arranged in the housing cavity 11, the screw assembly 40 includes a screw 41 and a nut sleeve 42, the nut sleeve 42 is fixed on the valve body 10, the screw rod 41 is passed through the nut sleeve 42 and is threadedly connected with the nut sleeve 42, the rotor 20 It is fixedly connected with the end of the screw 41 away from the valve port 12, and the rotor 20 drives the screw 41 to
  • the pulse number is 0, when the valve port 12 is in the fully open state, the pulse number is A, and when the center line perpendicular to the axis of the stator assembly 30 coincides with the center line perpendicular to the axis of the rotor 20
  • the corresponding pulse number is B, and 0.3*A ⁇ B ⁇ 0.7*A.
  • B may be 0.3*A, 0.4*A, 0.5*A or 0.7*A.
  • B 0.5*A.
  • the axial length of the rotor 20 is L1
  • the stator assembly 30 has an upper pole plate 31 and a lower pole plate 32 arranged at intervals in the axial direction, and the distance between the upper pole plate 31 and the lower pole plate 32 is It is L2, and L2 is greater than L1.
  • a winding is arranged between the upper pole plate 31 and the lower pole plate 32 , the centerline perpendicular to the axis of the winding coincides with the centerline perpendicular to the axis of the stator assembly 30 , and the interaction between the winding and the rotor 20 generates a driving force.
  • L2 is smaller than L1, the facing area of the winding and the rotor 20 is smaller, resulting in a smaller maximum driving force. Therefore, L2 is greater than L1, which can ensure a larger maximum driving force.
  • L2-L1 can be 0.2mm, 0.4mm, 0.6mm or 1mm.
  • the outer diameter of the rotor 20 is D1
  • the inner diameter of the accommodating chamber 11 is D2, 0.3mm ⁇ D2-D1 ⁇ 1mm. If D2-D1 ⁇ 0.3mm, the gap between the rotor 20 and the inner wall of the housing chamber 11 is too small, resulting in excessive friction between the rotor 20 and the inner wall of the housing chamber 11 when rotating, affecting the rotation of the rotor 20, and Wear of the rotor 20 occurs. If D2-D1>1 mm, then the distance between the rotor 20 and the stator assembly 30 is too large, which further reduces the driving force.
  • D2-D1 may be 0.3 mm, 0.6 mm or 1 mm.
  • the outer diameter of the valve body 10 is D3
  • the inner diameter of the stator assembly 30 is D4, and 0.05mm ⁇ D4-D3 ⁇ 0.5mm.
  • D4-D3 ⁇ 0.05mm the gap between the stator assembly 30 and the valve body 10 is too small, which makes it difficult to install the stator assembly 30 on the valve body 10 .
  • D4-D3>0.5mm the gap between the stator assembly 30 and the valve body 10 is too large, resulting in an excessive gap between the stator assembly 30 and the rotor 20, which in turn leads to a decrease in driving force. Therefore, making 0.05mm ⁇ D4-D3 ⁇ 0.5mm can not only ensure that the stator assembly 30 can be installed on the valve body 10 more conveniently, but also can increase the driving force.
  • 13mm ⁇ D1 ⁇ 18mm 13mm ⁇ D1 ⁇ 18mm. If D1 ⁇ 13 mm, the structural size of the rotor 20 is small, and the force between the rotor 20 and the stator assembly 30 is weak, resulting in a small driving force. If D1>18mm, the structural size of the rotor 20 is relatively large, which is not conducive to the miniaturization design of the electronic expansion valve. Therefore, setting 13mm ⁇ D1 ⁇ 18mm can not only ensure a large driving force, but also make the structure of the electronic expansion valve compact.
  • the outer diameter of the rotor 20 used is between 25mm and 35mm.
  • 18mm ⁇ L1 ⁇ 23mm If L1 ⁇ 18 mm, the length of the rotor 20 is small, and the force between the rotor 20 and the stator assembly 30 is weak, so that the driving force is small. If L1 > 23 mm, the length of the rotor 20 is relatively large, and thus the length of the electronic expansion valve is relatively long. Therefore, setting 18mm ⁇ L1 ⁇ 23mm can not only ensure a larger driving force, but also make the length of the electronic expansion valve smaller.
  • a balance passage is provided in the valve sleeve 50 , and the balance passage can connect the two ends of the valve sleeve 50 .
  • Setting the balance channel can balance the air pressure at both ends of the valve sleeve, so that the valve sleeve 50 can be driven to open or close the valve port 12 with a relatively small driving force.
  • the valve sleeve 50 has a through hole 51 inside, and the through hole 51 includes a first hole segment 511, a second hole segment 512 and a third hole segment 513 arranged in sequence, and the first hole segment 511 and the third hole segment
  • the diameter of 513 is larger than that of the second hole section 512, and the end of the screw rod 41 close to the valve port 12 is penetrated in the third hole section 513, and the end of the screw rod 41 close to the valve port 12 is fixedly connected with a fixing piece 60, and the diameter of the fixing piece 60 is The diameter of the second hole section 512 is larger than that of the second hole section 512.
  • the fixing piece 60 is arranged at the end of the third hole section 513 away from the valve port 12.
  • the fixing piece 60 is provided with a connection hole 61, and the end of the screw rod 41 is passed through the connection hole 61.
  • a first sectional structure 411 is provided on the side wall of the end of the screw 41 close to the valve port 12, and the first sectional structure 411 extends to the first hole segment 511, and between the first sectional structure 411 and the inner wall of the through hole 51 There is a first gap, and a second gap is formed between the connecting hole 61 and the first section structure 411, the first gap communicates with the second gap, and the first gap and the second gap form a balance channel to balance the valve sleeve 50 at both ends. air pressure.
  • the diameter of the second hole segment 512 is close to or equal to the diameter of the screw rod 41 to prevent the valve sleeve 50 from shaking relative to the screw rod 41 .
  • One end of the screw 41 close to the valve port 12 is provided with a first section structure 411, the first section structure 411 extends to the first hole segment 511, and the fixing member 60 is provided with a connecting hole 61, the connecting hole 61 and the first section
  • the structure 411 is provided correspondingly to balance the air pressure at both ends of the valve sleeve 50 .
  • the connecting hole 61 and the first section structure 411 can balance the air pressure at both ends of the valve sleeve, so that the valve sleeve 50 can be driven to open or close the valve port 12 with a relatively small driving force. Therefore, the relationship between A and B is set as 0.3*A ⁇ B ⁇ 0.7*A, which can meet the driving effect and take into account the driving force of the valve sleeve 50 at the fully open position and the closed position.
  • the axial length of the rotor 20 is L1
  • the stator assembly 30 has an upper pole plate 31 and a lower pole plate 32 arranged at intervals in the axial direction, and the distance between the upper pole plate 31 and the lower pole plate 32 is It is L2, and L2 is greater than L1.
  • a winding is arranged between the upper pole plate 31 and the lower pole plate 32 , the centerline perpendicular to the axis of the winding coincides with the centerline perpendicular to the axis of the stator assembly 30 , and the interaction between the winding and the rotor 20 generates a driving force.
  • L2 is smaller than L1, the facing area of the winding and the rotor 20 is smaller, resulting in a smaller maximum driving force. Therefore, L2 is greater than L1, which can ensure a larger maximum driving force.
  • Embodiment 2 of the present invention provides an electronic expansion valve, which includes a valve body 10 , a screw 41 , a rotor 20 and a valve sleeve 50 .
  • the valve body 10 has an accommodating chamber 11 and a valve port 12 , and the valve port 12 is communicated with the accommodating chamber 11 .
  • the valve sleeve 50 is movably arranged in the housing cavity 11, the valve sleeve 50 is located between the valve port 12 and the screw rod 41, and the screw rod 41 is drivingly connected to the valve sleeve 50, so that the valve sleeve 50 closes or opens the valve port 12; wherein,
  • the valve sleeve 50 has a blocking position and a maximum opening position set oppositely. When the valve sleeve 50 is at the maximum opening position, the end of the screw 41 away from the valve sleeve 50 and the inner wall of the end of the valve body 10 away from the valve port 12 There is an interval L3 between them, and L3 is between 0.8mm and 2.1mm.
  • the screw rod 41 may have a certain size error during its movement.
  • a certain displacement deviation, the above-mentioned dimensional error and displacement deviation may cause the end of the screw rod 41 away from the valve sleeve 50 to contact the inner wall of the end of the valve body 10 away from the valve port 12 before the valve sleeve 50 reaches the maximum opening position. catch.
  • the setting of the interval L3 in this solution can provide an avoidance space for the movement of the screw rod 41, and avoid interference between the screw rod 41 and the inner wall of the valve body 10 at the end far away from the valve port 12, thereby effectively ensuring the smoothness of valve opening.
  • L3 is less than 0.8mm, there may be insufficient avoidance space. At this time, the contact between the screw rod 41 and the inner wall of the valve body 10 cannot be effectively avoided, and the smoothness of valve opening cannot be guaranteed; when L3 is greater than 2.1mm, it may cause The raw material of the valve body 10 is wasted, and the miniaturization of the product cannot be realized.
  • L3 is set between 0.8mm and 2.1mm, which can not only ensure the smoothness of valve opening, but also realize the miniaturization of the product. Specifically, L3 can be set to 0.8mm, 1.2mm, 1.5mm, 1.8mm and 2.1mm, and in this embodiment, L3 is set to 1.2mm.
  • the screw 41 has a connecting end 221 and a driving end 222 oppositely disposed, the driving end 222 is disposed close to the valve port 12 , the rotor 20 is connected to the connecting end 221 , and the driving end 222 is drivingly connected to the valve sleeve 50 .
  • the rotor 20 moves away from the valve port 12 while rotating along its own axis, the screw 41 moves with the rotor 20 while rotating, and the nut sleeve 42 is the movement of the screw 41 and
  • the rotation acts as a guide to ensure smooth movement of the screw 41 and reduce the displacement deviation generated during the movement of the rotor 20, thereby reducing the interference between the screw 41 and the inner wall of the valve body 10 and ensuring smooth opening of the valve.
  • the rotor 20 includes a rotor body 211 and a rotor connecting plate 80, the rotor body 211 is arranged on the outer periphery of the screw 41, the rotor connecting plate 80 is located between the rotor body 211 and the screw 41, the rotor body 211 is connected to the rotor connecting plate 80, and the rotor
  • the connecting plate 80 has a mounting hole 81 , and the connecting end 221 passes through the mounting hole 81 and is connected with the rotor connecting plate 80 .
  • the connection end 221 can also be located in the installation hole 81.
  • connection end 221 is passed through the installation hole 81 to ensure the stability of the connection between the rotor connection plate 80 and the screw rod 41, and to ensure the stability of the screw rod 41 and the valve sleeve.
  • the accuracy of the displacement during the movement of 50 reduces the interference between the screw rod 41 and the inner wall of the valve body 10 during the opening process of the electronic expansion valve, and ensures the smoothness of the valve opening process.
  • the rotor connecting plate 80 has a first end surface and a second end surface oppositely disposed, the first end surface is disposed toward the valve port 12, and the distance between the first end surface and the end surface of the connecting end 221 is L4 , L4 is between 4.9mm and 5.5mm.
  • the inner peripheral surface of the rotor body 211 is provided with an annular engagement groove
