WO2023051800A1 - 气态二氧化碳冷媒无油增压机及二氧化碳冷媒用于制冷或制热时的循环系统和方法 - Google Patents

气态二氧化碳冷媒无油增压机及二氧化碳冷媒用于制冷或制热时的循环系统和方法 Download PDF

Info

Publication number
WO2023051800A1
WO2023051800A1 PCT/CN2022/123399 CN2022123399W WO2023051800A1 WO 2023051800 A1 WO2023051800 A1 WO 2023051800A1 CN 2022123399 W CN2022123399 W CN 2022123399W WO 2023051800 A1 WO2023051800 A1 WO 2023051800A1
Authority
WO
WIPO (PCT)
Prior art keywords
refrigerant
carbon dioxide
pressure
dioxide refrigerant
temperature
Prior art date
Application number
PCT/CN2022/123399
Other languages
English (en)
French (fr)
Inventor
杨凡
郁伟荣
Original Assignee
上海复璐帝流体技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 上海复璐帝流体技术有限公司 filed Critical 上海复璐帝流体技术有限公司
Publication of WO2023051800A1 publication Critical patent/WO2023051800A1/zh

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B37/00Pumps having pertinent characteristics not provided for in, or of interest apart from, groups F04B25/00 - F04B35/00
    • F04B37/10Pumps having pertinent characteristics not provided for in, or of interest apart from, groups F04B25/00 - F04B35/00 for special use
    • F04B37/12Pumps having pertinent characteristics not provided for in, or of interest apart from, groups F04B25/00 - F04B35/00 for special use to obtain high pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B39/00Component parts, details, or accessories, of pumps or pumping systems specially adapted for elastic fluids, not otherwise provided for in, or of interest apart from, groups F04B25/00 - F04B37/00

