WO2023051765A1 - 一种高压连接机构、电能传输装置及机动车辆 - Google Patents

一种高压连接机构、电能传输装置及机动车辆 Download PDF

Info

Publication number
WO2023051765A1
WO2023051765A1 PCT/CN2022/123143 CN2022123143W WO2023051765A1 WO 2023051765 A1 WO2023051765 A1 WO 2023051765A1 CN 2022123143 W CN2022123143 W CN 2022123143W WO 2023051765 A1 WO2023051765 A1 WO 2023051765A1
Authority
WO
WIPO (PCT)
Prior art keywords
connection mechanism
terminal
plug
male
female
Prior art date
Application number
PCT/CN2022/123143
Other languages
English (en)
French (fr)
Inventor
王超
Original Assignee
长春捷翼汽车零部件有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN202122400679.1U external-priority patent/CN217215197U/zh
Priority claimed from CN202111167061.3A external-priority patent/CN113922123A/zh
Application filed by 长春捷翼汽车零部件有限公司 filed Critical 长春捷翼汽车零部件有限公司
Priority to JP2024518260A priority Critical patent/JP2024536048A/ja
Priority to EP22875146.7A priority patent/EP4411996A1/en
Priority to MX2024004075A priority patent/MX2024004075A/es
Publication of WO2023051765A1 publication Critical patent/WO2023051765A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01RELECTRICALLY-CONDUCTIVE CONNECTIONS; STRUCTURAL ASSOCIATIONS OF A PLURALITY OF MUTUALLY-INSULATED ELECTRICAL CONNECTING ELEMENTS; COUPLING DEVICES; CURRENT COLLECTORS
    • H01R13/00Details of coupling devices of the kinds covered by groups H01R12/70 or H01R24/00 - H01R33/00
    • H01R13/648Protective earth or shield arrangements on coupling devices, e.g. anti-static shielding  
    • H01R13/658High frequency shielding arrangements, e.g. against EMI [Electro-Magnetic Interference] or EMP [Electro-Magnetic Pulse]
    • H01R13/6591Specific features or arrangements of connection of shield to conductive members
    • H01R13/6592Specific features or arrangements of connection of shield to conductive members the conductive member being a shielded cable
    • H01R13/6593Specific features or arrangements of connection of shield to conductive members the conductive member being a shielded cable the shield being composed of different pieces
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01RELECTRICALLY-CONDUCTIVE CONNECTIONS; STRUCTURAL ASSOCIATIONS OF A PLURALITY OF MUTUALLY-INSULATED ELECTRICAL CONNECTING ELEMENTS; COUPLING DEVICES; CURRENT COLLECTORS
    • H01R13/00Details of coupling devices of the kinds covered by groups H01R12/70 or H01R24/00 - H01R33/00
    • H01R13/648Protective earth or shield arrangements on coupling devices, e.g. anti-static shielding  
    • H01R13/658High frequency shielding arrangements, e.g. against EMI [Electro-Magnetic Interference] or EMP [Electro-Magnetic Pulse]
    • H01R13/6591Specific features or arrangements of connection of shield to conductive members
    • H01R13/65912Specific features or arrangements of connection of shield to conductive members for shielded multiconductor cable
    • H01R13/65917Connection to shield by means of resilient members
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01RELECTRICALLY-CONDUCTIVE CONNECTIONS; STRUCTURAL ASSOCIATIONS OF A PLURALITY OF MUTUALLY-INSULATED ELECTRICAL CONNECTING ELEMENTS; COUPLING DEVICES; CURRENT COLLECTORS
    • H01R13/00Details of coupling devices of the kinds covered by groups H01R12/70 or H01R24/00 - H01R33/00
    • H01R13/02Contact members
    • H01R13/193Means for increasing contact pressure at the end of engagement of coupling part, e.g. zero insertion force or no friction
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01RELECTRICALLY-CONDUCTIVE CONNECTIONS; STRUCTURAL ASSOCIATIONS OF A PLURALITY OF MUTUALLY-INSULATED ELECTRICAL CONNECTING ELEMENTS; COUPLING DEVICES; CURRENT COLLECTORS
    • H01R13/00Details of coupling devices of the kinds covered by groups H01R12/70 or H01R24/00 - H01R33/00
    • H01R13/46Bases; Cases
    • H01R13/502Bases; Cases composed of different pieces
    • H01R13/504Bases; Cases composed of different pieces different pieces being moulded, cemented, welded, e.g. ultrasonic, or swaged together
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01RELECTRICALLY-CONDUCTIVE CONNECTIONS; STRUCTURAL ASSOCIATIONS OF A PLURALITY OF MUTUALLY-INSULATED ELECTRICAL CONNECTING ELEMENTS; COUPLING DEVICES; CURRENT COLLECTORS
    • H01R2201/00Connectors or connections adapted for particular applications
    • H01R2201/26Connectors or connections adapted for particular applications for vehicles
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01RELECTRICALLY-CONDUCTIVE CONNECTIONS; STRUCTURAL ASSOCIATIONS OF A PLURALITY OF MUTUALLY-INSULATED ELECTRICAL CONNECTING ELEMENTS; COUPLING DEVICES; CURRENT COLLECTORS
    • H01R31/00Coupling parts supported only by co-operation with counterpart
    • H01R31/08Short-circuiting members for bridging contacts in a counterpart

