WO2019214264A1 - 一种物理信道资源的调度方法、装置及基站 - Google Patents

一种物理信道资源的调度方法、装置及基站 Download PDF

Info

Publication number
WO2019214264A1
WO2019214264A1 PCT/CN2018/125401 CN2018125401W WO2019214264A1 WO 2019214264 A1 WO2019214264 A1 WO 2019214264A1 CN 2018125401 W CN2018125401 W CN 2018125401W WO 2019214264 A1 WO2019214264 A1 WO 2019214264A1
Authority
WO
WIPO (PCT)
Prior art keywords
scheduling
base station
coverage level
user equipment
user
Prior art date
Application number
PCT/CN2018/125401
Other languages
English (en)
French (fr)
Inventor
丁宝国
刘建青
贺璟
Original Assignee
京信通信系统(中国)有限公司
京信通信系统(广州)有限公司
京信通信技术(广州)有限公司
天津京信通信系统有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 京信通信系统(中国)有限公司, 京信通信系统(广州)有限公司, 京信通信技术(广州)有限公司, 天津京信通信系统有限公司 filed Critical 京信通信系统(中国)有限公司
Publication of WO2019214264A1 publication Critical patent/WO2019214264A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0446Resources in time domain, e.g. slots or frames
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/12Wireless traffic scheduling
    • H04W72/1263Mapping of traffic onto schedule, e.g. scheduled allocation or multiplexing of flows
    • H04W72/1273Mapping of traffic onto schedule, e.g. scheduled allocation or multiplexing of flows of downlink data flows
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/23Control channels or signalling for resource management in the downlink direction of a wireless link, i.e. towards a terminal