  • the rotor connecting plate 80 includes a first section body and a second section body connected to each other, the first section body is arranged close to the nut sleeve 42, and the first section body
  • the diameter of the body is larger than the diameter of the second segment body
  • the periphery of the first segment body is embedded in the clamping groove
  • the end surface of the second segment body away from the first segment body protrudes from the rotor body 211
  • the mounting hole 81 is connected to the rotor Plate 80 is coaxial and disposed through the first and second segments.
  • L4 is set within the above range, which can not only ensure the stability when the electronic expansion valve is opened and closed, but also avoid wasting raw materials of the rotor connecting plate 80 .
  • L4 can be set to 4.9mm, 5.1mm, 5.3mm and 5.5mm, and the length of the protruding rotor connecting plate 80 of the screw 41 can be set to 1.2mm, 1.5mm and 1.8mm.
  • L4 is set to 5.3 mm, and the length of the screw 41 protruding from the rotor connecting plate 80 is set to 1.5 mm.
  • the distance between the end surface of the rotor connecting plate 80 close to the valve port 12 and the end surface of the nut sleeve 42 away from the valve port 12 is L5, L5 is between 0.7mm and 2mm.
  • the valve body 10, the screw 41, the screw 41, and the rotor body 211 may have certain dimensional errors during processing, or after a long period of use, the rotor body 211 may have a certain displacement deviation during its movement.
  • the dimensional error and displacement deviation may cause the rotor connecting plate 80 to be in contact with the nut sleeve 42 before the valve sleeve 50 reaches the blocking position.
  • the setting of L5 in this solution can provide avoidance space for the movement of the rotor connecting plate 80, and avoid interference between the rotor connecting plate 80 and the end of the nut sleeve 42 away from the valve port 12, thereby ensuring the smoothness of the valve closing process.
  • L5 is less than 0.7mm, there may be insufficient avoidance space.
  • L5 can be set to 0.7 mm, 1.3 mm, 1.7 mm, or 2 mm. In this embodiment, L5 is set to 1.5 mm.
  • the displacement of the valve sleeve 50 from the closed position to the maximum opening position is S
  • the nut sleeve 42 has a first thread segment, the length of the first thread segment is L6, and 1.5S ⁇ L6 ⁇ 2.5S.
  • the nut sleeve 42 has a first guide section, a first thread section, and a mounting section which are connected in sequence along the axial direction.
  • the installation section is arranged close to the valve port 12.
  • the first guide section is in clearance fit with the screw rod 41.
  • the inner diameter of the installation section is larger than The inner diameter of the first threaded section, the installation section is used for fixed cooperation with the valve body 10 .
  • the first guide section guides and cooperates with the screw rod 41 , and the first threaded section is threadedly connected with the screw rod 41 to ensure the stability of the screw rod 41 during movement and rotation.
  • the screw 41 may have a displacement deviation.
  • L6 is less than 1.5S, there may be a The electronic expansion valve cannot be fully opened or closed, which will affect the normal operation of the refrigeration system; when L6 is 2.5S, it is enough to ensure that the electronic expansion valve is fully opened or closed.
  • L6 When L6 is greater than 2.5S, the length of the first thread segment If it is too long, the processing cost of the nut sleeve 42 will be increased. Therefore, setting L6 between 1.5S and 2.5S can not only ensure that the electronic expansion valve is fully opened or closed, but also reduce the processing cost of the nut sleeve 42 .
  • L6 can be set to 1.5S, 2S, or 2.5S. In this embodiment, L6 is set to 2.1S.
  • the screw 41 has a second thread segment, the second thread segment is threadedly connected with the first thread segment, the length of the second thread segment is L7, and 1.5S ⁇ L7 ⁇ 2.5S.
  • the screw rod 41 has a second guide section, a second thread section and a drive section connected in sequence, the second guide section is in clearance fit with the first guide section, the second thread section is threadedly connected with the first thread section, and the drive section is connected with the first thread section.
  • the valve sleeve 50 is drive connected.
  • L7 When L7 is less than 1.5S, there may be a situation where the second thread segment cannot be effectively threaded with the first thread segment, and then the electronic expansion valve may not be fully opened or closed, affecting the normal operation of the refrigeration system; when L7 is 2.5 When S, it is enough to ensure that the electronic expansion valve is fully opened or closed.
  • L7 When L7 is greater than 2.5S, the length of the second thread segment is too long, which increases the processing cost of the screw 41, and when the length of the first thread segment and the second thread segment When both are greater than 2.5S, the matching length of the first thread segment and the second thread segment is too long, which increases the resistance to movement of the screw 41 and increases the response time for opening or closing the electronic expansion valve. Therefore, setting L7 within the above range can not only ensure that the electronic expansion valve is fully opened or closed, but also ensure the flexibility of the response of the electronic expansion valve. Specifically, L7 can be set to 1.5S, 2S, or 2.5S.
  • L7 is greater than L6, and the difference between L7 and L6 is between 0mm and 4mm.
  • the screw rod 41 may be stuck, which affects the smoothness of the movement of the screw rod 41, thereby affecting the smoothness of the movement of the valve sleeve 50;
  • L7 and L6 When the difference between L6 is greater than 2 mm, the length of the second thread segment is too long, which increases the processing cost of the screw rod 41 . Therefore, setting the difference between L7 and L6 between 0 mm and 2 mm can not only ensure the smooth movement of the screw 41 , ensure the smoothness of valve opening and closing, but also save the processing cost of the screw 41 .
  • L7 can be equal to L6, and the difference between L7 and L6 can also be set to 1mm, 2mm, 4mm. In this embodiment, the difference between L7 and L6 is set to 2mm.
  • the electronic expansion valve further includes: a rotor connecting plate 80 .
  • the rotor connecting plate 80 is located in the housing chamber 11, the outer peripheral edge of the rotor connecting plate 80 is connected with the rotor 20, the rotor connecting plate 80 has an installation hole 81 arranged along the axial direction, and the screw 41 has a first shaft arranged sequentially along the axial direction.
  • Section 43, the second section 44 and the third section 45, the second section 44 is penetrated in the installation hole 81 and connected with the installation hole 81, and the side wall of the screw rod 41 is also provided with a second cut surface structure 46, the second cut surface structure 46 extends from the first section 43 to the second section 44, and the second section structure 46 is used for positioning with the fixture, wherein, the end surface of the third section 45 close to the second section 44 and the end surface of the mounting hole 81 away from the third section 45
  • the distance between the ends is L8, the distance between the end surface of the third section 45 close to the second section 44 and the end of the second section structure 46 close to the third section 45 is L9, and L9-L8 ⁇ 0.15mm.
  • the two ends of the mounting hole 81 are respectively provided with counterbore holes, and L8 is specifically the distance between the centers of the two counterbore holes, wherein, the counterbore holes close to the third section 45 can avoid the first
  • the third section 45 collides with the lower end surface of the rotor connecting plate 80 and is damaged, thus ensuring the positioning accuracy. damage, thereby ensuring the overall welding accuracy.
  • L9-L8 when L9-L8 ⁇ 0.15mm, the distance between the second cut surface structure 46 and the counterbore will be reduced, thereby reducing the welding space between the screw 41 and the mounting hole 81, and affecting the connection between the screw 41 and the mounting hole.
  • the value of L9-L8 may be 0.15mm, 0.2mm or 0.3mm.
  • the screw rod 41 is connected with the mounting hole 81 on the rotor connecting plate 80, and the second cut surface structure 46 on the screw rod 41 can be used for positioning and connection with the clamp, so that the positioning effect of the screw rod 41 can be improved;
  • the matching relationship between L8 and L9 is set to L9-L8 ⁇ 0.15mm, which can improve the stability of the installation of the screw 41 and the rotor connecting plate 80, thereby effectively improving the welding accuracy of the screw 41 and the rotor connecting plate 80 , thereby ensuring the stability of the device during operation.
  • L8 is between 1mm and 3mm. Such arrangement can ensure the effective matching length between the screw rod 41 and the mounting hole 81 , thus improving the reliability of the positioning of the screw rod 41 .
  • the value of L8 may be 1 mm, 2 mm or 3 mm.
  • the first section 43 is a tapered section, and the diameter of the first section 43 gradually increases toward the direction of approaching the second section 44 .
  • the diameter of the second section 44 is D9, and D9 is between 1.2mm and 4mm.
  • Setting D9 between 1.2mm and 4mm can not only ensure the stability of the connection between the screw rod 41 and the mounting hole 81, but also reduce the processing difficulty of the screw rod 41 and save the production cost.
  • the value of D9 may be 1.2mm, 2mm or 4mm.
  • the diameter of the end surface of the first segment 43 away from the second segment 44 is D10, where D10>0.5 mm.
  • D10 the diameter of the end surface of the first segment 43 away from the second segment 44 is D10, where D10>0.5 mm.
  • D10 can be 0.6mm, 0.7mm, 0.8mm.
  • the radial depth of the second section structure 46 on the second segment 44 is T, where T ⁇ 0.5*(D9-D10).
  • the distance between the end surface of the first segment 43 away from the second segment 44 and the end of the second cut structure 46 close to the third segment 45 is L10, and L10 ⁇ 1 mm.
  • L10 can be 1mm, 2mm or 3mm.
  • the diameter of the third segment 45 is larger than the diameter of the second segment 44 .
  • orientation words such as “front, back, up, down, left, right", “horizontal, vertical, vertical, horizontal” and “top, bottom” etc. indicate the orientation Or positional relationship is generally based on the orientation or positional relationship shown in the drawings, and is only for the convenience of describing the application and simplifying the description. In the absence of a contrary statement, these orientation words do not indicate or imply the device or element referred to It must have a specific orientation or be constructed and operated in a specific orientation, so it should not be construed as limiting the protection scope of the present application; the orientation words “inner and outer” refer to the inner and outer relative to the outline of each component itself.
  • spatially relative terms may be used here, such as “on !, “over !, “on the surface of !, “above”, etc., to describe the The spatial positional relationship between one device or feature shown and other devices or features. It will be understood that the spatially relative terms are intended to encompass different orientations of the device in use or operation in addition to the orientation depicted in the figures. For example, if the device in the figures is turned over, devices described as “above” or “above” other devices or configurations would then be oriented “beneath” or “above” the other devices or configurations. under other devices or configurations”. Thus, the exemplary term “above” can encompass both an orientation of “above” and “beneath”. The device may be otherwise oriented (rotated 90 degrees or at other orientations) and the spatially relative descriptions used herein interpreted accordingly.

