WO2023050906A1 - 内串联式电池片光伏组件和封装结构制作方法 - Google Patents

内串联式电池片光伏组件和封装结构制作方法 Download PDF

Info

Publication number
WO2023050906A1
WO2023050906A1 PCT/CN2022/099759 CN2022099759W WO2023050906A1 WO 2023050906 A1 WO2023050906 A1 WO 2023050906A1 CN 2022099759 W CN2022099759 W CN 2022099759W WO 2023050906 A1 WO2023050906 A1 WO 2023050906A1
Authority
WO
WIPO (PCT)
Prior art keywords
amorphous silicon
silicon layer
battery
type amorphous
electrode
Prior art date
Application number
PCT/CN2022/099759
Other languages
English (en)
French (fr)
Inventor
虞祥瑞
彭文博
肖平
赵东明
罗丽珍
朱文哲
Original Assignee
中国华能集团清洁能源技术研究院有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中国华能集团清洁能源技术研究院有限公司 filed Critical 中国华能集团清洁能源技术研究院有限公司
Publication of WO2023050906A1 publication Critical patent/WO2023050906A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/042PV modules or arrays of single PV cells
    • H01L31/048Encapsulation of modules
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/042PV modules or arrays of single PV cells
    • H01L31/05Electrical interconnection means between PV cells inside the PV module, e.g. series connection of PV cells
    • H01L31/0504Electrical interconnection means between PV cells inside the PV module, e.g. series connection of PV cells specially adapted for series or parallel connection of solar cells in a module
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the invention relates to the technical field of packaging of heterojunction battery components, in particular to a manufacturing method of an inner-tandem cell photovoltaic module and a packaging structure.
  • Photovoltaic module packaging methods are mainly divided into three types, full-chip, half-chip, and shingled modules.
  • full-chip modules have been gradually marginalized due to reasons such as CTM rate and module anti-local shading ability.
  • Half-cut and shingled components need to involve cell cutting, and shingled components need to use conductive glue and related patent restrictions make it difficult to control costs. Due to the unique structure of heterojunction cells, cutting damage control of heterojunction cells has always been a technical problem.
  • the present invention aims to solve one of the technical problems in the related art at least to a certain extent. For this reason, the embodiment of the present invention proposes an internal series-connected cell photovoltaic module, which has the advantages of no need for cutting and processing to avoid cell damage, high CTM rate, low internal loss, and convenient manufacture.
  • the embodiment of the present invention proposes a manufacturing method for the encapsulation structure of the inner series cell photovoltaic module, which has the advantages of high processing efficiency and good encapsulation effect.
  • the internal series-connected cell photovoltaic module includes multiple rows of cell groups and packaging components arranged in a row, each row of the cell group includes a plurality of cells, and the cells
  • the sheet includes a plurality of battery sections connected in series along the row direction and has a first electrode and a second electrode. Any two adjacent battery sheets in the row direction are connected by welding the first electrode and the second electrode. With series connection, multiple rows of the battery sheet groups are connected in parallel through the first bus bar and the second bus bar, and the multiple rows of the battery sheet groups are all packaged in the packaging assembly.
  • the solar cells of the internal series-connected cell photovoltaic module are connected by ribbons without using expensive materials such as conductive glue, which reduces the manufacturing cost of the photovoltaic module.
  • the cells play a protective role and reduce the impact of the external environment on the cells.
  • the use of internal series cells reduces the use of materials such as welding ribbons or conductive adhesives inside the cells, reduces resistance loss, and improves the CTM rate.
  • the first amorphous silicon layer includes a first A P-type amorphous silicon layer and a first N-type amorphous silicon layer
  • the second amorphous silicon layer includes a second P-type amorphous silicon layer that is equal in number to the first N-type amorphous silicon layer and corresponds one-to-one.
  • a plurality of battery nodes are connected in series through the first transparent conductive layer and the second transparent conductive layer.
  • the number of the first P-type amorphous silicon layer and the first N-type amorphous silicon layer are equal, and they are arranged in parallel to any two adjacent cells.
  • the first electrode and the second electrode are respectively formed on the second P-type amorphous silicon layer and the second N-type amorphous silicon layer located on the upper edge and the lower edge respectively.
  • the soldering strip is located on the backlight side of the battery sheet.
  • the first EVA layer for encapsulating the top surface of multiple rows of the battery sheet groups and the second EVA layer for encapsulating the bottom surfaces of the multiple rows of the battery sheet groups, the top plate and the back plate, and the frame , the top plate and the back plate are respectively arranged on the light-facing side of the first EVA layer and the backlight side of the second EVA layer, and the frame surrounds multiple rows of the battery sheet groups and is connected to the back plate Connected with the top plate, the frame, the back plate and the top plate constitute a sealed cavity for accommodating multiple rows of the battery sheet groups.
  • the size of the sealed accommodating cavity is larger than the size of the battery sheet group in the row direction, and the battery chip group is spaced from the frame at both ends of the row direction.
  • both the back plate and the top plate are transparent back plates.
  • annular groove is provided on the inner side of the frame, and the back plate and the top plate are fitted in the annular groove.
  • the length of the solder ribbon is equal to the size of the cell sheets in the column direction.
  • the manufacturing method of the packaging structure of the inner-tandem cell photovoltaic module includes the following steps: arranging a plurality of cells in rows and columns to form a matrix of photovoltaic cells, with the cells facing the light facing down and the backlight facing up , the first electrode and the second electrode of the battery sheet are spaced apart in the row direction, and are arranged in any two adjacent battery sheets, and the first electrode of one of them and the second electrode of the other Connecting, by welding the first bus bar at a low temperature, connecting a plurality of battery slices at the first edge position in the row direction, and connecting a plurality of battery slices at the second edge position in the row direction by welding the second bus bar at a low temperature, Place the first EVA layer and the top plate in sequence on the light-facing side of the photovoltaic cell matrix, place the second EVA layer and the back plate in sequence on the backlight side of the photovoltaic cell matrix, perform compression molding, connect the frame with the back plate and the top plate, and place the
  • FIG. 1 is a schematic structural diagram of a battery sheet group according to an embodiment of the present invention.
  • Fig. 2 is a schematic diagram of a cell group combined with a second EVA and a backplane according to an embodiment of the present invention
  • Fig. 3 is a schematic cross-sectional view of an inner series cell photovoltaic module according to an embodiment of the present invention.
  • Fig. 4 is a schematic structural diagram of a battery sheet according to an embodiment of the present invention.
  • Fig. 5 is a schematic top view of a battery sheet according to an embodiment of the present invention.
  • Fig. 6 is a schematic bottom view of a battery sheet according to an embodiment of the present invention.
  • Fig. 7 is a schematic top view of an inner series cell photovoltaic module according to an embodiment of the present invention.
  • Fig. 8 is a schematic bottom view of an inner series cell photovoltaic module according to an embodiment of the present invention.
  • FIG. 9 is a schematic structural view of the light-facing side of a photovoltaic cell matrix according to an embodiment of the present invention.
  • Fig. 10 is a schematic structural view of the backlight side of a photovoltaic cell matrix according to an embodiment of the present invention.
  • Fig. 11 is a schematic diagram of the structure after low-temperature welding on the backlight side of the photovoltaic cell matrix according to the embodiment of the present invention.
  • Fig. 12 is according to the structure schematic diagram after installing top plate, back plate on the backlight side of photovoltaic cell matrix in the embodiment of the present invention
  • Fig. 13 is a schematic structural diagram of a photovoltaic cell matrix installation frame according to an embodiment of the present invention.
  • Packaging component 21. Soldering ribbon; 22. First bus bar; 23. Second bus bar; 24. First EVA layer; 25. Second EVA layer; 26. Frame; 27. Top plate; 28. Back plate .