Definitions

  • the present application relates to the field of communications technologies, and in particular, to a method, an apparatus, and a base station for scheduling physical channel resources.
  • IoT devices can be divided into three categories: 1 no mobility, large data volume (upstream), and a wider frequency band, such as a city surveillance camera. 2 mobility is strong, need to perform frequent switching, small amount of data, such as fleet tracking management. 3 no mobility, small amount of data, not sensitive to delay, such as smart meter reading. NB-IoT was born in response to the third IoT device.
  • the NB-IoT source starts from the following major requirements of the Internet of Things: coverage enhancement (enhanced 20dB); support for large-scale connectivity, 100K terminal/200KHz cell; ultra-low power consumption, 10-year battery life; ultra-low cost, minimized Signaling overhead, especially air interface signaling overhead; ensure the security of the entire system, including the security of the core network; support IP and non-IP data transmission; support SMS (optional deployment).
  • coverage enhancement enhanced 20dB
  • support for large-scale connectivity 100K terminal/200KHz cell
  • ultra-low power consumption 10-year battery life
  • ultra-low cost minimized Signaling overhead, especially air interface signaling overhead
  • support IP and non-IP data transmission support SMS (optional deployment).
  • NB-IoT The Narrow Band Internet of Things
  • NB-IoT is an important branch of the Internet of Everything.
  • NB-IoT is mainly for low-cost, low-power, low-rate, wide-coverage IoT services, such as sensors, meter reading, logistics monitoring, and tracking.
  • NB-IoT is built on a cellular network and consumes only about 180KHz of bandwidth.
  • the uplink and downlink peak rate does not exceed 250kbit/s. It can be deployed directly on GSM networks, UMTS networks or LTE networks to reduce deployment costs and achieve smooth upgrades.
  • LTE-A the main focus is on carrier aggregation, dual connectivity and D2D, and does not consider the Internet of Things.
  • the coverage taking the water meter as an example, the wireless environment of the location is poor.
  • the height difference causes the signal difference to be 4 dB, and at the same time, the cover is covered, and the loss is about 10 dB, so it needs to be enhanced by 20 dB.
  • IoT devices there are too many IoT devices. If the existing LTE network is used to connect these massive devices, the network will be overloaded.
  • NB-IoT has its own characteristics, such as no longer QoS, because the current NB-IoT does not transmit delay-sensitive data packets.
  • devices such as real-time IMS do not exist in NB-IoT networks. appear.
  • NB-IoT enhances its coverage (Maximum Coupling Loss (MCL), path loss from the base station antenna port to the terminal antenna port) by multiple repeated transmissions, which can achieve 20dB enhancement over conventional coverage.
  • MCL Maximum Coupling Loss
  • the time division multiplexing mode is adopted between the downlink physical channels. Since the resources are limited and the repeated transmission is supported, the uplink and downlink of the NB-IoT adopt asynchronous adaptive HARQ, that is, the retransmission is determined according to the newly received DCI (Downlink Control Information).
  • the NB-IoT supports only one HARQ process, and allows NPDCCH and NPDSCH to have longer UE decoding time.
  • the DCI can be used to schedule downlink data or uplink data.
  • the scheduling command is transmitted through the DCI carried on the NPDCH, which transmits the DCI using aggregation levels (AL) 1 or AL2.
  • AL1 two DCIs are used for one subframe, or one subframe carries only one DCI (ie, AL2) to reduce the coding rate and improve coverage. The coverage is enhanced by retransmission, and each retransmission occupies one subframe.
  • the narrowband physical downlink control channel NPDCCH
  • the narrowband physical downlink shared channel NPDSCH
  • the narrowband physical uplink shared channel Narrow Physical uplink
  • the continuous transmission time of the Shared Channel, NPUSCH) and the start time of the transmission may vary greatly.
  • the allocation scheme of the NPDCCH, the NPDSCH, or the NPUSCH in the prior art may easily cause the network resources to be wasted in the time domain scheduling process by different users, so that the usage rate of the NPDCCH resources is low, and even the coverage is long. The user's data is difficult to send out, which leads to network congestion and low scheduling efficiency.
  • a method, an apparatus, and a base station for scheduling physical channel resources are provided.
  • the embodiment of the present application provides a scheduling method for a physical channel resource, which is applied to a narrowband Internet of Things, and includes:
  • the base station acquires coverage levels of M user equipments, where M is a positive integer;
  • the base station schedules a narrowband physical downlink control channel NPDCCH for the user equipment in a scheduling interval corresponding to each user equipment.
  • the base station determines, according to the coverage level of the M user equipments, a starting resource scheduling offset time of each user equipment, including:
  • the base station determines that the coverage level corresponding to the first user is smaller than the coverage level corresponding to the second user, the starting resource scheduling offset time of the coverage level corresponding to the second user is set to be greater than or equal to the first user.
  • the base station determines, according to the coverage levels of the M user equipments, a scheduling range of each user equipment, including:
  • the size of the search space of the coverage level is positively related to the coverage level; the search space is a minimum period during which the base station allocates an NPDCCH for the user equipment.
  • the base station determines, according to the coverage levels of the M user equipments, a scheduling range of each user equipment, including:
  • the base station determines the scheduling range according to the search capability of the base station and the number of user equipments that need to be scheduled.
  • the method further includes:
  • the base station If the base station does not find an available NPDCCH in the scheduling interval, the base station adds the user equipment to the next scheduling period for scheduling.
  • the embodiment of the present application provides a scheduling device for a physical channel resource, which is applied to a narrowband Internet of Things, and includes:
  • a transceiver unit configured to acquire coverage levels of M user equipments, where M is a positive integer
  • a processing unit configured to determine, according to a coverage level of the M user equipments, a starting resource scheduling offset time and a scheduling range of each user equipment; scheduling offset time and scheduling according to the starting resource of each user equipment The range determines a scheduling interval corresponding to each user equipment.
  • the narrowband physical downlink control channel NPDCCH is scheduled for the user equipment in a scheduling interval corresponding to each user equipment.
  • processing unit is specifically configured to:
  • the initial resource scheduling offset time of the coverage level corresponding to the second user is set to be greater than or equal to the coverage corresponding to the first user.
  • processing unit is specifically configured to:
  • processing unit is specifically configured to:
  • the scheduling range is determined according to the search capability of the base station and the number of user equipments that need to be scheduled.
  • processing unit is further configured to:
  • the base station adds the user equipment to the next scheduling period for scheduling.
  • the embodiment of the present application provides a base station, which is applied to a narrowband Internet of Things, including: at least one transceiver, at least one processor;
  • a memory communicatively coupled to the at least one processor; wherein the memory stores instructions executable by the at least one processor, the instructions being executed by the at least one processor;
  • the transceiver is configured to acquire coverage levels of M user equipments, where M is a positive integer;
  • the processor is configured to determine, according to a coverage level of the M user equipments, a starting resource scheduling offset time and a scheduling range of each user equipment; and scheduling an offset time according to the starting resource of each user equipment And the scheduling range determines a scheduling interval corresponding to each user equipment; and the narrowband physical downlink control channel NPDCCH is scheduled for the user equipment in a scheduling interval corresponding to each user equipment.
  • the processor is specifically configured to:
  • the initial resource scheduling offset time of the coverage level corresponding to the second user is set to be greater than or equal to the coverage corresponding to the first user.
  • the processor is specifically configured to:
  • the processor is specifically configured to:
  • the scheduling range is determined according to the search capability of the base station and the number of user equipments that need to be scheduled.
  • processor is further configured to:
  • the base station adds the user equipment to the next scheduling period for scheduling.
  • the embodiment of the present application provides a computer readable storage medium, where the computer readable storage medium stores computer instructions for causing the computer to perform the method in any possible implementation manner provided by the embodiments of the present application.
  • An embodiment of the present application provides a computer program product, the computer program product comprising a computer program stored on a computer readable storage medium, the computer program comprising program instructions, when the program instruction is executed by a computer,
  • the computer performs the method in any possible implementation provided by the embodiment of the present application.
  • FIG. 1 is a schematic flowchart of a method for scheduling physical channel resources according to an embodiment of the present application
  • FIG. 2 is a schematic structural diagram of a method for scheduling physical channel resources according to an embodiment of the present application
  • FIG. 3 is a schematic structural diagram of a device for scheduling a physical channel resource according to an embodiment of the present application
  • FIG. 4 is a schematic structural diagram of a base station according to an embodiment of the present application.
  • the embodiment of the present application provides a scheduling method for a physical channel resource, which is applied to a narrowband Internet of Things, and includes the following steps:
  • Step 101 The base station acquires coverage levels of M user equipments, where M is a positive integer.
  • Step 102 The base station determines, according to the coverage levels of the M user equipments, a starting resource scheduling offset time and a scheduling range of each user equipment.
  • Step 103 The base station determines, according to the starting resource scheduling offset time and the scheduling range of each user equipment, a scheduling interval corresponding to each user equipment.
  • Step 104 The base station schedules a narrowband physical downlink control channel NPDCCH for the user equipment in a scheduling interval corresponding to each user equipment.
  • the foregoing method can be used to allocate resources of the NPDCCH according to the user equipment of different coverage levels, so that the user equipment with small resource requirements acquires fewer PDCCH resources, and the user equipment with large resource requirements acquires more PDCCH resources, and avoids PDCCH resources. Waste, improve the utilization of PDCCH resources. This makes it easier for users of enhanced coverage levels, especially those with high coverage levels, to successfully schedule and reduce scheduling delays.
  • the scheduling interval includes a search space of a plurality of the coverage level corresponding to the allocated narrowband physical downlink control channel NPDCCH.
  • NB-IoT needs to achieve longer standby time. It can usually be implemented by means of Power Saving Mode (PSM) and Enhanced Discontinuous Reception (eDRX).
  • PSM Power Saving Mode
  • eDRX Enhanced Discontinuous Reception
  • PSM mode the user equipment is still registered in the network, but the signaling is unreachable, thus enabling the user.
  • the device can reside in deep sleep for a longer period of time to save power.
  • the eDRX further extends the sleep cycle of the user equipment in the idle mode, and reduces unnecessary startup of the receiving unit in the user equipment.
  • the user equipment may set a startup period, and the user equipment starts to register only when the data needs to be transmitted. At this time, the user equipment needs to perform NPDCCH scheduling.