Abstract

本申请提供了一种电子膨胀阀,包括:阀体,阀体具有容纳腔和阀口,容纳腔与阀口连通;转子,转子设置在容纳腔内;定子组件,定子组件套设在阀体外部,定子组件与转子对应设置;螺杆组件,螺杆组件设置在容纳腔内,螺杆组件包括螺杆和螺母套,螺母套固定在阀体上,螺杆穿设在螺母套内并与螺母套螺纹连接,转子与螺杆的远离阀口的一端固定连接;阀套,螺杆与阀套驱动连接,阀套用于封堵或打开阀口;其中,阀口处于全开状态时脉冲数为A,定子组件的垂直于轴线的中心线与转子的垂直于轴线的中心线重合时对应的脉冲数为B,且0.3*A≤B≤0.7*A。采用本方案,以解决电子膨胀阀的驱动力较弱的问题。

Description

电子膨胀阀
本申请要求于2021年9月30日提交至中国国家知识产权局,申请号为202122405095.3、发明名称为“电子膨胀阀”;申请号为202122404589X、发明名称为“电子膨胀阀”;申请号为202111166805X、发明名称为“电子膨胀阀”;申请号为2021224113524、发明名称为“电子膨胀阀”的专利申请的优先权。
技术领域
本发明涉及控制阀技术领域,具体而言,涉及一种电子膨胀阀。
背景技术
电子膨胀阀包括阀体、转子、定子组件、螺杆组件和阀套等部件,阀体具有腔体和阀口,转子设置在腔体内,转子与螺杆组件连接,螺杆组件与阀套连接,定子组件设置在阀体外部,定子组件与转子相对应设置,定子组件与转子相互作用使转子驱动螺杆组件,转子和螺杆组件沿阀体的轴线做直线运动从而驱动阀套封堵或打开阀口。定子组件的绕组与转子的正对的面积越大时,定子组件与转子的驱动力越大,现有技术中,定子组件与转子的位置一般设计为在阀口处于全关状态时,转子与定子组件的正对面积最大,转子驱动螺杆组件运动的驱动力最大,上述方案会使得阀体在全开时的转子与定子组件的正对面积过小,从而导致阀套失步或不能关闭阀口。
发明内容
本申请提供一种电子膨胀阀,以解决现有技术中的电子膨胀阀在全开状态时的驱动力较弱的问题。
本申请提供了一种电子膨胀阀,包括:阀体,阀体具有容纳腔和阀口,容纳腔与阀口连通;转子,转子设置在容纳腔内;定子组件,定子组件套设在阀体外部,定子组件与转子对应设置;螺杆组件,螺杆组件设置在容纳腔内,螺杆组件包括螺杆和螺母套,螺母套固定在阀体上,螺杆穿设在螺母套内并与螺母套螺纹连接,转子与螺杆的远离阀口的一端固定连接,转子驱动螺杆沿螺母套旋转,以使螺杆和转子沿朝向或远离阀口的方向移动;阀套,螺杆与阀套驱动连接,阀套用于封堵或打开阀口;其中,阀口处于全关状态时脉冲数为0,阀口处于全开状态时脉冲数为A,定子组件的垂直于轴线的中心线与转子的垂直于轴线的中心线重合时对应的脉冲数为B,且0.3*A≤B≤0.7*A。具体地,B可以为0.3*A、0.4*A、0.5*A或0.7*A。
应用本申请的技术方案,定子组件的垂直于轴线的中心线与转子的垂直于轴线的中心线重合时,转子驱动螺杆旋转的力最大。若脉冲数B小于0.3*A,则阀口接近全关状态时转子的驱动力最大,即在打开阀口过程中驱动力越来越弱,导致较慢或不能全部关闭阀口。若脉冲数B大于0.7*A,则阀口接近全开状态时转子的驱动力最大,即在关闭阀口过程中驱动力越来越弱,导致较慢或不能全部打开阀口。因此,将A与B的关系设置为0.3*A≤B≤0.7*A,在 阀口处于半打开状态时转子的驱动力最大,从而使打开或关闭阀口过程中驱动力较均衡,进而使打开或关闭阀口的更可靠,这样也能够全部打开或关闭阀口。
进一步地,B=0.5*A。当B=0.5*A时,在阀口处于半开状态时转子的驱动力最大,从而使打开或关闭阀口过程中驱动力均衡,进而使打开或关闭阀口的更可靠。
进一步地,转子的沿轴向的长度为L1,定子组件具有沿轴向间隔设置的上极板和下极板,上极板和下极板之间的距离为L2,L2大于L1。这样能够使最大驱动力持续覆盖行程。
进一步地,0.2mm≤L2-L1≤1mm。如此设置,既能够使最大驱动力持续覆盖行程,又可以使电子膨胀阀的结构紧凑。
进一步地,转子的外径为D1,容纳腔的内径为D2,0.3mm≤D2-D1≤1mm。这样既可以使转子旋转时与容纳腔内壁之间的摩擦力较小,又可以使驱动力较大。
进一步地,阀体的外径为D3,定子组件的内径为D4,0.05mm≤D4-D3≤0.5mm。如此设置,既能够保证定子组件可较方便安装在阀体上,又能够使驱动力较大。
进一步地,13mm≤D1≤18mm。这样既可以保证驱动力较大,又可以使电子膨胀阀的结构紧凑。
进一步地,18mm≤L1≤23mm。这样既可以保证驱动力较大,又可以使电子膨胀阀的长度较小。
进一步地,阀套内设置有平衡通道,平衡通道能够使阀套的两端相连通。
进一步地,阀套内部具有通孔,通孔包括依次设置的第一孔段、第二孔段和第三孔段,第一孔段和第三孔段的直径大于第二孔段,螺杆的靠近阀口的一端穿设在第三孔段内,螺杆的靠近阀口的一端固定连接有固定件,固定件的直径大于第二孔段的直径,固定件设置在第三孔段的远离阀口的一端,固定件上设置有连接孔,螺杆的端部穿设在连接孔内,螺杆的靠近阀口的一端的侧壁上设置有第一切面结构,第一切面结构延伸至第一孔段,第一切面结构与通孔的内壁之间具有第一间隙,连接孔与第一切面结构之间形成有第二间隙,第一间隙与第二间隙连通,第一间隙和第二间隙形成平衡通道,以平衡阀套两端的气压。
附图说明
构成本申请的一部分的说明书附图用来提供对本申请的进一步理解,本申请的示意性实施例及其说明用于解释本申请,并不构成对本申请的不当限定。在附图中:
图1示出了本申请提供的电子膨胀阀的结构示意图;
图2示出了本申请提供的定子组件的结构示意图;
图3示出了本申请提供的阀套的结构示意图;
图4示出了本申请提供的电子膨胀阀处于最大开度位置时的结构示意图
图5示出了本申请提供的电子膨胀阀处于封堵位置时的结构示意图;
图6示出了本申请提供的电子膨胀阀的又一剖视图;
图7示出了本申请提供的螺杆、固定件和阀套装配后的剖视图;
图8示出了本申请提供的转子连接板和转子装配后的剖视图;
图9示出了本申请提供的螺杆的结构示意图;
图10示出了图6中E处的尺寸示意图;
图11示出了本申请提供的螺杆的尺寸示意图。
其中,上述附图包括以下附图标记:
10、阀体;11、容纳腔;12、阀口;20、转子;211、转子本体;221、连接端;222、驱动端;30、定子组件;31、上极板;32、下极板;40、螺杆组件;41、螺杆;411、第一切面结构;42、螺母套;43、第一段;44、第二段;45、第三段;46、第二切面结构;50、阀套;51、通孔;511、第一孔段;512、第二孔段;513、第三孔段;60、固定件;61、连接孔;80、转子连接板;81、安装孔。
具体实施方式
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本申请一部分实施例,而不是全部的实施例。以下对至少一个示例性实施例的描述实际上仅仅是说明性的,决不作为对本申请及其应用或使用的任何限制。基于本申请中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