Definitions

  • the invention relates to the technical field of refrigeration and heating refrigerant circulation, in particular to a gaseous carbon dioxide refrigerant oil-free supercharger and a circulation system and method when the carbon dioxide refrigerant is used for refrigeration or heating.
  • each HVAC method has its own characteristics. Choose reasonable refrigeration and heating methods to meet the heat transfer requirements, achieve high energy efficiency ratio in HVAC technology, and achieve good economic benefits.
  • the refrigerant and refrigerant circulation system should meet environmental protection requirements.
  • the key to the HVAC system is the refrigerant and the circulation system of the refrigerant cycle.
  • the improvement of the energy efficiency ratio during the pressurized cycle of the refrigerant is the key to the HVAC system.
  • the adaptability of the refrigerant to the ambient temperature during the refrigerant cycle is an important performance indicator of the refrigerant.
  • Refrigerant circulation requires good system stability.
  • Carbon dioxide is an emerging natural working medium.
  • the evaporation point of liquid carbon dioxide is -56.6°C and the pressure is 520kPa.
  • the extremely low evaporation temperature point enables liquid carbon dioxide to absorb air energy for heating in extremely cold regions.
  • Carbon dioxide has many unique advantages as a refrigerant: In terms of its impact on the environment, carbon dioxide is the most environmentally friendly refrigerant except for water and air. In addition, carbon dioxide also has good safety and chemical stability. Carbon dioxide is safe and non-toxic, and does not produce harmful gases even at high temperatures. It has thermophysical properties compatible with refrigeration cycles and equipment, and has a high cooling capacity per unit volume. Low kinematic viscosity.
  • the carbon dioxide refrigerant is recycled at the pressure and temperature points above the freezing point, and the inner cavity of the supercharger without oil lubrication is used to avoid the possible freezing of the lubricating oil at extremely low temperatures, while increasing the cooling capacity of the refrigerant volume It ensures the stable operation of the system.
  • the present invention solves the defect that the lubricating oil of the existing supercharger is easy to freeze at extremely low temperature during use, so that the supercharger cannot operate stably, and at the same time increases the compression ratio at the inlet and outlet of the supercharger to improve the energy efficiency ratio ,
  • a gaseous carbon dioxide refrigerant oil-free supercharger and a circulation system and method for the carbon dioxide refrigerant used for refrigeration or heating are proposed.
  • the present invention adopts the following technical solutions:
  • the first aspect of the present invention is to provide a gaseous carbon dioxide refrigerant oil-free supercharger, including a set of gas supercharging units for gaseous carbon dioxide refrigerant supercharging, the gas supercharging unit comprising:
  • crankshaft motion mechanism for linearly reciprocating the distal end of the connecting rod
  • a piston working mechanism, the piston of the piston working mechanism is driven by the connecting rod to perform linear reciprocating motion in the form of no lubricating oil;
  • variable sealed volume chamber of the gas circulation mechanism sucks gaseous carbon dioxide refrigerant at a certain pressure under the drive of the piston on one side, pressurizes it into high-pressure carbon dioxide refrigerant, and then discharges it.
  • the crankshaft movement mechanism includes: a crankshaft, a connecting rod, a limiting body and a cross joint, and a sealed pressure-resistant housing;
  • crankshaft is driven by a speed-regulating motor and connected to the cross joint through the connecting rod, the cross joint is movably installed in the cross hollow cavity on the limiter body, and the pressure-resistant shell is used for Prevent refrigerant leakage during mechanism movement.
  • the piston working mechanism includes: a piston rod, a cylinder and a piston;
  • the piston is assembled in the cylinder in the form of no lubricating oil, and one end thereof is fixedly connected to the cross joint through a piston rod.
  • the gas circulation mechanism includes: a variable sealed volume chamber, an intake valve and an exhaust valve communicated with the variable sealed volume chamber;
  • variable sealed volume chamber is composed of the piston and the cavity at the front end of the cylinder, and the intake valve and exhaust valve are arranged on the housing at the front end of the cylinder.
  • the gas circulation mechanism further includes: a cylinder head and an air inlet and an exhaust port arranged on the cylinder head;
  • the cylinder head is fixed on the front end of the cylinder body, the air inlet is connected to the air inlet valve, and the air outlet is connected to the exhaust valve.
  • the pressure of the gaseous carbon dioxide refrigerant at the inlet is 1.5kg/cm 2 -40kg/cm 2
  • the pressure of the high-pressure carbon dioxide refrigerant at the exhaust port is 40kg/cm 2 -98kg/cm 2 .
  • a second aspect of the present invention is to provide a carbon dioxide refrigerant for refrigeration or heating circulation system, including:
  • the gaseous carbon dioxide refrigerant oil-free supercharger is used to pressurize the gaseous carbon dioxide refrigerant in the system to convert it into a high-temperature and high-pressure carbon dioxide refrigerant;
  • the outdoor air energy host which is connected to the outlet of the refrigerant and the brine heat exchanger during heating, and is used to convert the high-pressure normal-temperature liquid refrigerant after heat release to absorb air heat into a medium-pressure low-temperature gas refrigerant; Or connect the outlet of the gaseous carbon dioxide refrigerant oil-free supercharger during refrigeration to convert the high-temperature and high-pressure refrigerant at the outlet to release heat to the air into a high-pressure normal-temperature refrigerant;
  • Refrigerant and brine heat exchanger one end of the refrigerant and brine heat exchanger is connected to the outdoor air energy main unit, and the other end is connected to the gaseous carbon dioxide refrigerant oil-free supercharger, which is used to pass high pressure during refrigeration.
  • the carbon dioxide refrigerant at room temperature becomes a low-pressure and low-temperature gaseous refrigerant through the JT effect.
  • the low-temperature gaseous refrigerant absorbs the heat of the refrigerant in the reheating process to realize refrigeration; during heating, the high-temperature and high-pressure carbon dioxide refrigerant releases heat to the refrigerant to realize the refrigerant. heating.
  • the carbon dioxide refrigerant is used in a circulation system for refrigeration or heating, further comprising:
  • An electronic expansion valve the electronic expansion valve is installed between the outdoor air energy main unit and the refrigerant and brine heat exchanger, and is used for the high-pressure normal temperature refrigerant that releases heat to the outdoor air through the outdoor air energy main unit It undergoes depressurization and volume expansion, and then enters the refrigerant and brine heat exchanger.
  • the gaseous carbon dioxide refrigerant oil-free supercharger is a single-stage supercharger, and a two-stage supercharger is used when the outlet pressure is 98kg/cm 2 to 180kg/cm 2 .
  • the brine is a gaseous brine or a liquid brine
  • the gaseous brine is air, nitrogen or argon
  • the liquid brine is water, brine, ethylene glycol or propylene glycol solution .
  • a third aspect of the present invention is to provide a carbon dioxide refrigerant gas booster cycle method as described in the system, including a heating procedure and a refrigeration procedure:
  • the high-temperature and high-pressure carbon dioxide refrigerant that passes into the refrigerant and the refrigerant heat exchanger releases heat to the refrigerant and converts it into a high-pressure normal-temperature liquid refrigerant, and passes into the outdoor air energy host to realize the heating of the carbon dioxide refrigerant gas pressurization cycle system Program, the refrigerant absorbs heat to achieve the purpose of heating;
  • the high-pressure normal-temperature liquid refrigerant fed into the outdoor air energy main unit absorbs the heat of the air and converts it into a medium-pressure low-temperature gaseous refrigerant, and then flows into the gaseous carbon dioxide refrigerant at the inlet of the oil-free supercharger, after being pressurized again, it is converted into a high-temperature high-pressure carbon dioxide refrigerant.
  • steps S11 to S14 to realize the recycling of refrigerant;
  • S22 start the gaseous carbon dioxide refrigerant oil-free supercharger, pressurize the gaseous refrigerant in the system and convert it into high-temperature and high-pressure carbon dioxide refrigerant, and pass the high-temperature and high-pressure carbon dioxide refrigerant into the outdoor air energy host;