  • the internal tandem cell photovoltaic assembly includes a plurality of rows of cells 100 and packaging components 200 arranged in a row, each row of cells 100
  • the group includes a plurality of battery sheets 100
  • the battery sheet 100 includes a plurality of battery sections connected in series along the row direction and has a first electrode 5 and a second electrode 6, as shown in Figure 6, the first electrode 5 and the second electrode 6 are respectively are the positive and negative electrodes of the battery sheet 100.
  • Any two adjacent battery sheets 100 in the row direction are connected in series through the ribbon 21 connecting the first electrode 5 and the second electrode 6, and multiple rows of battery sheets 100 are connected in parallel through the first bus bar 22 and the second bus bar 23.
  • the battery row 100 groups are packaged in the package assembly 200 .
  • the direction of arrow A in the figure is the row direction of the internal series cell photovoltaic module
  • the direction of arrow B in the figure is the column direction of the internal series cell photovoltaic module
  • the direction of arrow C in the figure is the direction of the battery The up and down direction of the sheet 100.
  • the solar cells 100 of the inner series cell photovoltaic module are connected by welding ribbon 21 without using expensive materials such as conductive glue, which reduces the manufacturing cost of the photovoltaic module, and the battery chip 100 does not need to be cut to reduce loss.
  • the package assembly 200 used protects the battery sheet 100 and reduces the impact of the external environment on the battery sheet 100 .
  • the use of the internal series battery sheet 100 reduces the use of materials such as welding ribbons or conductive glue inside the battery sheet 100, reduces resistance loss, and increases the CTM rate.
  • the solar cell 100 includes N-type single crystal silicon 1, a first intrinsic amorphous silicon passivation layer 2 deposited on the top surface of the N-type single crystal silicon 1, a first amorphous silicon A crystalline silicon layer and a plurality of first transparent conductive layers 9, and a second intrinsic amorphous silicon passivation layer 3 deposited on the bottom surface of the N-type single crystal silicon 1, a second amorphous silicon layer and a second transparent conductive layer 10.
  • the first amorphous silicon layer includes a first P-type amorphous silicon layer 41 and a first N-type amorphous silicon layer 7, and the second amorphous silicon layer includes an amount equal to that of the first N-type amorphous silicon layer 7 and The second P-type amorphous silicon layer 42 in one-to-one correspondence and the second N-type amorphous silicon layer 8 that is equal in number to the first P-type amorphous silicon layer 41 and in one-to-one correspondence, the first P-type amorphous silicon layer 41 and at least one of the first N-type amorphous silicon layer 7 is multiple, and the first P-type amorphous silicon layer 41 and the first N-type amorphous silicon layer 7 are staggered at the longitudinal interval of the N-type single crystal silicon 1 Distribution, the first P-type amorphous silicon layer 41 and the corresponding second N-type amorphous silicon layer 8 form a battery node, the first N-type amorphous silicon layer 7 and the corresponding second P-
  • the first intrinsic amorphous silicon passivation layer 2 and the second intrinsic amorphous silicon passivation layer 3 are respectively deposited on the top surface and the bottom surface of the N-type single crystal silicon 1.
  • a P-type amorphous silicon layer 4 is deposited on the top surface of the intrinsic amorphous silicon passivation layer 2 and the bottom surface of the second intrinsic amorphous silicon passivation layer 3, two P-type amorphous silicon layers 4 and N-type monocrystalline silicon 1.
  • the two end surfaces in the left and right directions are coplanar, and a mask plate is set on the top surface and the bottom surface of the N-type single crystal silicon 1, and the two P-type amorphous silicon layers 4 are etched to form the first P-type amorphous silicon layer respectively.
  • layer 41 and a second p-type amorphous silicon layer 42 are respectively deposited and formed at the etching positions.
  • the first spacer and the second spacer are thus formed to ensure that the subsequent formed first N-type amorphous silicon layer 7 and the adjacent first P-type amorphous silicon layer 41 are spaced apart in the left and right directions, ensuring that the subsequent formed second
  • the N-type amorphous silicon layer 8 is spaced apart from the adjacent second P-type amorphous silicon layer 42 in the left-right direction.
  • the first P-type amorphous silicon layer 41 and the corresponding second N-type amorphous silicon layer 8 can form a certain
  • the first N-type amorphous silicon layer 7 and the corresponding second P-type amorphous silicon layer 42 can also form a battery node with a certain voltage, that is, a pn junction.
  • Two adjacent battery sections are connected through the first transparent conductive layer 9 on the top surface or connected through the second transparent conductive layer 10 on the bottom surface, so that adjacent battery sections are connected in series.
  • the first P-type amorphous silicon layer 41 and the first N-type amorphous silicon layer 7 are alternately distributed in the longitudinal interval of the N-type single crystal silicon 1, and the first transparent conductive layer 9 is connected to the first P-type amorphous silicon layer on the top surface 41 and the first N-type amorphous silicon layer 7, the second P-type amorphous silicon layer 42 and the second N-type amorphous silicon layer 8 are alternately distributed in the longitudinal interval of the N-type single crystal silicon 1, and the second transparent conductive layer 10 Connect the second P-type amorphous silicon layer 42 and the second N-type amorphous silicon layer 8 on the bottom surface, so that a plurality of battery nodes are connected in series through the first transparent conductive layer 9 and the second transparent conductive layer 10, thus making the
  • the open-circuit voltage of the battery sheet 100 in the embodiment is increased, and the short-circuit current is decreased, and the packaging of the photovoltaic module formed by it is easier, and the packaging process is less.
  • a photovoltaic module of the same size that is formed by encapsulation of the cell sheet 100 according to an embodiment of the present invention requires fewer connection points, and thus has a smaller resistance. , the power loss caused by its resistance is smaller, and the energy conversion efficiency is higher.
  • the percentage of photovoltaic module output power and the total power of cells (Cell To Module referred to as CTM) indicates the degree of module power loss, and the higher the CTM value, the smaller the degree of module package power loss.
  • Factors that affect CTM include optical loss, resistive loss, current mismatch loss caused by connecting cells with different currents in series, cracks or fragments during component production, etc.
  • the resistance becomes smaller, the resistance loss decreases, the CTM rate increases, and the output power of the photovoltaic module increases.
  • the number of the first P-type amorphous silicon layer 41 and the first N-type amorphous silicon layer 7 are equal, and they are arranged in parallel to any two adjacent solar cells 100 .
  • the number of battery sections of the battery sheet 100 is an even number, as shown in FIG. 6 are all arranged on the top surface or the bottom surface, which can ensure that the positive and negative electrodes of the battery sheet 100 are on the same side, thus facilitating packaging. It can be equivalent to a series structure of multiple sliced cells, so as to achieve the purpose of cutting the cells of the laminated module.
  • the photovoltaic cell module processing factory does not need to cut the battery sheet 100 according to this embodiment, and can directly package it to achieve a structure similar to the laminated module. performance. This simplifies the production process of the photovoltaic module, bypasses the cutting process of the heterojunction cell, and solves the defect that the cutting of the heterojunction cell will damage the surface transparent conductive layer. There is no need for cutting during the production of cells, which reduces the possibility of cracks and fragments in cells, increases the CTM rate, and improves the output power of photovoltaic modules.
  • the first electrode 5 and the second electrode 6 are respectively formed on the second P-type amorphous silicon layer 42 and the second N-type amorphous silicon layer 8 located on the upper edge and the lower edge respectively.
  • the first electrode 5 and the second electrode 6 are formed on the bottom surface of the battery sheet 100, that is, the positive and negative electrodes of the battery sheet 100 are arranged on the backlight side of the battery sheet 100, and the welding ribbon 21 is connected to the battery.