如图1所示,本申请实施例提供一种电子膨胀阀,包括阀体10、转子20、定子组件30、螺杆组件40和阀套50。阀体10具有容纳腔11和阀口12,容纳腔11与阀口12连通;转子20设置在容纳腔11内;定子组件30套设在阀体10外部,定子组件30与转子20对应设置;螺杆组件40设置在容纳腔11内,螺杆组件40包括螺杆41和螺母套42,螺母套42固定在阀体10上,螺杆41穿设在螺母套42内并与螺母套42螺纹连接,转子20与螺杆41的远离阀口12的一端固定连接,转子20驱动螺杆41沿螺母套42旋转,以使螺杆41和转子20沿朝向或远离阀口12的方向移动;螺杆41与阀套50驱动连接,阀套50用于封堵或打开阀口12。转子20沿朝向或远离阀口12的方向移动时,转子20与定子组件30正对面积随之改变,转子20的驱动力随之改变。其中,阀口12处于全关状态时脉冲数为0,阀口12处于全开状态时脉冲数为A,定子组件30的垂直于轴线的中心线与转子20的垂直于轴线的中心线重合时对应的脉冲数为B,且0.3*A≤B≤0.7*A。具体地,B可以为0.3*A、0.4*A、0.5*A或0.7*A。
应用本申请的技术方案,定子组件30的垂直于轴线的中心线与转子20的垂直于轴线的中心线重合时,转子20驱动螺杆41旋转的力最大。若脉冲数B小于0.3*A,则会导致阀全开状态下力过小,容易出现失步,阀无法动作。若脉冲数B大于0.7*A,则会导致阀在全关状态力过小,导致阀口12无法打开。因此,将A与B的关系设置为0.3*A≤B≤0.7*A,在阀口12处于靠近半打开状态时转子20的驱动力最大,从而使打开或关闭阀口12过程中驱动力较均衡,进而使打开或关闭阀口12更可靠,这样也能够全部打开或关闭阀口12。
其中,B=0.5*A。当B=0.5*A时,在阀口12处于半开状态时转子20的驱动力最大,从而使打开或关闭阀口12过程中驱动力均衡,进而使打开或关闭阀口12的更可靠。
在本实施例中,转子20的沿轴向的长度为L1,定子组件30具有沿轴向间隔设置的上极板31和下极板32,上极板31和下极板32之间的距离为L2,L2大于L1。上极板31和下极板32之间设置有绕组,绕组的垂直于轴线的中心线与定子组件30的垂直于轴线的中心线重合,绕组与转子20之间相互作用产生驱动力。若L2小于L1,则绕组与转子20的正对面积较小,从而导致最大驱动力较小。因此,L2大于L1,能够保证最大驱动力较大。
具体地,0.2mm≤L2-L1≤1mm。若L2-L1<0.2mm,则转子20在靠近或远离阀口12过程中,最大驱动力持续的覆盖的行程较短。若L2-L1>1mm,则定子组件30的结构尺寸较大,从而导致电子膨胀阀的整体结构尺寸较大,不利于小型化设计。因此,使0.2mm≤L2-L1≤1mm,既能够使最大驱动力持续覆盖的行程较长,又可以使电子膨胀阀的结构紧凑。具体地,L2-L1可以为0.2mm、0.4mm、0.6mm或1mm.
在本实施例中,转子20的外径为D1,容纳腔11的内径为D2,0.3mm≤D2-D1≤1mm。若D2-D1<0.3mm,则转子20与容纳腔11的内壁之间的间隙过小,从而导致转子20旋转时与容纳腔11内壁之间的摩擦力过大,影响转子20的旋转,且使转子20产生磨损。若D2-D1>1mm,则转子20与定子组件30之间的距离过大,进而造成驱动力减小。因此,使0.3mm≤D2-D1≤1mm,既可以使转子20旋转时与容纳腔11内壁之间的摩擦力较小,又可以使驱动力较大。具体地,D2-D1可以为0.3mm、0.6mm或1mm。
如图2所示,在本实施例中,阀体10的外径为D3,定子组件30的内径为D4,0.05mm≤D4-D3≤0.5mm。若D4-D3<0.05mm,则定子组件30与阀体10之间的间隙过小,导致定子组件30较难安装在阀体10上。若D4-D3>0.5mm,则定子组件30与阀体10之间的间隙过大,导致定子组件30与转子20之间的间隙过大,进而导致驱动力减小。因此,使0.05mm≤D4-D3≤0.5mm,既能够保证定子组件30可较方便安装在阀体10上,又能够使驱动力较大。
具体地,13mm≤D1≤18mm。若D1<13mm,则转子20的结构尺寸较小,转子20与定子组件30之间的作用力较弱,从而导致驱动力较小。若D1>18mm,则转子20的结构尺寸较大,不利于电子膨胀阀的小型化设计。因此,使13mm≤D1≤18mm,既可以保证驱动力较大,又可以使电子膨胀阀的结构紧凑。在现有技术中,由于阀套50打开阀口12过程中阀套50两端具有较大压力差,因此需要较大规格的转子20和定子组件30以提供足够大的驱动力来克服该压力差,如此才能驱动阀套50完全打开阀口12,一般地,采用的转子20的外径范 围为25mm至35mm之间。在本实施例中,由于设置有平衡通道,使阀套50打开阀口12过程中阀套50两端的压力趋于平衡,如此可以减小由转子20和定子组件30提供的驱动力,进而在本实施例中,将转子20的外径D1的取值范围设置为13mm≤D1≤18mm即可,如此满足了电子膨胀阀的小型化设计需求。
具体地,18mm≤L1≤23mm。若L1<18mm,则转子20的长度较小,转子20与定子组件30之间的作用力较弱,从而使驱动力较小。若L1>23mm,则转子20的长度较大,进而使电子膨胀阀的长度较长。因此,使18mm≤L1≤23mm,既可以保证驱动力较大,又可以使电子膨胀阀的长度较小。
在本实施例中,阀套50内设置有平衡通道,平衡通道能够使阀套50的两端相连通。设置平衡通道,能够使阀套两端的气压平衡,从而实现较小的驱动力即可驱使阀套50打开或关闭阀口12。
如图3所示,阀套50内部具有通孔51,通孔51包括依次设置的第一孔段511、第二孔段512和第三孔段513,第一孔段511和第三孔段513的直径大于第二孔段512,螺杆41的靠近阀口12的一端穿设在第三孔段513内,螺杆41的靠近阀口12的一端固定连接有固定件60,固定件60的直径大于第二孔段512的直径,固定件60设置在第三孔段513的远离阀口12的一端,固定件60上设置有连接孔61,螺杆41的端部穿设在连接孔61内,螺杆41的靠近阀口12的一端的侧壁上设置有第一切面结构411,第一切面结构411延伸至第一孔段511,第一切面结构411与通孔51的内壁之间具有第一间隙,连接孔61与第一切面结构411之间形成有第二间隙,第一间隙与第二间隙连通,第一间隙和第二间隙形成平衡通道,以平衡阀套50两端的气压。第二孔段512的直径与螺杆41的直径相接近或相同,以防止阀套50相对螺杆41晃动。螺杆41的靠近阀口12的一端设置有第一切面结构411,第一切面结构411延伸至第一孔段511,固定件60上设置有连接孔61,连接孔61与第一切面结构411对应设置,以平衡阀套50两端的气压。设置连接孔61和第一切面结构411,能够使阀套两端的气压平衡,从而实现较小的驱动力即可驱使阀套50打开或关闭阀口12。因此,将A与B的关系设置为0.3*A≤B≤0.7*A,如此设置能够在满足驱动效果的同时兼顾对阀套50在完全打开位置和关闭位置时的驱动力。
在本实施例中,转子20的沿轴向的长度为L1,定子组件30具有沿轴向间隔设置的上极板31和下极板32,上极板31和下极板32之间的距离为L2,L2大于L1。上极板31和下极板32之间设置有绕组,绕组的垂直于轴线的中心线与定子组件30的垂直于轴线的中心线重合,绕组与转子20之间相互作用产生驱动力。若L2小于L1,则绕组与转子20的正对面积较小,从而导致最大驱动力较小。因此,L2大于L1,能够保证最大驱动力较大。
如图4和图5所示,本实用新型实施例二提供一种电子膨胀阀,其包括阀体10、螺杆41、转子20和阀套50。阀体10具有容纳腔11和阀口12,阀口12与容纳腔11连通设置。阀套50,可移动地设置在容纳腔11内,阀套50位于阀口12与螺杆41之间,螺杆41与阀套50驱动连接,以使阀套50关闭或开启阀口12;其中,阀套50具有相对设置的封堵位置和最大 开度位置,当阀套50处于最大开度位置时,螺杆41的远离阀套50的一端与阀体10的远离阀口12的一端的内壁之间具有间隔L3,L3在0.8mm至2.1mm之间。