  • the high-temperature and high-pressure carbon dioxide refrigerant fed into the outdoor air energy host releases heat to the air, and then converts into a high-pressure normal-temperature refrigerant, and then transforms into a medium-pressure low-temperature refrigerant after depressurization and volume expansion through the throttling expansion valve, and then passes into the corresponding Refrigerant and brine heat exchangers;
  • the medium-pressure low-temperature gaseous refrigerant fed into the refrigerant and the brine heat exchanger absorbs the heat of the brine to become a medium-pressure normal-temperature refrigerant, and then the gaseous carbon dioxide refrigerant is fed into the oil-free supercharger to repeat steps S21 to S24 to realize the increase of carbon dioxide refrigerant gas.
  • the refrigeration program of the pressure cycle system; and the heat released by the cooling load achieves the purpose of refrigeration.
  • the present invention adopts above-mentioned technical scheme, compared with prior art, has following technical effect:
  • the gaseous carbon dioxide refrigerant oil-free supercharger transmits kinetic energy by using the crankshaft movement mechanism and the piston working mechanism to realize the supercharging of the gaseous carbon dioxide refrigerant in the gas circulation mechanism, ensuring the operation stability of the overall supercharging mechanism, and the crankshaft movement
  • Both the mechanism and the piston working mechanism adopt linear reciprocating operation, which minimizes the kinetic energy loss in the transmission process, has a high energy efficiency ratio, and low operating costs;
  • the piston working mechanism in the gaseous carbon dioxide refrigerant oil-free supercharger adopts an oil-free lubricating structural design, which avoids that when the carbon dioxide refrigerant is recycled at a pressure and temperature above the freezing point, the lubricating oil will The icing defects that may occur under the environment, while increasing the cooling capacity of the refrigerant volume, ensure the stable operation of the system;
  • the circulating refrigeration system of the gaseous carbon dioxide refrigerant oil-free supercharger with a certain pressure at the inlet reduces the energy consumption required for refrigerant supercharging, and uses the ambient temperature to convert the supercharged high-pressure and high-temperature refrigerant to The temperature is reduced to normal temperature and high pressure carbon dioxide refrigerant, and then through the expansion throttle valve, the normal temperature and high pressure carbon dioxide refrigerant is decompressed and adiabatically expanded into a medium pressure low temperature refrigerant, which enters the refrigerant and the refrigerant heat exchanger, and finally realizes the purpose of refrigerant refrigeration;
  • Adopt the circulation heating system of the gaseous carbon dioxide refrigerant oil-free supercharger use the gaseous carbon dioxide refrigerant oil-free supercharger to pressurize and heat up the gaseous carbon dioxide with a certain pressure when the liquid is evaporated into gas, and the supercharging efficiency is improved ;
  • the gaseous high-temperature and high-pressure carbon dioxide refrigerant is cooled and liquefied to release heat, and the refrigerant absorbs heat and heats up, with high heating efficiency and low operating costs, achieving the purpose of energy saving and environmental protection.
  • Fig. 1 is the structure schematic diagram of the gaseous carbon dioxide refrigerant oil-free booster of the present invention being a single-stage booster;
  • Fig. 2 is a schematic diagram of the frame structure of the circulation system when the carbon dioxide refrigerant of the gaseous carbon dioxide refrigerant oil-free supercharger is used for refrigeration or heating according to the present invention.
  • a single-stage supercharged gaseous carbon dioxide refrigerant oil-free supercharger is provided, and the single-stage gaseous carbon dioxide refrigerant oil-free supercharger 100 includes a group of gas supercharging units for gaseous carbon dioxide refrigerant supercharging , forming a single-stage supercharging.
  • the gas supercharging unit mainly includes a crank mechanism 110 , a piston working mechanism 120 and a gas circulation mechanism 130 .
  • the pressure of the gaseous carbon dioxide refrigerant at the air inlet 135 of the single-stage gaseous carbon dioxide refrigerant oil-free supercharger 100 is 1.5kg/cm 2 -40kg/cm 2
  • the pressure of the high-pressure carbon dioxide refrigerant at the exhaust port 136 is 40kg/cm 2 -98kg/cm 2 .
  • gaseous carbon dioxide refrigerant oil-free supercharger is supercharged by a single-stage supercharger, and the pressure at the air inlet 135 of the gaseous carbon dioxide refrigerant oil-free supercharger is 1.5kg/cm 2 -40kg/ cm 2 , the intake pressure higher than the atmospheric pressure improves the volume coefficient of the supercharger and reduces the energy consumption of the mass flow when transporting the refrigerant.
  • crank mechanism 110 is used to realize the linear reciprocating motion of the distal end of the connecting rod 112 .
  • the piston 123 of the piston working mechanism 110 is driven by the connecting rod 112 to perform linear reciprocating motion without lubricating oil, and the connecting rod 112 of the crank mechanism 110 drives the piston 123 to reciprocate to realize the pressurization of the gaseous carbon dioxide refrigerant.
  • the inner cavity of the piston working mechanism 110 adopts the form of oil-free lubrication.
  • variable sealed volume cavity 131 of the gas circulation mechanism 130 is driven by the piston 123 on one side to inhale the gaseous carbon dioxide refrigerant with a certain pressure from the air inlet 135, pressurize it into a high-pressure and high-temperature carbon dioxide refrigerant, and then discharge it from the exhaust port.
  • the air port 136 is exhausted.
  • the gaseous carbon dioxide refrigerant oil-free supercharger uses the crankshaft movement mechanism 120 and the piston working mechanism 120 to transfer kinetic energy to realize the supercharging of the gaseous carbon dioxide refrigerant in the gas circulation mechanism 130, ensuring the operation stability of the overall supercharging mechanism, and the crankshaft movement
  • Both the mechanism 110 and the piston working mechanism 120 adopt linear reciprocating operation, which minimizes the kinetic energy loss in the transmission process, has a higher energy consumption ratio, and lower operating costs.
  • the crankshaft movement mechanism 110 includes a crankshaft 111, a connecting rod 112, a limiter body 113, a cross joint 114 and a sealed pressure-resistant housing 115, wherein the The crankshaft 111 is connected to the cross joint 114 through the connecting rod 112, the cross joint 114 is movably installed in the cross hollow cavity on the limit body 113, and the pressure-resistant housing 115 is used to prevent the mechanism from moving Refrigerant leakage in the process.
  • the piston working mechanism 120 includes: a piston rod 121, a cylinder 122 and a piston 123; wherein, the piston 123 is assembled on the One end of the cylinder 122 is fixedly connected to the cross joint 114 through the piston rod 121 .
  • the gas circulation mechanism 130 includes: a variable sealed volume chamber 131 and an intake valve 132 and an exhaust valve communicated with the variable sealed volume chamber 131 133; wherein, the variable sealed volume cavity 131 is composed of the piston 123 and the cavity at the front end of the cylinder body 122, and the intake valve 132 and exhaust valve 133 are arranged at the shell at the front end of the cylinder body 122 physically.
  • the gas circulation mechanism 130 also includes a cylinder head 134 and an air inlet 135 and an exhaust port 136 arranged on the cylinder head 134; wherein, the cylinder head 134 is fixed on the The front end of the cylinder block 122 , and the intake port 135 is connected to the intake valve 132 , and the exhaust port 136 is connected to the exhaust valve 133 .
  • a carbon dioxide refrigerant circulation system for refrigeration or heating using the first embodiment above or the gaseous carbon dioxide refrigerant oil-free supercharger 100.
  • the circulation system mainly includes gaseous carbon dioxide refrigerant oil-free supercharging machine 100, outdoor air energy main unit 200, refrigerant and brine heat exchanger 300, expansion throttle valve 401 and a refrigerant circulation tank for supplementing carbon dioxide refrigerant for the system.
  • the gaseous carbon dioxide refrigerant oil-free supercharger 100 is used to pressurize the gaseous carbon dioxide refrigerant in the system to convert it into high-temperature and high-pressure carbon dioxide gas, and is also used to supplement the high-pressure air storage tank 701 when the system stops running. High pressure air to set pressure.