  • the base station may determine the M user equipments according to a preset rule when the scheduling period is reached.
  • the scheduling period may be 1 ms, 2 ms, etc., and may be set according to the processing capability of the base station and the delay requirement of the user equipment to ensure that the M user equipments can be scheduled to be completed within the scheduling period.
  • uplink and downlink resource scheduling information are all carried by the NPDCCH.
  • the DCI (Downlink Control Information) in the NPDCCH includes resource allocation and other control information on one or more user equipments. After acquiring the NPDCCH, each user equipment determines the resource location corresponding to the NPDSCH for transmitting downlink data (including broadcast messages, paging, UE data, etc.) by demodulating the DCI in the NPDCCH, and determining to transmit the uplink data. The location of the resource corresponding to the NPUSCH.
  • the NPDCCH includes a UL grant to indicate resources used by the UE for uplink data transmission.
  • the preset rule includes: determining the M user equipments according to a priority of the user equipment, a scheduling delay of the user equipment, a service type of the user equipment, and the like. For different uplink and downlink data volume requirements and periods, M user equipments in one scheduling period can be determined.
  • autonomous exception reporting business type Such as smoke alarm detectors, smart meter power outage notifications, etc., the minimum amount of data in the uplink data (on the order of ten bytes), the period can be in units of years and months.
  • Autonomous cycle reporting business type Such as smart utility (gas / water / electricity) measurement report, intelligent agriculture, intelligent environment, etc., the uplink small amount of data demand (hundred bytes), the cycle can be in days, hours.
  • Network instruction service type Such as on/off, device triggers sending uplink reports, requesting meter reading, and the minimum amount of data required for the downlink (on the order of ten bytes), and the period can be in units of days and hours.
  • Software update business type For example, software patches/updates, large data volume requirements for uplink and downlink (on the order of kilobytes), and the period can be in days and hours.
  • the resource allocation may be performed according to the selected M user equipments, and the user equipments may be sorted by the user equipment priority or the polling manner, and the first M user equipments are selected to perform priority resource allocation to improve resources. Utilization rate.
  • NB-IoT enhances its coverage (Maximum Coupling Loss (MCL), path loss from the base station antenna port to the terminal antenna port) by multiple repeated transmissions, which can achieve 20dB enhancement over conventional coverage.
  • MCL Maximum Coupling Loss
  • the wireless environment of the location is poor.
  • the height difference causes the signal difference to be 4 dB, and at the same time, the cover is covered, and the loss is about 10 dB, so the coverage enhancement is needed.
  • the coverage level (Clevelage Enhancement Level, CE Level) can be divided into three levels, which respectively correspond to signal attenuation of 144dB, 154dB, and 164dB.
  • the base station and the user equipment of the NB-IoT select the corresponding number of information retransmissions according to the coverage level in which they are located.
  • the coverage level of the user equipment may be determined when the user equipment is accessed, and the specific determination manner is not described herein.
  • NB-IoT uses centralized control to manage the radio resources required for data transmission between the Evolved Node Base station (eNB) and the user equipment. Similar to the LTE system, the UE transmits or receives data to the eNB indication.
  • DCI Downlink Control Indicator
  • the uplink part uses the DCI format
  • the downlink part is the DCI N1 format
  • the paging part uses the DCI N2 format.
  • the UE periodically monitors/monitors the area transmitted by the DCI during the process of linking with the base station, that is, a narrowband physical downlink control channel (NPDCCH), also called a search space.
  • NPDCCH narrowband physical downlink control channel
  • the UE receives the data according to the content indication to the corresponding data transmission area, that is, the narrowband physical downlink shared channel (NPDSCH). Not every subframe has an NPDCCH, but appears periodically.
  • Each search space has a maximum repetition number Rmax corresponding to a radio resource control (RRC) configuration, and the appearance period of the search space is the product of the corresponding Rmax and a parameter of the RRC layer configuration.
  • RRC radio resource control
  • the user equipment of the NB-IoT can use the beginning of the search space where the DCI is located. Time, to calculate the end time of the DCI and the start time of the scheduled data for data transmission or reception.
  • NB-IoT is an FDD half-duplex type-B mode. That is, the uplink and downlink are separated in frequency, and the user equipment does not process reception and transmission at the same time, and the user equipment only needs one switch to change the transmission and reception modes. Therefore, different uplink transmission durations and different downlink transmission durations may affect the scheduling of the user equipment NPDCCH by the base station. For low coverage users, data can be sent via DL Gap or UL GAP mechanisms.
  • the starting resource scheduling offset time of the coverage level corresponding to the user equipment is a time after the base station starts a scheduling time in the scheduling period and after a preset offset time; for example, if it is determined The start time of the base station is T0, and the preset time offset time of the first coverage level is t1, and the initial resource scheduling offset time of the first coverage level is T0+t1.
  • the initial resource scheduling offset time may also be performed according to the coverage level and the duration of the signal to be sent of the user equipment corresponding to the coverage level. Settings.
  • the first user equipment and the second user equipment correspond to the first coverage level, and the third user equipment corresponds to the second coverage level;
  • the duration of the signal to be sent of the first user equipment is 1 ms, and the duration of the signal to be sent of the second user equipment is 2ms;
  • the determining, by the base station, the starting resource scheduling offset time of each user equipment according to the coverage level of the M user equipments may include:
  • the base station determines that the coverage level corresponding to the first user is smaller than the coverage level corresponding to the second user, the starting resource scheduling offset time of the coverage level corresponding to the second user is set to be greater than or equal to the first user.
  • the start time of the scheduling interval of the first coverage level is the starting resource of the first coverage level.
  • the scheduling offset time T0+t1 is T0+t1+T1.
  • the preset offset time of the second coverage level may be t2, and the initial resource scheduling offset time of the second coverage level may be T0+t1+T1+t2. If the scheduling range of the second coverage level is T2, the end time of the scheduling interval of the second coverage level is T0+t1+T1+t2+T2.
  • the scheduling intervals of different coverage levels can be shifted in the time domain space to avoid the problem of low scheduling efficiency and low resource utilization when scheduling user equipments of different durations, and retransmission of low coverage users can be avoided.
  • Fragmentation causes higher coverage user allocation unsuccessful, while reducing the amount of user resource search operations. For example, for a user with a small coverage level, the duration of sending the NPDSCH is small, and the NPDSCH occupied by different user equipments with a small coverage level cannot be allocated to the user equipment with a large coverage level, resulting in a large coverage duration.
  • the data of a long user equipment can only be sent in a later position to try to send, which causes blocking, which affects the efficiency of scheduling.
  • resource fragmentation is more likely to occur, resulting in lower resource utilization.
  • step 102 in order to ensure that the M user equipments can be scheduled in the scheduling period, resources can be reasonably utilized.
  • the determining, by the base station, the scheduling range of each user equipment according to the coverage level of the M user equipments which may include:
  • the search space of the coverage level is positively correlated with the coverage level; the search space is a minimum period of the NPDCCH allocated by the base station to the user equipment.
  • the scheduling range is determined according to a size of a search space of the NPDCCH corresponding to the coverage level, and a number of the search spaces, that is, a number of searches. For example, if the number of searches for the NPDCCH corresponding to the coverage level of the user equipment is 10, the scheduling time offsets the time corresponding to the initial resource scheduling offset time corresponding to the coverage level, and 10 corresponding searches are performed.
  • the hierarchical NPDCCH search space is used as the scheduling range of the coverage level.
  • the coverage level includes a first coverage level, a second coverage level, a third coverage level, and a starting resource scheduling offset of the first coverage level.
  • the time is t1
  • the starting resource scheduling offset time of the second coverage level is t2
  • the starting resource scheduling offset time of the third coverage level is t3
  • the scheduling range of the first coverage level is n1 ⁇ Pp1
  • the scheduling range of the second coverage level 202 is n2 ⁇ pp2
  • the scheduling range of the third coverage level is n3 ⁇ pp3.
  • the n1, n2, and n3 are the search times of the search space in the scheduling range corresponding to the coverage level; the pp1, pp2, and pp3 are the durations of the search space in the scheduling range of the corresponding coverage level, and may be set to pp3> Pp2>pp1;
  • the number n1 of search spaces of the first coverage level may be 3, and the minimum period of each search space, that is, NPDCCH may be 1 s.
  • the relationship between the initial resource scheduling offset times of different coverage levels may be expressed as: t2 ⁇ t1 + n1 ⁇ pp1; t3 ⁇ t2 + n2 ⁇ pp2; the initial resource scheduling bias of the first coverage level in the next scheduling period
  • the set time t1 can be set to t1 ⁇ t3 + n3 ⁇ pp3.
  • the processing time and allocation success rate of searching for resources for the user equipment can be effectively balanced, the allocation efficiency is improved, and the allocation delay is reduced.
  • the base station determines the scheduling range according to the search capability of the base station and the number of user equipments that need to be scheduled.
  • the base station determines a maximum searchable range according to the processing capability of the CPU of the base station and the storage space, for example, the scheduling range may be 1 hour;
  • the number of devices determines the scheduling range. For example, if it is determined that the number of user equipments is small, the scheduling range may be set to a duration of at least one search space.
  • the scheduling interval corresponding to the coverage level may be set according to other manners, which is not limited herein.
  • the foregoing method can determine the scheduling range according to the capability of the base station and the requirements of the user, reduce the base station to set multiple scheduling ranges for the scheduling range, reduce the processing amount of the base station, and determine the scheduling range according to the number of user equipments. Further improve resource utilization and improve the efficiency of resource allocation.
  • the base station uses the starting resource scheduling offset time of the coverage level as the starting time of the scheduling interval corresponding to the coverage level, and the scheduling range of the coverage level plus the time of the starting time as the The end time of the scheduling interval of the coverage level.
  • the start time of the scheduling interval of the first coverage level is the initial resource scheduling offset time T0+t1 of the first coverage level
  • the end time of the scheduling interval of the first coverage level is T0+t1+T1.
  • the embodiment of the present application further includes: allocating the NPDSCH and the NPUSCH according to the allocation result of the NPDCCH.
  • the subframe structure of the NPDSCH is the same as that of the NPDCCH.
  • the NPDSCH is used to transmit downlink data and system information.
  • the bandwidth occupied by the NPDSCH is an entire PRB size.