  • the positive and negative electrodes on the backlight surface of the battery sheet 100 will not block the light-facing surface of the battery sheet 100 , which can ensure the effective area of the battery sheet 100 , reduce optical loss, and improve the energy conversion efficiency of the battery sheet 100 .
  • the soldering strip 21 is located on the backlight side of the battery sheet 100 .
  • the contact between the solder ribbon 21 and the positive and negative electrodes on the backlight side of the battery sheet 100 is more firm, and the small interval between adjacent battery sheets 100 makes the photovoltaic module more compact, ensuring that the battery sheet 100% of the effective lighting area while reducing the volume of photovoltaic modules.
  • the frame 26, the top plate 27 and the back plate 28 are respectively arranged on the light-facing side of the first EVA layer 24 and the backlight side of the second EVA layer 25, and the frame 26 surrounds multiple rows of battery sheets 100 groups and is connected with the back plate 28 and the top plate 27 , the frame 26 , the back plate 28 and the top plate 27 constitute a sealed cavity for accommodating multiple rows of battery slices 100 .
  • the frame 26, the back plate 28 and the top plate 27 are combined together to form a space in which the sealed accommodation cavity is a rectangular body, and multiple rows of battery sheets 100 are placed in the sealed accommodation cavity, and EVA can enhance the photovoltaic capacity.
  • the size of the sealed accommodating cavity is larger than the size of the array of battery slices 100 in the array direction, and both ends of the array of battery slices 100 are spaced apart from the frame 26 .
  • the size of the sealed accommodation cavity in the row direction is larger than the size of the battery sheet 100 group, so that there is space for installing wires on both sides of the battery sheet 100 group in the row, and there is a certain distance between the two ends of the battery sheet 100 group and the frame 26,
  • the wires can be connected to the first bus bar 22 and the second bus bar 23 respectively, so as to realize the parallel connection of the battery slices 100 groups.
  • both the back plate 28 and the top plate 27 are transparent back plates.
  • the light input requirements of the battery sheet 100 group are met, and both sides of the battery sheet 100 group can receive light to generate electricity.
  • the bottom surface can increase the effective area of 100 groups of battery cells, and the energy conversion efficiency can be improved.
  • the transparent backplane can be made of low-iron tempered glass.
  • an inner side of the frame 26 is provided with an annular groove, and the back plate 28 and the top plate 27 fit in the annular groove.
  • the edges of the back plate 28 and the top plate 27 enter the annular groove, and the frame 26 is cut perpendicular to the plane of the back plate 28 and the top plate 27 to form a section, as shown in Figure 2, a U-shaped groove is formed at the annular groove on the cross section , the back plate 28 and the top plate 27 are attached to the two groove walls of the U-shaped groove respectively, and the distance between the two groove walls is greater than the distance between the top surface and the bottom surface of the battery sheet 100 group, and the back plate 28 and the top plate 27 are in contact with the
  • the tight fit of the frame 26 forms a sealed cavity for accommodating multiple rows of battery slices 100 .
  • the length of the solder ribbon 21 is equal to the size of the cell sheet 100 in the column direction.
  • the welding strip 21 can ensure the connection strength between adjacent electrode sheets, and the length of the welding strip 21 is equal to the column dimension of the battery sheet 100 so that the welding strip 21 can be connected to the first electrode 5 or the second electrode 6 of the battery sheet 100.
  • the sufficient contact reduces the contact resistance, and under the same light conditions, the power loss caused by the resistance of the welding strip 21 is smaller.
  • the manufacturing method of the packaging structure of the inner-series cell photovoltaic module includes the following steps: arranging a plurality of cells 100 in rows and columns to form a matrix of photovoltaic cells, as shown in Figures 9 and 10, the cells 100 face down to the light side and face up to the backlight, the first electrode 5 and the second electrode 6 of the battery sheet 100 are spaced apart in the row direction, and they are arranged in any two adjacent battery sheets 100, and the welding ribbon 21 is welded at a low temperature.
  • the first electrode 5 of one of them is connected to the second electrode 6 of the other, and the first bus bar 22 is welded by low temperature to connect a plurality of battery sheets 100 located at the first edge position, and the first bus bar 22 is connected by low temperature welding.
  • Two bus bars 23 connect a plurality of battery sheets 100 located at the second edge position in the row direction, place the first EVA layer 24 and the top plate 27 sequentially on the light-facing side of the photovoltaic cell matrix, and place them sequentially on the backlight side of the photovoltaic cell matrix
  • the second EVA layer 25 and the back plate 28 are molded to connect the frame 26 with the back plate 28 and the top plate 27 to separate the photovoltaic cell matrix from the outside.
  • the light side of the battery sheet 100 faces downward to facilitate welding of the backlight surface of the battery sheet 100 with the ribbon 21 in subsequent steps, which can reduce the flipping process and improve processing efficiency.
  • the first step of the battery sheet 100 The electrodes 5 and the second electrodes 6 are spaced apart in the row direction, so that the first electrodes 5 and the second electrodes 6 of the battery sheet groups arranged in an upward row are alternately arranged to realize the series connection of the battery sheets 100 .
  • the two ends of the battery sheet group in the upward row are at the first edge position and the second edge position respectively, and the two ends of the battery sheet group in the upward row are welded to the first bus bar 22 and the second bus bar 23 respectively.
  • the parallel connection of the battery slices 100 is realized by welding the first bus bar 22 and the second bus bar 23 with the battery slice groups arranged upwards.
  • the battery slices 100 are welded in the row upward to form a battery slice group, and then the two ends of the battery slice group are welded through the first bus bar 22 and the second bus bar 23 to form a parallel connection, which is beneficial to the packaging of the photovoltaic module and is convenient. Check for repairs.
  • the light-facing side and the backlight side of the photovoltaic cell matrix are respectively provided with a first EVA layer 24 and a second EVA layer 25 for bonding the top plate 27 and the back plate 28, as shown in Figure 13, the frame 26 is installed,
  • the top plate 27 and the back plate 28 enter into the annular groove of the frame 26 and are attached to the groove walls of the annular groove respectively, so that the top plate 27, the back plate 28 and the frame 26 form a stable sealed cavity, which improves the packaging effect of the photovoltaic module.
  • first and second are used for descriptive purposes only, and cannot be interpreted as indicating or implying relative importance or implicitly specifying the quantity of indicated technical features.
  • the features defined as “first” and “second” may explicitly or implicitly include at least one of these features.
  • “plurality” means at least two, such as two, three, etc., unless otherwise specifically defined.
  • the first feature may be in direct contact with the first feature or the first and second feature may be in direct contact with the second feature through an intermediary. touch.
  • “above”, “above” and “above” the first feature on the second feature may mean that the first feature is directly above or obliquely above the second feature, or simply means that the first feature is higher in level than the second feature.
  • “Below”, “beneath” and “beneath” the first feature may mean that the first feature is directly below or obliquely below the second feature, or simply means that the first feature is less horizontally than the second feature.
  • the terms “one embodiment,” “some embodiments,” “example,” “specific examples,” or “some examples” mean specific features, structures, materials, or features described in connection with the embodiment or example.
  • a feature is included in at least one embodiment or example of the invention.
  • the schematic representations of the above terms are not necessarily directed to the same embodiment or example.
  • the described specific features, structures, materials or characteristics may be combined in any suitable manner in any one or more embodiments or examples.
  • those skilled in the art can combine and combine different embodiments or examples and features of different embodiments or examples described in this specification without conflicting with each other.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Manufacturing & Machinery (AREA)
  • Photovoltaic Devices (AREA)