  • the gaseous carbon dioxide refrigerant oil-free supercharger 100 is used to pressurize the gaseous carbon dioxide refrigerant in the system to convert it into high-temperature and high-pressure carbon dioxide refrigerant, and to meet the needs of refrigeration and heating, the gaseous carbon dioxide refrigerant A check valve 1 503 and a check valve 2 504 are respectively installed on the inlet and outlet pipelines of the oil-free supercharger 100 .
  • the standards of the gaseous carbon dioxide refrigerant oil-free supercharger used in this embodiment are as follows: model YXWCD-13/13-70; medium carbon dioxide; intake pressure 1.3mpa; exhaust pressure 7.0mpa; displacement 13Nm 3 /h; Motor power 1.1kw; cylinder ⁇ 36+ ⁇ 20; first-stage compression; speed 470r/min; air inlet and outlet size Rc1/2; overall size: 600*600*500, weight 52kg, no oil lubrication, air cooling.
  • an electronic expansion valve 400 In order to meet the needs of system control, an electronic expansion valve 400 , a solenoid valve 1 505 and a one-way valve 506 are respectively installed on the inlet and outlet pipes of the outdoor air energy main unit 200 .
  • the outdoor air energy main unit 200 is connected to the refrigerant and the outlet of the brine heat exchanger 300 during heating, and is used to convert the high-pressure normal-temperature liquid refrigerant absorbing air heat into a medium-pressure low-temperature gas refrigerant after heat release.
  • the refrigerant is connected to the outlet of the brine heat exchanger 300 to receive the high-pressure liquid carbon dioxide refrigerant after heat release, and the high-pressure liquid carbon dioxide is vaporized into a low-temperature gaseous state by absorbing the heat of outdoor air through the air energy host
  • the refrigerant is then pressurized by the gaseous carbon dioxide refrigerant oil-free booster 100 to become a high-temperature and high-pressure carbon dioxide refrigerant for recycling.
  • the outdoor air energy main unit 200 is connected to the outlet of the gaseous carbon dioxide refrigerant oil-free supercharger 100 during cooling, and is used to convert the high-temperature and high-pressure refrigerant at the outlet to release heat to the air into high-pressure normal-temperature refrigerant.
  • the gaseous carbon dioxide refrigerant when cooling, the gaseous carbon dioxide refrigerant is connected to the outlet of the oil-free supercharger 100, and the high-pressure and high-temperature gaseous or supercritical carbon dioxide releases heat to the outdoor air through the air energy host to realize the change of enthalpy, and then the electronic expansion valve drops After pressure and volume expansion, it enters the refrigerant and the brine heat exchanger 300, absorbs the heat of the brine to realize the secondary enthalpy and turns it into a low-temperature gaseous refrigerant, and then enters the gaseous carbon dioxide refrigerant. For recycling, the secondary refrigerant completes refrigeration by releasing heat to the low-temperature gaseous refrigerant.
  • One end of the refrigerant and brine heat exchanger 300 is connected to the outdoor air energy main unit 200, and the other end is connected to the gaseous carbon dioxide refrigerant oil-free supercharger 100.
  • the function of the refrigerant and brine heat exchanger 300 is Yes, it is used to pass the high-pressure and normal-temperature carbon dioxide refrigerant through the JT effect to become a low-pressure and low-temperature gaseous refrigerant during refrigeration.
  • the low-temperature gaseous refrigerant absorbs the heat of the refrigerant during the reheating process to achieve refrigeration;
  • the brine releases heat to realize heating of the brine.
  • Each refrigerant and brine heat exchanger 300 is also provided with a refrigerant inlet and outlet pipe, and an electronic expansion valve 400 , a proportional valve 1 501 and a proportional valve 2 502 are respectively arranged on the refrigerant inlet pipe.
  • Proportional valve 1 501 is installed on the pipeline between refrigerant and brine heat exchanger 300 and gaseous carbon dioxide refrigerant oil-free supercharger 100
  • proportional valve 2 502 is installed between refrigerant and brine heat exchanger 300 and outdoor air. Can be on the branch pipeline between the host 200.
  • the electronic expansion valve 400 is installed between the outdoor air energy main unit 200 and the refrigerant and brine heat exchanger 300, and is used to control the heat released from the outdoor air energy main unit 200 to the outdoor air.
  • the high-pressure and normal-temperature refrigerant undergoes pressure reduction and volume expansion, and then enters the refrigerant and brine heat exchanger 300 .
  • the gaseous carbon dioxide refrigerant oil-free supercharger 100 adopts the form of a single-stage supercharger or a two-stage supercharger according to the required pressure requirements of the gas refrigerant. And control the inlet pressure of the gaseous carbon dioxide refrigerant oil-free supercharger 100 to be 1.5kg/cm 2 -40kg/cm 2 , and the pressure of the high-pressure carbon dioxide refrigerant at the exhaust port 136 is 40kg/cm 2 -98kg/ cm 2 , the outlet pressure is 98kg/cm 2 -180kg/cm 2 when a two-stage supercharger is used.
  • the brine is a gaseous brine or a liquid brine
  • the gaseous brine is air, nitrogen or argon
  • the liquid brine is water, brine, ethylene glycol or propylene glycol solution.
  • the brine can directly use outdoor air, and after dust removal and sterilization, it can be directly passed into the room after a heat exchange.
  • the brine can also be combined with two brines according to the needs, such as the combination of gaseous brine and liquid brine.
  • the first refrigerant of the system exchanges heat with the carbon dioxide refrigerant to achieve cooling and cooling, and then uses air as the second refrigerant to exchange heat with the first refrigerant to achieve cooling and cooling.
  • the cooled second refrigerant outdoor air is It can be directly used indoors.
  • the pressure of the medium-pressure normal-temperature gaseous carbon dioxide gas at the outlet of the refrigerant and brine heat exchanger 300 is 1.5kg/cm 2 -40kg/cm 2 .
  • the high-volume outdoor normal-temperature air passing through the outer surface of the refrigerant and brine heat exchanger 300 and the high-pressure and high-temperature gaseous or supercritical carbon dioxide refrigerant passing inside are cooled and converted into high-pressure normal-temperature gaseous or supercritical fluid carbon dioxide Refrigerant.
  • the medium-pressure normal-temperature carbon dioxide gas after the heat exchange between the refrigerant and the brine heat exchanger 300 is re-pressurized and heat-exchanged to cool down by the gaseous carbon dioxide refrigerant oil-free supercharger 100 and the outdoor air energy host 200.
  • the volumetric refrigeration capacity of carbon dioxide is increased, and the operating cost of the air conditioner is effectively reduced.
  • this embodiment provides a circulation method for the carbon dioxide refrigerant when used for heating.
  • the heating procedure includes the following steps:
  • S11 configure the inlet of the outdoor air energy main unit 200 to connect the refrigerant and the outlet of the brine heat exchanger 300, configure the outlet to connect to the inlet of the gaseous carbon dioxide refrigerant oil-free supercharger 100, and connect the gaseous carbon dioxide refrigerant to the outlet of the oil-free supercharger 100.
  • the outlet of the oil booster 100 is configured to connect the refrigerant and the inlet of the brine heat exchanger 300 to form a heating cycle path;
  • the high-temperature and high-pressure carbon dioxide refrigerant that is passed into the refrigerant and the secondary refrigerant heat exchanger 300 releases heat to the secondary refrigerant and is converted into a high-pressure normal temperature liquid refrigerant, and is passed into the outdoor air energy host 200 to realize the carbon dioxide refrigerant gas pressurization cycle system Heating program, the refrigerant absorbs heat to achieve the purpose of heating;
  • the high-pressure room-temperature liquid refrigerant in the main unit 200 of the outdoor air energy absorbs air heat and converts it into a medium-pressure low-temperature gaseous refrigerant, and then flows into the gaseous carbon dioxide refrigerant at the inlet of the oil-free supercharger 100.
  • steps S11 to S14 are repeated to realize the recycling of the refrigerant.
  • this embodiment provides a circulation method for the carbon dioxide refrigerant when used for refrigeration.
  • the refrigeration procedure includes the following steps:
  • the medium-pressure low-temperature gaseous refrigerant passed into the refrigerant and the brine heat exchanger 300 absorbs the heat of the brine to become a medium-pressure normal-temperature refrigerant, and then feeds the gaseous carbon dioxide refrigerant into the oil-free supercharger 100.
  • Repeat steps S21 to S24 to realize the carbon dioxide refrigerant The refrigeration program of the gas pressurized cycle system; and the heat released by the cooling load achieves the purpose of refrigeration.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Engine Equipment That Uses Special Cycles (AREA)