  • a Transport Block (TB) may need to use more than one subframe to transmit according to the modulation and coding strategy (MCS) used. Therefore, the Downlink Assignment received in the NPDCCH will include a subframe corresponding to TB. The number and the number of retransmission instructions.
  • the NPUSCH is used to transmit uplink data and uplink control information.
  • the NPUSCH transmission can use single frequency or multiple frequency transmission.
  • the smallest unit mapped to a transport block is a resource unit (RU), which is determined by the NPUSCH format and subcarrier space.
  • RU resource unit
  • NB-IoT is used as the basic unit of resource allocation based on the number of subcarriers and time slots. Since one TB may need to use multiple resource units for transmission, the Uplink Grant received in the NPDCCH includes a TB-compatible resource in addition to an index (Index) indicating a sub-carrier of a resource unit used for uplink data transmission. The number of units and the number of retransmissions.
  • the timing relationship between the NPDCCH and the NPDSCH or the NPUSCH that is, the delay and the resource element (Resource Element, RE) according to the NPDSCH or the NPUSCH. determine.
  • the base station determines, according to the starting resource scheduling offset time of the coverage level corresponding to the user equipment, the calculation start scheduling time, and searches for N available NPDCCHs according to the scheduling range of the coverage level; according to the NPDCCH and the NPDSCH Or the timing relationship of the NPUSCH, traversing the NPDSCH or NPUSCH resources corresponding to the N NPDCCH resources. If it is determined that the NPDSCH or the NPUSCH resource corresponding to the one of the NPDCCH resources is not occupied, the NPDCCH resource and the NPDSCH live NPUSCH resource are allocated to the user equipment. In the specific implementation process, for low coverage users, data transmission can be performed through the DL Gap or UL GAP mechanism.
  • the retransmission fragmentation of the user with low coverage level can be avoided, the problem of unsuccessful allocation of the user equipment with higher coverage level can be reduced, and the search operation amount when the base station allocates resources for the user equipment is reduced, and the scheduling efficiency is improved.
  • step 104 the method further includes: when the base station does not find an available NPDCCH in the scheduling interval corresponding to the starting resource scheduling offset time and the scheduling range, the base station sends the user equipment Join the next scheduling cycle for scheduling.
  • the user equipment can successfully allocate the NPDCCH resource in the 10 search spaces of the corresponding coverage level, determine that the NPDCCH resource allocation of the user equipment is successful, and if not, determine the NPDCCH of the user equipment. Resource allocation failed.
  • the user equipment searches for N available NPDCCH resources in the implementation scheduling interval, but the NPDSCH or NPUSCH resources corresponding to the N available NPDCCH resources are unavailable, and it is considered that no available resources are allocated to the user equipment. Determining that the user equipment fails to be scheduled in the scheduling period, adding the user equipment to the next scheduling period, and increasing the priority of the user equipment to transmit data of the user equipment as soon as possible. Going out improves the efficiency of resource scheduling of user equipment.
  • the coverage level of the M user equipments is obtained by the base station, where M is an integer greater than 0; the base station groups the user equipments belonging to the same coverage level among the M user equipments, and determines and groups each user.
  • the user equipment that allocates the NPDCCH according to the user equipment of different coverage levels can be used to obtain the PDCCH resource, and the user equipment with the large resource requirement acquires more PDCCH resources, thereby avoiding waste of the PDCCH resource and improving The utilization of PDCCH resources.
  • the scheduling interval includes a search space of a plurality of the coverage level corresponding to the allocated narrowband physical downlink control channel NPDCCH. It is ensured that the M user equipments can be completely scheduled in the corresponding scheduling interval in a scheduling period, and in the scheduling process, only the NPDCCH in the corresponding scheduling interval needs to be searched to complete the scheduling, which greatly improves the scheduling efficiency.
  • an apparatus 20 provided by an embodiment of the present application includes at least one processor 21, a communication bus 22, a memory 23, and at least one communication interface 24.
  • the base station in the foregoing embodiment may also be the device 20 shown in FIG. 3, and the device 20 may implement the steps related to the base station in the communication method in the embodiment of the present application by using the processor 21.
  • the processor 21 can be a general purpose central processing unit (CPU), a microprocessor, an application-specific integrated circuit (ASIC), or one or more integrated circuits for controlling the execution of the program of the present application.
  • CPU central processing unit
  • ASIC application-specific integrated circuit
  • Communication bus 22 may include a path for communicating information between the components described above.
  • the communication interface 24 uses devices such as any transceiver for communicating with other devices or communication networks, such as Ethernet, Radio Access Network (RAN), WALN, and the like.
  • RAN Radio Access Network
  • WALN Wireless Local Area Network
  • the memory 23 can be a read-only memory (ROM) or other type of static storage device that can store static information and instructions, a random access memory (RAM) or other type that can store information and instructions.
  • the dynamic storage device can also be an electrically erasable programmable read-only memory (EEPROM), a compact disc read-only memory (CD-ROM) or other optical disc storage, and a disc storage device. (including compact discs, laser discs, optical discs, digital versatile discs, Blu-ray discs, etc.), magnetic disk storage media or other magnetic storage devices, or can be used to carry or store desired program code in the form of instructions or data structures and can be Any other medium accessed by the device, but is not limited thereto.
  • the memory can exist independently and be connected to the processor via a bus. The memory can also be integrated with the processor.
  • the memory 23 is used to store application code for executing the solution of the present application, and is controlled by the processor 21 for execution.
  • the processor 21 is configured to execute application code stored in the memory 23.
  • processor 21 may include one or more CPUs, such as CPU0 and CPU1 in FIG.
  • the apparatus 20 can include a plurality of processors, such as the processor 21 and the processor 28 of FIG. Each of these processors can be a single-CPU processor or a multi-core processor.
  • a processor herein may refer to one or more devices, circuits, and/or processing cores for processing data, such as computer program instructions.
  • the embodiment of the present application may perform the division of the function modules on the device shown in FIG. 3 according to the foregoing method example.
  • each function module may be divided according to each function, or two or more functions may be integrated into one processing module.
  • the above integrated modules can be implemented in the form of hardware or in the form of software functional modules. It should be noted that the division of the module in the embodiment of the present application is schematic, and is only a logical function division, and the actual implementation may have another division manner.
  • the apparatus shown in FIG. 3 is presented in the form of dividing each functional module corresponding to each function, or the apparatus is presented in the form of dividing each functional module in an integrated manner.
  • a “module” herein may refer to an application-specific integrated circuit (ASIC), circuitry, a processor and memory that executes one or more software or firmware programs, integrated logic circuitry, and/or other functions that provide the functionality described above. Device.
  • ASIC application-specific integrated circuit
  • FIG. 4 shows a possible structural diagram of the device involved in the above embodiment, and the device 900 may be the base station in the above embodiment.
  • the apparatus 900 includes a processing unit 901 and a transceiver unit 902.
  • the transceiver unit 902 is configured to send and receive signals by the processing unit 901.
  • the method performed by the processing unit 901 in FIG. 4 may be implemented by the processor 21 (and/or the processor 28) of FIG. 4 and the memory 23.
  • the method performed by the processing unit 901 may be performed by the processor 21 of FIG. 3 ( And/or the processor 28) is called to execute the application code stored in the memory 23, and the embodiment of the present application does not impose any limitation thereon.
  • the application is applied to the narrowband Internet of Things, including:
  • the transceiver unit 902 is configured to acquire coverage levels of M user equipments, where M is a positive integer;
  • the processing unit 901 is configured to determine, according to the coverage levels of the M user equipments, a starting resource scheduling offset time and a scheduling range of each user equipment, and perform scheduling offset time according to the starting resource of each user equipment.
  • the scheduling range determines a scheduling interval corresponding to each user equipment.
  • the narrowband physical downlink control channel NPDCCH is scheduled for the user equipment in a scheduling interval corresponding to each user equipment.
  • processing unit 901 is specifically configured to:
  • the initial resource scheduling offset time of the coverage level corresponding to the second user is set to be greater than or equal to the coverage corresponding to the first user.
  • processing unit 901 is specifically configured to:
  • processing unit 901 is specifically configured to:
  • the scheduling range is determined according to the search capability of the base station and the number of user equipments that need to be scheduled.
  • processing unit 901 is further configured to:
  • the base station adds the user equipment to the next scheduling period for scheduling.
  • the embodiment of the present application provides a computer readable storage medium, where the computer readable storage medium stores computer instructions for causing the computer to perform the method in any possible implementation manner provided by the embodiments of the present application.
  • An embodiment of the present application provides a computer program product, the computer program product comprising a computer program stored on a computer readable storage medium, the computer program comprising program instructions, when the program instruction is executed by a computer,
  • the computer performs the method in any possible implementation provided by the embodiment of the present application.
  • embodiments of the present application can be provided as a method, apparatus (device), or computer program product.
  • the present application can take the form of an entirely hardware embodiment, an entirely software embodiment, or an embodiment in combination of software and hardware.
  • the application can take the form of a computer program product embodied on one or more computer-usable storage media (including but not limited to disk storage, CD-ROM, optical storage, etc.) including computer usable program code.
  • the computer program instructions can also be stored in a computer readable memory that can direct a computer or other programmable data processing device to operate in a particular manner, such that the instructions stored in the computer readable memory produce an article of manufacture comprising the instruction device.
  • the apparatus implements the functions specified in one or more blocks of a flow or a flow and/or block diagram of the flowchart.
  • These computer program instructions can also be loaded onto a computer or other programmable data processing device such that a series of operational steps are performed on a computer or other programmable device to produce computer-implemented processing for execution on a computer or other programmable device.
  • the instructions provide steps for implementing the functions specified in one or more of the flow or in a block or blocks of a flow diagram.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请公开了一种物理信道资源的调度方法、装置及基站,应用于窄带物联网,所述方法包括:基站获取M个用户设备的覆盖等级,M为正整数;所述基站根据所述M个用户设备的覆盖等级,确定每个用户设备的起始资源调度偏置时间以及调度范围;所述基站根据每个用户设备的所述起始资源调度偏置时间以及调度范围确定每个用户设备对应的调度区间;所述基站在每个用户设备对应的调度区间内,为所述用户设备调度窄带物理下行控制信道NPDCCH。