Definitions

  • the invention relates to the technical field of charging, in particular to a high-voltage connection mechanism, an electric energy transmission device and a motor vehicle.
  • the new energy battery of the new energy vehicle uses a charging system to supplement energy.
  • the charging system also has a high-voltage connection mechanism connected to the battery system.
  • the charging harness is the most important unit in the high-voltage system of an electric vehicle.
  • the traditional charging harness uses copper wires as charging cables, and the ends of the copper wires are connected to plug terminals. , is electrically connected to the battery system.
  • the current high-voltage connection mechanism is an assembly structure connector, which has problems such as complex structure, difficult assembly, and high cost of the connector.
  • the amount of copper used in cables and terminals is high, and the connection process is more complicated.
  • the cost of the high-voltage connection mechanism is also high. s reason.
  • the general charging system will install a temperature measurement structure on the charging base, and there is no setting on the charging harness connector, but the conduction current is the same.
  • the temperature of the charging harness connector rises, it also needs to be monitored and stopped charging in time work to protect the safety of the charging harness and battery system.
  • high voltage cables and data communication cables are used for conduction of current and signals.
  • high-voltage cables and data communication cables usually use shielded cables.
  • the shield of the shielded cable is connected to the shield and grounded.
  • a shielded cable usually includes a guide core and a shielding layer arranged in sequence from the inside to the outside.
  • the end of the cable is usually connected with a connector.
  • the connector generally does not have a shielding device for shielding, resulting in a large electromagnetic interference at the connector position.
  • a metal cover is provided inside or outside the connector to achieve a shielding effect.
  • the metal cover is difficult to process and the cost is high; the assembly of the metal cover and the connector is also more troublesome, which increases the assembly man-hour; and when the metal cover is inside the connection part, it is easy to short-circuit with the conductor core, resulting in damage to the shielding layer or even the cable being damaged. Burned out, serious accident occurred.
  • the charging system urgently needs a high-voltage connection mechanism and power transmission device with simple structure, cost advantage, and self-shielding effect.
  • the purpose of the present invention is to provide a high-voltage connection mechanism.
  • the male-end shielding shell and the female-end shielding shell are integrally injection-molded.
  • the processing is simple and the cost is much lower than that of the shielding metal shell.
  • the electrical connection with the cable shielding network can effectively shield the electromagnetic interference inside the high-voltage connection mechanism and reduce the electromagnetic interference to other equipment.
  • the present invention provides a high-voltage connection mechanism, which includes a male-end connection mechanism and a female-end connection mechanism.
  • the male-end connection mechanism includes a first cable, a plug-in terminal, and is integrated with the first cable and the plug-in terminal.
  • the female end connection mechanism includes a plug-in terminal, a second cable, and the plug-in terminal and the second wire
  • the female end shell integrally formed with the cable, and the female end shielding shell arranged outside the female end shell; the male end connection mechanism and the female end connection mechanism pass through the plug terminal and the mating terminal Electrically connected, the male end shell is connected to the female end shell, and the male end shielding shell is connected to the female end shielding shell.
  • the first cable includes a first shielding layer, and the male end shielding shell is at least partially electrically connected to the first shielding layer;
  • the second cable includes a second shielding layer layer, the female terminal shielding shell is at least partially electrically connected to the second shielding layer.
  • the shielding shell of the male terminal includes a first shielding device, the first cable includes a first shielding layer, and the first shielding device is arranged at least part of the outer periphery of the first shielding layer, so The first shielding layer is electrically connected to the male-end shielding shell through the first shielding device; the female-end shielding shell includes a second shielding device, the second cable includes a second shielding layer, and the first shielding shell includes a second shielding device.
  • Two shielding devices are disposed on at least part of the outer periphery of the second shielding layer, and the second shielding layer is electrically connected to the female terminal shielding shell through the second shielding device.
  • the inner surface of the shielding shell of the male end is provided with a first conductive elastic piece
  • the first cable includes a first shielding layer
  • the first conductive elastic piece is connected to the first shielding layer
  • the first conductive elastic piece applies pressure to the first shielding layer
  • the inner surface of the female terminal shielding shell is provided with a second conductive elastic piece
  • the second cable includes a second shielding layer
  • the second conductive The elastic piece is connected to the second shielding layer, and the second conductive elastic piece exerts pressure on the second shielding layer.
  • the upper pressure range of the first conductive elastic sheet applied to the first shielding layer is 0.3N-95N; the upper pressure range of the second conductive elastic sheet applied to the second shielding layer is 0.3N-95N.
  • the first cable includes a first shielding layer, and the impedance between the male terminal shielding shell and the first shielding layer is less than 80m ⁇ ;
  • the second cable includes a second shielding layer , the impedance between the female terminal shielding shell and the second shielding layer is less than 80m ⁇ .
  • the transfer impedance of the shielding shell at the male end or the shielding shell at the female end is less than 100 m ⁇ .
  • the plug terminal includes a first fixing part and an insertion part arranged in sequence, the first fixing part is electrically connected to the conductive part of the first cable, and the insertion part is Sheet or with primary grip groove.
  • the plug-in part is sheet-shaped, and the plug-in part at least partially protrudes from the male end shell, or the male end shell has a first accommodating cavity, and the plug-in part at least partially Protrude from the bottom surface of the first accommodating cavity, but not beyond the male end housing.
  • At least part of the first clamping groove protrudes from the outer wall of the male end housing, or a first opening boss is provided on the male end housing, and the insertion part is at least partially disposed on the outer wall of the male end housing. inside the first opening boss.
  • the male-end shielding shell covers at least part of the male-end shell, the male-end shielding shell has an opening, and the plug-in part protrudes from the opening or is in the opening .
  • the male end connection mechanism includes an interlock connector, and at least part of the interlock connector is integrally molded in the male end housing.
  • the mating terminal includes a second fixing part and a mating part arranged in sequence, the second fixing part is electrically connected to the conductive part of the second cable, and the mating part is Sheet-shaped or with a second clip groove;
  • the plug-in terminal includes a first fixed part and a plug-in part arranged in sequence, the plug-in part is electrically connected to the plug-in part, and the plug-in part is sheet-shaped Or with the first clip groove.
  • a clip is sheathed on the outer periphery of the first clip groove or the second clip groove, and the material of the clip is memory alloy.
  • the transformation temperature of the memory alloy is set within the range of 40°C-70°C, and when the temperature of the clip is lower than the transformation temperature, the clip is in an expanded state; When the temperature of the clip is higher than the transformation temperature, the clip is in a clamped state.
  • a clip is sheathed on the outer periphery of the first clip groove or the second clip groove, and the clip includes a side wall and an elastic unit fixed on the side wall, and the elastic unit and The contact connection of the first clamping groove or the second clamping groove.
  • the force applied by the elastic unit to the first clamping groove or the second clamping groove ranges from 3N-200N.
  • the elastic unit is an elastic rubber body, a spring or a metal shrapnel.
  • the plug-in part is sheet-shaped, and the plug-in part at least partially protrudes from the housing of the female end, or the housing of the female end has a second accommodating cavity, and the plug-in part at least partially Protrude from the bottom surface of the second accommodating cavity, but not beyond the housing of the female end.
  • the mating part has a second clamping groove, and the second clamping groove at least partially protrudes from the outer wall of the female end housing, or the female end housing is provided with a second opening boss , the mating portion is at least partially disposed in the second opening boss.
  • the plug-in part or the plug-in part is formed by stacking multi-layer terminal stacks, the plug-in part has a first clamping groove, and the first clamping groove and the sheet-shaped The mating part is mated and connected; or the mating part has a second clip groove, and the second clip groove is mated and connected with the sheet-shaped plug part.
  • the terminal stack includes a terminal fixing portion, and the first clamping groove or the second clamping groove is fixedly connected to the terminal fixing portion.
  • two adjacent terminal fixing parts are connected together by crimping, welding, screwing, riveting or splicing.
  • first clamping groove or the second clamping groove is contact-connected between two adjacent terminal stacks.
  • the gap between two adjacent terminal laminations of the first clamping groove or the second clamping groove is less than 0.2 mm.
  • the female connection mechanism has a high-voltage interlock structure, and the high-voltage interlock structure is electrically connected with the interlock connector to form a loop.
  • the male end connection mechanism and/or the female end connection mechanism has a sealing structure.
  • the sealing structure is overmolded on the male end connection mechanism and/or the female end connection mechanism.
  • the male end connection mechanism and/or the female end connection mechanism has at least one temperature measuring structure for measuring the temperature of the plug terminal and/or the mating terminal.
  • the temperature measuring structure is attached to the plug terminal and/or the mating terminal, and is used to measure the temperature of the plug terminal and/or the mating terminal.
  • the male-end connection mechanism and the female-end connection mechanism are connected through adhesive connection, magnetic connection, bayonet connection, plug connection, lock connection, binding connection, screw connection, rivet connection and welding Connection in one or more ways.
  • At least part of the outer circumference of the shielding shell at the male end or the shielding shell at the female end is injection-molded with an outer insulating shell at the male end or an outer insulating shell at the female end.
  • the plugging force between the plug terminal and the counter-plug terminal is between 3N-150N.
  • the plugging force between the plug terminal and the mating terminal is between 10N-130N.
  • the contact resistance between the plug terminal and the mating terminal is less than 9m ⁇ .
  • the contact resistance between the plug terminal and the counter-plug terminal is less than 1 m ⁇ .
  • the number of plugging and unplugging between the male end connection mechanism and the female end connection mechanism is greater than or equal to 10 times.
  • the weight of the female connection mechanism is less than or equal to 215g.
  • the height of the female end connection mechanism along the plug-in and pull-out direction is less than or equal to 276mm.
  • At least part of the surface of the plug terminal and/or the mating terminal is provided with a conductive anti-corrosion layer.
  • the conductive part of the first cable is integrated with the plug terminal.
  • the conductive part of the second cable is integrated with the mating terminal.
  • the present invention provides an electric energy transmission device, comprising the high-voltage connection mechanism described in any one of the above.
  • the present invention provides a motor vehicle, comprising the high-voltage connection mechanism described in any one of the above.
  • the high-voltage connection mechanism of the present invention is provided with an injection-molded male-end shielding shell and a female-end shielding shell.
  • the processing is simple, and the cost is much lower than that of a shielded metal shell.
  • the electrical connection of the cable shielding layer can effectively shield the electromagnetic interference inside the high-voltage connection mechanism and reduce the electromagnetic interference to other equipment.
  • the shielding shell at the male end and the shielding shell at the female end of the present invention are connected to the cable shielding layer in various ways, which can stably and effectively connect the shielding shell and the shielding layer, and achieve better shielding effect.
  • the terminal and the cable of the present invention are integrally injection-molded in the male-end housing and the female-end housing, without the need for terminal insertion and other work, reducing processing steps and production costs, and the integrally injection-molded male end
  • the shell and the female end shell are simple in structure, do not require high-precision injection molds, and because of complete sealing, the insulation effect is good.
  • the plug-in terminal can be mated with the plug-in terminal.
  • the plug-in part or the plug-in part is a plurality of terminal laminations.
  • the groove structure reduces the deformation and elastic weakening caused by the excessive thickness of the metal plate, and enables a larger contact area between the two to ensure the reliability of the connection and the conductive effect.
  • the opposite plug terminal and the plug terminal can ensure a stable clamping structure, reduce deformation, and increase the strength of the plug connection structure.
  • the embedded high-voltage interlock structure replaces the previous assembled high-voltage interlock, and is fixed in the connector by integral injection molding, without assembly, which reduces costs and fully meets the high-voltage interlock effect.
  • the sealing structure of the connector is no longer a separate sealing ring, but a secondary injection molding sealing structure instead of the traditional sealing ring, which can be directly molded on the connector, and the injection molding combination is better and the cost is reduced.
  • the temperature measuring mechanism is used to monitor the temperature of the terminals inside the connector independently, so as to avoid the failure to monitor the temperature of the connector due to the damage of the temperature sensor at other positions.
  • Fig. 1 is a schematic diagram of the assembly of the high-voltage connection mechanism in the present invention.
  • Fig. 2 is a schematic diagram of assembly of the female connection mechanism in the present invention.
  • Fig. 3 is a schematic diagram of the structure of the housing of the female end in the present invention.
  • Fig. 4 is a schematic diagram of the assembly structure of the second cable and the mating terminal in the present invention.
  • Fig. 5 is a schematic diagram of assembly of the male end connection mechanism in the present invention.
  • Fig. 6 is a schematic diagram of the structure of the shielding shell of the male end in the present invention.
  • Fig. 7 is a schematic diagram of the structure of the male housing in the present invention.
  • Fig. 8 is a schematic diagram of the assembly structure of the first cable and the plug-in terminal in the present invention.
  • Fig. 9 is a schematic diagram of the structure of the interlock connector in the present invention.
  • Fig. 10 is a schematic diagram of the high voltage interlock structure of the present invention.
  • Fig. 11 is a schematic cross-sectional view of the male end connection mechanism or the female end connection mechanism in the present invention.
  • Fig. 12 is another schematic cross-sectional view of the male end connection mechanism or the female end connection mechanism in the present invention.
  • Fig. 13 is another schematic cross-sectional view of the male end connection mechanism or the female end connection mechanism in the present invention.
  • Fig. 14 is a schematic diagram of the structure of the plug-in terminal and the counter-plug terminal in the present invention.
  • Fig. 15 is a schematic diagram of the structure of the clip in the present invention.
  • Fig. 16 is a schematic cross-sectional view of the assembly of the male-end connection mechanism and the female-end connection mechanism in the present invention.
  • Fig. 17 is a schematic cross-sectional view of another assembly of the male-end connection mechanism and the female-end connection mechanism in the present invention.
  • the first shielding layer 32.
  • the first shielding device 33.
  • the first conductive shrapnel 34.
  • the second shielding layer 35.
  • the second shielding device 36.
  • the second conductive shrapnel
  • a high-voltage connection mechanism including a male-end connection mechanism 10 and a female-end connection mechanism 20,
  • the male-end connection mechanism 10 includes a first cable 11, a plug terminal 12, and a The male end shell 13 and the male end shielding shell 14 arranged outside the male end shell 13;
  • the female end connection mechanism 20 includes a second cable 21, a mating terminal 22, and the second cable 21 and the mating terminal 22 are integrated Formed female end shell 23 and female end shielding shell 24 arranged outside the female end shell 23;
  • the male end connection mechanism 10 and the female end connection mechanism 20 are electrically connected to the mating terminal 22 through the plug terminal 12, and the male end shell 13 is connected to the female end shell 23, and the male end shielding shell 14 is connected to the female end shielding shell 24, as shown in FIGS. 1-7.
  • the high-voltage connection mechanism of the present invention is provided with an injection-molded male-end shielding shell 14 and a female-end shielding shell 24.
  • the processing is simple and the cost is much lower than that of a shielded metal shell.
  • the electrical connection with the cable shielding layer can effectively shield the electromagnetic interference inside the high-voltage connection mechanism and reduce the electromagnetic interference to other equipment.
  • the material of the insertion terminal 12 or the mating terminal 22 is nickel, cadmium, zirconium, chromium, cobalt, manganese, aluminum, tin, titanium, zinc, copper, silver, gold, phosphorus, tellurium,
  • One or more metal conductive materials of beryllium and lead, these materials are stable and have good conductivity, and the preferred material is a material containing copper or copper alloy or aluminum or aluminum alloy.
  • the conductive part of the first cable 11 or the second cable 21 is made of one or more of aluminum, phosphorus, tin, copper, iron, manganese, chromium, titanium and lithium, Among them, the material of the conductive part of the cable contains aluminum or aluminum alloy, which is one of the main means of energy saving and cost reduction in the near future.
  • copper wires are used to conduct current. Copper has high conductivity and good ductility. However, as the price of copper increases day by day, the material cost of using copper as a wire will become higher and higher. For this reason, people begin to look for the substitute of metallic copper to reduce cost. The content of metal aluminum in the earth's crust is about 7.73%.
  • the price is relatively low.
  • aluminum is lighter in weight and its conductivity is second only to copper.
  • Aluminum can replace part of copper in the field of electrical connections. Therefore, it is a development trend to replace copper with aluminum in the field of automotive electrical connections.
  • the first cable 11 includes a first shielding layer 31, and the male end shielding shell 14 is at least partially electrically connected to the first shielding layer 31;
  • the second cable 21 includes a second shielding layer 34, and the female The end shielding shell 24 is at least partially electrically connected to the second shielding layer 34 , as shown in FIG. 11 .
  • the first shielding layer 31 and the second shielding layer 34 are respectively arranged outside the conductive cores of the first cable 11 and the second cable 21, and the first cable 11 Electromagnetic shielding is carried out with the electromagnetic field generated after the second cable 21 is energized.
  • first cable 11 includes a first shielding layer 31, and the male end shielding shell 14 is at least partially electrically connected to the first shielding layer 31;
  • second cable 21 includes a second shielding layer 34, and the female end shielding shell 24 is at least partially electrically connected to the second shielding layer 34 , as shown in FIGS. 11-13 .
  • the male end shielding shell 14 is at least partially electrically connected to the first shielding layer 31, and the female end shielding shell 24 is at least partially electrically connected to the second shielding layer 34 to form a closed electromagnetic shielding structure, which can make the electromagnetic shielding The effect is optimal, and a closed electromagnetic shielding structure is formed, thereby effectively controlling the radiation of electromagnetic waves and having a good shielding effect.
  • the male end shielding shell 14 includes a first shielding device 32, the first cable 11 includes a first shielding layer 31, the first shielding device 32 is disposed on at least part of the outer periphery of the first shielding layer 31, and the first shielding layer 31 is electrically connected to the male end shielding shell 14 through the first shielding device 32;
  • the female end shielding shell 24 includes a second shielding device 35, the second cable 21 includes a second shielding layer 34, and the second shielding device 35 is arranged on the second At least part of the outer periphery of the shielding layer 34 , the second shielding layer 34 is electrically connected to the female terminal shielding shell 24 through the second shielding device 35 , as shown in FIG. 12 .
  • the first shielding layer 31 or the second shielding layer 34 can be a shielding mesh or conductive foil, the first shielding layer 31 or the second shielding layer 34 is a soft structure, and the male end shielding shell 14 and the female end shielding shell 24 Generally, it is a rigid structure. When the two are in contact, due to the deformation of the first shielding layer 31 or the second shielding layer 34, the male end shielding shell 14 or the female end shielding shell 24 will be in contact with the first shielding layer 31 or the second shielding layer 34.
  • the second shielding layer 34 is temporarily disconnected, so that the impedance of the contact position changes, resulting in the contact between the first shielding layer 31 of the first cable 11 and the male end shielding shell 14 or the second shielding layer 34 of the second cable 21
  • the shielding effect of the connection structure with the female terminal shielding shell 24 is unstable, thereby affecting signal transmission. Therefore, it is necessary to use the first shielding layer 31 and the first shielding device 32, and the second shielding device 35 is connected stably with the second shielding layer 34, and the first shielding device 32 or the second shielding device 35 is generally a rigid structure, which is convenient to be connected with
  • the male-end shielding shell 14 may form a good electrical connection with the female-end shielding shell 24 to achieve a stable shielding effect.
  • the inner surface of the male end shielding shell 14 is provided with a first conductive elastic piece 33
  • the first cable 11 includes a first shielding layer 31
  • the first conductive elastic piece 33 is connected to the first shielding layer 31, and the first conductive
  • the elastic sheet 33 exerts pressure on the first shielding layer 31
  • the inner surface of the female terminal shielding shell is provided with a second conductive elastic sheet 36
  • the second cable 21 includes a second shielding layer 34
  • the second conductive elastic sheet 36 and the second shielding layer 34 connected the second conductive spring 36 exerts pressure on the second shielding layer 34 , as shown in FIG. 13 .
  • the male end shielding shell 14 is connected to the first shielding layer 31 through the first conductive elastic piece 33, and the female end shielding shell 24 is connected to the second shielding layer 34 through the second conductive elastic piece 36.
  • the first conductive elastic piece 33 and the second conductive elastic piece 36 At least part of it has elasticity, and this part has a tendency to shrink inwards to compress the first cable 11 or the second cable 21, on the one hand, it ensures that the male end shielding shell 14 and the first shielding layer 31, and the female end shielding shell 24 and the first shielding layer 31
  • the stability of the electrical connection between the second shielding layers 34, on the other hand the first cable 11 can be inserted into the male-end shielding shell 14 to achieve contact connection with the first conductive elastic piece 33, and the second cable 21 is inserted into the female-end shielding shell At 24 o'clock, the contact connection with the second conductive elastic piece 36 can be realized, which saves assembly and processing man-hours, as shown in FIGS. 11-13 .
  • the upper pressure range of the first conductive elastic piece 33 applied to the first shielding layer 31 is 0.3N-95N; the upper pressure range of the second conductive elastic piece 36 applied to the second shielding layer 34 is 0.3N-95N.
  • the inventor has carried out a targeted test, taking the pressure applied by the first conductive elastic piece 33 to the first shielding layer 31 as an example, the invention People selected the first conductive elastic piece 33 and the first shielding layer 31 of the same shape and size, and designed the pressure between the first conductive elastic piece 33 and the first shielding layer 31 to be different pressures to observe the first conductive elastic piece 33 and the contact resistance between the first shielding layer 31.
  • Table 1 The influence of the pressure of different conductive shrapnel and shielding layer on the contact resistance:
  • the detection method of contact resistance is to use a micro-resistance measuring instrument to measure the resistance at the contact position between the first conductive elastic piece 33 and the first shielding layer 31, and read the value on the micro-resistance measuring instrument.
  • contact A resistance less than 50 ⁇ is ideal.
  • the inventor found that when the pressure between the first conductive elastic piece 33 and the first shielding layer 31 is greater than 0.5N, the contact resistance value between the first conductive elastic piece 33 and the first shielding layer 31 is relatively good, and the trend of reduction is very strong. fast, and the pressure between the first conductive elastic piece 33 and the first shielding layer 31 is less than 50N, the manufacture, installation and use of the conductive elastic piece are very convenient, and the cost is also very low. Therefore, the inventor preferably applies the first conductive elastic piece 33 to The upper pressure range of the first shielding layer 31 is 0.5N-50N; the upper pressure range of the second conductive spring 36 applied to the second shielding layer 34 is 0.5N-50N.
  • connection between the first conductive elastic piece 33 and the male-end shielding shell 14, and between the second conductive elastic piece 36 and the female-end shielding shell 24 adopts welding, bonding, integral injection molding, and embedding. or card connection.
  • Welding methods including laser welding, ultrasonic welding, resistance welding, pressure diffusion welding or brazing, etc., use concentrated heat or pressure to make the first conductive shrapnel 33 and the male end shielding shell 14 or the second conductive shrapnel 36 and the female end
  • the contact position on the inner surface of the shielding shell 24 produces fusion connection, and the connection is stable by welding, and the connection of dissimilar materials can also be realized. Since the contact position is fused, the conductive effect is better.
  • the bonding method is to use conductive glue to bond the first conductive elastic piece 33 and the male-end shielding shell 14 or the second conductive elastic piece 36 and the inner surface of the female-end shielding shell 24 together.
  • This method does not require the use of equipment.
  • Conductive glue so that the first conductive elastic piece 33 and the male terminal shielding shell 14 or the second conductive elastic piece 36 and the inner surface of the female terminal shielding shell 24 are fully electrically connected, the conductive effect is good, but the connection strength is low, and it is suitable for connecting The strength requirement is not high, and the melting point or strength of the inner surface of the first conductive elastic piece 33 and the male-end shielding shell 14 or the female-end shielding shell 24 is relatively low.
  • the integral injection molding method is to put the first conductive elastic piece 33 or the second conductive elastic piece 36 into the injection mold.
  • it is directly integrally injected on the inner surface of the male-end shielding shell 14 or the female-end shielding shell 24, and processed Simple and fast, no other assembly process, saving assembly time.
  • the embedding method is to set a groove on the inner surface of the male-end shielding shell 14 or the female-end shielding shell 24, and then insert the first conductive elastic piece 33 or the second conductive elastic piece 36 into the groove, so that the first conductive elastic piece 33 or the second conductive elastic piece 36
  • the second conductive elastic piece 36 is fixed on the inner surface of the male-end shielding shell 14 or the female-end shielding shell 24 .
  • the clamping method is to set claws or claws on the inner surface of the male-end shielding shell 14 or the female-end shielding shell 24, and set corresponding grooves or claws on the first conductive elastic piece 33 or the second conductive elastic piece 36, and then insert The claws and the slots are assembled and connected, so that the first conductive elastic piece 33 or the second conductive elastic piece 36 is fixed on the inner surface of the male-end shielding shell 14 or the female-end shielding shell 24 .
  • the male-end shielding shell 14 and the female-end shielding shell 24 of the present invention are connected to the cable shielding net in various ways, which can stably and effectively connect the shielding shell and the shielding net to achieve a better shielding effect.
  • the first cable 11 includes a first shielding layer 31, and the impedance between the male end shielding shell 14 and the first shielding layer 31 is less than 80 m ⁇ ;
  • the second cable 21 includes a second shielding layer 34, and the female end The impedance between the shielding shell 24 and the second shielding layer 34 is less than 80m ⁇ .