Abstract

一种气态二氧化碳冷媒无油增压机(100)及二氧化碳冷媒用于制冷或制热时的循环系统和方法。该气态二氧化碳冷媒无油增压机(100)包括气体增压单元,气体增压单元包括曲轴运动机构(110)、活塞工作机构(120)、气体循环机构(130)。二氧化碳冷媒用于制冷或制热时的循环系统包括上述气态二氧化碳冷媒无油增压机(100)、室外空气能主机(200)和冷媒和载冷剂换热器(300)。该系统实现了气态二氧化碳冷媒的无油增压,增强了系统的低温运行稳定性;提高气态冷媒的压缩比,利用空气能实现冷媒的焓变,使系统的能效比得到极大提升。

Description

气态二氧化碳冷媒无油增压机及二氧化碳冷媒用于制冷或制热时的循环系统和方法 技术领域
本发明涉及制冷和制热冷媒循环技术领域,尤其涉及一种气态二氧化碳冷媒无油增压机及二氧化碳冷媒用于制冷或制热时的循环系统和方法。
背景技术
人工制冷及制热方式主要有四种,相变法、气体膨胀法、涡流管及热电法。每种暖通方法各有其特点。选择合理的制冷及制热方法,满足热量的传递要求,实现暖通技术中的高能效比,达到良好的经济效益,同时冷媒及冷媒循环系统应符合环保要求。暖通系统的关键是冷媒及冷媒循环的循环系统,冷媒的增压循环时的能效比提升是暖通系统的关键,冷媒循环使用时对环境温度的适应度是制冷剂的重要性能指标,同时冷媒循环使用时需有很好的系统稳定性。
二氧化碳是一种新兴的自然工质,液态二氧化碳蒸发点是温度为-56.6℃,压力为520kPa。极低的蒸发温度点使得液态二氧化碳可以在极寒地区吸收空气能制热,在利用液态二氧化碳冷媒的低蒸发温度点蒸发时需防止系统内产生干冰以及防止润滑剂可能产生的结冰。二氧化碳作为制冷工质有许多独特的优势:从对环境的影响来看,除水和空气以外,二氧化碳是与环境最为友善的制冷工质。此外,二氧化碳还具备有良好的安全性和化学稳定性,二氧化碳安全无毒,即便在高温下也不产生有害气体,具有与制冷循环和设备相适应的热物理性质,单位容积制冷量相当高,运动黏度低。
因此,将二氧化碳冷媒在冰点以上的压力和温度点循环使用,采用无油润滑的增压机内腔,避免了润滑油在极低温度下可能产生的结冰,在提高冷媒容积制冷量的同时保证了系统的稳定运行。
发明内容
本发明为解决现有增压机在使用过程中润滑油在极低温度下易结冰,致使增压机不能稳定运行的缺陷,同时提高增压机入口和出口处的压缩比来提升能效 比,提出一种气态二氧化碳冷媒无油增压机及二氧化碳冷媒用于制冷或制热时的循环系统和方法。
为实现上述目的,本发明采用以下技术方案:
本发明的第一个方面是提供一种气态二氧化碳冷媒无油增压机,包括一组用于气态二氧化碳冷媒增压的气体增压单元,所述气体增压单元包括:
曲轴运动机构,所述曲轴运动机构用于实现连杆远端端部的直线往复运动;
活塞工作机构,所述活塞工作机构的活塞在所述连杆驱动下采用无润滑油形式进行直线往复运动;和
气体循环机构,所述气体循环机构的可变密封容积腔在一侧所述活塞的驱动下吸入一定压力的气态二氧化碳冷媒,并将其增压为高压二氧化碳冷媒后排出。
优选地,所述曲轴运动机构包括:曲轴、连杆、限位机体和十字接头、密封的耐压壳体;
其中,所述曲轴通过调速电机驱动并通过所述连杆连接所述十字接头,所述十字接头活动装设于所述限位机体上的十字中空腔内,所述耐压壳体用于防止机构运动过程中的冷媒泄漏。
优选地,所述活塞工作机构包括:活塞杆、缸体和活塞;
其中,所述活塞采用无润滑油形式装配于所述缸体内,且其一端通过活塞杆固定连接所述十字接头。
较为优选地,所述气体循环机构包括:可变密封容积腔和与所述可变密封容积腔连通的进气阀、排气阀;
其中,所述可变密封容积腔由所述活塞与所述缸体前端的腔体构成,所述进气阀和排气阀设置于所述缸体前端的壳体上。
较为优选地,所述气体循环机构还包括:缸头和设置于所述缸头上的进气口、排气口;
其中,所述缸头固定于所述缸体前端,且所述进气口连接所述进气阀,所述排气口连接所述排气阀。
优选地,所述气体增压单元为一个,形成单级增压,其进气口处气态二氧化碳冷媒的压力为1.5kg/cm 2-40kg/cm 2,其排气口处高压二氧化碳冷媒的压力为40kg/cm 2-98kg/cm 2
本发明的第二个方面是提供一种二氧化碳冷媒用于制冷或制热时的循环系 统,包括:
如上述所述的气态二氧化碳冷媒无油增压机,所述气态二氧化碳冷媒无油增压机用于为系统内的气态二氧化碳冷媒增压,以将其转化为高温高压二氧化碳冷媒;
室外空气能主机,所述室外空气能主机在制热时连接冷媒和载冷剂换热器的出口,用于将完成放热后的高压常温液态冷媒吸收空气热量转换为中压低温气态冷媒;或在制冷时连接所述气态二氧化碳冷媒无油增压机的出口,用于将其出口处的高温高压冷媒向空气释放热量转换为高压常温冷媒;
冷媒和载冷剂换热器,所述冷媒和载冷剂换热器的一端连接所述室外空气能主机,另一端连接所述气态二氧化碳冷媒无油增压机,在制冷时用于通过高压常温的二氧化碳冷媒经JT效应成为低压低温的气态冷媒,低温气态冷媒在复热过程中吸收载冷剂的热量实现制冷;在制热时通过高温高压二氧化碳冷媒向载冷剂释放热量实现载冷剂的制热。
优选地,所述的二氧化碳冷媒用于制冷或制热时的循环系统,还包括:
电子膨胀阀,所述电子膨胀阀安装于所述室外空气能主机和所述冷媒和载冷剂换热器之间,用于对经所述室外空气能主机向室外空气释放热量的高压常温冷媒进行降压和体积膨胀,然后进入冷媒和载冷剂换热器。
优选地,所述气态二氧化碳冷媒无油增压机采用单级增压机,在出口压力为98kg/cm 2至180kg/cm 2时采用双级增压机。
优选地,所述载冷剂为气态载冷剂或液体载冷剂,所述气态载冷剂为空气、氮气或氩气,所述液体载冷剂为水、盐水、乙二醇或丙二醇溶液。
本发明的第三个方面是提供一种如所述系统的二氧化碳冷媒气体增压循环方法,包括制热程序和制冷程序:
制热程序
S11,将室外空气能主机的入口配置为连接冷媒和载冷剂换热器的出口,其出口配置为连接气态二氧化碳冷媒无油增压机的入口,以及将所述气态二氧化碳冷媒无油增压机的出口配置为连接所述冷媒和载冷剂换热器的入口,形成制热循环通路;
S12,启动气态二氧化碳冷媒无油增压机,将室外空气能主机内吸收空气热 量气化后的中压低温冷媒增压转换为高温高压二氧化碳冷媒,并将高温高压二氧化碳冷媒通入冷媒和载冷剂换热器内;
S13,通入冷媒和载冷剂换热器的高温高压二氧化碳冷媒向载冷剂释放热量后转换为高压常温液态冷媒,并通入室外空气能主机,实现二氧化碳冷媒气体增压循环系统的制热程序,载冷剂吸收热量实现制热目的;
S14,通入室外空气能主机内的高压常温液态冷媒吸收空气热量后转换为中压低温气态冷媒,然后流入气态二氧化碳冷媒无油增压机的入口经再次增压后转换为高温高压二氧化碳冷媒,重复步骤S11至S14实现冷媒的循环利用;
制冷程序
S21,将室外空气能主机的入口配置为连接气态二氧化碳冷媒无油增压机的出口,其出口配置为连接冷媒和载冷剂换热器的入口,以及将所述冷媒和载冷剂换热器的出口配置为连接所述气态二氧化碳冷媒无油增压机的入口,形成制冷循环通路;
S22,启动气态二氧化碳冷媒无油增压机,将系统中的气态冷媒增压转换为高温高压二氧化碳冷媒,并将高温高压二氧化碳冷媒通入室外空气能主机内;
S23,通入室外空气能主机内的高温高压二氧化碳冷媒向空气释放热量后,转换为高压常温冷媒,再通过节流膨胀阀降压和体积膨胀后转化为中压低温冷媒,然后通入对应的冷媒和载冷剂换热器;
S24,通入冷媒和载冷剂换热器的中压低温气态冷媒吸收载冷剂热量成为中压常温冷媒,然后通入气态二氧化碳冷媒无油增压机重复步骤S21至S24实现二氧化碳冷媒气体增压循环系统的制冷程序;且载冷释放热量实现制冷目的。
本发明采用上述技术方案,与现有技术相比,具有如下技术效果:
(1)该气态二氧化碳冷媒无油增压机通过采用曲轴运动机构和活塞工作机构传递动能,实现气体循环机构内气态二氧化碳冷媒的增压,保证了整体增压机构的运行稳定性,且曲轴运动机构和活塞工作机构均采用直线式往复运行,最大限度地降低传递过程中的动能损耗,具有较高能效比,运行费用低;
(2)该气态二氧化碳冷媒无油增压机中的活塞工作机构采用无油润滑的结构设计形式,避免了在将二氧化碳冷媒在冰点以上的压力和温度点循环使用时,润滑油在极低温度下可能产生的结冰缺陷,在提高冷媒容积制冷量的同时保证了系统的稳定运行;
(3)采用入口处具有一定压力的该气态二氧化碳冷媒无油增压机的循环制冷系统,降低了冷媒增压所需耗能,通过室外换热器利用环境温度将增压后的高压高温冷媒降温为常温高压二氧化碳冷媒,再通过膨胀节流阀将常温高压二氧化碳冷媒进行降压、绝热膨胀为中压低温冷媒进入冷媒和载冷剂换热器,最终实现载冷剂的制冷目的;
(4)采用该气态二氧化碳冷媒无油增压机的循环制热系统,利用气态二氧化碳冷媒无油增压机将通过液体蒸发为气体时具备一定压力的气态二氧化碳进行增压升温,增压效能提高;通过室内冷凝器实现气态高温高压二氧化碳冷媒的降温及液化释放热量,实现载冷剂的吸热升温,制热效能高,运行费用低,达到节能环保目的。
附图说明
图1为本发明气态二氧化碳冷媒无油增压机为单级增压的结构示意图;
图2为本发明采用气态二氧化碳冷媒无油增压机的二氧化碳冷媒用于制冷或制热时的循环系统的框架结构示意图。
具体实施方式
下面通过具体实施例对本发明进行详细和具体的介绍,以使更好的理解本发明,但是下述实施例并不限制本发明范围。
实施例一
如图1所示,提供一种单级增压的气态二氧化碳冷媒无油增压机,该单级气态二氧化碳冷媒无油增压机100包括一组用于气态二氧化碳冷媒增压的气体增压单元,形成单级增压。所述气体增压单元主要包括曲轴运动机构110、活塞工作机构120和气体循环机构130。
所述该单级气态二氧化碳冷媒无油增压机100的进气口135处的气态二氧化碳冷媒的压力为1.5kg/cm 2-40kg/cm 2,其排气口136处高压二氧化碳冷媒的压力为40kg/cm 2-98kg/cm 2
值得注意的是,该所述气态二氧化碳冷媒无油增压机采用单级增压机增压,所述气态二氧化碳冷媒无油增压机进气口135的压力为1.5kg/cm 2-40kg/cm 2,高于大气压的进气压力提高了增压机的容积系数,降低了输送冷媒时的质量流量的 耗能。
