WO2023051124A1 - 一种唤醒信号发送方法及装置 - Google Patents
一种唤醒信号发送方法及装置 Download PDFInfo
- Publication number
- WO2023051124A1 WO2023051124A1 PCT/CN2022/115282 CN2022115282W WO2023051124A1 WO 2023051124 A1 WO2023051124 A1 WO 2023051124A1 CN 2022115282 W CN2022115282 W CN 2022115282W WO 2023051124 A1 WO2023051124 A1 WO 2023051124A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- signal
- wake
- synchronization signal
- time
- wur
- Prior art date
Links
- 238000000034 method Methods 0.000 title claims abstract description 114
- 230000006854 communication Effects 0.000 claims abstract description 140
- 238000004891 communication Methods 0.000 claims abstract description 138
- 230000005540 biological transmission Effects 0.000 claims description 68
- 230000015654 memory Effects 0.000 claims description 24
- 238000013507 mapping Methods 0.000 claims description 18
- 238000004590 computer program Methods 0.000 claims description 8
- 238000013473 artificial intelligence Methods 0.000 abstract 1
- 230000006855 networking Effects 0.000 abstract 1
- 238000013461 design Methods 0.000 description 90
- 230000006870 function Effects 0.000 description 45
- 101100368149 Mus musculus Sync gene Proteins 0.000 description 33
- 238000012545 processing Methods 0.000 description 25
- 238000010586 diagram Methods 0.000 description 24
- 230000008569 process Effects 0.000 description 16
- 230000008054 signal transmission Effects 0.000 description 13
- 238000001514 detection method Methods 0.000 description 11
- 230000001360 synchronised effect Effects 0.000 description 7
- 230000000694 effects Effects 0.000 description 4
- 230000008878 coupling Effects 0.000 description 3
- 238000010168 coupling process Methods 0.000 description 3
- 238000005859 coupling reaction Methods 0.000 description 3
- 230000003287 optical effect Effects 0.000 description 3
- 230000003190 augmentative effect Effects 0.000 description 2
- 230000008859 change Effects 0.000 description 2
- 230000003993 interaction Effects 0.000 description 2
- 230000007774 longterm Effects 0.000 description 2
- 230000011664 signaling Effects 0.000 description 2
- 230000003068 static effect Effects 0.000 description 2
- 230000009286 beneficial effect Effects 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 230000014509 gene expression Effects 0.000 description 1
- 238000010348 incorporation Methods 0.000 description 1
- 230000000737 periodic effect Effects 0.000 description 1
- 238000012546 transfer Methods 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W52/00—Power management, e.g. TPC [Transmission Power Control], power saving or power classes
- H04W52/02—Power saving arrangements
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W52/00—Power management, e.g. TPC [Transmission Power Control], power saving or power classes
- H04W52/02—Power saving arrangements
- H04W52/0209—Power saving arrangements in terminal devices
- H04W52/0225—Power saving arrangements in terminal devices using monitoring of external events, e.g. the presence of a signal
- H04W52/0235—Power saving arrangements in terminal devices using monitoring of external events, e.g. the presence of a signal where the received signal is a power saving command
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W52/00—Power management, e.g. TPC [Transmission Power Control], power saving or power classes
- H04W52/02—Power saving arrangements
- H04W52/0209—Power saving arrangements in terminal devices
- H04W52/0212—Power saving arrangements in terminal devices managed by the network, e.g. network or access point is master and terminal is slave
- H04W52/0216—Power saving arrangements in terminal devices managed by the network, e.g. network or access point is master and terminal is slave using a pre-established activity schedule, e.g. traffic indication frame
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W52/00—Power management, e.g. TPC [Transmission Power Control], power saving or power classes
- H04W52/02—Power saving arrangements
- H04W52/0209—Power saving arrangements in terminal devices
- H04W52/0225—Power saving arrangements in terminal devices using monitoring of external events, e.g. the presence of a signal
- H04W52/0229—Power saving arrangements in terminal devices using monitoring of external events, e.g. the presence of a signal where the received signal is a wanted signal
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W52/00—Power management, e.g. TPC [Transmission Power Control], power saving or power classes
- H04W52/02—Power saving arrangements
- H04W52/0209—Power saving arrangements in terminal devices
- H04W52/0261—Power saving arrangements in terminal devices managing power supply demand, e.g. depending on battery level
- H04W52/0274—Power saving arrangements in terminal devices managing power supply demand, e.g. depending on battery level by switching on or off the equipment or parts thereof
- H04W52/028—Power saving arrangements in terminal devices managing power supply demand, e.g. depending on battery level by switching on or off the equipment or parts thereof switching on or off only a part of the equipment circuit blocks
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W68/00—User notification, e.g. alerting and paging, for incoming communication, change of service or the like
- H04W68/005—Transmission of information for alerting of incoming communication
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W72/00—Local resource management
- H04W72/04—Wireless resource allocation
- H04W72/044—Wireless resource allocation based on the type of the allocated resource
- H04W72/0446—Resources in time domain, e.g. slots or frames
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02D—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN INFORMATION AND COMMUNICATION TECHNOLOGIES [ICT], I.E. INFORMATION AND COMMUNICATION TECHNOLOGIES AIMING AT THE REDUCTION OF THEIR OWN ENERGY USE
- Y02D30/00—Reducing energy consumption in communication networks
- Y02D30/70—Reducing energy consumption in communication networks in wireless communication networks
Definitions
- the embodiments of the present application relate to the field of communication technologies, and in particular, to a method and device for sending a wake-up signal.
- the UE when the user equipment (UE) is in the idle state (IDLE)/inactive state (INACTIVE) state, the UE will calculate a paging frame (paging frame, PF) according to its UE ID (UE ID). ) and the location of the paging occasion (PO) in a PF, and the paging is received in the PO.
- PF paging frame
- the same receiving module is used when the UE executes the above paging receiving process in the IDLE state/INACTIVE state, or when the UE performs data reception in the connected state.
- a separate low-power small circuit can be used to receive paging-related messages.
- This small circuit can be called a wake-up circuit or a low-power circuit or other names.
- the signal received by the wake-up circuit can be Called wake up signal/radio (wake up signal/radio, WUS/WUR). How to accurately identify the information in the WUR signal received by the wake-up circuit by the UE has become an urgent problem to be solved.
- Embodiments of the present application provide a method and device for sending a wake-up signal to solve the problem of how the UE can accurately identify the information in the WUR signal received by the wake-up circuit.
- an embodiment of the present application provides a method for sending a wake-up signal, the method comprising: the terminal receives a synchronization signal from a network device, and receives a signal from the network device on a first time domain resource at least for indicating paging related A wake-up signal for information; wherein the format of the first time-domain resource is designed as follows: the first time-domain resource includes N first time units of preset length, and one wake-up signal occupies at least one of the N first time units of preset length A first time unit, the boundary position of the first time unit is determined according to the time domain position of the synchronization signal.
- the embodiment of the present application also provides a method for sending a wake-up signal, which may be executed by a network device, and the method may include: the network device sends a synchronization signal to the terminal, and the network device sends a synchronization signal on the first time domain resource Sending a wake-up signal at least for indicating paging-related information to the terminal; wherein the design of the first time domain resource and the first time unit is as described in the first aspect, and will not be described in detail.
- this application defines the time-domain resource used to transmit the wake-up signal and the boundary position of the time-domain resource, such as determining the boundary position of the time unit used to transmit the wake-up signal according to the time-domain position of the synchronization signal, so that the terminal can know The starting position of the wake-up signal and the time domain positions at which the wake-up signal is detected/received, reducing the number of times the terminal decodes paging-related information (such as a paging message) (that is, it only tries at the boundary position of the first time unit) decoding, instead of trying to decode at any symbol position), thereby reducing the false alarm probability of the terminal, and avoiding the high probability of false alarm caused by the terminal's existing method of trying to decode at any symbol position.
- paging-related information such as a paging message
- the first time unit includes multiple symbols, where one symbol corresponds to one coding bit. In this way, one symbol transmits one coded bit, which is different from the format of the existing system (such as the NR system) in terms of format.
- determining the boundary position of the first time unit according to the time domain position of the synchronization signal includes: determining the boundary position of the first time unit according to the start position of the synchronization signal or determining the boundary position of the first time unit according to the synchronization signal Based on this possible design, the boundary position of the first time unit can be determined effectively and flexibly according to the time domain position of the synchronization signal, which simplifies the system design.
- the first time unit is the first time unit in the first time domain resource
- the boundary position of the first time unit is determined according to the starting position of the synchronization signal, including: the starting position of the first time unit After the initial position of the synchronous signal, the position of the first preset interval from the initial position of the synchronous signal; the boundary position of the first time unit is determined according to the end position of the synchronous signal, including: the initial position of the first time unit is synchronous The end position of the signal; or, the start position of the first time unit is a position after the end position of the synchronization signal and a second preset interval away from the end position of the synchronization signal.
- the boundary position of the first time unit overlaps with the boundary position of the synchronization signal or there is a certain interval between the boundary position of the first time unit and the boundary position of the synchronization signal, so that the boundary positions of the first time unit are aligned.
- the wake-up signal includes indication information indicating the index value of the first time unit occupied by the wake-up signal, or the index value of the start time unit occupied by the wake-up signal, which can facilitate the terminal to carry
- the instruction information determines where the currently received wake-up signal is located, improving the accuracy of reception.
- the terminal receiving the wake-up signal from the network device includes: the terminal acquires a timing index used to indicate the index value of the first time domain resource, and according to the timing index and the first configuration information used to configure the time window in The wake-up signal from the network device is received within a time window, where the time window is included in the first time domain resource or the time window includes the first time domain resource. Based on this possible design, the terminal can perform system timing and locate the time position where it receives the wake-up signal, so as to wake up in advance at this time position to prepare for receiving the wake-up signal and improve the accuracy of the wake-up signal reception.
- the timing index is determined according to the first information carried in the synchronization signal; or, there is a mapping relationship between the timing index and the synchronization sequence of the synchronization signal, and the timing index is determined according to the mapping relationship and the synchronization sequence of the synchronization signal; Alternatively, the timing index is determined according to the second information and the synchronization sequence of the synchronization signal. Based on this possible design, the timing index can be acquired effectively and flexibly, and system design can be simplified.
- the determination of the timing index according to the second information and the synchronization sequence of the synchronization signal includes: the timing index is determined by M1 information bits and M2 information bits carried in the synchronization signal; the second information includes M1 information bits , there is a mapping relationship between the M2 information bits and the synchronization sequence of the synchronization signal, the M2 information bits are determined according to the synchronization sequence of the synchronization signal, and M1 and M2 are positive integers.
- the timing index can be comprehensively determined according to the information bits in the synchronization signal and the synchronization sequence, which simplifies the system design.
- the starting position of the first time-domain resource is the end position of the synchronization signal; or, the starting position of the first time-domain resource is after the end position of the synchronization signal and the third distance from the end position of the synchronization signal The position of the preset interval.
- the end position of the first time-domain resource is the start position of the next synchronization signal adjacent to the synchronization signal, or the end position of the first time-domain resource is before the next synchronization signal adjacent to the synchronization signal and at the next location adjacent to the synchronization signal.
- a starting position of a synchronization signal at a position of a fourth preset interval is flexibly and effectively determined.
- the wake-up signal includes a first wake-up signal and a second wake-up signal
- the data rate of the first wake-up signal is lower than the data rate of the second wake-up signal
- the number of first time units occupied by the first wake-up signal is greater than
- the number of first time units occupied by the second wake-up signal can be designed according to the needs of the number of time units occupied by wake-up signals of different data rates, which simplifies system design and meets the data rate requirements of different terminals.
- the network device sends second configuration information for configuring reserved resources to the terminal, and the terminal receives the second configuration information, so that the terminal cannot send a synchronization signal on the reserved resource according to the second configuration information
- the reserved resources are included in the candidate transmission positions of the synchronization signal, and the candidate transmission positions of the synchronization signal are determined according to the transmission cycle of the synchronization signal, so that the terminal can avoid the interference problem caused by transmitting the synchronization signal with other terminals at the same position.
- the waveform of the synchronization signal is the same as that of the wake-up signal; and/or, the modulation method of the synchronization signal is the same as that of the wake-up signal, and the modulation method of the synchronization signal and the modulation method of the wake-up signal are on-off keying (on-off keying, OOK) OOK, and/or, the waveform of the synchronization signal and/or the waveform of the wake-up signal is OOK.
- OOK on-off keying
- the wake-up signal is used to indicate that one or more terminals that need to receive paging include a terminal; the method further includes: the terminal receives the first information from the network device and/or performs random access, wherein , the first information includes one or more of the following information: paging downlink control information (downlink control information, DCI), paging message (paging message), paging early indication (paging early indication, PEI).
- DCI downlink control information
- paging message paging message
- PEI paging early indication
- the terminal includes a first module and a second module, the terminal receives a synchronization signal and a wake-up signal through the first module, and the terminal receives first information and/or performs random access through the second module.
- the terminal receives the synchronization signal and the wake-up signal through the first link, and the frequency domain resource corresponding to the first link includes the first frequency domain resource; the terminal receives the first information from the network device through the second link and/or performs random For access, the frequency domain resource corresponding to the second link includes the second frequency domain resource.
- the terminal can be designed to perform different functions through different modules/different links, independently deploy modules that perform different functions, and independently deploy links that perform different functions, and use different modules/links to perform work according to needs, saving terminals System overhead and ease of management of different communication processes.
- the first frequency domain resources are the same as or different from the second frequency domain resources.
- the frequency domain resources corresponding to the first link and the second link can be flexibly and effectively designed to achieve same-frequency transmission or Split frequency transmission.
- the present application provides a communication device.
- the communication device may be a terminal or a chip or a system-on-a-chip in the terminal, and may also be used in the terminal to implement the first aspect or any possible design of the first aspect.
- the function module of the method may be a network device or a chip or a system-on-a-chip in the network device, or a functional module in the network device for implementing the second aspect or any possible design method of the second aspect.
- the communication device can realize the above aspects or the functions executed by the terminal or network equipment in each possible design, and the functions can be realized by executing corresponding software through hardware.
- the hardware or software includes one or more modules with corresponding functions above.
- the communication device may include: a sending unit and a receiving unit; further, the communication device may also include a processing unit.
- the sending unit is configured to send the first message to the network device on the first random access resource.
- the receiving unit is used for the terminal to receive a synchronization signal from the network device, and receive a wake-up signal from the network device at least for indicating paging-related information on the first time domain resource; wherein the format of the first time domain resource is designed as:
- the first time domain resource includes N first time units with a preset length, and a wake-up signal occupies at least one first time unit in the N first time units with a preset length, and the boundary position of the first time unit is based on the synchronization signal The time domain position of .
- the sending unit is configured to send a synchronization signal to the terminal, and send a wake-up signal at least for indicating paging-related information to the terminal on the first time domain resource.
- the design of the first time domain resource and the first time unit can refer to the first aspect or the second aspect or any possible design of the first aspect or any possible design of the second aspect, and at the same time
- the execution actions of each unit of the communication device reference may be made to the first aspect or any possible design of the first aspect or the second aspect or any possible design of the second aspect, and details are not repeated here.
- a communication device may be a terminal or a chip in the terminal or a system on chip.
- the communication device may implement the above aspects or the functions performed by the terminal in each possible design, and the functions may be implemented by hardware.
- the communication device may be a network device or a chip or a system on a chip in the network device.
- the communication device can implement the above aspects or the functions performed by the network equipment in each possible design, and the functions can be implemented by hardware.
- the communication device may include: a processor and a communication interface, and the processor and the communication interface may support the communication device to perform the first aspect or any possible design of the first aspect, or the second aspect or the first aspect. Either of two possible designs of the described method.
- the communication device may further include a memory, and the memory is used for storing necessary computer-executable instructions and data of the communication device.
- the processor executes the computer-executable instructions stored in the memory, so that the communication device performs the first aspect or any possible design of the first aspect or the second aspect or the second aspect The wake-up signaling method described in any possible design of .
- a computer-readable storage medium may be a readable non-volatile storage medium, and instructions are stored in the computer-readable storage medium.
- the computer-readable storage medium When the computer-readable storage medium is run on a computer, the , causing the computer to execute the wake-up signal sending method described in the first aspect or any possible design of the first aspect or the second aspect or any possible design of the second aspect.
- a computer program product containing instructions, which, when running on a computer, causes the computer to execute the first aspect or any possible design of the first aspect, or the second aspect or any of the second aspects.
- a possible design is described in the wake-up signaling method.
- a communication device may be a terminal or a chip in the terminal or a system on chip, and the communication device includes one or more processors and one or more memories.
- the one or more memories are coupled to the one or more processors, the one or more memories are used to store computer program codes, the computer program codes include computer instructions, when the one or more processors When the computer instructions are executed, the terminal is made to execute the wake-up signal sending method described in the first aspect or any possible design of the first aspect, or the second aspect or any possible design of the second aspect.
- the technical effect brought by any one of the design methods in the fourth aspect to the seventh aspect can refer to the above-mentioned first aspect or the technical effect brought by any possible design of the first aspect, and will not be repeated here.
- the embodiment of the present application provides a communication system, and the communication system may include: a terminal and a network device.
- the terminal may implement the wake-up signal sending method described in the first aspect or any possible design of the first aspect
- the network device may execute the wake-up signal sending method described in the second aspect or any possible design of the second aspect.
- FIG. 1 is a schematic diagram of a receiving circuit of a terminal
- Fig. 2 is a schematic diagram of a wake-up signal
- Fig. 3a is a schematic diagram of synchronous signal transmission along the channel
- Fig. 3b is a schematic diagram of a periodic transmission synchronization signal
- Figure 3c is a schematic diagram of signal transmission
- FIG. 4 is a schematic diagram of a communication system provided by an embodiment of the present application.
- FIG. 5a is a first schematic diagram of a communication device 500 provided by an embodiment of the present application.
- FIG. 5b is a second schematic diagram of a communication device 500de provided in an embodiment of the present application.
- FIG. 6 is a flowchart of a method for sending a wake-up signal provided in an embodiment of the present application
- FIGS 8a to 8d are schematic diagrams of the WUR frame format provided by the embodiment of the present application.
- FIGS 9a to 9d are schematic diagrams of the WUR frame format provided by the embodiment of the present application.
- FIGS 10a to 10f are schematic diagrams of WUR frame formats carrying wake-up signals with different data rates provided by the embodiment of the present application;
- FIG. 10g is a schematic diagram of synchronous signal transmission in different cells provided by the embodiment of the present application.
- FIG. 11 is a schematic diagram of a communication device 110 provided by an embodiment of the present application.
- FIG. 12 is a schematic diagram of a communication device 120 provided by an embodiment of the present application.
- FIG. 13 is a schematic diagram of a communication system provided by an embodiment of the present application.
- the network device periodically sends paging messages to terminals in idle or inactive states to wake up terminals in idle or inactive states to return to the connection (connected) state process.
- the process includes: the network device (such as an access network device) calculates the paging frame (paging frame, PF) corresponding to the terminal and the paging occasion (paging occasion, PO) in the PF, and sends a packet to the terminal on the PO corresponding to the terminal.
- a physical downlink control channel (physical downlink control channel, PDCCH) of the paging DCI, and the paging DCI can schedule a physical downlink shared channel (physical downlink control channel, PDSCH) carrying a paging message (paging message).
- the network device sends the PDSCH carrying the paging message at the resource position indicated by the paging DCI.
- the terminal monitors the paging DCI on its corresponding PO. If the terminal receives the paging DCI, it receives the PDSCH carrying the paging message according to the received paging DCI, and determines whether it is paged according to the PDSCH carrying the paging message. For example, if the paging message received by the terminal carries its own identification information (such as user equipment identifier (UE ID)), it is determined that it has been paged; otherwise, it is determined that it has not been paged. call to. If the terminal is paged, the terminal initiates a random access process, switches to a connected (connected) state, establishes a communication connection with the network device, and then performs data communication with the network device.
- UE ID user equipment identifier
- both the paging process of the terminal and the data communication process in the connected state use the same functional module, and the functional module may be called a main circuit or a second module.
- the paging process may not require too much power consumption, and the paging process performed by the main circuit may cause more power consumption. Therefore, in order to further reduce the power consumption of the terminal, a main circuit and a separate small low-power circuit can be independently deployed on the terminal. This small low-power circuit can receive paging-related information at low power consumption. , such as receiving information from a network device about one or more terminals that need to be paged.
- the small circuit with low power consumption is mainly used to support a terminal in an idle state or an inactive state to receive information related to paging.
- the small low-power circuit may be called a wake-up circuit or a low-power circuit or a wake-up signal (wake up signal, WUS) receiver or a wake-up radio (wake up radio, WUR) receiver or a first module or a first circuit, etc. No restrictions.
- the wake-up circuit is taken as an example for description, which will be described in a unified manner here and will not be repeated here.
- the signal received by the wake-up circuit may be called a WUR signal, and the WUR signal may include signals related to paging, for example, the WUR signal may include a wake-up signal, and may also include a synchronization signal.
- the wake-up signal is at least used to indicate paging-related information (such as information used to indicate a terminal that needs to receive), and the wake-up signal can also be named WUS signal or wake up radio (wake up radio, WUR) signal, etc.
- WUR signal wake up radio
- Using the wake-up circuit to receive a WUR signal can be understood as working on the WUR link, or receiving a wake-up signal on the WUR link, or receiving a WUR signal in the first state/first mode (model), etc.
- the main circuit is mainly used to support the terminal in the connected state to perform data communication with the network device, and it can also be used to support the terminal to access the network device, and can also be used to support the terminal to perform the paging process in the existing standard (ie receiving paging DCI and paging PDSCH, etc.).
- the main circuit may be called a second module or a second circuit or other names.
- Using the main circuit for data communication can be understood as using the main link for data communication, or performing data communication in the second state/second module, etc.
- the first state can be understood as the state when the terminal turns on the wake-up circuit and turns off the main circuit.
- the first state can be called the WUR state or the wake-up state or other states, without limitation.
- the first mode can be understood as the first working mode or WUR mode or wake-up mode or WUR working mode.
- the first mode can refer to the terminal working in the first state or the terminal working on the WUR link or the terminal using/utilizing the wake-up circuit to work, etc. .
- the second state can be understood as the state when the terminal turns off the wake-up circuit and turns on the main circuit, and the second state can be called the main state or named as other states, without limitation.
- the second mode can be understood as the second working mode or the main mode or the main working mode, and the second mode can mean that the terminal works in the second state or the terminal works on the main link or the terminal uses/utilizes the main circuit to work, etc.
- a wake-up circuit and a main circuit are deployed in the terminal.
- the terminal When the terminal is in the first state (such as the WUR state) or the idle state or the inactive state, the wake-up circuit is turned on (or called working), and the main circuit is turned off. (or called not working), the terminal can use/use the wake-up circuit to receive the wake-up signal, and if the terminal detects the wake-up signal to wake itself up, it will trigger to turn on the main circuit, so that the main circuit is in the open state. If the terminal does not detect the wake-up signal, the terminal does not trigger to turn on the main circuit, and the main circuit is in a closed state at this time.
- the power consumption of the terminal can be reduced through the manner shown in FIG. 1 .
- the wake-up signal is modulated by binary amplitude keying (such as on-off keying (OOK)).
- the wake-up circuit can use an envelope detection method ( or 0/1 decision method) to demodulate the wake-up signal.
- OOK modulation is adopted, one encoded information bit (or called encoded bit or encoded bit) of the wake-up signal corresponds to one symbol.
- the information bit when the information bit is 1, it means that a signal is sent within the length of the symbol corresponding to the information bit (or it can be understood that the signal power within the length of the symbol is not zero), when the information bit is 0, it means No signal is sent within the length of the symbol corresponding to the information bit (or it can be understood that the signal power within the length of the symbol is zero).
- the information bit when the information bit is 0, it means that there is a signal within the length of the symbol corresponding to the information bit (or it can be understood that the signal power within the length of the symbol is not zero), and when the information bit is 1, it means that the information No signal is sent within the length of the symbol corresponding to the bit (or it is understood that the signal power within the length of the symbol is zero).
- the symbol in this application may also be referred to as a chip (chip).
- the length of a symbol may refer to the time length between the start position of the symbol and the end position of the symbol.
- the length of the symbol can be pre-configured or predetermined by the protocol. For example, the length of a symbol can be set to 4 microseconds (us), etc.
- the wake-up signal is transmitted at the granularity of the symbol.
- the boundary position of the symbol needs to be known, and the received wake-up signal is detected from the boundary position of the symbol to detect whether there is a signal on the symbol.
- the detection results corresponding to multiple symbols are combined to determine the obtained wake-up signal, and it is judged whether the user is paged/awakened according to the wake-up signal. For example, assuming that the information bit is 1, it means there is a signal, and the information bit is 0, which means there is no signal.
- the wake-up signal after OOK modulation is "1010", including 4 coded bits.
- These 4 coded bits can correspond to the four coded bits shown in Figure 2. Symbols, the signal power within the length of the first and third symbols from the left is greater than zero, and there is a signal, and the first and third symbols correspond to the coded bit "1". The signal power within the length of the second and fourth symbols is zero, no signal exists, and the corresponding coding bit is 0. At this time, the terminal can try to decode at any symbol position starting from the boundary of the first symbol, obtain the wake-up signal 1010 , and then determine whether it is woken up according to the wake-up signal 1010 .
- a synchronization (sync) signal is used to locate the boundary position of symbols transmitted on the WUR.