Description

一种物理信道资源的调度方法、装置及基站
本申请要求在2018年05月09日提交中华人民共和国知识产权局、申请号为201810436465.X,发明名称为“一种物理信道资源的调度方法及装置”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及通信技术领域,尤其涉及一种物理信道资源的调度方法、装置及基站。
背景技术
通常,可以将物联网设备分为三类:①无需移动性,大数据量(上行),需较宽频段,比如城市监控摄像头。②移动性强,需执行频繁切换,小数据量,比如车队追踪管理。③无需移动性,小数据量,对时延不敏感,比如智能抄表。NB-IoT正是为了应对第③种物联网设备而生。NB-IoT源起于现阶段物联网的以下几大需求:覆盖增强(增强20dB);支持大规模连接,100K终端/200KHz小区;超低功耗,10年电池寿命;超低成本,最小化信令开销,尤其是空口信令开销;确保整个系统的安全性,包括核心网的安全性;支持IP和非IP数据传送;支持短信(可选部署)等。
基于蜂窝的窄带物联网(Narrow Band Internet of Things,NB-IoT)成为万物互联网络的一个重要分支。NB-IoT主要面向低成本、低功耗、低速率、广覆盖的物联网业务,如传感器类、抄表类、物流监控、跟踪类等。NB-IoT构建于蜂窝网络,只消耗大约180KHz的带宽,上下行峰值速率不超过250kbit/s。可直接部署于GSM网络、UMTS网络或LTE网络,以降低部署成本、实现平滑升级。
对于现有LTE网络,并不能完全满足以上需求。即使是LTE-A,关注的主要是载波聚合、双连接和D2D等功能,并没有考虑物联网。比如,在覆盖 上,以水表为例,所处位置无线环境差,与智能手机相比,高度差导致信号差4dB,同时再盖上盖子,额外增加约10dB左右损耗,所以需要增强20dB。在大规模连接上,物联网设备太多,如果用现有的LTE网络去连接这些海量设备,会导致网络过载。此外,NB-IoT有自己的特点,比如不再有QoS,因为现阶段的NB-IoT并不传送时延敏感的数据包,例如,实时IMS一类的设备,在NB-IoT网络里不会出现。
NB-IoT通过多次重复发送提高其覆盖(最大耦合损耗(Maximum Coupling Loss,MCL),从基站天线端口到终端天线端口的路径损耗),可以实现比传统的覆盖增强20dB。
下行物理信道间采用时分复用模式,由于资源有限且支持重复传送,因此,NB-IoT的上下行都采用异步自适应HARQ,即根据新接收到的DCI(Downlink Control Information)来决定重传。另外,为了降低终端的复杂度,NB-IoT只支持一个HARQ过程,并且允许NPDCCH和NPDSCH更长的UE解码时间。DCI可以用于调度下行数据或上行数据。调度命令通过承载于NPDCH的DCI传送,NPDCH使用聚集水平(aggregation levels,AL)1或AL2传送DCI。对于AL1,两个DCI复用于一个子帧,或一个子帧仅携带一个DCI(即AL2),以降低编码率和提升覆盖。通过重传增强覆盖,每次重传占用一个子帧。
因此,NB-IoT中不同覆盖的用户的窄带物理下行控制信道(Narrow Physical Downlink Control Channel,NPDCCH)、窄带物理下行共享信道(Narrow Physical Downlink Shared Channel,NPDSCH)及窄带物理上行共享信道(Narrow Physical uplink Shared Channel,NPUSCH)的持续传输时间以及传输的起始时间可能有很大差异。而现有技术中对于NPDCCH、NPDSCH或NPUSCH的分配方案,很容易导致不同用户在时域调度过程中,出现网络资源浪费的情况,使得NPDCCH资源的使用率较低,甚至导致覆盖大持续时间长的用户的数据较难发送出去,进而导致网络拥塞,调度效率较低。
发明内容
根据本申请公开的各种实施例,提供一种物理信道资源的调度方法、装置及基站。
本申请实施例提供一种物理信道资源的调度方法,应用于窄带物联网,包括:
基站获取M个用户设备的覆盖等级,M为正整数;
所述基站根据所述M个用户设备的覆盖等级,确定每个用户设备的起始资源调度偏置时间以及调度范围;及
所述基站根据每个用户设备的所述起始资源调度偏置时间以及调度范围确定每个用户设备对应的调度区间;
所述基站在每个用户设备对应的调度区间内,为所述用户设备调度窄带物理下行控制信道NPDCCH。
一种可能的实现方式,所述基站根据所述M个用户设备的覆盖等级,确定每个用户设备的起始资源调度偏置时间,包括:
所述基站若确定第一用户对应的覆盖等级小于第二用户对应的覆盖等级,则将所述第二用户对应的覆盖等级的起始资源调度偏置时间设置为大于或等于所述第一用户对应的覆盖等级对应的调度区间的结束时间。
一种可能的实现方式,所述基站根据所述M个用户设备的覆盖等级,确定每个用户设备的调度范围,包括:
所述基站根据所述M个用户设备对应的覆盖等级,确定所述覆盖等级对应的搜索空间的数目和每个搜索空间的大小;及
所述基站根据所述覆盖等级的搜索空间的数目和每个搜索空间的大小,确定所述覆盖等级的调度范围;
其中,所述覆盖等级的搜索空间的大小与所述覆盖等级正相关;所述搜索空间为所述基站为所述用户设备分配NPDCCH的最小周期。
一种可能的实现方式,所述基站根据所述M个用户设备的覆盖等级,确定每个用户设备的调度范围,包括:
所述基站根据所述基站的搜索能力以及需要调度的用户设备的数量,确定所述调度范围。
一种可能的实现方式,所述方法还包括:
所述基站若在所述调度区间内,未找到可用的NPDCCH,则所述基站将所述用户设备加入下一个调度周期进行调度。
本申请实施例提供一种物理信道资源的调度装置,应用于窄带物联网,包括:
收发单元,用于获取M个用户设备的覆盖等级,M为正整数;
处理单元,用于根据所述M个用户设备的覆盖等级,确定每个用户设备的起始资源调度偏置时间以及调度范围;根据每个用户设备的所述起始资源调度偏置时间以及调度范围确定每个用户设备对应的调度区间;在每个用户设备对应的调度区间内,为所述用户设备调度窄带物理下行控制信道NPDCCH。
一种可能的实现方式,所述处理单元具体用于:
若确定第一用户对应的覆盖等级小于第二用户对应的覆盖等级,则将所述第二用户对应的覆盖等级的起始资源调度偏置时间设置为大于或等于所述第一用户对应的覆盖等级对应的调度区间的结束时间。
一种可能的实现方式,所述处理单元具体用于:
根据所述M个用户设备对应的覆盖等级,确定所述覆盖等级对应的搜索空间的数目和每个搜索空间的大小;根据所述覆盖等级的搜索空间的数目和每个搜索空间的大小,确定所述覆盖等级的调度范围;其中,所述覆盖等级的搜索空间的大小与所述覆盖等级正相关;所述搜索空间为所述基站为所述用户设备分配NPDCCH的最小周期。
一种可能的实现方式,所述处理单元具体用于:
根据所述基站的搜索能力以及需要调度的用户设备的数量,确定所述调度范围。
一种可能的实现方式,所述处理单元还用于:
若在所述调度区间内,未找到可用的NPDCCH,则所述基站将所述用户设备加入下一个调度周期进行调度。
本申请实施例提供一种基站,应用于窄带物联网,包括:至少一个收发机,至少一个处理器;以及,
与所述至少一个处理器通信连接的存储器;其中,所述存储器存储有可被所述至少一个处理器执行的指令,所述指令被所述至少一个处理器执行;
所述收发机,用于获取M个用户设备的覆盖等级,M为正整数;
所述处理器,用于根据所述M个用户设备的覆盖等级,确定每个用户设备的起始资源调度偏置时间以及调度范围;根据每个用户设备的所述起始资源调度偏置时间以及调度范围确定每个用户设备对应的调度区间;在每个用户设备对应的调度区间内,为所述用户设备调度窄带物理下行控制信道NPDCCH。
一种可能的实现方式,所述处理器具体用于:
若确定第一用户对应的覆盖等级小于第二用户对应的覆盖等级,则将所述第二用户对应的覆盖等级的起始资源调度偏置时间设置为大于或等于所述第一用户对应的覆盖等级对应的调度区间的结束时间。
一种可能的实现方式,所述处理器具体用于:
根据所述M个用户设备对应的覆盖等级,确定所述覆盖等级对应的搜索空间的数目和每个搜索空间的大小;根据所述覆盖等级的搜索空间的数目和每个搜索空间的大小,确定所述覆盖等级的调度范围;其中,所述覆盖等级的搜索空间的大小与所述覆盖等级正相关;所述搜索空间为所述基站为所述用户设备分配NPDCCH的最小周期。
一种可能的实现方式,所述处理器具体用于:
根据所述基站的搜索能力以及需要调度的用户设备的数量,确定所述调度范围。
一种可能的实现方式,所述处理器还用于:
若在所述调度区间内,未找到可用的NPDCCH,则所述基站将所述用户 设备加入下一个调度周期进行调度。
本申请实施例提供一种计算机可读存储介质,所述计算机可读存储介质存储计算机指令,所述计算机指令用于使所述计算机执行本申请实施例提供的任意可能的实现方式中的方法。
本申请实施例提供一种计算机程序产品,所述计算机程序产品包括存储在计算机可读存储介质上的计算机程序,所述计算机程序包括程序指令,当所述程序指令被计算机执行时,使所述计算机执行本申请实施例提供的任意可能的实现方式中的方法。
本申请的一个或多个实施例的细节在下面的附图和描述中提出。本申请的其它特征和优点将从说明书、附图以及权利要求书变得明显。
附图说明
为了更清楚地说明本申请实施例中的技术方案,下面将对实施例描述中所需要使用的附图作简要介绍,显而易见地,下面描述中的附图仅仅是本申请的一些实施例,对于本领域的普通技术人员来讲,在不付出创造性劳动性的前提下,还可以根据这些附图获得其他的附图。
图1为本申请实施例的一种物理信道资源的调度方法的流程示意图;
图2为本申请实施例的一种物理信道资源的调度方法的结构示意图;
图3为本申请实施例的一种物理信道资源的调度装置的结构示意图;
图4为本申请实施例提供的一种基站的结构示意图。
具体实施方式
下面将结合附图对本申请作进一步地详细描述。
如图1所示,本申请实施例提供一种物理信道资源的调度方法,应用于窄带物联网,包括以下步骤:
步骤101:基站获取M个用户设备的覆盖等级,M为正整数;
步骤102:所述基站根据所述M个用户设备的覆盖等级,确定每个用户设备的起始资源调度偏置时间以及调度范围;
步骤103:所述基站根据每个用户设备的所述起始资源调度偏置时间以及调度范围确定每个用户设备对应的调度区间;
步骤104:所述基站在每个用户设备对应的调度区间内,为所述用户设备调度窄带物理下行控制信道NPDCCH。
通过上述方法,可以实现根据不同覆盖等级的用户设备进行分配NPDCCH的资源,使得资源需求小的用户设备获取较少的PDCCH资源,资源需求大的用户设备获取较多的PDCCH资源,避免了PDCCH资源的浪费,提高了PDCCH资源的利用率。使得增强覆盖等级用户,尤其是高覆盖等级的用户,容易调度成功,以及减小了调度时延。另外,所述调度区间包括多个所述覆盖等级对应分配的窄带物理下行控制信道NPDCCH的搜索空间。保证在一个调度周期内所述M个用户设备可以在对应的调度区间内全部调度完成,并且调度过程中,仅需要搜索对应调度区间内的NPDCCH即可完成调度,提高了调度和分配资源的处理效率,达到高效调度及减少调度时延效果,极大的提高了调度效率。