Abstract

本发明公开一种内串联式电池片光伏组件和封装结构制造方法,内串联式电池片光伏组件包括成列设置的多排电池片组和封装组件,每排所述电池片组包括多个电池片,所述电池片包括多个沿排向依次串联的电池节并具有第一电极和第二电极,在排向的任意相邻两个所述电池片通过连接所述第一电极和所述第二电极的焊带串联,多排所述电池片组通过第一汇流条和第二汇流条并联,多排所述电池片组均封装于所述封装组件内。本发明提供的内串联式电池片光伏组件具有电池片无需切割加工避免电池片损伤、CTM率高、内损耗低、制造方便等优点。

Description

内串联式电池片光伏组件和封装结构制作方法
本申请要求于2021年09月28日提交中国专利局、申请号为202111140519.6、发明名称为“内串联式电池片光伏组件和封装结构制作方法”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
涉及异质结电池组件封装技术领域,尤其涉及一种内串联式电池片光伏组件和封装结构制作方法。
背景技术
光伏组件封装方式主要分为三种,全片、半片、以及叠瓦组件。其中全片组件由于CTM率、组件抗局部遮挡能力等原因已被逐渐边缘化。半片以及叠瓦组件需要涉及电池片切割,且叠瓦组件需要用到导电胶以及相关专利限制等因素使得其难以控制成本。由于异质结电池独有的结构,异质结电池片的切割损伤控制一直是一道技术难题。
发明内容
本发明旨在至少在一定程度上解决相关技术中的技术问题之一。为此,本发明的实施例提出一种内串联式电池片光伏组件,具有电池片无需切割加工避免电池片损伤、CTM率高、内损耗低、制造方便优点。
本发明的实施例提出内串联式电池片光伏组件封装结构制作方法,具有加工效率高、封装效果好的优点。
本发明实施例的内串联式电池片光伏组件,内串联式电池片光伏组件包括成列设置的多排电池片组和封装组件,每排所述电池片组包括多个电池片,所述电池片包括多个沿排向依次串联的电池节并具有第一电极和第二电极,在排向的任意相邻两个所述电池片通过连接所述第一电极和所述第二电极的焊带串联,多排所述电池片组通过第一汇流条和第二汇流条并联,多排所述电池片组均封装于所述封装组件内。
在本实施例中,根据本发明实施例的内串联式电池片光伏组件的电池片之间采用焊带连接不需要使用导电胶等昂贵材料,降低了光伏组件的制造成本,采用的封装组件对电池片起到保护作用,降低外界环境对电池片的影响,采用内串联式电池片减少了电池片内部焊带或导电胶等材料的使用,降低了电阻损耗,提高CTM率。
在一些实施例中,N型单晶硅,沉积于所述N型单晶硅的顶表面的第一本征非晶硅钝化层、第一非晶硅层和多个第一透明导电层,以及沉积于所述N型单晶硅的底表面的第二本征非晶硅钝化层、第二非晶硅层和第二透明导电层,所述第一非晶硅层包括第一P型非晶硅层和第一N型非晶硅层,所述第二非晶硅层包括与所述第一N型非晶硅层的数量相等并一一对应的第二P型非晶硅层和与所述第一P型非晶硅层的数量相等并一一对应的第二N型非晶硅层,所述第一P型非晶硅层和所述第一N型非晶硅层中的至少一者有多个,所述第一P型非晶硅层和所述第一N型非晶硅层在所述N型单晶硅的纵向间隔交错分布,所述第一P型非晶硅层与相应所述第二N型非晶硅层构成所述电池节,所述第一N型非晶硅层与相应所述第二P型非晶硅层构成所述电池节,多个所述电池节通过所述第一透明导电层和所述第二透明导电层串联。
在一些实施例中,所述第一P型非晶硅层和所述第一N型非晶硅层的数量相等,排向任意相邻两个所述电池片并列设置。
在一些实施例中,分别位于上沿和下沿的所述第二P型非晶硅层和所述第二N型非晶硅层上分别成型所述第一电极和所述第二电极。
在一些实施例中,所述焊带位于所述电池片的背光侧。
在一些实施例中,用于封装多排所述电池片组的顶表面的第一EVA层和用于封装多排所述电池片组的底表面的第二EVA层、顶板和背板以及边框,所述顶板和所述背板分别设置于所述第一EVA层的向光侧和所述第二EVA层的背光侧,所述边框围绕多排所述电池片组并与所述背板和所述顶板相连,所述边框、所述背板和所述顶板构成用于容置多排所述电池片组的密封容置腔。
在一些实施例中,所述密封容置腔在排向的尺寸大于所述电池片组在排向的尺寸,所述电池片组在排向的两端面均与所述边框间隔开。
在一些实施例中,所述背板和所述顶板均为透明背板。
在一些实施例中,所述边框的内侧设有环形槽,所述背板和所述顶板配合在所述环形槽内。
在一些实施例中,所述焊带的长度与所述电池片在列向的尺寸相等。
根据本发明实施例的内串联式电池片光伏组件封装结构制作方法包括以下步骤,将多个电池片成排成列排布以形成光伏电池矩阵,电池片向光面朝下,背光面朝上,电池片的第一电极和第二电极在排向间隔开,排向任意相邻两个电池片中,通过低温焊接焊带,使其中一者的第一电极和另一者的第二电极相连,通过低温焊接第一汇流条,使在排向位于第一边缘位置的多个电池片相连,通过低温焊接第二汇流条,使在排向位于第二边缘位置的多个电池片相连,在 光伏电池矩阵的向光侧依次放置第一EVA层和顶板,在光伏电池矩阵的背光侧依次放置第二EVA层和背板,进行压模,将边框与背板和顶板相连,将光伏电池矩阵与外界分隔开。
附图说明
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据提供的附图获得其他的附图。
图1是根据本发明实施例中电池片组的结构示意图;
图2是根据本发明实施例中电池片组结合第二EVA和背板的示意图;
图3是根据本发明实施例中内串联式电池片光伏组件的剖面示意图;
图4是根据本发明实施例中电池片的结构示意图;
图5是根据本发明实施例中电池片的俯视示意图;
图6是根据本发明实施例中电池片的仰视示意图;
图7是根据本发明实施例中内串联式电池片光伏组件的俯视示意图;
图8是根据本发明实施例中内串联式电池片光伏组件的仰视示意图;
图9是根据本发明实施例中光伏电池矩阵向光侧的结构示意图;
图10是根据本发明实施例中光伏电池矩阵背光侧的结构示意图;
图11是根据本发明实施例中光伏电池矩阵背光侧进行低温焊接后结构示意图;
图12是根据本发明实施例中光伏电池矩阵背光侧安装顶板、背板后的结 构示意图;
图13是根据本发明实施例中光伏电池矩阵安装边框的结构示意图。
附图标记:100、电池片;1、N型单晶硅;2、第一本征非晶硅钝化层;3、第二本征非晶硅钝化层;4、P型非晶硅层;41、第一P型非晶硅层;42、第二P型非晶硅层;5、第一电极;6、第二电极;7、第一N型非晶硅层;8、第二N型非晶硅层;9、第一透明导电层;10、第二透明导电层;