- the synchronization signal can be used by the terminal to perform time synchronization.
- the synchronization signal is sent along the channel, that is, the wake-up signal and the synchronization signal are sent together, the start position of the wake-up signal overlaps with the end position of the synchronization signal, and the terminal receives the synchronization signal and After the time synchronization is completed by using the synchronization signal, the boundary of the symbol where the wake-up signal is located can be directly located, and then the wake-up signal is detected on the corresponding symbol.
- a synchronization signal is sent periodically, a wake-up signal is sent in the time period (or multiple symbols) between two adjacent synchronization signals, and the terminal receives the synchronization signal and uses the synchronization
- symbol positioning can be obtained, such as the boundary position (or starting position) of the symbol, so that the time position for envelope detection (or called 0/1 decision) can be selected according to the boundary position of the symbol, such as by The center position of a certain symbol is judged.
- the terminal starts to detect the wake-up signals in the order of symbols within the period from the symbol boundary it locates, that is, it tries to decode at any symbol position, and the number of decoding is large, which will lead to false alarm probability larger.
- symbol 0-symbol 139 The cell includes UE1 and UE2.
- the identity of UE1 is AB
- the identity of UE2 is BC. If the base station wants to wake up UE1 in the cell, the base station will send a wake-up signal "AB" on symbol 112-symbol 125, where "A" , "B" occupies multiple symbols.
- the method shown in Figure 3b can be used to locate and obtain the boundary position of symbol 0, and start detection from the boundary position of symbol 0 until "A" is obtained when symbol 112-symbol 118 is detected, and symbol 119-symbol 125 is detected
- UE1 determines that it is awakened according to the detection result.
- UE2 finds that the detection result "AB" is not its own, and continues to detect symbol 126-symbol 132.
- an embodiment of the present application provides a method for sending a wake-up signal, which may include: the network device at the first time after the time domain position where the synchronization signal is located A wake-up signal is sent to the terminal on the domain resource, and correspondingly, the terminal receives the wake-up signal on the first time domain resource.
- the first time domain resource may be a predefined resource, and the format of the first time domain resource is as follows: the first time domain resource includes N first time units, and the first time units can be used to carry/transmit wake-up signals , for example, at least one of the N first time units carries a wake-up signal, and the boundary position of the first time unit is also predefined. For example, the boundary position of the first time unit can be based on the time domain position of the synchronization signal Sure.
- the time-domain resource used to transmit the wake-up signal and the boundary position of the time-domain resource can be defined, so that the terminal can know the starting position of the wake-up signal and at which time-domain positions it detects/receives the wake-up signal, reducing terminal decoding and The number of paging-related information (such as paging messages) (that is, only try to decode at the boundary position of the first time unit, instead of trying to decode at any symbol position), thereby reducing the false alarm probability of the terminal and preventing the terminal from appearing.
- the wake-up signal described in this application can at least be used to indicate paging-related information, such as the wake-up signal can carry a paging message, such as the UE ID of the paged terminal, or a part of the UE ID of the paged terminal, or The group ID of the paged terminal may also carry other information, such as system information, system configuration and other information.
- the wake-up signal is one of the signals transmitted on the WUR link.
- the signal transmitted on the WUR link may be referred to as a WUR signal.
- other signals may be transmitted on the WUR link, such as a synchronization signal.
- the WUR signal may also include a synchronization signal.
- the WUR link mentioned in this application may refer to the communication link between the wake-up circuit of the terminal and the network device, and the wake-up circuit of the terminal may support the terminal to send and receive wake-up signals and other signals, such as synchronization signals, through the WUR link.
- the wake-up circuit of the terminal When the terminal is working on the WUR link, the wake-up circuit of the terminal is on, and the main circuit of the terminal is off.
- transmission resources can be pre-configured for the WUR link, and the transmission resources can include time domain resources and/or frequency domain resources, and transmitting signals (such as wake-up signals, etc.) through the WUR link can be understood as transmission on the WUR link Signals or use/use the transmission resources corresponding to the WUR link to transmit signals and the like.
- the time domain resources mentioned in this application can also be understood as time resources
- the frequency domain resources mentioned in this application can also be understood as frequency resources.
- the main link mentioned in this application may refer to the communication link between the main circuit of the terminal and the network device, and the main circuit of the terminal may support the terminal in the connected state to send and receive signals and communication between the main link and the network device. / or for data transfer.
- the main circuit of the terminal When the terminal is working on the main link, the main circuit of the terminal is on, and the wake-up circuit of the terminal is off.
- transmission resources can be pre-configured for the main link, and the transmission resources include time domain resources and/or frequency domain resources, and transmitting signals through the main link can be understood as transmitting signals on the main link or utilizing/using the main link
- the transmission resource corresponding to the link transmits the signal.
- time domain resources described in this application can also be named as time resources Or other names, time-domain resources can include multiple small time segments (or called time lengths), in other words, time-domain resources can be divided into multiple time segments, and a time segment can be a symbol or a slot (slot) Or a scheduling unit or millisecond (ms) time, etc.
- the frequency domain resources described in this application can also be named as frequency resources or other names, and the frequency domain resources can include one or more frequency domain units (or called frequency units), and the frequency domain units can be resource elements (resource element, RE) or resource block (resource block, RB) or physical resource block (physical resource block, PRB).
- the WUR link may be called the first link, and the main link may be called the second link, without limitation.
- the wake-up signal sending method provided by the embodiment of the present application can be used in a fourth generation (4th generation, 4G) system, a long term evolution (long term evolution, LTE) system, a fifth generation (5th generation, 5G) system, a new air interface (new radio) , NR) system, NR-vehicle-to-everything communication (vehicle-to-everything, V2X) system, and any system in the Internet of Things system can also be applied to other next-generation communication systems, etc., without limitation.
- the communication system shown in FIG. 4 is taken as an example below to describe the wake-up signal sending method provided by the embodiment of the present application.
- FIG. 4 is a schematic diagram of a communication system provided by an embodiment of the present application.
- the communication system may include a network device and multiple terminals, such as terminal 1 and terminal 2 .
- the terminal can be located within the coverage of the network device, and the terminal can be connected to the network device through the Uu port.
- the terminal may be in the first state, such as in the WUR state, or the terminal is in the idle state or inactive.
- the network device may send paging-related information corresponding to the terminal through the WUR link as needed.
- the terminal in the first state can periodically monitor whether it is paged through the WUR link or always monitor whether it is paged. If the terminal receives its corresponding paging-related information, the terminal will subsequently initiate random access, such as sending a preamble to the network device.
- FIG. 4 is only an exemplary framework diagram, and the number of nodes included in FIG. 4 is not limited. For example, more terminals may be included, and other nodes may be included in addition to the functional nodes shown in FIG. 4 , Such as: core network equipment, gateway equipment, application server, etc., without limitation.
- the network device is mainly used to implement functions such as terminal resource scheduling, radio resource management, and radio access control.
- the network device may be any one of a small base station, a wireless access point, a transmission receive point (transmission receive point, TRP), a transmission point (transmission point, TP), and some other access node.
- the device used to realize the function of the network device may be a network device, or a device capable of supporting the network device to realize the function, such as a chip system (such as a chip, or a processing system composed of multiple chips) Or a modem (modem).
- a chip system such as a chip, or a processing system composed of multiple chips
- modem modem
- the terminal may be a terminal equipment (terminal equipment), a user equipment (user equipment, UE) or a mobile station (mobile station, MS) or a mobile terminal (mobile terminal, MT), etc.
- the terminal can be a mobile phone, a tablet computer, or a computer with a wireless transceiver function, and can also be a virtual reality (virtual reality, VR) terminal, an augmented reality (augmented reality, AR) terminal, or a wireless terminal in industrial control.
- Terminals wireless terminals in unmanned driving, wireless terminals in telemedicine, wireless terminals in smart grids, wireless terminals in smart cities, smart homes, vehicle-mounted terminals, etc.
- the device for realizing the function of the terminal may be a terminal, or a device capable of supporting the terminal to realize the function, such as a chip system (such as a chip or a processing system composed of multiple chips) or a modem.
- a chip system such as a chip or a processing system composed of multiple chips
- a modem such as a modem.
- FIG. 5 a is a schematic composition diagram of a communication device 500 provided in an embodiment of the present application.
- the communication device 500 may include a processor 501 , a communication line 502 , and a communication interface 503 .
- the communication apparatus 500 may further include a memory 504 , an output device 505 and an input device 506 .
- the input device 506 is a keyboard, mouse, microphone, or joystick, and the like, and the output device 505 is a display screen, a speaker, and the like. These components are connected by a communication line 502 .
- the communication module 500 may further include a processor 507 and a communication interface 508 .
- the processor 501 and the communication interface 503 can be integrated and deployed in the main circuit of the communication module, and the processor 507 and the communication interface 508 can be integrated and deployed in the wake-up circuit of the communication module.
- the processor 501 can process two processing units 501a and 501b virtually, and the communication interface 503 can Two communication units 503a and 503b are virtualized, wherein the processing unit 501a and the communication unit 503a may form the main circuit or the first module of the terminal.
- the processing unit 501b and the communication unit 503b may form a wake-up circuit or a second module of the terminal.
- processor such as processor 501
- processor 507 can be central processing unit (central processing unit, CPU), general processor network processor (network processor, NP), digital signal processor (digital signal processing, DSP) , microprocessor, microcontroller, programmable logic device (programmable logic device, PLD) or any combination thereof.
- the processor 501 may also be other devices with processing functions, such as circuits, devices or software modules.
- the communication line 502 is used to transmit information between the components included in the communication device 500 .
- the Communication interface (such as communication interface 503, communication interface 508), used for communicating with other devices or other communication networks.
- the other communication network may be an Ethernet, a radio access network (radio access network, RAN), a wireless local area network (wireless local area networks, WLAN), and the like.
- the communication interface 503 may be a radio frequency module, a transceiver or any device capable of realizing communication. This embodiment of the present application is described by taking the communication interface 503 as an example of a radio frequency module, where the radio frequency module may include an antenna, a radio frequency circuit, and the like, and the radio frequency circuit may include a radio frequency integrated chip, a power amplifier, and the like.
- the memory 504 is used for storing instructions.
- the instruction may be a computer program.
- the memory 504 may be a read-only memory (read-only memory, ROM) or other types of static storage devices capable of storing static information and/or instructions, or may be a random access memory (random access memory, RAM) or may Other types of dynamic storage devices that store information and/or instructions can also be electrically erasable programmable read-only memory (EEPROM), compact disc read-only memory (CD- ROM) or other optical disc storage, optical disc storage, magnetic disk storage media, or other magnetic storage devices, including compact discs, laser discs, compact discs, digital versatile discs, Blu-ray discs, etc.
- EEPROM electrically erasable programmable read-only memory
- CD- ROM compact disc read-only memory
- magnetic disk storage media or other magnetic storage devices, including compact discs, laser discs, compact discs, digital versatile discs, Blu-ray discs, etc.
- the memory 504 may exist independently of the processor 501 or may be integrated with the processor 501 .
- the memory 504 can be used to store instructions or program codes or some data and so on.
- the memory 504 may be located in the communication device 500 or outside the communication device 500, without limitation.
- the processor 501 is configured to execute instructions stored in the memory 504, so as to implement the method for sending a wake-up signal provided in the following embodiments of the present application.
- the processor 501 may include one or more CPUs, such as CPU0 and CPU1.
- the communication device 500 includes multiple processors.
- the communication device 500 may be a desktop computer, a portable computer, a network server, a mobile phone, a tablet computer, a wireless terminal, an embedded device, a chip system or a device having a structure similar to that shown in FIG. 5a or FIG. 5b.
- the composition structure shown in FIG. 5a does not constitute a limitation to the communication device.
- certain components, or a different arrangement of components are shown in FIG. 5a or FIG.
- system-on-a-chip may be composed of chips, or may include chips and other discrete devices.
- FIG. 6 is a method for sending a wake-up signal provided in an embodiment of the present application. As shown in FIG. 6, the method may include:
- Step 601 The network device sends a synchronization signal to the terminal; correspondingly, the terminal receives the synchronization signal from the network device.
- the network device may be the network device in FIG. 4 .
- the terminal may be a terminal located in the coverage area of the network device in FIG. 4 , such as terminal 1 or terminal 2 in FIG. 4 .
- the terminal can have at least three states: idle state, inactive state, and connected state. There may also be additional states, such as the WUR state.
- the terminal can be equipped with/deployed a low-power circuit (or called a wake-up circuit) and a main circuit as shown in Figure 1.
- the low-power circuit (or called a wake-up circuit) ) work, the main circuit is turned off, and when the terminal is in the connected state, the main circuit works and the low power consumption circuit (or wake-up circuit) is turned off. It should be understood that when the method shown in FIG. 6 is executed, the terminal is in an idle state or an inactive state or a WUR state.
- the synchronization signal can be used for time synchronization of the terminal, for example, the boundary position of symbols can be located.
- the synchronization signal can be transmitted through the WUR link.
- the synchronization signal can be transmitted on the transmission resources (such as time domain resources and/or frequency domain resources) corresponding to the WUR link.
- the transmission resources corresponding to the WUR link can be referred to as It is a WUR resource, and the WUR resource may include one or more WUR frames and a first frequency domain resource.
- a WUR frame is used to transmit a wake-up signal.
- one WUR frame can be used to transmit synchronization signals and other signals (such as wake-up signals, etc.).
- a frame can include multiple time units.
- the WUR resource may be pre-configured through a network device.
- the role of the WUR frame can be pre-configured through the network device, or pre-specified in the protocol.
- the WUR link reference may be made to the above, and details are not repeated here.
- the synchronization signal may be sent periodically.
- the period of the synchronization signal and the transmission resource of the synchronization signal (such as the start position/end position of the time domain, the start position/end position of the frequency domain, the length of the time domain, etc.) Specified.
- the transmission resources of the synchronization signal and the transmission resources of the wake-up signal transmitted on the WUR link can be set not to overlap, such as setting The time-domain resources of the synchronization signal and the time-domain resources of the wake-up signal transmitted on the WUR link do not overlap, and there is a certain gap (gap) between the two.
- the end position of the synchronization signal and the start position of the wake-up signal There is a gap between the two, the length of the time domain resource of the synchronization signal in each period is equal to the length of the interval, and the starting position of the synchronization signal of each period is far from the start of the transmission resource of the wake-up signal The starting positions are equal in length.
- the gap may be preset, or in another possible design, the end position of the synchronization signal is the start position of the wake-up signal, that is, the end position of the synchronization signal overlaps with the start position of the wake-up signal.
- the positional relationship between the transmission resources of the synchronization signal transmitted on the WUR and the transmission resources of other signals may be preset and not limited.
- the transmission resource of the synchronization signal may refer to the time domain resource that the synchronization signal is allowed to occupy or the time domain resource that can be used to carry the synchronization signal or the candidate sending position of the synchronization signal, and the length of the transmission resource of the synchronization signal It can also be described as the length of the synchronization signal instead.
- the transmission resource block occupied by the synchronization signal may refer to the transmission resource actually occupied by the synchronization signal among the transmission resources of the synchronization signal, and the transmission resource occupied by the synchronization signal may be less than or equal to the transmission resource of the synchronization signal.
- the transmission resource of the wake-up signal may be a transmission resource allowed to be occupied by the wake-up signal or a transmission resource available for carrying the wake-up signal or a candidate sending position of the wake-up signal, and the length of the transmission resource of the wake-up signal may be described as the length of the wake-up signal instead.
- the transmission resource occupied by the wake-up signal may be a transmission resource actually occupied by the wake-up signal among the transmission resources of the wake-up signal.
- the network device may carry the synchronization signal on pre-configured transmission resources, and periodically send the synchronization signal to the terminal through the WUR link.
- the terminal uses/utilizes its built-in wake-up circuit (or called a low-power circuit or first module) to periodically receive a synchronization signal from the network device on the WUR link.
- the periodical reception of the synchronization signal from the network device by the terminal on the WUR link described in this application can also be described as the terminal receiving the synchronization signal from the network device through the first module, or the terminal is in the first state or the second In a mode, the synchronization signal from the network device is periodically received.
- the network device can OOK-modulate the synchronization signal and send it to the terminal.
- the modulation mode of the synchronization signal is OOK or the waveform of the synchronization signal is OOK.
- the waveform of the synchronization signal can be The square wave shown in FIG. 2 , or the waveform of the synchronization signal may be a square wave-like waveform constructed based on an orthogonal frequency division multiplexing (OFDM) signal.
- OFDM orthogonal frequency division multiplexing
- Step 602 The network device sends a wake-up signal to the terminal on the first time domain resource.
- the terminal receives the wake-up signal from the network device on the first time domain resource.
- the terminal is included in one or more terminals that need to receive paging indicated by the wake-up signal, that is, the information included in the wake-up signal and used to indicate the one or more terminals that need to receive paging includes the terminal corresponding to information, it means that the terminal needs to be woken up.
- the method shown in FIG. 6 may also include: the network device sends the first information to the terminal and/or interacts with the terminal to perform a random access process, where the interaction with the terminal to perform the random access process may Including the network device receiving the preamble sent by the terminal, etc.
- the terminal receives the first information from the network device and/or performs random access.
- the first information includes one or more items of paging DCI, paging message and paging early indication (paging early indication, PEI).
- the terminal may receive the first information from the network device and/or perform random access through the second module (such as the main circuit) on the main link (which may be called the second link).
- the second link corresponds to the second frequency domain resource, and the second frequency domain resource may be the same as or different from the first frequency domain resource corresponding to the WUR link.
- the terminal may be in the second state or the second mode. In other words, the terminal may receive the first information from the network device in the second state or the second mode.
- Information and/or performing random access, wherein performing random access may include the terminal sending a preamble to the network device and the like.
- the first time domain resource may be understood as a certain segment of time resources including N first time units of preset length.
- the first time domain resource may be named as a WUR frame or a wake-up frame or other names, without limitation.
- the first time domain resource is a WUR frame as an example for description, and it will be described uniformly here.
- One WUR frame may include N first time units of preset length, the lengths of the first time units included in different WUR frames may be the same or different, N is an integer greater than or equal to 1 (or N is a positive integer),
- the first time unit may be used to transmit a wake-up signal.
- Step 602 may alternatively be described as that the network device sends a wake-up signal to the terminal on at least one first time unit in the WUR frame, and the terminal receives the wake-up signal from the network device on at least one first time unit in the WUR frame.
- the first time domain resource may also be used to transmit other signals, such as synchronization signals and other signals transmitted on the second link (or main link).
- the black boxes in the figures represent the time domain resources used to transmit signals on the main link.
- the WUR frame format can be shown in (1) in FIG. 7c and (1) in FIG. 9b.
- the WUR frame includes the time domain resources of the wake-up signal, and the WUR frame does not include the time domain resources corresponding to the black box. , at this time, the WUR frame can be used to transmit the wake-up signal, and cannot be used to transmit the signal on the main link.
- the WUR frame includes the time domain resource of the synchronization signal and the time domain resource of the wake-up signal, and the WUR frame does not include the black box corresponding to At this time, the WUR frame can be used to transmit synchronization signals and wake-up signals, but cannot be used to transmit signals on the main link.
- the WUR frame format can also be shown in (2) in Figure 7c and (2) in Figure 9b.
- the WUR frame includes the time domain resources of the wake-up signal and the time domain resources corresponding to the black boxes in the figure.
- the WUR frame can be used not only to transmit wake-up signals, but also to transmit signals on the main link.
- the WUR frame includes the time domain resource of the synchronization signal, the time domain resource of the wake-up signal, and the time corresponding to the black box in the figure. Domain resources, at this time, the WUR frame can not only be used to transmit synchronization signals and wake-up signals, but also can be used to transmit signals on the main link. It should be understood that FIG. 7c, FIG. 7e, FIG. 9b and FIG. 9d are exemplary drawings, and the present application does not limit the number of WUR frames and the length of time domain resources shown in FIG. 7c, FIG. 7e, FIG. 9b and FIG. 9d.
- the network device can send a wake-up signal to the terminal through the WUR link, and the terminal can receive the wake-up signal from the network device through the WUR link or the first module.
- the terminal is in the first state or mode, and the terminal is in the first mode.
- the wake-up signal from the network device is received through the WUR link or the first module.
- the first time unit may be named as a WUR slot (WUR slot), a WUR occasion (WUR occasion), or a scheduling unit.
- the first time unit may include multiple symbols (or called chips (chip)), that is, the first time unit may be understood as a time period including multiple consecutive symbols (or chips).
- a symbol may correspond to a coded bit, and the coded bit may refer to a bit obtained by encoding original information.
- the length of the WUR frame and the length of the first time unit may be pre-configured, for example, pre-specified in the protocol.
- the number N of first time units in a WUR frame can be determined by the network device, and indicated/configured to the terminal by the network device.
- the boundary position of the first time unit can be determined according to the time domain position of the synchronization signal, and the length of the first time unit can be the same as or different from the length of the time domain resource of the synchronization signal, such as the length of the time domain resource of the synchronization signal less than the length of the first time unit.
- the time-domain resource used to transmit the wake-up signal and the boundary position of the time-domain resource can be defined, so that the terminal can know the start position of the wake-up signal and the time-domain positions at which the wake-up signal is detected/received , reduce the number of times the terminal decodes paging-related information (such as paging messages) (that is, only try to decode at the boundary position of the first time unit, rather than try to decode at any symbol position), thereby reducing the false alarm of the terminal Probability, to avoid the problem of high false alarm probability caused by the terminal trying to decode at any symbol position in the existing method.
- paging-related information such as paging messages
- the design of the WUR frame and the first time unit is as follows:
- the WUR frame is used to transmit the wake-up signal
- the WUR frame may include time domain resources (or called time resources, etc.) between adjacent synchronization signals, and the length of the WUR frame is equal to or less than that between adjacent synchronization signals.
- the time domain resource length between For example, use all or part of the time domain resources between the end position of the synchronization signal and the start position of the adjacent next synchronization signal as a WUR frame, or use the end position of the synchronization signal and the adjacent next synchronization signal Part or all of the time domain resources between the start positions of the signal are divided into multiple WUR frames.
- the WUR frame does not include the time domain resources of the synchronization signal, and the WUR frame includes one or more first time units, and one first time unit can be used to transmit a wake-up signal, that is, a wake-up signal occupies a The first time unit, or multiple first time units may be used to transmit one wake-up signal, that is, one wake-up signal occupies multiple first time units.
- a WUR slot is used to transmit a wake-up signal.
- a WUR frame includes four WUR slots (as shown in the dotted line box in Figure 7a).
- FIG. 7b all time domain resources between synchronization signal 1 and synchronization signal 2 are divided into multiple WUR frames, and one WUR frame includes two WUR slots (as shown in the dotted line box in FIG. 7b).
- part of the time domain resources (time domain resources except the black frame) between synchronization signal 1 and synchronization signal 2 are used as a WUR frame, and a WUR frame can be Including three WUR slots (as shown in the dotted box in (1) in Figure 7c).
- the WUR frame is used to transmit a synchronization signal and a wake-up signal.
- the beginning part of the WUR frame is used to transmit a synchronization signal
- the synchronization signal is used to transmit a wake-up signal.
- the WUR frame may include the time domain resource used by the synchronization signal and the time domain resource between the synchronization signal and the next adjacent synchronization signal, and the length of the WUR frame is greater than the length of the time domain resource between adjacent synchronization signals.
- the time domain resource between the start position of the synchronization signal and the start position of the next adjacent synchronization signal is used as the WUR frame.
- the WUR frame can include the time domain resources of the synchronization signal and one or more first time units, and one first time unit can be used to transmit a wake-up signal, that is, a wake-up signal occupies one first time unit , or multiple first time units may be used to transmit one wake-up signal, that is, one wake-up signal occupies multiple first time units.
- a WUR slot is used to transmit a wake-up signal.
- the time domain resources of synchronization signal 1 and the time domain resources between synchronization signal 1 and synchronization signal 2 are used as a WUR frame, and a WUR frame includes time domain resources for synchronization signal transmission and four WUR slot (as shown in the dotted box in Figure 7d).
- a WUR frame includes time domain resources for synchronization signal transmission and four WUR slot (as shown in the dotted box in Figure 7d).
- a WUR frame includes time domain resources for synchronous signal transmission and three WUR slots (as shown in the dashed box in (1) in Figure 7e).
- the WUR frame is used to transmit multiple (two or more) synchronization signals and wake-up signals.
- the beginning part of the WUR frame is used to transmit a synchronization signal.
- the synchronization signal is then used to transmit a wake-up signal, the synchronization signal can be transmitted after the wake-up signal, and the wake-up signal can be transmitted after the synchronization signal.
- a WUR slot is used to transmit a wake-up signal.
- the time domain resource between the start position of sync signal 1 and the start position of sync signal 3 is regarded as a WUR frame, and the WUR frame includes two corresponding sync signals 1 and 2 time domain resource and 8 WUR slots (as shown in the dotted line box in Figure 7f), the first 4 WUR slots are located in the time domain resources between synchronization signal 1 and synchronization signal 2, and the last 4 WUR slots are synchronization signal 2 Time-domain resources after and before synchronization signal 3.
- time division Multiplexing time division multiplexing
- the WUR frame between the synchronization signals in (1) in Figure 7c and (1) in Figure 7e can be used to transmit the wake-up signal
- other time domain resources between the synchronization signals (the time domain resources corresponding to the black box ) can be used to transmit other signals
- the other signals are different from the wake-up signal
- the other signals can be transmitted on the main link, for example, the other signals can be the first signal sent by the network equipment, and for example, the other signals can be other terminal A second signal sent to a network device.