具体地,所述曲轴运动机构110用于实现连杆112远端端部的直线往复运动。所述活塞工作机构110的活塞123在所述连杆112驱动下采用无润滑油形式进行直线往复运动,通过曲轴运动机构110的连杆112驱动活塞123往复运动,实现气态二氧化碳冷媒的增压。活塞工作机构110的内腔采用无油润滑形式。所述气体循环机构130的可变密封容积腔131在一侧所述活塞123的驱动下从进气口135吸入具备一定压力的气态二氧化碳冷媒,并将其增压为高压高温二氧化碳冷媒后从排气口136排出。
该气态二氧化碳冷媒无油增压机通过采用曲轴运动机构120和活塞工作机构120传递动能,实现气体循环机构130内气态二氧化碳冷媒的增压,保证了整体增压机构的运行稳定性,且曲轴运动机构110和活塞工作机构120均采用直线式往复运行,最大限度地降低传递过程中的动能损耗,具有较高能耗比,运行费用低。
作为本实施例的一个优选实施方案,如图1所示,所述曲轴运动机构110包括曲轴111、连杆112、限位机体113、十字接头114和密封的耐压壳体115,其中,所述曲轴111通过所述连杆112连接所述十字接头114,所述十字接头114活动装设于所述限位机体113上的十字中空腔内,所述耐压壳体115用于防止机构运动过程中的冷媒泄漏。
作为本实施例的一个优选实施方案,如图1所示,所述活塞工作机构120包括:活塞杆121、缸体122和活塞123;其中,所述活塞123采用无润滑油形式装配于所述缸体122内,且其一端通过活塞杆121固定连接所述十字接头114。
作为本实施例的一个优选实施方案,如图1所示,所述气体循环机构130包括:可变密封容积腔131和与所述可变密封容积腔131连通的进气阀132、排气阀133;其中,所述可变密封容积腔131由所述活塞123与所述缸体122前端的腔体构成,所述进气阀132和排气阀133设置于所述缸体122前端的壳体上。
此外,如图1所示,所述气体循环机构130还包括缸头134和设置于所述缸头134上的进气口135、排气口136;其中,所述缸头134固定于所述缸体122前端,且所述进气口135连接所述进气阀132,所述排气口136连接所述排气阀133。
实施例二
如图3所示,提供一种采用上述实施例一或气态二氧化碳冷媒无油增压机100的二氧化碳冷媒用于制冷或制热时的循环系统,该循环系统主要包括气态二氧化碳冷媒无油增压机100、室外空气能主机200、冷媒和载冷剂换热器300、膨胀节流阀401和用于为系统补充二氧化碳冷媒的冷媒循环罐。所述气态二氧化碳冷媒无油增压机100用于为系统内的气态二氧化碳冷媒增压,以将其转化为高温高压二氧化碳气体,同时还用于在系统停止运行时补充高压空气贮罐701内的高压空气至设定压力。
具体地,所述气态二氧化碳冷媒无油增压机100用于为系统内的气态二氧化碳冷媒增压,以将其转化为高温高压二氧化碳冷媒,并为满足制冷和制热的需要,在气态二氧化碳冷媒无油增压机100的出入口管道上分别安装有单向阀一503和单向阀二504。本实施例所采用的气态二氧化碳冷媒无油增压机的标准如下:型号YXWCD-13/13-70;介质二氧化碳;进气压力1.3mpa;排气压力7.0mpa;排气量13Nm 3/h;电机功率1.1kw;气缸Φ36+Φ20;一级压缩;转速470r/min;进出气口尺寸Rc1/2;外形尺寸;600*600*500,重量52kg,全无油润滑,风冷却。
为满足系统控制需要,在所述室外空气能主机200的出入口管道上分别安装有电子膨胀阀400、电磁阀一505和单向阀506。室外空气能主机200在制热时连接冷媒和载冷剂换热器300的出口,用于将完成放热后的高压常温液态冷媒吸收空气热量转换为中压低温气态冷媒。具体地,在制热时连接所述冷媒和载冷剂换热器300出口,用于接收完成放热后的高压液态二氧化碳冷媒,高压液态二氧化碳通过空气能主机吸收室外空气热量气化成为低温气态冷媒,再通过气态二氧化碳冷媒无油增压机100增压成为高温高压二氧化碳冷媒进行循环使用。
所述室外空气能主机200在制冷时连接所述气态二氧化碳冷媒无油增压机100的出口,用于将其出口处的高温高压冷媒向空气释放热量转换为高压常温冷媒。具体地,在制冷时连接所述气态二氧化碳冷媒无油增压机100出口,高压高温的气态或超临界态二氧化碳通过空气能主机向室外空气释放热量实现焓值的变化,再通过电子膨胀阀降压和体积膨胀后进入冷媒和载冷剂换热器300,吸收载冷剂热量实现二次焓变成为低温气态冷媒,再进入气态二氧化碳冷媒无油增压 机100增压成为高温高压二氧化碳冷媒进行循环使用,载冷剂通过向低温气态冷媒释放热量完成制冷。
所述冷媒和载冷剂换热器300的一端连接所述室外空气能主机200,另一端连接所述气态二氧化碳冷媒无油增压机100,所述冷媒和载冷剂换热器300的作用是,在制冷时用于通过高压常温的二氧化碳冷媒经JT效应成为低压低温的气态冷媒,低温气态冷媒在复热过程中吸收载冷剂的热量实现制冷;在制热时通过高温高压二氧化碳冷媒向载冷剂释放热量实现载冷剂的制热。
在各冷媒和载冷剂换热器300上还分别开设有冷媒出入口管道,并在该冷媒入口管道上相应设置有电子膨胀阀400、比例阀一501和比例阀二502。比例阀一501安装在冷媒和载冷剂换热器300与气态二氧化碳冷媒无油增压机100之间的管道上,比例阀二502则安装在冷媒和载冷剂换热器300与室外空气能主机200之间的支管道上。
具体地,所述电子膨胀阀400安装于所述室外空气能主机200和所述冷媒和载冷剂换热器300之间,用于对经所述室外空气能主机200向室外空气释放热量的高压常温冷媒进行降压和体积膨胀,然后进入冷媒和载冷剂换热器300。
在本实施例中,根据需要的气体冷媒压力要求,所述气态二氧化碳冷媒无油增压机100采用单级增压机或双级增压机形式。且控制所述气态二氧化碳冷媒无油增压机100的入口压力为1.5kg/cm 2-40kg/cm 2,其排气口136处高压二氧化碳冷媒的压力为单级时40kg/cm 2-98kg/cm 2,采用双级增压机时出口压力为98kg/cm 2-180kg/cm 2
所述载冷剂为气态载冷剂或液体载冷剂,所述气态载冷剂为空气、氮气或氩气,所述液体载冷剂为水、盐水、乙二醇或丙二醇溶液。优选地,载冷剂可直接采用室外空气,经除尘和除菌后一次换热直接通入室内。
此外,根据需要载冷剂还可以采用双载冷剂结合的方式,如气态载冷剂和液态载冷剂的结合,先以液态载冷剂如水、盐水、乙二醇或丙二醇溶液作为该制冷系统的第一载冷剂与二氧化碳冷媒换热实现降温制冷,然后再以空气作为第二载冷剂与第一载冷剂进行热交换实现降温制冷,降温后的第二载冷剂室外空气则可直接通入室内使用。
所述冷媒和载冷剂换热器300出口处的所述中压常温气态二氧化碳气体的 压力为1.5kg/cm 2-40kg/cm 2。所述冷媒和载冷剂换热器300外表面通过的高风量的所述室外常温空气与其内通过的高压高温的气态或超临界态二氧化碳冷媒降温转换为高压常温的气态或超临界流体的二氧化碳冷媒。
本实施例中经冷媒和载冷剂换热器300热换热后的中压常温二氧化碳气体经气态二氧化碳冷媒无油增压机100和室外空气能主机200进行再次增压及换热降温后,存储于所述冷媒循环罐内进行循环利用,提高了二氧化碳的容积制冷量,有效降低了空调的运行成本。
实施例三
如图2所示,基于上述实施例二所述的二氧化碳冷媒用于制热时的循环系统,本实施例提供一种二氧化碳冷媒用于制热时的循环方法,制热程序包括如下步骤:
S11,将室外空气能主机200的入口配置为连接冷媒和载冷剂换热器300的出口,其出口配置为连接气态二氧化碳冷媒无油增压机100的入口,以及将所述气态二氧化碳冷媒无油增压机100的出口配置为连接所述冷媒和载冷剂换热器300的入口,形成制热循环通路;
S12,启动气态二氧化碳冷媒无油增压机100,将室外空气能主机200内吸收空气热量气化后的中压低温冷媒增压转换为高温高压二氧化碳冷媒,并将高温高压二氧化碳冷媒通入冷媒和载冷剂换热器300内;
S13,通入冷媒和载冷剂换热器300的高温高压二氧化碳冷媒向载冷剂释放热量后转换为高压常温液态冷媒,并通入室外空气能主机200,实现二氧化碳冷媒气体增压循环系统的制热程序,载冷剂吸收热量实现制热目的;
S14,通入室外空气能主机200内的高压常温液态冷媒吸收空气热量后转换为中压低温气态冷媒,然后流入气态二氧化碳冷媒无油增压机100的入口经再次增压后转换为高温高压二氧化碳冷媒,重复步骤S11至S14实现冷媒的循环利用。
实施例四
如图2所示,基于上述实施例二所述的二氧化碳冷媒用于制冷时的循环系统,本实施例提供一种二氧化碳冷媒用于制冷时的循环方法,制冷程序包括如下步骤:
S21,将室外空气能主机200的入口配置为连接气态二氧化碳冷媒无油增压 机100的出口,其出口配置为连接冷媒和载冷剂换热器300的入口,以及将所述冷媒和载冷剂换热器300的出口配置为连接所述气态二氧化碳冷媒无油增压机100的入口,形成制冷循环通路;
S22,启动气态二氧化碳冷媒无油增压机100,将在冷媒和载冷剂换热器300内吸收载冷剂热量和/或地冷系统的中压常温气态冷媒增压转换为高温高压二氧化碳冷媒,并将高温高压二氧化碳冷媒通入室外空气能主机200内;
S23,通入室外空气能主机200内的高温高压二氧化碳冷媒向空气释放热量后,转换为高压常温冷媒,再通过节流膨胀阀400降压和体积膨胀后转化为中压低温冷媒,然后通入对应的冷媒和载冷剂换热器300;
S24,通入冷媒和载冷剂换热器300的中压低温气态冷媒吸收载冷剂热量成为中压常温冷媒,然后通入气态二氧化碳冷媒无油增压机100重复步骤S21至S24实现二氧化碳冷媒气体增压循环系统的制冷程序;且载冷释放热量实现制冷目的。
以上对本发明的具体实施例进行了详细描述,但其只是作为范例,本发明并不限制于以上描述的具体实施例。对于本领域技术人员而言,任何对本发明进行的等同修改和替代也都在本发明的范畴之中。因此,在不脱离本发明的精神和范围下所作的均等变换和修改,都应涵盖在本发明的范围内。