200、封装组件;21、焊带;22、第一汇流条;23、第二汇流条;24、第一EVA层;25、第二EVA层;26、边框;27、顶板;28、背板。
具体实施方式
下面详细描述本发明的实施例,所述实施例的示例在附图中示出。下面通过参考附图描述的实施例是示例性的,旨在用于解释本发明,而不能理解为对本发明的限制。
如图1至图13所示,本发明实施例的内串联式电池片光伏组件,内串联式电池片光伏组件包括成列设置的多排电池片100组和封装组件200,每排电池片100组包括多个电池片100,电池片100包括多个沿排向依次串联的电池节并具有第一电极5和第二电极6,如图6所示,第一电极5和第二电极6分别是电池片100的正极和负极。在排向的任意相邻两个电池片100通过连接第一电极5和第二电极6的焊带21串联,多排电池片100组通过第一汇流条22和第二汇流条23并联,多排电池片100组均封装于封装组件200内。根据图3和图7所示,图中箭头A方向为内串联式电池片光伏组件的排向,图中箭头B方向为内串联式电池片光伏组件的列向,图中箭头C方向为电池片100的上 下方向。
在本实施例中,内串联式电池片光伏组件的电池片100之间采用焊带21连接不需要使用导电胶等昂贵材料,降低了光伏组件的制造成本,电池片100无需切割降低了损耗,采用的封装组件200对电池片100起到保护作用,降低外界环境对电池片100的影响。采用内串联式电池片100减少了电池片100内部焊带或导电胶等材料的使用,降低了电阻损耗,提高CTM率。
在一些实施例中,如图4所示,电池片100包括N型单晶硅1,沉积于N型单晶硅1的顶表面的第一本征非晶硅钝化层2、第一非晶硅层和多个第一透明导电层9,以及沉积于N型单晶硅1的底表面的第二本征非晶硅钝化层3、第二非晶硅层和第二透明导电层10,第一非晶硅层包括第一P型非晶硅层41和第一N型非晶硅层7,第二非晶硅层包括与第一N型非晶硅层7的数量相等并一一对应的第二P型非晶硅层42和与第一P型非晶硅层41的数量相等并一一对应的第二N型非晶硅层8,第一P型非晶硅层41和第一N型非晶硅层7中的至少一者有多个,第一P型非晶硅层41和第一N型非晶硅层7在N型单晶硅1的纵向间隔交错分布,第一P型非晶硅层41与相应第二N型非晶硅层8构成电池节,第一N型非晶硅层7与相应第二P型非晶硅层42构成电池节,多个电池节通过第一透明导电层9和第二透明导电层10串联。电池片100在制作时,在N型单晶硅1的顶表面和底表面分别沉积第一本征非晶硅钝化层2和第二本征非晶硅钝化层3,在第一本征非晶硅钝化层2的顶表面和第二本征非晶硅钝化层3的底表面沉积P型非晶硅层4,两个P型非晶硅层4和N型单晶硅1在左右方向的两端面共面,在N型单晶硅1的顶表面和底表面设置掩模板,对两个P型非晶硅层4进行蚀刻,以分别成型第一P型非晶硅层41和第 二P型非晶硅层42。在蚀刻处分别沉积成型第三本征非晶硅钝化层和第四本征非晶硅钝化层。由此成型第一间隔部和第二间隔部,保证后续成型的第一N型非晶硅层7和相邻第一P型非晶硅层41在左右方向间隔开,保证后续成型的第二N型非晶硅层8和相邻第二P型非晶硅层42在左右方向间隔开。在第三本征非晶硅钝化层的顶表面和第四本征非晶硅钝化层的底表面上分别沉积成型第一N型非晶硅层7和第二N型非晶硅层8。
由此,如图5和图6所示,电池片100的顶表面和底表面之间,由第一P型非晶硅层41与相应的第二N型非晶硅层8能够构成具有一定电压的电池节,第一N型非晶硅层7与相应的第二P型非晶硅层42也能够构成具有一定电压的电池节,即pn结。两个相邻的电池节在顶表面通过第一透明导电层9连接或者在底表面通过第二透明导电层10连接,实现相邻电池节串联。第一P型非晶硅层41和第一N型非晶硅层7在N型单晶硅1的纵向间隔交错分布,第一透明导电层9连接顶表面的第一P型非晶硅层41和第一N型非晶硅层7,第二P型非晶硅层42和第二N型非晶硅层8在N型单晶硅1的纵向间隔交错分布,第二透明导电层10连接底表面的第二P型非晶硅层42和第二N型非晶硅层8,使得多个电池节通过第一透明导电层9和第二透明导电层10串联,由此使得根据本实施例的电池片100的开路电压上升,短路电流下降,由其构成的光伏组件的封装更容易,封装工序更少。而且,相比于相关技术中的光伏组件,由根据本发明实施例的电池片100的封装成型的同样尺寸的光伏组件所需连接点的数量更少,由此电阻更小,在相同光照条件下,其电阻带来的功率损失更小,能量转换效率更高。光伏组件输出功率与电池片功率总和的百分比(Cell To Module简称CTM)表示组件功率损失的程度,CTM值越高表示组件封 装功率损失的程度越小。影响CTM的因素有光学损耗、电阻损耗、不同电流的电池片串联时引起的电流失配损失、组件生产过程中产生隐裂或碎片等。本实施例中电阻变小,电阻损耗减小,CTM率增加,光伏组件输出功率提高。
在一些实施例中,第一P型非晶硅层41和第一N型非晶硅层7的数量相等,排向任意相邻两个电池片100并列设置。
由此,电池片100的电池节为偶数个,如图6所示,电池片100两端的第一电极5和第二电极6处于电池片100的同一面,即第一电极5和第二电极6均设置在顶表面或底表面,可以确保电池片100的正负极都在同一侧,由此封装方便。可等效为多片切片电池串联结构,以达到叠片组件电池切割的目的,光伏电池组件加工厂无需对根据本实施例的电池片100进行切割,可直接进行封装,达到类似叠片组件的性能表现。由此简化了光伏组件的生产流程,绕开了异质结电池的切割工序,解决了异质结电池切割对表面透明导电层的损伤的缺陷。电池片生产过程中无需进行切割,减少了电池片产生隐裂和碎片的可能性,CTM率增加,光伏组件输出功率提高。
在一些实施例中,分别位于上沿和下沿的第二P型非晶硅层42和第二N型非晶硅层8上分别成型第一电极5和第二电极6。
由此,如图6所示,第一电极5和第二电极6成型在了电池片100的底表面,即电池片100的正负极设置在电池片100的背光侧,焊带21连接电池片100的背光面的正负极不会对电池片100的向光面造成遮挡,能够保证电池片100的有效面积,减少了光学损耗,提高电池片100的能量转换效率。
在一些实施例中,焊带21位于电池片100的背光侧。
由此,如图1和图2所示,焊带21与电池片100背光侧的正负极之间的 接触更加牢固,相邻电池片100之间间隔小使得光伏组件更加紧凑,保证电池片100的有效光照面积的同时缩小了光伏组件体积。
在一些实施例中,用于封装多排电池片100组的顶表面的第一EVA层24和用于封装多排电池片100组的底表面的第二EVA层25、顶板27和背板28以及边框26,顶板27和背板28分别设置于第一EVA层24的向光侧和第二EVA层25的背光侧,边框26围绕多排电池片100组并与背板28和顶板27相连,边框26、背板28和顶板27构成用于容置多排电池片100组的密封容置腔。