- the WUR frame described in the embodiment of the present application is not limited to being used to transmit a wake-up signal, or used to transmit a synchronization signal and a wake-up signal, and can also be used to transmit other signals (such as a first signal, a second signal, etc.), such as It can also be used to transmit signals corresponding to the main link, that is, the time domain resources used by the signals transmitted on the WUR link and the main link are included in the WUR frame, but in the TDM scenario, it is used to transmit the signals on the main link The time domain resource of the signal cannot be used to transmit the signal on the WUR link (wake-up signal, or synchronization signal and wake-up signal, etc.).
- the present application is not limited to (1) in Figure 7c and (1) in Figure 7e, the WUR frame does not include the time domain resources corresponding to the black frame, alternatively, it can also be designed so that the WUR frame includes (2) in 7c and (2) in Figure 7e correspond to the time-domain resources shown in (2), except that the time-domain resources corresponding to the black boxes are not used by the WUR link, but are used in the main link transmit the first signal, the second signal, and so on.
- the first signal includes at least one of the following: synchronization signal block (synchronization signal block, SSB), physical downlink control channel (physical downlink control channel, PDCCH), physical downlink shared channel (physical downlink shared channel, PDSCH), channel state Information reference signal (channel state information reference signal, CSI-RS), phase tracking reference signal (phase tracking reference signal, PT-RS), positioning reference signal (positioning reference signals, PRS), demodulation reference signal (demodulation reference signal, DMRS).
- the second signal includes at least one of the following: DMRS, physical uplink shared channel (physical uplink shared channel, PUSCH), physical uplink control channel (physical uplink control channel, PUCCH), sounding reference signal (sounding reference signal, SRS ).
- the format of the WUR frame in each cycle or in different cycles can be set to be the same, and one cycle can include one or more WUR frames, or one WUR frame A frame includes one or more cycles, etc., without limitation.
- the period mentioned in this application may refer to the transmission period of the synchronization signal, such as the time between the start position of the time domain resource of the synchronization signal and the start position of the time domain resource of the next adjacent synchronization signal A segment can be called a cycle.
- the cycle can be pre-configured or stipulated in the protocol.
- the frame format of each WUR frame in the drawings shown in Fig. 7a-Fig. 7f is the same.
- the frame format of the WUR frame described in this application may include the length of the WUR frame, the number of first time units included in the WUR frame, the length of the first time unit included in the WUR frame, and the timing of the synchronization signal included in the WUR frame.
- the WUR frame includes a signal (synchronization signal, wake-up signal, etc.) in this application may mean that the WUR frame includes the transmission resource of the signal, or the WUR frame includes the time domain resource that can be used to transmit the signal.
- the format of different WUR frames can be set to be different, such as two WUR frames, the length of these two WUR frames can be the same, but the time units included in these two WUR frames can carry The signals are different.
- One WUR frame can include time domain resources for synchronization signals and time domain resources for wake-up signals.
- the WUR frame can be used to carry/transmit at least one synchronization signal and at least one wake-up signal, while another WUR frame
- the time domain resources of the synchronization signal are not included, but the time domain resources of the wake-up signal are included, and the WUR frame is used to transmit at least one wake-up signal.
- a WUR slot is used to transmit a wake-up signal.
- the time domain resource from the start position of synchronization signal 1 to synchronization signal 2 is divided into two WUR frames: WUR frame 1 and WUR frame 2, and WUR frame 1 includes The transmitted time-domain resource and three WUR slots (as shown by the dotted line box in Figure 7d), the length of the time-domain resource of the synchronization signal is equal to the length of the WUR slot.
- WUR frame 2 includes four WUR slots for transmitting wake-up signals, and the length of each WUR frame is the same.
- Fig. 7a-Fig. 7g are only exemplary WUR frame format diagrams, only showing WUR frames in several cycles, the synchronization signals included in Fig. 7a-Fig. 7g, the number of WUR frames, and the WUR frame included
- the number of time units is not limited, for example, Figs. 7a-7g may include more synchronization signals, WUR frames, a WUR frame may include more time units, and so on.
- one wake-up signal occupies one first time unit, which is different from the WUR frame format shown in Figure 7a- Figure 7g, and one wake-up signal can also be designed to occupy multiple first time units Unit
- the first time unit in this scenario can be named as a scheduling unit
- a scheduling unit can include multiple symbols (or chips), and one symbol corresponds to one coded bit, that is, one symbol can be used to carry one coded bit.
- a WUR frame includes 10 scheduling units (as shown by the rectangular dashed box in FIG. 7h), wherein the wake-up signal may occupy 5 scheduling units.
- first time unit in the WUR frame format shown in Figure 7h can be applied to other design formats of other WUR frames (such as the format shown in Figure 7a- Figure 7g), that is, the format shown in Figure 7a- Figure 7g
- the first time unit (such as WUR slot) may not be limited to what is shown in the figure, and may also be alternatively designed as shown in FIG. 7h, which will not be shown one by one here.
- the boundary position of the first time unit may be determined according to the time-domain position of the synchronization signal.
- the boundary position of the first time unit is determined according to the start position of the synchronization signal. For example, assuming that the first time unit is the first time unit in the first time domain resource, the start of the first time unit The position is a position after the start position of the sync signal and at a first preset interval from the start position of the sync signal. The length of the first time unit may be equal to the first preset interval. The first preset interval can be preset.
- a WUR frame includes four WUR slots, the first WUR slot in the WUR frame is WUR slot1, and the starting position of WUR slot1 is the beginning of synchronization signal 1 position at intervals of 1 after the start position.
- each WUR frame includes four WUR slots, wherein the first WUR slot in the WUR1 frame is used for synchronization signal 1 transmission, and the last three WUR slots are used for wake-up signal transmission, and synchronization signal 1
- the interval between the starting position of the WUR frame 1 and the starting position of the second WUR slot in WUR frame 1 is one WUR slot. All four WUR slots in WUR frame 2 can be used for wake-up signal transmission. There is no synchronization signal in WUR frame 2, and it is not used to transmit synchronization signals.
- the boundary position of the first time unit is determined according to the end position of the synchronization signal.
- the start of the first time unit The position is the end position of the synchronization signal, or, the start position of the first time unit is after the end position of the synchronization signal and the position of the second preset interval from the end position of the synchronization signal, for example, the length of the first time unit can be equal to the synchronization The sum of the length of the signal and the length of the second preset interval.
- the second preset interval can be preset.
- the first time unit is a WUR slot
- the first WUR slot is WUR slot1
- the start position of WUR slot1 is the end position of synchronization signal 1
- the start position of WUR slot1 is the same as the synchronization signal
- the end positions of 1 overlap.
- the WUR frame includes four WUR slots, the first WUR slot in the WUR frame is WUR slot1, and the starting position of WUR slot1 is the position of distance interval 2 after the end position of synchronization signal 1.
- each WUR frame includes four WUR slots, wherein the first WUR slot in the WUR1 frame is used for synchronization signal 1 transmission, the last three WUR slots are used for wake-up signal transmission, and synchronization signal 1 There is an interval 2 between the end position of the WUR frame 1 and the start position of the second WUR slot in WUR frame 1, and the sum of interval 2 and the duration of synchronization signal 1 is equal to the length of one WUR slot. All four WUR slots in WUR frame 2 can be used for wake-up signal transmission. There is no synchronization signal in WUR frame 2, and they are not used for transmission synchronization.
- the start position of the first time domain resource is the end position of the synchronization signal, that is, the start position of the first time domain resource overlaps with the end position of the synchronization signal.
- the first time domain resource is a WUR frame, for example, as shown in FIG. 7a
- the start position of the first WUR frame from the left in FIG. 7a is the end position of synchronization signal 1.
- the starting position of the first time domain resource is after the end position of the synchronization signal and a position at a third preset interval from the end position of the synchronization signal.
- the third preset interval can be preset.
- the starting position of the first WUR frame from the left in Figure 8a is the position of the interval 2 after the end position of the synchronization signal 1
- the second The start position of the WUR frame is the position of interval 2 after the end position of sync signal 2 .
- the end position of the first time domain resource is the start position of a next synchronization signal adjacent to the synchronization signal.
- the first time domain resource is a WUR frame, for example, as shown in FIG. 7a
- the end position of the first WUR frame in FIG. 7a is the start position of the synchronization signal 2 .
- the end position of the first time domain resource is a position at a fourth preset interval before the next synchronization signal adjacent to the synchronization signal and from the start position of the next synchronization signal adjacent to the synchronization signal.
- the end position of the first WUR frame from the left in Figure 8c is the position of the interval 3 before the start position of the synchronization signal 2
- the second The end position of the WUR frame is an interval 3 before the start position of the synchronization signal 3 .
- the above only shows the positional relationship between the first time domain resource and the time domain position of the synchronization signal in the WUR frame format shown in Figure 7a, Figure 8a and Figure 8c, and the first time unit and the time domain of the synchronization signal relationship between locations.
- the positional relationship between the first time-domain resource and the time-domain position of the synchronization signal, the first time unit and the time-domain position of the synchronization signal in other WUR frame formats (such as the formats shown in Figure 7b-7h)
- the positional relationship can be not limited to what is shown in the figure, and can also be set with reference to the positional relationship shown in FIG. 7a, FIG. 8a and FIG. 8c, which will not be shown here one by one.
- the wake-up signal may be used at least to indicate information related to paging, for example, the wake-up signal may be used to indicate one or more terminals that need to receive paging.
- the wake-up signal may include the identifier of the terminal that needs to receive paging or the group identifier of the group that the terminal that needs to receive paging belongs to.
- the wake-up signal may also include other information such as system messages.
- the terminal may determine the position of the first time unit occupied by the wake-up signal according to the local clock, that is, the terminal may calculate the position of the first time unit occupied by the wake-up signal according to the distance between the first time unit and the synchronization signal. For example, assuming that each first time unit contains 40 symbols, and the length of each symbol is 4us, the terminal can calculate the time according to the local clock, and every 160us considers that it has reached the position of the next first time unit.
- the wake-up signal may also carry/include indication information, for example, the indication information may be carried/include at the start position of the wake-up signal.
- the indication information may be used to indicate the index value of the first time unit where the wake-up signal is located/occupied, or the indication information is used to indicate the index value of the start time unit where the wake-up signal is located/occupied, the start time
- the unit may refer to the first first time unit in the first time units occupied by the wake-up signal. In this way, it is convenient for the terminal to determine/locate the position of the wake-up signal in the WUR frame according to the indication information, and improve the accuracy of wake-up signal detection.
- the index value of the time unit may refer to the number of the time unit in the N first time units included in a WUR frame.
- sequential numbering is performed according to the chronological order of the N first time units, and the numbers of the N first time units may be 0 ⁇ (N ⁇ 1) or 1 ⁇ N.
- a WUR frame includes 10 scheduling units: scheduling unit 0-scheduling unit 9, where the wake-up signal occupies scheduling unit 5-scheduling unit 9, and the wake-up signal can carry the start time unit: scheduling The index value of unit 5 is 5.
- the terminal knows that the wake-up signal is located in scheduling unit 5-scheduling unit 9, and then in scheduling unit 5-scheduling unit 9 to detect/receive a wake-up signal.
- the number of coded bits corresponding to the wake-up signal may be predetermined, for example, the network device may be pre-configured through the main link or predefined by a standard.
- this application designs the format of the WUR frame (that is, the first time domain resource used to transmit the wake-up signal), and specifies the number of time units that can be used to transmit the wake-up signal in the WUR frame and the time used to transmit the wake-up signal The positional relationship between the boundary position of the unit and the synchronization signal, etc., so that after the terminal completes the time synchronization according to the synchronization signal, it can accurately locate which time units will transmit the wake-up signal, and then perform wake-up signal detection on these time units. Avoid false alarms.
- the first time unit is a WUR slot
- a WUR slot is used to transmit a wake-up signal
- the wake-up signal includes the identity of the terminal that needs to be woken up
- the cell includes UE1 and UE2
- the identity of UE1 is AB
- the identity of UE2 is BC. If the base station wants to wake up UE1 in the cell, the base station will send a wake-up signal. "AB".
- UE1 and UE2 For UE1 and UE2, according to the WUR frame format shown in this application, starting from the boundary of a WUR slot (such as WUR slot2 in the second WUR frame in Figure 8d) to start detecting the received wake-up signal until the All the coded bits in the WUR slot have been detected. According to the detection result, it is determined whether the identification is its own, and if so, it will be awakened. UE1 and UE2 will not continuously detect the two coded bits "BX" from the middle position of the WUR slot (that is, the starting position of the coded bit B in Figure 8d), and will not convert the second coded bit when there is noise interference. "X" is misidentified/misdetected as coded bit C, causing UE2 to wake up.
- a WUR slot such as WUR slot2 in the second WUR frame in Figure 8d
- the WUR frame can be used to transmit a wake-up signal.
- the terminals may be located in the same cell or different cells, and the terminals may be configured with different time windows (windows) for receiving wake-up signals, so as to ensure that the time windows of different terminals in the same cell are staggered/not Overlapping, or time windows of different terminals in different cells are staggered/overlapped.
- the time window may refer to the time period during which the terminal receives the wake-up signal, and the time window may be a part of resources in a WUR frame (such as part of the first time unit) or the time window may be one or more WUR frames.
- time windows for receiving wake-up signals by different terminals may be independent of each other without overlapping. Or the time windows for receiving wake-up signals by different terminals may overlap.
- the time window for receiving the wake-up signal configured for the terminals in cell 1 is WUR slot2-WUR slot4 in WUR frame 1-WUR frame 3, and the terminal in cell 1 Wake-up signals can be received on WUR slot2-WUR slot4 in WUR frame 1-WUR frame 3.
- the time window for receiving the wake-up signal configured for the terminal in cell 2 can be WUR frame 6-WUR frame 9, that is, the time window includes all WUR slots in WUR frame 6-WUR frame 9, and the terminal in cell 2 can be in the WUR frame Wake-up signals are received on all WUR slots in 6-WUR frame 9.
- the time window of the terminal located in cell 1 and the time window of the terminal located in cell 2 do not overlap and are independent of each other.
- UE2 and UE3 located in the same cell terminal, configure the time window "WUR frame 0-WUR frame 3" for UE1, configure the time window "WUR frame 2-WUR frame 5" for UE2, and configure the time window for UE3
- the window is "WUR frame 4-WUR frame 7".
- the time windows of UE1 and UE2 overlap, the time windows of UE2 and UE3 overlap, and the time windows of UE1 and UE3 do not overlap, so as to realize different terminals in the same cell
- the time window for receiving the wake-up signal may be configured by the network device for the terminal.
- the network device sends the first configuration information to the terminal through the main link.
- the first configuration information can be used to indicate the time window for the terminal to receive the wake-up signal.
- the first configuration information can include the time window for the terminal to receive the wake-up signal.
- the terminal can receive the wake-up signal within the time window through the following two working modes: Mode 1, using the wake-up circuit to continuously receive the signal, that is, the wake-up circuit is always receiving the signal. After defining the WUR frame and the first time unit included in the WUR frame, the wake-up circuit always maintains time synchronization through the synchronization signal, but only recognizes/detects the wake-up signal within the time window.
- Mode 2 Use the wake-up circuit to receive signals intermittently, that is, the terminal only turns on/on the wake-up circuit to receive signals near the time window, and turns off the wake-up circuit at other times to further reduce the power consumption of the terminal.
- the WUR link needs to provide system timing.
- the terminal periodically and intermittently receives the wake-up signal on the WUR link, for example, every Q synchronization signal cycle receives the wake-up signal on the WUR link.
- Q is an integer greater than 1
- the terminal needs to know which cycle the wake-up signal it receives is located in the Q cycle, otherwise, when the terminal adopts the above method 2, after a period of time without receiving the wake-up signal, the The accuracy is low.
- the terminal turns on the wake-up circuit again to receive the wake-up signal, it cannot know exactly which cycle of the Q cycles it has reached, and whether it has reached the time window when it needs to receive the wake-up signal. Therefore, after the terminal obtains the first configuration information, the terminal can obtain the system timing, determine the time position of the time window in which it needs to receive the wake-up signal according to the system timing result and the first configuration information, and receive the wake-up signal within the time window.
- the system timing described in the embodiment of the present application may refer to the number of WUR frames (ie, the first time domain resource) in a large period that the terminal determines that the received signal (such as a wake-up signal) is.
- the large period can include multiple WUR frames, and the large period can be represented by the index range of the WUR frame.
- the large period can be [the index value of the starting WUR frame, the index value of the ending WUR frame] or the starting WUR frame The index value of the index value to the index value of the end WUR frame.
- the length of the large cycle is equal to the length between the start WUR frame and the end WUR frame.
- the length of the large cycle can be equal to the number of WUR frames included in the large cycle and one WUR The product of the lengths of the frames. For example, when the index value of the WUR frame ranges from 0 to 1023, the length of one large period is the length of 1024 WUR frames.
- the naming and length of the large cycle can be set as required without limitation.
- the system timing result may include the index value/frame number of the WUR frame where the received signal is currently received.
- receiving the wake-up signal within the time window includes: if the terminal knows the /It is about to arrive at the time window (such as WUR frame) that needs to receive the wake-up signal, then wake up and receive the wake-up signal within the time window.
- the terminal may obtain a timing index, and further determine system timing according to the timing index.
- the timing index may indicate the index value of the first time domain resource (such as a WUR frame).
- the timing index includes the index value of the WUR frame (or called the frame number of the WUR frame), that is, the timing index directly indicates the index value of the WUR frame.
- the timing index may include parameters used to calculate the index value of the WUR frame, and the index value of the WUR frame may be calculated according to the timing index.
- the timing index may indirectly indicate the WUR frame index value. In this application, any of the following methods is used to obtain the timing index:
- the timing index is determined according to the first information, for example, the first information includes the timing index.
- the first information may be carried in the synchronization signal.
- the synchronization sequence corresponding to the synchronization signal is followed by several bits of first information, and the first information indicates a timing index, that is, in the synchronization signal, in addition to the sequence used for the synchronization function, it also includes indication information for the terminal to determine the system timing (such as the first information).
- the indication information may be used to indicate which WUR frame the WUR frame following the synchronization signal is.
- the indication information may be used to indicate which WUR frame the WUR frame in which the synchronization signal is located is.
- the WUR frame includes a wake-up signal but does not include a synchronization signal.
- the WUR frame after the synchronization signal is WUR frame n
- the WUR frame following the signal is WUR frame n+2.
- the present application is not limited to the time domain resources included in the WUR frame.
- the WUR frame may also include other links (such as the main link) used to transmit The time domain resource of the signal on the road).
- the WUR frame is not limited to (1) in Figure 9b and (1) in Figure 9d that do not include the time domain resources corresponding to the black box, alternatively, it can also be designed so that the WUR frame includes The time domain resource of the signal transmitted above, as shown in (2) in Figure 9b and (2) in Figure 9d, in addition to the time domain resource of the wake-up signal, the WUR frame can also include the time domain corresponding to the black box resources, except that the time-domain resources corresponding to the black boxes are not used by the WUR link, but are used to transmit signals on the main link (such as the first signal and the second signal described in this application, etc.).
- FIGS. 9a-9d are only exemplary WUR frame format diagrams, and only show WUR frames in several cycles.
- the synchronization signals included in FIGS. 9a-9d, the number of WUR frames, and the number of WUR frames included in the WUR frame The number of time units is not limited. For example, as shown in FIG. 9a-9d, more synchronization signals and WUR frames may be included, and one WUR frame may include more time units.
- Mode 2 There is a mapping relationship between the timing index and the synchronization sequence of the synchronization signal, and the timing index is determined according to the mapping relationship and the synchronization sequence of the synchronization signal.
- the terminal After receiving the synchronization signal, the terminal can determine which synchronization sequence is used by the synchronization signal through blind detection, and then use the synchronization sequence of the synchronization signal as an index to search for the mapping relationship, find the timing index corresponding to the synchronization sequence, and further base on the timing Index gets the index value of the WUR frame. For example, in the case that a WUR frame does not include a synchronization signal, which WUR frame the WUR frame after the synchronization signal is can be determined according to the timing index obtained by searching the mapping relationship. In the case that the WUR frame includes a synchronization signal, the timing index determined according to the search relationship can determine which WUR frame the current WUR frame of the synchronization signal is.
- the mapping relationship can be preset, for example, predefined in a standard or preset by a network device.
- the mapping relationship between the timing index and the synchronization sequence of the synchronization signal may be in the form of a list or an array, without limitation.
- Table 1 shows the mapping relationship. From Table 1, it can be known that there are fifteen synchronization sequences from 0 to 15, and one synchronization sequence corresponds to one Timing index, there are 16 timing indexes in total, and the timing index ranges from 0 to 15. Assuming that the synchronization sequence of the synchronization signal received by the terminal is synchronization sequence 1, the terminal can use the synchronization sequence 1 as an index to look up the table.
- Table 1 is only an exemplary table, and the mapping relationship between the timing index and the synchronization sequence of the synchronization signal shown in this application is not limited to the synchronization sequence and timing index shown in Table 1, and may also include other timing sequences and timing indexes, etc. .
- the timing index is determined according to the second information and the synchronization sequence of the synchronization signal.
- the index value of the WUR frame is further obtained according to the timing index. For example, in the case that a WUR frame does not include a synchronization signal, which WUR frame the WUR frame after the synchronization signal is can be determined according to the timing index obtained by searching the mapping relationship. In the case that the WUR frame includes a synchronization signal, the timing index determined according to the search relationship can determine which WUR frame the current WUR frame of the synchronization signal is.
- the third method can be understood as a combination of the above-mentioned method 1 and method 2, and can be understood as jointly indicating the timing index through the indication information carried in the synchronization signal and the synchronization sequence of the synchronization signal.
- the determination of the timing index according to the second information and the synchronization sequence of the synchronization signal may include: the timing index is determined by M1 information bits and M2 information bits; wherein, the M1 information bits are carried in the synchronization signal, and the second information includes M1 Information bits, there is a mapping relationship between M2 information bits and the synchronization sequence of the synchronization signal.
- the M2 information bits are determined according to the synchronization sequence of the synchronization signal.
- M1 and M2 are positive integers.
- the specific values of M1 and M2 can be pre-configured, such as Protocols are pre-determined or configured by network devices, etc.
- One of the synchronization sequences indicates one of the synchronization sequences, for example, one of the two synchronization sequences indicates 0 and the other indicates 1, and then the five bits in the synchronization sequence and one bit of the synchronization sequence indication are combined to indicate the timing index .
- the four synchronization sequences respectively indicate 00, 01, 10, and 11, and the first synchronization sequence can be used to indicate the remaining high-order bits "00".
- the four bits in the synchronization sequence and the two bits indicated by the synchronization sequence are combined to indicate the timing index.
- the low bit of the timing index is carried in the synchronization signal, and the high bit is in a mapping relationship with the synchronization sequence of the synchronization signal to combine and indicate the timing index.
- the high bit of the timing index may also be carried in the synchronization signal, and the low bit and the synchronization sequence of the synchronization signal may be mapped into a combination to indicate the timing index.
- the synchronization sequence indication for example, one of the two synchronization sequences indicates 0 and the other indicates 1, and then five bits in the synchronization sequence and one bit of the synchronization sequence indication are combined to indicate a timing index.
- the upper four bits "0001" of the six bits "000100” indicating the timing index are carried in the synchronization signal, and the remaining lower bits "00” can be indicated by one of the four synchronization sequences, such as
- the four synchronization sequences correspond to indications 00, 01, 10, and 11 respectively.
- the first synchronization sequence can be used to indicate the remaining low-order bits "00", and then the four bits in the synchronization sequence and the two bits indicated by the synchronization sequence are combined in the together indicate a timing index.
- the terminal can determine the time window with the timing index and the first configuration information, wake up in advance before the time window, prepare for receiving the wake-up signal within the time window, and ensure normal reception of the wake-up signal.
- the WUR link between the network device and the terminal supports multiple data rates, that is, multiple data rates can be used on the WUR link to transmit wake-up Signal.
- the channel status between the terminal and the network device is good or bad.
- the channel state between the terminal and the network device is poor, such as a low signal-to-noise ratio (signal noise ratio, SNR)
- the robustness of the WUR link can be improved by reducing the data rate of the wake-up signal.
- the data rate of the wake-up signal is equivalent to increasing the length of the time unit occupied by the wake-up signal to obtain more time-domain diversity. Therefore, reducing the data rate of the wake-up signal can improve the robustness of the WUR link.
- the data rate of the wake-up signal may not be reduced, but a pre-configured or higher data rate may be used.
- the arrival time of the wake-up signal of each terminal is random. In a period of time, the number of wake-up signals that need to be sent by the WUR link may be more or less.
- the wake-up signal is configured to use a lower data rate. However, wake-up signals with a lower data rate occupy more air interface resources (such as time domain resources). When there are a large number of wake-up signals to be sent, using a low data rate may lead to insufficient system capacity. In this case, you can consider using a high data rate.
- the wake-up signal is sent in a way to improve the system capacity in a short period of time, and when the number of sent wake-up signals is small/fewer, a lower data rate is used to ensure that the terminal at the edge of the cell can also receive the wake-up signal correctly.
- a signal such as a wake-up signal
- the total length of the time unit occupied by the first wake-up signal is greater than that of the second wake-up signal.