应用本实用新型的技术方案,阀体10、螺杆41、转子20以及阀套50在生产加工的过程中可能存在一定的尺寸误差,或者经过长时间的使用后,螺杆41在其移动过程中产生一定的位移偏差,上述的尺寸误差和位移偏差可能使得阀套50尚未到达最大开度位置时,螺杆41的远离阀套50的一端就已经与阀体10的远离阀口12的一端的内壁抵接。本方案中的间隔L3的设置,能够为螺杆41的移动提供避让空间,避免螺杆41与阀体10的远离阀口12的一端的内壁发生干涉,进而能够有效保证开阀的顺畅性。当L3小于0.8mm时,可能存在避让空间不足的情况,此时,无法有效避免螺杆41与阀体10的内壁发生接触,进而无法保证开阀的顺畅性;当L3大于2.1mm时,可能造成阀体10原材料的浪费,且无法实现产品小型化。因此,本方案将L3设置在0.8mm至2.1mm之间,既能够保证开阀的顺畅性,也能够实现产品小型化。具体地,L3可设置为0.8mm、1.2mm、1.5mm、1.8mm和2.1mm,本实施例中,L3设置为1.2mm。
进一步地,螺杆41具有相对设置的连接端221和驱动端222,驱动端222靠近阀口12设置,转子20与连接端221连接,驱动端222与阀套50驱动连接。开启电子膨胀阀时,转子20在沿其自身的轴线方向转动的同时向远离阀口12的方向移动,螺杆41随转子20转动的同时也随转子20移动,螺母套42为螺杆41的移动以及转动起到导向作用,以保证螺杆41移动过程的顺畅性,减少转子20移动过程中产生的位移偏差,进而能够减少螺杆41与阀体10的内壁发生干涉的情况,保证开阀的顺畅性。
具体地,转子20包括转子本体211和转子连接板80,转子本体211设置在螺杆41的外周,转子连接板80位于转子本体211和螺杆41之间,转子本体211和转子连接板80连接,转子连接板80具有安装孔81,连接端221由安装孔81内穿出并与转子连接板80连接。其中,连接端221也可位于安装孔81内,本实施例中,将连接端221由安装孔81内穿出,以保证转子连接板80与螺杆41连接的稳定性,保证螺杆41以及阀套50移动过程中的位移量的精确度,减少在电子膨胀阀在开启的过程中螺杆41与阀体10的内壁发生干涉的情况,保证开阀过程的顺畅性。
具体地,沿转子20的轴线方向,转子连接板80具有相对设置的第一端面和第二端面,第一端面朝向阀口12设置,第一端面与连接端221的端面之间的间距为L4,L4在4.9mm至5.5mm之间。具体地,转子本体211的内周面设置有环形的卡接槽,转子连接板80包括相互连接的第一段体和第二段体,第一段体靠近螺母套42设置,且第一段体的直径大于第二段体的直径,第一段体的周缘嵌设在卡接槽内,第二段体的远离第一段体的端面凸出转子本体211设置,安装孔81与转子连接板80同轴且贯穿第一段体和第二段体设置。当L4小于4.9mm时,转子连接板80与转子本体211的连接稳定性差,可能导致电子膨胀阀开启以及闭合的稳定性差;当L4大于5.5mm时,无法进一步增加转子连接板80与转子本体211连接的稳定性,如此,便造成转子连接板80的原材料的浪费,增加转子连接板80的加工成本。本方案将L4设置在上述范围内,既能够保证电子膨胀阀开启以及闭合时的稳定性,也能够避免浪费转子连 接板80的原材料。具体地,L4可设置为4.9mm、5.1mm、5.3mm和5.5mm,螺杆41的凸出转子连接板80的长度可设置为1.2mm、1.5mm和1.8mm。本实施例中,L4设置为5.3mm,螺杆41的凸出转子连接板80的长度设置为1.5mm。
进一步地,沿螺杆41的轴线方向,当阀套50处于封堵位置时,转子连接板80的靠近阀口12一侧的端面与螺母套42的远离阀口12一端的端面之间的间距为L5,L5在0.7mm至2mm之间。关闭电子膨胀阀时,转子本体211转动的同时靠近阀口12移动,转子连接板80随转子本体211运动,直至阀套50处于封堵位置。阀体10、螺杆41、螺杆41、转子本体211在加工的过程中可能具有一定的尺寸误差,或者经过长时间的使用后,转子本体211在其移动的过程中可能存在一定的位移偏差,上述的尺寸误差和位移偏差可能使得阀套50尚未到达封堵位置时,转子连接板80就已经与螺母套42接触。本方案中L5的设置,能够为转子连接板80的移动提供避让空间,避免转子连接板80与螺母套42远离阀口12的一端发生干涉,进而能够保证闭阀过程的顺畅性。当L5小于0.7mm时,可能存在避让空间不足的情况,此时,无法有效避免转子连接板80与螺母套42发生接触,进而无法保证闭阀的顺畅性;当L5为2mm时,便可以为转子连接板80的移动提供足够的避让空间,进而当L5大于2mm时,会造成螺杆41的长度过长,造成螺杆41的原材料的浪费。因此将L5设置在0.7mm至2mm之间,既能够避免转子连接板80与螺母套42之间发生干涉,也能够保证螺杆41的长度合理,避免螺杆41的原材料的浪费。具体地,L5可设置为0.7mm、1.3mm、1.7mm、2mm,本实施例中,L5设置为1.5mm。
进一步地,阀套50由封堵位置移动至最大开度位置的位移量为S,螺母套42具有第一螺纹段,第一螺纹段的长度为L6,且1.5S≤L6≤2.5S。具体地,螺母套42具有沿轴线方向依次连通设置的第一导向段、第一螺纹段和安装段,安装段靠近阀口12设置,第一导向段与螺杆41间隙配合,安装段的内径大于第一螺纹段的内径,安装段用于与阀体10固定配合。在螺杆41移动的过程中,第一导向段与螺杆41导向配合,第一螺纹段与螺杆41螺纹连接,以保证螺杆41移动以及转动过程的平稳性。螺母套42以及阀体10在加工的过程中可能存在尺寸误差,在电子膨胀阀由开启状态和关闭状态之间切换的过程中,螺杆41可能出现位移偏差,当L6小于1.5S时,可能出现电子膨胀阀无法完全开启或者闭合的情况,进而影响制冷系统的正常工作;当L6为2.5S时,已经足以保证电子膨胀阀完全开启或者闭合,当L6大于2.5S时,第一螺纹段的长度过长,增加螺母套42的加工成本。因此,将L6设置在1.5S至2.5S之间,既能够保证电子膨胀阀完全开启或者闭合,也能够降低螺母套42的加工成本。具体地,L6可设置为1.5S、2S、2.5S,本实施例中,将L6设置为2.1S。
进一步地,螺杆41具有第二螺纹段,第二螺纹段与第一螺纹段螺纹连接,第二螺纹段的长度为L7,且1.5S≤L7≤2.5S。具体地,螺杆41具有顺次连接的第二导向段、第二螺纹段和驱动段,第二导向段与第一导向段间隙配合,第二螺纹段与第一螺纹段螺纹连接,驱动段与阀套50驱动连接。当L7小于1.5S时,可能出现第二螺纹段无法与第一螺纹段有效螺纹连接的情况,进而可能出现电子膨胀阀无法完全开启或者闭合的现象,影响制冷系统的正常工作;当L7为2.5S时,已经足以保证电子膨胀阀完全开启或者闭合,当L7大于2.5S时,第二螺纹段的长度过长,增加螺杆41的加工成本,且当第一螺纹段和第二螺纹段的长度均大于2.5S时, 第一螺纹段和第二螺纹段的配合长度过长,增加螺杆41移动的阻力,增加电子膨胀阀开启或关闭的反应时间。因此,将L7设置在上述范围内,既能够保证电子膨胀阀实现完全开启或者闭合,也能够保证电子膨胀阀的反应的灵活性。具体地,L7可设置为1.5S、2S、2.5S。