由此,如图3所示边框26、背板28和顶板27组合在一起形成了密封容置腔为矩形体的空间,多排电池片100组放置在密封容置腔内,EVA能够增强光伏组件的透光性,第一EVA层24设置在顶板27和电池片100组之间,第二EVA层25设置在底板和电池片100组之间起到粘结作用,保护电池片100组。
在一些实施例中,密封容置腔在排向的尺寸大于电池片100组在排向的尺寸,电池片100组在排向的两端面均与边框26间隔开。
由此,密封容置腔在排向尺寸大于电池片100组的尺寸,使得排向上电池片100组两侧具有安装导线的空间,电池片100组两端均与边框26之间存在一定间隔,导线能够分别与第一汇流条22和第二汇流条23连接,进而实现电池片100组的并联。
在一些实施例中,背板28和顶板27均为透明背板。
由此,如图8所示,满足电池片100组的进光需求,电池片100组两面均可接受光照进行发电,背板28设置成透明背板能够使光在背板28进入电池片100底表面,提高电池片100组的有效面积,能量转换效率提高,透明背板可以是低铁钢化玻璃。
在一些实施例中,边框26的内侧设有环形槽,背板28和顶板27配合在环形槽内。
由此,背板28和顶板27的边缘进入环形槽,边框26被垂直于背板28和顶板27的平面切开形成的截面,如图2所示在截面上环形槽处形成了U型槽,背板28和顶板27分别与U型槽的两个槽壁贴合,两个槽壁之间距离大于电池片100组的顶表面与底表面之间的距离,背板28和顶板27与边框26的紧密贴合,形成了用于容置多排电池片100组的密封容置腔。
在一些实施例中,焊带21的长度与电池片100在列向的尺寸相等。
由此,焊带21能够保证相邻电极片之间的连接强度,焊带21的长度与电池片100列向尺寸相等使得焊带21能与电池片100的第一电极5或第二电极6充分接触,降低了接触电阻,在相同光照条件下,焊带21的电阻带来的功率损失更小。
根据本发明实施例的内串联式电池片光伏组件封装结构制作方法包括以下步骤,将多个电池片100成排成列排布以形成光伏电池矩阵,如图9和图10所示,电池片100向光面朝下,背光面朝上,电池片100的第一电极5和第二电极6在排向间隔开,排向任意相邻两个电池片100中,通过低温焊接焊带21,使其中一者的第一电极5和另一者的第二电极6相连,通过低温焊接第一汇流条22,使在排向位于第一边缘位置的多个电池片100相连,通过低温焊接第二汇流条23,使在排向位于第二边缘位置的多个电池片100相连,在光伏电池矩阵的向光侧依次放置第一EVA层24和顶板27,在光伏电池矩阵的背光侧依次放置第二EVA层25和背板28,进行压模,将边框26与背板28和顶板27相连,将光伏电池矩阵与外界分隔开。
由此,如图10所示,电池片100向光面朝下便于后续步骤中对电池片100的背光面进行焊带21焊接,能够减少翻面工序,提高加工效率,电池片100的第一电极5和第二电极6在排向间隔开,使得排向上的电池片组的第一电极5和第二电极6交错排布,实现电池片100的串联。如图11所示,排向上电池片组的两端分别处于第一边缘位置和第二边缘位置,排向上电池片组的两端分别与第一汇流条22和第二汇流条23焊接,多个列向上排布的电池片组通过与第一汇流条22和第二汇流条23焊接实现了电池片100的并联。
进一步的方案中,首先在排向上焊接电池片100形成电池片组,再将电池片组的两端通过第一汇流条22和第二汇流条23焊接形成并联,有利于光伏组件封装、方便进行检查返修。
如图12所示,光伏电池矩阵的向光侧和背光侧分别设置第一EVA层24和第二EVA层25用来粘接顶板27和背板28,如图13所示,安装边框26,顶板27和背板28进入边框26的环形槽内并分别和环形槽的槽壁贴合,使得顶板27和背板28与边框26形成稳定的密封容置腔,改善了光伏组件的封装效果。
在本发明的描述中,需要理解的是,术语“中心”、“纵向”、“横向”、“长度”、“宽度”、“厚度”、“上”、“下”、“前”、“后”、“左”、“右”、“竖直”、“水平”、“顶”、“底”“内”、“外”、“顺时针”、“逆时针”、“轴向”、“径向”、“周向”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本发明和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本发明的限制。
此外,术语“第一”、“第二”仅用于描述目的,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有“第一”、“第二”的特征可以明示或者隐含地包括至少一个该特征。在本发明的描述中,“多个”的含义是至少两个,例如两个,三个等,除非另有明确具体的限定。
在本发明中,除非另有明确的规定和限定,术语“安装”、“相连”、“连接”、“固定”等术语应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或成一体;可以是机械连接,也可以是电连接或彼此可通讯;可以是直接相连,也可以通过中间媒介间接相连,可以是两个元件内部的连通或两个元件的相互作用关系,除非另有明确的限定。对于本领域的普通技术人员而言,可以根据具体情况理解上述术语在本发明中的具体含义。
在本发明中,除非另有明确的规定和限定,第一特征在第二特征“上”或“下”可以是第一和第二特征直接接触,或第一和第二特征通过中间媒介间接接触。而且,第一特征在第二特征“之上”、“上方”和“上面”可是第一特征在第二特征正上方或斜上方,或仅仅表示第一特征水平高度高于第二特征。第一特征在第二特征“之下”、“下方”和“下面”可以是第一特征在第二特征正下方或斜下方,或仅仅表示第一特征水平高度小于第二特征。
在本发明中,术语“一个实施例”、“一些实施例”、“示例”、“具体示例”、或“一些示例”等意指结合该实施例或示例描述的具体特征、结构、材料或者特点包含于本发明的至少一个实施例或示例中。在本说明书中,对上述术语的示意性表述不必须针对的是相同的实施例或示例。而且,描述的具体特征、结构、材料或者特点可以在任一个或多个实施例或示例中以合适的方式结合。此外,在不相互矛盾的情况下,本领域的技术人员可以将本说明书中描 述的不同实施例或示例以及不同实施例或示例的特征进行结合和组合。
尽管上面已经示出和描述了本发明的实施例,可以理解的是,上述实施例是示例性的,不能理解为对本发明的限制,本领域的普通技术人员在本发明的范围内可以对上述实施例进行变化、修改、替换和变型。