由于NB-IoT需实现更长时间待机。通常可以借助节电模式(Power Saving Mode,PSM)和超长非连续接收(Enhanced Discontinuous Reception,eDRX)实现,例如,PSM模式下,用户设备仍旧注册在网,但信令不可达,从而使用户设备可以更长时间驻留在深睡眠以达到省电的目的。eDRX进一步延长用户设备在空闲模式下的睡眠周期,减少用户设备中的接收单元不必要的启动。
一种可能的实现方式中,用户设备可以会设定启动周期,仅在需要进行传输数据时,用户设备启动进行注册,此时,该用户设备需要进行NPDCCH的调度。
在步骤101中,所述基站可以在调度周期达到时,根据预设规则确定所述M个用户设备。
其中,调度周期可以为1ms、2ms等,具体的,可以根据基站处理能力及用户设备的时延要求进行设置,以保证在调度周期内可以将所述M个用户设备调度完成。
在NB-IoT系统中,上下行资源调度信息(例如:资源分配结果、编码调制方式等信息)都是由NPDCCH来承载。而在NPDCCH中的DCI(Downlink Control Information,下行控制信息)包含了一个或者多个用户设备上的资源分配和其他控制信息。每一个用户设备在获取到NPDCCH之后,通过解调NPDCCH中DCI,确定用于传输下行数据(包括广播消息,寻呼,UE的数据等)的NPDSCH对应的资源位置,以及确定用于传输上行数据的NPUSCH对应的资源位置。NPDCCH包含了UL grant,以指示UE上行数据传输时所使用的资源。
所述预设规则包括:根据用户设备的优先级、用户设备的调度时延、用户设备的业务类型等确定所述M个用户设备。针对不同的上行下行数据量需求以及周期,可以确定在一个调度周期内的M个用户设备。例如,自主异常报告业务类型。如烟雾报警探测器、智能电表停电的通知等,上行数据极小数据量需求(十字节量级),周期可以以年、月为单位。2)自主周期报告业务类型。如智能公用事业(煤气/水/电)测量报告、智能农业、智能环境等,上行较小数据量需求(百字节量级),周期可以以天、小时为单位。3)网络指令业务类型。如开启/关闭、设备触发发送上行报告、请求抄表,下行极小数据量需求(十字节量级),周期可以以天、小时为单位。4)软件更新业务类型。如软件补丁/更新,上行下行较大数据量需求(千字节量级),周期可以以天、小时为单位。
可以看出,在时域调度过程中,不同类型的用户设备在数据量需求中差异较大,因此,在当前调度周期内需要调度的用户设备中,根据基站的处理能力以及用户设备的业务类型等规则进行选择M个用户设备进行调度,可以均衡所述基站的调度能力,减少调度拥塞,提高调度效率。
在具体实施过程中,可以根据选择的所述M个用户设备进行资源分配,通过用户设备优先级或轮询的方式,对用户设备排序,选择前M个用户设备 进行优先资源分配,以提高资源利用率。
NB-IoT通过多次重复发送提高其覆盖(最大耦合损耗(Maximum Coupling Loss,MCL),从基站天线端口到终端天线端口的路径损耗),可以实现比传统的覆盖增强20dB。以水表为例,其所处位置无线环境较差,与智能手机相比,高度差导致信号差4dB,同时再盖上盖子,额外增加约10dB左右损耗,所以需要覆盖增强。
举例来说,所述覆盖等级(Coverage Enhancement Level,CE Level),可以分为三个等级,分别对应可对抗144dB、154dB、164dB的信号衰减。基站与NB-IoT的用户设备之间会根据其所在的覆盖等级来选择相对应的信息重发次数。其中,所述用户设备的覆盖等级可以在用户设备接入时确定,具体的确定方式在此不再赘述。
NB-IoT采用集中控制方式管理演进节点(Evolved Node Base station,eNB)与用户设备之间,数据传输所需的无线资源。与LTE系统相同,UE传输或是接收数据皆听从于eNB指示.分别为下行链路传输分配(Downlink Assignment)与上行链路传输授权(Uplink Grant);即下行链路传输控制指示(Downlink Control Indicator,DCI),上行部份使用DCI格式,下行部份为DCI N1格式,寻呼(Paging)部份则使用DCI N2格式。
UE在与基站链接的过程会周期性地监测/监听(Monitor)DCI传送的区域,即窄频物理下行控制频道(NPDCCH),亦称搜索空间(Search Space)。UE收到属于自己的DCI后,再依其内容指示至相对应数据传送区域,即窄频物理下行分享频道(NPDSCH)接收数据。并非每个子帧都有NPDCCH,而是周期性出现。各个搜索空间有无线资源控制(RRC)配置相对应的最大重复次数Rmax,其搜索空间的出现周期大小即为相应的Rmax与RRC层配置的一参数的乘积。一个DCI中会带有该DCI的重传次数,以及DCI传送结束后至其所排程的NPDSCH或NPUSCH所需的延迟时间,NB-IoT的用户设备即可使用此DCI所在的搜索空间的开始时间,来推算DCI的结束时间以及排程的 数据的开始时间,以进行数据的传送或接收。
另外,在时域调度过程中,NB-IoT为FDD半双工type-B模式。即上行和下行在频率上分开,用户设备不会同时处理接收和发送,用户设备只需一个切换器去改变发送和接收模式。因此,不同的上行传输持续时间和不同的下行传输持续时间都会影响基站对用户设备NPDCCH的调度。对于低覆盖等级用户,可以通过DL Gap或UL GAP机制进行数据发送。
在步骤102中,所述用户设备对应的覆盖等级的起始资源调度偏置时间,为基站针对该调度周期内的调度时刻开始,经过一个预设的偏置时间后的时间;例如,若确定所述基站的开始调度的时刻为T0,则经过第一覆盖等级预设的偏置时间为t1,则第一覆盖等级的起始资源调度偏置时间为T0+t1。
为提高NPDCCH的资源利用率,减少资源碎片,一种可能的实现方式,所述起始资源调度偏置时间还可以根据所述覆盖等级以及所述覆盖等级对应的用户设备的待发送信号时长进行设置。
例如,假设第一用户设备和第二用户设备对应第一覆盖等级,第三用户设备对应第二覆盖等级;第一用户设备的待发送信号时长为1ms,第二用户设备的待发送信号时长为2ms;
若确定所述第一覆盖等级对应的起始资源调度偏置时间为10ms,第一覆盖等级的调度范围为12ms,则可以设置所述第二覆盖等级的起始资源调度偏置时间为10ms+12ms+2ms=24ms。
一种可能的实现方式,所述基站根据所述M个用户设备的覆盖等级,确定每个用户设备的起始资源调度偏置时间,可以包括:
所述基站若确定第一用户对应的覆盖等级小于第二用户对应的覆盖等级,则将所述第二用户对应的覆盖等级的起始资源调度偏置时间设置为大于或等于所述第一用户对应的覆盖等级对应的调度区间的结束时间。
例如,若确定第一覆盖等级预设的偏置时间为t1,第一覆盖等级的调度范围为T1,则第一覆盖等级的调度区间的起始时间为所述第一覆盖等级的起始资源调度偏置时间T0+t1,第一覆盖等级的调度区间的结束时间为T0+t1+T1。第二覆盖等级预设的偏置时间可以为t2,第二覆盖等级的起始资源调度偏置时间可以为T0+t1+T1+t2。若第二覆盖等级的调度范围为T2,则第二覆盖等级的调度区间的结束时间为T0+t1+T1+t2+T2。
通过上述方法,可以将不同覆盖等级的调度区间在时域空间错开,以避免在调度不同持续时间的用户设备时出现调度效率低以及资源利用率低的问题,可以避免低覆盖等级用户的重传碎片引起更高覆盖用户分配不成功现象,同时减少用户资源搜索运算量。例如,对于覆盖等级小的用户,其发送NPDSCH的持续时间较小,在覆盖等级较小的不同用户设备占用的NPDSCH之间,不能分配给覆盖等级较大的用户设备,导致覆盖等级大持续时间长的用户设备的数据只能排在更后面的位置尝试发送,进而出现阻塞,影响调度的效率;另外,也较容易出现资源碎片,导致资源利用率较低。
在步骤102中,为保证在调度周期内所述M个用户设备可以调度完毕,并且可以合理利用资源。一种可能的实现方式,所述基站根据所述M个用户设备的覆盖等级,确定每个用户设备的调度范围,可以包括:
所述基站根据所述M个用户设备对应的覆盖等级,确定所述覆盖等级对应的搜索空间的数目和每个搜索空间的大小;
所述基站根据所述覆盖等级的搜索空间的数目和每个搜索空间的大小,确定所述覆盖等级的调度范围;
其中,所述覆盖等级的搜索空间与所述覆盖等级正相关;所述搜索空间为所述基站为所述用户设备分配的NPDCCH的最小周期。
在具体实施过程中,所述调度范围为根据所述覆盖等级对应的NPDCCH的搜索空间的大小,以及所述搜索空间的数目,即搜索次数,确定的。例如, 若用户设备对应的覆盖等级设定NPDCCH的搜索次数为10,则会由调度时刻偏移所述覆盖等级对应的起始资源调度偏置时间对应的时刻开始,搜索10个对应所述覆盖等级的NPDCCH搜索空间,作为所述覆盖等级的调度范围。
举例来说,如图2所示,为本申请一个具体的实施例,覆盖等级包括第一覆盖等级,第二覆盖等级,第三覆盖等级,所述第一覆盖等级的起始资源调度偏置时间为t1,所述第二覆盖等级的起始资源调度偏置时间为t2,所述第三覆盖等级的起始资源调度偏置时间为t3,所述第一覆盖等级的调度范围为n1×pp1,所述第二覆盖等级202的调度范围为n2×pp2,所述第三覆盖等级的调度范围为n3×pp3。其中,所述n1,n2,n3为对应覆盖等级的调度范围中的搜索空间的搜索次数;所述pp1,pp2,pp3为对应覆盖等级的调度范围中的搜索空间的时长,可以设置为pp3>pp2>pp1;举例来说,第一覆盖等级的搜索空间的数目n1可以为3,每个搜索空间,即NPDCCH的最小周期可以为1s。不同覆盖等级的起始资源调度偏置时间间的关系可以表示为:t2≥t1+n1×pp1;t3≥t2+n2×pp2;在下一调度周期中的第一覆盖等级的起始资源调度偏置时间t1可以设置为t1≥t3+n3×pp3。
根据上述方法,可以有效平衡为用户设备搜索资源的处理时间和分配成功率,提高分配效率,减少分配时延。
一种可能的实现方式,所述基站根据所述M个用户设备的覆盖等级,确定每个用户设备的调度范围,还可以包括:
所述基站根据所述基站的搜索能力以及需要调度的用户设备的数量,确定所述调度范围。
在具体实施过程中,所述基站根据所述基站的CPU的处理能力,以及存储空间,确定可搜索的最大范围,例如,所述调度范围可以为1小时;还可以根据所述需要调度的用户设备的数量,确定所述调度范围,例如,若确定所述用户设备的数量较少,所述调度范围可以设置为至少1个搜索空间的时长。
另外,还可以根据其他方式设置所述覆盖等级对应的调度区间,在此不 做限定。
通过上述方法,可以根据基站的能力以及用户的需求,确定调度范围,减少了基站为调度范围而设置多种调度范围,减少了基站的处理量,另外,根据用户设备的数量确定调度范围,可以进一步的提高资源利用率,提高了资源分配的效率。
在步骤103中,所述基站将覆盖等级的起始资源调度偏置时间作为所述覆盖等级对应的调度区间的起始时间,将所述覆盖等级的调度范围加上起始时间的时间作为所述覆盖等级的调度区间的结束时间。
例如,第一覆盖等级的调度区间的起始时间为所述第一覆盖等级的起始资源调度偏置时间T0+t1,第一覆盖等级的调度区间的结束时间为T0+t1+T1。
在步骤104中,本申请实施例还包括:根据NPDCCH的分配结果,分配NPDSCH和NPUSCH。
NPDSCH的子帧结构和NPDCCH一样。NPDSCH是用来传送下行数据以及系统信息,NPDSCH所占用的带宽是一整个PRB大小。一个传输块(Transport Block,TB)依据所使用的调制与编码策略(MCS),可能需要使用多于一个子帧来传输,因此在NPDCCH中接收到的Downlink Assignment中会包含一个TB对应的子帧数目以及重传次数指示。