  • the impedance between the male end shielding shell 14 and the first shielding layer 31, and the impedance between the female end shielding shell 24 and the second shielding layer 34 should be as small as possible, so that the first shielding layer 31 and the second shielding layer 34 produce The current will flow back to the energy source or the grounding position without hindrance; the impedance between the male end shielding shell 14 and the first shielding layer 31, and the impedance between the female end shielding shell 24 and the second shielding layer 34 are relatively large, A large current will be generated between the male end shielding shell 14 or the female end shielding shell 24 and the first shielding layer 31, so that the connection between the first cable 11 and the plug terminal 12 or the connection between the second cable 21 and the first shielding layer 31 will be generated. Greater radiation is generated at the connection of the mating terminal 22 .
  • the inventor selected the first cable 11 and the plug-in terminal 12 of the same specification, and selected different
  • the impedance between the male end shielding shell 14 and the first shielding layer 31 has produced a series of samples of the connection structure of the male end connecting mechanism 10, and sealed the opening of the male end shielding shell 14 with a metal shielding device to ensure that the entire male end The end shield shell 14 is in a fully shielded state.
  • the shielding effect of the connection structure between the male shielding shell 14 and the first shielding layer 31 was tested respectively, and the experimental results are shown in Table 2 below. In this embodiment, the shielding performance value greater than 40dB is an ideal value.
  • the inventors set the first cable 11 to include the first shielding layer 31, and the impedance between the male-end shielding shell 14 and the first shielding layer 31 is less than 80m ⁇ ;
  • the cable 21 includes a second shielding layer 34, and the impedance between the female terminal shielding shell 24 and the second shielding layer 34 is less than 80 m ⁇ .
  • the transfer impedance of the male-end shielding shell 14 or the female-end shielding shell 24 is less than 100 m ⁇ .
  • Shielding materials usually use transfer impedance to characterize the shielding effect of the male-end shielding shell 14 or the female-end shielding shell 24. The higher the transfer impedance The smaller, the better the shielding effect.
  • the transfer impedance of the male-end shielding shell 14 or the female-end shielding shell 24 is defined as the ratio of the differential mode voltage U induced by the shielding body per unit length to the current Is passing through the shielding body surface, namely:
  • the inventor selected the first cable 11 and the plug-in terminal 12 of the same specification, and adopted different transfer impedances.
  • a series of samples of the connection structure of the male end connection mechanism 10 were produced, and the opening of the male end shielding shell 14 was sealed with a metal shielding device to ensure that the entire male end shielding shell 14 was in a completely shielded state .
  • the shielding effect of the connection structure between the male shielding shell 14 and the first shielding layer 31 was tested respectively, and the experimental results are shown in Table 3 below. In this embodiment, the shielding performance value greater than 40dB is an ideal value.
  • the shielding performance value of the male-end connection mechanism 10 is less than 40dB, which does not meet the requirements of the ideal value, while the transfer impedance value of the male-end shielding shell 14 When it is less than 100m ⁇ , the shielding performance values of the male-end connection mechanism 10 all meet the requirements of the ideal value, and the trend is getting better and better.
  • the test effect of the female-end shielding shell 24 is the same as that of the male-end shielding shell 14. Therefore, The inventors set the transfer impedance of the male-end shielding shell 14 or the female-end shielding shell 24 to be less than 100 m ⁇ .
  • the material of the male-end shielding shell 14 or the female-end shielding shell 24 includes one or a combination of conductive ceramics, carbon-containing conductors, solid electrolytes, mixed conductors, and conductive polymer materials.
  • the inventor took the male-end shielding shell 14 as an example and used materials of the same size and different materials to make a sample of the male-end shielding shell 14.
  • the electrical conductivity of the male-end shielding shell 14 was tested respectively, and the experimental results are shown in Table 4 below. In this embodiment, the electrical conductivity of the male-end shielding shell 14 is greater than 99%, which is an ideal value.
  • the conductivity of the male-end shielding shell 14 made of the selected material is within the ideal value range. Therefore, the inventors set the material of the male-end shielding shell 14 to be conductive ceramics, carbon-containing conductors, A combination of one or more of solid electrolytes, mixed conductors, and conductive polymer materials.
  • the carbon-containing conductor contains one or more of graphite powder, carbon nanotube material, and graphene material.
  • the conductive polymer material is a polymer material containing metal particles, and the material of the metal particles contains nickel, cadmium, zirconium, chromium, cobalt, manganese, aluminum, tin, titanium, zinc, copper, silver, gold, phosphorus , tellurium, and beryllium, and the polymer material is made of polyvinyl chloride, polyethylene, polyamide, polytetrafluoroethylene, tetrafluoroethylene/hexafluoropropylene copolymer, ethylene/tetrafluoroethylene Copolymer, polypropylene, polyvinylidene fluoride, polyurethane, polyterephthalic acid, polyurethane elastomer, styrenic block copolymer, perfluoroalkoxyalkane, chlorinated polyethylene, polyphenylene sulfide, poly Styrene, silicone rubber, cross-linked polyolefin, ethylene propylene rubber, ethylene/
  • Polyoxymethylene is a smooth, glossy, hard and dense material, which is light yellow or white, and can be used for a long time in the temperature range of -40°C-100°C. Its wear resistance and self-lubrication are also superior to most engineering plastics, and it has good oil resistance and peroxide resistance.
  • Polycarbonate colorless and transparent, heat-resistant, impact-resistant, flame-retardant BI grade, has good mechanical properties in normal use temperature. Compared with polymethyl methacrylate with similar performance, polycarbonate has good impact resistance, high refractive index, good processability, and has very high flame retardancy without additives.
  • Polyamide non-toxic, light weight, excellent mechanical strength, good wear resistance and corrosion resistance, can replace copper and other metals in the manufacture of bearings, gears, pumps in machinery, chemical, instrumentation, automobile and other industries leaves and other parts.
  • the conductive polymer material is processed into a public body through one or more processes of extrusion process, injection molding process, dipping process, blow molding process, foaming process, spraying process, printing process, and 3D printing process.
  • the injection molding process refers to the process of making a semi-finished product of a certain shape through operations such as pressurizing, injecting, cooling, and detaching molten raw materials.
  • the plastic dipping process refers to the process in which the workpiece is heated by electricity to reach a certain temperature, and then dipped into the dipping liquid to let the dipping liquid solidify on the workpiece.
  • the blow molding process is to use an extruder to extrude a tubular parison, put it into the mold while it is hot, and blow it with compressed air to make it reach the shape of the mold cavity, and the product is obtained after cooling and setting.
  • the advantages are: it is suitable for a variety of plastics, it can produce large-scale products, it has high production efficiency, the temperature of the parison is more uniform and the investment in equipment is less.
  • the foaming process refers to the formation of a honeycomb or porous structure through the addition and reaction of a physical foaming agent or a chemical foaming agent in the foaming molding process or foaming polymer material.
  • the basic steps of foam molding are the formation of nuclei, the growth or expansion of nuclei, and the stabilization of nuclei. Under given temperature and pressure conditions, the solubility of the gas decreases, so that it reaches a saturated state, so that the excess gas is removed and bubbles are formed, thereby realizing nucleation.
  • the spraying process is a coating method in which the spraying material is dispersed into uniform and fine droplets by means of pressure or centrifugal force through a spray gun or a disc atomizer, and then applied to the surface of the object to be coated. It can be divided into air spraying, airless spraying, electrostatic spraying and various derivatives of the above basic spraying forms.
  • the printing process refers to the method of transferring ink or other viscous fluid materials to the surface of the object to be coated by using a printing plate, including screen printing, letterpress printing, flexographic printing, gravure printing or lithographic printing.
  • 3D printing process is a kind of rapid prototyping technology, also known as additive manufacturing. It is a technology based on digital model files and using bondable materials such as powdered metal or plastic to construct objects by layer-by-layer printing. .
  • the plug terminal 12 includes a first fixing part 121 and an insertion part 122 arranged in sequence, the first fixing part 121 is electrically connected to the conductive part of the first cable 11, and the insertion part 122 is a sheet or It has a first clamping groove 1221, as shown in Fig. 8 and Fig. 14 .
  • the first fixing part 121 is electrically connected with the conductive part of the first cable 11 to realize the function of conducting current.
  • the plug-in portion 122 of the plug-in terminal 12 is plug-connected with the counter-plug-in terminal 22 to realize electrical connection and conduction of current between the connectors.
  • the first fixing part 121 and the conductive part at the front end of the first cable 11 are connected by resistance welding, friction welding, ultrasonic welding, arc welding, laser welding, electron beam welding, pressure diffusion welding, magnetic induction welding, screw connection, snap connection , splicing and crimping in one or more ways to connect.
  • the resistance welding method refers to a method that uses a strong current to pass through the contact point between the electrode and the workpiece to generate heat from the contact resistance to achieve welding.
  • the first fixing part 121 and the first cable 11 are welded by resistance welding.
  • the friction welding method refers to the method of using the heat generated by the friction of the contact surface of the workpiece as a heat source to cause the workpiece to undergo plastic deformation under pressure for welding.
  • the first fixing part 121 and the first cable 11 are welded by friction welding.
  • the ultrasonic welding method uses high-frequency vibration waves to transmit to the surfaces of two objects to be welded. Under pressure, the surfaces of the two objects are rubbed against each other to form fusion between molecular layers.
  • the first fixed part 121 and the second fixed part 121 A cable 11 is ultrasonically welded.
  • the arc welding method refers to using the arc as a heat source and using the physical phenomenon of air discharge to convert electrical energy into thermal energy and mechanical energy required for welding, so as to achieve the purpose of connecting metals.
  • the main methods are electrode arc welding, submerged arc welding, and gas protection. welding etc.
  • Laser welding is an efficient and precise welding method that uses a high-energy-density laser beam as a heat source.
  • the electron beam welding method refers to the use of accelerated and focused electron beams to bombard the welding surface placed in a vacuum or non-vacuum, so that the workpiece to be welded is melted to achieve welding.
  • the pressure welding method is a method of applying pressure to the weldment so that the joint surfaces are in close contact to produce a certain plastic deformation to complete the welding.
  • the diffusion welding method refers to a solid-state welding method in which the workpiece is pressurized at high temperature without visible deformation and relative movement.
  • the magnetic induction welding method is that two workpieces to be welded are subjected to an instantaneous high-speed collision under the action of a strong pulsed magnetic field. Form a stable metallurgical bond. It is a kind of solid state cold welding, and the first fixing part 121 and the first cable 11 with similar or dissimilar properties can be welded together.
  • the threaded connection method refers to a threaded connection, a detachable connection in which the connected parts are integrated with a threaded part (or the threaded part of the connected part).
  • Commonly used threaded joints include bolts, studs, screws and set screws, etc., mostly standard parts.
  • the clamping method refers to setting corresponding claws or grooves on the connecting end or connecting surface, and assembling through the grooves and claws to make them connected together.
  • the advantage of the card connection method is that the connection is fast and detachable.
  • the splicing method refers to setting corresponding grooves and protrusions on the connecting end or connecting surface, and mortising or splicing the grooves and protrusions to assemble each other to make them connected together.
  • the advantage of splicing is that the connection is stable and detachable.
  • Crimping method is a production process in which the connecting end and the connecting surface are assembled, and then the two are stamped together using a crimping machine.
  • the advantage of crimping is mass production. By using an automatic crimping machine, it is possible to quickly manufacture a large number of stable quality products.
  • connection method According to the actual use environment, an appropriate connection method or combination of connection methods can be selected based on the actual use state of the first fixing part 121 of the plug terminal 12 and the first cable 11, so as to realize an effective electrical connection. .
  • the inserting portion 122 is in the form of a sheet, and the inserting portion 122 at least partially protrudes from the male end shell 13, or the male end shell 13 has a first accommodating cavity, and the inserting portion 122 at least partially protrudes from the bottom surface of the first accommodating cavity, but does not exceed the male end housing 13 .
  • the insertion part 122 is at least partly protrudingly arranged outside the male end housing 13, and can be directly connected to the plug terminal 12 in the female end housing 23, or can be arranged inside the first accommodating cavity of the male end housing 13.
  • the plug terminal 12 in the female housing 23 goes deep into the first accommodating cavity, and is plugged in with the plug portion 122 .
  • the insertion part 122 has a first clamping groove 1221 , and the first clamping groove 1221 at least partially protrudes from the outer wall of the male end shell 13 , or the male end shell 13 is provided with a second clamping groove 1221 .
  • An opening boss, the insertion part 122 is at least partially disposed in the first opening boss.
  • the insertion portion 122 protrudes from the male housing 13 and can be plugged in with the insertion terminal 12 disposed in the first opening boss.
  • the male end shell 13 has a first accommodating cavity, and the plug-in part 122 at least partially protrudes from the bottom surface of the first accommodating cavity, but does not exceed the male end shell 13, and can be plugged with the protruding outer wall of the female end shell 23. Terminal 12 for mating connection.
  • the male end shielding shell 14 covers at least part of the male end shell 13 , the male end shielding shell 14 has an opening, and the insertion part 122 protrudes from the opening or is inside the opening.
  • the socket part 122 in the male end housing 13 can be plugged in with the plug terminal 12 , and the male shielding shell 14 can be plugged in with the female shielding shell 24 to realize shielded electrical connection.
  • the male-end connection mechanism 10 includes an interlock connector 15 , and the interlock connector 15 is at least partly integrally molded in the male-end housing 13 .
  • High-voltage interlock is a safety design method that uses low-voltage signals to monitor the integrity of high-voltage circuits. The specific implementation forms of high-voltage interlocks have different designs for different projects. High-voltage interlocks monitor the accidental disconnection of high-voltage circuits to avoid sudden In the event of a loss of power, damage to the car is caused.
  • the high-voltage interlock in this embodiment has an interlock connector 15 at one end, which is a U-shaped or V-shaped low-voltage circuit that has two pairs of pins and is electrically connected to the two pairs of pins. It does not need to be installed and can be Through integral injection molding, it is directly molded in the male end shell 13, and matched with the high-voltage interlock structure 25 in the female end connection mechanism 20 to form a low-voltage monitoring circuit, as shown in Figure 16 and Figure 17, when this embodiment When the charging harness connector in the battery is accidentally disconnected, the interlock connector 15 and the high-voltage interlock structure 25 will also be disconnected at the same time, and the low-voltage monitoring circuit will give an alarm to the central control system, so that the car will not be shut down due to a sudden loss of power. cause damage.
  • the mating terminal 22 includes a second fixing portion 221 and a mating portion 222 arranged in sequence, and the second fixing portion 221 is electrically connected to the conductive part of the second cable 21 , the plug-in portion 222 is sheet-shaped or has a second clip groove 2221; the plug-in terminal 12 includes a first fixed portion 121 and a plug-in portion 122 arranged in sequence, and the plug-in portion 222 is electrically connected to the plug-in portion 122.
  • the part 122 is sheet-shaped or has a first clamping groove 1221 .
  • the sheet-shaped plug-in part 222 is connected to the first clamping groove 1221 of the plug-in part 122, or the sheet-shaped plug-in part 122 is connected to the second clamping groove 2221 of the plug-in part 222 to realize plug-in
  • the electrical connection between the terminal 22 and the plug terminal 12 also realizes the electrical connection between the first cable 11 and the second cable 21 , so that the electric current can be safely and stably conducted.
  • the conductive part of the second fixing part 221 and the front end of the second cable 21 adopts resistance welding, friction welding, ultrasonic welding, arc welding, laser welding, electron beam welding, pressure diffusion welding, magnetic induction welding, screw connection
  • resistance welding friction welding
  • ultrasonic welding ultrasonic welding
  • arc welding laser welding
  • electron beam welding electron beam welding
  • pressure diffusion welding pressure diffusion welding
  • magnetic induction welding screw connection
  • screw connection One or more of the methods of , clipping, splicing and crimping. This solution is the same as the connection method between the first fixing part 121 and the first cable 11 , and will not be repeated here.
  • a clip 50 is sheathed on the outer periphery of the first clip groove 1221 or the second clip groove 2221 , and the material of the clip 50 is memory alloy.
  • Memory alloy is a smart metal with memory. Its microstructure has two relatively stable states. At high temperature, this alloy can be changed into any desired shape, and at lower temperature, the alloy can be stretched. , but if it is reheated, it will remember its original shape and change back. The crystal structure of the memory alloy is different above and below the transformation temperature, but when the temperature changes up and down the transformation temperature, the memory alloy It will shrink or expand, causing its shape to change.
  • the memory alloy is Nitinol.
  • the transformation temperature of the memory alloy is set within the range of 40°C-70°C.
  • the temperature of the clip 50 is lower than the transformation temperature, the clip 50 is in an expanded state;
  • the temperature is higher than the transformation temperature, the clip 50 is in a clamped state.
  • the transformation temperature is selected between 40°C and 70°C, because if the transformation temperature is lower than 40°C, the ambient temperature of the plug terminal 12, the mating terminal 22 and the clamp 50 will be lower if there is no conduction current. It will also reach close to 40°C. At this time, the clamp 50 will be in a clamped state, and the strip-shaped groove of the first clamping groove 1221 or the second clamping groove 2221 of the plug-in terminal 12 or the mating terminal 22 becomes smaller, and the plug-in terminal 12 If it cannot be inserted into the mating terminal 22 , the plugging structure between the plugging terminal 12 and the mating terminal 22 will not be able to be plugged, and it will not be able to work.
  • the plug terminal 12 and the mating terminal 22 begin to conduct electricity after they are plugged together. Since the clip 50 is in an expanded state at the beginning of mating, the contact area between the plug terminal 12 and the mating terminal 22 is small, and the current Larger, resulting in the insertion of the plug-in terminal 12, the mating terminal 22 and the clamp 50 to start to heat up, and if the metamorphosis temperature is higher than 70 ° C, the heating time of the clamp 50 is long, and the plug-in terminal 12 and the mating terminal 22 If the plug-in structure is in a high-current state for a long time, it is easy to cause electrical aging. In severe cases, the plug-in structure of the plug-in terminal 12 and the mating terminal 22 will be overloaded and damaged, causing unnecessary losses.
  • the transformation temperature of the memory alloy is set between 40°C and 70°C.
  • the clip 50 has a memory function.
  • the strip-shaped grooves of the first clamping groove 1221 and the second clamping groove 2221 of the plug-in terminal 12 and the mating terminal 22 are usually in an expanded state.
  • the plug-in terminal 12 It can be docked with the mating terminal 22 without insertion force, which is convenient for the operator to easily mating the electrical appliances.
  • the plug terminal 12 and the mating terminal 22 conduct current. Due to the effect of resistance, the temperature of the plugging terminal 12 and the mating terminal 22 gradually rises.
  • the clamp 50 When the temperature rises above the abnormal temperature, the clamp 50 will diameter To shrink, the contact area and contact force between the first clamping groove 1221 and the second clamping groove 2221 of the plug-in terminal 12 and the first clamping groove 2221 of the plug-in terminal 22 are increased by the increase of temperature, and the contact reliability is improved. The requirement of insertion force is omitted, the work is easier and the work efficiency is improved.
  • the outer circumference of the first clip groove 1221 or the second clip groove 2221 is sheathed with a clip 50
  • the clip 50 includes a side wall 51 and an elastic unit 52 fixed on the side wall.
  • the elastic unit 52 is in contact with the first clamping groove 1221 or the second clamping groove 2221.
  • the clip 50 exerts pressure on the plug-in terminal 12 through the elastic unit 52 arranged on the side wall, so that the first clamping groove of the plug-in terminal 12 can clamp the mating terminal 22 more tightly, ensuring that the plug-in terminal 12 and the mating terminal 22 contact area, reducing contact resistance and improving electrical conductivity.
  • the force applied by the elastic unit 52 to the outside of the first clamping groove 1221 or the second clamping groove 2221 ranges from 3N-200N.
  • the plug-in terminal 12 Taking the clamp 50 as an example, the inventor selected the plug-in terminal 12 and the mating terminal 22 of the same size and specification, the pressure applied to the plug-in terminal 12 by different elastic units 52, and then selected the mating terminal with the same eccentricity 22 and the plug-in terminal 12 sleeved with the clamp 50 are mated, and the contact resistance between the plug-in terminals is tested respectively, and the ratio of the successful insertion of the plug-in terminal 12 in multiple plug-in experiments is shown in the table. 5.
  • the test method of contact resistance use a micro-resistance measuring instrument, place one end of the measuring end of the micro-resistance measuring instrument on the plug-in terminal 12, and place the other end on the mating terminal 22, and place the same position for each measurement, and then read the micro-resistance Contact resistance reading on a resistance meter.
  • a contact resistance greater than 1 m ⁇ is unqualified.
  • the test method for the success rate of mating the pressure value applied to the plug terminal 12 by each elastic unit 52 is mated with 100 mating terminals 22 of the same eccentricity, and the number of successful insertions is recorded, and compared with The overall quantity is then multiplied by 100%. In this embodiment, the insertion success rate of less than 95% is unqualified.
  • the elastic unit 52 is an elastic rubber body, a spring or a metal shrapnel.
  • the elastic unit 52 can be an elastic rubber body, relying on the compressed elastic force of the elastic rubber body to ensure the pressure applied to the plug terminal 12 or the opposite plug terminal 22;
  • the elastic unit 52 can be a compression spring, relying on the compressed elastic force of the compression spring, Ensure the pressure applied to the plug terminal 12 and the mating terminal 22;
  • the elastic unit 52 can also be a metal shrapnel, and the metal shrapnel and the clip 50 are integrally formed, which can be in the form of a single-ended shrapnel with one end fixed and one end free, or a Both ends are fixed, and the double-ended shrapnel that protrudes in the middle relies on the elastic force of the metal shrapnel itself to ensure the pressure applied to the plug-in terminal 12 or the counter-socket terminal 22 .
  • the plug-in portion 222 is sheet-shaped, and the plug-in portion 222 at least partially protrudes from the female end shell 23, or the female end shell 23 has a second accommodating cavity, and the plug-in portion 222 at least partially protrudes from the bottom of the second accommodating cavity, but does not exceed the female housing 23 .
  • the plug-in part 222 protruding from the female end housing 23 can be connected with the plug-in part 122 recessed in the male-end housing 13 to form a plug-in structure and realize electrical connection; the plug-in part 222 can also be recessed in the female end housing 23 Among them, the plug-in connection with the plug-in portion 122 of the protrusion and the male-end housing 13 constitutes a plug-in structure and realizes electrical connection.
  • the mating portion 222 has a second clamping groove 2221, and the second clamping groove 2221 at least partially protrudes from the outer wall of the female end housing 23, or the female end housing 23 is provided with a second opening boss, and the inserting portion 222 is at least partially disposed in the second opening boss.
  • the plug-in part 222 protruding from the female end housing 23 can be connected with the plug-in part 122 recessed in the male-end housing 13 to form a plug-in structure and realize electrical connection; the plug-in part 222 can also be recessed in the female end housing 23 In the second opening of the boss, it is matedly connected with the plug-in portion 122 protruding from the male end housing 13 to form a plug-in structure and realize electrical connection.
  • the insertion portion 122 or the mating portion 222 is formed by stacking multi-layer terminal stacks.
  • the insertion portion 122 has a first clamping groove 1221 , and the first clamping groove 1221 is mated and plugged with the sheet-shaped plug-in portion 222 ; or the plug-in portion 222 has a second clamping groove 2221 , and the second clip groove 2221 is mated and plug-connected with the sheet-shaped plug-in portion 122 .
  • the plug-in terminal 22 can be mated with the plug-in terminal 12.
  • the plug-in part 122 or the plug-in part 222 is a plurality of terminal laminations.
  • the plug-in part 122 has a first clamping groove 1221, and the first clamping groove 1221 and The mating part 222 is mated and connected, or the mating part 222 has a second clamping groove 2221 , and the second gripping groove 2221 is matched with the mating part 122 for mating connection.
  • the front end of the sheet-shaped terminal can be inserted into the first clamping groove 1221 or the second clamping groove 2221, and through the structure of the first clamping groove 1221 or the second clamping groove 2221, the problems of deformation and elastic weakening caused by excessive thickness of the metal plate are reduced , and make the two have a larger contact area to ensure the reliability and conductive effect of the connection.
  • the mating terminal 22 and the plug terminal 12 can ensure a stable clamping structure, reduce deformation, and increase the strength of the plug connection structure.
  • the terminal laminate is formed by stamping, cutting or bending a plate.
  • the terminal laminations are sheet-shaped and stacked, so that the plug-in portion 122 or the mating portion 222 has a high mechanical connection performance, and at the same time ensures the conductive connection performance between the plug-in portion 122 or the mating portion 222 .
  • the processing method of stamping or cutting the plate is simple and the process is mature. It can quickly process large quantities of terminal laminations, save processing costs and improve production efficiency.
  • the terminal stack includes a terminal fixing portion 40 , and the first clamping groove 1221 or the second clamping groove 2221 is fixedly connected to the terminal fixing portion 40 .
  • the terminal fixing part 40 Through the terminal fixing part 40 , the multi-layer terminal stacks are stacked and connected together, and fixedly connected to the first fixing part 121 and the second fixing part 221 .
  • two adjacent terminal fixing parts 40 are connected together by crimping, welding, screwing, riveting or splicing, so as to ensure the stability of the electrical connection.
  • Crimping is a production process in which adjacent terminal fixing parts 40 are assembled and stamped into one body using a crimping machine.
  • the advantage of crimping is mass production. By using an automatic crimping machine, it is possible to quickly manufacture a large number of stable quality products.
  • Welding uses friction welding, resistance welding, ultrasonic welding, arc welding, pressure welding, laser welding, explosive welding, etc., and the adjacent terminal fixing parts 40 are melted into a whole through metal welding spots, so the connection is firm and the contact resistance is low. Small.
  • the threaded connection means that the adjacent terminal fixing parts 40 respectively have a threaded structure and can be screwed together, or connected together by using separate studs and nuts.
  • the advantage of threaded connection is detachability, which can be assembled and disassembled repeatedly, and is suitable for scenes that require frequent disassembly.
  • the riveting is to use rivets to rivet the adjacent terminal fixing parts 40 together.
  • the advantages of riveting are firm connection, simple processing method and easy operation.
  • the splicing means that corresponding grooves and protrusions are respectively provided on the adjacent terminal fixing parts 40 , and the grooves and protrusions are mortised or spliced to each other for assembly so as to be connected together.