Claims (11)

  1. 一种内串联式电池片光伏组件,其特征在于,包括:
    成列设置的多排电池片组,每排所述电池片组包括多个电池片,所述电池片包括多个沿排向依次串联的电池节并具有第一电极和第二电极,在排向的任意相邻两个所述电池片通过连接所述第一电极和所述第二电极的焊带串联,多排所述电池片组通过第一汇流条和第二汇流条并联;和
    封装组件,多排所述电池片组均封装于所述封装组件内。
  2. 根据权利要求1所述的一种内串联式电池片光伏组件,其特征在于,所述电池片包括:
    N型单晶硅,沉积于所述N型单晶硅的顶表面的第一本征非晶硅钝化层、第一非晶硅层和多个第一透明导电层,以及沉积于所述N型单晶硅的底表面的第二本征非晶硅钝化层、第二非晶硅层和第二透明导电层;
    所述第一非晶硅层包括第一P型非晶硅层和第一N型非晶硅层,所述第二非晶硅层包括与所述第一N型非晶硅层的数量相等并一一对应的第二P型非晶硅层和与所述第一P型非晶硅层的数量相等并一一对应的第二N型非晶硅层,所述第一P型非晶硅层和所述第一N型非晶硅层中的至少一者有多个,所述第一P型非晶硅层和所述第一N型非晶硅层在所述N型单晶硅的纵向间隔交错分布,所述第一P型非晶硅层与相应所述第二N型非晶硅层构成所述电池节,所述第一N型非晶硅层与相应所述第二P型非晶硅层构成所述电池节,多个所述电池节通过所述第一透明导电层和所述第二透明导电层串联。
  3. 根据权利要求2所述的一种内串联式电池片光伏组件,其特征在于, 所述第一P型非晶硅层和所述第一N型非晶硅层的数量相等,排向任意相邻两个所述电池片并列设置。
  4. 根据权利要求3所述的一种内串联式电池片光伏组件,其特征在于,分别位于上沿和下沿的所述第二P型非晶硅层和所述第二N型非晶硅层上分别成型所述第一电极和所述第二电极。
  5. 根据权利要求4所述的一种内串联式电池片光伏组件,其特征在于,所述焊带位于所述电池片的背光侧。
  6. 根据权利要求1所述的一种内串联式电池片光伏组件,其特征在于,所述封装组件包括:
    用于封装多排所述电池片组的顶表面的第一EVA层和用于封装多排所述电池片组的底表面的第二EVA层;
    顶板和背板,所述顶板和所述背板分别设置于所述第一EVA层的向光侧和所述第二EVA层的背光侧;以及
    边框,所述边框围绕多排所述电池片组并与所述背板和所述顶板相连,所述边框、所述背板和所述顶板构成用于容置多排所述电池片组的密封容置腔。
  7. 根据权利要求6所述的一种内串联式电池片光伏组件,其特征在于,所述密封容置腔在排向的尺寸大于所述电池片组在排向的尺寸,所述电池片组在排向的两端面均与所述边框间隔开。
  8. 根据权利要求6所述的一种内串联式电池片光伏组件,其特征在于,所述背板和所述顶板均为透明背板。
  9. 根据权利要求6所述的一种内串联式电池片光伏组件,其特征在于,所述边框的内侧设有环形槽,所述背板和所述顶板配合在所述环形槽内。
  10. 根据权利要求1所述的一种内串联式电池片光伏组件,其特征在于,所述焊带的长度与所述电池片在列向的尺寸相等。
  11. 一种内串联式电池片光伏组件封装结构制作方法,其特征在于,包括以下步骤:
    将多个电池片成排成列排布以形成光伏电池矩阵,电池片向光面朝下,背光面朝上,电池片的第一电极和第二电极在排向间隔开;
    排向任意相邻两个电池片中,通过低温焊接焊带,使其中一者的第一电极和另一者的第二电极相连,通过低温焊接第一汇流条,使在排向位于第一边缘位置的多个电池片相连,通过低温焊接第二汇流条,使在排向位于第二边缘位置的多个电池片相连;
    在光伏电池矩阵的向光侧依次放置第一EVA层和顶板,在光伏电池矩阵的背光侧依次放置第二EVA层和背板,进行压模;
    将边框与背板和顶板相连,将光伏电池矩阵与外界分隔开。
PCT/CN2022/099759 2021-09-28 2022-06-20 内串联式电池片光伏组件和封装结构制作方法 WO2023050906A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202111140519.6A CN113594278B (zh) 2021-09-28 2021-09-28 内串联式电池片光伏组件和封装结构制作方法
CN202111140519.6 2021-09-28