- the total length of the time units occupied by the signals, the number of time units occupied by the first wake-up signal is greater than the number of time units occupied by the second wake-up signal. It should be understood that the length of the total time unit occupied by the wake-up signal in the present application may be understood as the length of the wake-up signal.
- the data rate of the wake-up signal is determined according to the synchronization signal, for example, the length of the synchronization signal may indicate the data rate of the wake-up signal in the WUR frame after the synchronization signal.
- the shorter the length of the synchronization signal the higher the data rate of the wake-up signal in the WUR frame after the synchronization signal, and the longer the length of the wake-up signal.
- the longer the length of the synchronization signal the higher the wake-up signal in the WUR frame after the synchronization signal.
- the lower the data rate of the signal the shorter the length of the wake-up signal.
- the length of sync signal 1 is shorter than the length of sync signal 2
- the length of the wake-up signal after sync signal 1 and before sync signal 2 is less than the length of the wake-up signal after sync signal 2
- the length of the wake-up signal is a wake-up signal with a high data rate
- the wake-up signal after the synchronization signal 2 is a wake-up signal with a low data rate.
- the length of the wake-up signal may be characterized by the number of encoded bits of the wake-up signal, for example, the length of the wake-up signal may be equal to the number of encoded bits of the wake-up signal.
- the synchronization signal may carry indication information, which may be called data rate indication information, and the indication information may indicate the data rate of the wake-up signal in the WUR frame after the synchronization signal. It should be understood that in this possible design, the length of the synchronization signal of each period may be the same.
- the synchronization signal 1 carries indication information 1 , and the indication information 1 indicates that the data rate of the wake-up signal after the synchronization signal 1 is a high data rate.
- the synchronization signal 2 carries indication information 2, and the indication information 2 indicates that the data rate of the wake-up signal after the synchronization signal 2 is a low data rate.
- the length of sync signal 1 is the same as that of sync signal 2 .
- the first time can be designed according to the length of the wake-up signal
- the length of the unit if the data rate of the wake-up signal in the WUR frame is high, the length of the first time unit in the WUR frame is designed to be short, if the data rate of the wake-up signal in the WUR frame is low, the design of the first time unit in the WUR frame
- the length of a time unit is relatively long, that is, the length of time in a WUR frame with different data rates is different.
- the length of sync signal 1 is shorter than that of sync signal 2
- the wake-up signal after synchronization signal 2 is a low data rate wake-up signal.
- the length of WUR slot in WUR frame 1 is less than WUR The length of the WUR slot in frame 2.
- the lengths of the synchronization signals of different cycles are different, and the data rate of the wake-up signal after the synchronization signal can be indicated by the different lengths of the synchronization signals.
- the boundary position of the first time unit in the WUR frame is determined according to the time domain position (such as the start position and/or end) of the synchronization signal, different lengths of the synchronization signal may cause changes in the boundary position of the first time unit.
- the change of the boundary position of the first time unit will further cause the terminal to be unable to determine the time position of each first time unit boundary, thus causing the terminal to fail to receive the wake-up signal correctly.
- the length between the start position of the synchronization signal and the start position of the first time unit can be designed to be fixed/equal in length, so as to ensure the The boundary position is fixed.
- the length of the time domain resource occupied by each synchronization signal is the same, for example, it may be the length of a WUR slot included in WUR frame 1.
- the structure of the WUR link can be made more orderly, and it is beneficial for the network device to plan the location of signal transmission.
- the length of the first time unit can be set to a fixed length value, the lengths of the first time units included in different WUR frames are the same, and the lengths of multiple first time units in the same WUR frame are identical.
- the number of time units occupied by the wake-up signal at a high data rate is smaller than the number of time units occupied by the wake-up signal at a low data rate.
- synchronization signal 1 corresponds to a high data rate
- synchronization signal 2 corresponds to a low data rate.
- the wake-up signal after the synchronization signal 1 has a high data rate
- the wake-up signal occupies two of the WUR slots: WUR slot2 and WUR slot3.
- the lengths of WUR slots in different WUR frames are the same, and the number of WUR slots occupied by the wake-up signal after sync signal 2 is greater than the number of WUR slots occupied by the wake-up signal after sync signal 1.
- the lengths of synchronization signals of different periods may be the same or different.
- the length between the start position of the synchronization signal and the start position of the first time unit can be designed to be fixed/equal in length, so as to ensure the length of the first time unit The boundary position is fixed. For example, as shown in Figure 10f, when sync signal 1 is used, there is a gap between the end position of sync signal 1 and the start position of WUR slot1 in the WUR frame. When sync signal 2 is used, there is no gap between the end position of sync signal 2 and the start position of WUR slot1 in WUR frame 1.
- the length of the synchronization signal 1 plus the length of the interval is equal to the length of the synchronization signal 2, and the end position of the length is the boundary position of the WUR slot, ensuring that the boundary position of the WUR slot is fixed in each cycle.
- FIG. 10a-Fig. 10f are only exemplary drawings, only showing WUR frames in several cycles, the synchronization signals included in Fig. 10a-Fig. 10f, the number of WUR frames, and the number of time units included in the WUR frame
- FIG. 10a-FIG. 10f may include more synchronization signals
- WUR frames may include more time units, and the like.
- the WUR frame format shown in Figure 10a- Figure 10f includes a wake-up signal and does not include a synchronization signal, which is different from the WUR frame format shown in Figure 10a- Figure 10f, and the WUR frame shown in Figure 10a- Figure 10f can also be replaced It is designed to include a synchronization signal and a wake-up signal, which are not shown here one by one.
- the first frequency domain resource corresponding to the WUR link is the same as the second frequency domain resource corresponding to the main link, and the time domain resource corresponding to the WUR link
- the resources are different from the time-domain resources corresponding to the main link.
- the WUR link corresponds to the above-mentioned first time-domain resource (that is, the WUR frame), and the main link corresponds to the second time-domain resource.
- TDM transmission can be realized and resource utilization can be improved.
- the time domain resources between adjacent synchronization signals include a first time domain resource and a second time domain resource
- the first time domain resource is a time domain resource used to transmit a wake-up signal.
- the second time domain resource is the time domain resource shown in the black box in Figure 7c, Figure 7e and Figure 9b, and the second time domain resource can be used to transmit signals on the main link to implement TDM transmission.
- time alignment between signals on the WUR link and signals on the main link can be designed/configured.
- the length of the first time unit included in the WUR frame may be set to an integer multiple of the length of the time slot included in the second time domain resource corresponding to the main link. In this way, it can be guaranteed that the boundary of each first time unit must be a time slot boundary, so the boundaries are aligned.
- the network device only needs to ensure that no signal (such as NR signal) is sent in the time slot that coincides with the first time unit, so as to avoid misalignment at the border
- the signal transmitted on the first time unit and the signal transmitted on the time slot may affect each other, affecting the problem of normal communication.
- a frame transmitted on the main link includes multiple time slots (slots), and each slot includes 14 or 12 symbols.
- the WUR link whether it is a synchronization signal or a paging-related wake-up signal, the number of coded bits it carries is greater than 14 or 12 coded bits. Since one coded bit corresponds to one symbol, the length of the wake-up signal is usually greater than 14 or 12 symbols. Therefore, the length of the WUR signal (such as a synchronization signal or a wake-up signal) on the WUR link can be set to be longer than the length of the slot on the main link.
- the length of the first time unit in the WUR frame can be an integer multiple of the slot length of the NR system, thereby reducing the signal of the WUR link and the NR system. Interference between signals.
- the method may further include: the terminal receiving second configuration information sent by the network device, for example, the terminal may receive the second configuration information from the network device through the main link, wherein the second The second configuration information configures reserved resources, and synchronization signals cannot be sent on the reserved resources, so that the terminal does not send synchronization signals on the reserved resources according to the second configuration information.
- the reserved resources may be included in the candidate transmission positions of the synchronization signal, and the reserved resources are part of the candidate transmission positions of the synchronization signal candidate transmission positions, for example, the reserved resources may be multiple cells in the candidate transmission positions Shared candidate sending positions, which means that some of the candidate sending positions of the synchronization signal are configured to be unavailable for the terminal to send the synchronization signal.
- the candidate sending positions of the synchronization signals are determined according to the sending periods of the synchronizing signals.
- the candidate sending positions of the synchronizing signals may be positions corresponding to the sending periods of the synchronizing signals, and the length between adjacent candidate sending positions is one sending period.
- the WUR signals (such as synchronization signals) of the two cells may interfere with each other.
- the WUR signals of adjacent cells need to be sent in TDM, that is, the WUR signals of adjacent cells are preferably sent at different time positions.
- some synchronization signal transmission positions in cell 1 and cell 2 are used as reserved resources, and no synchronization signals are transmitted on them, so that the positions that can transmit synchronization signals do not overlap, thereby avoiding inter-cell interference.
- each node such as a terminal, a network device, etc.
- each node includes a corresponding hardware structure and/or software module for performing each function.
- the present application can be implemented in the form of hardware or a combination of hardware and computer software. Whether a certain function is executed by hardware or computer software drives hardware depends on the specific application and design constraints of the technical solution. Those skilled in the art may use different methods to implement the described functions for each specific application, but such implementation should not be regarded as exceeding the scope of the present application.
- each functional module can be grouped corresponding to each function, or two or more functions can be integrated into one processing module.
- the above-mentioned integrated modules can be implemented in the form of hardware or in the form of software function modules. It should be noted that the grouping of modules in the embodiment of the present application is schematic, and is only a logical function grouping, and there may be another grouping manner in actual implementation.
- FIG. 11 shows a structural diagram of a communication device 110.
- the communication device 110 may be a terminal, or a chip in the terminal, or a system on chip.
- the communication device 110 may be used to perform the functions of the terminal involved in the above-mentioned embodiments.
- the communication device 110 shown in FIG. 11 includes: a receiving unit 1101, and also includes a processing unit 1102;
- the receiving unit 1101 is configured to receive a synchronization signal from a network device, and receive a wake-up signal from the network device on a first time domain resource;
- the first time domain resource includes N first time units of a preset length, and one wake-up signal Occupying at least one first time unit in the first time units of N preset lengths, N is a positive integer, and the boundary position of the first time unit is determined according to the time domain position of the synchronization signal;
- the wake-up signal is at least used to indicate paging related Information.
- the communication device 110 is configured to perform the terminal function in the wake-up signal sending method shown in the method shown in FIG. 6 , so the same effect as the above-mentioned wake-up signal sending method can be achieved.
- the communication device 110 shown in FIG. 11 includes: a processing module and a communication module.
- the processing module is used to control and manage the actions of the communication device 110 , for example, the processing module may integrate functions of the processing unit 1102 .