  • the advantage of splicing is that the connection is stable and detachable.
  • the strip-shaped clamping grooves of two adjacent terminal laminations are in contact with each other, and relative sliding can occur between each terminal lamination, so that each terminal lamination maintains its own clamping force, and the plug-in terminal can be used.
  • the characteristic of uneven surface improves the stability of the connection.
  • the first clamping groove 1221 or the second clamping groove 2221 is in contact with two adjacent terminal stacks.
  • the contact connection between the terminal laminations can ensure the current flow in the terminal laminations, increase the flow cross-sectional area, reduce the temperature rise when the plug-in terminal 22 and the plug-in terminal 12 are energized, and extend the length of the plug-in terminal 22 and the plug-in terminal 12. service life.
  • the gap between two adjacent terminal laminations of the first clamping groove 1221 or the second clamping groove 2221 is less than 0.2 mm.
  • the purpose is that there is air circulation between the terminal laminations, which can reduce the temperature rise between the plug terminal 12 and the mating terminal 22, and protect the electrical conductivity of the plug terminal 12 or the mating terminal 22.
  • the corrosion layer prolongs the service life of the plug-in terminal 12 or the counter-plug terminal 22 , and ensures the insertion force between the plug-in terminal 12 and the counter-plug terminal 22 .
  • the gap is greater than 0.2 mm, the heat dissipation function is not increased, but the plug terminals 12 or mating terminals 22 with the same contact area occupy a larger width, wasting space.
  • the female end connection mechanism 20 has a high voltage interlock structure 25 , and the high voltage interlock structure 25 is electrically connected with the interlock connector 15 to form a circuit.
  • the high voltage interlock structure 25 and the interlock connector 15 can form a circuit.
  • High-voltage interlock is a safety design method that uses low-voltage signals to monitor the integrity of the high-voltage circuit. High-voltage interlock monitors the accidental disconnection of the high-voltage circuit to avoid damage to the car due to sudden loss of power.
  • the high-voltage interlock in this embodiment has an interlock connector 15 at one end, which is a U-shaped or V-shaped low-voltage circuit that has two pairs of pins and is electrically connected to the two pairs of pins.
  • the two plug-in terminals connected to the low-voltage circuit, and the plug-in terminals of the high-voltage interlock structure 25 are matched with the pair of pins of the interlock connector 15 to form a low-voltage monitoring circuit, as shown in Figure 16 and Figure 17
  • the interlock connector 15 and the high-voltage interlock structure 25 will also be disconnected at the same time, and the low-voltage monitoring circuit will alarm to the central control system, so that the car will not be controlled. Damage caused by sudden loss of power.
  • the embedded high-voltage interlock structure replaces the previous assembled high-voltage interlock, and is fixed in the connector by integral injection molding, which requires no assembly, reduces costs, and fully meets the high-voltage interlock effect.
  • the male end connection mechanism 10 and/or the female end connection mechanism 20 has a sealing structure 60 .
  • the sealing structure 60 can seal the plug terminal 12, part of the first cable 11, the mating terminal 22 and part of the second cable 21 into the high-voltage connection mechanism, preventing external dust and water from causing damage and corrosion to the internal conductive mechanism , which greatly prolongs the service life of the high-voltage connection mechanism.
  • sealing structure 60 is secondary injection molding on the male end connection mechanism 10 and/or the female end connection mechanism 20 .
  • the sealing structure 60 can make the connection between the male end connection mechanism 10 and/or the female end connection mechanism 20 more tightly.
  • the sealing structure 60 of the connector is no longer a separate sealing ring, but a secondary injection molding sealing structure 60 is used to replace the traditional sealing ring, which can be directly molded on the connector, and the injection molding combination is better and the cost is reduced.
  • the sealing structure 60 is made of rubber or soft rubber or silicone. If these materials are selected, an injection molding machine can be used to heat and melt the materials, and then mold them into corresponding molds. The processing is simple, the adhesion is firm, and the service life of the sealing structure 60 can be greatly extended. In addition, these materials have Good elasticity can be squeezed and deformed during the assembly of the connector, and a good sealing performance can be achieved in the filled gap, and the material is water and oil resistant, which can ensure a long service life and safe sealing performance of the sealing structure.
  • the maximum gap between the sealing structure and the male end connection mechanism 10 and/or the female end connection mechanism 20 is less than 520 nm.
  • the inventor used the dry air method to test the sealing device, and controlled the difference in internal and external pressure of the tested sample by vacuuming or air pressurization. If there is leakage, the internal and external The difference in pressure will shrink. Leakage can be checked by detecting changes in air pressure.
  • the detection medium is dry air, which is non-toxic and harmless, does not damage the tested product, and the detection environment is clean and tidy.
  • the inventor completely sealed the other joints after the connection between the male-end connection mechanism 10 and the female-end connection mechanism 20, and selected sealing structures with different sealing degrees. Part of the dry air was drawn out to make the air pressure inside the sealed structure lower than the external air pressure. The air pressure inside the sealed structure was continuously tested, and it was found that the air pressure rose as unqualified. The test results are shown in Table 6.
  • the male-end connection mechanism 10 and/or the female-end connection mechanism 20 has at least one temperature measuring structure for measuring the temperature of the plug terminal 12 and/or the mating terminal 22 .
  • the temperature measuring structure can have a certain distance from the plug terminal 12 or the mating terminal 22, and the heat radiation from the plug terminal 12 or the mating terminal 22 is transmitted to the temperature measuring structure, and then the temperature measuring mechanism measures the plug terminal 12 or the mating terminal.
  • the temperature of the plug terminal 22, or the temperature measuring structure contains a conductive element, the conductive element is bonded to the plug terminal 12 or the mating terminal 22, and the temperature transmitted through the conductive element is used to measure the temperature of the plug terminal 12 or the mating terminal 22. And transmitted to the control system to adjust the current passing through the plug terminal 12 or the mating terminal 22 , thereby adjusting the temperature of the male end connection mechanism 10 or the female end connection mechanism 20 .
  • the temperature measuring structure is attached to the plug terminal 12 and/or the mating terminal 22 to measure the temperature of the plug terminal 12 and/or the mating terminal 22 .
  • the temperature measurement structure is a temperature sensor, which is directly attached to the plug-in terminal 12 and/or the plug-in terminal 22, and can directly obtain the actual temperature of the plug-in terminal 12 or the plug-in terminal 22, and does not need to be calculated to obtain the plug-in terminal 12 and/or For the actual temperature of the plug terminal 22, the structure is simple, and the temperature measurement is more accurate.
  • the temperature sensor is an NTC temperature sensor or a PTC temperature sensor.
  • the advantage of using these two temperature sensors is that they are small in size and can measure gaps that cannot be measured by other thermometers; they are easy to use, and the resistance value can be arbitrarily selected from 0.1 to 100k ⁇ ; they are easy to process into complex shapes, can be mass-produced, and have good stability. , Strong overload capacity, suitable for conversion joints, which require small size and stable performance.
  • the temperature measuring mechanism is used to monitor the temperature of the terminals inside the connector independently, so as to avoid the failure to monitor the temperature of the connector due to the damage of the temperature sensor at other positions.
  • the male-end connection mechanism 10 and the female-end connection mechanism 20 are connected through adhesive connection, magnetic connection, bayonet connection, plug connection, snap connection, binding connection, screw connection, rivet connection and welding connection.
  • adhesive connection magnetic connection
  • bayonet connection bayonet connection
  • plug connection snap connection
  • binding connection screw connection
  • rivet connection rivet connection
  • welding connection One or more ways to connect, the specific implementation is as follows:
  • an adhesive structure can be used, for example, an adhesive layer is provided on the surfaces to be spliced of the male end connection mechanism 10 and the female end connection mechanism 20 respectively, and the two are fixedly connected by adhesion.
  • a magnetic attraction structure can be used. For example, there is a magnetic attraction on the surface to be spliced of the male end connection mechanism 10, and the surface to be spliced of the female end connection mechanism 20 is also provided with a magnetic attraction. Through the connection, Connection is quick and easy.
  • a plug-in structure can be used.
  • a pin is arranged on the shell of the male shielding shell 14, and the shell surface of the female shielding shell 24 is fixedly connected after the pin is inserted into the slot, so that the shielding of the male end
  • the shell 14 is fixedly connected to the female-end shielding shell 24 to realize the connection between the male-end connection mechanism 10 and the female-end connection mechanism 20 .
  • a clamping structure can be adopted.
  • a buckle is provided on the male-end shielding shell 14 of the male-end connecting mechanism 10
  • the female-end shielding shell 24 of the female-end connecting mechanism 20 has a clamping groove. After the buckle and the groove are assembled, they are fixedly connected, so that the male-end connecting mechanism 10 is fixedly connected with the female-end connecting mechanism 20 .
  • a bolt connection structure can be used, and the bolt connection structure includes bolts and nuts, the bolts are fixed on the surface to be spliced of the male end connection mechanism 10, and the nuts are arranged on the surface to be spliced of the female end connection mechanism 20 and can rotate; after the bolts and nuts are screwed together and tightened, the surfaces to be spliced of the male end connection mechanism 10 and the female end connection mechanism 20 are fixedly connected.
  • the bolt connection structure adopts bolts and nuts with a minimum size of M3, and the minimum torque when the bolt connection structure is tightened is 0.2N ⁇ m.
  • a riveting structure may be used, and the riveting structure includes a rivet and a fixing hole, the fixing hole is set on the surface to be spliced between the male end connection mechanism 10 and the female end connection mechanism 20, the rivet passes through the fixing hole, and The end through which the rivet passes is deformed, so that the fixing hole is tightened, so that the surface to be spliced of the male end connection mechanism 10 and the female end connection mechanism 20 is fixedly connected.
  • a welded structure can be used, such as setting the welded parts on the surfaces to be spliced between the male end connection mechanism 10 and the female end connection mechanism 20, and using a welding machine to melt and connect the welded parts , so that the surface to be spliced of the male end connection mechanism 10 and the female end connection mechanism 20 is fixedly connected.
  • Welding machines include hot melt welding machines and ultrasonic welding machines.
  • a bundling structure can be adopted, and the bundling structure includes a bundling piece, grooves are set on the surface of the male end connection mechanism 10 and the female end connection mechanism 20, and the male end is connected at the groove position by using the bundling piece
  • the mechanism 10 and the surface to be spliced of the female end connection mechanism 20 are bundled together, so that the male end connection mechanism 10 is fixedly connected with the splicing surface of the female end connection mechanism 20 .
  • Binding parts include cable ties, pipe hoops, hook locks, etc.
  • a locking structure can be used, and the locking structure includes a locking piece, and the locking piece is arranged at the adjacent surface of the male end connecting mechanism 10 and the surface to be spliced of the female end connecting mechanism 20 or provided On the surface to be spliced, the splicing surfaces of the male-end connecting mechanism 10 and the female-end connecting mechanism 20 are fixedly connected by a locking member.
  • the above technical solution for connecting the male end connection mechanism 10 and the female end connection mechanism 20 may be that the positions of the male end connection mechanism 10 and the female end connection mechanism 20 can be interchanged.
  • the outer insulating shell 16 of the male end or the outer insulating shell 26 of the female end can be directly molded on at least part of the outer periphery of the shielding shell 14 of the male end or the shielding shell 24 of the female end, which can ensure that the outer insulating shell 14 of the male end or the outer insulating shell of the female end
  • the conductive part of the shielding shell 24 will not be connected with other external conductors to cause a short circuit.
  • the insertion force between the plug terminal 12 and the mated terminal 22 is between 3N-150N.
  • the insertion force between the plug terminal 12 and the mating terminal 22 is between 10N-130N.
  • the inventor selected plug-in terminals 12 of the same shape and size. with the mating terminal 22, and design the insertion force between the mating terminal 12 and the mating terminal 22 as a different plugging force, to observe the contact resistance between the mating terminal 12 and the mating terminal 22, and multiple pairings The situation after insertion.
  • the detection method of contact resistance is to use a micro-resistance measuring instrument to measure the resistance at the contact position between the plug-in terminal 12 and the mating terminal 22, and read the value on the micro-resistance measuring instrument, which is the difference between the plug-in terminal 12 and the mating terminal 22.
  • the contact resistance between 22, in this embodiment, the ideal value is that the contact resistance is less than 50 ⁇ .
  • the test method for the insertion of the plug terminal 12 and the mating terminal 22 is to insert the plug terminal 12 and the mating terminal 22 50 times, and observe the number of times of falling and unplugging after plugging and unplugging.
  • the number of falling times is required to be less than 3 times, and the number of times that cannot be plugged and unplugged is required to be less than 5 times.
  • the contact resistance between the plug terminal 12 and the mating terminal 22 is less than 9m ⁇ .
  • the contact resistance between the plug terminal 12 and the mating terminal 22 is less than 1 m ⁇ .
  • a large current needs to be conducted between the plug terminal 12 and the mating terminal 22. If the contact resistance between the plug terminal 12 and the mating terminal 22 is greater than 9m ⁇ , a large temperature will be generated at the contact position. rise, and with the increase of time, the temperature will be higher and higher, the temperature between the plug terminal 12 and the plug terminal 22 is too high, when the thermal expansion rate of the plug terminal 12 and the plug terminal 22 is different, it will cause The mechanical deformation is not synchronized, causing internal stress between the plug terminal 12 and the mating terminal 22. In severe cases, it will cause deformation of the plug terminal 12 and the mating terminal 22, and the electrical conduction cannot be realized.
  • the second is that the high temperature of the plug terminal 12 and the mating terminal 22 will be conducted to the insulation layer of the first cable 11 and the second cable 21, resulting in the melting of the corresponding insulation layer, which cannot play the role of insulation protection, seriously Sometimes it will lead to short circuit of the line, damage to the connection structure, and even safety accidents such as burning. Therefore, the inventors set the contact resistance between the plug terminal 12 and the mating terminal 22 to be less than 9m ⁇ .
  • the inventor selected the same plug-in terminal 12 and the plug-in terminal 22 with different contact resistances, and compared Plug structure conductivity and temperature rise test,
  • the conductivity test is to detect the conductivity of the corresponding mating place after plugging the plug terminal 12 and the mating terminal 22 in pairs, and then electrifying the plugging structure.
  • the conductivity is greater than 99%, which is an ideal value.
  • the temperature rise test is to pass the same current to the plug-in structure, detect the temperature at the same position of the plug-in terminal 12 and the opposite plug-in terminal 22 before power-on and after the temperature is stabilized in a closed environment, and take the absolute value of the difference. In this embodiment, a temperature rise greater than 50K is considered unqualified.
  • the inventor preferably set the contact resistance between the plug terminal 12 and the plug terminal 22 to be less than 1m ⁇ .
  • the times of plugging and unplugging between the male end connection mechanism 10 and the female end connection mechanism 20 are greater than or equal to 10 times.
  • the male connection mechanism 10 and the female connection mechanism 20 need to be assembled together.
  • the male connection mechanism 10 and the female connection mechanism 20 may need to be separated. Then plug and unplug, so the number of times of plugging and unplugging between the male end connection mechanism 10 and the female end connection mechanism 20 cannot be less than 10 times. If the end connection mechanism 20 is damaged and cannot function together with the current, it is necessary to replace the entire connection mechanism including the wiring harness, which not only consumes maintenance time, but also increases maintenance costs.
  • the material selection of the mechanism 20, or the plug-in mechanism between the male-end connection mechanism 10 and the female-end connection mechanism 20, the locking mechanism, and the design of the sealing mechanism all require at least 10 disassembly and assembly to meet the use of the connection mechanism. Require.
  • the weight of the female end connection mechanism 20 is less than or equal to 215g.
  • the female end connection mechanism 20 is located above the connection mechanism, and is plugged and fixed with the male end connection mechanism 10.
  • the weight of the female end connection mechanism 20 is too large, the gravity received by the female end connection mechanism 20 will also Larger, in the case of vibration of the electrical device, it will cause the entire connection mechanism to follow the vibration. Due to the inertia, the female end connection mechanism 20 will be subject to greater vibration and make abnormal noises. However, during the use of the electrical device , abnormal noise is not allowed.
  • the height of the female end connection mechanism 20 along the plugging and unplugging direction is less than or equal to 276 mm. After the male end connection mechanism 10 and the female end connection mechanism 20 are assembled together, they need to be installed in the electrical device. However, in general, the space reserved for the electrical device is small. If the female end connection mechanism 20 is higher, One is that it cannot be installed in the electrical device, and the other is that it wastes raw materials. Therefore, the female end connection mechanism 20 needs to be lower than a certain height during design.
  • the inventors used the same male-end connection mechanism 10 and samples of the female-end connection mechanism 20 with different heights along the plug-in direction. After assembly, install it on the electrical device, and observe whether the female connection mechanism 20 interferes with other parts of the electrical device during the installation process. The test results are shown in Table 10.
  • At least part of the surface of the plug terminal 12 and/or the mating terminal 22 is provided with a conductive anti-corrosion layer.
  • a conductive anti-corrosion layer can be provided on at least part of the surface of the plug-in terminal 12 and/or the plug-in terminal 22, and the conductive anti-corrosion material can use the electric potential of the material of the plug-in terminal 12 and the plug-in terminal 22.
  • the conductive anti-corrosion layer can reduce the electrochemical reaction between the plug terminal 12 and the mating terminal 22, and solve the problem that the flat belt needs to pass through terminals of other materials to connect with other terminals or use Technical problems with connection of electrical installations.
  • the conductive anti-corrosion layer is attached to the socket through one or more of electroplating, electroless plating, magnetron sputtering, vacuum plating, pressure welding, diffusion welding, friction welding, resistance welding, ultrasonic welding or laser welding.
  • the connecting terminal 12 and/or the mating terminal 22 are at least partly on the surface.
  • the electroplating method is the process of plating a thin layer of other metals or alloys on some metal surfaces by using the principle of electrolysis.
  • the electroless plating method is a process of metal deposition through a controllable oxidation-reduction reaction under the catalysis of metals.
  • the magnetron sputtering method uses the interaction between the magnetic field and the electric field to make electrons run in a spiral shape near the target surface, thereby increasing the probability of electrons colliding with argon to generate ions.
  • the generated ions hit the target surface under the action of the electric field to sputter out the target material.
  • the vacuum plating method is to deposit various metal and non-metal films on the surface of plastic parts by distillation or sputtering under vacuum conditions.
  • Pressure welding is a method of applying pressure to the weldment so that the joint surfaces are in close contact to produce a certain plastic deformation to complete the welding.
  • the friction welding method refers to the method of welding by using the heat generated by the friction of the contact surface of the workpiece as the heat source to cause the workpiece to undergo plastic deformation under pressure.
  • the resistance welding method refers to a method that uses a strong current to pass through the contact point between the electrode and the workpiece, and generates heat from the contact resistance to achieve welding.
  • the ultrasonic welding method is to use high-frequency vibration waves to transmit to the surfaces of two objects to be welded. Under pressure, the surfaces of the two objects are rubbed against each other to form fusion between molecular layers.
  • Laser welding is an efficient and precise welding method that uses a high-energy-density laser beam as a heat source.
  • the diffusion welding method refers to a solid-state welding method in which the workpiece is pressurized at high temperature without visible deformation and relative movement.
  • the conductive anti-corrosion layer can be stably provided on at least part of the surface of the plug terminal 12 and/or the counter plug terminal 22 .
  • the thickness of the conductive anti-corrosion layer is 0.3 ⁇ m to 3000 ⁇ m.
  • the conductive anti-corrosion layer has a thickness of 2.5 ⁇ m to 1000 ⁇ m.
  • the inventors used the plug terminal 12 and the mating terminal 22 of the same material and structure, respectively on at least part of the surface of the plug terminal 12 and/or the mating terminal 22 Conductive anti-corrosion layers of different thicknesses are provided, and then the voltage drop after the plug-in terminal 12 and the counter-plug terminal 22 are plugged is tested. The results are shown in Table 11.
  • a voltage drop greater than 4 mV after the insertion of the plug terminal 12 and the mating terminal 22 is unqualified.
  • the thickness of the conductive anti-corrosion layer is greater than 3000 ⁇ m and less than 0.3 ⁇ m, the voltage drop of the plug-in structure of the plug-in terminal 12 and the plug-in terminal 22 is greater than 4mV, which does not meet the required value. Therefore, The inventor chooses the thickness of the conductive anti-corrosion layer to be 0.3 ⁇ m to 3000 ⁇ m.
  • the thickness of the conductive anti-corrosion layer is in the range of 2.5 ⁇ m to 1000 ⁇ m
  • the voltage drop of the plug-in structure of the plug-in terminal 12 and the plug-in terminal 22 is the optimum value, therefore, preferably, the inventor chooses the conductive anti-corrosion layer
  • the thickness is from 2.5 ⁇ m to 1000 ⁇ m.
  • the material of the conductive anticorrosion layer is nickel, cadmium, manganese, zirconium, cobalt, tin, titanium, chromium, gold, silver, zinc, tin-lead alloy, silver-antimony alloy, palladium, palladium-nickel alloy, One or more of graphite silver, graphene silver, hard silver and silver-gold-zirconium alloy.
  • the potential potential of the material of the conductive anti-corrosion layer is between the potential potentials of the materials of the plug terminal 12 and the mating terminal 22 .
  • Such a solution can reduce the electrochemical corrosion generated after the plug-in terminal 12 and the counter-socket terminal 22 are plugged together.
  • the plug terminal 12 and the mating terminal 22 are provided with a conductive anti-corrosion layer, in order to demonstrate the performance of the plug terminal 12 and the mating terminal 22 with different conductive anti-corrosion materials.
  • the inventor used the same specifications and materials, and used the plug terminal 12 and the counter-socket terminal 22 of different conductive and anti-corrosion materials to conduct a series of corrosion resistance time tests. The experimental results are shown in Table 12.
  • the corrosion resistance time test in Table 12 is to put the plug-in terminal 12 and the mating terminal 22 samples into the salt spray test box, and spray salt spray on each position of the plug-in terminal 12 and mating terminal 22 Take out and clean every 20 hours to observe the surface corrosion, that is, a cycle, until the surface corrosion area of the plug terminal 12 and the counter plug terminal 22 sample is greater than 10% of the total area, stop the test and record the number of cycles at that time . In this embodiment, the number of cycles less than 80 is considered unqualified.
  • the inventor selects the material of the conductive anticorrosion layer to contain (or be) nickel, cadmium, manganese, zirconium, cobalt, tin-titanium, chromium, gold, silver, zinc-tin-lead alloy, silver-antimony alloy, palladium, palladium-nickel alloy, graphite One or more of silver, graphene silver, hard silver and silver-gold-zirconium alloy.
  • the material of the conductive anti-corrosion layer to contain (or be) cadmium, manganese, zirconium, cobalt, titanium, chromium, gold, silver, tin-lead alloy, silver-antimony alloy, palladium, palladium-nickel alloy, graphite silver, One or more of graphene silver, hard silver and silver-gold-zirconium alloy.
  • the conductive part of the first cable 11 and the plug terminal 12 are integrally structured.
  • the conductive part of the first cable 11 and the plug terminal 12 can be made of the same material, that is, the conductive part of the first cable 11 is extended and formed into the plug terminal 12, which can save the use of the plug terminal 12, The cost of materials is reduced, the man-hours for processing are saved, and the front end of the conductive part of the first cable 11 can be formed into various shapes according to requirements without considering the problem of assembly.
  • the conductive part of the second cable 21 and the mating terminal 22 are integrated.
  • the conductive part of the second cable 21 and the mating terminal 22 can be made of the same material, that is, the conductive part of the second cable 21 is extended and formed into the mating terminal 22, which can save the use of the mating terminal 22, The material cost is reduced, the man-hours for processing are saved, and the front end of the conductive part of the second cable 21 can be formed into various shapes according to requirements without considering the problem of assembly.
  • the present invention also provides an electric energy transmission device, which includes the above-mentioned high-voltage connection mechanism.
  • the present invention also provides a motor vehicle, which includes the above-mentioned high-voltage connection mechanism and the above-mentioned electric energy transmission device.
  • the high-voltage connection mechanism of the present invention is provided with an injection-molded male-end shielding shell and a female-end shielding shell, which is simple to process, and the cost is much lower than that of a shielded metal shell.
  • the electrical connection of the shielding net can effectively shield the electromagnetic interference inside the high-voltage connection mechanism and reduce the electromagnetic interference to other equipment.
  • the shielding shell at the male end and the shielding shell at the female end of the present invention are connected to the cable shielding layer in various ways, which can stably and effectively connect the shielding shell and the shielding layer, and achieve a better shielding effect.
  • the terminal and the cable of the present invention are integrally injection-molded in the male-end shell and the female-end shell, and do not need to perform work such as terminal insertion, which reduces processing steps and production costs, and the integrally injection-molded male-end shell and The housing of the female end has a simple structure, does not require high-precision injection molds, and because it is completely sealed, the insulation effect is good.
  • the plug-in terminal can be mated with the plug-in terminal.
  • the plug-in part or the plug-in part is stacked and distributed with multiple terminal laminations.
  • the front end of the sheet-shaped terminal can be plugged into the strip-shaped groove and pass Reduce the deformation and weakening of elasticity caused by excessive thickness of the metal plate, and make the contact area between the two larger to ensure the reliability and conductive effect of the connection.
  • the opposite plug terminal and the plug terminal can ensure a stable clamping structure, reduce deformation, and increase the strength of the plug connection structure.
  • the embedded high-voltage interlock structure replaces the previous assembled high-voltage interlock, and is fixed in the connector by integral injection molding, which requires no assembly, reduces costs, and fully meets the high-voltage interlock effect.
  • the sealing structure of the connector is no longer a separate sealing ring, but a secondary injection molding sealing structure, which replaces the traditional sealing ring and can be directly molded on the connector, with better injection molding combination and lower costs.
  • the temperature measuring mechanism is used to monitor the temperature of the terminals inside the connector independently, so as to avoid the failure to monitor the temperature of the connector due to the damage of the temperature sensor at other positions.

Landscapes

  • Details Of Connecting Devices For Male And Female Coupling (AREA)
  • Motor Or Generator Frames (AREA)

Abstract

本发明提供了一种高压连接机构、电能传输装置及机动车辆,高压连接机构包括公端连接机构和母端连接机构,公端连接机构包括第一线缆、插接端子、与第一线缆和插接端子一体成型的公端外壳、以及设置在公端外壳之外的公端屏蔽壳;母端连接机构包括对插端子、第二线缆、与对插端子和第二线缆一体成型的母端外壳,以及与设置在母端外壳之外的母端屏蔽壳;公端连接机构和母端连接机构通过插接端子与对插端子电连接,公端外壳与母端外壳装配连接,公端屏蔽壳与母端屏蔽壳装配连接。通过公端屏蔽壳和母端屏蔽壳的插接配合,以及和线缆屏蔽层的电连接,可以有效的将高压连接机构内部的电磁干扰屏蔽,减少了对其他设备电磁干扰。

Description

一种高压连接机构、电能传输装置及机动车辆
本申请要求享有2021年10月01日递交、申请号为202111167061.3、发明名称为“一种高压连接机构、电能传输装置及机动车辆”的中国专利的优先权,该专利的所有内容在此全部引入。本申请要求享有2021年10月01日递交、申请号为202122400679.1、实用新型名称为“一种高压连接机构、电能传输装置及机动车辆”的中国专利的优先权,该专利的所有内容在此全部引入。
技术领域
本发明涉及充电技术领域,尤其涉及一种高压连接机构、电能传输装置及机动车辆。
背景技术
新能源汽车的新能源电池,使用充电系统来补充能量。充电系统中除了充电座以外,还有与电池系统连接的高压连接机构,充电线束是电动车高压系统中最重要的单元,传统充电线束采用铜线作为充电线缆,铜线末端连接插接端子,与电池系统电连接。目前的高压连接机构都是装配结构连接器,具有结构复杂,装配困难,连接器成本高等问题,另外线缆和端子的铜材使用量高,连接加工较复杂,也是高压连接机构成本居高不下的原因。
另外,一般充电系统都会在充电座安装测温结构,在充电线束连接器上没有设置,但是导通电流是同样的,当充电线束连接器温度升高时,同样也需要进行监控并及时停止充电作业,以保护充电线束以及电池系统的安全。
再有,高压线缆和数据通信线缆用于电流和信号的导通。为了降低电磁干扰的影响,高压线缆和数据通信线缆通常采用屏蔽线缆。在线缆两端,屏蔽线缆的屏蔽层会连接屏蔽装置并接地。屏蔽线缆通常包括从内向外依次设置的导芯和屏蔽层。为了便于与对接的线缆或者用电设备连接,线缆的端部通常与连接器进行连接。连接器一般没有屏蔽装置进行屏蔽,导致在连接器位置会有很大的电磁干扰。在连接器内部或者外部设置金属罩,可以起到屏蔽效果。但是,金属罩加工困难,成本较高;金属罩与连接器的装配也比较费事,增加装配工时;并且金属罩在连接部内部时,容易与导芯发生短路,造成屏蔽层损坏甚至线缆被烧毁,发生严重的事故。
随着电动汽车的市场扩大,充电系统急需一种结构简单,具有成本优势,并且能自带屏蔽效果的高压连接机构及电能传输装置。
发明内容
本发明目的是提供一种高压连接机构,公端屏蔽壳和母端屏蔽壳一体注塑成型,加工简单,成本较屏蔽金属壳低很多,通过公端屏蔽壳和母端屏蔽壳的插接配合,以及和线缆屏蔽网的电连接,可以有效的将高压连接机构内部的电磁干扰屏蔽,减少了对其他设备电磁干扰。
本发明的上述目的可采用下列技术方案来实现:
本发明提供一种高压连接机构,包括公端连接机构和母端连接机构,所述公端连接机构包括第一线缆、插接端子、与所述第一线缆和所述插接端子一体成型的公端外壳、以及设置在所述公端外壳之外的公端屏蔽壳;所述母端连接机构包括对插端子、第二线缆、与所述对插端子和所述第二线缆一体成型的母端外壳,以及与设置在所述母端外壳之外的母端屏蔽壳;所述公端连接机构和所述母端连接机构通过所述插接端子与所述对插端子电连接,所述公端外壳与所述母端外壳连接,所述公端屏蔽壳与所述母端屏蔽壳连接。
在优选的实施方式中,所述第一线缆包括第一屏蔽层,所述公端屏蔽壳至少部分与所述第一屏蔽层至少部分电性连接;所述第二线缆包括第二屏蔽层,所述母端屏蔽壳至少部分与所述第二屏蔽层至少部分电性连接。
在优选的实施方式中,所述公端屏蔽壳包括第一屏蔽装置,所述第一线缆包括第一屏蔽层,所述第一屏蔽装置设置在所述第一屏蔽层至少部分外周,所述第一屏蔽层通过所述第一屏蔽装置与所述公端屏蔽壳电性连接;所述母端屏蔽壳包括第二屏蔽装置,所述第二线缆包括第二屏蔽层,所述第二屏蔽装置设置在所述第二屏蔽层至少部分外周,所述第二屏蔽层通过所述第二屏蔽装置与所述母端屏蔽壳电性连接。
在优选的实施方式中,所述公端屏蔽壳的内表面设置有第一导电弹片,所述第一线缆包括第一屏蔽层,所述第一导电弹片与所述第一屏蔽层连接,所述第一导电弹片施加压力到所述第一屏蔽层上;所述母端屏蔽壳的内表面设置有第二导电弹片,所述第二线缆包括第二屏蔽层,所述第二导电弹片与所述第二屏蔽层连接,所述第二导电弹片施加压力到所述第二屏蔽层上。
在优选的实施方式中,所述第一导电弹片施加到所述第一屏蔽层的上压力范围为0.3N-95N;所述第二导电弹片施加到所述第二屏蔽层的上压力范围为0.3N-95N。
在优选的实施方式中,所述第一线缆包括第一屏蔽层,所述公端屏蔽壳与所述第一屏蔽层之间的阻抗小于80mΩ;所述第二线缆包括第二屏蔽层,所述母端屏蔽壳与所述第二屏蔽层之间的阻抗小于80mΩ。
在优选的实施方式中,所述公端屏蔽壳或所述母端屏蔽壳的转移阻抗为小于100mΩ。
在优选的实施方式中,所述插接端子包括依次设置的第一固定部和插接部,所述第一固定部与所述第一线缆的导电部分电连接,所述插接部为片状或带有第一夹槽。
在优选的实施方式中,所述插接部为片状,所述插接部至少部分突出所述公端外壳,或者所述公端外壳具有第一容置腔,所述插接部至少部分突出所述第一容置腔底面,但不超过所述公端外壳。
在优选的实施方式中,所述第一夹槽至少部分突出于所述公端外壳的外壁,或者所述公端外壳上设置有第一开口凸台,所述插接部至少部分设置在所述第一开口凸台内。
在优选的实施方式中,所述公端屏蔽壳包覆至少部分所述公端外壳,所述公端屏蔽壳具有开口,所述插接部从所述开口处伸出或在所述开口内。
在优选的实施方式中,所述公端连接机构包括互锁连接器,所述互锁连接器至少部分一体注塑在所述公端外壳中。
在优选的实施方式中,所述对插端子包括依次设置的第二固定部和对插部,所述第二固定部与所述第二线缆的导电部分电连接,所述对插部为片状或带有第二夹槽;所述插接端子包括依次设置的第一固定部和插接部,所述对插部与所述插接部电连接,所述插接部为片状或带有第一夹槽。
在优选的实施方式中,所述第一夹槽或所述第二夹槽外周套设夹箍,所述夹箍的材质为记忆合金。
在优选的实施方式中,所述记忆合金的变态温度为在40℃-70℃范围内设定,在所述夹箍的温度低于该变态温度的状态下,所述夹箍处于扩张状态;在所述夹箍的温度高于该变态温度的状态下,所述夹箍处于夹紧状态。
在优选的实施方式中,所述第一夹槽或所述第二夹槽外周套设夹箍,所述夹箍包括侧壁和固定在所述侧壁上的弹性单元,所述弹性单元与所述第一夹槽或所述第二夹槽的接触连接。
在优选的实施方式中,所述弹性单元施加到所述第一夹槽或所述第二夹槽的力的范围为3N-200N。
在优选的实施方式中,所述弹性单元为弹性橡胶体、弹簧或金属弹片。
在优选的实施方式中,所述对插部为片状,所述对插部至少部分突出所述母端外壳,或者所述母端外壳具有第二容置腔,所述对插部至少部分突出所述第二容置腔底面,但不超过母端外壳。
在优选的实施方式中,所述对插部为带有第二夹槽,所述第二夹槽至少部分突出与所述母端外壳的外壁,或者母端外壳上设置有第二开口凸台,所述对插部至少部分设置在所述第二开口凸台内。
在优选的实施方式中,所述插接部或所述对插部为多层端子叠片叠放形成,所述插接部带有第一夹槽,所述第一夹槽与片状的所述对插部匹配对插连接;或者所述对插部带有第二夹槽,所述第二夹槽与片状的所述插接部匹配对插连接。
在优选的实施方式中,所述端子叠片包括端子固定部,所述第一夹槽或所述第二夹槽固接于所述端子固定部。
在优选的实施方式中,相邻两个所述端子固定部通过压接、焊接、螺接、铆接或拼接连接在一起。
在优选的实施方式中,所述第一夹槽或所述第二夹槽相邻两个所述端子叠片之间接触连接。
在优选的实施方式中,所述第一夹槽或所述第二夹槽相邻两个所述端子叠片之间的间隙小于0.2mm。
在优选的实施方式中,所述母端连接机构具有高压互锁结构,所述高压互锁结构与所述互锁连接器电连接形成回路。
在优选的实施方式中,所述公端连接机构和/或母端连接机构具有密封结构。
在优选的实施方式中,所述密封结构是在所述公端连接机构和/或所述母端连接机构上二次注塑成型。
在优选的实施方式中,所述公端连接机构和/或所述母端连接机构具有至少一个测温结构,用来测量所述插接端子和/或所述对插端子的温度。
在优选的实施方式中,所述测温结构与所述插接端子和/或对插端子贴合,用来测量所述插接端子和/或所述对插端子的温度。
在优选的实施方式中,所述公端连接机构和所述母端连接机构通过粘贴连接、磁吸连接、卡口连接、插接连接、锁扣连接、捆扎连接、螺纹连接、铆钉连接和焊接连接中的一种或几种方式连接。
在优选的实施方式中,所述公端屏蔽壳或所述母端屏蔽壳至少部分外周上注塑成型公端外绝缘壳或母端外绝缘壳。
在优选的实施方式中,所述插接端子与所述对插端子之间的插接力在3N-150N之间。
在优选的实施方式中,所述插接端子与所述对插端子之间的插接力在10N-130N之间。
在优选的实施方式中,所述插接端子与所述对插端子之间的接触电阻小于9mΩ。
在优选的实施方式中,所述插接端子与所述对插端子之间的接触电阻小于1mΩ。
在优选的实施方式中,所述公端连接机构和所述母端连接机构之间的插拔次数大于等于10次。
在优选的实施方式中,所述母端连接机构的重量小于等于215g。
在优选的实施方式中,所述母端连接机构沿插拔方向的高度小于等于276mm。
在优选的实施方式中,所述插接端子和/或所述对插端子至少部分表面上设置有导电防腐蚀层。
在优选的实施方式中,所述第一线缆的导电部分与所述插接端子为一体结构。
在优选的实施方式中,所述第二线缆的导电部分与所述对插端子为一体结构。
本发明提供一种电能传输装置,包含上述任一项所述的高压连接机构。
本发明提供一种机动车辆,包含上述任一项所述的高压连接机构。
本发明的特点及优点是:
1、本发明的高压连接机构设置注塑成型的公端屏蔽壳和母端屏蔽壳,加工简单,成本较屏蔽金属壳低很多,通过公端屏蔽壳和母端屏蔽壳的插接配合,以及和线缆屏蔽层的电连接,可以有效的将高压连接机构内部的电磁干扰屏蔽,减少了对其他设备电磁干扰。
2、本发明的公端屏蔽壳和母端屏蔽壳,与线缆屏蔽层的连接采用多种方式,可以稳定有效的连接屏蔽壳与屏蔽层,实现较好的屏蔽效果。
3、本发明的端子和线缆,是一体注塑成型在公端外壳和母端外壳内的,不需要再进行端子插接等工作,减少加工工序,降低生产成本,并且一体注塑成型的公端外壳和母端外壳,结构简单,不需要高精度的注塑模具,并且由于完全密封,绝缘效果好。
4、对插端子可以与插接端子插接配合,插接部或对插部为多个端子叠片层叠分布,片状的端子前端能够插接于带状凹槽中,并通过带状凹槽结构降低由于金属板过厚导致的变形和弹性减弱问题,并使两者之间具有较大的接触面积,保障连接的可靠性和导电效果。对插端子与插接端子能够保证夹持结构稳固,减少变形,增加插接连接结构的强度。
5、嵌入式高压互锁结构,替代了之前的组装式的高压互锁,采用一体注塑的方式固定在连接器中,无需装配,降低成本,完全满足高压互锁效果。
6、连接器的密封结构,不再是安装单独的密封圈,而是采用二次注塑密封结构,替代传统密封圈,能够直接成型在连接器上,注塑结合性更好,降低成本。
7、采用测温机构,能够单独对连接器内部的端子温度进行监控,避免由于其他位置的温度传感器损坏,而无法对连接器的温度进行监控。
附图说明
为了更清楚地说明本发明中的技术方案,下面将对实施例描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1为本发明中高压连接机构的装配示意图。
图2为本发明中母端连接机构装配示意图。
图3为本发明中母端外壳结构示意图。
图4为本发明中第二线缆与对插端子装配结构示意图。
图5为本发明中公端连接机构装配示意图。
图6为本发明中公端屏蔽壳结构示意图。
图7为本发明中公端外壳结构示意图。
图8为本发明中第一线缆与插接端子装配结构示意图。
图9为本发明中互锁连接器结构示意图。
图10为本发明中高压互锁结构示意图。
图11为本发明中公端连接机构或母端连接机构剖面示意图。
图12为本发明中公端连接机构或母端连接机构另一种剖面示意图。
图13为本发明中公端连接机构或母端连接机构另一种剖面示意图。
图14为本发明中插接端子与对插端子结构示意图。
图15为本发明中夹箍结构示意图。
图16为本发明中公端连接机构与母端连接机构装配剖面示意图。
图17为本发明中公端连接机构与母端连接机构另一种装配剖面示意图。
其中:
10、公端连接机构;11、第一线缆;12、插接端子;13、公端外壳;14、公端屏蔽壳;121、第一固定部;122、插接部;1221、第一夹槽;15、互锁连接器;16、公端外绝缘壳;
20、母端连接机构;21、第二线缆;22、对插端子;23、母端外壳;24、母端屏蔽壳;221、第二固定部;222、对插部;2221、第二夹槽;25、高压互锁结构;26、母端外绝缘壳;
31、第一屏蔽层;32、第一屏蔽装置;33、第一导电弹片;34、第二屏蔽层;35、第二屏蔽装置;36、第二导电弹片;
40、端子固定部;
50、夹箍;51、侧壁;52、弹性单元;
60、密封结构。
具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
一种高压连接机构,包括公端连接机构10和母端连接机构20,公端连接机构10包括第一线缆11、插接端子12、与第一线缆11与插接端子12一体成型的公端外壳13、以及设置在公端外壳13之外的公端屏蔽壳14;母端连接机构20包括第二线缆21、对插端子22、与第二线缆21与对插端子22一体成型的母端外壳23、以及设置在母端外壳23之外的母端屏蔽壳24;公端连接机构10和母端连接机构20通过插接端子12与对插 端子22电连接,公端外壳13与母端外壳23连接,公端屏蔽壳14与母端屏蔽壳24连接,如图1-图7所示。
本发明的高压连接机构设置注塑成型的公端屏蔽壳14和母端屏蔽壳24,加工简单,成本较屏蔽金属壳低很多,通过公端屏蔽壳14和母端屏蔽壳24的插接配合,以及和线缆屏蔽层的电连接,可以有效的将高压连接机构内部的电磁干扰屏蔽,减少了对其他设备电磁干扰。
在某些实施例中,插接端子12或对插端子22的材质为含有镍、镉、锆、铬、钴、锰、铝、锡、钛、锌、铜、银、金、磷、碲、铍、铅中的一种或多种的金属导电材料,这些材料性质稳定,并且导电性好,优选的材料为含有铜或铜合金或铝或铝合金的材料。
在某些实施例中,第一线缆11或第二线缆21的导电部分的材质为含有铝、磷、锡、铜、铁、锰、铬、钛和锂其中的一种或几种,其中,线缆导电部分的材质含有铝或铝合金,是近期节能降本的主要手段之一。在电气连接领域,都在使用铜导线进行电流的传导,铜的导电率高,延展性好。但是,随着铜价日益上涨,使用铜材作为导线的材料成本会越来越高。为此,人们开始寻找金属铜的替代品来降低成本。金属铝在地壳中的含量约为7.73%,提炼技术优化后,价格相对较低,并且相对于铜,铝的重量较轻,导电率仅次于铜,铝在电气连接领域可以替代部分铜。因此,在汽车电气连接领域中以铝代铜是发展趋势。
在一实施例中,第一线缆11包括第一屏蔽层31,公端屏蔽壳14至少部分与第一屏蔽层31至少部分电性连接;第二线缆21包括第二屏蔽层34,母端屏蔽壳24至少部分与第二屏蔽层34至少部分电性连接,如图11所示。
在高压屏蔽连接器中,由于第一线缆11和第二线缆21需要传输大电流,在电流经过时在线缆周围会产生较大的电磁场,为了防止大电流产生的电磁场对周围环境中的电器进行电磁干扰,影响其他电器的正常工作,所以在第一线缆11和第二线缆21的导电芯外分别设置第一屏蔽层31和第二屏蔽层34,将第一线缆11和第二线缆21通电后产生的电磁场进行电磁屏蔽。
进一步的,第一线缆11包括第一屏蔽层31,公端屏蔽壳14至少部分与第一屏蔽层31至少部分电性连接;第二线缆21包括第二屏蔽层34,母端屏蔽壳24至少部分与第二屏蔽层34至少部分电性连接,如图11-图13所示。
公端屏蔽壳14至少部分与第一屏蔽层31至少部分电性连接,母端屏蔽壳24至少部 分与第二屏蔽层34至少部分电性连接,形成封闭的电磁屏蔽结构,能使电磁屏蔽的效果达到最优,形成封闭的电磁屏蔽结构,从而有效的控制电磁波的辐射,能够起到良好的屏蔽效果。
在一实施方式中,公端屏蔽壳14包括第一屏蔽装置32,第一线缆11包括第一屏蔽层31,第一屏蔽装置32设置在第一屏蔽层31至少部分外周,第一屏蔽层31通过第一屏蔽装置32与公端屏蔽壳14电性连接;母端屏蔽壳24包括第二屏蔽装置35,第二线缆21包括第二屏蔽层34,第二屏蔽装置35设置在第二屏蔽层34至少部分外周,第二屏蔽层34通过第二屏蔽装置35与母端屏蔽壳24电性连接,如图12所示。
第一屏蔽层31或第二屏蔽层34可以为屏蔽网,也可以是导电箔类,第一屏蔽层31或第二屏蔽层34为柔软结构,而公端屏蔽壳14与母端屏蔽壳24一般情况都是硬性结构,当两者接触的时候,由于第一屏蔽层31或第二屏蔽层34的变形,会使公端屏蔽壳14或母端屏蔽壳24和第一屏蔽层31或第二屏蔽层34发生短暂的连接断开,从而使接触位置的阻抗发生变化,导致第一线缆11的第一屏蔽层31与公端屏蔽壳14或者第二线缆21的第二屏蔽层34与母端屏蔽壳24的连接结构屏蔽效果不稳定,从而影响信号的传递。因此,需要使用第一屏蔽层31与第一屏蔽装置32,第二屏蔽装置35与第二屏蔽层34进行稳定连接,并且第一屏蔽装置32或第二屏蔽装置35一般为硬性结构,便于与公端屏蔽壳14或者与母端屏蔽壳24形成良好的电性连接,从而实现稳定的屏蔽效果。
在一实施方式中,公端屏蔽壳14的内表面设置有第一导电弹片33,第一线缆11包括第一屏蔽层31,第一导电弹片33与第一屏蔽层31连接,第一导电弹片33施加压力到第一屏蔽层31上;母端屏蔽壳的内表面设置有第二导电弹片36,第二线缆21包括第二屏蔽层34,第二导电弹片36与第二屏蔽层34连接,第二导电弹片36施加压力到第二屏蔽层34上,如图13所示。
公端屏蔽壳14通过第一导电弹片33与第一屏蔽层31连接,母端屏蔽壳24通过第二导电弹片36与第二屏蔽层34连接,第一导电弹片33和第二导电弹片36的至少部分具有弹性,该部分具有向内收缩的趋势以将第一线缆11或第二线缆21压紧,一方面保障公端屏蔽壳14与第一屏蔽层31,母端屏蔽壳24与第二屏蔽层34之间电性连接的稳定性,另一方面第一线缆11插入公端屏蔽壳14即可实现与第一导电弹片33接触连接,第二线缆21插入母端屏蔽壳24时即可实现与第二导电弹片36接触连接,节省了装配和加工工时,如图11-图13所示。
进一步地,第一导电弹片33施加到第一屏蔽层31的上压力范围为0.3N-95N;第二 导电弹片36施加到第二屏蔽层34的上压力范围为0.3N-95N。
为了验证第一导电弹片33施加到第一屏蔽层31的上压力对第一导电弹片33和第一屏蔽层31之间的接触电阻的影响,或者第二导电弹片36施加到第二屏蔽层34的上压力对第二导电弹片36和第二屏蔽层34之间的接触电阻的影响,发明人进行了针对性测试,以第一导电弹片33施加到第一屏蔽层31的压力为例,发明人选用了相同形状、相同尺寸的第一导电弹片33和第一屏蔽层31,并将第一导电弹片33和第一屏蔽层31之间的压力设计为不同的压力,来观察第一导电弹片33和第一屏蔽层31之间的接触电阻。
表1:不同导电弹片和屏蔽层的压力对接触电阻影响:
Figure PCTCN2022123143-appb-000001
接触电阻的检测方式为使用微电阻测量仪,在第一导电弹片33和第一屏蔽层31接触位置上进行电阻的测量,并读取微电阻测量仪上的数值,在本实施例中,接触电阻小于50μΩ为理想值。
从表1可以看出,当第一导电弹片33和第一屏蔽层31之间的压力小于0.3N时,由于结合力太小,两者之间的接触电阻要高于理想值,不符合要求。第一导电弹片33和第一屏蔽层31之间的压力大于95N时,接触电阻并无明显降低,而选材及加工却更加困难,而且压力过大也会对第一屏蔽层31造成损伤。因此,发明人设定第一导电弹片33施加到第一屏蔽层31的上压力范围为0.3N-95N;第二导电弹片36施加到第二屏蔽层34的上压力范围为0.3N-95N。
另外,发明人发现当第一导电弹片33和第一屏蔽层31之间的压力大于0.5N时,第一导电弹片33与第一屏蔽层31之间的接触电阻值比较良好,降低的趋势很快,而第一导电弹片33和第一屏蔽层31之间的压力小于50N,导电弹片的制造、安装、使用都很方便,成本也很低,因此,发明人优选第一导电弹片33施加到第一屏蔽层31的上压力范围为0.5N-50N;第二导电弹片36施加到第二屏蔽层34的上压力范围为0.5N-50N。
在一实施方式中,第一导电弹片33与公端屏蔽壳14之间,第二导电弹片36与母端屏蔽壳24之间的连接方式采用焊接方式、粘接方式、一体注塑方式、嵌入方式或卡接方式。
焊接方式,包括激光焊、超声波焊接、电阻焊、压力扩散焊或钎焊等方式,是采用集中热能或压力,使第一导电弹片33与公端屏蔽壳14或第二导电弹片36与母端屏蔽壳24内表面接触位置产生熔融连接,焊接方式连接稳固,也可以实现异种材料的连接,由于接触位置相融,导电效果更好。
粘接方式,是采用导电胶,将第一导电弹片33与公端屏蔽壳14或第二导电弹片36与母端屏蔽壳24的内表面粘接到一起,此种方式不需要使用设备,通过导电胶,使第一导电弹片33与公端屏蔽壳14或第二导电弹片36与母端屏蔽壳24的内表面之间充分电连接,导电效果好,但连接强度较低,适用于对连接强度要求不高,第一导电弹片33与公端屏蔽壳14或母端屏蔽壳24内表面熔点或强度较低的使用环境中。
一体注塑方式,是将第一导电弹片33或第二导电弹片36放入到注塑模具中,在加工连接器时,直接一体注塑在公端屏蔽壳14或与母端屏蔽壳24内表面,加工简单快捷,没有其他的装配工艺,节省装配时间。
嵌入方式,是在公端屏蔽壳14或与母端屏蔽壳24内表面设置凹槽,然后将导第一导电弹片33或第二导电弹片36嵌入到凹槽内,使第一导电弹片33或第二导电弹片36固定在公端屏蔽壳14或母端屏蔽壳24内表面。
卡接方式,是在公端屏蔽壳14或母端屏蔽壳24内表面设置卡爪或卡槽,在第一导电弹片33或第二导电弹片36上设置对应的卡槽或卡爪,然后将卡爪和卡槽进行装配连接,使第一导电弹片33或第二导电弹片36固定在公端屏蔽壳14或母端屏蔽壳24内表面。
本发明的公端屏蔽壳14和母端屏蔽壳24,与线缆屏蔽网的连接采用多种方式,可以稳定有效的连接屏蔽壳与屏蔽网,实现较好的屏蔽效果。
在一实施方式中,第一线缆11包括第一屏蔽层31,公端屏蔽壳14与第一屏蔽层31之间的阻抗小于80mΩ;第二线缆21包括第二屏蔽层34,母端屏蔽壳24与第二屏蔽层34之间的阻抗小于80mΩ。
公端屏蔽壳14与第一屏蔽层31之间的阻抗,以及母端屏蔽壳24与第二屏蔽层34之间的阻抗要尽可能小,这样第一屏蔽层31和第二屏蔽层34产生的电流才会无阻碍的流回能量源或接地位置;公端屏蔽壳14与第一屏蔽层31之间的阻抗,以及母端屏蔽壳24与第二屏蔽层34之间的阻抗较大,则会在公端屏蔽壳14或母端屏蔽壳24与第一屏蔽层31之间产生较大的电流,从而使第一线缆11和插接端子12的连接处或第二线缆21与对插端子22的连接处产生较大的辐射。
以公端屏蔽壳14与第一屏蔽层31之间的阻抗值对公端连接机构10屏蔽效果的影响为例,发明人选用相同规格的第一线缆11和插接端子12,选用不同的公端屏蔽壳14与第一屏蔽层31之间的阻抗,制作了一系列公端连接机构10连接结构的样件,并将公端屏蔽壳14开口处用金属屏蔽装置进行密封,保证整个公端屏蔽壳14处于完全屏蔽状态。分别测试公端屏蔽壳14与第一屏蔽层31连接结构的屏蔽效果,实验结果如下表2所示,在本实施例中,屏蔽性能值大于40dB为理想值。
屏蔽性能值测试方法为:测试仪器对第一线缆11输出一个信号值(此数值为测试值2),在公端连接机构10外侧设置探测装置,此探测装置探测到一个信号值(此数值为测试值1)。屏蔽性能值=测试值2-测试值1。
表2:公端屏蔽壳14与第一屏蔽层31之间的阻抗对屏蔽性能的影响
Figure PCTCN2022123143-appb-000002
从表2可以看出,当公端屏蔽壳14与第一屏蔽层31之间的阻抗值大于80mΩ时,公端连接机构10的屏蔽性能值小于40dB,不符合理想值要求,而公端屏蔽壳14与第一屏蔽层31之间的阻抗值为小于80mΩ时,公端连接机构10的屏蔽性能值全部符合理想值要求,而且趋势越来越好,同样的,母端屏蔽壳24的测试效果与公端屏蔽壳14测试效果相同,因此,发明人设定第一线缆11包括第一屏蔽层31,公端屏蔽壳14与第一屏蔽层31之间的阻抗小于80mΩ;第二线缆21包括第二屏蔽层34,母端屏蔽壳24与第二屏蔽层34之间的阻抗小于80mΩ。
在一实施方式中,公端屏蔽壳14或母端屏蔽壳24的转移阻抗为小于100mΩ,屏蔽材料通常用转移阻抗来表征公端屏蔽壳14或母端屏蔽壳24的屏蔽效果,转移阻抗越小,屏蔽效果越好。公端屏蔽壳14或母端屏蔽壳24的转移阻抗定义为单位长度屏蔽体感应的差模电压U与屏蔽体表面通过的电流Is之比,即:
Z T=U/I S,所以可以理解为,公端屏蔽壳14或母端屏蔽壳24的转移阻抗将公端屏蔽壳14或母端屏蔽壳24电流转换成差模干扰。转移阻抗越小越好,即减小差模干扰转换,可以得到较好的屏蔽性能。
为了验证不同转移阻抗值的公端屏蔽壳14或母端屏蔽壳24对高压连接机构连接结构屏蔽效果的影响,发明人选用相同规格的第一线缆11和插接端子12,采用不同转移 阻抗值的公端屏蔽壳14,制作了一系列公端连接机构10连接结构的样件,并将公端屏蔽壳14开口处用金属屏蔽装置进行密封,保证整个公端屏蔽壳14处于完全屏蔽状态。分别测试公端屏蔽壳14与第一屏蔽层31连接结构的屏蔽效果,实验结果如下表3所示,在本实施例中,屏蔽性能值大于40dB为理想值。
屏蔽性能值测试方法为:测试仪器对第一线缆11输出一个信号值(此数值为测试值2),在公端连接机构10外侧设置探测装置,此探测装置探测到一个信号值(此数值为测试值1)。屏蔽性能值=测试值2-测试值1。
表3:公端屏蔽壳14的转移阻抗对屏蔽性能的影响
Figure PCTCN2022123143-appb-000003
从上表3可以看出,当公端屏蔽壳14的转移阻抗值大于100mΩ时,公端连接机构10的屏蔽性能值小于40dB,不符合理想值要求,而公端屏蔽壳14的转移阻抗值为小于100mΩ时,公端连接机构10的屏蔽性能值全部符合理想值要求,而且趋势越来越好,同样的,母端屏蔽壳24的测试效果与公端屏蔽壳14测试效果相同,因此,发明人设定公端屏蔽壳14或母端屏蔽壳24的转移阻抗均为小于100mΩ。
在一实施方式中,公端屏蔽壳14或母端屏蔽壳24的材质含有导电陶瓷、含碳导体、固体电解质、混合导体、导电高分子材料中的一种或多种的组合。
为了论证不同材质对公端屏蔽壳14或母端屏蔽壳24导电率的影响,发明人以公端屏蔽壳14为例,使用相同规格尺寸、不同材质的材料制作公端屏蔽壳14样件,分别测试公端屏蔽壳14的导电率,实验结果如下表4所示,在本实施例中,公端屏蔽壳14的导电率大于99%为理想值。
表4:不同材质对公端屏蔽壳14的导电率的影响
Figure PCTCN2022123143-appb-000004
从上表4可以看出,选用的材料材质制作的公端屏蔽壳14,导电率都在理想值范围内,因此,发明人设定公端屏蔽壳14的材质为导电陶瓷、含碳导体、固体电解质、混合导体、导电高分子材料中的一种或多种的组合。
进一步地,含碳导体含有石墨粉、碳纳米管材料、石墨烯材料中的一种或多种。
进一步地,导电高分子材料为包含金属颗粒的高分子材料,所述金属颗粒的材质含有镍、镉、锆、铬、钴、锰、铝、锡、钛、锌、铜、银、金、磷、碲、铍中的一种或多种,所述高分子材料的材质为聚氯乙烯、聚乙烯、聚酰胺、聚四氟乙烯、四氟乙烯/六氟丙烯共聚物、乙烯/四氟乙烯共聚物、聚丙烯、聚偏氟乙烯、聚氨酯、聚对苯二甲酸、聚氨酯弹性体、苯乙烯嵌段共聚物、全氟烷氧基烷烃、氯化聚乙烯、聚亚苯基硫醚、聚苯乙烯、硅橡胶、交联聚烯烃、乙丙橡胶、乙烯/醋酸乙烯共聚物、氯丁橡胶、天然橡胶、丁苯橡胶、丁腈橡胶、顺丁橡胶、异戊橡胶、乙丙橡胶、氯丁橡胶、丁基橡胶、氟橡胶、聚氨酯橡胶、聚丙烯酸酯橡胶、氯磺化聚乙烯橡胶、氯醚橡胶、氯化聚乙烯橡胶、氯硫橡胶、苯乙烯丁二烯橡胶、丁二烯橡胶、氢化丁腈橡胶、聚硫橡胶、交联聚乙烯、聚碳酸酯、聚砜、聚苯醚、聚酯、酚醛树脂、脲甲醛、苯乙烯-丙烯腈共聚物、聚甲基丙烯酸酯、聚甲醛树酯中的一种或多种。
下面举例说明材料的特性。
聚甲醛是一种表面光滑、有光泽的、硬而致密的材料,呈淡黄或白色,可在-40℃-100℃温度范围内长期使用。它的耐磨性和自润滑性也比绝大多数工程塑料优越,又有良好的耐油、耐过氧化物性能。
聚碳酸酯,无色透明,耐热,抗冲击,阻燃BI级,在普通使用温度内都有良好的机械性能。同性能接近的聚甲基丙烯酸甲酯相比,聚碳酸酯的耐冲击性能好,折射率高,加工性能好,不需要添加剂就具有很高级的阻燃性能。
聚酰胺,具有无毒、质轻、优良的机械强度,具有较好的耐磨性及耐腐蚀性,可代替铜等金属应用在机械、化工、仪表、汽车等工业中制造轴承、齿轮、泵叶及其他零件。
在一实施方式中,导电高分子材料通过挤出工艺、注塑工艺、浸塑工艺、吹塑工艺、发泡工艺、喷涂工艺、印刷工艺、3D打印工艺中的一种或多种工艺加工成公端屏蔽壳14或母端屏蔽壳24。
注塑工艺是指将熔融的原料通过加压、注入、冷却、脱离等操作制作一定形状的半成品件的工艺过程。
浸塑工艺是指通过工件电加热后,达到一定的温度,然后浸到浸塑液里面去,让浸塑液固化在工件上的工艺过程。
吹塑工艺是用挤出机挤出管状型坯,趁热放入模具中,并通入压缩空气进行吹胀以使其达到模腔形样,冷却定型后即得制品。优点是:适用于多种塑料,能生产大型制品、生产效率高,型坯温度较均匀和设备投资较少等。
发泡工艺是指在发泡成型过程或发泡聚合物材料中,通过物理发泡剂或化学发泡剂的添加与反应,形成了蜂窝状或多孔状结构。发泡成型的基本步骤是形成泡核、泡核生长或扩大以及泡核的稳定。在给定的温度与压力条件下,气体的溶解度下降,以致达到饱和状态,使多余的气体排除并形成气泡,从而实现成核。
喷涂工艺是通过喷枪或碟式雾化器,借助于压力或离心力,将喷涂材料分散成均匀而微细的雾滴,施涂于被涂物表面的涂装方法。可分为空气喷涂、无空气喷涂、静电喷涂以及上述基本喷涂形式的各种派生的方式。
印刷工艺是指采用印刷版,将油墨或其他黏性流体材料,转印到被涂物表面的方式,包括丝网印刷、凸版印刷、柔性版印刷、凹版印刷或平板印刷的方式。
3D打印工艺是快速成型技术的一种,又称增材制造,是一种以数字模型文件为基础,运用粉末状金属或塑料等可粘合材料,通过逐层打印的方式来构造物体的技术。
在一实施方式中,插接端子12包括依次设置的第一固定部121和插接部122,第一固定部121与第一线缆11的导电部分电连接,插接部122为片状或带有第一夹槽1221,如图8及图14所示。第一固定部121是与第一线缆11的导电部分进行电连接,实现导通电流的作用。插接端子12的插接部122是与对插端子22进行插接连接,从而实现电连接,实现连接器之间的电流导通。
具体的,第一固定部121和第一线缆11前端的导电部分采用电阻焊接、摩擦焊接、超声波焊接、弧焊、激光焊接、电子束焊接、压力扩散焊接、磁感应焊接、螺接、卡接、拼接和压接中的一种或几种方式连接。
电阻焊接方式,是指一种利用强大电流通过电极和工件间的接触点,由接触电阻产生热量而实现焊接的一种方法,第一固定部121与第一线缆11采用电阻焊进行焊接。
摩擦焊接方式,是指利用工件接触面摩擦产生的热量为热源,使工件在压力作用下产生塑性变形而进行焊接的方法,第一固定部121与第一线缆11采用摩擦焊进行焊接。
超声波焊接方式,是利用高频振动波传递到两个需焊接的物体表面,在加压的情况下,使两个物体表面相互摩擦而形成分子层之间的熔合,第一固定部121与第一线缆11采用超声波焊接。
弧焊方式,是指以电弧作为热源,利用空气放电的物理现象,将电能转换为焊接所需的热能和机械能,从而达到连接金属的目的,主要方法有焊条电弧焊、埋弧焊、气体保护焊等。
激光焊接方式,是利用高能量密度的激光束作为热源的一种高效精密焊接方法。
电子束焊接方式,是指利用加速和聚焦的电子束轰击置于真空或非真空中的焊接面,使被焊工件熔化实现焊接。
压力焊接方式,是对焊件施加压力,使接合面紧密地接触产生一定的塑性变形而完成焊接的方法。
扩散焊方式,指将工件在高温下加压,但不产生可见变形和相对移动的固态焊方法。
磁感应焊接方式,是两个被焊工件在强脉冲磁场作用下,产生瞬间高速碰撞,材料表层在很高的压力波作用下,使两种材料的原子在原子间距离内相遇,从而在界面上形成稳定的冶金结合。是固态冷焊的一种,可以将属性相似或不相似的第一固定部121与第一线缆11焊接在一起。
螺接方式,是指螺纹连接,用螺纹件(或被连接件的螺纹部分)将被连接件连成一体的可拆卸连接。常用的螺纹联接件有螺栓、螺柱、螺钉和紧定螺钉等,多为标准件。
卡接方式,是指在连接端或连接面上分别设置对应的卡爪或卡槽,通过卡槽和卡爪进行装配,使其连接在一起。卡接的方式优点是连接快速,可拆卸。
拼接方式,是指在连接端或连接面上分别设置对应的凹槽和凸起,通过凹槽和凸起相互榫接或拼接进行装配,使其连接在一起。拼接的方式优点是连接稳定,可拆卸。
压接方式,压接是将连接端与连接面装配后,使用压接机,将两者冲压为一体的生产工艺。压接的优点是量产性,通过采用自动压接机能够迅速大量的制造稳定品质的产品。
通过上述连接方式,可以根据实际的使用环境,以插接端子12的第一固定部121与第一线缆11的实际使用状态,选择合适的连接方式或者连接方式组合,实现有效的电性连接。
在一实施方式中,如图16和图17所示,插接部122为片状,插接部122至少部分突出公端外壳13,或者公端外壳13具有第一容置腔,插接部122至少部分突出第一容置腔底面,但不超过所述公端外壳13。插接部122至少部分突出设置于公端外壳13外,可以直接与母端外壳23中的插接端子12进行对插连接,也可以设置在公端外壳13的第 一容置腔内部,由母端外壳23中的插接端子12深入到第一容置腔中,并与插接部122进行对插连接。
进一步地,如图16和图17所示,插接部122为带有第一夹槽1221,第一夹槽1221至少部分突出于公端外壳13的外壁,或者公端外壳13上设置有第一开口凸台,插接部122至少部分设置在第一开口凸台内。
在上述实施方式中,插接部122至少部分突出设置于公端外壳13,可以与设置在第一开口凸台内的插接端子12进行对插连接。或者公端外壳13具有第一容置腔,插接部122至少部分突出所述第一容置腔底面,但不超过所述公端外壳13,可以与突出于母端外壳23外壁的插接端子12进行对插连接。
进一步地,如图16和图17所示,公端屏蔽壳14包覆至少部分公端外壳13,公端屏蔽壳14具有开口,插接部122从开口处伸出或在所述开口内。公端外壳13中的插接部122可以与插接端子12进行对插连接,同时公端屏蔽壳14可以与母端屏蔽壳24对插连接,实现屏蔽电连接。
在一实施方式中,如图9所示,公端连接机构10包括互锁连接器15,互锁连接器15至少部分一体注塑在所述公端外壳13中。高压互锁,是用低压信号监视高压回路完整性的一种安全设计方法,具体的高压互锁实现形式,不同项目有不同的设计,高压互锁是监控高压回路的意外断开,避免由于突然的失去动力的情况下,造成对汽车的损害。本实施例中的高压互锁,一端为互锁连接器15,为具备两根对插针,并且两根对插针电连接的一个U型或V型的低压回路,不需要进行安装,可以通过一体注塑的方式,直接在公端外壳13中成型,并与母端连接机构20中的高压互锁结构25匹配连接,构成低压监控回路,如图16和图17所示,当本实施例中的充电线束连接器因意外断开时,互锁连接器15与高压互锁结构25也会同时断开,低压监控回路会报警给中控系统,从而控制汽车不会因为突然的失去动力而造成损害。
在一实施方式中,如图4及图14所示,对插端子22包括依次设置的第二固定部221和对插部222,第二固定部221与第二线缆21的导电部分电连接,对插部222为片状或带有第二夹槽2221;插接端子12包括依次设置的第一固定部121和插接部122,对插部222与插接部122电连接,插接部122为片状或带有第一夹槽1221。片状的对插部222与插接部122的第一夹槽1221进行对插连接,或者片状的插接部122与对插部222的第二夹槽2221进行对插连接,实现对插端子22和插接端子12的电连接,同时也将第一线缆11与第二线缆21实现电连接,从而能够安全稳定的导通电流。
在一实施方式中,第二固定部221和第二线缆21前端的导电部分采用电阻焊接、摩擦焊接、超声波焊接、弧焊、激光焊接、电子束焊接、压力扩散焊接、磁感应焊接、螺接、卡接、拼接和压接中的一种或几种方式连接。此方案与第一固定部121和第一线缆11的连接方式相同,不再赘述。
在一实施方式中,如图14-图15所示,第一夹槽1221或第二夹槽2221外周套设夹箍50,夹箍50的材质为记忆合金。记忆合金是一种有记忆力的智能金属,它的微观结构有两种相对稳定的状态,在高温下这种合金可以被变成任何想要的形状,在较低的温度下合金可以被拉伸,但若对它重新加热,它会记起它原来的形状,而变回去,记忆合金在其变态温度以上和变态温度以下的晶体结构是不同的,但温度在变态温度上下变化时,记忆合金就会收缩或膨胀,使得它的形态发生变化。在一些实施例中,记忆合金为镍钛合金。
在一实施方式中,记忆合金的变态温度为在40℃-70℃范围内设定,在夹箍50的温度低于该变态温度的状态下,夹箍50处于扩张状态;在夹箍50的温度高于该变态温度的状态下,夹箍50处于夹紧状态。
一般情况下,变态温度选择在40℃-70℃之间,因为如果变态温度低于40℃,在没有导通电流的情况下,插接端子12、对插端子22和夹箍50的环境温度也会达到接近40℃,此时夹箍50会处于夹紧状态,插接端子12或对插端子22的第一夹槽1221或第二夹槽2221带状凹槽变小,插接端子12不能够插入到对插端子22中,会导致插接端子12与对插端子22的插接结构无法插接,也就无法进行工作。
在室温下,插接端子12与对插端子22对插后开始导电,由于刚开始对插时,夹箍50处于扩张状态,因此插接端子12与对插端子22的接触面积较小,电流较大,从而导致插接后的插接端子12、对插端子22及夹箍50开始升温,而变态温度如果高于70℃,夹箍50升温时间长,插接端子12与对插端子22的插接结构长时间处于大电流状态,容易造成电气老化,严重时会使插接端子12与对插端子22的插接结构过载而损坏,造成不必要的损失。
因此,一般情况下,记忆合金的变态温度设定在40℃-70℃之间。
夹箍50带有记忆功能,在变态温度以下时,插接端子12与对插端子22的第一夹槽1221和第二夹槽2221带状凹槽通常为扩张状态,此时插接端子12与对插端子22能够实现无插入力对接,方便操作人员轻松的将用电器进行对插。在工作中插接端子12与对插端子22导通电流,由于电阻的作用插接端子12与对插端子22温度逐渐升高,当温度 升高到变态温度以上时,夹箍50将会径向收缩,通过温度的升高增加了插接端子12与对插端子22的第一夹槽1221和第二夹槽2221带状凹槽的接触面积和接触力,提高了接触的可靠性,由于省去了插入力的要求,工作更加轻松,工作效率提高。
在一实施方式中,如图15所示,第一夹槽1221或第二夹槽2221外周套设夹箍50,夹箍50包括侧壁51和固定在侧壁上的弹性单元52,弹性单元52与第一夹槽1221或第二夹槽2221的接触连接。夹箍50通过设置在侧壁上的弹性单元52,向插接端子12施加压力,使插接端子12的第一夹槽能够更加夹紧对插端子22,保证插接端子12与对插端子22的接触面积,减小接触电阻,提高导电性能。
进一步地,弹性单元52施加到第一夹槽1221或第二夹槽2221的外侧的力的范围为3N-200N。
为了验证弹性单元52施加到第一夹槽1221或第二夹槽2221的压力对插接端子12与对插端子22插接后的接触电阻和插拔情况的影响,以在插接端子12上套设夹箍50为例,发明人选用了相同尺寸规格的插接端子12与对插端子22,不同的弹性单元52施加到插接端子12上的压力,然后选用相同偏心度的对插端子22与套设有夹箍50的插接端子12进行对插,分别测试对插后的端子间的接触电阻,以及多次插拔实验中,插接端子12成功插入的比例,试验结果如表5所示。
接触电阻的测试方法:使用微电阻测量仪,将微电阻测量仪的测量端一端放置在插接端子12上,一端放置在对插端子22上,每次测量放置的位置相同,然后读取微电阻测量仪上的接触电阻读数。在本实施例中,接触电阻大于1mΩ为不合格。
对插成功率的测试方法:每一种弹性单元52施加到插接端子12上的压力值,都与100个相同偏心度的对插端子22进行对插,记录一次插入成功的数量,并与总体数量作比值再乘100%。在本实施例中,对插成功率小于95%为不合格。
表5:不同的压力对接触电阻和对插成功率的影响
Figure PCTCN2022123143-appb-000005
由表5可知,当弹性单元52施加到插接端子12上的压力小于3N时,虽然对插成功率合格,但对插接端子12与对插端子22之间的接触电阻大于1mΩ,接触电阻过大;当弹性单元52施加到插接端子12上的压力大于200N时,对插成功率小于95%,不能满足 应用需求,因此,发明人设定弹性单元52施加到插接端子12上的压力为3N-200N。
在一实施方式中,弹性单元52为弹性橡胶体、弹簧或金属弹片。弹性单元52可以是弹性橡胶体,依靠弹性橡胶体被压缩的弹力,保证施加到插接端子12或对插端子22上的压力;弹性单元52可以是压缩弹簧,依靠压缩弹簧被压缩的弹力,保证施加到插接端子12和对插端子22上的压力;弹性单元52还可以是金属弹片,金属弹片与夹箍50一体成型,可以是一端固定,一端自由端的单端弹片形式,也可以是两端固定,中间凸起的双端弹片形式,依靠金属弹片自身的弹力,保证施加到插接端子12或对插端子22上的压力。
在一实施方式中,如图16和图17所示,对插部222为片状,对插部222至少部分突出母端外壳23,或者母端外壳23具有第二容置腔,对插部222至少部分突出第二容置腔底面,但不超过母端外壳23。突出于母端外壳23的对插部222,可以与凹陷在公端外壳13中的插接部122对插连接构成插接结构并实现电连接;对插部222也可以凹陷在母端外壳23中,与突出与公端外壳13的插接部122对插连接构成插接结构并实现电连接。
在一实施方式中,如图16和图17所示,对插部222为带有第二夹槽2221,所述第二夹槽2221至少部分突出于母端外壳23的外壁,或者母端外壳23上设置有第二开口凸台,对插部222至少部分设置在第二开口凸台内。突出于母端外壳23的对插部222,可以与凹陷在公端外壳13中的插接部122对插连接构成插接结构并实现电连接;对插部222也可以凹陷在母端外壳23的第二开口凸台中,与突出于公端外壳13的插接部122对插连接构成插接结构并实现电连接。
在一实施方式中,如图16和图17所示,插接部122或对插部222为多层端子叠片叠放形成,插接部122带有第一夹槽1221,第一夹槽1221与片状的对插部222匹配对插连接;或者对插部222带有第二夹槽2221,第二夹槽2221与片状的插接部122匹配对插连接。
对插端子22可以与插接端子12插接配合,插接部122或对插部222为多个端子叠片层叠分布,插接部122带有第一夹槽1221,第一夹槽1221与对插部222对插连接,或者对插部222带有第二夹槽2221,第二夹槽2221与插接部122匹配对插连接。
片状的端子前端能够插接于第一夹槽1221或第二夹槽2221中,并通过第一夹槽1221或第二夹槽2221的结构降低由于金属板过厚导致的变形和弹性减弱问题,并使两 者之间具有较大的接触面积,保障连接的可靠性和导电效果。对插端子22与插接端子12能够保证夹持结构稳固,减少变形,增加插接连接结构的强度。
在一实施方式中,端子叠片利用板材冲压或切割或折弯而成。端子叠片为薄片状并层叠分布,使插接部122或对插部222具有较高的机械连接性能,同时保障了插接部122或对插部222之间的导电连接性能。板材冲压或切割的加工方式简单,工艺成熟,可以快速大批量的加工端子叠片,节省加工成本,提高生产效率。
在一实施方式中,如图14所示,端子叠片包括端子固定部40,第一夹槽1221或第二夹槽2221固接于所述端子固定部40。通过端子固定部40,将多层端子叠片叠放并连接在一起,并与第一固定部121和第二固定部221固定连接。
在一实施方式中,相邻两个端子固定部40通过压接、焊接、螺接、铆接或拼接连接在一起,保证了电气连接的稳定。
压接是将相邻的端子固定部40装配后,使用压接机,将两者冲压为一体的生产工艺。压接的优点是量产性,通过采用自动压接机能够迅速大量的制造稳定品质的产品。
焊接是采用摩擦焊、电阻焊、超声波焊、弧焊、压力焊、激光焊、爆炸焊等方式,将相邻的端子固定部40通过金属焊点熔为一个整体,所以连接牢固、接点电阻较小。
螺纹连接是相邻的端子固定部40分别具有螺纹结构,能够互相螺接在一起,或者使用单独的螺柱和螺母连接在一起。螺纹连接的优点是可拆卸性,能够反复进行组装和拆卸,适用于需要经常拆卸的场景。
铆接是采用铆钉,将相邻的端子固定部40铆接在一起,铆接的优点是连接牢固,加工方法简单,易于操作。
拼接方式,是指在相邻的端子固定部40上分别设置对应的凹槽和凸起,通过凹槽和凸起相互榫接或拼接进行装配,使其连接在一起。拼接的方式优点是连接稳定,可拆卸。
相邻两个所述端子叠片的所述带状夹槽之间接触配合,各个端子叠片之间可以产生相对滑动,使各个端子叠片保持自身的夹紧力,并且能够利用插接端子表面不平整的特点,提高了连接的稳固性。
在一实施方式中,第一夹槽1221或第二夹槽2221相邻两个端子叠片之间接触连接。端子叠片之间接触连接,可以保证电流在端子叠片内流通,增大流通截面积,降低对插端子22和插接端子12通电时的温升,延长对插端子22和插接端子12的使用寿命。
在一实施方式中,第一夹槽1221或第二夹槽2221相邻两个所述端子叠片之间的间隙小于0.2mm。两个端子叠片之间设置间隙,目的是端子叠片之间有空气流通,可以降低插接端子12与对插端子22之间温升,保护插接端子12或对插端子22的导电防腐蚀层,延长插接端子12或对插端子22的使用寿命,保证了插接端子12与对插端子22之间的插接力。当间隙大于0.2mm时,既没有增加其散热功能,反而使相同接触面积的插接端子12或对插端子22占用更大的宽度,浪费使用空间。
在一实施方式中,如图10所示,母端连接机构20具有高压互锁结构25,高压互锁结构25与互锁连接器15电连接形成回路。当公端连接机构10与母端连接机构20对插后,高压互锁结构25与互锁连接器15能够形成回路。高压互锁,是用低压信号监视高压回路完整性的一种安全设计方法,高压互锁是监控高压回路的意外断开,避免由于突然的失去动力的情况下,造成对汽车的损害。本实施例中的高压互锁,一端为互锁连接器15,为具备两根对插针,并且两根对插针电连接的一个U型或V型的低压回路,一端是设置在母端连接机构20中,连接低压回路的两个插接端子,高压互锁结构25的插接端子,与互锁连接器15的对插针匹配连接,构成低压监控回路,如图16和图17所示,当本实施例中的充电线束连接器因意外断开时,互锁连接器15与高压互锁结构25也会同时断开,低压监控回路会报警给中控系统,从而控制汽车不会因为突然的失去动力而造成损害。
嵌入式高压互锁结构,替代了之前的组装式的高压互锁,采用一体注塑的方式固定在连接器中,无需装配,降低成本,完全满足高压互锁效果。
在一实施方式中,如图16和图17所示,公端连接机构10和/或母端连接机构20具有密封结构60。密封结构60能够将插接端子12、部分第一线缆11、对插端子22及部分第二线缆21密封到高压连接机构内,防止外界的灰尘和水对内部的导电机构造成损伤和腐蚀,极大的延长高压连接机构的使用寿命。
进一步地,密封结构60是在公端连接机构10和/或母端连接机构20上二次注塑成型。密封结构60能够使公端连接机构10和/或母端连接机构20连接的更加紧密。
连接器的密封结构60,不再是安装单独的密封圈,而是采用二次注塑密封结构60,替代传统密封圈,能够直接成型在连接器上,注塑结合性更好,降低成本。
进一步的,密封结构60的材质为橡胶或软胶或硅胶。选用这几种材料,能够使用注塑机将材料加温熔融,并注塑相应的模具中成型,加工简单,粘合牢固,能够极大的延长密封结构60的使用寿命,另外,这几种材料具有良好的弹性,能够在连接器装配时挤 压变形,填充的空隙中,实现良好的密封性能,并且材料耐水耐油,能够保证密封结构有较长的使用寿命和安全的密封性能。
进一步的,密封结构与公端连接机构10和/或与母端连接机构20的最大间隙小于520nm。
为了验证各个密封结构与临近器件间隙的大小对密封等级的影响,发明人采用干空气法对密封装置进行测试,通过抽真空或者空气加压,控制被测样品内外压力不同,若存在泄露,内外压力之差将缩小。通过检测空气压力变化可检测密封性。检测介质为干空气,无毒无害,不破坏被测品,同时检测环境干净整洁。以检测在公端连接机构上设置密封结构为例,发明人将公端连接机构10和母端连接机构20连接后的其他连接处完全密闭,选用不同密封程度的密封结构,将密封结构中的干空气部分抽出,使密封结构内的气压低于外部气压,持续检测密封结构内部气压,发现气压升高为不合格,测试结果如表6所示。
表6,密封结构与公端连接机构和/或母端连接机构的最大间隙对气压变化的影响
Figure PCTCN2022123143-appb-000006
从表6可知,当密封结构与公端连接机构10和/或母端连接机构20的最大间隙超过520nm后,气压发生变化,意味着有气体进入密封结构,测试不合格。所以发明人选用密封结构与公端连接机构10和/或母端连接机构的最大间隙不小于520nm。
在一实施方式中,公端连接机构10和/或母端连接机构20具有至少一个测温结构,用来测量插接端子12和/或对插端子22的温度。测温结构可以与插接端子12或对插端子22有一定的距离,通过插接端子12或对插端子22的热辐射传递到测温结构,再由测温机构测量插接端子12或对插端子22的温度,或者测温结构中包含传导元件,传导元件与插接端子12或对插端子22贴合,通过传导元件传递的温度,测量插接端子12或对插端子22的温度。并传递给控制系统,用来调节插接端子12或对插端子22所通过的电流,从而调整公端连接机构10或母端连接机构20的温度。
在一实施方式中,测温结构与插接端子12和/或对插端子22贴合,用来测量插接端子12和/或对插端子22的温度。测温结构为温度传感器,直接贴合插接端子12和/或对插端子22,可以直接获得插接端子12或对插端子22的实际温度,不需要通过计算获得插接端子12和/或对插端子22的实际温度,结构简单,温度测量更加准确。
温度传感器为NTC温度传感器或PTC温度传感器。采用这两种温度传感器的好处是体积小,能够测量其他温度计无法测量的空隙;使用方便,电阻值可在0.1~100kΩ间任意选择;易加工成复杂的形状,可大批量生产,稳定性好、过载能力强,适用于转换接头这种要求体积小,性能稳定的产品中。
采用测温机构,能够单独对连接器内部的端子温度进行监控,避免由于其他位置的温度传感器损坏,而无法对连接器的温度进行监控。
在一实施方式中,公端连接机构10和母端连接机构20通过粘贴连接、磁吸连接、卡口连接、插接连接、锁扣连接、捆扎连接、螺纹连接、铆钉连接和焊接连接中的一种或几种方式连接,具体的实现方式如下:
在第一种可行的技术方案中,可以采用粘接结构,如在公端连接机构10和母端连接机构20的待拼接表面分别设置有粘贴层,二者通过粘接的方式固定连接。
在第二种可行的技术方案中,可以采用磁吸结构,如在公端连接机构10待拼接表面有磁吸件,母端连接机构20的待拼接表面同样设有磁吸件,通过连接,连接方便快捷。
在第三种可行的技术方案中,可以采用插接结构,例如,在公端屏蔽壳14外壳设置插销,母端屏蔽壳24的外壳表面,插销插入插槽后固定连接,从而使公端屏蔽壳14与母端屏蔽壳24固定连接,实现公端连接机构10与母端连接机构20接。
在第四种可行的技术方案中,可以采用卡接结构,如在公端连接机构10的公端屏蔽壳14设置有卡扣,母端连接机构20的母端屏蔽壳24有卡槽,卡扣与槽装配后固定连接,从而使公端连接机构10与母端连接机构20固定连接。
在第五种可行的技术方案中,可以采用螺栓连接结构,螺栓连接结构包括螺栓和螺母,螺栓固定在公端连接机构10的待拼接表面,螺母设置在母端连接机构20的待拼接表面上并能够旋转;螺栓和螺母相互螺接并拧紧之后,公端连接机构10和母端连接机构20的待拼接表面固定连接。螺栓连接结构采用最小为M3的螺栓和螺母,螺栓连接结构拧紧时的扭矩最小为0.2N·m。
在第六种可行的技术方案中,可以采用铆接结构,铆接结构包括铆钉和固定孔,固定孔设置在公端连接机构10与母端连接机构20待拼接表面上,铆钉穿过固定孔,并将铆钉穿过的一端变形,使固定孔拉紧,从而使公端连接机构10与母端连接机构20待拼接表面固定连接。
在第七种可行的技术方案中,可以采用焊接结构,如将焊接件设置在公端连接机构10与母端连接机构20的待拼接表面上,使用焊接机,将焊接件熔化并连接在一起,从 而使公端连接机构10与母端连接机构20待拼接表面固定连接。焊接机包括热熔焊接机和超声波焊接机。
在第八种可行的技术方案中,可以采用捆扎结构,捆扎结构包括捆扎件,在公端连接机构10与母端连接机构20表面上设置凹槽,使用捆扎件在凹槽位置将公端连接机构10与母端连接机构20待拼接表面捆扎在一起,从而使公端连接机构10与母端连接机构20的拼接表面固定连接。捆扎件包括扎带、管箍、钩锁等。
在第九种可行的技术方案中,可以采用锁扣结构,锁扣结构包括锁扣件,锁扣件设于公端连接机构10与母端连接机构20待拼接表面的相邻表面处或设于待拼接表面上,公端连接机构10与母端连接机构20的拼接表面通过锁扣件固定连接。
以上公端连接机构10和母端连接机构20连接的技术方案可以是公端连接机构10和母端连接机构20位置可以互换。
进一步地,如图16和图17所示,公端屏蔽壳14或母端屏蔽壳24至少部分外周上注塑成型公端外绝缘壳16或母端外绝缘壳26。采用一体注塑的方式,可以使公端外绝缘壳16或母端外绝缘壳26直接成型在公端屏蔽壳14或母端屏蔽壳24至少部分外周上,可以保证公端屏蔽壳14或母端屏蔽壳24的导电部分不会与外界其他导体连接导致短路。
在一实施方式中,插接端子12与对插端子22之间的插接力在3N-150N之间。
进一步的,插接端子12与对插端子22之间的插接力在10N-130N之间。
为了验证插接端子12与对插端子22之间的插接力插接端子12与对插端子22之间的接触电阻和对插情况的影响,发明人选用了相同形状、尺寸的插接端子12与对插端子22,并将插接端子12与对插端子22之间的插接力设计为不同的插接力,来观测插接端子12与对插端子22之间的接触电阻,以及多次对插之后的情况。
接触电阻的检测方式为使用微电阻测量仪,在插接端子12与对插端子22接触位置上进行电阻的测量,并读取微电阻测量仪上的数值,为插接端子12与对插端子22之间的接触电阻,在本实施例中,接触电阻小于50μΩ为理想值。
插接端子12与对插端子22对插情况的测试方式为将插接端子12与对插端子22进行50次的对插,观察插拔后掉落和无法插拔的次数,插拔后掉落次数要求小于3次,无法插拔的次数要求小于5次。
表7,不同插接端子12与对插端子22之间的插接力对接触电阻和对插情况的影响:
Figure PCTCN2022123143-appb-000007
Figure PCTCN2022123143-appb-000008
从上表7可以看出,当插接端子12与对插端子22之间的插接力小于3N时,由于插接端子12与对插端子22之间的结合力太小,两者之间的接触电阻要高于理想值,同时,插拔后掉落的次数也超过3次以上,为不合格状态。当插接端子12与对插端子22之间的插接力大于150N时,插接端子12与对插端子22之间无法插拔的次数大于5次以上,也是不合格状态,因此,发明人将插接端子12与对插端子22之间的插接力设定在3N-150N之间。
从上表7可以看出,当插接端子12与对插端子22之间的插接力在10N-130N之间时,既没有插拔后掉落,也没有无法插拔的情况,接触电阻值也在理想值范围内,因此,发明人设定优选地,插接端子12与对插端子22之间的插接力在10N-130N之间。
在一实施方式中,插接端子12与对插端子22之间的接触电阻小于9mΩ。
优选的,插接端子12与对插端子22之间的接触电阻小于1mΩ。
一般情况下,插接端子12与对插端子22之间需要导通较大电流,如果插接端子12与对插端子22之间的接触电阻大于9mΩ,则在接触位置会产生较大的温升,并且随着时间的增加,温度会越来越高,插接端子12与对插端子22之间的温度过高,当插接端子12与对插端子22的热膨胀率不同时,会导致的机械变形不同步,造成插接端子12与对插端子22之间产生内部应力,严重时会造成插接端子12与对插端子22的变形,无法实现电气导通的作用。二是插接端子12与对插端子22过高的温度,会传导至第一线缆11和第二线缆21的绝缘层,导致对应的绝缘层熔化,无法起到绝缘保护的作用,严重时会导致线路短路造成连接结构损坏,甚至燃烧等安全事故。因此,发明人设定插接端子12与对插端子22之间的接触电阻小于9mΩ。
为了验证插接端子12与对插端子22之间的接触电阻对连接器的温升和导电率的影响,发明人选用相同的插接端子12,不同接触电阻的对插端子22,并进行对插结构的导电率和温升的测试,
导电率测试是将插接端子12与对插端子22对插后,该插接结构通电后,检测相应的对插处的导电率,在本实施例中,导电率大于99%为理想值。
温升测试是将该插接结构通相同的电流,在封闭的环境下检测通电前和温度稳定后的插接端子12与对插端子22相同位置的温度,并做差取绝对值。在本实施例中,温升大于50K认为不合格。
表8,不同插接端子12与对插端子22之间的接触电阻对导电率和温升的影响:
Figure PCTCN2022123143-appb-000009
从上表8可以看出,当插接端子12与对插端子22之间的接触电阻大于9mΩ时,插接结构的温升超过50K,同时,插接结构的导电率也小于99%,不符合标准要求。因此,发明人设定插接端子12与对插端子22之间的接触电阻小于9mΩ。
进一步地,由于当插接端子12与对插端子22之间的接触电阻小于1mΩ时,插接结构的温升低于20K,插接端子12与对插端子22之间插接结构的导电率为99.9%,导电效果更好,所述发明人优选的把插接端子12与对插端子22之间的接触电阻设定为小于1mΩ。
在一实施方式中,公端连接机构10和母端连接机构20之间的插拔次数大于等于10次。在连接机构与用电装置装配时,需要将公端连接机构10和母端连接机构20装配到一起,后续有维修、组件拆卸,可能都需要将公端连接机构10和母端连接机构20分离后再进行插拔,因此公端连接机构10和母端连接机构20之间的插拔次数不能小于10次,如果小于10次,可能在某次拆卸维修过程中,公端连接机构10或母端连接机构20受到损伤,无法起到连同电流的作用,就需要将整个连接机构包括线束全部更换,不仅耗费维修时间,也会增加维修成本,因此,无论从公端连接机构10和母端连接机构20的材料选择,还是公端连接机构10和母端连接机构20之间的插拔机构,锁死机构,密封机构的设计,都需要经历至少10次的拆卸组装,才能满足连接机构的使用要求。
在一实施方式中,母端连接机构20的重量小于等于215g。如图1所示,母端连接机构20位于连接机构的上方,并且与公端连接机构10插接固定,当母端连接机构20的重量过大时,母端连接机构20收到的重力也较大,在用电装置振动的情况下,会导致整个连接机构跟随振动,由于惯性的原因,母端连接机构20会受到较大的振动,会发出异响,而在用电装置使用过程中,发生异响是不被允许的。
为了验证母端连接机构20的重量对连接机构发生异响的影响,发明人采用相同的公端连接机构10,不同重量的母端连接机构20的样件,组装后安装到振动试验台上,并进行振动试验,观察振动试验过程中,母端连接机构20是否发生异响,测试结果如表9所示。
表9,母端连接机构20的重量对连接机构发生异响的影响
Figure PCTCN2022123143-appb-000010
从表9可知,当母端连接机构20的重量大于215g后,振动试验过程中,母端连接机构20发生异响,测试不合格。所以发明人选用母端连接机构20的重量小于等于215g。
在一实施方式中,母端连接机构20沿插拔方向的高度小于等于276mm。公端连接机构10和母端连接机构20装配到一起后,需要安装到用电装置中,但是一般情况下,用电装置预留的空间都较小,如果母端连接机构20较高时,一是无法安装到用电装置当中,二是也比较浪费原材料,因此母端连接机构20在设计时需要低于一定的高度。
为了验证母端连接机构20沿插拔方向的高度对连接机构安装情况的影响,发明人采用相同的公端连接机构10,不同的沿插拔方向的高度的母端连接机构20的样件,组装后安装到用电装置上,观察安装过程中,母端连接机构20是否与用电装置其他零部件发生干涉,测试结果如表10所示。
表10,母端连接机构20沿插拔方向的高度对连接机构安装情况的影响
高度(mm) 236 246 256 266 276 286 296 306 316
是否干涉
从表10可知,当母端连接机构20沿插拔方向的高度大于276mm后,无法安装到用电装置的指定位置中,测试不合格。所以发明人选用母端连接机构20沿插拔方向的高度小于等于276mm。
在一实施方式中,插接端子12和/或对插端子22至少部分表面上设置有导电防腐蚀层。
当插接端子12和对插端子22的材质不一致时,两者之间导电会由于电势电位差而产生电化学腐蚀,从而降低插接端子12和对插端子22的使用寿命,为了降低这种电化学腐蚀,可以在插接端子12和/或对插端子22至少部分表面上设置导电防腐蚀层,导电防腐蚀的材质可以使用电势电位在插接端子12和对插端子22的材质的电势电位之间的一种金属材料,从而隔绝插接端子12和对插端子22,减缓电化学腐蚀,延长插接端子12和对插端子22的使用寿命。
插接端子12和对插端子22的连接中,导电防腐蚀层可以减少插接端子12和对插端子22之间发生电化学反应,解决扁带需通过其他材质的端子才能与其它端子或用电装置连接的技术问题。
进一步地,导电防腐蚀层通过电镀、化学镀、磁控溅射、真空镀、压力焊、扩散焊、摩擦焊、电阻焊方式、超声波焊或激光焊方式中的一种或几种附着于插接端子12和/或对插端子22至少部分表面上。
电镀方法,就是利用电解原理在某些金属表面上镀上一薄层其它金属或合金的过程。
化学镀方法,是在金属的催化作用下,通过可控制的氧化还原反应产生金属的沉积过程。
磁控溅射方法,是利用磁场与电场交互作用,使电子在靶表面附近成螺旋状运行,从而增大电子撞击氩气产生离子的概率。所产生的离子在电场作用下撞向靶面从而溅射出靶材。
真空镀方法,是采用在真空条件下,通过蒸馏或溅射等方式在塑件表面沉积各种金属和非金属薄膜。
压力焊是对焊件施加压力,使接合面紧密地接触产生一定的塑性变形而完成焊接的方法。
摩擦焊方式,是指利用工件接触面摩擦产生的热量为热源,使工件在压力作用下产生塑性变形而进行焊接的方法。
电阻焊方式,是指一种利用强大电流通过电极和工件间的接触点,由接触电阻产生热量而实现焊接的一种方法。
超声波焊接方式,是利用高频振动波传递到两个需焊接的物体表面,在加压的情况下,使两个物体表面相互摩擦而形成分子层之间的熔合。
激光焊方式,是利用高能量密度的激光束作为热源的一种高效精密焊接方法。
扩散焊方式,指将工件在高温下加压,但不产生可见变形和相对移动的固态焊方法。采用以上的多种方式或其组合,可以将导电防腐蚀层稳定的设置在插接端子12和/或对插端子22至少部分表面上。
在一实施方式中,导电防腐蚀层的厚度为0.3μm到3000μm。
在一实施方式中,导电防腐蚀层的厚度为2.5μm到1000μm。
为了测试不同导电防腐蚀层的厚度对电压降的影响,发明人采用同材质和结构的插接端子12和对插端子22,分别在插接端子12和/或对插端子22至少部分表面上设置不同厚度的导电防腐蚀层,然后测试插接端子12和对插端子22插接后的电压降。结果如表11所示。
在本实施例中,插接端子12和对插端子22插接后的电压降大于4mV为不合格。
表11,不同的导电防腐蚀层厚度对电压降(mV)的影响:
Figure PCTCN2022123143-appb-000011
从以上表11数据可以看出,当导电防腐蚀层厚度大于3000μm和小于0.3μm的时候,插接端子12和对插端子22的插接结构的电压降大于4mV,不符合要求值,因此,发明人选用导电防腐蚀层的厚度为0.3μm到3000μm。其中,当导电防腐蚀层厚度在 2.5μm到1000μm范围内时,插接端子12和对插端子22的插接结构的电压降为最优值,因此,优选地,发明人选用导电防腐蚀层厚度为2.5μm到1000μm。
在一实施方式中,导电防腐蚀层的材质为含有镍、镉、锰、锆、钴、锡、钛、铬、金、银、锌、锡铅合金、银锑合金、钯、钯镍合金、石墨银、石墨烯银、硬银和银金锆合金中的一种或多种。
优选的,导电防腐蚀层材质的电势电位在插接端子12和对插端子22的材质的电势电位之间。这样的方案可以实现降低插接端子12和对插端子22插接后产生的电化学腐蚀。
下面同样以插接端子12和对插端子22为例,在插接端子12和对插端子22设置有导电防腐蚀层,为论证不同导电防腐蚀材质对插接端子12和对插端子22性能的影响,发明人使用相同规格、材质,采用不同导电防腐蚀材质的插接端子12和对插端子22,做一系列耐腐蚀性时间测试,实验结果如表12所示。
表12中的耐腐蚀性时间测试,是将插接端子12和对插端子22样件放入到盐雾喷淋试验箱内,对插接端子12和对插端子22各个位置喷淋盐雾,每隔20小时取出清洗观察表面腐蚀情况,即为一个周期,直到插接端子12和对插端子22样件表面腐蚀面积大于总面积的10%的时候,停止测试,并记录当时的周期数。在本实施例中,周期数小于80次认为不合格。
表12:不同导电防腐蚀层材质对插接端子12和对插端子22样件耐腐蚀性的影响
Figure PCTCN2022123143-appb-000012
从表12可以看出,当导电防腐蚀层材质含有常用的金属锡、镍、锌时,实验的结果不如其他选用的金属,选用其他金属的实验结果,超过标准值较多,性能比较稳定。因此,发明人选择导电防腐蚀层材质含有(或为)镍、镉、锰、锆、钴、锡钛、铬、金、银、锌锡铅合金、银锑合金、钯、钯镍合金、石墨银、石墨烯银、硬银和银金锆合金中 的一种或多种。而更优选的方式是选择导电防腐蚀层材质含有(或为)镉、锰、锆、钴、钛、铬、金、银、锡铅合金、银锑合金、钯、钯镍合金、石墨银、石墨烯银、硬银和银金锆合金的一种或几种。
在一实施方式中,第一线缆11的导电部分与插接端子12为一体结构。第一线缆11的导电部分与插接端子12可以是同一材料制备而成,也就是第一线缆11的导电部分延伸出来并成型为插接端子12,可以节省插接端子12的使用,降低材料成本,节省加工工时,并且可以将第一线缆11的导电部分前端按照需求成型为多种形状,而不需要考虑装配的问题。
在一实施方式中,第二线缆21的导电部分与对插端子22为一体结构。第二线缆21的导电部分与对插端子22可以是同一材料制备而成,也就是第二线缆21的导电部分延伸出来并成型为对插端子22,可以节省对插端子22的使用,降低材料成本,节省加工工时,并且可以将第二线缆21的导电部分前端按照需求成型为多种形状,而不需要考虑装配的问题。
本发明还提供一种电能传输装置,电能传输装置包含上述高压连接机构。
本发明还提供一种机动车辆,机动车辆包含上述高压连接机构和上述电能传输装置。
本发明的高压连接机构设置注塑成型的公端屏蔽壳和母端屏蔽壳,加工简单,成本较屏蔽金属壳低很多,通过公端屏蔽壳和母端屏蔽壳的插接配合,以及和线缆屏蔽网的电连接,可以有效的将高压连接机构内部的电磁干扰屏蔽,减少了对其他设备电磁干扰。
本发明的公端屏蔽壳和母端屏蔽壳,与线缆屏蔽层的连接采用多种方式,可以稳定有效的连接屏蔽壳与屏蔽层,实现较好的屏蔽效果。
本发明的端子和线缆,是一体注塑成型在公端外壳和母端外壳内的,不需要再进行端子插接等工作,减少加工工序,降低生产成本,并且一体注塑成型的公端外壳和母端外壳,结构简单,不需要高精度的注塑模具,并且由于完全密封,绝缘效果好。
对插端子可以与插接端子插接配合,插接部或对插部为多个端子叠片层叠分布,片状的端子前端能够插接于带状凹槽中,并通过带状凹槽结构降低由于金属板过厚导致的变形和弹性减弱问题,并使两者之间具有较大的接触面积,保障连接的可靠性和导电效果。对插端子与插接端子能够保证夹持结构稳固,减少变形,增加插接连接结构的强度。
嵌入式高压互锁结构,替代了之前的组装式的高压互锁,采用一体注塑的方式固定在连接器中,无需装配,降低成本,完全满足高压互锁效果。
连接器的密封结构,不再是安装单独的密封圈,而是采用二次注塑密封结构,替代传统密封圈,能够直接成型在连接器上,注塑结合性更好,降低成本。
采用测温机构,能够单独对连接器内部的端子温度进行监控,避免由于其他位置的温度传感器损坏,而无法对连接器的温度进行监控。
以上所述仅为本发明的几个实施例,本领域的技术人员依据申请文件公开的内容可以对本发明实施例进行各种改动或变型而不脱离本发明的精神和范围。

Claims (44)

  1. 一种高压连接机构,包括公端连接机构和母端连接机构,其特征在于,所述公端连接机构包括第一线缆、插接端子、与所述第一线缆和所述插接端子一体成型的公端外壳、以及设置在所述公端外壳之外的公端屏蔽壳;所述母端连接机构包括对插端子、第二线缆、与所述对插端子和所述第二线缆一体成型的母端外壳,以及与设置在所述母端外壳之外的母端屏蔽壳;所述公端连接机构和所述母端连接机构通过所述插接端子与所述对插端子电连接,所述公端外壳与所述母端外壳连接,所述公端屏蔽壳与所述母端屏蔽壳连接。
  2. 根据权利要求1所述的高压连接机构,其特征在于,所述第一线缆包括第一屏蔽层,所述公端屏蔽壳至少部分与所述第一屏蔽层至少部分电性连接;所述第二线缆包括第二屏蔽层,所述母端屏蔽壳至少部分与所述第二屏蔽层至少部分电性连接。
  3. 根据权利要求1所述的高压连接机构,其特征在于,所述公端屏蔽壳包括第一屏蔽装置,所述第一线缆包括第一屏蔽层,所述第一屏蔽装置设置在所述第一屏蔽层至少部分外周,所述第一屏蔽层通过所述第一屏蔽装置与所述公端屏蔽壳电性连接;所述母端屏蔽壳包括第二屏蔽装置,所述第二线缆包括第二屏蔽层,所述第二屏蔽装置设置在所述第二屏蔽层至少部分外周,所述第二屏蔽层通过所述第二屏蔽装置与所述母端屏蔽壳电性连接。
  4. 根据权利要求1所述的高压连接机构,其特征在于,所述公端屏蔽壳的内表面设置有第一导电弹片,所述第一线缆包括第一屏蔽层,所述第一导电弹片与所述第一屏蔽层连接,所述第一导电弹片施加压力到所述第一屏蔽层上;所述母端屏蔽壳的内表面设置有第二导电弹片,所述第二线缆包括第二屏蔽层,所述第二导电弹片与所述第二屏蔽层连接,所述第二导电弹片施加压力到所述第二屏蔽层上。
  5. 根据权利要求4所述的高压连接机构,其特征在于,所述第一导电弹片施加到所述第一屏蔽层的上压力范围为0.3N-95N;所述第二导电弹片施加到所述第二屏蔽层的上压力范围为0.3N-95N。
  6. 根据权利要求1所述的高压连接机构,其特征在于,所述第一线缆包括第一屏蔽层,所述公端屏蔽壳与所述第一屏蔽层之间的阻抗小于80mΩ;所述第二线缆包括第二屏蔽层,所述母端屏蔽壳与所述第二屏蔽层之间的阻抗小于80mΩ。
  7. 根据权利要求1所述的高压连接机构,其特征在于,所述公端屏蔽壳或所述母端屏蔽壳的转移阻抗为小于100mΩ。
  8. 根据权利要求1所述的高压连接机构,其特征在于,所述插接端子包括依次设置的第一固定部和插接部,所述第一固定部与所述第一线缆的导电部分电连接,所述插接部为片状或带有第一夹槽。
  9. 根据权利要求8所述的高压连接机构,其特征在于,所述插接部为片状,所述插接部至少部分突出所述公端外壳,或者所述公端外壳具有第一容置腔,所述插接部至少部分突出所述第一容置腔底面,但不超过所述公端外壳。
  10. 根据权利要求8所述的高压连接机构,其特征在于,所述第一夹槽至少部分突出于所述公端外壳的外壁,或者所述公端外壳上设置有第一开口凸台,所述插接部至少部分设置在所述第一开口凸台内。
  11. 根据权利要求8所述的高压连接机构,其特征在于,所述公端屏蔽壳包覆至少部分所述公端外壳,所述公端屏蔽壳具有开口,所述插接部从所述开口处伸出或在所述开口内。
  12. 根据权利要求1所述的高压连接机构,其特征在于,所述公端连接机构包括互锁连接器,所述互锁连接器至少部分一体注塑在所述公端外壳中。
  13. 根据权利要求1所述的高压连接机构,其特征在于,所述对插端子包括依次设置的第二固定部和对插部,所述第二固定部与所述第二线缆的导电部分电连接,所述对插部为片状或带有第二夹槽;所述插接端子包括依次设置的第一固定部和插接部,所述对插部与所述插接部电连接,所述插接部为片状或带有第一夹槽。
  14. 根据权利要求13所述的高压连接机构,其特征在于,所述第一夹槽或所述第二夹槽外周套设夹箍,所述夹箍的材质为记忆合金。
  15. 根据权利要求14所述的高压连接机构,其特征在于,所述记忆合金的变态温度为在40℃-70℃范围内设定,在所述夹箍的温度低于该变态温度的状态下,所述夹箍处于扩张状态;在所述夹箍的温度高于该变态温度的状态下,所述夹箍处于夹紧状态。
  16. 根据权利要求13所述的高压连接机构,其特征在于,所述第一夹槽或所述第二夹槽外周套设夹箍,所述夹箍包括侧壁和固定在所述侧壁上的弹性单元,所述弹性单元与所述第一夹槽或所述第二夹槽的接触连接。
  17. 根据权利要求16所述的高压连接机构,其特征在于,所述弹性单元施加到所述第一夹槽或所述第二夹槽的力的范围为3N-200N。
  18. 根据权利要求16所述的高压连接机构,其特征在于,所述弹性单元为弹性橡胶体、弹簧或金属弹片。
  19. 根据权利要求13所述的高压连接机构,其特征在于,所述对插部为片状,所述对插部至少部分突出所述母端外壳,或者所述母端外壳具有第二容置腔,所述对插部至少部分突出所述第二容置腔底面,但不超过母端外壳。
  20. 根据权利要求13所述的高压连接机构,其特征在于,所述对插部为带有第二夹槽,所述第二夹槽至少部分突出与所述母端外壳的外壁,或者母端外壳上设置有第二开口凸台,所述对插部至少部分设置在所述第二开口凸台内。
  21. 根据权利要求13所述的高压连接机构,其特征在于,所述插接部或所述对插部为多层端子叠片叠放形成,所述插接部带有第一夹槽,所述第一夹槽与片状的所述对插部匹配对插连接;或者所述对插部带有第二夹槽,所述第二夹槽与片状的所述插接部匹配对插连接。
  22. 根据权利要求21所述的高压连接机构,其特征在于,所述端子叠片包括端子固定部,所述第一夹槽或所述第二夹槽固接于所述端子固定部。
  23. 根据权利要求22所述的高压连接机构,其特征在于,相邻两个所述端子固定部通过压接、焊接、螺接、铆接或拼接连接在一起。
  24. 根据权利要求21所述的高压连接机构,其特征在于,所述第一夹槽或所述第二夹槽相邻两个所述端子叠片之间接触连接。
  25. 根据权利要求21所述的高压连接机构,其特征在于,所述第一夹槽或所述第二夹槽相邻两个所述端子叠片之间的间隙小于0.2mm。
  26. 根据权利要求12所述的高压连接机构,其特征在于,所述母端连接机构具有高压互锁结构,所述高压互锁结构与所述互锁连接器电连接形成回路。
  27. 根据权利要求1所述的高压连接机构,其特征在于,所述公端连接机构和/或母端连接机构具有密封结构。
  28. 根据权利要求27所述的高压连接机构,其特征在于,所述密封结构是在所述公端连接机构和/或所述母端连接机构上二次注塑成型。
  29. 根据权利要求1所述的高压连接机构,其特征在于,所述公端连接机构和/或所述母端连接机构具有至少一个测温结构,用来测量所述插接端子和/或所述对插端子的温度。
  30. 根据权利要求29所述的高压连接机构,其特征在于,所述测温结构与所述插接端子和/或对插端子贴合,用来测量所述插接端子和/或所述对插端子的温度。
  31. 根据权利要求1所述的高压连接机构,其特征在于,所述公端连接机构和所述母端连接机构通过粘贴连接、磁吸连接、卡口连接、插接连接、锁扣连接、捆扎连接、螺纹连接、铆钉连接和焊接连接中的一种或几种方式连接。
  32. 根据权利要求1所述的高压连接机构,其特征在于,所述公端屏蔽壳或所述母端屏蔽壳至少部分外周上注塑成型公端外绝缘壳或母端外绝缘壳。
  33. 根据权利要求1所述的高压连接机构,其特征在于,所述插接端子与所述对插端子之间的插接力在3N-150N之间。
  34. 根据权利要求1所述的高压连接机构,其特征在于,所述插接端子与所述对插端子之间的插接力在10N-130N之间。
  35. 根据权利要求1所述的高压连接机构,其特征在于,所述插接端子与所述对插端子之间的接触电阻小于9mΩ。
  36. 根据权利要求1所述的高压连接机构,其特征在于,所述插接端子与所述对插端子之间的接触电阻小于1mΩ。
  37. 根据权利要求1所述的高压连接机构,其特征在于,所述公端连接机构和所述母端连接机构之间的插拔次数大于等于10次。
  38. 根据权利要求1所述的高压连接机构,其特征在于,所述母端连接机构的重量小于等于215g。
  39. 根据权利要求1所述的高压连接机构,其特征在于,所述母端连接机构沿插拔方向的高度小于等于276mm。
  40. 根据权利要求1所述的高压连接机构,其特征在于,所述插接端子和/或所述对插端子至少部分表面上设置有导电防腐蚀层。
  41. 根据权利要求1所述的高压连接机构,其特征在于,所述第一线缆的导电部分与所述插接端子为一体结构。
  42. 根据权利要求1所述的高压连接机构,其特征在于,所述第二线缆的导电部分与所述对插端子为一体结构。
  43. 一种电能传输装置,其特征在于,包含根据权利要求1-42任一项所述的高压连接机构。
  44. 一种机动车辆,其特征在于,包含根据权利要求1-42任一项所述的高压连接机构。
PCT/CN2022/123143 2021-10-01 2022-09-30 一种高压连接机构、电能传输装置及机动车辆 WO2023051765A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2024518260A JP2024536048A (ja) 2021-10-01 2022-09-30 高圧接続機構、電気エネルギー伝送装置及び自動車
EP22875146.7A EP4411996A1 (en) 2021-10-01 2022-09-30 High-voltage connecting mechanism, electrical energy transmission apparatus, and motor vehicle
MX2024004075A MX2024004075A (es) 2021-10-01 2022-09-30 Mecanismo de conexion de alto voltaje, aparato de transmision de energia electrica y vehiculo de motor.

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
CN202122400679.1U CN217215197U (zh) 2021-10-01 2021-10-01 一种高压连接机构、电能传输装置及机动车辆
CN202122400679.1 2021-10-01
CN202111167061.3 2021-10-01
CN202111167061.3A CN113922123A (zh) 2021-10-01 2021-10-01 一种高压连接机构、电能传输装置及机动车辆

Publications (1)

Publication Number Publication Date
WO2023051765A1 true WO2023051765A1 (zh) 2023-04-06

Family

ID=85780438

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/123143 WO2023051765A1 (zh) 2021-10-01 2022-09-30 一种高压连接机构、电能传输装置及机动车辆

Country Status (4)

Country Link
EP (1) EP4411996A1 (zh)
JP (1) JP2024536048A (zh)
MX (1) MX2024004075A (zh)
WO (1) WO2023051765A1 (zh)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1140275A (ja) * 1997-07-22 1999-02-12 Harness Sogo Gijutsu Kenkyusho:Kk シールドコネクタ
CN205985587U (zh) * 2016-08-24 2017-02-22 惠州领先精密科技有限公司 一种高压弯头连接器
CN109103672A (zh) * 2018-08-09 2018-12-28 杭州中盟光电科技有限公司 一种高压连接器
CN110416801A (zh) * 2018-04-28 2019-11-05 比亚迪股份有限公司 电连接器和具有其的车辆
CN113422255A (zh) * 2021-06-22 2021-09-21 中航光电科技股份有限公司 高速极细同轴连接器组件及公端连接器
CN113922123A (zh) * 2021-10-01 2022-01-11 长春捷翼汽车零部件有限公司 一种高压连接机构、电能传输装置及机动车辆
CN217215197U (zh) * 2021-10-01 2022-08-16 长春捷翼汽车零部件有限公司 一种高压连接机构、电能传输装置及机动车辆

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1140275A (ja) * 1997-07-22 1999-02-12 Harness Sogo Gijutsu Kenkyusho:Kk シールドコネクタ
CN205985587U (zh) * 2016-08-24 2017-02-22 惠州领先精密科技有限公司 一种高压弯头连接器
CN110416801A (zh) * 2018-04-28 2019-11-05 比亚迪股份有限公司 电连接器和具有其的车辆
CN109103672A (zh) * 2018-08-09 2018-12-28 杭州中盟光电科技有限公司 一种高压连接器
CN113422255A (zh) * 2021-06-22 2021-09-21 中航光电科技股份有限公司 高速极细同轴连接器组件及公端连接器
CN113922123A (zh) * 2021-10-01 2022-01-11 长春捷翼汽车零部件有限公司 一种高压连接机构、电能传输装置及机动车辆
CN217215197U (zh) * 2021-10-01 2022-08-16 长春捷翼汽车零部件有限公司 一种高压连接机构、电能传输装置及机动车辆

Also Published As

Publication number Publication date
MX2024004075A (es) 2024-05-24
JP2024536048A (ja) 2024-10-04
EP4411996A1 (en) 2024-08-07

Similar Documents

Publication Publication Date Title
CN113922123A (zh) 一种高压连接机构、电能传输装置及机动车辆
CN113922137A (zh) 一种带屏蔽的连接机构、电能传输装置及机动车辆
CN217215197U (zh) 一种高压连接机构、电能传输装置及机动车辆
CN217215235U (zh) 一种带屏蔽的连接机构、电能传输装置及机动车辆
CN216251220U (zh) 一种筒式端子及对插连接结构
WO2023174247A1 (zh) 一种电能传输连接装置及车辆
CN113708172A (zh) 一种电能传输转接机构、充电插座和机动车辆
WO2023174260A1 (zh) 一种具有液冷功能的连接器总成及一种车辆
CN113922124A (zh) 一种连接机构、电能传输装置及机动车辆
CN113922138A (zh) 一种扁带式连接机构、电能传输装置及机动车辆
JP3248874U (ja) 回路基板埋め込み式充電インレット構造及び充電インレット
WO2023174276A1 (zh) 一种具有液冷功能的连接器总成及一种车辆
CN216251492U (zh) 一种电能传输转接机构、充电插座和机动车辆
CN113410687A (zh) 一种插接端子、对插连接结构及插接端子组件
EP4372920A1 (en) Plug-in terminal, plug-in connection structure, and plug-in terminal assembly
CN215771835U (zh) 一种线束模块及组合式线束
WO2023051767A1 (zh) 一种连接机构、电能传输装置及机动车辆
WO2023051763A1 (zh) 一种扁带式连接机构、电能传输装置及机动车辆
WO2023078302A1 (zh) 充电连接器
WO2023051765A1 (zh) 一种高压连接机构、电能传输装置及机动车辆
WO2023174245A1 (zh) 一种具有液冷功能的连接器总成及一种车辆
WO2023174246A1 (zh) 新型屏蔽材料的连接器总成及车辆
WO2023174259A1 (zh) 一种具有固态冷却介质的连接器总成及一种车辆
WO2023125497A1 (zh) 一种充电座密封结构及一种充电座
WO2023174257A1 (zh) 一种连接器总成及加工方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22875146

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2024518260

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2401002122

Country of ref document: TH

WWE Wipo information: entry into national phase

Ref document number: 2022875146

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2022875146

Country of ref document: EP

Effective date: 20240502