Publications (1)

Publication Number Publication Date
WO2023050906A1 true WO2023050906A1 (zh) 2023-04-06

Family

ID=78242137

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/099759 WO2023050906A1 (zh) 2021-09-28 2022-06-20 内串联式电池片光伏组件和封装结构制作方法

Country Status (2)

Country Link
CN (1) CN113594278B (zh)
WO (1) WO2023050906A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113594278B (zh) * 2021-09-28 2021-12-31 中国华能集团清洁能源技术研究院有限公司 内串联式电池片光伏组件和封装结构制作方法
CN115000225B (zh) * 2022-07-29 2022-11-04 中国华能集团清洁能源技术研究院有限公司 隔离型内串联式异质结电池及其制作方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013055294A (ja) * 2011-09-06 2013-03-21 Mitsubishi Electric Corp 太陽電池モジュールおよびその製造方法
CN103872176A (zh) * 2012-12-18 2014-06-18 国际商业机器公司 具有集成光伏电池的器件及其制造方法
CN206907783U (zh) * 2017-04-18 2018-01-19 浙江晶科能源有限公司 一种双面光伏组件
CN108110079A (zh) * 2017-11-30 2018-06-01 君泰创新(北京)科技有限公司 异质结太阳能电池及其制备方法
CN108922973A (zh) * 2018-06-30 2018-11-30 中国科学院上海硅酸盐研究所 一种基于钙钛矿太阳能电池的光伏组件及其封装方法
CN212967724U (zh) * 2020-07-22 2021-04-13 常州亚玛顿股份有限公司 电池模块和具有其的双面发电光伏组件
CN113594278A (zh) * 2021-09-28 2021-11-02 中国华能集团清洁能源技术研究院有限公司 内串联式电池片光伏组件和封装结构制作方法

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN205657072U (zh) * 2016-05-23 2016-10-19 江苏康博光伏电力科技有限公司 加反光薄膜的太阳能光伏组件
CN109037375B (zh) * 2018-07-23 2020-04-03 英利能源(中国)有限公司 太阳能电池及太阳能电池组件

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013055294A (ja) * 2011-09-06 2013-03-21 Mitsubishi Electric Corp 太陽電池モジュールおよびその製造方法
CN103872176A (zh) * 2012-12-18 2014-06-18 国际商业机器公司 具有集成光伏电池的器件及其制造方法
CN206907783U (zh) * 2017-04-18 2018-01-19 浙江晶科能源有限公司 一种双面光伏组件
CN108110079A (zh) * 2017-11-30 2018-06-01 君泰创新(北京)科技有限公司 异质结太阳能电池及其制备方法
CN108922973A (zh) * 2018-06-30 2018-11-30 中国科学院上海硅酸盐研究所 一种基于钙钛矿太阳能电池的光伏组件及其封装方法
CN212967724U (zh) * 2020-07-22 2021-04-13 常州亚玛顿股份有限公司 电池模块和具有其的双面发电光伏组件
CN113594278A (zh) * 2021-09-28 2021-11-02 中国华能集团清洁能源技术研究院有限公司 内串联式电池片光伏组件和封装结构制作方法

Also Published As

Publication number Publication date
CN113594278A (zh) 2021-11-02
CN113594278B (zh) 2021-12-31

Similar Documents

Publication Publication Date Title
WO2023050906A1 (zh) 内串联式电池片光伏组件和封装结构制作方法
US8049096B2 (en) Solar battery module
US9515214B2 (en) Solar battery module and manufacturing method thereof
JP2007294866A (ja) 太陽電池モジュール
CN104465892A (zh) 太阳电池串中相邻太阳电池的同侧互联的光伏组件制作方法
RU2526894C2 (ru) Модуль солнечной батареи
JP2015070260A (ja) 太陽電池
US10396233B2 (en) Solar cell and solar cell module
CN104835874B (zh) 一种半电池片光伏组件的制造方法
US20130098447A1 (en) Method for manufacturing solar battery module and solar battery module manufactured by the manufacturing method
JP2014033240A (ja) 太陽電池モジュール
US20230044021A1 (en) Solar cells having junctions retracted from cleaved edges
JP5637089B2 (ja) 太陽電池モジュール
CN109545871A (zh) 一种正六边形mwt太阳能电池半片、组件及排列方法
WO2018001182A1 (zh) 电池片、电池片组件、电池片矩阵及太阳能电池
CN109037364B (zh) 分片贯孔双面直连太阳能电池组件及制备方法
WO2023019963A1 (zh) 异质结电池片及其加工方法以及电池组件
CN113594288B (zh) 内串联式异质结电池及其制作方法
WO2022237313A1 (zh) 一种太阳能光伏组件
CN209785947U (zh) Mwt太阳能电池片、电池串及电池组件
WO2018001186A1 (zh) 电池片、电池片矩阵及太阳能电池
CN212542456U (zh) 电池组件
CN215680705U (zh) 大尺寸切片电池光伏组件
CN215988799U (zh) 一种高效四分片电池组件
CN215184015U (zh) 一种高效四分片电池组件

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22874303

Country of ref document: EP

Kind code of ref document: A1