- the communication module can integrate the functions of the receiving unit 1101, and can be used to support the communication device 110 to perform steps 601, 602 and communicate with other network entities, such as communication with the functional modules or network entities shown in FIG. 4 .
- the communication device 110 may also include a storage module for storing program codes and data of the communication device 110 .
- the processing module may be a processor or a controller. It can implement or execute the various illustrative logical blocks, modules and circuits described in connection with the present disclosure.
- the processor can also be a combination of computing functions, for example, a combination of one or more microprocessors, a combination of DSP and a microprocessor, and so on.
- the communication module may be a transceiver circuit or a communication interface.
- the storage module may be a memory. When the processing module is a processor, the communication module is a communication interface, and the storage module is a memory, the communication device 110 involved in this embodiment of the present application may be the communication device 500 shown in FIG. 5a or FIG. 5b.
- FIG. 12 shows a structural diagram of a communication device 120.
- the communication device 120 may be a network device, or a chip in a network device, or a system on a chip.
- the communication device 120 may be used to implement the network device involved in the above-mentioned embodiments. function.
- the communication device 120 shown in FIG. 12 includes: a sending unit 1201, and also includes a processing unit 1202;
- the sending unit 1201 is configured to send a synchronization signal to the terminal, and send a wake-up signal to the terminal on the first time domain resource;
- the first time domain resource includes N first time units of preset length, and one wake-up signal occupies N preset time units. At least one first time unit in the first time unit of the length, N is a positive integer, and the boundary position of the first time unit is determined according to the time domain position of the synchronization signal; the wake-up signal is at least used to indicate paging-related information.
- the communication device 120 is configured to execute the function of the network device in the wake-up signal sending method shown in the method shown in FIG. 6 , so the same effect as the above-mentioned wake-up signal sending method can be achieved.
- the communication device 120 shown in FIG. 12 includes: a processing module and a communication module.
- the processing module is used to control and manage the actions of the communication device 120, for example, the processing module can support the communication device 120 to perform management functions.
- the communication module can integrate the function of the sending unit 1201, and can be used to support the communication device 120 to perform steps 601 and 602 and communicate with other network entities, such as communication with the functional modules or network entities shown in FIG. 6 .
- the communication device 120 may also include a storage module for storing program codes and data of the communication device 120 .
- the processing module may be a processor or a controller. It can implement or execute the various illustrative logical blocks, modules and circuits described in connection with the present disclosure.
- the processor can also be a combination of computing functions, for example, a combination of one or more microprocessors, a combination of DSP and a microprocessor, and so on.
- the communication module may be a transceiver circuit or a communication interface.
- the storage module may be a memory. When the processing module is a processor, the communication module is a communication interface, and the storage module is a memory, the communication device 120 involved in this embodiment of the present application may be the communication device 500 shown in FIG. 5a or FIG. 5b.
- FIG. 13 is a structural diagram of a communication system provided by an embodiment of the present application.
- the communication system may include: a terminal 130 and a network device 131 .
- the function of the terminal 130 is the same as that of the above-mentioned communication device 110 .
- the function of the network device 131 is the same as that of the above-mentioned communication device 120 , which will not be repeated here.
- the embodiment of the present application also provides a computer-readable storage medium. All or part of the processes in the above method embodiments can be completed by computer programs to instruct related hardware, and the program can be stored in the above computer-readable storage medium. When the program is executed, it can include the processes of the above method embodiments .
- the computer-readable storage medium may be the terminal in any of the foregoing embodiments, for example: an internal storage unit including a data sending end and/or a data receiving end, such as a hard disk or memory of the terminal.
- the above-mentioned computer-readable storage medium may also be an external storage device of the above-mentioned terminal, such as a plug-in hard disk equipped on the above-mentioned terminal, a smart memory card (smart media card, SMC), a secure digital (secure digital, SD) card, a flash memory card (flash card) etc. Further, the above-mentioned computer-readable storage medium may also include both an internal storage unit of the above-mentioned terminal and an external storage device.
- the above-mentioned computer-readable storage medium is used to store the above-mentioned computer program and other programs and data required by the above-mentioned terminal.
- the computer-readable storage medium described above can also be used to temporarily store data that has been output or will be output.
- At least one (item) means one or more
- “multiple” means two or more
- at least two (items) means two or three And three or more
- "and/or” is used to describe the association relationship of associated objects, indicating that there can be three types of relationships, for example, "A and/or B” can mean: only A exists, only B exists, and A exists at the same time and B, where A and B can be singular or plural.
- the character “/” generally indicates that the contextual objects are an "or” relationship.
- “At least one of the following” or similar expressions refer to any combination of these items, including any combination of single or plural items.
- At least one item (piece) of a, b or c can mean: a, b, c, "a and b", “a and c", “b and c", or "a and b and c ", where a, b, c can be single or multiple.
- connection in the embodiment of the present application refers to various connection methods such as direct connection or indirect connection to realize communication between devices, which is not limited in the embodiment of the present application.
- Transmit in the embodiments of the present application refers to two-way transmission, including actions of sending and/or receiving, unless otherwise specified.
- transmission in the embodiments of the present application includes sending data, receiving data, or sending data and receiving data.
- the data transmission here includes uplink and/or downlink data transmission.
- Data may include channels and/or signals, uplink data transmission means uplink channel and/or uplink signal transmission, and downlink data transmission means downlink channel and/or downlink signal transmission.
- Network and “system” in the embodiments of the present application express the same concept, and the communication system is the communication network.
- the disclosed devices and methods may be implemented in other ways.
- the device embodiments described above are only illustrative.
- the grouping of the modules or units is only a logical function grouping. In actual implementation, there may be other grouping methods.
- multiple units or components can be Incorporation or may be integrated into another device, or some features may be omitted, or not implemented.
- the mutual coupling or direct coupling or communication connection shown or discussed may be through some interfaces, and the indirect coupling or communication connection of devices or units may be in electrical, mechanical or other forms.
- the unit described as a separate component may or may not be physically separated, and the component displayed as a unit may be one physical unit or multiple physical units, that is, it may be located in one place, or may be distributed to multiple different places . Part or all of the units can be selected according to actual needs to achieve the purpose of the solution of this embodiment.
- each functional unit in each embodiment of the present application may be integrated into one processing unit, each unit may exist separately physically, or two or more units may be integrated into one unit.
- the above-mentioned integrated units can be implemented in the form of hardware or in the form of software functional units.
- the integrated unit is realized in the form of a software function unit and sold or used as an independent product, it can be stored in a readable storage medium.
- the technical solution of the embodiment of the present application is essentially or the part that contributes to the prior art or all or part of the technical solution can be embodied in the form of a software product, and the software product is stored in a storage medium , including several instructions to make a device, such as a single-chip microcomputer, a chip, etc., or a processor (processor) execute all or part of the steps of the method described in each embodiment of the present application.
- the aforementioned storage medium includes: various media for storing program codes such as U disk, mobile hard disk, ROM, RAM, magnetic disk or optical disk.
Landscapes
- Engineering & Computer Science (AREA)
- Computer Networks & Wireless Communication (AREA)
- Signal Processing (AREA)
- Mobile Radio Communication Systems (AREA)
Abstract
本文公开一种唤醒信号发送方法及装置,以解决UE如何准确地识别唤醒电路接收到的WUR信号中的信息的问题。该方法可以包括:设计如下格式的用于传输唤醒信号的第一时域资源:第一时域资源包括N个预设长度的第一时间单元,一个唤醒信号占用N个预设长度的第一时间单元中的至少一个第一时间单元,N为正整数,第一时间单元的边界位置根据同步信号的时域位置确定,以便确定唤醒信号的边界位置,便于终端准备识别唤醒信号。本申请方案可广泛适用于通信技术领域、人工智能、车联网、智能家居联网等领域。
Description
本申请要求于2021年9月28日提交国家知识产权局、申请号为202111146311.5、申请名称为“一种WUR的帧结构设计方法”、以及于2021年11月05日提交国家知识产权局、申请号为202111308989.9、申请名称为“一种唤醒信号发送方法及装置”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
本申请实施例涉及通信技术领域,尤其涉及一种唤醒信号发送方法及装置。
目前,用户设备(user equipment,UE)在空闲态(IDLE)/非激活态(INACTIVE)态下的时候,UE会根据自己的UE标识(UE ID)计算得到一个寻呼帧(paging frame,PF)以及一个PF中的寻呼时机(paging occasion,PO)的位置,在PO内接收寻呼。UE无论在IDLE态/INACTIVE态执行上述接收寻呼的流程时,还是UE在连接态进行数据接收时,都是用相同的接收模块。
为了进一步降低UE的功耗,可以使用一个单独的低功耗小电路接收寻呼相关的消息,这个小电路可以被称为唤醒电路或低功耗电路或其他名字,唤醒电路接收的信号可以被称为唤醒信号/无线电(wake up signal/radio,WUS/WUR)。UE如何准确地识别唤醒电路接收到的WUR信号中的信息成为亟待解决的问题。
发明内容
本申请实施例提供一种唤醒信号发送方法及装置,解决UE如何准确地识别唤醒电路接收到的WUR信号中的信息的问题。
为达到上述目的,本申请实施例采用如下技术方案:
第一方面,本申请实施例提供一种唤醒信号发送方法,所述方法包括:终端接收来自网络设备的同步信号,在第一时域资源上接收来自网络设备的至少用于指示寻呼相关的信息的唤醒信号;其中第一时域资源的格式设计为:第一时域资源包括N个预设长度的第一时间单元,一个唤醒信号占用N个预设长度的第一时间单元中的至少一个第一时间单元,第一时间单元的边界位置根据同步信号的时域位置确定。
相应的,第二方面,本申请实施例还提供一种唤醒信号发送方法,该方法可以由网络设备执行,该方法可以包括:网络设备向终端发送同步信号,网络设备在第一时域资源上向终端发送至少用于指示寻呼相关的信息的唤醒信号;其中第一时域资源以及第一时间单元的设计如第一方面中所述,不予赘述。
基于上述方法,本申请定义了用于传输唤醒信号的时域资源以及该时域资源的边界位置,比如根据同步信号的时域位置确定用于传输唤醒信号的时间单元的边界位置,以便终端获知唤醒信号的起始位置以及都在哪些时域位置上检测/接收唤醒信 号,减少终端解码与寻呼相关的信息(比如寻呼消息)的次数(即仅在第一时间单元的边界位置才尝试解码,而非在任意符号位置都尝试解码),进而降低终端的虚警概率,避免终端现有方式在任意符号位置都尝试解码带来的虚警概率较大的问题。
一种可能的设计中,第一时间单元包括多个符号,其中一个符号对应一个编码比特。如此使得一个符号传输一个编码比特,从格式上与现有系统(比如NR系统)的格式区分开来。
一种可能的设计中,第一时间单元的边界位置根据同步信号的时域位置确定包括:第一时间单元的边界位置根据同步信号的起始位置确定或者第一时间单元的边界位置根据同步信号的结束位置确定,基于该可能的设计,可以有效且灵活的根据同步信号的时域位置确定第一时间单元的边界位置,简化系统设计。
一种可能的设计中,第一时间单元为第一时域资源内的第一个时间单元,第一时间单元的边界位置根据同步信号的起始位置确定包括:第一时间单元的起始位置为同步信号的起始位置之后、距离同步信号的起始位置第一预设间隔的位置;第一时间单元的边界位置根据同步信号的结束位置确定包括:第一时间单元的起始位置为同步信号的结束位置;或者,第一时间单元的起始位置为同步信号的结束位置之后、距离同步信号的结束位置第二预设间隔的位置。即可以设计第一时间单元的边界位置与同步信号的边界位置重叠或者设计第一时间单元的边界位置与同步信号的边界位置之间存在一定间隔,使得第一时间单元的边界位置对齐。
一种可能的设计中,唤醒信号包含用于指示唤醒信号占用的第一时间单元的索引值,或者唤醒信号占用的起始时间单元的索引值的指示信息,如此可以便于终端根据唤醒信号中携带的指示信息确定当前接收的唤醒信号的处于哪个位置,提高接收的准确性。
一种可能的设计中,终端接收来自网络设备的唤醒信号,包括:终端获取用于指示第一时域资源的索引值的定时索引,根据定时索引和用于配置时间窗的第一配置信息在时间窗内接收来自网络设备的唤醒信号,该时间窗包括在第一时域资源中或者时间窗包括第一时域资源。基于该可能的设计,终端可以进行系统定时,定位自己接收唤醒信号的时间位置,以便在该时间位置提前醒来为接收唤醒信号做准备,提高唤醒信号接收的准确性。
一种可能的设计中,定时索引根据携带在同步信号中的第一信息确定;或者,定时索引与同步信号的同步序列之间存在映射关系,定时索引根据映射关系以及同步信号的同步序列确定;或者,定时索引根据第二信息和同步信号的同步序列确定,基于该可能的设计,有效且灵活的获取定时索引,简化系统设计。
一种可能的设计中,定时索引根据第二信息和同步信号的同步序列确定包括:定时索引由M1个携带在同步信号中的信息比特以及M2个信息比特确定;第二信息包括M1个信息比特,M2个信息比特与同步信号的同步序列之间存在映射关系,M2个信息比特根据同步信号的同步序列确定,M1、M2为正整数。基于该可能的设计,可以根据同步信号中的信息比特以及同步序列综合确定定时索引,简化系统设计。
一种可能的设计中,第一时域资源的起始位置为同步信号的结束位置;或者,第一时域资源的起始位置为同步信号的结束位置之后、距离同步信号的结束位置第三预 设间隔的位置。第一时域资源的结束位置为同步信号相邻的下一同步信号的起始位置或者第一时域资源的结束位置为同步信号相邻的下一同步信号之前、距离同步信号相邻的下一同步信号的起始位置第四预设间隔的位置。如此可以灵活且有效地确定第一时域资源的边界位置。
一种可能的设计中,唤醒信号包括第一唤醒信号和第二唤醒信号,第一唤醒信号的数据率低于第二唤醒信号的数据率,第一唤醒信号占用的第一时间单元个数大于第二唤醒信号占用的第一时间单元个数,如此根据需要设计不同数据率的唤醒信号所占用的时间单元的数量,简化系统设计,且满足不同终端的数据率需求。
一种可能的设计中,网络设备向终端发送用于配置预留资源的第二配置信息,终端接收第二配置信息,以使得终端根据第二配置信息在该预留资源上不能发送同步信号,预留资源包括在同步信号的候选发送位置中,同步信号的候选发送位置根据同步信号的发送周期确定,如此可以使得终端避开与其他终端在同一位置上发送同步信号所带来的干扰问题。
一种可能的设计中,同步信号的波形与唤醒信号的波形相同;和/或,同步信号的调制方式与唤醒信号的调制方式相同,同步信号的调制方式与唤醒信号的调制方式为开关键控(on-off keying,OOK)OOK,和/或,同步信号的波形和/或唤醒信号的波形为OOK。如此,灵活且有效的设计同步信号、唤醒信号的波形以及调制方式。
一种可能的设计中,唤醒信号用于指示的需要接收寻呼的一个或多个终端包括终端;所述方法还包括:终端接收来自网络设备的第一信息和/或进行随机接入,其中,第一信息包括以下一项或多项信息:寻呼下行控制信息(downlink control information,DCI),寻呼消息(paging message),寻呼提前指示(paging early indication,PEI)。如此可以便于终端接入网络,与网络设备进行通信。
一种可能的设计中,终端包括第一模块和第二模块,终端通过第一模块接收同步信号和唤醒信号,终端通过第二模块接收第一信息和/或进行随机接入。终端通过第一链路,接收同步信号和唤醒信号,第一链路对应的频域资源包括第一频域资源;终端通过第二链路,接收来自网络设备的第一信息和/或进行随机接入,第二链路对应的频域资源包括第二频域资源。如此,可以设计终端通过不同模块/不同链路分别执行不同的功能,将执行不同的功能的模块独立部署,执行不同功能的链路独立部署,根据需要采用不用模块/链路执行工作,节省终端的系统开销以及便于管理不同的通信过程。
一种可能的设计中,第一频域资源与第二频域资源相同或者不同,如此,灵活且有效的设计第一链路、第二链路所对应的频域资源,实现同频传输或者异频传输。
第三方面,本申请提供一种通信装置,该通信装置可以为终端或者终端中的芯片或者片上系统,还可以为终端中用于实现第一方面或第一方面的任一可能的设计所述的方法的功能模块。或者,该通信装置可以为网络设备或者网络设备中的芯片或者片上系统,还可以为网络设备中用于实现第二方面或第二方面的任一可能的设计所述的方法的功能模块。该通信装置可以实现上述各方面或者各可能的设计中终端或网络设备所执行的功能,所述功能可以通过硬件执行相应的软件实现。所述硬件或软件包括一个或多个上述功能相应的模块。如:该通信装置可以包括:发送单元以及接收单 元;进一步的,该通信装置还可以包括处理单元。
一种可能的设计,发送单元,用于在第一随机接入资源上向网络设备发送第一消息。
接收单元,用于终端接收来自网络设备的同步信号,在第一时域资源上接收来自网络设备的至少用于指示寻呼相关的信息的唤醒信号;其中第一时域资源的格式设计为:第一时域资源包括N个预设长度的第一时间单元,一个唤醒信号占用N个预设长度的第一时间单元中的至少一个第一时间单元,第一时间单元的边界位置根据同步信号的时域位置确定。
又一种可能的设计,发送单元,用于向终端发送同步信号,在第一时域资源上向终端发送至少用于指示寻呼相关的信息的唤醒信号。