Claims (11)

  1. 气态二氧化碳冷媒无油增压机,其特征在于,包括一组用于气态二氧化碳冷媒增压的气体增压单元,所述气体增压单元包括:
    曲轴运动机构,所述曲轴运动机构用于实现连杆远端端部的直线往复运动;
    活塞工作机构,所述活塞工作机构的活塞在所述连杆驱动下采用无润滑油形式进行直线往复运动;和
    气体循环机构,所述气体循环机构的可变密封容积腔在一侧所述活塞的驱动下吸入一定压力的气态二氧化碳冷媒,并将其增压为高压二氧化碳冷媒后排出。
  2. 根据权利要求1所述的气态二氧化碳冷媒无油增压机,其特征在于,所述曲轴运动机构包括:曲轴、连杆、限位机体和十字接头、密封的耐压壳体;
    其中,所述曲轴通过调速电机驱动并通过所述连杆连接所述十字接头,所述十字接头活动装设于所述限位机体上的十字中空腔内,所述耐压壳体用于防止机构运动过程中的冷媒泄漏。
  3. 根据权利要求2所述的气态二氧化碳冷媒无油增压机,其特征在于,所述活塞工作机构包括:活塞杆、缸体和活塞;
    其中,所述活塞采用无润滑油形式装配于所述缸体内,且其一端通过活塞杆固定连接所述十字接头。
  4. 根据权利要求3所述的气态二氧化碳冷媒无油增压机,其特征在于,所述气体循环机构包括:可变密封容积腔和与所述可变密封容积腔连通的进气阀、排气阀;
    其中,所述可变密封容积腔由所述活塞与所述缸体前端的腔体构成,所述进气阀和排气阀设置于所述缸体前端的壳体上。
  5. 根据权利要求4所述的气态二氧化碳冷媒无油增压机,其特征在于,所述气体循环机构还包括:缸头和设置于所述缸头上的进气口、排气口;
    其中,所述缸头固定于所述缸体前端,且所述进气口连接所述进气阀,所述排气口连接所述排气阀。
  6. 根据权利要求1至5任一项所述的气态二氧化碳冷媒无油增压机,其特征在于,所述气体增压单元为一个,形成单级增压,其进气口处气态二氧化碳冷媒的压力为1.5kg/cm 2-40kg/cm 2,其排气口处高压二氧化碳冷媒的压力为40kg/cm 2-98kg/cm 2
  7. 二氧化碳冷媒用于制冷或制热时的循环系统,其特征在于,包括:
    如权利要求1至6任一项所述的气态二氧化碳冷媒无油增压机,所述气态二氧化碳冷媒无油增压机用于为系统内的气态二氧化碳冷媒增压,以将其转化为高温高压二氧化碳冷媒;
    室外空气能主机,所述室外空气能主机在制热时连接冷媒和载冷剂换热器的出口,用于将完成放热后的高压常温液态冷媒吸收空气热量转换为中压低温气态冷媒;或在制冷时连接所述气态二氧化碳冷媒无油增压机的出口,用于将其出口处的高温高压冷媒向空气释放热量转换为高压常温冷媒;
    冷媒和载冷剂换热器,所述冷媒和载冷剂换热器的一端连接所述室外空气能主机,另一端连接所述气态二氧化碳冷媒无油增压机,在制冷时用于通过高压常温的二氧化碳冷媒经JT效应成为低压低温的气态冷媒,低温气态冷媒在复热过程中吸收载冷剂的热量实现制冷;在制热时通过高温高压二氧化碳冷媒向载冷剂释放热量实现载冷剂的制热。
  8. 根据权利要求7所述的二氧化碳冷媒用于制冷或制热时的循环系统,其特征在于,还包括:
    电子膨胀阀,所述电子膨胀阀安装于所述室外空气能主机和所述冷媒和载冷剂换热器之间,用于对经所述室外空气能主机向室外空气释放热量的高压常温冷媒进行降压和体积膨胀,然后进入冷媒和载冷剂换热器。
  9. 根据权利要求7所述的二氧化碳冷媒用于制冷或制热时的循环系统,其特征在于,所述气态二氧化碳冷媒无油增压机采用单级增压机形式,在出口压力为98kg/cm 2至180kg/cm 2时采用双级增压机。
  10. 根据权利要求7所述的二氧化碳冷媒用于制冷或制热时的循环系统,其特征在于,所述载冷剂为气态载冷剂或液体载冷剂,所述气态载冷剂为空气、氮气或氩气,所述液体载冷剂为水、盐水、乙二醇或丙二醇溶液。
  11. 如权利要求7至10任一项所述系统的二氧化碳冷媒气体增压循环方法,其特征在于,包括制热程序和制冷程序:
    (一)制热程序
    S11,将室外空气能主机的入口配置为连接冷媒和载冷剂换热器的出口,其出口配置为连接气态二氧化碳冷媒无油增压机的入口,以及将所述气态二氧化碳 冷媒无油增压机的出口配置为连接所述冷媒和载冷剂换热器的入口,形成制热循环通路;
    S12,启动气态二氧化碳冷媒无油增压机,将室外空气能主机内吸收空气热量气化后的中压低温冷媒增压转换为高温高压二氧化碳冷媒,并将高温高压二氧化碳冷媒通入冷媒和载冷剂换热器内;
    S13,通入冷媒和载冷剂换热器的高温高压二氧化碳冷媒向载冷剂释放热量后转换为高压常温液态冷媒,并通入室外空气能主机,实现二氧化碳冷媒气体增压循环系统的制热程序,载冷剂吸收热量实现制热目的;
    S14,通入室外空气能主机内的高压常温液态冷媒吸收空气热量后转换为中压低温气态冷媒,然后流入气态二氧化碳冷媒无油增压机的入口经再次增压后转换为高温高压二氧化碳冷媒,重复步骤S11至S14实现冷媒的循环利用;
    (二)制冷程序
    S21,将室外空气能主机的入口配置为连接气态二氧化碳冷媒无油增压机的出口,其出口配置为连接冷媒和载冷剂换热器的入口,以及将所述冷媒和载冷剂换热器的出口配置为连接所述气态二氧化碳冷媒无油增压机的入口,形成制冷循环通路;
    S22,启动气态二氧化碳冷媒无油增压机,将在冷媒和载冷剂换热器内吸收载冷剂热量和/或地冷系统的中压常温气态冷媒增压转换为高温高压二氧化碳冷媒,并将高温高压二氧化碳冷媒通入室外空气能主机内;
    S23,通入室外空气能主机内的高温高压二氧化碳冷媒向空气释放热量后,转换为高压常温冷媒,再通过节流膨胀阀降压和体积膨胀后转化为中压低温冷媒,然后通入对应的冷媒和载冷剂换热器;
    S24,通入冷媒和载冷剂换热器的中压低温气态冷媒吸收载冷剂热量成为中压常温冷媒,然后通入气态二氧化碳冷媒无油增压机重复步骤S21至S24实现二氧化碳冷媒气体增压循环系统的制冷程序;且载冷释放热量实现制冷目的。
PCT/CN2022/123399 2021-09-30 2022-09-30 气态二氧化碳冷媒无油增压机及二氧化碳冷媒用于制冷或制热时的循环系统和方法 WO2023051800A1 (zh)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
CN202111159773 2021-09-30
CN202122393345.6 2021-09-30
CN202111159773.0 2021-09-30
CN202122393345 2021-09-30