NPUSCH用于传输上行数据以及上行控制信息。NPUSCH传输可使用单频或多频传输。映射到传输块的最小单元为资源单元(resource unit,RU),它由NPUSCH格式和子载波空间决定。NB-IoT根据子载波和时隙数目来作为资源分配的基本单位。由于一个TB可能需要使用多个资源单位来传输,因此在NPDCCH中接收到的Uplink Grant中除了指示上行数据传输所使用的资源单位的子载波的索引(Index),也会包含一个TB对应的资源单位数目以及重传次数指示。
因此,在确定可分配的NPDCCH后,需要进行NPDSCH或NPUSCH的分配时,可以根据NPDCCH与NPDSCH或NPUSCH的时序关系,即根据NPDSCH或NPUSCH的时延(delay)及资源元素(Resource Element,RE)确定。
例如,所述基站根据用户设备对应的覆盖等级的起始资源调度偏置时间,确定计算起始调度时刻,同时根据所述覆盖等级的调度范围,搜索到N个可用的NPDCCH;根据NPDCCH与NPDSCH或NPUSCH的时序关系,遍历N个NPDCCH资源对应的NPDSCH或NPUSCH资源。若确定其中一个NPDCCH资源对应的NPDSCH或NPUSCH资源还没有被占用,则将所述NPDCCH资源以及所述NPDSCH活NPUSCH资源分配至所述用户设备。在具体实施过程中,对于低覆盖等级用户,可以通过DL Gap或UL GAP机制进行数据发送。
根据上述方法,可以避免低覆盖等级用户的重传碎片,减少更高覆盖等级的用户设备分配不成功的问题,同时减少基站为用户设备分配资源时的搜索运算量,提高调度效率。
在所述用户设备分配所述NPDCCH成功后,开始下一个用户设备的资源分配,分配方式可以参见上述方法,在此不再赘述。
在步骤104中,所述方法还包括:所述基站在所述起始资源调度偏置时间以及所述调度范围对应的调度区间内,未找到可用的NPDCCH,则所述基站将所述用户设备加入下一个调度周期进行调度。
结合前面的例子,当所述用户设备在对应的覆盖等级的10个搜索空间中能成功分配NPDCCH资源,则确定所述用户设备的NPDCCH资源分配成功,若否,则确定所述用户设备的NPDCCH资源分配失败。
或者,所述用户设备在实施调度区间内搜索到N个可用的NPDCCH资源,但是所述N个可用的NPDCCH资源对应的NPDSCH或NPUSCH资源都不可用,则认为没有可用资源分配至所述用户设备,则确定所述用户设备在所述调度周期内调度失败,将所述用户设备加入下一调度周期,并可以将所述用 户设备的优先级调高,以尽快将所述用户设备的数据传输出去,提高了用户设备的资源调度的效率。
本申请实施例通过基站获取M个用户设备的覆盖等级,M为大于0的整数;所述基站将所述M个用户设备中属于相同覆盖等级的用户设备作为一组,并确定与每组用户设备的覆盖等级对应的起始资源调度偏置时间以及调度范围;所述基站在每组用户设备对应的起始资源调度偏置时间以及调度范围对应的调度区间内,为所述用户设备调度NPDCCH。可以实现根据不同覆盖等级的用户设备进行分配NPDCCH的资源,使得资源需求小的用户设备获取较少的PDCCH资源,资源需求大的用户设备获取较多的PDCCH资源,避免了PDCCH资源的浪费,提高了PDCCH资源的利用率。另外,所述调度区间包括多个所述覆盖等级对应分配的窄带物理下行控制信道NPDCCH的搜索空间。保证在一个调度周期内所述M个用户设备可以在对应的调度区间内全部调度完成,并且调度过程中,仅需要搜索对应调度区间内的NPDCCH即可完成调度,极大的提高了调度效率。
基于相同的申请构思,如图3所示,本申请实施例提供的一种装置20,包括至少一个处理器21,通信总线22,存储器23以及至少一个通信接口24。
示例性的,上述实施例中的基站也可以为图3所示的装置20,装置20可以通过处理器21实现本申请实施例中的通信方法中与基站有关的步骤。
处理器21可以是一个通用中央处理器(CPU),微处理器,特定应用集成电路(application-specific integrated circuit,ASIC),或一个或多个用于控制本申请方案程序执行的集成电路。
通信总线22可包括一通路,在上述组件之间传送信息。所述通信接口24,使用任何收发器一类的装置,用于与其他设备或通信网络通信,如以太网,无线接入网(RAN),WALN等。
存储器23可以是只读存储器(read-only memory,ROM)或可存储静态信息和指令的其他类型的静态存储设备,随机存取存储器(random access memory,RAM)或者可存储信息和指令的其他类型的动态存储设备,也可以 是电可擦可编程只读存储器(electrically erasable programmable read-only memory,EEPROM)、只读光盘(compact disc read-only memory,CD-ROM)或其他光盘存储、光碟存储(包括压缩光碟、激光碟、光碟、数字通用光碟、蓝光光碟等)、磁盘存储介质或者其他磁存储设备、或者能够用于携带或存储具有指令或数据结构形式的期望的程序代码并能够由该装置存取的任何其他介质,但不限于此。存储器可以是独立存在,通过总线与处理器相连接。存储器也可以和处理器集成在一起。
其中,所述存储器23用于存储执行本申请方案的应用程序代码,并由处理器21来控制执行。所述处理器21用于执行所述存储器23中存储的应用程序代码。
在具体实现中,作为一种实施例,处理器21可以包括一个或多个CPU,例如图3中的CPU0和CPU1。
在具体实现中,作为一种实施例,该装置20可以包括多个处理器,例如图3中的处理器21和处理器28。这些处理器中的每一个可以是一个单核(single-CPU)处理器,也可以是一个多核(multi-CPU)处理器。这里的处理器可以指一个或多个设备、电路、和/或用于处理数据(例如计算机程序指令)的处理核。
本申请实施例可以根据上述方法示例对图3所示的装置进行功能模块的划分,例如,可以对应各个功能划分各个功能模块,也可以将两个或两个以上的功能集成在一个处理模块中。上述集成的模块既可以采用硬件的形式实现,也可以采用软件功能模块的形式实现。需要说明的是,本申请实施例中对模块的划分是示意性的,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式。
在本实施例中,图3所示的装置以对应各个功能划分各个功能模块的形式来呈现,或者,该装置以采用集成的方式划分各个功能模块的形式来呈现。这里的“模块”可以指特定应用集成电路(application-specific integrated circuit,ASIC),电路,执行一个或多个软件或固件程序的处理器和存储器,集成逻辑 电路,和/或其他可以提供上述功能的器件。
比如,在采用对应各个功能划分各个功能模块的情况下,图4示出了上述实施例中所涉及的装置的可能的结构示意图,该装置900可以是上述实施例中的基站。该装置900包括处理单元901和收发单元902。所述收发单元902用于所述处理单元901收发信号。图4中的处理单元901执行的方法可以通过图4的处理器21(和/或处理器28)和存储器23来实现,具体的,处理单元901执行的方法可以通过图3的处理器21(和/或处理器28)来调用存储器23中存储的应用程序代码来执行,本申请实施例对此不作任何限制。
具体实现中,当装置900可以是上述实施例中的基站时,应用于窄带物联网,包括:
收发单元902,用于获取M个用户设备的覆盖等级,M为正整数;
处理单元901,用于根据所述M个用户设备的覆盖等级,确定每个用户设备的起始资源调度偏置时间以及调度范围;根据每个用户设备的所述起始资源调度偏置时间以及调度范围确定每个用户设备对应的调度区间;在每个用户设备对应的调度区间内,为所述用户设备调度窄带物理下行控制信道NPDCCH。
一种可能的实现方式,处理单元901具体用于:
若确定第一用户对应的覆盖等级小于第二用户对应的覆盖等级,则将所述第二用户对应的覆盖等级的起始资源调度偏置时间设置为大于或等于所述第一用户对应的覆盖等级对应的调度区间的结束时间。
一种可能的实现方式,处理单元901具体用于:
根据所述M个用户设备对应的覆盖等级,确定所述覆盖等级对应的搜索空间的数目和每个搜索空间的大小;根据所述覆盖等级的搜索空间的数目和每个搜索空间的大小,确定所述覆盖等级的调度范围;其中,所述覆盖等级的搜索空间的大小与所述覆盖等级正相关;所述搜索空间为所述基站为所述用户设备分配NPDCCH的最小周期。
一种可能的实现方式,处理单元901具体用于:
根据所述基站的搜索能力以及需要调度的用户设备的数量,确定所述调度范围。
一种可能的实现方式,处理单元901还用于:
若在所述调度区间内,未找到可用的NPDCCH,则所述基站将所述用户设备加入下一个调度周期进行调度。
本申请实施例提供一种计算机可读存储介质,所述计算机可读存储介质存储计算机指令,所述计算机指令用于使所述计算机执行本申请实施例提供的任意可能的实现方式中的方法。
本申请实施例提供一种计算机程序产品,所述计算机程序产品包括存储在计算机可读存储介质上的计算机程序,所述计算机程序包括程序指令,当所述程序指令被计算机执行时,使所述计算机执行本申请实施例提供的任意可能的实现方式中的方法。
本领域的技术人员应明白,本申请的实施例可提供为方法、装置(设备)、或计算机程序产品。因此,本申请可采用完全硬件实施例、完全软件实施例、或结合软件和硬件方面的实施例的形式。而且,本申请可采用在一个或多个其中包含有计算机可用程序代码的计算机可用存储介质(包括但不限于磁盘存储器、CD-ROM、光学存储器等)上实施的计算机程序产品的形式。
本申请是参照根据本申请实施例的方法、装置(设备)和计算机程序产品的流程图和/或方框图来描述的。应理解可由计算机程序指令实现流程图和/或方框图中的每一流程和/或方框、以及流程图和/或方框图中的流程和/或方框的结合。可提供这些计算机程序指令到通用计算机、专用计算机、嵌入式处理机或其他可编程数据处理设备的处理器以产生一个机器,使得通过计算机或其他可编程数据处理设备的处理器执行的指令产生用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的装置。
这些计算机程序指令也可存储在能引导计算机或其他可编程数据处理设备以特定方式工作的计算机可读存储器中,使得存储在该计算机可读存储器中的指令产生包括指令装置的制造品,该指令装置实现在流程图一个流程或 多个流程和/或方框图一个方框或多个方框中指定的功能。
这些计算机程序指令也可装载到计算机或其他可编程数据处理设备上,使得在计算机或其他可编程设备上执行一系列操作步骤以产生计算机实现的处理,从而在计算机或其他可编程设备上执行的指令提供用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的步骤。
尽管已描述了本申请的优选实施例,但本领域内的技术人员一旦得知了基本创造性概念,则可对这些实施例作出另外的变更和修改。所以,所附权利要求意欲解释为包括优选实施例以及落入本申请范围的所有变更和修改。
显然,本领域的技术人员可以对本申请进行各种改动和变型而不脱离本申请的精神和范围。这样,倘若本申请的这些修改和变型属于本申请权利要求及其等同技术的范围之内,则本申请也意图包含这些改动和变型在内。