具体的,其中第一时域资源以及第一时间单元的设计可参照第一方面或第二方面或第一方面的任一可能的设计或者第二方面的任一可能的设计中所述,同时,该通信装置各个单元的执行动作可参照第一方面或者第一方面的任一可能的设计中或者第二方面或第二方面的任一可能的设计中所述,不予赘述。
第四方面,提供了一种通信装置,该通信装置可以为终端或者终端中的芯片或者片上系统。该通信装置可以实现上述各方面或者各可能的设计中终端所执行的功能,所述功能可以通过硬件实现。或者,该通信装置可以为网络设备或者网络设备中的芯片或者片上系统。该通信装置可以实现上述各方面或者各可能的设计中网络设备所执行的功能,所述功能可以通过硬件实现。一种可能的设计中,该通信装置可以包括:处理器和通信接口,处理器与通信接口可以支持通信装置执行上述第一方面或者第一方面的任一可能的设计中或者第二方面或第二方面的任一可能的设计所述的方法。在又一种可能的设计中,所述通信装置还可以包括存储器,存储器,用于保存通信装置必要的计算机执行指令和数据。当该通信装置运行时,该处理器执行该存储器存储的该计算机执行指令,以使该通信装置执行如上述第一方面或者第一方面的任一可能的设计中或者第二方面或第二方面的任一可能的设计中所述的唤醒信号发送方法。
第五方面,提供了一种计算机可读存储介质,该计算机可读存储介质可以为可读的非易失性存储介质,该计算机可读存储介质中存储有指令,当其在计算机上运行时,使得计算机执行第一方面或者第一方面的任一可能的设计中或者第二方面或第二方面的任一可能的设计中所述的唤醒信号发送方法。
第六方面,提供了一种包含指令的计算机程序产品,当其在计算机上运行时,使得计算机执行第一方面或者第一方面的任一可能的设计中或者第二方面或第二方面的任一可能的设计中所述的唤醒信号发送方法。
第七方面,提供了一种通信装置,该通信装置可以为终端或者终端中的芯片或者片上系统,该通信装置包括一个或多个处理器、一个或多个存储器。所述一个或多个存储器与所述一个或多个处理器耦合,所述一个或多个存储器用于存储计算机程序代码,所述计算机程序代码包括计算机指令,当所述一个或多个处理器执行所述计算机指令时,使所述终端执行第一方面或者第一方面的任一可能的设计中或者第二方面或第二方面的任一可能的设计中所述的唤醒信号发送方法。
其中,第四方面至第七方面中任一种设计方式所带来的技术效果可参见上述第一 方面或者第一方面的任一种可能的设计所带来的技术效果,不再赘述。
第八方面,本申请实施例提供一种通信系统,该通信系统可以包括:终端以及网络设备。终端可以执行第一方面或者第一方面的任一可能的设计所述的唤醒信号发送方法,网络设备可以执行第二方面或者第二方面的任一可能的设计所述的唤醒信号发送方法。
图1为终端的接收电路示意图;
图2为唤醒信号示意图;
图3a为随路传输同步信号示意图;
图3b为周期传输同步信号示意图;
图3c为信号传输示意图;
图4为本申请实施例提供的通信系统示意图;
图5a为本申请实施例提供的通信装置500的示意图一;
图5b为本申请实施例提供的通信装置500de示意图二;
图6为本申请实施例提供的唤醒信号发送方法流程图;
图7a~7h为本申请实施例提供的WUR帧格式示意图;
图8a~图8d为本申请实施例提供的WUR帧格式示意图;
图9a~图9d为本申请实施例提供的WUR帧格式示意图;
图10a~图10f为本申请实施例提供的携带不同数据率的唤醒信号的WUR帧格式示意图;
图10g为本申请实施例提供的不同小区同步信号发送示意图;
图11为本申请实施例提供的通信装置110的示意图;
图12为本申请实施例提供的一种通信装置120的示意图;
图13为本申请实施例提供的一种通信系统组成示意图。
介绍本申请实施例之前,对本申请实施例涉及的一些名词(如寻呼等)进行解释说明。需要说明的是,下述解释说明是为了让本申请实施例更容易被理解,而不应该视为对本申请实施例所要求的保护范围的限定。
寻呼(paging):是网络设备周期性地向处于空闲(idle)态或者非激活(inactive)态的终端发送寻呼消息(paging message),以唤醒处于idle态或者inactive态的终端回到连接(connected)态的过程。该过程包括:网络设备(如接入网设备)计算终端对应的寻呼帧(paging frame,PF)以及PF中的寻呼时机(paging occasion,PO),在终端对应的PO上向终端发送携带寻呼DCI的物理下行控制信道(physical downlink control channel,PDCCH),寻呼DCI可以调度携带寻呼消息(paging message)的物理下行共享信道(physical downlink control channel,PDSCH)。如果寻呼DCI指示调度了携带寻呼消息的PDSCH,则网络设备在寻呼DCI指示的资源位置上发送携带寻呼消息的PDSCH。相应的,终端在自己对应的PO上监测寻呼DCI,若终端接收到寻呼DCI,根据接收到的寻呼DCI接收携带寻呼消 息的PDSCH,根据携带寻呼消息的PDSCH确定自己是否被寻呼,比如,如果终端接收到的寻呼消息中携带有自己的标识信息(如用户设备标识(user equipment identifier,UE ID)),则确定自己被寻呼到,反之,则确定自己未被寻呼到。如果终端被寻呼到,则终端发起随机接入流程,切换到连接(connected)态,与网络设备建立通信连接,进而与网络设备进行数据通信。
目前,终端的寻呼过程以及连接态下的数据通信过程均使用相同的功能模块,该功能模块可以称为主电路或者第二模块。但是,相对于连接态下的数据通信而言,执行寻呼的过程可能不需要过多的功率消耗,而利用主电路执行寻呼过程可能会带来更多的功率消耗。因此为了进一步降低终端的功率消耗,可以在终端上分别独立部署一个主电路和一个单独的低功耗小电路,这个低功耗小电路可以实现在低功耗的情况下接收寻呼相关的信息,比如接收来自网络设备的需要寻呼的一个或者多个终端的信息等。
本申请实施例中,低功耗小电路主要用于支持处于idle态或者inactive态的终端接收寻呼相关的信息。其中低功耗小电路可以称为唤醒电路或者低功耗电路或者唤醒信号(wake up signal,WUS)接收机或者唤醒无线电(wake up radio,WUR)接收机或者第一模块或者第一电路等,不予限制。本申请中以唤醒电路为例进行描述,在此统一说明,不再赘述。其中唤醒电路接收到的信号可以称为WUR信号,WUR信号可以包括与寻呼有关的信号,比如WUR信号可以包括唤醒信号,还可以包括同步信号。该唤醒信号至少用于指示寻呼相关的信息(如用于指示需要接收的终端的信息),唤醒信号还可以命名为WUS信号或者唤醒无线电(wake up radio,WUR)信号等。使用唤醒电路接收WUR信号(比如唤醒信号)可以理解为在WUR链路上工作,或者在WUR链路上接收唤醒信号,或者在第一状态/第一模式(model)下接收WUR信号等。
本申请实施例中,主电路主要用于支持处于连接态的终端与网络设备进行数据通信,也可以用于支持终端接入网络设备,也可以用于支持终端执行现有标准中的寻呼过程(即接收寻呼DCI以及寻呼PDSCH等)。主电路可以称为第二模块或者第二电路或者其他名称。使用主电路进行数据通信可以理解为使用主链路进行数据通信,或者在第二状态/第二模块下进行数据通信等。
本申请实施例中,第一状态可以理解为终端开启唤醒电路,关闭主电路时的状态,第一状态可以称为WUR状态或者唤醒状态或者命名为其他状态,不予限制。第一模式可以理解为第一工作模式或者WUR模式或者唤醒模式或者WUR工作模式,第一模式可以指终端在第一状态下工作或者终端在WUR链路上工作或者终端使用/利用唤醒电路工作等。
本申请实施例中,第二状态可以理解为终端关闭唤醒电路、开启主电路时的状态,第二状态可以称为主状态或者命名为其他状态,不予限制。第二模式可以理解为第二工作模式或主模式或者主工作模式,第二模式可以指终端在第二状态下工作或者终端在主链路上工作或者终端使用/利用主电路工作等。
例如,如图1所示,终端内部署有唤醒电路以及主电路,当终端处于第一状态(比如WUR状态)或者idle态或者inactive态时,唤醒电路开启(或者称为工作),主电路关闭(或者称为不工作),终端可以利用/使用唤醒电路接收唤醒信号,若终端检测到唤醒自己的唤醒信号,则触发开启主电路,使得主电路处于开启状态。若终端未检测到唤醒信号,则终端不触发开启主电路,此时主电路处于关闭状态。通过图1所示方式可以降低终端的功率消耗。
本申请实施例中,为了降低唤醒电路的功率消耗,唤醒信号使用二进制振幅键控(比如开关键控(on-off keying,OOK))调制,相应的,唤醒电路可以采用包络检测的方法(或者0/1判决方法)解调唤醒信号。当采用OOK调制时,唤醒信号被编码后的一个信息比特(或者称为被编码后的比特或编码比特)对应一个符号(symbol)。示例性的,当信息比特为1时,表示该信息比特对应的符号的长度内有信号发出(或者可以理解为该符号的长度内的信号功率不为零),当信息比特为0时,表示该信息比特对应的符号的长度内无信号发出(或者可以理解为该符号的长度内的信号功率为零)。或者,当信息比特为0时,表示该信息比特对应的符号的长度内有信号发出(或者可以理解为该符号的长度内的信号功率不为零),当信息比特为1时,表示该信息比特对应的符号的长度内无信号发出(或者理解为符号的长度内的信号功率为零)。
应理解,本申请中的符号还可以称为码片(chip)。符号的长度可以指该符号的起始位置至该符号的结束位置之间的时间长度。符号的长度可以是预先配置的或者协议预先规定好的。比如可以将一个符号的长度设置为4微秒(us)等。
由上可知,使用WUR链路工作时以符号为粒度传输唤醒信号,为了检测唤醒信号需要获知符号的边界位置,从符号的边界位置开始检测接收到的唤醒信号,检测符号上是否有信号,将多个符号对应的检测结果组合在一起确定得到的唤醒信号,根据唤醒信号判断是否自己被寻呼/被唤醒。例如,假设信息比特为1表示有信号,信息比特为0表示无信号,经过OOK调制的唤醒信号为“1010”,包括4个编码比特,这4个编码比特可以对应如图2所示四个符号,从左边开始的第一个、第三个符号的长度内信号功率大于零,有信号存在,第一个、第三符号对应编码比特“1”。第二个、第四个符号的长度内信号功率为零,无信号存在,对应的编码比特为0。此时,终端可以从第一个符号的边界开始在任意符号位置都尝试解码,得到唤醒信号1010,进而根据唤醒信号1010确定自己是否被唤醒。
可选的,通过同步(synchronization,sync)信号来定位WUR上传输的符号的边界位置。该同步信号可以用于终端进行时间同步。比如,一种可能的设计中,如图3a所示,随路发送同步信号,即唤醒信号和同步信号一起发送,唤醒信号的起始位置与同步信号的结束位置重叠,终端接收到同步信号并使用同步信号完成时间同步之后,可以直接定位到唤醒信号所在的符号的边界,进而在对应符号上检测唤醒信号。再一种可能的设计中,如图3b所示,周期性发送同步信号,在相邻两个同步信号之间的时间段(或者多个符号)上发送唤醒信号,终端接收同步信号并使用同步信号完成时间同步之后,可以获得符号定位,比如获得符号的边界位置(或者起始位置), 以便根据符号的边界位置选择进行包络检测(或者称为0/1判决)的时间位置,比如以某个符号的中心位置进行判决。
但是,在周期性发送同步信号的过程中,终端从自己定位的符号边界开始在周期内按照符号顺序依次检测唤醒信号,即在任意符号位置都尝试解码,解码次数较多,会导致虚警概率较大。例如,如图3c所示,假设相邻同步信号之间存在140个符号:符号0-符号139。小区内包括UE1和UE2,UE1的标识为AB,UE2的标识为BC,如果基站要唤醒该小区中的UE1,则基站会在符号112-符号125上发送唤醒信号“AB”,其中“A”、“B”占用多个符号。对于UE1、UE2而言可以采用图3b所示方式,定位得到符号0的边界位置,从符号0的边界位置开始检测,直至检测到符号112-符号118得到“A”、检测符号119-符号125得到“B”,UE1根据检测结果确定自己被唤醒。而UE2发现检测结果“AB”不是自己的,继续检测符号126-符号132,此时如果符号126-符号132上有噪声干扰,UE2误将噪声干扰检测为“C”,则UE2结合符号119-符号125、符号126-符号132上的检测结果“BC”确定自己被唤醒,实际上此次唤醒的是UE1,而不是UE2,增大UE2的虚警概率。
为解决周期性发送同步信号的过程中终端虚警概率较大的问题,本申请实施例提供一种唤醒信号发送方法,该方法可以包括:网络设备在同步信号所在时域位置之后的第一时域资源上向终端发送唤醒信号,相应的,终端在第一时域资源上接收唤醒信号。其中该第一时域资源可以预先定义好的资源,该第一时域资源的格式如下:该第一时域资源包括N个第一时间单元,第一时间单元可以用于承载/传输唤醒信号,比如N个第一时间单元中的至少一个第一时间单元上承载有唤醒信号,第一时间单元的边界位置也预先定义好,比如第一时间单元的边界位置可以根据同步信号的时域位置确定。如此,可以定义好用于传输唤醒信号的时域资源以及该时域资源的边界位置,以便终端获知唤醒信号的起始位置以及都在哪些时域位置上检测/接收唤醒信号,减少终端解码与寻呼相关的信息(比如寻呼消息)的次数(即仅在第一时间单元的边界位置才尝试解码,而非在任意符号位置都尝试解码),进而降低终端的虚警概率,避免终端现有方式在任意符号位置都尝试解码带来的虚警概率较大的问题。
应理解,本申请所述的唤醒信号至少可以用于指示寻呼相关的信息,如唤醒信号可以携带寻呼消息,比如被寻呼终端的UE ID、或者被寻呼终端的部分UE ID、或者被寻呼终端的组ID等,还可以携带其他信息,比如系统消息、系统配置等其他信息。唤醒信号属于在WUR链路上传输的信号中的一种。本申请中,在WUR链路上传输的信号可以称为WUR信号,除唤醒信号之外,WUR链路上还可以传输其他信号,比如同步信号等,此时WUR信号还可以包括同步信号等。
应理解,本申请所述的WUR链路可以指终端的唤醒电路与网络设备之间的通信链路,终端的唤醒电路可以支持终端通过WUR链路收发唤醒信号以及其他信号,比如同步信号等。当终端在WUR链路上工作时,终端的唤醒电路处于开启状态,终端的主电路处于关闭状态。可选的,可以为WUR链路预先配置传输资源,该传输资源可以包括时域资源和/或频域资源,通过WUR链路传输信号(比如唤醒信号等)可以理解为在WUR链路上传输信号或者利用/使用该WUR链路对应的传输资源传输信号 等。需要说明的是,本申请所述的时域资源还可以理解为时间资源,本申请所述的频域资源还可以理解为频率资源等。
应理解,本申请所述的主链路可以指终端的主电路与网络设备之间的通信链路,终端的主电路可以支持处于连接态的终端通过主链路与网络设备之间收发信号和/或进行数据传输。当终端在主链路上工作时,终端的主电路处于开启状态,终端的唤醒电路处于关闭状态。可选的,可以为主链路预先配置传输资源,该传输资源包括时域资源和/或频域资源,通过主链路传输信号可以理解为在主链路上传输信号或利用/使用该主链路对应的传输资源传输信号。
需要说明的是,本申请各实施例中的消息名称或消息中的参数名称等只是一个示例,具体实现中也可以采用其他的名称,例如本申请所述的时域资源还可以命名为时间资源或其他名称,时域资源可以包括多个小的时间段(或者称为时间长度),换言之,时域资源可以被分多个时间段,一个时间段可以是一个符号或一个时隙(slot)或者一个调度单元或者毫秒(ms)时间等。本申请所述的频域资源还可以命名为频率资源或者其他名称,频域资源可以包括一个或者多个频域单元(或者称为频率单元),该频域单元可以是资源单元(resource element,RE)或资源块(resource block,RB)或者物理资源块(physical resource block,PRB)。WUR链路可以称为第一链路,主链路可以称为第二链路,不予限制。
下面结合说明书附图,对本申请实施例提供的唤醒信号发送方法进行说明。
本申请实施例提供的唤醒信号发送方法可用于第四代(4th generation,4G)系统、长期演进(long term evolution,LTE)系统、第五代(5th generation,5G)系统、新空口(new radio,NR)系统、NR-车与任何事物通信(vehicle-to-everything,V2X)系统、物联网系统中的任一系统,还可以适用于其他下一代通信系统等,不予限制。下面以图4所示通信系统为例,对本申请实施例提供的唤醒信号发送方法进行描述。
图4是本申请实施例提供的一种通信系统的示意图,如图4所示,该通信系统可以包括网络设备以及多个终端,如:终端1、终端2。终端可以位于网络设备的覆盖范围内,终端可以与网络设备通过Uu口连接。图4中,终端可以处于第一状态,比如处于WUR状态,或者终端处于idle态或者inactive。以终端处于第一状态(比如WUR状态)为例,网络设备可以按需通过WUR链路向发送终端对应的寻呼相关的信息。处于第一状态的终端可以周期性的通过WUR链路监测自己是否被寻呼或者一直监测自己是否被寻呼。终端若收到自己对应的寻呼相关的信息,则终端后续会发起随机接入,比如向网络设备发送前导码等。
需要说明的是,图4仅为示例性框架图,图4中包括的节点的数量不受限制,比如可以包括更多的终端,且除图4所示功能节点外,还可以包括其他节点,如:核心网设备、网关设备、应用服务器等等,不予限制。
下面对图4所示系统中的各个网元进行描述。
其中,网络设备主要用于实现终端的资源调度、无线资源管理、无线接入控制等功能。具体的,网络设备可以为小型基站、无线接入点、收发点(transmission receive point,TRP)、传输点(transmission point,TP)以及某种其它接入节点中的任一节点。本申请实施例中,用于实现网络设备的功能的装置可以是网络设备,也可以是能够支持网络设备实现该功能的装置,例如芯片系统(例如一个芯片,或多个芯片组成的处理系统)或者调制解调器(modem)。下面以用于实现网络设备的功能的装置是网络设备为例,描述本申请实施例提供的方法。
终端可以为终端设备(terminal equipment)或者用户设备(user equipment,UE)或者移动台(mobile station,MS)或者移动终端(mobile terminal,MT)等。具体的,终端可以是手机(mobile phone)、平板电脑或带无线收发功能的电脑,还可以是虚拟现实(virtual reality,VR)终端、增强现实(augmented reality,AR)终端、工业控制中的无线终端、无人驾驶中的无线终端、远程医疗中的无线终端、智能电网中的无线终端、智慧城市(smart city)中的无线终端、智能家居、车载终端等。本申请实施例中,用于实现终端的功能的装置可以是终端,也可以是能够支持终端实现该功能的装置,例如芯片系统(例如一个芯片,或多个芯片组成的处理系统)或者调制解调器。下面以用于实现终端的功能的装置是终端为例,描述本申请实施例提供的唤醒信号发送方法。
在具体实现时,图4所示各网元,如:终端、网络设备可采用图5a所示的组成结构或者包括图5a所示的部件。图5a为本申请实施例提供的一种通信装置500的组成示意图,如图5a所示,该通信装置500可以包括处理器501,通信线路502、通信接口503。进一步的,该通信装置500还可以包括存储器504、输出设备505和输入设备506。输入设备506是键盘、鼠标、麦克风或操作杆等,输出设备505是显示屏、扬声器(speaker)等。这些部件通过通信线路502连接。
一种可能的设计中,如图5a所示,在该通信装置500为终端或者终端中的功能模块时,该通信模块500还可以包括处理器507以及通信接口508。其中处理器501和通信接口503可以集成部署在通信模块的主电路中,处理器507和通信接口508集成部署在通信模块的唤醒电路中。
又一种可能的设计中,如图5b所示,在该通信装置500为终端或者终端中的功能模块时,该处理器501可以虚拟处理两个处理单元501a和处理单元501b,通信接口503可以虚拟出来两个通信单元503a和通信单元503b,其中处理单元501a和通信单元503a可以组成终端的主电路或第一模块。处理单元501b和通信单元503b可以组成终端的唤醒电路或第二模块。
其中,处理器,比如处理器501、处理器507可以是中央处理器(central processing unit,CPU)、通用处理器网络处理器(network processor,NP)、数字信号处理器(digital signal processing,DSP)、微处理器、微控制器、可编程逻辑器件(programmable logic device,PLD)或它们的任意组合。处理器501还可以是其它具有处理功能的装置,如电路、器件或软件模块。
通信线路502,用于在通信装置500所包括的各部件之间传送信息。
通信接口(比如通信接口503、通信接口508),用于与其他设备或其它通信网 络进行通信。该其它通信网络可以为以太网,无线接入网(radio access network,RAN),无线局域网(wireless local area networks,WLAN)等。通信接口503可以是射频模块、收发器或者任何能够实现通信的装置。本申请实施例以通信接口503为射频模块为例进行说明,其中,射频模块可以包括天线、射频电路等,射频电路可以包括射频集成芯片、功率放大器等。
存储器504,用于存储指令。其中,指令可以是计算机程序。
其中,存储器504可以是只读存储器(read-only memory,ROM)或可存储静态信息和/或指令的其他类型的静态存储设备,也可以是随机存取存储器(random access memory,RAM)或者可存储信息和/或指令的其他类型的动态存储设备,还可以是电可擦可编程只读存储器(electrically erasable programmable read-only memory,EEPROM)、只读光盘(compact disc read-only memory,CD-ROM)或其他光盘存储、光碟存储、磁盘存储介质或其他磁存储设备,光碟存储包括压缩光碟、激光碟、光碟、数字通用光碟、蓝光光碟等。
需要说明的是,存储器504可以独立于处理器501存在,也可以和处理器501集成在一起。存储器504可以用于存储指令或者程序代码或者一些数据等。存储器504可以位于通信装置500内,也可以位于通信装置500外,不予限制。处理器501,用于执行存储器504中存储的指令,以实现本申请下述实施例提供的唤醒信号发送方法。在一种示例中,处理器501可以包括一个或多个CPU,例如CPU0和CPU1。作为一种可选的实现方式,通信装置500包括多个处理器。
需要说明的是,通信装置500可以是台式机、便携式电脑、网络服务器、移动手机、平板电脑、无线终端、嵌入式设备、芯片系统或有图5a或图5b中类似结构的设备。此外,图5a中示出的组成结构并不构成对该通信装置的限定,除图5a或图5b所示部件之外,该通信装置可以包括比图示更多或更少的部件,或者组合某些部件,或者不同的部件布置。
本申请实施例中,芯片系统可以由芯片构成,也可以包括芯片和其他分立器件。
下面结合图4所示通信系统,对本申请实施例提供的唤醒信号发送方法进行进行描述。下述实施例中各设备可以具有图5a或图5b所示部件,且各实施例之间涉及的动作,术语等可以相互参考,各实施例中设备之间交互的消息名称或消息中的参数名称等只是一个示例,具体实现中也可以采用其他的名称。比如下述实施例中的“唤醒”可以替换描述为“寻呼”等,又比如“设置”可以替换描述为“配置”。在此统一说明,本申请实施例对此不作限定。
图6为本申请实施例提供的一种唤醒信号发送方法,如图6所示,所述方法可以包括:
步骤601:网络设备向终端发送同步信号;相应的,终端接收来自网络设备的同步信号。
其中,网络设备可以为图4中的网络设备。终端可以为图4中位于该网络设备的覆盖区域的终端,比如可以为图4中的终端1或者终端2。该终端至少可以具备三个 状态:idle态、inactive态、连接态。还可能具有额外的状态,例如为WUR状态。该终端可以具备/部署有如图1所示的低功耗电路(或者称为唤醒电路)以及主电路,当终端处于idle态或者inactive态或者WUR状态时,低功耗电路(或者称为唤醒电路)工作、主电路关闭,终端处于连接态时,主电路工作、低功耗电路(或者称为唤醒电路)关闭。应理解,执行图6所示方法时,终端处于idle态或者inactive态或者WUR状态。
本申请中,同步信号可以用于终端进行时间同步,比如可以定位符号的边界位置等。同步信号可以通过WUR链路传输,换言之,同步信号可以承载在WUR链路对应的传输资源(比如时域资源和/或频域资源)上传输,本申请中WUR链路对应的传输资源可以称为WUR资源,WUR资源可以包括一个或者多个WUR帧、第一频域资源。一种可能的设计中,一个WUR帧用于传输唤醒信号。又一种可能的设计中,一个WUR帧可以用于传输同步信号以及其他信号(比如唤醒信号等)。一个帧可以包括多个时间单元。具体的,WUR资源可以通过网络设备预先配置。WUR帧的作用可以通过网络设备预先配置,或者协议预先规定好。WUR链路的相关描述可参照上文,不予赘述。
本申请中,同步信号可以周期性的发送。其中同步信号的周期、同步信号的传输资源(比如时域起始位置/结束位置、频域起始位置/结束位置、时域长度等)可以是预先配置/设置好的,比如可以是协议预先规定的。
由于WUR链路上除了传输同步信号之外,还可以传输其他信号,比如唤醒信号。以唤醒信号为例,为了保证同步信号在WUR帧传输不被干扰,一种可能的设计中,可以设置同步信号的传输资源与该WUR链路上传输的唤醒信号的传输资源不重叠,如设置同步信号的时域资源与WUR链路上传输的唤醒信号的时域资源不重叠,二者之间存在一定的间隔(gap),具体的可以为同步信号的结束位置与唤醒信号的起始位置二者之间存在gap,每个周期内的同步信号的时域资源的长度和间隔的长度是等同的/等长的,每个周期的同步信号的起始位置距离唤醒信号的传输资源的起始位置是等长的。该gap可以是预先设置的,或者又一种可能的设计中,同步信号的结束位置为唤醒信号的起始位置,即同步信号的结束位置与唤醒信号的起始位置重叠。具体的,WUR上传输的同步信号的传输资源与其他信号(比如唤醒信号)的传输资源之间的位置关系可以预先设置,不予限制。
需要说明的是,本申请实施例中,同步信号的传输资源可以指允许同步信号占用的时域资源或者可用于承载同步信号的时域资源或者同步信号候选发送位置,同步信号的传输资源的长度还可以替换描述为同步信号的长度,同步信号占用的传输资源块可以指同步信号的传输资源中实际被同步信号占用的传输资源,同步信号占用的传输资源可以小于或等于同步信号的传输资源。类似的,唤醒信号的传输资源可以是允许唤醒信号占用的传输资源或者可用于承载唤醒信号的传输资源或者唤醒信号候选发送位置,唤醒信号的传输资源的长度可以替换描述为唤醒信号的长度。此时,对于唤醒信号的传输资源,唤醒信号是否真的占用该传输资源,取决于是否有终端被寻呼。唤醒信号占用的传输资源可以是唤醒信号的传输资源中实际被唤醒信号占用的传输资源。
示例性的,网络设备可以将同步信号承载在预先配置好的传输资源上,周期性地通过WUR链路向终端发送同步信号。相应的,终端使用/利用其内部署的唤醒电路(或者称为低功耗电路或者第一模块),在WUR链路上周期性地接收来自网络设备的同步信号。应理解,本申请所述的终端在WUR链路上周期性地接收来自网络设备的同步信号还可以替换描述为终端通过第一模块接收来自网络设备的同步信号,或者终端在第一状态或第一模式下周期性地接收来自网络设备的同步信号。
可选的,为了便于终端检测出同步信号,网络设备可以将同步信号进行OOK调制后向终端发送,此时同步信号的调制方式为OOK或者同步信号的波形是OOK,例如同步信号的波形可以为如图2所示的方波,或者同步信号的波形可以为基于正交频分复用(orthogonal frequency division multiplexing,OFDM)信号构造出的类似方波的波形。
步骤602:网络设备在第一时域资源上向终端发送唤醒信号。相应的,终端在第一时域资源上接收来自网络设备的唤醒信号。
进一步的,如果该终端包括在唤醒信号指示的需要接收寻呼的一个或者多个终端中,即唤醒信号包括的用于指示需要接收寻呼的一个或者多个终端的信息中有该终端对应的信息,则意味着该终端需要被唤醒,图6所示方法还可以包括:网络设备向终端发送第一信息和/或与终端交互执行随机接入过程,其中与终端交互执行随机接入过程可以包括网络设备接收终端发送的前导码等。相应地,终端接收来自网络设备的第一信息和/或进行随机接入。第一信息包括寻呼DCI、寻呼消息和寻呼提前指示(paging early indication,PEI)中的一项或者多项。
具体的,终端可以在主链路(可以称为第二链路)上,通过第二模块(比如主电路)接收来自网络设备的第一信息和/或进行随机接入。其中第二链路对应第二频域资源,第二频域资源可以与WUR链路对应的第一频域资源相同或者不同。在终端接收来自网络设备的第一信息和/或进行随机接入时,终端可以处于第二状态或第二模式,换言之,终端可以在第二状态或者第二模式向接收来自网络设备的第一信息和/或进行随机接入,其中进行随机接入可以包括终端向网络设备发送前导码等。
本申请实施例中,第一时域资源可以理解为某段包含N个预设长度的第一时间单元的时间资源。第一时域资源可以命名为WUR帧或者唤醒帧或者其他名称,不予限制。本申请以第一时域资源为WUR帧为例进行描述,在此统一说明。
其中一个WUR帧中可以包括N个预设长度的第一时间单元,不同WUR帧包括的第一时间单元的长度可以相同或不同,N为大于或等于1的整数(或者N为正整数),第一时间单元可以用于传输唤醒信号。步骤602可以替换描述为网络设备在WUR帧中的至少一个第一时间单元上向终端发送唤醒信号,终端在WUR帧中的至少一个第一时间单元上接收来自网络设备的唤醒信号。第一时域资源除用于传输唤醒信号之外,还可以用于传输其他信号,比如同步信号、以及其他在第二链路(或主链路)上传输的信号。
例如,假设第一时域资源为WUR帧,如图7c、图7e、图9b以及图9d所示,图中黑色框表示用于传输主链路上的信号的时域资源。一种实施例中,WUR帧格式可以如图7c中的(1)、图9b中的(1)所示,WUR帧包括唤醒信号的时域资源, WUR帧不包括黑色框对应的时域资源,此时WUR帧可以用于传输唤醒信号,不可以用于传输主链路上的信号。又一种实施例中,如图7e中的(1)以及图9d中的(1)所示,WUR帧包括同步信号的时域资源以及唤醒信号的时域资源,WUR帧不包括黑色框对应的时域资源,此时WUR帧可以用于传输同步信号以及唤醒信号,不可以用于传输主链路上的信号。另一种实施例中,WUR帧格式还可以如图7c中的(2)以及图9b中的(2),WUR帧包括唤醒信号的时域资源以及图中黑色框对应的时域资源,此时WUR帧不仅可以用于传输唤醒信号,还可以用于传输主链路上的信号。再一种实施例中,如图7e中的(2)以及图9d中的(2)所示,WUR帧包括同步信号的时域资源、唤醒信号的时域资源以及图中黑色框对应的时域资源,此时WUR帧不仅可以用于传输同步信号和唤醒信号,还可以用于传输主链路上的信号。应理解,图7c、图7e、图9b以及图9d为示例性附图,本申请不限定图7c、图7e、图9b以及图9d示出的WUR帧的数量、时域资源的长度等。
具体的,网络设备可以通过WUR链路向终端发送唤醒信号,终端可以通过WUR链路或第一模块接收来自网络设备的唤醒信号,此时终端处于第一状态或者第一模式,终端是在第一状态或者第一模式下,通过WUR链路或第一模块接收来自网络设备的唤醒信号。
本申请实施例中,第一时间单元可以命名为WUR时隙(WUR slot)或WUR时机(WUR occasion)或者调度单元等。第一时间单元可以包括多个符号(或者称为码片(chip)),即第一时间单元可以理解为包括多个时间连续的符号(或者chip)的时间段。一个符号可以对应一个编码比特,编码比特可以指对原始信息进行编码后得到的比特。WUR帧的长度、第一时间单元的长度可以预先配置,比如协议预先规定好。一个WUR帧中第一时间单元的数量N可以由网络设备确定,并由网络设备指示/配置给终端。或者一个WUR帧中第一时间单元的数量N可以在协议中预先规定好。第一时间单元的边界位置可以根据同步信号的时域位置确定,第一时间单元的长度可以与同步信号的时域资源的长度相同,也可以是不同的,比如同步信号的时域资源的长度小于第一时间单元的长度。
基于图6所示方法,可以定义好用于传输唤醒信号的时域资源以及该时域资源的边界位置,以便终端获知唤醒信号的起始位置以及都在哪些时域位置上检测/接收唤醒信号,减少终端解码与寻呼相关的信息(比如寻呼消息)的次数(即仅在第一时间单元的边界位置才尝试解码,而非在任意符号位置都尝试解码),进而降低终端的虚警概率,避免现有方式中终端在任意符号位置都尝试解码带来的虚警概率较大的问题。
假设第一时域资源为WUR帧,具体的,WUR帧以及第一时间单元的设计如下:
一种可能的设计中,WUR帧用于传输唤醒信号,WUR帧可以包括相邻同步信号之间的时域资源(或者称为时间资源等),WUR帧的长度等于或者小于相邻同步信号之间的时域资源长度。比如将同步信号的结束位置与相邻的下一同步信号的起始位置之间的全部时域资源或部分时域资源作为一个WUR帧,或者将同步信号的结束位置与相邻的下一同步信号的起始位置之间的部分或者全部时域资源划分为多个WUR 帧。这种可能的设计中,WUR帧不包括同步信号的时域资源,该WUR帧包括一个或者多个第一时间单元,一个第一时间单元可以用于传输一个唤醒信号,即一个唤醒信号占用一个第一时间单元,或者多个第一时间单元可以用于传输一个唤醒信号,即一个唤醒信号占用多个第一时间单元。