Publications (1)

Publication Number Publication Date
WO2023051800A1 true WO2023051800A1 (zh) 2023-04-06

Family

ID=85781361

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/123399 WO2023051800A1 (zh) 2021-09-30 2022-09-30 气态二氧化碳冷媒无油增压机及二氧化碳冷媒用于制冷或制热时的循环系统和方法

Country Status (1)

Country Link
WO (1) WO2023051800A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116877418A (zh) * 2023-09-07 2023-10-13 福建省福安市力德泵业有限公司 一种利用输送流体进行冷却的密封往复泵

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004003801A (ja) * 2002-04-26 2004-01-08 Matsushita Electric Ind Co Ltd 二酸化炭素を冷媒として用いた冷凍装置
CN2679397Y (zh) * 2004-01-01 2005-02-16 李抱龙 全无油带十字头体压缩机
CN101275790A (zh) * 2008-04-16 2008-10-01 张信荣 利用二氧化碳作为循环工质的低温制冷方法及其热泵系统
CN209761653U (zh) * 2019-03-22 2019-12-10 中山市艾能机械有限公司 一种无油增压的高压压缩机
CN113375358A (zh) * 2021-05-13 2021-09-10 上海颐柏企业管理有限公司 车载二氧化碳相变循环制冷系统及循环方法和车载制冷器
CN113432329A (zh) * 2021-07-12 2021-09-24 甘肃一德新能源设备有限公司 中间冷媒过冷式二氧化碳空调系统

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004003801A (ja) * 2002-04-26 2004-01-08 Matsushita Electric Ind Co Ltd 二酸化炭素を冷媒として用いた冷凍装置
CN2679397Y (zh) * 2004-01-01 2005-02-16 李抱龙 全无油带十字头体压缩机
CN101275790A (zh) * 2008-04-16 2008-10-01 张信荣 利用二氧化碳作为循环工质的低温制冷方法及其热泵系统
CN209761653U (zh) * 2019-03-22 2019-12-10 中山市艾能机械有限公司 一种无油增压的高压压缩机
CN113375358A (zh) * 2021-05-13 2021-09-10 上海颐柏企业管理有限公司 车载二氧化碳相变循环制冷系统及循环方法和车载制冷器
CN113432329A (zh) * 2021-07-12 2021-09-24 甘肃一德新能源设备有限公司 中间冷媒过冷式二氧化碳空调系统

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116877418A (zh) * 2023-09-07 2023-10-13 福建省福安市力德泵业有限公司 一种利用输送流体进行冷却的密封往复泵
CN116877418B (zh) * 2023-09-07 2023-11-28 福建省福安市力德泵业有限公司 一种利用输送流体进行冷却的密封往复泵

Similar Documents

Publication Publication Date Title
CN104929706A (zh) 联合循环供能系统
WO2021089000A1 (zh) 一种跨临界二氧化碳制冷方法及其装置
WO2023193486A1 (zh) 一种常温液态压缩二氧化碳混合工质储能系统及方法
CN107843020A (zh) 一种跨临界co2双级压缩增压制冷系统
CN208920650U (zh) 一种制冷系统
WO2023051800A1 (zh) 气态二氧化碳冷媒无油增压机及二氧化碳冷媒用于制冷或制热时的循环系统和方法
CN203603990U (zh) 冷能液态空气发动机系统
CN201463387U (zh) 一种双循环工业冷水机组
CN105004095A (zh) 一种跨临界循环与两级吸收式热泵联产的复合热泵系统
CN202885326U (zh) 双机双级压缩冷冻机组
CN109506391A (zh) 热驱动无泵吸收式辅助过冷的跨临界co2的制冷系统
CN201945082U (zh) 一体式工业冷水机组
CN105509359A (zh) 一种相变波转子自复叠制冷系统及其工作方法
CN105352213A (zh) 蒸汽与空气复叠式制冷系统
CN105019954A (zh) 联合循环供能系统
CN210772852U (zh) 一种跨临界二氧化碳制冷装置
CN103527274A (zh) 冷能液态空气(液氮)发动机体系
CN206953941U (zh) 一种余热驱动吸收式制冷辅助过冷的co2汽车空调
CN213984106U (zh) 一种二氧化碳制冷空调系统
CN104963733A (zh) 联合循环供能系统
CN206338981U (zh) 节能制冷设备及其系统
CN1175663A (zh) 利用低温工质制冷发电的方法及制冷发电站
CN209925039U (zh) 一种二氧化碳跨临界循环冷电联产系统
CN211823234U (zh) 一种耦合制冷系统
CN112524832A (zh) 一种采用二氧化碳制冷的新型空调制冷系统

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22875181

Country of ref document: EP

Kind code of ref document: A1