进一步地,L7大于L6,L7与L6的差值在0mm至4mm之间。当L7的长度小于L6的长度时,在螺杆41移动以及转动的过程中,可能出现螺杆41卡死的情况,影响螺杆41移动的顺畅性,进而影响阀套50移动的顺畅性;当L7与L6之间的差值大于2mm时,第二螺纹段的长度过长,增加螺杆41的加工成本。因此,将L7与L6之间的差值设置在0mm至2mm之间,既能够保证螺杆41移动的顺畅性,保证开阀以及闭阀的顺畅性,也能够节约螺杆41的加工成本。其中L7可以与L6相等,L7与L6之间的差值也可设置为1mm、2mm、4mm,本实施例中,L7与L6之间的差值设置在2mm。
应用本实用新型的技术方案,既能够保证开阀以及闭阀的顺畅性,也能够实现产品的小型化。
如图6至图9所示,电子膨胀阀还包括:转子连接板80。其中,转子连接板80位于容纳腔11内,转子连接板80的外周缘与转子20连接,转子连接板80具有沿轴线方向设置的安装孔81,螺杆41具有沿轴向顺次设置的第一段43,第二段44和第三段45,第二段44穿设在安装孔81内并与安装孔81连接,螺杆41的侧壁上还设置有第二切面结构46,第二切面结构46由第一段43延伸至第二段44,第二切面结构46用于与夹具配合定位,其中,第三段45的靠近第二段44的端面与安装孔81的远离第三段45的端部的距离为L8,第三段45的靠近第二段44的端面与第二切面结构46的靠近第三段45的一端的距离为L9,L9-L8≥0.15mm。
在本申请的实施例中,安装孔81的两端分别设置有沉头孔,L8具体为两个沉头孔中心处的距离,其中,靠近第三段45的沉头孔能够避免定位时第三段45与转子连接板80的下端面产生碰撞而损坏,从而保证了定位精度,远离第三段45的沉头孔能够避免焊接时第二段44与转子连接板80的上端面产生碰撞而损坏,从而保证了整体的焊接精度。
其中,当L9-L8≤0.15mm时,会减小第二切面结构46与沉头孔之间的距离,从而减小了螺杆41与安装孔81之间的焊接空间,影响了螺杆41与安装孔81焊接后的结构强度。因此,在本申请中,将L9-L8设置为≥0.15mm,可以提高螺杆41与安装孔之间的有效距离,从而给沉头孔与螺杆41之间提供了更大的焊接面积,如此有利于螺杆41与安装孔81的焊接,能够有效地提高螺杆41与转子连接板80焊接的准确度。具体地,L9-L8的值可以为0.15mm、0.2mm或0.3mm。
通过上述结构,将螺杆41与转子连接板80上的安装孔81连接在一起,利用螺杆41上的第二切面结构46可与夹具配合进行定位和连接,如此可以提高对螺杆41的定位效果;并且将L8与L9之间的配合关系设置为L9-L8≥0.15mm,如此可以提高螺杆41与转子连接板80安装的稳定性,从而能够有效地提高螺杆41与转子连接板80焊接的准确度,从而保证了装置运行时的稳定性。
进一步地,L8在1mm至3mm之间。如此设置,能够保证螺杆41与安装孔81的有效配合长度,从而提高了螺杆41定位的可靠性。具体地,L8的值可以为1mm、2mm或3mm。
具体地,第一段43为锥形段,第一段43的直径朝靠近第二段44的方向逐渐增大。通过上述结构,有利于在螺杆41与安装孔81的安装过程中对螺杆41进行导向,从而有利于装置的装配,提高了装置的安装效率。
进一步地,第二段44的直径为D9,D9在1.2mm至4mm之间。将D9设置在1.2mm至4mm之间,不仅能够保证螺杆41与安装孔81连接后的稳定性,也可以降低了螺杆41的加工难度,节约了生产成本。具体地,D9的值可以为1.2mm、2mm或4mm。
具体地,第一段43远离第二段44的端面的直径为D10,D10>0.5mm。如此设置,有利于螺杆41与夹具的连接定位,从而便于螺杆41与其他部件的焊接,保证了焊接时的加工精度。其中,D10的值可以为0.6mm、0.7mm、0.8mm。
如图10和图11所示,第二切面结构46在第二段44上的径向深度为T,T<0.5*(D9-D10)。通过将第二切面结构46径向深度T设置为T<0.5*(D9-D10),如此能够有效防止螺杆41与夹具之间产生相对位移,保证了螺杆41与夹具之间连接后的稳定性。
具体地,第一段43的远离第二段44的端面与第二切面结构46的靠近第三段45的一端的距离为L10,L10≥1mm。如此设置,能够进一步保证螺杆41与夹具定位后的稳定性,使螺杆41与其他部件连接时的定位更加可靠。其中,L10的值可以为1mm、2mm或3mm。
进一步地,第三段45的直径大于第二段44的直径。通过设置上述结构,有利于增加螺杆41的结构强度,从而保证了装置运行时的工作性能。
在本实施例中,通过夹具与螺杆41的第一段43和第二段44定位后,从而有利于螺杆41另一端与固定件60的焊接,然后通过安装孔81与螺杆41固定,使得螺杆41可与转子连接板80固定焊接,从而提高螺杆41与转子连接板80焊接的准确度,从而保证了装置运行时的稳定性。
需要注意的是,这里所使用的术语仅是为了描述具体实施方式,而非意图限制根据本申请的示例性实施方式。如在这里所使用的,除非上下文另外明确指出,否则单数形式也意图包括复数形式,此外,还应当理解的是,当在本说明书中使用术语“包含”和/或“包括”时,其指明存在特征、步骤、操作、器件、组件和/或它们的组合。
除非另外具体说明,否则在这些实施例中阐述的部件和步骤的相对布置、数字表达式和数值不限制本申请的范围。同时,应当明白,为了便于描述,附图中所示出的各个部分的尺寸并不是按照实际的比例关系绘制的。对于相关领域普通技术人员已知的技术、方法和设备可能不作详细讨论,但在适当情况下,所述技术、方法和设备应当被视为授权说明书的一部分。在这里示出和讨论的所有示例中,任何具体值应被解释为仅仅是示例性的,而不是作为限制。因此,示例性实施例的其它示例可以具有不同的值。应注意到:相似的标号和字母在 下面的附图中表示类似项,因此,一旦某一项在一个附图中被定义,则在随后的附图中不需要对其进行进一步讨论。
在本申请的描述中,需要理解的是,方位词如“前、后、上、下、左、右”、“横向、竖向、垂直、水平”和“顶、底”等所指示的方位或位置关系通常是基于附图所示的方位或位置关系,仅是为了便于描述本申请和简化描述,在未作相反说明的情况下,这些方位词并不指示和暗示所指的装置或元件必须具有特定的方位或者以特定的方位构造和操作,因此不能理解为对本申请保护范围的限制;方位词“内、外”是指相对于各部件本身的轮廓的内外。
为了便于描述,在这里可以使用空间相对术语,如“在……之上”、“在……上方”、“在……上表面”、“上面的”等,用来描述如在图中所示的一个器件或特征与其他器件或特征的空间位置关系。应当理解的是,空间相对术语旨在包含除了器件在图中所描述的方位之外的在使用或操作中的不同方位。例如,如果附图中的器件被倒置,则描述为“在其他器件或构造上方”或“在其他器件或构造之上”的器件之后将被定位为“在其他器件或构造下方”或“在其他器件或构造之下”。因而,示例性术语“在……上方”可以包括“在……上方”和“在……下方”两种方位。该器件也可以其他不同方式定位(旋转90度或处于其他方位),并且对这里所使用的空间相对描述作出相应解释。
此外,需要说明的是,使用“第一”、“第二”等词语来限定零部件,仅仅是为了便于对相应零部件进行区别,如没有另行声明,上述词语并没有特殊含义,因此不能理解为对本申请保护范围的限制。
以上所述仅为本申请的优选实施例而已,并不用于限制本申请,对于本领域的技术人员来说,本申请可以有各种更改和变化。凡在本申请的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本申请的保护范围之内。

Claims (26)

  1. 一种电子膨胀阀,其特征在于,包括:
    阀体(10),所述阀体(10)具有容纳腔(11)和阀口(12),所述容纳腔(11)与所述阀口(12)连通;
    转子(20),所述转子(20)设置在所述容纳腔(11)内;
    定子组件(30),所述定子组件(30)套设在所述阀体(10)外部,所述定子组件(30)与所述转子(20)对应设置;
    螺杆组件(40),所述螺杆组件(40)设置在所述容纳腔(11)内,所述螺杆组件(40)包括螺杆(41)和螺母套(42),所述螺母套(42)固定在所述阀体(10)上,所述螺杆(41)穿设在所述螺母套(42)内并与所述螺母套(42)螺纹连接,所述转子(20)与所述螺杆(41)的远离所述阀口(12)的一端固定连接,所述转子(20)驱动所述螺杆(41)沿所述螺母套(42)旋转,以使所述螺杆(41)和所述转子(20)沿朝向或远离阀口(12)的方向移动;
    阀套(50),所述螺杆(41)与所述阀套(50)驱动连接,所述阀套(50)用于封堵或打开所述阀口(12);
    其中,所述阀口(12)处于全关状态时脉冲数为0,所述阀口(12)处于全开状态时脉冲数为A,所述定子组件(30)的垂直于轴线的中心线与所述转子(20)的垂直于轴线的中心线重合时对应的脉冲数为B,且0.3*A≤B≤0.7*A。
  2. 根据权利要求1所述的电子膨胀阀,其特征在于,B=0.5*A。
  3. 根据权利要求1所述的电子膨胀阀,其特征在于,所述转子(20)的沿轴向的长度为L1,所述定子组件(30)具有沿轴向间隔设置的上极板(31)和下极板(32),所述上极板(31)和所述下极板(32)之间的距离为L2,L2大于L1。
  4. 根据权利要求3所述的电子膨胀阀,其特征在于,0.2mm≤L2-L1≤1mm。
  5. 根据权利要求1所述的电子膨胀阀,其特征在于,所述转子(20)的外径为D1,所述容纳腔(11)的内径为D2,0.3mm≤D2-D1≤1mm。
  6. 根据权利要求1所述的电子膨胀阀,其特征在于,所述阀体(10)的外径为D3,所述定子组件(30)的内径为D4,0.05mm≤D4-D3≤0.5mm。
  7. 根据权利要求5所述的电子膨胀阀,其特征在于,13mm≤D1≤18mm。
  8. 根据权利要求3所述的电子膨胀阀,其特征在于,18mm≤L1≤23mm。
  9. 根据权利要求1至8中任一项所述的电子膨胀阀,其特征在于,所述阀套(50)内设置有平衡通道,所述平衡通道能够使所述阀套(50)的两端相连通。
  10. 根据权利要求9所述的电子膨胀阀,其特征在于,所述阀套(50)内部具有通孔(51),所述通孔(51)包括依次设置的第一孔段(511)、第二孔段(512)和第三孔段(513),所述第一孔段(511)和所述第三孔段(513)的直径大于所述第二孔段(512),所述螺杆(41)的靠近所述阀口(12)的一端穿设在所述第三孔段(513)内,所述螺杆(41)的靠近所述阀口(12)的一端固定连接有固定件(60),所述固定件(60)的直径大于所述第二孔段(512)的直径,所述固定件(60)设置在所述第三孔段(513)的远离所述阀口(12)的一端,所述固定件(60)上设置有连接孔(61),所述螺杆(41)的端部穿设在所述连接孔(61)内,所述螺杆(41)的靠近所述阀口(12)的一端的侧壁上设置有第一切面结构(411),所述第一切面结构(411)延伸至所述第一孔段(511),所述第一切面结构(411)与所述通孔(51)的内壁之间具有第一间隙,所述连接孔(61)与所述第一切面结构(411)之间形成有第二间隙,所述第一间隙与所述第二间隙连通,所述第一间隙和所述第二间隙形成所述平衡通道,以平衡所述阀套(50)两端的气压。
  11. 根据权利要求1所述的电子膨胀阀,其特征在于,所述阀套(50)具有相对设置的封堵位置和最大开度位置,当所述阀套(50)处于所述最大开度位置时,所述螺杆(41)的远离所述阀套(50)的一端与所述阀体(10)的远离所述阀口(12)的一端的内壁之间具有间隔L3,所述L3在0.8mm至2.1mm之间。
  12. 根据权利要求11所述的电子膨胀阀,其特征在于,所述螺杆(41)具有相对设置的连接端(221)和驱动端(222),所述驱动端(222)靠近所述阀口(12)设置,所述转子(20)与所述连接端(221)连接,所述驱动端(222)与所述阀套(50)驱动连接。
  13. 根据权利要求12所述的电子膨胀阀,其特征在于,所述转子(20)包括转子本体(211)和转子连接板(80),所述转子本体(211)设置在所述螺杆(41)的外周,所述转子连接板(80)位于所述转子本体(211)和所述螺杆(41)之间,所述转子本体(211)和所述转子连接板(80)连接,所述转子连接板(80)具有安装孔(81),所述连接端(221)由所述安装孔(81)内穿出并与所述转子连接板(80)连接。
  14. 根据权利要求13所述的电子膨胀阀,其特征在于,沿所述转子(20)的轴线方向,所述转子连接板(80)具有相对设置的第一端面和第二端面,所述第一端面朝向所述阀口(12)设置,所述第一端面与所述连接端(221)的端面之间的间距为L4,所述L4在4.9mm至5.5mm之间。
  15. 根据权利要求13所述的电子膨胀阀,其特征在于,沿所述螺杆(41)的轴线方向,当所述阀套(50)处于所述封堵位置时,所述转子连接板(80)的靠近所述阀口(12)一侧的端面与所述螺母套(42)的远离所述阀口(12)一端的端面之间的间距为L5,所述L5在0.7mm至2mm之间。
  16. 根据权利要求15所述的电子膨胀阀,其特征在于,所述阀套(50)由所述封堵位置移动至所述最大开度位置的位移量为S,所述螺母套(42)具有第一螺纹段,所述第一螺纹段的长度为L6,且1.5S≤L6≤2.5S。
  17. 根据权利要求16所述的电子膨胀阀,其特征在于,所述螺杆(41)具有第二螺纹段,所述第二螺纹段与所述第一螺纹段螺纹连接,所述第二螺纹段的长度为L7,且1.5S≤L7≤2.5S。
  18. 根据权利要求17所述的电子膨胀阀,其特征在于,所述L7大于所述L6,所述L7与所述L6的差值在0mm至4mm之间。
  19. 根据权利要求1所述的电子膨胀阀,其特征在于,所述电子膨胀阀还包括:转子连接板(80),位于所述容纳腔(11)内,所述转子连接板(80)的外周缘与所述转子(20)连接,所述转子连接板(80)具有沿轴线方向设置的安装孔(81),所述螺杆(41)具有沿轴向顺次设置的第一段(43)、第二段(44)和第三段(45),所述第二段(44)穿设在所述安装孔(81)内并与所述安装孔(81)连接,所述螺杆(41)的侧壁上还设置有第二切面结构(46),所述第二切面结构(46)由所述第一段(43)延伸至所述第二段(44),所述第二切面结构(46)用于与夹具配合定位;
    其中,所述第三段(45)的靠近所述第二段(44)的端面与所述安装孔(81)的远离所述第三段(45)的端部的距离为L8,所述第三段(45)的靠近所述第二段(44)的端面与所述第二切面结构(46)的靠近所述第三段(45)的一端的距离为L9,L9-L8≥0.15mm。
  20. 根据权利要求19所述的电子膨胀阀,其特征在于,L8在1mm至3mm之间。
  21. 根据权利要求19所述的电子膨胀阀,其特征在于,所述第一段(43)为锥形段,所述第一段(43)的直径朝靠近所述第二段(44)的方向逐渐增大。
  22. 根据权利要求21所述的电子膨胀阀,其特征在于,所述第二段(44)的直径为D9,D9在1.2mm至4mm之间。
  23. 根据权利要求22所述的电子膨胀阀,其特征在于,所述第一段(43)远离所述第二段(44)的端面的直径为D10,D10>0.5mm。
  24. 根据权利要求23所述的电子膨胀阀,其特征在于,所述第二切面结构(46)在所述第二段(44)上的径向深度为T,T<0.5*(D9-D10)。
  25. 根据权利要求23所述的电子膨胀阀,其特征在于,所述第一段(43)的远离所述第二段(44)的端面与所述第二切面结构(46)的靠近所述第三段(45)的一端的距离为L10,L10≥1mm。
  26. 根据权利要求19所述的电子膨胀阀,其特征在于,所述第三段(45)的直径大于所述第二段(44)的直径。
PCT/CN2022/123584 2021-09-30 2022-09-30 电子膨胀阀 WO2023051825A1 (zh)

Applications Claiming Priority (8)

Application Number Priority Date Filing Date Title
CN202122411352.4U CN216200581U (zh) 2021-09-30 2021-09-30 电子膨胀阀
CN202122404589.XU CN216200564U (zh) 2021-09-30 2021-09-30 电子膨胀阀
CN202122404589.X 2021-09-30
CN202111166805.XA CN115899278A (zh) 2021-09-30 2021-09-30 电子膨胀阀
CN202122405095.3 2021-09-30
CN202122405095.3U CN216200567U (zh) 2021-09-30 2021-09-30 电子膨胀阀
CN202122411352.4 2021-09-30
CN202111166805.X 2021-09-30

Publications (1)

Publication Number Publication Date
WO2023051825A1 true WO2023051825A1 (zh) 2023-04-06

Family

ID=85781383

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/123584 WO2023051825A1 (zh) 2021-09-30 2022-09-30 电子膨胀阀

Country Status (1)

Country Link
WO (1) WO2023051825A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117029319A (zh) * 2023-10-08 2023-11-10 理文科技(山东)股份有限公司 一种电子膨胀阀

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1297518A (zh) * 1999-03-26 2001-05-30 株式会社鹭宫制作所 电动阀
JP2019124318A (ja) * 2018-01-18 2019-07-25 株式会社不二工機 電動弁
CN210372066U (zh) * 2019-06-14 2020-04-21 浙江盾安禾田金属有限公司 电子膨胀阀
CN111271475A (zh) * 2020-04-02 2020-06-12 杭州易超新能源汽车科技有限公司 一种电子膨胀阀及其装配方法
US20210071921A1 (en) * 2017-11-13 2021-03-11 Emerson Climate Technologies (Suzhou) Co., Ltd. Electronic expansion valve
CN216200581U (zh) * 2021-09-30 2022-04-05 浙江盾安禾田金属有限公司 电子膨胀阀

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1297518A (zh) * 1999-03-26 2001-05-30 株式会社鹭宫制作所 电动阀
US20210071921A1 (en) * 2017-11-13 2021-03-11 Emerson Climate Technologies (Suzhou) Co., Ltd. Electronic expansion valve
JP2019124318A (ja) * 2018-01-18 2019-07-25 株式会社不二工機 電動弁
CN210372066U (zh) * 2019-06-14 2020-04-21 浙江盾安禾田金属有限公司 电子膨胀阀
CN111271475A (zh) * 2020-04-02 2020-06-12 杭州易超新能源汽车科技有限公司 一种电子膨胀阀及其装配方法
CN216200581U (zh) * 2021-09-30 2022-04-05 浙江盾安禾田金属有限公司 电子膨胀阀

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117029319A (zh) * 2023-10-08 2023-11-10 理文科技(山东)股份有限公司 一种电子膨胀阀
CN117029319B (zh) * 2023-10-08 2024-01-09 理文科技(山东)股份有限公司 一种电子膨胀阀

Similar Documents

Publication Publication Date Title
WO2023051825A1 (zh) 电子膨胀阀
US5502874A (en) Speed regulating valve for fluid filled door closers
US20230417339A1 (en) Valve core assembly
WO2021103753A1 (zh) 电子膨胀阀
EP3792528A1 (en) Electronic expansion valve
WO2022193812A1 (zh) 电动阀
CN216200581U (zh) 电子膨胀阀
WO2023088253A1 (zh) 电子膨胀阀
WO2023088254A1 (zh) 电子膨胀阀
WO2022247835A1 (zh) 电子膨胀阀
US11953244B2 (en) Electronic expansion valve
WO2023174380A1 (zh) 电子膨胀阀
CN216044756U (zh) 一种自动减速油缸结构
WO2020132967A1 (zh) 电子膨胀阀
CN209304100U (zh) 一种真空吸盘
CN217603472U (zh) 一种磁力驱动阀门
WO2021031682A1 (zh) 电子膨胀阀及其安装方法
CN215763306U (zh) 电子膨胀阀
KR20240060860A (ko) 전자 팽창 밸브
CN211574369U (zh) 一种电子膨胀阀
WO2023051824A1 (zh) 电子膨胀阀
WO2023030337A1 (zh) 电子膨胀阀
CN218992389U (zh) 膨胀阀
CN217669044U (zh) 一种电动空压机转子装配用简易工装
WO2022199230A1 (zh) 电子膨胀阀

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22875205

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2022875205

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2401002130

Country of ref document: TH

ENP Entry into the national phase

Ref document number: 2022875205

Country of ref document: EP

Effective date: 20240329