假设第一时间单元为WUR slot,一个WUR slot用于传输一个唤醒信号。例如,如图7a所示,将同步信号1与同步信号2之间的全部时域资源作为一个WUR帧,一个WUR帧包括四个WUR slot(如图7a中虚线框所示)。又例如,如图7b所示,将同步信号1与同步信号2之间的全部时域资源划分为多个WUR帧,一个WUR帧包括两个WUR slot(如图7b中虚线框所示)。再例如,如图7c中的(1)所示,将同步信号1与同步信号2之间的部分时域资源(除黑色框之外的时域资源)作为一个WUR帧,一个WUR帧中可以包括三个WUR slot(如图7c中的(1)中虚线框所示)。
又一种可能的设计中,WUR帧用于传输一个同步信号以及唤醒信号,比如,该可能的设计中,WUR帧的开始部分用于传输同步信号,同步信号之后用于传输唤醒信号。WUR帧可以包括同步信号所用的时域资源、以及该同步信号与相邻的下一同步信号之间的时域资源,WUR帧的长度大于相邻同步信号之间的时域资源长度。比如将同步信号的起始位置与相邻的下一同步信号的起始位置之间的时域资源作为WUR帧。这种可能的设计中,WUR帧可以包括同步信号的时域资源以及一个或者多个第一时间单元,一个第一时间单元可以用于传输一个唤醒信号,即一个唤醒信号占用一个第一时间单元,或者多个第一时间单元可以用于传输一个唤醒信号,即一个唤醒信号占用多个第一时间单元。
假设第一时间单元为WUR slot,一个WUR slot用于传输一个唤醒信号。例如如图7d所示,将同步信号1的时域资源、以及同步信号1与同步信号2之间的时域资源作为一个WUR帧,一个WUR帧包括用于同步信号传输的时域资源以及四个WUR slot(如图7d中虚线框所示)。又例如,如图7e中的(1)所示,同步信号1的时域资源、以及同步信号1与同步信号2之间的部分时域资源(除黑色框之外的时域资源)作为一个WUR帧,一个WUR帧包括用于同步信号传输的时域资源以及三个WUR slot(如图7e中的(1)中虚线框所示)。
再一种可能的设计中,WUR帧用于传输多个(两个或两个以上)同步信号以及唤醒信号,比如,该可能的设计中,WUR帧的开始部分用于传输一个同步信号,该同步信号之后用于传输唤醒信号,唤醒信号之后可以再传输同步信号,同步信号之后可以再传输唤醒信号等。
假设第一时间单元为WUR slot,一个WUR slot用于传输一个唤醒信号。例如如图7f所示,将同步信号1的起始位置与同步信号3的起始位置之间的时域资源看做为一个WUR帧,该WUR帧包括两个同步信号1和同步信号2对应的时域资源以及8个WUR slot(如图7f中虚线框所示),其中前4个WUR slot位于同步信号1和同步信号2之间的时域资源,后4个WUR slot为同步信号2之后、同步信号3之前的时域资源。
需要说明的是,在WUR帧为相邻同步信号之间的部分时域资源的情况下,WUR 帧与该相邻同步信号之间的其他时域资源可以支持WUR链路与主链路采用时分复用(time division multiplexing,TDM)传输信号。例如,图7c中的(1)和图7e中的(1)中同步信号之间的WUR帧可以用于传输唤醒信号,而同步信号之间的其他时域资源(黑色框对应的时域资源)可以用于传输其他信号,该其他信号不同于唤醒信号,该其他信号可以在主链路上传输,比如该其他信号可以为网络设备发送的第一信号,再比如该其他信号可以为其他终端向网络设备发送的第二信号。
应理解,本申请实施例所述的WUR帧不限于用于传输唤醒信号,或者用于传输同步信号和唤醒信号,还可以用于传输其他信号(比如第一信号、第二信号等),比如还可以用于传输主链路对应的信号,即WUR链路与主链路上传输的信号所使用的时域资源均包括在WUR帧,只不过在TDM场景下,用于传输主链路上的信号的时域资源不可用于传输WUR链路上的信号(唤醒信号,或者同步信号和唤醒信号等)。例如,本申请不限于如图7c中的(1)和图7e中的(1)所示,WUR帧不包括黑色框对应的时域资源,可替换的,还可以设计为WUR帧包括如图7c中的(2)和图7e中的(2)所示黑色框对应的时域资源,只不过黑色框对应的时域资源不被WUR链路所利用,而是被用于在主链路上传输第一信号、第二信号等。
其中,第一信号包括以下至少一项:同步信号块(synchronization signal block,SSB)、物理下行控制信道(physical downlink control channel,PDCCH)、物理下行共享信道(physical downlink shared channel,PDSCH)、信道状态信息参考信号(channel state information reference signal,CSI-RS)、相位跟踪参考信号(phase tracking reference signal,PT-RS)、定位参考信号(positioning reference signals,PRS)、解调参考信号(demodulation reference signal,DMRS)。其中,所述第二信号包括以下至少一项:DMRS、物理上行共享信道(physical uplink shared channel,PUSCH)、物理上行控制信道(physical uplink control channel,PUCCH)、探测参考信号(sounding reference signal,SRS)。
应理解,本申请实施例中,一种可能的设计中,每个周期内或者不同周期内的WUR帧的格式可以设置为相同的,一个周期内可以包括一个或者多个WUR帧,或者一个WUR帧包括一个或者多个周期等,不予限制。需要解释的是,本申请所述的周期可以指同步信号的发送周期,比如同步信号的时域资源的起始位置与相邻的下一同步信号的时域资源的起始位置之间的时间段可以称为一个周期。该周期可以预先配置或者协议规定好。例如上述图7a-图7f所示附图中各个WUR帧的帧格式是相同的。
应理解,本申请所述的WUR帧的帧格式可以包括WUR帧的长度、WUR帧包括的第一时间单元的数量、WUR帧包括的第一时间单元的长度、WUR帧包括的同步信号的时域资源的长度、WUR帧包括的时间单元上可承载的信号的类型等等。本申请所述的WUR帧包括信号(同步信号、唤醒信号等)可以指WUR帧包括该信号的传输资源,或者WUR帧包括可用于传输该信号的时域资源。
再一种可能的设计中,不同WUR帧的格式可以设置为不相同,比如两个WUR帧,这两个WUR帧的长度可以是相同的,但是这两个WUR帧包括的时间单元上可承载的信号是不同的,其中一个WUR帧可以包括同步信号的时域资源以及唤醒信号 的时域资源,该WUR帧可以用于承载/传输至少一个同步信号和至少一个唤醒信号,而另一个WUR帧不包括同步信号的时域资源,而包括唤醒信号的时域资源,该WUR帧用于传输至少一个唤醒信号。
假设第一时间单元为WUR slot,一个WUR slot用于传输一个唤醒信号。例如如图7g所示,将从同步信号1的起始位置至同步信号2之间的时域资源分为两个WUR帧:WUR帧1和WUR帧2,WUR帧1包括用于同步信号1传输的时域资源以及三个WUR slot(如图7d中虚线框所示),同步信号的时域资源的长度等于WUR slot的长度。WUR帧2包括用于传输唤醒信号的四个WUR slot,每个WUR帧的长度是相同的。
应理解,图7a-图7g仅为示例性的WUR帧格式图,仅示出了几个周期内的WUR帧,图7a-图7g中包括的同步信号、WUR帧的数量、WUR帧包括的时间单元的数量不受限制,比如图7a-图7g可以包括更多的同步信号、WUR帧、一个WUR帧可包括更多的时间单元等。
此外,图7a-图7g所示的WUR帧格式中一个唤醒信号占用一个第一时间单元,不同于图7a-图7g所示的WUR帧格式,还可以设计一个唤醒信号占用多个第一时间单元,该场景下的第一时间单元可以命名为调度单元,一个调度单元可以包括多个符号(或者码片),一个符号对应一个编码比特,即一个符号可以用于承载一个编码比特。例如,如图7h所示,一个WUR帧包括10个调度单元(如图7h中长方形虚线框所示),其中唤醒信号可以占用5个调度单元。应理解,图7h所示WUR帧格式中第一时间单元的设计可以适用于其他WUR帧的其他设计格式(比如图7a-图7g所示格式),即图7a-图7g所示格式中的第一时间单元(比如WUR slot)可以不仅限于图中所示,还可以替换设计为如图7h所示,在此不再一一示出。
本申请实施例中,第一时间单元与同步信号的时域位置之间存在一定的时域位置关系,第一时间单元的边界位置可以根据同步信号的时域位置确定。
一种可能的设计中,第一时间单元的边界位置根据同步信号的起始位置确定,比如假设第一时间单元为第一时域资源内的第一个时间单元,第一时间单元的起始位置为同步信号的起始位置之后、距离同步信号的起始位置第一预设间隔的位置。其中第一时间单元的长度可以等于第一预设间隔。第一预设间隔可以预先设置。
假设第一时间单元为WUR slot,例如,如图8a所示,WUR帧包括四个WUR slot,WUR帧中的第一个WUR slot为WUR slot1,WUR slot1的起始位置为同步信号1的起始位置之后间隔1的位置。又例如,如图8b所示,每个WUR帧包括四个WUR slot,其中WUR1帧中的第一个WUR slot用于同步信号1传输,后三个WUR slot用于唤醒信号传输,同步信号1的起始位置与WUR帧1中的第二个WUR slot的起始位置之间的间隔为一个WUR slot。WUR帧2中的四个WUR slot均可以用于唤醒信号传输,WUR帧2中不存在同步信号,不用于传输同步信号。
又一种可能的设计中,第一时间单元的边界位置根据同步信号的结束位置确定,比如假设第一时间单元为第一时域资源内的第一个时间单元,第一时间单元的起始位置为同步信号的结束位置,或者,第一时间单元的起始位置为同步信号的结束位置之后、距离同步信号的结束位置第二预设间隔的位置,比如第一时间单元的长度可以等 于同步信号的长度和第二预设间隔的长度之和。其中第二预设间隔可以预先设置。
假设第一时间单元为WUR slot,例如,如图7a所示,第一个WUR slot为WUR slot1,WUR slot1的起始位置为同步信号1的结束位置,即WUR slot1的起始位置与同步信号1的结束位置重叠。又例如,如图8a所示,WUR帧包括四个WUR slot,WUR帧中的第一个WUR slot为WUR slot1,WUR slot1的起始位置为同步信号1的结束位置之后距离间隔2的位置。再例如,如图8b所示,每个WUR帧包括四个WUR slot,其中WUR1帧中的第一个WUR slot用于同步信号1传输,后三个WUR slot用于唤醒信号传输,同步信号1的结束位置与WUR帧1中第二个WUR slot的起始位置之间间隔2,间隔2和同步信号1的时长之和等于一个WUR slot的长度。WUR帧2中的四个WUR slot均可以用于唤醒信号传输,WUR帧2中不存在同步信号,不用于传输同步。
本申请实施例中,第一时域资源与同步信号的时域位置也存在一定的位置关系。一种可能的设计中,第一时域资源的起始位置为同步信号的结束位置,即第一时域资源的起始位置与同步信号的结束位置重叠。假设第一时域资源为WUR帧,例如,如图7a所示,图7a中从左边开始的第一个WUR帧的起始位置为同步信号1的结束位置。或者,第一时域资源的起始位置为同步信号的结束位置之后、距离同步信号的结束位置第三预设间隔的位置。其中第三预设间隔可以预先设置。假设第一时域资源为WUR帧,例如,如图8a所示,图8a中从左边开始的第一个WUR帧的起始位置为同步信号1的结束位置之后间隔2的位置,第二个WUR帧的起始位置为同步信号2的结束位置之后间隔2的位置。
又一种可能的设计中,第一时域资源的结束位置为同步信号相邻的下一同步信号的起始位置。假设第一时域资源为WUR帧,例如,如图7a所示,图7a中的第一个WUR帧的结束位置为同步信号2的起始位置。或者,第一时域资源的结束位置为同步信号相邻的下一同步信号之前、距离同步信号相邻的下一同步信号的起始位置第四预设间隔的位置。假设第一时域资源为WUR帧,例如,如图8c所示,图8c中从左边开始的第一个WUR帧的结束位置为同步信号2的起始位置之前间隔3的位置,第二个WUR帧的结束位置为同步信号3的起始位置之前间隔3的位置。
应理解,上述仅示出了图7a、图8a以及图8c所示WUR帧格式下第一时域资源与同步信号的时域位置之间的位置关系、第一时间单元与同步信号的时域位置之间的关系。类似的,其他WUR帧格式(比如图7b-图7h所示格式)下第一时域资源与同步信号的时域位置之间的位置关系、第一时间单元与同步信号的时域位置之间的位置关系可以不仅限于图中所示,也可以参照图7a、图8a以及图8c所示的位置关系来设置,在此不再一一示出。
本申请实施例中,唤醒信号可以至少用于指示寻呼相关的信息,比如唤醒信号可以用于指示需要接收寻呼的一个或者多个终端。比如唤醒信号可以包括需要接收寻呼的终端的标识或需要接收寻呼的终端所在组的组标识等。此外,唤醒信号还可以包括系统消息等其他信息。
可选的,终端可以根据本地时钟确定唤醒信号占用的第一时间单元的位置,即终端可以根据第一时间单元距离同步信号的远近推算出唤醒信号占用的第一时间单元的 位置。例如,假设每个第一时间单元包含40个符号,每个符号长度为4us,则终端可以根据本地时钟计算时间,每隔160us则认为到了下一个第一时间单元的位置。或者唤醒信号还可以携带/包含指示信息,比如可以在该唤醒信号的开始位置上携带/包含该指示信息。该指示信息可以用于指示唤醒信号所在的/所占用的第一时间单元的索引值,或者该指示信息用于指示唤醒信号所在的/所占用的起始时间单元的索引值,该起始时间单元可以指唤醒信号所占用的第一时间单元中的第一个第一时间单元。如此,便于终端根据该指示信息确定/定位唤醒信号在WUR帧中的位置,提高唤醒信号检测的准确性。
本申请实施例中,时间单元的索引值(比如第一时间单元的索引值或者起始时间单元的索引值)可以指该时间单元在一个WUR帧包括的N个第一时间单元中的编号。可选的,按照N个第一时间单元的时间先后顺序进行顺序编号,N个第一时间单元的编号可以是0~(N-1)或者可以是1~N。比如如图7h所示,一个WUR帧中包括10个调度单元:调度单元0-调度单元9,其中唤醒信号占用调度单元5-调度单元9,此时唤醒信号中可以携带起始时间单元:调度单元5的索引值5,终端根据该索引值5以及唤醒信号对应的编码比特的数量(即唤醒信号的长度)获知该唤醒信号位于调度单元5-调度单元9,进而在调度单元5-调度单元9上检测/接收唤醒信号。应理解,唤醒信号对应的编码比特的数量(即唤醒信号的长度)可以是预先确定的,比如可以是网络设备预先通过主链路配置或者标准预定义的。
由上可知,本申请对WUR帧(即用于传输唤醒信号的第一时域资源)格式进行设计,明确WUR帧中可以用于传输唤醒信号的时间单元的数量、用于传输唤醒信号的时间单元的边界位置与同步信号之间的位置关系等,以便终端根据同步信号完成时间同步后,能够准确定位出哪些时间单元上会传输有唤醒信号,进而在这些时间单元上进行唤醒信号的检测,避免虚警。
例如,假设一个WUR帧为相邻同步信号之间的全部时域资源,第一时间单元为WUR slot,一个WUR slot用于传输一个唤醒信号,如图8d所示,不会存在一个唤醒信号跨两个WUR slot传输的情况。因此在唤醒信号包括需要被唤醒的终端的标识时,假设小区内包括UE1和UE2,UE1的标识为AB,UE2的标识为BC,如果基站要唤醒该小区中的UE1,则基站会发送唤醒信号“AB”。对于UE1、UE2而言可以按照本申请所示的WUR帧格式,以一个WUR slot(比如如图8d中第二个WUR帧中的WUR slot2)的边界为起点开始检测接收到的唤醒信号直至该WUR slot内的编码比特全部检测完成,根据检测结果确定标识是否是自己的,若是,则被唤醒。UE1、UE2不会从WUR slot的中间位置(即图8d中编码比特B的起始位置)开始连续检测得到两个编码比特“BX”,也不会在有噪声干扰时将第二个编码比特“X”误认为/误检测成编码比特C,导致UE2被唤醒。
上述描述了WUR帧可以用于传输唤醒信号。可选的,对于不同终端,该终端可以位于同一小区或者不同小区,该终端可以被配置不同的接收唤醒信号的时间窗(window),以保证同一小区中不同终端的时间窗是错开的/不重叠的,或者不同小区内的不同终端的时间窗是错开的/是重叠的。该时间窗可以指终端接收唤醒信号的时间段,时间窗可以是一个WUR帧中的部分资源(比如部分第一时间单元)或者时 间窗是一个或者多个WUR帧。
应理解,本申请实施例中,不同终端接收唤醒信号的时间窗可以是相互独立、不重叠的。或者不同终端接收唤醒信号的时间窗可以是重叠的。
例如,以不同终端分别位于小区1、小区2为例,为小区1中的终端配置的接收唤醒信号的时间窗为WUR帧1-WUR帧3中的WUR slot2-WUR slot4,小区1中的终端可以在WUR帧1-WUR帧3中的WUR slot2-WUR slot4上接收唤醒信号。为小区2中的终端配置的接收唤醒信号的时间窗可以为WUR帧6-WUR帧9,即时间窗包括WUR帧6-WUR帧9中的全部WUR slot,小区2中的终端可以在WUR帧6-WUR帧9中的全部WUR slot上接收唤醒信号。此时,位于小区1的终端的时间窗与位于小区2的终端的时间窗是不重叠的,相互独立的。
又例如,对于位于同一小区终端中的UE1、UE2和UE3,为UE1配置时间窗“WUR帧0-WUR帧3”,为UE2配置时间窗“WUR帧2-WUR帧5”,为UE3配置时间窗“WUR帧4-WUR帧7”,此时UE1、UE2的时间窗是重叠的,UE2和UE3的时间窗是重叠的,UE1和UE3的时间窗是不重叠的,实现同一小区中不同终端的时间窗相互重叠或者相互独立。
示例性的,可以由网络设备为终端配置接收唤醒信号的时间窗。比如网络设备在终端处于连接态时,通过主链路向终端发送第一配置信息,第一配置信息可以用于指示终端接收唤醒信号的时间窗,比如第一配置信息可以包括终端接收唤醒信号的WUR帧的帧号(或者称为索引值)和/或WUR帧中的时间单元的索引值等。
本申请实施例中,终端可以通过如下两种工作方式实现在时间窗内接收唤醒信号:方式一、使用唤醒电路持续接收信号,即唤醒电路始终在接收信号。当定义了WUR帧以及WUR帧包括的第一时间单元之后,唤醒电路始终通过同步信号维持时间同步,但仅在时间窗内做唤醒信号的识别/检测。方式二:使用唤醒电路间断性接收信号,即终端仅在时间窗附近的位置上打开/开启唤醒电路接收信号,其他时间关闭唤醒电路,以进一步降低终端的功率消耗。
其中,为了使能上述方式二,WUR链路需要提供系统定时,其原因如下:终端在WUR链路上周期性间断性地接收唤醒信号,比如每隔Q个同步信号周期在WUR链路上接收一次,Q为大于1的整数,则终端需要知道自己接收到的唤醒信号位于Q个周期中的第几个周期,否则,终端采用上述方式二时,一段时间不接收唤醒信号后,由于本地时钟精度较低,当终端再次打开唤醒电路接收唤醒信号时,无法确切的知道到了Q个周期中的第几个周期,是否到了自己需要接收唤醒信号的时间窗。因此,终端获取到第一配置信息之后,终端可以获取系统定时,根据系统定时结果以及第一配置信息确定自己需要接收唤醒信号的时间窗的时间位置,在时间窗内接收唤醒信号。
本申请实施例所述的系统定时可以指终端确定自己接到到的信号(比如唤醒信号)为一个大周期中的第几个WUR帧(即第一时域资源)。该大周期可以包括多个WUR帧,该大周期可以用WUR帧的索引范围来表示,是比如大周期可以是[起始WUR帧的索引值,结束WUR帧的索引值]或者起始WUR帧的索引值~结束WUR帧的索引值,该大周期的长度等于起始WUR帧与结束WUR帧之间的长度,该大周期 的长度可以等于该大周期内包括的WUR帧的数量与一个WUR帧的长度的乘积。例如,WUR帧的索引值的取值范围为0~1023时,一个大周期的长度即为1024个WUR帧的长度。具体的,该大周期的命名、长度可以根据需要设置,不予限制。系统定时结果可以包括当前接收收到的信号所处的WUR帧的索引值/帧号,根据系统定时结果以及第一配置信息,在时间窗内接收唤醒信号包括:若终端根据系统定时结果知道到了/即将到自己需要接收唤醒信号的时间窗(比如WUR帧),则醒来在该时间窗内接收唤醒信号。
示例性的,终端可以获取定时索引,进一步的根据定时索引确定系统定时。其中,定时索引可以指示第一时域资源(例如WUR帧)的索引值。以第一时域资源为WUR帧为例,一种可能的设计,定时索引包括WUR帧的索引值(或者称为WUR帧的帧号),即定时索引直接指示WUR帧的索引值。又一种可能的设计中,定时索引可以包括用于计算得到WUR帧的索引值的参数,根据定时索引可以计算得到WUR帧的索引值,该可能的设计中,定时索引可以间接指示WUR帧的索引值。本申请中采用下述几种方式中任一方式获取定时索引:
方式一、定时索引根据第一信息确定,比如第一信息包括定时索引。
该方式一中,第一信息可以携带在同步信号中。比如同步信号对应的同步序列后面跟着若干比特的第一信息,该第一信息指示定时索引,即同步信号中,除了用于同步功能的序列外,还包含用于终端确定系统定时的指示信息(比如第一信息)。在WUR帧不包括同步信号的情况下,该指示信息可以用于指示同步信号之后的WUR帧是哪个WUR帧。在WUR帧包括同步信号的情况下,该指示信息可以用于指示该同步信号所在的WUR帧是哪个WUR帧。
例如,如图9a或图9b中的(1)所示,WUR帧包括唤醒信号,不包括同步信号,WUR帧在同步信号之后,此时可以通过在同步信号中携带定时索引=n,指示该同步信号后的WUR帧为WUR帧n,在同步信号中携带定时索引=n+1指示该同步信号之后的WUR帧为WUR帧n+1,在同步信号中携带定时索引=n+2指示同步信号之后的WUR帧为WUR帧n+2。又例如,如图9c或图9d中的(1)所示,WUR帧中包括同步信号以及唤醒信号,通过在同步信号中携带定时索引=n,指示该同步信号当前所在的WUR帧为WUR帧n,在同步信号中携带定时索引=n+1指示该同步信号当前所在的WUR帧为WUR帧n+1,在同步信号中携带定时索引=n+2指示同步信号当前所在的WUR帧为WUR帧n+2。
应理解,本申请不限于WUR帧包括的时域资源,WUR帧除包括用于传输WUR链路上的信号的时域资源之外,WUR帧还可以包括用于传输其他链路(如主链路)上的信号的时域资源。例如,WUR帧不限于图9b中的(1)和图9d中的(1)所示不包括黑色框对应的时域资源,可替换的,还可以设计为WUR帧包括用于在其他链路上传输的信号的时域资源,如图9b中的(2)和图9d中的(2)所示,WUR帧除包括唤醒信号的时域资源之外,还可以包括黑色框对应的时域资源,只不过黑色框对应的时域资源不被WUR链路所利用,而是被利用在主链路上传输信号(比如本申请所述的第一信号和第二信号等)。
应理解,图9a-图9d仅为示例性的WUR帧格式图,仅示出了几个周期内的 WUR帧,图9a-图9d中包括的同步信号、WUR帧的数量、WUR帧包括的时间单元的数量不受限制,如图9a-图9d可以包括更多的同步信号、WUR帧、一个WUR帧可以包括更多的时间单元等。
方式二、定时索引与同步信号的同步序列之间存在映射关系,定时索引根据映射关系以及同步信号的同步序列确定。终端接收到同步信号后,可以通过盲检的方式确定同步信号使用的同步序列是哪个,再以同步信号的同步序列为索引查找该映射关系,找到与该同步序列对应的定时索引,进一步根据定时索引得到WUR帧的索引值。比如在WUR帧不包括同步信号的情况下,根据查找映射关系得到的定时索引可以确定同步信号之后的WUR帧是哪个WUR帧。在WUR帧包括同步信号的情况下,根据查找关系确定的定时索引可以确定同步信号当前所在的WUR帧是哪个WUR帧。
其中该映射关系可以预先设置,比如在标准中预定义或者由网络设备预先设置等。定时索引与同步信号的同步序列之间的映射关系可以是列表形式,也可以是数组形式,不限制。
以定时索引与同步信号的同步序列之间的映射关系为列表形式为例,下表一示出了该映射关系,从表一可知存在0-15共十五种同步序列,一个同步序列对应一个定时索引,共存在16个定时索引,定时索引取值为0~15。假设终端接收到的同步信号的同步序列为同步序列1,则终端可以以同步序列1为索引查表一得到定时索引=1,则根据该定时索引=1确定该同步信号之后的WUR帧为WUR帧1或者该同步信号当前所在的WUR帧为WUR1。应理解,表一仅为示例性表格,本申请所示定时索引与同步信号的同步序列之间的映射关系不限于表一所示同步序列以及定时索引,还可以包括其他定时序列以及定时索引等。
表一
同步序列 | 定时索引 |
同步序列0 | 定时索引=0 |
同步序列1 | 定时索引=1 |
同步序列2 | 定时索引=2 |
…… | …… |
同步序列15 | 定时索引=15 |
方式三、定时索引根据第二信息和同步信号的同步序列确定。进一步的根据定时索引得到WUR帧的索引值。比如在WUR帧不包括同步信号的情况下,根据查找映射关系得到的定时索引可以确定同步信号之后的WUR帧是哪个WUR帧。在WUR帧包括同步信号的情况下,根据查找关系确定的定时索引可以确定同步信号当前所在的WUR帧是哪个WUR帧。
该方式三可以理解为上述方式一和方式二的结合,可以理解为通过携带在同步信号中的指示信息以及同步信号的同步序列联合指示定时索引。比如,定时索引根据第二信息和同步信号的同步序列确定可以包括:定时索引由M1个信息比特以及M2个信息比特确定;其中,M1个信息比特携带在同步信号中,第二信息包括M1个信息比特,M2个信息比特与同步信号的同步序列之间存在映射关系,M2个信息比特根 据同步信号的同步序列确定,M1、M2为正整数,M1和M2的具体取值可以预先配置,比如协议预先定好或者由网络设备配置等。
例如,假设定时索引的取值为0~31,则这32个定时索引若所采用方式一所示方式则需要用6比特来指示,比如定时索引=4,则需要6个比特“000100”来指示,又比如定时索引=15,则需要6个比特“001111”来指示。而方式三中,这6个比特中的5个比特携带在同步信号中,即第二信息包括5个比特,M1=5,而剩余的1个比特的取值可以通过两种同步序列表示,即M2=1,比如定时索引=4,可以将指示该定时索引的6个比特“000100”中的低五个比特“00100”携带在同步信号中,而剩余的高位比特“0”可以用两个同步序列中一个同步序列指示,比如两个同步序列中一个同步序列指示0,另一个同步序列指示1,进而将同步序列中的五个比特和同步序列指示的一个比特组合在一起指示定时索引。或者将指示该定时索引的6个比特“000100”中的低四个比特“0100”携带在同步信号中(即第二信息包括4个比特,M1=4),而剩余的高位比特“00”可以用四个同步序列中的一个同步序列指示,即M2=2,比如四个同步序列分别对应指示00、01、10、11,可以用第一个同步序列指示剩余的高位比特“00”,进而将同步序列中的四个比特和同步序列指示的两个比特组合在一起指示定时索引。
上述以将定时索引的低比特位携带在同步信号中、高比特位与同步信号的同步序列成映射关系来组合指示定时索引。可选的,还可以将定时索引的高比特位携带在同步信号中、低比特位与同步信号的同步序列成映射关系来组合指示定时索引。比如定时索引=4,可以将指示该定时索引的6个比特“000100”中的高五个比特“00010”携带在同步信号中,而剩余的高位比特“0”可以用两个同步序列中一个同步序列指示,比如两个同步序列中一个同步序列指示0,另一个同步序列指示1,进而将同步序列中的五个比特和同步序列指示的一个比特组合在一起指示定时索引。或者将指示该定时索引的6个比特“000100”中的高四个比特“0001”携带在同步信号中,而剩余的低比特“00”可以用四个同步序列中的一个同步序列指示,比如四个同步序列分别对应指示00、01、10、11,可以用第一个同步序列指示剩余的低位比特“00”,进而将同步序列中的四个比特和同步序列指示的两个比特组合在一起指示定时索引。
如此,终端可以定时索引以及第一配置信息确定时间窗,在时间窗之前提前醒来,为在时间窗内接收唤醒信号做准备,保证唤醒信号的正常接收。例如,网络设备指示UE在定时索引=10的WUR帧内接收唤醒信号。UE在某次定时索引=10的WUR帧内接收完唤醒信号后,UE可以停止通过唤醒电路接收信号,进入休眠状态。但是UE的本地时钟仍在运行,UE可以根据本地时钟,判断定时索引=10的WUR帧出现的位置。由于本地时钟精度有限,UE仅能判断定时索引=10的WUR帧的大致位置。此时UE可以在定时索引=10的WUR帧出现的大致位置之前醒来,并接收同步信号。根据新接收到同步信号指示的定时索引,UE可以知道下一个定时索引=10的WUR帧出现的确切位置,并在定时索引=10的WUR帧中接收唤醒信号,进一步检测接收的唤醒信号是否有与自己相关。
可选的,在图6所示方法中,基于下述两个原因,网络设备与终端之间的WUR链路支持多种数据率,即可以在WUR链路上采用多种数据率来传输唤醒信号。
原因一:终端和网络设备之间的信道状态有好有坏。当终端与网络设备之间的信道状态较差,比如较低的信噪比(signal noise ratio,SNR)时,可以通过降低唤醒信号的数据率的方法提升WUR链路的鲁棒性,由于降低唤醒信号的数据率等效为增加唤醒信号占用的时间单元的长度,可获得更多时域分集,因此降低唤醒信号的数据率可以提升WUR链路的鲁棒性。但终端与网络设备之间的信道状态较好时,可以无需降低唤醒信号的数据率,而是采用预先配置的或者较高的数据率等。
原因二:每个终端的唤醒信号到达时间是随机的,在一段时间内,WUR链路需要发送的唤醒信号的个数可能有多有少。为了保证小区边缘的终端也能正确接收唤醒信号,可选的,配置唤醒信号使用较低的数据率。但是较低的数据率的唤醒信号占用空口资源(比如时域资源)较多,当需要发送的唤醒信号个数较多时,采用低数据率可能导致系统容量不足,此时可以考虑使用高数据率方式发送唤醒信号,提高短时间内的系统容量,而当发送的唤醒信号的个数不多/较少时,采用较低的数据率等,保证小区边缘的终端也能够正确接收唤醒信号。
本申请实施例中,数据率可以指WUR上传输的信号(比如唤醒信号)携带的原始信息数据量与该信号对应的编码比特的数量之间的比值。假设某个唤醒信号的数据量为20bit,如果该信号被编码为40bit,则该唤醒信号的数据率为20/40=0.5。如果该信号被编码为80bit,则该唤醒信号的数据率为20/80=0.25。即对于同一原始信息,如果该原始信息对应的唤醒信号的数据率越低,唤醒信号对应的编码比特数量越多,反之,数据率越高,唤醒信号对应的编码比特数量越少。由于一个编码比特占用一个符号,多个符号组成一个WUR帧中的一个时间单元,则数据率越低,唤醒信号占用的时间单元的总长度越长,唤醒信号占用的时间单元的个数越多,反之,数据率越高,唤醒信号占用的时间单元的总长度越短,唤醒信号占用的时间单元的个数越少。以唤醒信号包括第一唤醒信号和第二唤醒信号为例,当第一唤醒信号的数据率低于第二唤醒信号的数据率时,第一唤醒信号占用的时间单元的总长度大于第二唤醒信号占用的时间单元的总长度,第一唤醒信号占用的时间单元的数量大于第二唤醒信号占用的时间单元的数量。应理解,本申请所述的唤醒信号占用的总时间单元的长度可以理解为唤醒信号的长度。
一种可能的设计中,唤醒信号的数据率根据同步信号而定,比如可以通过同步信号的长度指示该同步信号之后的WUR帧内唤醒信号的数据率。同步信号的长度越短,该同步信号之后的WUR帧内的唤醒信号的数据率越高,唤醒信号的长度越长,反之,同步信号的长度越长,该同步信号之后的WUR帧内的唤醒信号的数据率越低,唤醒信号的长度越短。
如图10a所示,同步信号1的长度小于同步信号2的长度,同步信号1之后、同步信号2之前的唤醒信号的长度小于同步信号2之后的唤醒信号的长度,同步信号1之后、同步信号2前的唤醒信号为高数据率的唤醒信号,同步信号2后的唤醒信号为低数据率的唤醒信号。
本申请实施例中,唤醒信号的长度可以由该唤醒信号被编码后的编码比特的数量来表征,比如唤醒信号的长度可以等于唤醒信号的编码比特的数量。唤醒信号的编码比特的数量越多,唤醒信号的长度越长,反之,唤醒信号的编码比特的数量越少,唤 醒信号越短。
又一种可能的设计中,可以在同步信号中携带指示信息,由该指示信息可以称为数据率指示信息,该指示信息可以指示同步信号之后的WUR帧内的唤醒信号的数据率。应理解,该可能的设计中,每个周期的同步信号的长度可以是相同的。
比如如图10b所示,同步信号1内携带指示信息1,指示信息1指示同步信号1之后的唤醒信号的数据率为高数据率。同步信号2内携带指示信息2,指示信息2指示同步信号2之后的唤醒信号的数据率为低数据率。此外,同步信号1的长度与同步信号2的长度相同。
由于不同数据率的唤醒信号的长度不同,为了满足上述的WUR帧格式要求,一种可能的设计中,在唤醒信号占用一个第一时间单元的情况下,可以根据唤醒信号的长度设计第一时间单元的长度,如果WUR帧中唤醒信号的数据率较高,则设计该WUR帧中第一时间单元的长度较短,如果WUR帧中唤醒信号的数据率较低,则设计该WUR帧中第一时间单元的长度较长,即不用数据率的WUR帧内的时间长度是不同的。
假设第一时间单元为WUR slot,例如,如图10c所示,同步信号1的长度小于同步信号2的长度,从图10c中可以看到,同步信号1之后、同步信号2前的唤醒信号为高数据率的唤醒信号,同步信号1之后的WUR帧1内有N=4个WUR slot,一个唤醒信号占用一个WUR slot。同步信号2后的唤醒信号为低数据率的唤醒信号,同步信号2之后的WUR帧2内有N=2个WUR slot,一个唤醒信号占用一个WUR slot,WUR帧1内WUR slot的长度小于WUR帧2内WUR slot的长度。
该可能的设计中,不同周期的同步信号的长度是不同的,可以通过同步信号的长度不同来指示该同步信号之后的唤醒信号的数据率。但是,由于WUR帧中第一时间单元的边界位置根据同步信号的时域位置(比如起始位置和/或结束)确定,同步信号的长度不同可能会导致第一时间单元的边界位置的变化。第一时间单元的边界位置的变化会进一步导致终端无法确定各个第一时间单元边界的时间位置,从而导致终端无法正确的接收唤醒信号。为了避免第一时间单元的边界位置的变化,可以设计同步信号的起始位置与第一时间单元的起始位置之间的长度是固定不变的/等长的,以保证第一时间单元的边界位置是固定不变的。