Claims (13)

  1. 一种物理信道资源的调度方法,应用于窄带物联网,包括:
    基站获取M个用户设备的覆盖等级,M为正整数;
    所述基站根据所述M个用户设备的覆盖等级,确定每个用户设备的起始资源调度偏置时间以及调度范围;
    所述基站根据每个用户设备的所述起始资源调度偏置时间以及调度范围确定每个用户设备对应的调度区间;及
    所述基站在每个用户设备对应的调度区间内,为所述用户设备调度窄带物理下行控制信道NPDCCH。
  2. 如权利要求1所述的方法,其特征在于,所述基站根据所述M个用户设备的覆盖等级,确定每个用户设备的起始资源调度偏置时间,包括:
    所述基站若确定第一用户对应的覆盖等级小于第二用户对应的覆盖等级,则将所述第二用户对应的覆盖等级的起始资源调度偏置时间设置为大于或等于所述第一用户对应的覆盖等级对应的调度区间的结束时间。
  3. 如权利要求1或2所述的方法,其特征在于,所述基站根据所述M个用户设备的覆盖等级,确定每个用户设备的调度范围,包括:
    所述基站根据所述M个用户设备对应的覆盖等级,确定所述覆盖等级对应的搜索空间的数目和每个搜索空间的大小;及
    所述基站根据所述覆盖等级的搜索空间的数目和每个搜索空间的大小,确定所述覆盖等级的调度范围;
    其中,所述覆盖等级的搜索空间的大小与所述覆盖等级正相关;所述搜索空间为所述基站为所述用户设备分配NPDCCH的最小周期。
  4. 如权利要求1或2所述的方法,其特征在于,所述基站根据所述M个用户设备的覆盖等级,确定每个用户设备的调度范围,包括:
    所述基站根据所述基站的搜索能力以及需要调度的用户设备的数量,确定所述调度范围。
  5. 如权利要求1或2所述的方法,其特征在于,还包括:
    所述基站若在所述调度区间内,未找到可用的NPDCCH,则所述基站将所述用户设备加入下一个调度周期进行调度。
  6. 一种物理信道资源的调度装置,应用于窄带物联网,包括:
    收发单元,用于获取M个用户设备的覆盖等级,M为正整数;
    处理单元,用于根据所述M个用户设备的覆盖等级,确定每个用户设备的起始资源调度偏置时间以及调度范围;根据每个用户设备的所述起始资源调度偏置时间以及调度范围确定每个用户设备对应的调度区间;在每个用户设备对应的调度区间内,为所述用户设备调度窄带物理下行控制信道NPDCCH。
  7. 如权利要求6所述的装置,其特征在于,所述处理单元具体用于:
    若确定第一用户对应的覆盖等级小于第二用户对应的覆盖等级,则将所述第二用户对应的覆盖等级的起始资源调度偏置时间设置为大于或等于所述第一用户对应的覆盖等级对应的调度区间的结束时间。
  8. 如权利要求6或7所述的装置,其特征在于,所述处理单元具体用于:
    根据所述M个用户设备对应的覆盖等级,确定所述覆盖等级对应的搜索空间的数目和每个搜索空间的大小;根据所述覆盖等级的搜索空间的数目和每个搜索空间的大小,确定所述覆盖等级的调度范围;其中,所述覆盖等级的搜索空间的大小与所述覆盖等级正相关;所述搜索空间为所述基站为所述用户设备分配NPDCCH的最小周期。
  9. 如权利要求6或7所述的装置,其特征在于,所述处理单元具体用于:
    根据所述基站的搜索能力以及需要调度的用户设备的数量,确定所述调度范围。
  10. 如权利要求6或7所述的装置,其特征在于,所述处理单元还用于:
    若在所述调度区间内,未找到可用的NPDCCH,则所述基站将所述用户设备加入下一个调度周期进行调度。
  11. 一种基站,包括:如权利要求6-10中任一所述的物理信道资源的调度装置。
  12. 一种计算机可读存储介质,所述计算机可读存储介质存储计算机指令,所述计算机指令用于使所述计算机执行权利要求1-5任一权利要求所述方法。
  13. 一种计算机程序产品,所述计算机程序产品包括存储在计算机可读存储介质上的计算程序,所述计算机程序包括程序指令,当所述程序指令被计算机执行时,使所述计算机执行权利要求1-5任一权利要求所述方法。
PCT/CN2018/125401 2018-05-09 2018-12-29 一种物理信道资源的调度方法、装置及基站 WO2019214264A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201810436465.X 2018-05-09
CN201810436465.XA CN108616993B (zh) 2018-05-09 2018-05-09 一种物理信道资源的调度方法及装置

Publications (1)

Publication Number Publication Date
WO2019214264A1 true WO2019214264A1 (zh) 2019-11-14

Family

ID=63662406

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/125401 WO2019214264A1 (zh) 2018-05-09 2018-12-29 一种物理信道资源的调度方法、装置及基站

Country Status (2)

Country Link
CN (1) CN108616993B (zh)
WO (1) WO2019214264A1 (zh)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108616993B (zh) * 2018-05-09 2021-03-19 京信通信系统(中国)有限公司 一种物理信道资源的调度方法及装置
CN111107631A (zh) * 2018-10-26 2020-05-05 财团法人资讯工业策进会 物联网基站及其资源安排方法
CN109548167B (zh) * 2018-12-10 2020-11-10 京信通信系统(中国)有限公司 覆盖范围自适应调整方法、装置、计算机存储介质及设备
CN113348719B (zh) * 2019-02-15 2022-10-28 华为技术有限公司 一种监听方法及装置

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017136004A1 (en) * 2016-02-05 2017-08-10 Intel IP Corporation Systems and methods for flexible time-domain resource mapping for npdcch and npdsch in nb-iot systems
CN107046722A (zh) * 2016-02-05 2017-08-15 中兴通讯股份有限公司 调度定时间隔的确定方法及装置
WO2018030792A1 (ko) * 2016-08-09 2018-02-15 엘지전자(주) 협대역 사물인터넷을 지원하는 무선 통신 시스템에서 데이터를 송수신하는 방법 및 이를 위한 장치
CN107733627A (zh) * 2016-08-12 2018-02-23 株式会社Kt 用于针对NB‑IoT终端发送或接收多播控制信道的方法和装置
CN107949058A (zh) * 2017-11-10 2018-04-20 北京邮电大学 一种窄带物联网随机接入方法及装置
CN108616993A (zh) * 2018-05-09 2018-10-02 京信通信系统(中国)有限公司 一种物理信道资源的调度方法及装置

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10200895B2 (en) * 2016-08-10 2019-02-05 Nokia Solutions And Networks Oy Radio link monitoring methods for wireless systems with multiple coverage levels
CN107734648B (zh) * 2016-08-12 2021-12-10 株式会社Kt 用于针对bl/ce终端发送或接收多播控制信道的方法和装置
WO2018048237A1 (en) * 2016-09-08 2018-03-15 Samsung Electronics Co., Ltd. Method and system for implementing multiple-access in wireless communication system

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017136004A1 (en) * 2016-02-05 2017-08-10 Intel IP Corporation Systems and methods for flexible time-domain resource mapping for npdcch and npdsch in nb-iot systems
CN107046722A (zh) * 2016-02-05 2017-08-15 中兴通讯股份有限公司 调度定时间隔的确定方法及装置
WO2018030792A1 (ko) * 2016-08-09 2018-02-15 엘지전자(주) 협대역 사물인터넷을 지원하는 무선 통신 시스템에서 데이터를 송수신하는 방법 및 이를 위한 장치
CN107733627A (zh) * 2016-08-12 2018-02-23 株式会社Kt 用于针对NB‑IoT终端发送或接收多播控制信道的方法和装置
CN107949058A (zh) * 2017-11-10 2018-04-20 北京邮电大学 一种窄带物联网随机接入方法及装置
CN108616993A (zh) * 2018-05-09 2018-10-02 京信通信系统(中国)有限公司 一种物理信道资源的调度方法及装置

Also Published As

Publication number Publication date
CN108616993B (zh) 2021-03-19
CN108616993A (zh) 2018-10-02

Similar Documents

Publication Publication Date Title
EP3078225B1 (en) Method for adaptive tti coexistence with lte
WO2019214264A1 (zh) 一种物理信道资源的调度方法、装置及基站
TW202010336A (zh) 一種信號發送、接收方法、網路設備及終端
CN109891973B (zh) 一种下行控制信息监测方法、终端
JP2022528893A (ja) 物理ダウンリンク制御チャネル(pdcch)ベースのウェイクアップ信号(wus)設定のための方法
JP2022502946A (ja) 異なるスケジューリング遅延の仮説間での移行
CN111448829B (zh) 用于无线通信的用户节点、网络节点、及方法
KR102442912B1 (ko) 연결 모드에서의 무선 디바이스를 위한 웨이크업 다운링크 제어 정보(dci)
CN111865536B (zh) 搜索空间的监测、配置方法及装置
JP2022517311A (ja) Ue支援情報を送信することに関するユーザ装置
KR20210146391A (ko) 무선 통신 시스템에서의 제어 채널 모니터링
CN114286429B (zh) 一种通信方法及设备
US20230371118A1 (en) Communication method and device
KR101687884B1 (ko) M2m 디바이스에 대한 페이징 사이클을 관리하는 기술
US20240188036A1 (en) Wireless communication method, terminal, and network device
US20220239452A1 (en) Method and system for adapting concurrent bandwidth part switching on multiple links in a wireless network
US20220070911A1 (en) Enhanced single downlink control information multi-slot scheduling
JP2022516944A (ja) コネクテッド不連続受信のための省電力信号構成
CN116965133A (zh) 用于处理数据传输的无线装置、网络节点及其执行的方法
CN116671188A (zh) 侧链通信的非连续接收
US20240121798A1 (en) Methods, apparatus and systems for a control channel monitoring procedure
CN110831130B (zh) 数据传输方法及装置
US11570633B2 (en) Network configuration method, apparatus, network element, and system
WO2022151501A1 (zh) 一种通信方法及装置
WO2019041261A1 (zh) 一种通信方法及设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18918254

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18918254

Country of ref document: EP

Kind code of ref document: A1