例如,如图10d所示,当采用同步信号1时,同步信号1的结束位置与WUR帧中WUR slot1的起始位置之间有一个间隔。当采用同步信号2时,同步信号2的结束位置与WUR帧2中WUR slot1的起始位置之间没有间隔。此时同步信号1的长度加上间隔的长度等于同步信号2的长度,且将该长度结束位置作为WUR slot的边界位置,保证每个周期内WUR slot的边界位置是固定的。可选的,此时无论采用同步信号1还是采用同步信号2,每个同步信号占用的时域资源的长度是相同,比如可以为WUR帧1所包括的一个WUR slot的长度。这样可以令WUR链路的结构更加整齐,有利于网络设备规划信号传输的位置。
又一种可能的设计中,可以设置第一时间单元的长度为固定长度值,不同WUR帧包括的第一时间单元的长度是相同的,同一WUR帧内的多个第一时间单元的长度是相同的。高数量率的唤醒信号占用的时间单元的数量小于低数据率的唤醒信号占用 的时间单元的数量。
假设第一时间单元为WUR slot,如图10e所示,同步信号1对应高数据率,同步信号2对应低数据率。从图10e中可以看到,同步信号1后的唤醒信号为高数据率,同步信号1之后的WUR帧1内有N=4个WUR slot,一个唤醒信号占用其中一个WUR slot。同步信号2后的唤醒信号为低数据率,同步信号2之后的WUR帧2内有N=4个WUR slot,唤醒信号占用其中两个WUR slot:WUR slot2和WUR slot3。不同WUR帧内的WUR slot的长度是相同的,同步信号2之后的唤醒信号占用的WUR slot的数量大于同步信号1之后的唤醒信号占用的WUR slot的数量。
该可能的设计中,不同周期的同步信号的长度可以是相同的,也可以是不同的。当不同周期的同步信号的长度是不同时,可以设计同步信号的起始位置与第一时间单元的起始位置之间的长度是固定不变的/等长的,以保证第一时间单元的边界位置是固定不变的。例如,如图10f所示,当采用同步信号1时,同步信号1的结束位置与WUR帧中WUR slot1的起始位置之间有一个间隔。当采用同步信号2时,同步信号2的结束位置与WUR帧1中WUR slot1的起始位置之间没有间隔。此时同步信号1的长度加上间隔的长度等于同步信号2的长度,该长度结束位置为WUR slot的边界位置,保证每个周期内WUR slot的边界位置是固定的。
应理解,图10a-图10f仅为示例附图,仅示出了几个周期内的WUR帧,图10a-图10f中包括的同步信号、WUR帧的数量、WUR帧包括的时间单元的数量不受限制,比如图10a-图10f可以包括更多的同步信号、WUR帧、一个WUR帧可以包括更多的时间单元等。此外,图10a-图10f所示的WUR帧格式包括唤醒信号,不包括同步信号,不同于图10a-图10f所示的WUR帧格式,还可以将图10a-图10f所示的WUR帧替换设计为包括同步信号以及唤醒信号,在此不再一一示出。
可选的,本申请实施例中,为了提高资源利用率,可以配置/设计WUR链路对应的第一频域资源与主链路对应的第二频域资源相同,WUR链路对应的时域资源与主链路对应的时域资源不同,比如WUR链路对应上述第一时域资源(即WUR帧),主链路对应第二时域资源,如此可以实现TDM传输,提高资源利用率。例如,如图7c、图7e以及图9b中所示,相邻同步信号之间的时域资源包括第一时域资源和第二时域资源,第一时域资源为用于传输唤醒信号的WUR帧,第二时域资源为图7c、图7e以及图9b中黑色框的所示的时域资源,第二时域资源可以用于在主链路上传输信号,以实现TDM传输。
在TDM传输场景下,为了降低WUR链路上的信号和主链路上的信号之间的相互干扰,可以设计/配置WUR链路上的信号和主链路上的信号时间对齐。为了实现WUR链路上的信号和主链路上的信号的时间对齐,在设计WUR链路上的WUR帧的时候,配置WUR帧中包括的第一时间单元的长度大于主链路上帧中的时隙的长度,比如可以设置第一时间单元的长度为主链路对应的第二时域资源内所包括的时隙的长度的整数倍。如此可以保证每个第一时间单元的边界一定是时隙边界,所以边界是对齐的。进而实现在边界对齐的情况下,每次发送一个第一时间单元,网络设备只需要保证和该第一时间单元重合的时隙内不发送信号(比如NR信号)即可,避免在边界不对齐的情况下,第一时间单元上传输的信号与时隙上传输的信号可能会互相影 响,影响正常通信的问题。
例如,以NR系统为例,主链路上传输的帧内包括多个时隙(slot),每个slot包含14或12个symbol。WUR链路中,无论是同步信号还是与寻呼相关的唤醒信号,其携带的编码比特的数量为大于14或12个编码比特,由于一个编码比特对应一个符号,因此唤醒信号的长度通常大于14或12个symbol。所以,WUR链路上的WUR信号(比如同步信号或者唤醒信号)的长度可以设置为比主链路上的slot的长度更长。因此,令WUR链路与NR系统系统的信号边界对齐时,可以令WUR帧中的第一时间单元的长度为NR系统的slot长度的整数倍,以此降低WUR链路的信号和NR系统的信号之间的干扰。
可选的,本申请实施例中,多个终端和/或小区可能共享同步信号发送位置,很可能造成干扰。为了避免不同终端和/或小区之间的干扰,所述方法还可以包括:终端接收网络设备发送的第二配置信息,比如终端可以通过主链路接收来自网络设备的第二配置信息,其中第二配置信息配置预留资源,预留资源上不能发送同步信号,以使得终端根据第二配置信息不在预留资源上发送同步信号。
本申请实施例中,预留资源可以包括在同步信号的候选发送位置中,预留资源为同步信号的候选发送位置中的部分候选发送位置,比如预留资源可以是候选发送位置中多个小区共享的候选发送位置,这意味着同步信号的候选发送位置中的部分位置被配置为不可用于该终端发送同步信号。具体的,同步信号的候选发送位置根据同步信号的发送周期确定,比如同步信号的候选发送位置可以是同步信号的发送周期所对应的位置,相邻候选发送位置之间的长度为一个发送周期。
例如,如图10g所示,假设相邻小区(小区1和小区2)都部署了WUR链路,若两个小区的WUR链路的时域资源是重叠的,比如同步信号发送位置是重叠,则这两个小区的WUR信号(比如同步信号)可能会存在相互干扰。为了避免干扰,相邻小区的WUR信号需要通过TDM的方式发送,即相邻小区的WUR信号最好在不同的时间位置发送。如图10g所示,将小区1和小区2中的部分同步信号发送位置作为预留资源,不在上面传输同步信号,使得能够发送同步信号的位置不重叠,以此避免小区间干扰。
上述主要从各个节点之间交互的角度对本申请实施例提供的方案进行了介绍。可以理解的是,各个节点,例如终端、网络设备等为了实现上述功能,其包含了执行各个功能相应的硬件结构和/或软件模块。本领域技术人员应该很容易意识到,结合本文中所公开的实施例描述的各示例的算法步骤,本申请能够以硬件或硬件和计算机软件的结合形式来实现。某个功能究竟以硬件还是计算机软件驱动硬件的方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请的范围。
本申请实施例可以根据上述方法示例对终端、网络设备等进行功能模块的分组,例如,可以对应各个功能分组各个功能模块,也可以将两个或两个以上的功能集成在一个处理模块中。上述集成的模块既可以采用硬件的形式实现,也可以采用软件功能模块的形式实现。需要说明的是,本申请实施例中对模块的分组是示意性的,仅仅为一种逻辑功能分组,实际实现时可以有另外的分组方式。
图11示出了一种通信装置110的结构图,该通信装置110可以为终端,或者终端中的芯片,或者片上系统,该通信装置110可以用于执行上述实施例中涉及的终端的功能。作为一种可实现方式,图11所示通信装置110包括:接收单元1101,还包括处理单元1102;
接收单元1101,用于接收来自网络设备的同步信号,在第一时域资源上,接收来自网络设备的唤醒信号;第一时域资源包括N个预设长度的第一时间单元,一个唤醒信号占用N个预设长度的第一时间单元中的至少一个第一时间单元,N为正整数,第一时间单元的边界位置根据同步信号的时域位置确定;唤醒信号至少用于指示寻呼相关的信息。
具体的,上述对第一时域资源、第一时间单元的相关描述、图6所示方法实施例涉及的各步骤的所有相关内容均可以援引到对应功能模块的功能描述,在此不再赘述。通信装置110用于执行图6所示方法所示唤醒信号发送方法中终端的功能,因此可以达到与上述唤醒信号发送方法相同的效果。
作为又一种可实现方式,图11所示通信装置110包括:处理模块和通信模块。处理模块用于对通信装置110的动作进行控制管理,例如,处理模块可以集成处理单元1102的功能。通信模块可以集成接收单元1101的功能,可以用于支持通信装置110执行步骤601、步骤602以及与其他网络实体的通信,例如与图4示出的功能模块或网络实体之间的通信。该通信装置110还可以包括存储模块,用于存储通信装置110的程序代码和数据。
其中,处理模块可以是处理器或控制器。其可以实现或执行结合本申请公开内容所描述的各种示例性的逻辑方框,模块和电路。处理器也可以是实现计算功能的组合,例如包含一个或多个微处理器组合,DSP和微处理器的组合等等。通信模块可以是收发电路或通信接口等。存储模块可以是存储器。当处理模块为处理器,通信模块为通信接口,存储模块为存储器时,本申请实施例所涉及的通信装置110可以为图5a或图5b所示通信装置500。
图12示出了一种通信装置120的结构图,该通信装置120可以为网络设备,或者网络设备中的芯片,或者片上系统,该通信装置120可以用于执行上述实施例中涉及的网络设备的功能。作为一种可实现方式,图12所示通信装置120包括:发送单元1201,还包括处理单元1202;
发送单元1201,用于向终端发送同步信号,在第一时域资源上向终端发送唤醒信号;第一时域资源包括N个预设长度的第一时间单元,一个唤醒信号占用N个预设长度的第一时间单元中的至少一个第一时间单元,N为正整数,第一时间单元的边界位置根据同步信号的时域位置确定;唤醒信号至少用于指示寻呼相关的信息。
具体的,上述对第一时域资源、第一时间单元的相关描述、图6所示方法实施例涉及的各步骤的所有相关内容均可以援引到对应功能模块的功能描述,在此不再赘述。通信装置120用于执行图6所示方法所示唤醒信号发送方法中网络设备的功能,因此可以达到与上述唤醒信号发送方法相同的效果。
作为又一种可实现方式,图12所示通信装置120包括:处理模块和通信模块。处理模块用于对通信装置120的动作进行控制管理,例如,处理模块可以支持该通信 装置120执行管理功能。通信模块可以集成发送单元1201的功能,可以用于支持通信装置120执行步骤601以及步骤602以及与其他网络实体的通信,例如与图6示出的功能模块或网络实体之间的通信。该通信装置120还可以包括存储模块,用于存储通信装置120的程序代码和数据。
其中,处理模块可以是处理器或控制器。其可以实现或执行结合本申请公开内容所描述的各种示例性的逻辑方框,模块和电路。处理器也可以是实现计算功能的组合,例如包含一个或多个微处理器组合,DSP和微处理器的组合等等。通信模块可以是收发电路或通信接口等。存储模块可以是存储器。当处理模块为处理器,通信模块为通信接口,存储模块为存储器时,本申请实施例所涉及的通信装置120可以为图5a或图5b所示通信装置500。
图13为本申请实施例提供的一种通信系统的结构图,如图13所示,该通信系统可以包括:终端130、网络设备131。终端130的功能与上述通信装置110的功能相同。网络设备131与上述通信装置120的功能相同,不予赘述。
本申请实施例还提供了一种计算机可读存储介质。上述方法实施例中的全部或者部分流程可以由计算机程序来指令相关的硬件完成,该程序可存储于上述计算机可读存储介质中,该程序在执行时,可包括如上述各方法实施例的流程。计算机可读存储介质可以是前述任一实施例的终端,如:包括数据发送端和/或数据接收端的内部存储单元,例如终端的硬盘或内存。上述计算机可读存储介质也可以是上述终端的外部存储设备,例如上述终端上配备的插接式硬盘,智能存储卡(smart media card,SMC),安全数字(secure digital,SD)卡,闪存卡(flash card)等。进一步地,上述计算机可读存储介质还可以既包括上述终端的内部存储单元也包括外部存储设备。上述计算机可读存储介质用于存储上述计算机程序以及上述终端所需的其他程序和数据。上述计算机可读存储介质还可以用于暂时地存储已经输出或者将要输出的数据。
需要说明的是,本申请的说明书、权利要求书及附图中的术语“第一”和“第二”等是用于区别不同对象,而不是用于描述特定顺序。此外,术语“包括”和“具有”以及它们任何变形,意图在于覆盖不排他的包含。例如包含了一系列步骤或单元的过程、方法、系统、产品或设备没有限定于已列出的步骤或单元,而是可选地还包括没有列出的步骤或单元,或可选地还包括对于这些过程、方法、产品或设备固有的其它步骤或单元。
应当理解,在本申请中,“至少一个(项)”是指一个或者多个,“多个”是指两个或两个以上,“至少两个(项)”是指两个或三个及三个以上,“和/或”,用于描述关联对象的关联关系,表示可以存在三种关系,例如,“A和/或B”可以表示:只存在A,只存在B以及同时存在A和B三种情况,其中A,B可以是单数或者复数。字符“/”一般表示前后关联对象是一种“或”的关系。“以下至少一项(个)”或其类似表达,是指这些项中的任意组合,包括单项(个)或复数项(个)的任意组合。例如,a,b或c中的至少一项(个),可以表示:a,b,c,“a和b”,“a和c”,“b和c”,或“a和b和c”,其中a,b,c可以是单个,也可以是多个。
应理解,在本申请实施例中,“与A对应的B”表示B与A相关联。例如,可以根据A可以确定B。还应理解,根据A确定B并不意味着仅仅根据A确定B,还可 以根据A和/或其它信息确定B。此外,本申请实施例中出现的“连接”是指直接连接或者间接连接等各种连接方式,以实现设备间的通信,本申请实施例对此不做任何限定。
本申请实施例中出现的“传输”(transmit/transmission)如无特别说明,是指双向传输,包含发送和/或接收的动作。具体地,本申请实施例中的“传输”包含数据的发送,数据的接收,或者数据的发送和数据的接收。或者说,这里的数据传输包括上行和/或下行数据传输。数据可以包括信道和/或信号,上行数据传输即上行信道和/或上行信号传输,下行数据传输即下行信道和/或下行信号传输。本申请实施例中出现的“网络”与“系统”表达的是同一概念,通信系统即为通信网络。
通过以上的实施方式的描述,所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,仅以上述各功能模块的分组进行举例说明,实际应用中,可以根据需要而将上述功能分配由不同的功能模块完成,即将装置的内部结构分组成不同的功能模块,以完成以上描述的全部或者部分功能。
在本申请所提供的几个实施例中,应该理解到,所揭露的装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述模块或单元的分组,仅仅为一种逻辑功能分组,实际实现时可以有另外的分组方式,例如多个单元或组件可以结合或者可以集成到另一个装置,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
所述作为分离部件说明的单元可以是或也可以不是物理上分开的,作为单元显示的部件可以是一个物理单元或多个物理单元,即可以位于一个地方,或者也可以分布到多个不同地方。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
另外,在本申请各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。上述集成的单元既可以采用硬件的形式实现,也可以采用软件功能单元的形式实现。
所述集成的单元如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个可读取存储介质中。基于这样的理解,本申请实施例的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的全部或部分可以软件产品的形式体现出来,该软件产品存储在一个存储介质中,包括若干指令用以使得一个设备,如:可以是单片机,芯片等,或处理器(processor)执行本申请各个实施例所述方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、ROM、RAM、磁碟或光盘等各种存储程序代码的介质。
Claims (24)
- 一种唤醒信号发送方法,其特征在于,所述方法包括:终端接收来自网络设备的同步信号;所述终端在第一时域资源上,接收来自所述网络设备的唤醒信号;所述第一时域资源包括N个预设长度的第一时间单元,一个唤醒信号占用所述N个预设长度的第一时间单元中的至少一个第一时间单元,所述N为正整数,所述第一时间单元的边界位置根据所述同步信号的时域位置确定;所述唤醒信号至少用于指示寻呼相关的信息。
- 根据权利要求1所述的方法,其特征在于,所述第一时间单元包括多个符号,其中一个符号对应一个编码比特。
- 根据权利要求1或2所述的方法,其特征在于,所述第一时间单元的边界位置根据所述同步信号的时域位置确定,包括:所述第一时间单元的边界位置根据所述同步信号的起始位置确定;或者,所述第一时间单元的边界位置根据所述同步信号的结束位置确定。
- 根据权利要求3所述的方法,其特征在于,所述第一时间单元为所述第一时域资源内的第一个时间单元,所述第一时间单元的边界位置根据所述同步信号的起始位置确定,包括:所述第一时间单元的起始位置为所述同步信号的起始位置之后、距离所述同步信号的起始位置第一预设间隔的位置;所述第一时间单元的边界位置根据所述同步信号的结束位置确定包括:所述第一时间单元的起始位置为所述同步信号的结束位置;或者,所述第一时间单元的起始位置为所述同步信号的结束位置之后、距离所述同步信号的结束位置第二预设间隔的位置。
- 根据权利要求1-4任一项所述的方法,其特征在于,所述唤醒信号包含指示信息,其中,所述指示信息用于指示所述唤醒信号占用的第一时间单元的索引值,或者所述唤醒信号占用的起始时间单元的索引值。
- 根据权利要求1-5任一项所述的方法,其特征在于,所述终端接收来自所述网络设备的唤醒信号,包括:所述终端获取定时索引;所述定时索引用于指示第一时域资源的索引值;所述终端根据所述定时索引和第一配置信息,在所述时间窗内接收来自所述网络设备的唤醒信号;其中,所述第一配置信息用于配置所述时间窗;所述时间窗包括在所述第一时域资源中,或者所述时间窗包括所述第一时域资源。
- 根据权利要求6所述的方法,其特征在于,所述定时索引根据第一信息确定,所述第一信息携带在所述同步信号中;或者,定时索引与同步信号的同步序列之间存在映射关系,所述定时索引根据所述映射关系以及所述同步信号的同步序列确定;或者,所述定时索引根据第二信息和同步信号的同步序列确定。
- 根据权利要求7所述的方法,其特征在于,所述定时索引根据第二信息和同步信号的同步序列确定,包括:所述定时索引由M1个信息比特以及M2个信息比特确定;其中,所述M1个信息比特携带在所述同步信号中,所述第二信息包括所述M1个信息比特,所述M2个信息比特与所述同步信号的同步序列之间存在映射关系,所述M2个信息比特根据所述同步信号的同步序列确定,所述M1、所述M2为正整数。
- 根据权利要求1-8任一项所述的方法,其特征在于,所述第一时域资源的起始位置为所述同步信号的结束位置;或者,所述第一时域资源的起始位置为所述同步信号的结束位置之后、距离所述同步信号的结束位置第三预设间隔的位置。
- 根据权利要求1-9任一项所述的方法,其特征在于,所述第一时域资源的结束位置为所述同步信号相邻的下一同步信号的起始位置;或者,所述第一时域资源的结束位置为所述同步信号相邻的下一同步信号之前、距离所述同步信号相邻的下一同步信号的起始位置第四预设间隔的位置。
- 根据权利要求1-10任一项所述的方法,其特征在于,所述唤醒信号包括第一唤醒信号和第二唤醒信号;所述第一唤醒信号的数据率低于所述第二唤醒信号的数据率,所述第一唤醒信号占用的第一时间单元个数大于所述第二唤醒信号占用的第一时间单元个数。
- 根据权利要求1-11任一项所述的方法,其特征在于,所述终端接收来自所述网络设备的第二配置信息;其中第二配置信息配置预留资源,所述预留资源上不能发送所述同步信号。
- 根据权利要求12所述的方法,其特征在于,所述预留资源包括在所述同步信号的候选发送位置中,所述同步信号的候选发送位置根据所述同步信号的发送周期确定。
- 根据权利要求1至13中任一项所述的方法,其特征在于,所述同步信号的波形与所述唤醒信号的波形相同;和/或,所述同步信号的调制方式与所述唤醒信号的调制方式相同。
- 根据权利要求1至14中任一项所述的方法,其特征在于,所述同步信号的调制方式与所述唤醒信号的调制方式为开关键控OOK,和/或,所述同步信号的波形和/或所述唤醒信号的波形为OOK。
- 根据权利要求1至15中任一项所述的方法,其特征在于,所述唤醒信号用于指示的需要接收寻呼的一个或多个终端包括所述终端;所述方法还包括:所述终端接收来自所述网络设备的第一信息和/或进行随机接入,其中,所述第一信息包括以下一项或多项信息:寻呼下行控制信息DCI,寻呼消息paging message,寻呼提前指示PEI。
- 根据权利要求16所述的方法,其特征在于,所述终端包括第一模块和第二模块,所述终端通过所述第一模块接收所述同步信号和所述唤醒信号,所述终端通过所述第二模块接收所述第一信息和/或进行随机接入。
- 根据权利要求16或17所述的方法,其特征在于,所述终端通过第一链路,接收所述同步信号和所述唤醒信号,所述第一链路对应的频域资源包括所述第一频域资源;所述终端通过第二链路,接收来自所述网络设备的第一信息和/或进行随机接入,所述第二链路对应的频域资源包括所述第二频域资源。
- 根据权利要求18所述的方法,其特征在于,所述第一频域资源与所述第二频域资源相同或者不同。
- 一种通信系统,其特征在于,所述通信系统包括:终端以及网络设备;所述网络设备,用于向所述终端发送同步信号,在第一时域资源上向所述终端发送唤醒信号;所述第一时域资源包括N个预设长度的第一时间单元,一个唤醒信号占用所述N个预设长度的第一时间单元中的至少一个第一时间单元,所述N为正整数,所述第一时间单元的边界位置根据所述同步信号的时域位置确定;所述唤醒信号至少用于指示寻呼相关的信息所述终端,用于接收来自所述网络设备的同步信号,在第一时域资源上,接收来自所述网络设备的唤醒信号。
- 一种通信装置,其特征在于,所述通信装置包括处理器和通信接口,所述处理器和所述通信接口用于支持所述通信装置执行如权利要求1-19任一项所述的方法。
- 一种计算机可读存储介质,其特征在于,其中,所述计算机可读存储介质存储计算机指令,当所述计算机指令在计算机上运行时,使得计算机执行如权利要求1-19任一项所述的方法。
- 一种计算机程序产品,其特征在于,其中,所述计算机程序产品包括计算机指令,当所述计算机指令在计算机上运行时,使得计算机执行如权利要求1-19任一项所述的方法。
- 一种芯片,其特征在于,所述芯片与存储器耦合,用于读取并执行所述存储器中存储的程序指令,以实现如权利要求1-19任一项所述的方法。
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP22874516.2A EP4398651A1 (en) | 2021-09-28 | 2022-08-26 | Wakeup signal transmitting method and apparatus |
US18/618,591 US20240244530A1 (en) | 2021-09-28 | 2024-03-27 | Wake-up signal sending method and apparatus |
Applications Claiming Priority (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202111146311.5 | 2021-09-28 | ||
CN202111146311 | 2021-09-28 | ||
CN202111308989.9 | 2021-11-05 | ||
CN202111308989.9A CN115942439A (zh) | 2021-09-28 | 2021-11-05 | 一种唤醒信号发送方法及装置 |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US18/618,591 Continuation US20240244530A1 (en) | 2021-09-28 | 2024-03-27 | Wake-up signal sending method and apparatus |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2023051124A1 true WO2023051124A1 (zh) | 2023-04-06 |
Family
ID=85781280
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2022/115282 WO2023051124A1 (zh) | 2021-09-28 | 2022-08-26 | 一种唤醒信号发送方法及装置 |
Country Status (3)
Country | Link |
---|---|
US (1) | US20240244530A1 (zh) |
EP (1) | EP4398651A1 (zh) |
WO (1) | WO2023051124A1 (zh) |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20200053647A1 (en) * | 2017-04-26 | 2020-02-13 | Lg Electronics Inc. | Method and apparatus for receiving wake-up signal in wireless communication system |
CN110830206A (zh) * | 2018-08-10 | 2020-02-21 | 展讯通信(上海)有限公司 | Pdcch确定、同步信号检测与发送方法及装置、存储介质、终端、基站 |
CN111386732A (zh) * | 2017-11-03 | 2020-07-07 | 索尼公司 | 两部分唤醒信号 |
US20200367166A1 (en) * | 2017-11-14 | 2020-11-19 | Sony Corporation | The wake up signal in the selected format for use by the communications device |
-
2022
- 2022-08-26 WO PCT/CN2022/115282 patent/WO2023051124A1/zh active Application Filing
- 2022-08-26 EP EP22874516.2A patent/EP4398651A1/en active Pending
-
2024
- 2024-03-27 US US18/618,591 patent/US20240244530A1/en active Pending
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20200053647A1 (en) * | 2017-04-26 | 2020-02-13 | Lg Electronics Inc. | Method and apparatus for receiving wake-up signal in wireless communication system |
CN111386732A (zh) * | 2017-11-03 | 2020-07-07 | 索尼公司 | 两部分唤醒信号 |
US20200367166A1 (en) * | 2017-11-14 | 2020-11-19 | Sony Corporation | The wake up signal in the selected format for use by the communications device |
CN110830206A (zh) * | 2018-08-10 | 2020-02-21 | 展讯通信(上海)有限公司 | Pdcch确定、同步信号检测与发送方法及装置、存储介质、终端、基站 |
Non-Patent Citations (2)
Title |
---|
APPLE INC: "Wakeup and Paging Reception", 3GPP TSG-RAN WG2 MEETING #111-E, R2-2007116, 7 August 2020 (2020-08-07), XP051911942 * |
ERICSSON: "Design of PDCCH-WUS", 3GPP TSG-RAN WG1 MEETING #98BIS, TDOC R1-1911009, 5 October 2019 (2019-10-05), XP051789789 * |
Also Published As
Publication number | Publication date |
---|---|
EP4398651A1 (en) | 2024-07-10 |
US20240244530A1 (en) | 2024-07-18 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2021169586A1 (zh) | 一种通信方法及装置 | |
JP6975774B2 (ja) | オンデマンドモバイルデバイススアクセスのための方法及び装置 | |
US11902935B2 (en) | Method and apparatus for performing paging in a communication system | |
WO2020143718A1 (zh) | 控制信道的监测方法及装置、发送方法及装置、存储介质 | |
CN113170490A (zh) | 在不同的调度延迟假设之间转变 | |
US20140119410A1 (en) | System and method for communication using hybrid signals | |
WO2021062612A1 (zh) | 通信方法及装置 | |
TWI795537B (zh) | 基於中繼設備的通信、終端與基地台的通信方法和裝置 | |
CN109076457A (zh) | 一种设备唤醒方法和设备 | |
WO2020030169A1 (zh) | 状态确定、状态指示方法、通信设备、通信系统及存储介质 | |
CN114009099A (zh) | 在RRC_Idle/Inactive中用于新空口(NR)用户设备(UE)功率节省的增强的寻呼时机(PO)监测 | |
KR102457879B1 (ko) | 정보 전송 방법, 네트워크 기기 및 단말 | |
WO2020035059A1 (zh) | 信息发送、接收方法、网络设备及终端 | |
CN115942439A (zh) | 一种唤醒信号发送方法及装置 | |
WO2023097810A1 (zh) | 无线通信方法、终端和网络设备 | |
WO2019214264A1 (zh) | 一种物理信道资源的调度方法、装置及基站 | |
CN111436102A (zh) | 一种信道检测方法及设备 | |
CN115884330A (zh) | 信号传输的方法和装置 | |
WO2014113972A1 (zh) | 系统消息的获取方法、用户设备和基站 | |
US20230300795A1 (en) | Apparatuses and methods for downlink notification monitoring | |
CN109565751A (zh) | 一种用来唤醒设备的方法及装置 | |
WO2023051124A1 (zh) | 一种唤醒信号发送方法及装置 | |
WO2022022742A1 (zh) | 一种寻呼方法及装置 | |
US20240357500A1 (en) | Method for receiving wake-up signals, and terminal, network device and chip | |
WO2023168721A1 (zh) | 配置资源的方法、终端以及网络设备 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 22874516 Country of ref document: EP Kind code of ref document: A1 |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2022874516 Country of ref document: EP |
|
ENP | Entry into the national phase |
Ref document number: 2022874516 Country of ref document: EP Effective date: 20240404 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |