WO2023050800A1 - 一种复合材料的制备方法和应用 - Google Patents

一种复合材料的制备方法和应用 Download PDF

Info

Publication number
WO2023050800A1
WO2023050800A1 PCT/CN2022/090063 CN2022090063W WO2023050800A1 WO 2023050800 A1 WO2023050800 A1 WO 2023050800A1 CN 2022090063 W CN2022090063 W CN 2022090063W WO 2023050800 A1 WO2023050800 A1 WO 2023050800A1
Authority
WO
WIPO (PCT)
Prior art keywords
polystyrene
preparation
composite material
sugar
present
Prior art date
Application number
PCT/CN2022/090063
Other languages
English (en)
French (fr)
Inventor
张振华
李长东
范霞
毛林林
阮丁山
蔡勇
Original Assignee
广东邦普循环科技有限公司
湖南邦普循环科技有限公司
湖南邦普汽车循环有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 广东邦普循环科技有限公司, 湖南邦普循环科技有限公司, 湖南邦普汽车循环有限公司 filed Critical 广东邦普循环科技有限公司
Publication of WO2023050800A1 publication Critical patent/WO2023050800A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/24Electrodes characterised by structural features of the materials making up or comprised in the electrodes, e.g. form, surface area or porosity; characterised by the structural features of powders or particles used therefor
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/30Electrodes characterised by their material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/30Electrodes characterised by their material
    • H01G11/48Conductive polymers

Definitions

  • the invention belongs to the technical field of inorganic non-metallic materials, and in particular relates to a preparation method and application of a composite material.
  • organic waste is difficult to be biodegraded and may have certain toxicity, its treatment is very important for the natural ecosystem.
  • organic waste such as polystyrene
  • landfill not only requires a large space, but also takes a lot of time to degrade; in addition, the collection and storage cost of polystyrene is high, so the recycling rate is low.
  • many researchers are also trying to convert polystyrene into high-value carbon materials to develop a variety of applications, such as converting polystyrene into electrode materials for energy storage devices, surface adsorbents for pollutants in water, and catalysts.
  • Polystyrene is difficult to carbonize because at an intermediate temperature of 450°C (600°C lower than the temperature required for carbonization of polymers), it degrades from macromolecules to form a complex mixture of low molecular weight volatile compounds and polycyclic aromatic hydrocarbons, Therefore, it is difficult to prepare polystyrene into carbon materials. Even though different carbonization processes of waste plastics have been explored, there are still few studies on the use of polystyrene carbonization products for energy storage devices. The fundamental reason is that the processing steps of template removal and KOH activation make the conductivity of polystyrene carbon products rate and crystallinity decreased.
  • EDLCs electric double-layer capacitors
  • the accessibility of ions to the electrolytic surface, electrical conductivity, pore size distribution, wettability, thermal stability, and chemical stability are key factors determining their electrochemical performance and efficiency. factor.
  • the high surface area and porous structure of polystyrene carbonization products help to improve the accessibility of ions in the electrolyte
  • the graphite content and crystallinity are also important for reducing the internal resistance of the electrode.
  • the present invention aims to solve at least one of the technical problems in the above-mentioned prior art. For this reason, the present invention proposes a kind of preparation method of composite material, nickel mercaptide of the present invention can improve the crystallinity of sugar/polystyrene composite material in hydrogenation process as catalyst, thereby improve the electrical conductivity and electrochemical performance of material, At the same time, porous sugar cubes are used as soft templates to carry polystyrene and catalysts. Porous sugar cubes can also be used as carbon sources to improve the degree of carbonization of materials, and avoid additional high-pressure carbon sources in the high-temperature graphitization process.
  • the method provided by the invention Green and environmentally friendly, waste polystyrene can be effectively used to solve the current large-scale white pollution.
  • the present invention also proposes an energy storage device comprising the above-mentioned composite material.
  • a method for preparing a composite material includes: nickel mercaptide, cube sugar and polystyrene.
  • nickel mercaptide as a catalyst to increase the crystallinity of sugar/polystyrene composite materials during hydrogenation, thereby improving the electrical conductivity and electrochemical performance of the material.
  • the organic nickel catalyst helps polystyrene form a higher degree of crystallinity Carbon, inhibits the formation of a large number of low molecular volatiles.
  • Cube sugar is a three-dimensional structure composed of many fine sugar particles, and there are many irregular gaps between these particles. It is used as a soft template to carry polystyrene and a catalyst while serving as a carbon source, which improves the degree of carbonization of the material. It also avoids the need for additional carbon source supplementation during the high-temperature graphitization process.
  • the method provided by the present invention is green and environment-friendly, can effectively utilize discarded polystyrene, and solve the current large-scale white pollution.
  • the graphite carbon electrode prepared by the present invention using the carbon material converted from waste polystyrene has high capacity and long cycle stability under high rate, and can be used as an energy storage device.
  • the raw materials for the preparation of the nickel mercaptide include: nickel salt, mercaptan and trimethylamine.
  • the nickel salt includes a divalent nickel salt.
  • the nickel salt includes one or more of NiCl 2 ⁇ 6H 2 O, NiCl 2 , NiSO 4 ⁇ 6H 2 O and Ni(NO 3 ) 2 ⁇ 6H 2 O.
  • the molar ratio of the nickel salt to the trimethylamine is 1:2-5.
  • the thiols include benzyl mercaptan, n-butyl mercaptan, n-dodecyl mercaptan, t-dodecyl mercaptan, tert-hexadecane mercaptan, 2-propanethiol, tert-butyl At least one of mercaptan, 1-hexanethiol, 1-tetradecanethiol and 1-hexadecanethiol.
  • the preparation method of described nickel mercaptide comprises the following steps:
  • A1 the nickel salt is dissolved in ethanol, and trimethylammonia is added to the resulting solution to form a triethylamine nickel complex;
  • step A2 Add mercaptan to the complex solution obtained in step A1, stir to form nickel mercaptide precipitation, filter and wash the precipitate for 3 to 6 times, dry for 4 to 12 hours, and disperse in toluene or chloroform to obtain nickel mercaptide dispersion Reserve after liquid.
  • the molar ratio of the nickel salt to the trimethylamine is 1:2-5.
  • the molar ratio of the complex to the thiol in step A2 is 1:2-4.
  • the stirring temperature is 50-70°C.
  • step A2 the stirring time is 2-6 hours.
  • the cleaning solvent includes at least one of deionized water, ethanol, acetonitrile and methanol.
  • the drying temperature is 50-150°C.
  • the drying time is 4-12 hours.
  • the preparation method of the composite material includes the following steps:
  • S2 The sugar-polystyrene complex is obtained by heat treatment under a reducing atmosphere.
  • the polystyrene is washed with hydrochloric acid, filtered and then washed with deionized water to neutrality, the cleaned polystyrene is placed in a drying oven to dry, and then dissolved in chloroform, and the mercaptan
  • the nickel dispersion liquid is mixed with polystyrene, then sugar cubes are added to the solution, stirred, the sugar cubes are taken out and dried at 25-50° C. for 3-10 hours to obtain sugar-polystyrene composites.
  • the polystyrene is a waste polystyrene plastic plate.
  • the preparation method further includes pretreatment of the polystyrene.
  • the pretreatment of polystyrene includes cutting, pickling, washing, drying and dissolving.
  • the cutting includes cutting the discarded polystyrene plastic plate into an irregular shape of 0.4-1.5 cm.
  • the acid used in the pickling is 0.5-3 mol/L hydrochloric acid.
  • the temperature of the water washing is 25-60°C.
  • the aqueous time is 2-6 hours.
  • the drying temperature is 80-120°C.
  • the drying time is 5-15 hours.
  • the solution formed after dissolving in chloroform is 0.2-1 g/ml.
  • the stirring time after adding sugar cubes is 0.5-3 hours.
  • step S1 the order of mixing is: mixing the nickel mercaptide dispersion with the polystyrene solution, then adding sugar cubes to the solution, stirring, and taking out the sugar cubes Drying yields a sugar-polystyrene complex.
  • step S1 the mass ratio of the nickel mercaptide to the polystyrene is 1:100-1000.
  • the mass ratio of the polystyrene to the sugar cube is 1:3-6.
  • the stirring time is 0.5-3 hours.
  • the drying temperature of the sugar cube is 25-50°C.
  • the drying time of the cube sugar is 3-10 hours.
  • the heat treatment includes a first heat treatment and a second heat treatment.
  • the temperature of the first heat treatment is 600-800°C.
  • the time for the first heat treatment is 1-3 hours.
  • the heating rate of the first heat treatment is 5-20° C./min.
  • the sugar cube when the temperature rises to 220°C, the sugar cube begins to decompose to form a carbon shell, and the hydrocarbons in polystyrene are wrapped in it; when the temperature rises to 250°C, the nickel mercaptide is It is reduced to nickel-based nanoparticles, and the nickel mercaptide contains hydrocarbon groups, and the hydrocarbons in it are cracked, and the cracked carbon recrystallizes to form a six-membered ring; when the temperature reaches 400°C, polystyrene decomposes and pyrolyzes the hydroxyl groups in the carbon In the process of calcination in reducing atmosphere, the carbonyl group and epoxy group are also reduced accordingly. At the same time, the gas generated by cracking breaks through the carrier, which increases the specific surface area and porosity of the sugar-polystyrene composite. At this time, the micropores of the material The size is below 2nm.
  • the temperature of the second heat treatment is 1000-1200°C.
  • the time of the second heat treatment is 2-4 hours.
  • the six-membered ring network of the sugar-polystyrene composite becomes larger, the crystallinity is improved, point defects are reduced, and the conductivity is enhanced.
  • the sugar-polystyrene composite The composites are obtained with a relative reduction in ratio and pore size.
  • the reducing atmosphere is a mixed gas of hydrogen and nitrogen.
  • the present invention performs hydrogen annealing in the mixed gas of hydrogen and nitrogen, which can not only eliminate the surface effect, but also improve the degree of graphitization, reduce point defects, and improve the crystallinity and conductivity of carbon required by double-layer capacitors.
  • step S2 the volume ratio of hydrogen and nitrogen is 1:10-50.
  • the second aspect of the present invention provides an energy storage device, and the preparation raw material includes the composite material prepared by the method for preparing the composite material.
  • the graphite carbon electrode provided by the invention is used as an energy storage device and has high rate, high capacity and long cycle stability.
  • the energy storage device includes at least one of a battery and a capacitor.
  • the preparation method of the capacitor comprises the following steps:
  • the composite material was dispersed into a solution to form a slurry, and then the slurry was coated on carbon cloth as an electrode, separated with a Celgard separator in 3M KOH, thereby assembling into a double layer capacitor, and the loading of the active material was 0.4 mg/cm 2 .
  • the solution is an isopropanol solution containing 10% perfluorosulfonic acid.
  • Fig. 1 is the HRTEM figure of the composite material gained in Example 5 of the present invention.
  • Fig. 2 is an electron selected area diffraction pattern of the composite material obtained in Example 5 of the present invention.
  • This embodiment has prepared a kind of composite material, and specific preparation method is:
  • A1a Dissolve NiCl 2 ⁇ 6H 2 O in ethanol, add trimethylammonia to the solution to form triethylamine nickel complex, the molar ratio of divalent nickel salt and trimethylamine is 1:2.
  • A1b Add 2 times the molar mass of n-butanethiol to the complex solution, stir at 70°C for 5 hours to form a precipitate of n-butanethiol nickel, filter the precipitate, and wash it with acetonitrile and methanol for 5 times. The precipitate was dried at 80°C for 10 hours, and the dried nickel n-butanethiol was dissolved in toluene for later use.
  • A2a Cut waste polystyrene plastic plates into irregular shapes of 0.4-1.2 cm, wash them with 1mol/L hydrochloric acid at 50°C for 4 hours, filter them, and wash them with deionized water until neutral. The fragments were dried in a drying oven at 80°C for 12 hours, and then dissolved in chloroform to form a 0.3 g/ml solution; nickel n-butanethiol and polystyrene were mixed at a mass ratio of 1:300, and then polystyrene was added to the solution. A sugar cube with 3 times the mass of styrene was stirred for 3 hours, and the sugar cube was taken out and dried at 30°C for 10 hours to obtain a sugar-polystyrene composite;
  • A2b The sugar-polystyrene composite is calcined at 800°C for 2h, the heating rate is 10°C/min, the sintering atmosphere is a mixed gas of hydrogen and nitrogen (volume ratio is 1:20), and then placed at 1100°C, Calcined for 3 hours for graphitization to obtain a composite material.
  • This embodiment has prepared a kind of supercapacitor, and specific preparation method is:
  • A2a Disperse the composite material in Example 1 into an isopropanol solution containing 10% perfluorosulfonic acid, then coat the slurry on a carbon cloth as an electrode, and separate it with a Celgard diaphragm in 3M KOH, thereby Assembled into a double layer capacitor, the loading of the composite material was 0.4 mg/cm 2 .
  • This embodiment has prepared a kind of composite material, and specific preparation method is:
  • A1a Dissolve NiCl 2 ⁇ 6H 2 O in ethanol, add trimethylammonia to the solution to form triethylamine nickel complex, the molar ratio of divalent nickel salt and trimethylamine is 1:2.
  • A1b Add 2 times the molar mass of n-butanethiol to the complex solution, stir at 70°C for 5 hours to form a precipitate of n-butanethiol nickel, filter the precipitate, and wash it with acetonitrile and methanol for 5 times. The precipitate was dried at 80°C for 10 hours, and the dried nickel n-butanethiol was dissolved in toluene for later use.
  • A2a Cut waste polystyrene plastic plates into irregular shapes of 0.4 to 1.2 cm, wash them with 1mol/L hydrochloric acid at 50°C for 4 hours, filter them, and wash them with deionized water until neutral. Place in a drying oven and dry at 80°C for 12h, then dissolve in chloroform to form a 0.3g/ml solution. Mix nickel n-butanethiol and polystyrene at a mass ratio of 1:400, then add cube sugar three times the mass of polystyrene to the solution and stir for 3 hours, take out the cube sugar and dry it at 30°C for 10 hours to obtain sugar - Polystyrene composite.
  • A2b The composite is calcined at 800°C for 2h, the heating rate is 10°C/min, the sintering atmosphere is a mixed gas of hydrogen and nitrogen (the ratio is 1:20), and then calcined at 1100°C for 3h for graphitization, to obtain composite material.
  • A3a Disperse the composite material in Example 3 into an isopropanol solution containing 10% perfluorosulfonic acid, then coat the slurry on a carbon cloth as an electrode, and separate it with a Celgard diaphragm in 3M KOH, thereby Assembled into a double layer capacitor, the loading of the composite material was 0.4 mg/cm 2 .
  • This embodiment has prepared a kind of composite material, and specific preparation method is:
  • A1a Dissolve NiCl 2 ⁇ 6H 2 O in ethanol, add trimethylammonia to the solution to form triethylamine nickel complex, the molar ratio of divalent nickel salt and trimethylamine is 1:2.
  • A1b Add 2 times the molar mass of n-butanethiol to the complex solution, stir at 70°C for 5 hours to form a precipitate of n-butanethiol nickel, filter the precipitate, and wash it with acetonitrile and methanol for 5 times. The precipitate was dried at 80°C for 10 h, and the dried nickel n-butanethiol was dissolved in toluene for later use.
  • A2a Cut waste polystyrene plastic plates into irregular shapes of 0.4 to 1.2 cm, wash them with 1mol/L hydrochloric acid at 50°C for 4 hours, filter them, and wash them with deionized water until neutral. Place in a drying oven and dry at 80°C for 12h, then dissolve in chloroform to form a 0.3g/ml solution. Mix nickel n-butanethiol and polystyrene at a mass ratio of 1:500, then add cube sugar three times the mass of polystyrene to the solution and stir for 3 hours, take out the cube sugar and dry it at 30°C for 10 hours to obtain sugar - Polystyrene composite.
  • A2b The composite is calcined at 800°C for 2h, the heating rate is 10°C/min, the sintering atmosphere is a mixed gas of hydrogen and nitrogen (the ratio is 1:20), and then calcined at 1100°C for 3h for graphitization, to obtain composite material.
  • Figure 1 is the HRTEM image of the sugar-polystyrene composite material. Clear lattice fringes can be seen from the figure, and the interplanar spacing is about 0.33nm, corresponding to the (002) crystal plane of crystalline graphite carbon.
  • Figure 2 is the selected area diffraction pattern corresponding to the sugar-polystyrene composite material. From the figure, 6 diffraction spots can be seen, which proves the existence of sp 2 hybridized carbon in the material.
  • A3a Disperse the composite material in Example 5 into an isopropanol solution containing 10% perfluorosulfonic acid, then coat the slurry on a carbon cloth as an electrode, and separate it with a Celgard diaphragm in 3M KOH, thereby Assembled into a double layer capacitor, the loading of the composite material was 0.4 mg/cm 2 .
  • This embodiment has prepared a kind of composite material, and specific preparation method is:
  • A1a Dissolve NiCl 2 ⁇ 6H 2 O in ethanol, add trimethylammonia to the solution to form triethylamine nickel complex, the molar ratio of divalent nickel salt and trimethylamine is 1:2.
  • A1b Add 2 times the molar mass of n-butanethiol to the complex solution, stir at 70°C for 5 hours to form a precipitate of n-butanethiol nickel, filter the precipitate, and wash it with acetonitrile and methanol for 5 times. The precipitate was dried at 80°C for 10 hours, and the dried nickel n-butanethiol was dissolved in toluene for later use.
  • A2a Cut waste polystyrene plastic plates into irregular shapes of 0.4-1.2 cm, wash them with 1mol/L hydrochloric acid at 50°C for 4 hours, filter them, and wash them with deionized water until neutral. The fragments were dried in a drying oven at 80 °C for 12 h, and then dissolved in chloroform to form a 0.3 g/ml solution. Mix nickel n-butanethiol and polystyrene at a mass ratio of 1:600, then add cube sugar three times the mass of polystyrene to the solution and stir for 3 hours, take out the cube sugar and dry it at 30°C for 10 hours to obtain sugar - Polystyrene composite.
  • A2b The sugar-polystyrene composite is calcined at 800°C for 2 hours, the heating rate is 10°C/min, the sintering atmosphere is a mixed gas of hydrogen and nitrogen (volume ratio is 1:20), and then calcined at 1100°C 3h for graphitization to obtain a composite material.
  • A3a Disperse the composite material in Example 7 into an isopropanol solution containing 10% perfluorosulfonic acid, then coat the slurry on a carbon cloth as an electrode, and separate it with a Celgard diaphragm in 3M KOH, thereby Assembled into a double layer capacitor, the loading of the composite material was 0.4 mg/cm 2 .
  • This comparative example has prepared a kind of composite material, and concrete preparation method is:
  • A1a Dissolve NiCl 2 ⁇ 6H 2 O in ethanol, add trimethylammonia to the solution to form triethylamine nickel complex, the molar ratio of divalent nickel salt and trimethylamine is 1:2.
  • A1b Add 2 times the molar mass of n-butanethiol to the complex solution, stir at 70°C for 5 hours to form a precipitate of n-butanethiol nickel, filter the precipitate, and wash it with acetonitrile and methanol for 5 times. The precipitate was dried at 80°C for 10 hours, and the dried nickel n-butanethiol was dissolved in toluene for later use.
  • A2a Cut waste polystyrene plastic plates into irregular shapes of 0.4-1.2 cm, wash them with 1mol/L hydrochloric acid at 50°C for 4 hours, filter them, and wash them with deionized water until neutral. The fragments were dried in a drying oven at 80 °C for 12 h, and then dissolved in chloroform to form a 0.3 g/ml solution. Mix nickel n-butanethiol and polystyrene at a mass ratio of 1:500, then add cube sugar three times the mass of polystyrene to the solution and stir for 3 hours, take out the cube sugar and dry it at 30°C for 10 hours to obtain sugar - Polystyrene composite.
  • A2b The sugar-polystyrene composite was calcined at 800°C for 2h, the heating rate was 10°C/min, and the sintering atmosphere was a mixture of hydrogen and nitrogen (volume ratio: 1:20) to obtain a composite material.
  • A3a Disperse the composite material in Comparative Example 1 into an isopropanol solution containing 10% perfluorosulfonic acid, then coat the slurry on carbon cloth as an electrode, and separate it with a Celgard separator in 3M KOH, thereby Assembled into a double layer capacitor, the loading of the composite material was 0.4 mg/cm 2 .
  • This comparative example has prepared a kind of composite material, and concrete preparation method is:
  • A1a Cut waste polystyrene plastic plates into irregular shapes of 0.4-1.2 cm, wash them with 1mol/L hydrochloric acid at 50°C for 4 hours, filter them, and wash them with deionized water until neutral. The fragments were dried in a drying oven at 80 °C for 12 h, and then dissolved in chloroform to form a 0.3 g/ml solution. Add sugar cubes with 3 times the weight of polystyrene to the solution and stir for 3 hours, take out the sugar cubes and dry them at 30°C for 10 hours to obtain sugar-polystyrene complexes.
  • A1b The sugar-polystyrene composite is calcined at 800°C for 2h, the heating rate is 10°C/min, the sintering atmosphere is a mixed gas of hydrogen and nitrogen (volume ratio is 1:20), and then calcined at 1100°C 3h for graphitization to obtain a composite material.
  • A2a Disperse the composite material in Comparative Example 3 into an isopropanol solution containing 10% perfluorosulfonic acid, then coat the slurry on carbon cloth as an electrode, and separate it with a Celgard separator in 3M KOH, thereby Assembled into a double layer capacitor, the loading of the composite material was 0.4 mg/cm 2 .
  • Calculation method of specific surface area The specific surface area is measured by Mike 2020, calculated by BET theory according to the adsorption amount of nitrogen, and obtained by direct testing with equipment for sending powder samples.
  • Example 7 From the electrochemical performance test data of Example 5 and Example 7, it can be seen that as the specific surface area increases, the active sites for storing lithium ions increase, thereby increasing the electrochemical performance, but the micropores increase to a certain extent, and the excessive SEI film The growth leads to an increase in steric hindrance, and the formation of dead lithium to occupy the active site, resulting in a decrease in the amount of lithium ion intercalation in the later stage. Therefore, the specific surface area of Example 7 is the largest, but the corresponding electrochemical performance is not as good as that of Example 5.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Electric Double-Layer Capacitors Or The Like (AREA)
  • Carbon And Carbon Compounds (AREA)

Abstract

本发明公开了一种复合材料的制备方法和应用,制备原料包括:硫醇镍,方糖和聚苯乙烯,以硫醇镍作为催化剂提高糖/聚苯乙烯复合材料在氢化过程中的结晶度,从而提高材料的导电性和电化学性能;多孔方糖在作为软模板承载聚苯乙烯和催化剂的同时作为碳源,提高了材料的碳化程度,并且避免了在高温石墨化过程中需要额外的高压碳源补充;本发明提供的复合材料的制备方法,绿色环保,可以有效利用废弃的聚苯乙烯,将其转化为高倍率下高容量且具有长循环稳定性的石墨碳电极用作储能设备,解决现在大规模的白色污染。

Description

一种复合材料的制备方法和应用 技术领域
本发明属于无机非金属材料技术领域,具体涉及一种复合材料的制备方法和应用。
背景技术
有机废弃物因为很难被生物降解,并且可能存在一定的毒性,因此它的处理对于自然生态系统来说是十分重要的。针对有机废弃物,例如聚苯乙烯的处理方法中,土地填埋不仅需要广大的空间,同时也需要大量的时间降解;另外,聚苯乙烯的收集和储存成本高,因此回收利用率低。目前也有许多研究者还尝试将聚苯乙烯转变为高价值的炭材料从而发展多种应用,例如将聚苯乙烯转化成储能设备的电极材料、水中污染物的表面吸附剂以及催化剂等。
聚苯乙烯很难被碳化,因为在450℃(低于聚合物的碳化所需温度600℃)的中间温度时,它会从大分子降解形成低分子量挥发性化合物和多环芳烃的复杂混合物,因此将聚苯乙烯制备成碳材料具备一定难度。即便不同的废弃塑料碳化工艺已经被探索,但是将聚苯乙烯的碳化产物用于储能设备的研究依然很少,其根本原因是模板去除和KOH活化的处理步骤使聚苯乙烯碳产物的电导率和结晶度下降。具体来说,在电双层电容器(EDLCs)中,离子到电解表面的可通达性,电导率、孔径分布、润湿性、热稳定性和化学稳定性是决定其电化学性能和效率的关键因素。虽然聚苯乙烯的碳化产物具备的高表面积和多孔结构有助于提高电解液中离子的可通达性,但石墨含量和结晶度对于降低电极的内阻同样重要。
针对目前大量废弃的聚苯乙烯,将其再利用,制备成具有高比表面积和导电性的衍生碳材料,并应用于储能领域是具有高环保价值和潜在经济价值的。
发明内容
本发明旨在至少解决上述现有技术中存在的技术问题之一。为此,本发明提出一种复合材料的制备方法,本发明的硫醇镍作为催化剂可提高糖/聚苯乙烯复合材料在氢化 过程中的结晶度,从而提高材料的导电性和电化学性能,同时以多孔方糖作为软模板承载聚苯乙烯和催化剂,多孔方糖也可以作为碳源提高材料的碳化程度,并且避免了在高温石墨化过程中补充额外的高压碳源,本发明提供的方法绿色环保,可以有效利用废弃的聚苯乙烯,解决现在大规模的白色污染。
本发明还提出一种包括上述复合材料的储能装置。
根据本发明的一个方面,提供了一种复合材料的制备方法,制备原料包括:硫醇镍,方糖和聚苯乙烯。
本发明的复合材料的制备方法至少具有以下有益效果:
1、以硫醇镍作为催化剂提高糖/聚苯乙烯复合材料在氢化过程中的结晶度,从而提高材料的导电性和电化学性能,有机镍催化剂,有助于聚苯乙烯形成结晶度较高的碳,抑制大量低分子挥发物的形成。
2、方糖是由很多细小的糖颗粒组成的三维架构,而这些颗粒间存在很多不规整的间隙,在作为软模板承载聚苯乙烯和催化剂的同时作为碳源,提高了材料的碳化程度,并且避免了在高温石墨化过程中需要额外的碳源补充。
3、本发明提供的方法绿色环保,可以有效利用废弃的聚苯乙烯,解决现在大规模的白色污染。
4.本发明利用废弃的聚苯乙烯转化为的碳材料制备的石墨碳电极,在高倍率下具有高容量和长循环稳定性,可用作制备储能设备。
在本发明的一些实施方式中,所述硫醇镍的制备原料包括:镍盐,硫醇和三甲基胺。
在本发明的一些实施方式中,所述镍盐包括二价镍盐。
在本发明的一些实施方式中,所述镍盐包括NiCl 2·6H 2O、NiCl 2、NiSO 4·6H 2O和Ni(NO 3) 2·6H 2O中的一种或几种。
在本发明的一些实施方式中,所述镍盐和所述三甲基胺的摩尔配比为1:2~5。
在本发明的一些实施方式中,所述硫醇包括苄硫醇、正丁硫醇、正十二硫醇、叔十二硫醇、叔十六硫醇、2-丙硫醇、叔丁基硫醇、1-己硫醇、1-十四烷硫醇和1-十六烷硫 醇中的至少一种。
在本发明的一些实施方式中,所述硫醇镍的制备方法包括以下步骤:
A1:将所述镍盐溶于乙醇中,向所得溶液中添加三甲基氨,形成三乙胺镍络合物;
A2:向步骤A1所得络合物溶液中添加硫醇,搅拌,形成硫醇镍沉淀,将沉淀物过滤清洗3~6次,干燥4~12h后,分散于甲苯或氯仿中得到硫醇镍分散液后备用。
在本发明的一些实施方式中,所述镍盐和所述三甲基胺的摩尔比为1:2~5。
在本发明的一些实施方式中,步骤A2中所述络合物和所述硫醇的摩尔比为1:2~4。
在本发明的一些实施方式中,步骤A2中,所述搅拌的温度为50~70℃。
在本发明的一些实施方式中,步骤A2中,所述搅拌的时间为2~6h。
在本发明的一些实施方式中,步骤A2中,所述清洗的溶剂包括去离子水、乙醇、乙腈和甲醇中至少一种。
在本发明的一些实施方式中,步骤A2中,所述干燥的温度为50~150℃。
在本发明的一些实施方式中,步骤A2中,所述干燥的时间为4~12h。
在本发明的一些实施方式中,所述复合材的制备方法,包括以下步骤:
S1:将所述聚苯乙烯、所述方糖和所述硫醇镍分散液混合得到糖-聚苯乙烯复合物;
S2:将所述糖-聚苯乙烯复合物在还原性气氛下热处理即得。
在本发明的一些实施方式中,将聚苯乙烯用盐酸清洗,过滤后再用去离子水洗至中性,将洗净的聚苯乙烯置于干燥箱中干燥,之后溶于氯仿,将硫醇镍分散液和聚苯乙烯混合,再向溶液中加入方糖,搅拌,将方糖取出置于25~50℃下干燥3~10h,得到糖-聚苯乙烯复合物。
在本发明的一些实施方式中,所述聚苯乙烯为废弃的聚苯乙烯塑料板。
在本发明的一些实施方式中,所述制备方法还包括所述聚苯乙烯的前处理。
在本发明的一些实施方式中,所述聚苯乙烯的前处理包括裁剪、酸洗、水洗、干燥和溶解。
在本发明的一些实施方式中,所述裁剪包括将所述废弃的聚苯乙烯塑料板剪切成 0.4~1.5cm的不规则形状。
在本发明的一些实施方式中,所述酸洗采用的酸为0.5~3mol/L的盐酸。
在本发明的一些实施方式中,所述水洗的的温度为25~60℃。
在本发明的一些实施方式中,所述水性的的时间为2~6h。
在本发明的一些实施方式中,所述聚苯乙烯的前处理中,所述干燥的温度为80~120℃。
在本发明的一些实施方式中,所述聚苯乙烯的前处理中,所述干燥的时间为5~15h。
在本发明的一些实施方式中,所述溶于氯仿后形成的溶液为0.2~1g/ml。
在本发明的一些实施方式中,加入方糖后的搅拌时间为0.5~3h。
在本发明的一些实施方式中,步骤S1中,所述混合的顺序为:将所述硫醇镍分散液和聚苯乙烯溶液混合,再向溶液中加入方糖,搅拌,将方糖取出后干燥,得到糖-聚苯乙烯复合物。
在本发明的一些实施方式中,步骤S1中,所述硫醇镍和所述聚苯乙烯以的质量比为1:100~1000。
在本发明的一些实施方式中,所述聚苯乙烯和所述方糖的质量比为1:3~6。
在本发明的一些实施方式中,加入方糖后,所述搅拌的时间为0.5~3h。
在本发明的一些实施方式中,所述方糖干燥的温度为25~50℃。
在本发明的一些实施方式中,所述方糖干燥的时间为3~10h。
在本发明的一些实施方式中,步骤S2中,所述热处理包括第一次热处理和第二次热处理。
在本发明的一些实施方式中,所述第一次热处理的温度为600~800℃。
在本发明的一些实施方式中,所述第一次热处理的时间为1~3h。
在本发明的一些实施方式中,所述第一次热处理的升温速率在5~20℃/min。
在本发明的一些实施方式中,当温度升至220℃时,所述方糖开始分解形成碳壳, 聚苯乙烯中的烃则被包裹其中;当温度升至250℃时,硫醇镍被还原为镍基纳米颗粒,且硫醇镍中含有烃基,其中的烃发生裂解,裂解的碳再结晶,形成六元环;当温度到400℃时,聚苯乙烯分解,热解碳中的羟基在还原性气氛煅烧过程中消失,而羰基和环氧也相应减少,同时裂解产生的气体突破了载体,使所述糖-聚苯乙烯复合物比表面积和孔隙率增加,此时材料的微孔尺寸在2nm以下。
在本发明的一些实施方式中,所述第二次热处理的温度为1000~1200℃。
在本发明的一些实施方式中,所述第二次热处理的时间为2~4h。
本发明的二次热处理中进行石墨化时,所述糖-聚苯乙烯复合物的六元环网络变大,结晶度提高,点缺陷减少,导电性增强,所述糖-聚苯乙烯复合物的比表和孔径尺寸相对减小,获得所述复合材料。
在本发明的一些实施方式中,步骤S2中,所述还原性气氛为氢气和氮气的混合气体。
本发明在所述氢气和氮气的混合气体进行氢退火,既可以消除表面效应,同时还可提升石墨化度,减少点缺陷,提升双层电容器所要求的碳的结晶度和导电性。
在本发明的一些实施方式中,步骤S2中,所述氢气和氮气的体积比为1:10~50。
本发明的第二方面提供了一种储能装置,制备原料包括所述的复合材料的制备方法制备的复合材料。
本发明的储能装置,至少具有以下有益效果:
本发明提供的石墨碳电极用作储能设备具有高倍率、高容量且具有长循环稳定性。
在本发明的一些实施方式中,所述储能装置包括电池和电容中的至少一种。
在本发明的一些实施方式中,所述电容的制备方法包括以下步骤:
将所述复合材料分散到溶液中形成浆料,然后将浆料涂覆在碳布上作为电极,在3M的KOH中用Celgard隔膜分开,从而组装成双层电容器,活性材料的负载量为0.4mg/cm 2
在本发明的一些实施方式中,所述溶液为含有10%全氟磺酸的异丙醇溶液。
附图说明
下面结合附图和实施例对本发明做进一步的说明,其中:
图1为本发明实施例5所得复合材料的HRTEM图;
图2为本发明实施例5所得复合材料的电子选区衍射图。
具体实施方式
以下将结合实施例对本发明的构思及产生的技术效果进行清楚、完整地描述,以充分地理解本发明的目的、特征和效果。显然,所描述的实施例只是本发明的一部分实施例,而不是全部实施例,基于本发明的实施例,本领域的技术人员在不付出创造性劳动的前提下所获得的其他实施例,均属于本发明保护的范围。
实施例1
本实施例制备了一种复合材料,具体制备方法为:
A1.制备硫醇镍
A1a:将NiCl 2·6H 2O溶于乙醇中,向该溶液添加三甲基氨形成三乙胺镍络合物,二价镍盐和三甲基胺的摩尔配比为1:2。
A1b:向络合物溶液中添加2倍摩尔质量的正丁硫醇,70℃下搅拌5h,形成正丁硫醇镍沉淀,将沉淀物过滤,用去乙腈和甲醇清洗5次,清洗后的沉淀在80℃间干燥10h,干燥后的正丁硫醇镍溶于甲苯备用。
A2.制备复合材料
A2a:将废旧的聚苯乙烯塑料板剪切成0.4~1.2cm的不规则形状,用1mol/L的盐酸于50℃下清洗4h,过滤后再用去离子水洗至中性,将洗净的碎片置于干燥箱中80℃下干燥12h,之后溶于氯仿中形成0.3g/ml的溶液;将正丁硫醇镍和聚苯乙烯以1:300的质量比混合,再向溶液中加入聚苯乙烯质量3倍的方糖搅拌3h,将方糖取出置于30℃下干燥10h,得到糖-聚苯乙烯复合物;
A2b:将糖-聚苯乙烯复合物置于800℃下煅烧2h,升温速率在10℃/min,烧结气氛为氢气和氮气的混合气体(体积比为1:20),之后置于1100℃下,煅烧3h进行石墨化,获得复合材料。
实施例2
本实施例制备了一种超级电容器,具体制备方法为:
A2.超级电容器
A2a:将实施例1中的复合材料分散到含有10%全氟磺酸的异丙醇溶液中,然后将浆料涂覆在碳布上作为电极,在3M的KOH中用Celgard隔膜分开,从而组装成双层电容器,复合材料的负载量为0.4mg/cm 2
实施例3
本实施例制备了一种复合材料,具体制备方法为:
A1.制备硫醇镍
A1a:将NiCl 2·6H 2O溶于乙醇中,向该溶液添加三甲基氨形成三乙胺镍络合物,二价镍盐和三甲基胺的摩尔配比为1:2。
A1b:向络合物溶液中添加2倍摩尔质量的正丁硫醇,70℃下搅拌5h,形成正丁硫醇镍沉淀,将沉淀物过滤,用去乙腈和甲醇清洗5次,清洗后的沉淀在80℃间干燥10h,干燥后的正丁硫醇镍溶于甲苯备用。
A2.制备复合材料
A2a:将废旧的聚苯乙烯塑料板剪切成0.4~1.2cm的不规则形状,用1mol/L的盐酸50℃下清洗4h,过滤后再用去离子水洗至中性,将洗净的碎片置于干燥箱中80℃下干燥12h,之后溶于氯仿中形成0.3g/ml的溶液。将正丁硫醇镍和聚苯乙烯以1:400的质量比混合,再向溶液中加入聚苯乙烯质量3倍的方糖搅拌3h,将方糖取出置于30℃下干燥10h,得到糖-聚苯乙烯复合物。
A2b:将复合物置于800℃下煅烧2h,升温速率在10℃/min,烧结气氛为氢气和氮气的混合气体(比例在1:20),之后置于1100℃下煅烧3h进行石墨化,获得复合材料。
实施例4
A3.超级电容器
A3a:将实施例3中的复合材料分散到含有10%全氟磺酸的异丙醇溶液中,然后将浆料涂覆在碳布上作为电极,在3M的KOH中用Celgard隔膜分开,从而组装成双层电容 器,复合材料的负载量为0.4mg/cm 2
实施例5
本实施例制备了一种复合材料,具体制备方法为:
A1.制备硫醇镍
A1a:将NiCl 2·6H 2O溶于乙醇中,向该溶液添加三甲基氨形成三乙胺镍络合物,二价镍盐和三甲基胺的摩尔配比为1:2。
A1b:向络合物溶液中添加2倍摩尔质量的正丁硫醇,70℃下搅拌5h,形成正丁硫醇镍沉淀,将沉淀物过滤,用去乙腈和甲醇清洗5次,清洗后的沉淀在80℃间干燥10h,干燥后的正丁硫醇镍溶于甲苯备用。
A2.制备复合材料
A2a:将废旧的聚苯乙烯塑料板剪切成0.4~1.2cm的不规则形状,用1mol/L的盐酸50℃下清洗4h,过滤后再用去离子水洗至中性,将洗净的碎片置于干燥箱中80℃下干燥12h,之后溶于氯仿中形成0.3g/ml的溶液。将正丁硫醇镍和聚苯乙烯以1:500的质量比混合,再向溶液中加入聚苯乙烯质量3倍的方糖搅拌3h,将方糖取出置于30℃下干燥10h,得到糖-聚苯乙烯复合物。
A2b:将复合物置于800℃下煅烧2h,升温速率在10℃/min,烧结气氛为氢气和氮气的混合气体(比例在1:20),之后置于1100℃下煅烧3h进行石墨化,获得复合材料。
图一为糖-聚苯乙烯复合材料的HRTEM图,从图中可以看到清晰的晶格条纹,且晶面间距约为0.33nm,对应结晶石墨碳的(002)晶面。
图二为糖-聚苯乙烯复合材料对应的选区衍射图,从图中可以看得6个衍射斑点,证明材料中sp 2杂化碳的存在。
实施例6
A3.超级电容器
A3a:将实施例5中的复合材料分散到含有10%全氟磺酸的异丙醇溶液中,然后将浆料涂覆在碳布上作为电极,在3M的KOH中用Celgard隔膜分开,从而组装成双层电容 器,复合材料的负载量为0.4mg/cm 2
实施例7
本实施例制备了一种复合材料,具体制备方法为:
A1.制备硫醇镍
A1a:将NiCl 2·6H 2O溶于乙醇中,向该溶液添加三甲基氨形成三乙胺镍络合物,二价镍盐和三甲基胺的摩尔配比为1:2。
A1b:向络合物溶液中添加2倍摩尔质量的正丁硫醇,70℃下搅拌5h,形成正丁硫醇镍沉淀,将沉淀物过滤,用去乙腈和甲醇清洗5次,清洗后的沉淀在80℃间干燥10h,干燥后的正丁硫醇镍溶于甲苯备用。
A2.制备复合材料
A2a:将废旧的聚苯乙烯塑料板剪切成0.4~1.2cm的不规则形状,用1mol/L的盐酸于50℃下清洗4h,过滤后再用去离子水洗至中性,将洗净的碎片置于干燥箱中80℃下干燥12h,之后溶于氯仿中形成0.3g/ml的溶液。将正丁硫醇镍和聚苯乙烯以1:600的质量比混合,再向溶液中加入聚苯乙烯质量3倍的方糖搅拌3h,将方糖取出置于30℃下干燥10h,得到糖-聚苯乙烯复合物。
A2b:将糖-聚苯乙烯复合物置于800℃下煅烧2h,升温速率在10℃/min,烧结气氛为氢气和氮气的混合气体(体积比为1:20),之后置于1100℃下煅烧3h进行石墨化,获得复合材料。
实施例8
A3.超级电容器
A3a:将实施例7中的复合材料分散到含有10%全氟磺酸的异丙醇溶液中,然后将浆料涂覆在碳布上作为电极,在3M的KOH中用Celgard隔膜分开,从而组装成双层电容器,复合材料的负载量为0.4mg/cm 2
对比例1
本对比例制备了一种复合材料,具体制备方法为:
A1.制备硫醇镍
A1a:将NiCl 2·6H 2O溶于乙醇中,向该溶液添加三甲基氨形成三乙胺镍络合物,二价镍盐和三甲基胺的摩尔配比为1:2。
A1b:向络合物溶液中添加2倍摩尔质量的正丁硫醇,70℃下搅拌5h,形成正丁硫醇镍沉淀,将沉淀物过滤,用去乙腈和甲醇清洗5次,清洗后的沉淀在80℃间干燥10h,干燥后的正丁硫醇镍溶于甲苯备用。
A2.制备复合材料
A2a:将废旧的聚苯乙烯塑料板剪切成0.4~1.2cm的不规则形状,用1mol/L的盐酸于50℃下清洗4h,过滤后再用去离子水洗至中性,将洗净的碎片置于干燥箱中80℃下干燥12h,之后溶于氯仿中形成0.3g/ml的溶液。将正丁硫醇镍和聚苯乙烯以1:500的质量比混合,再向溶液中加入聚苯乙烯质量3倍的方糖搅拌3h,将方糖取出置于30℃下干燥10h,得到糖-聚苯乙烯复合物。
A2b:将糖-聚苯乙烯复合物置于800℃下煅烧2h,升温速率在10℃/min,烧结气氛为氢气和氮气的混合气体(体积比为1:20),获得复合材料。
对比例2
A3.超级电容器
A3a:将对比例1中的复合材料分散到含有10%全氟磺酸的异丙醇溶液中,然后将浆料涂覆在碳布上作为电极,在3M的KOH中用Celgard隔膜分开,从而组装成双层电容器,复合材料的负载量为0.4mg/cm 2
对比例3
本对比例制备了一种复合材料,具体制备方法为:
A1.制备复合材料
A1a:将废旧的聚苯乙烯塑料板剪切成0.4~1.2cm的不规则形状,用1mol/L的盐酸于50℃下清洗4h,过滤后再用去离子水洗至中性,将洗净的碎片置于干燥箱中80℃下干燥12h,之后溶于氯仿中形成0.3g/ml的溶液。向溶液中加入聚苯乙烯质量3倍的方 糖搅拌3h,将方糖取出置于30℃下干燥10h,得到糖-聚苯乙烯复合物。
A1b:将糖-聚苯乙烯复合物置于800℃下煅烧2h,升温速率在10℃/min,烧结气氛为氢气和氮气的混合气体(体积比为1:20),之后置于1100℃下煅烧3h进行石墨化,获得复合材料。
对比例4
A2.超级电容器
A2a:将对比例3中的复合材料分散到含有10%全氟磺酸的异丙醇溶液中,然后将浆料涂覆在碳布上作为电极,在3M的KOH中用Celgard隔膜分开,从而组装成双层电容器,复合材料的负载量为0.4mg/cm 2
试验例
试验例1
本试验例测试了实施例和对比例所得复合材料的比表面积,如表1所示:
表1复合材料的比表面积
Figure PCTCN2022090063-appb-000001
比表面积的计算方法:比表面积是通过麦克2020测试,根据氮气的吸附量利用BET理论计算得出,为送粉末样品用设备直接测试得到。
由实施例1~7,对比例1和对比例2的比表面积结果可知,通过加入催化剂可提高材料的比表面积,而石墨化(第二步热处理)则会降低材料的比表面积,其中实施例7的比表面积最大。
试验例2
将施例1、3、5、7与对比例1、3制备的复合材料分别取10mg混合750μL的异丙醇和80μL全氟磺酸,150W超声1h,取5μL滴在玻璃碳电极上作为工作电极,充满饱 和KCl的Ag/AgCl作为参比电极,铂丝作为对电极,三电极置于3M的KOH溶液中进行电化学性能的测试,测试电压为0~0.8V,电流密度为1~5A/g,测试结果如表2所示。
表2复合材料与对比样品的电化学性能测试数据
Figure PCTCN2022090063-appb-000002
由实施例5,实施例7的电化学性能测试数据可知,随着比表面积的增加,存储锂离子的活性位点增多,从而电化学性能增加,但微孔增加到一定程度,SEI膜的过度增长导致空间位阻增加,且形成死锂占据活性位点,导致后期锂离子嵌入量减少,因此实施例7的比表面积最大,但是相应的电化学性能不如实施例5。
上面结合附图对本发明实施例作了详细说明,但是本发明不限于上述实施例,在所属技术领域普通技术人员所具备的知识范围内,还可以在不脱离本发明宗旨的前提下作出各种变化。此外,在不冲突的情况下,本发明的实施例及实施例中的特征可以相互组合。

Claims (10)

  1. 一种复合材料的制备方法,其特征在于,制备原料包括:硫醇镍,方糖和聚苯乙烯。
  2. 根据权利要求1所述的制备方法,其特征在于,所述硫醇镍的制备原料包括:镍盐,硫醇和三甲基胺。
  3. 根据权利要求2所述的制备方法,其特征在于,所述镍盐和所述三甲基胺的摩尔配比为1:2~5。
  4. 根据权利要求1~3任一项所述的制备方法,其特征在于,所述制备方法包括以下步骤:
    S1:将所述聚苯乙烯、所述方糖和所述硫醇镍混合得到糖-聚苯乙烯复合物;
    S2:将所述糖-聚苯乙烯复合物在还原性气氛下热处理即得。
  5. 根据权利要求4所述的复合材的制备方法,其特征在于,步骤S1中,所述硫醇镍和所述聚苯乙烯以的质量比为1:100~1000。
  6. 根据权利要求4所述的复合材的制备方法,其特征在于,步骤S1中,所述聚苯乙烯和所述方糖的质量比为1:3~6。
  7. 根据权利要求4所述的复合材的制备方法,其特征在于,步骤S2中,所述热处理包括第一次热处理和第二次热处理,优选的,所述第一次热处理的温度为600~800℃;优选的,所述第一次热处理的时间为1~3h;优选的,所述第二次热处理的温度为1000~1200℃。
  8. 根据权利要求4所述的复合材的制备方法,其特征在于,步骤S2中,所述还原性气氛为氢气和氮气的混合气体;优选的,所述氢气和氮气的体积比为1:10~50。
  9. 一种储能装置,其特征在于,制备原料包括权利要求1~8任一项所述的复合材料的制备方法制备的复合材料。
  10. 根据权利要求9所述的储能装置,其特征在于,所述储能装置包括电池和电容中的至少一种。
PCT/CN2022/090063 2021-09-30 2022-04-28 一种复合材料的制备方法和应用 WO2023050800A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202111159195.0 2021-09-30
CN202111159195.0A CN113963955A (zh) 2021-09-30 2021-09-30 一种复合材料的制备方法和应用

Publications (1)

Publication Number Publication Date
WO2023050800A1 true WO2023050800A1 (zh) 2023-04-06

Family

ID=79462842

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/090063 WO2023050800A1 (zh) 2021-09-30 2022-04-28 一种复合材料的制备方法和应用

Country Status (2)

Country Link
CN (1) CN113963955A (zh)
WO (1) WO2023050800A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113963955A (zh) * 2021-09-30 2022-01-21 广东邦普循环科技有限公司 一种复合材料的制备方法和应用

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101698477A (zh) * 2009-11-10 2010-04-28 中山大学 一种聚苯乙烯基层次孔炭材料及其制备方法和应用
CN102509629A (zh) * 2011-09-29 2012-06-20 中山大学 一种高比表面积层次孔炭材料及其制备方法和应用
US20150048556A1 (en) * 2012-02-27 2015-02-19 Sogang University Research Foundation Porous carbon particles and preparation method thereof
CN108485094A (zh) * 2018-03-19 2018-09-04 繁昌县聚恒智能装备有限公司 一种发泡聚苯乙烯建筑材料及其制备方法
CN113963955A (zh) * 2021-09-30 2022-01-21 广东邦普循环科技有限公司 一种复合材料的制备方法和应用

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101698477A (zh) * 2009-11-10 2010-04-28 中山大学 一种聚苯乙烯基层次孔炭材料及其制备方法和应用
CN102509629A (zh) * 2011-09-29 2012-06-20 中山大学 一种高比表面积层次孔炭材料及其制备方法和应用
US20150048556A1 (en) * 2012-02-27 2015-02-19 Sogang University Research Foundation Porous carbon particles and preparation method thereof
CN108485094A (zh) * 2018-03-19 2018-09-04 繁昌县聚恒智能装备有限公司 一种发泡聚苯乙烯建筑材料及其制备方法
CN113963955A (zh) * 2021-09-30 2022-01-21 广东邦普循环科技有限公司 一种复合材料的制备方法和应用

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
URGUNDE AJAY B., BAHUGUNA GAURAV, DHAMIJA ANANDITA, DAS PARIJAT P., GUPTA RITU: "Ni Ink-Catalyzed Conversion of a Waste Polystyrene–Sugar Composite to Graphitic Carbon for Electric Double-Layer Supercapacitors", ACS APPLIED ELECTRONIC MATERIALS, vol. 2, no. 10, 27 October 2020 (2020-10-27), pages 3178 - 3186, XP093053347, ISSN: 2637-6113, DOI: 10.1021/acsaelm.0c00542 *

Also Published As

Publication number Publication date
CN113963955A (zh) 2022-01-21

Similar Documents

Publication Publication Date Title
Rahmanifar et al. A dual Ni/Co-MOF-reduced graphene oxide nanocomposite as a high performance supercapacitor electrode material
Wei et al. Synthesis of porous carbons from coal tar pitch for high-performance supercapacitors
Ji et al. Thin MoS 2 nanosheets grafted MOFs-derived porous Co–N–C flakes grown on electrospun carbon nanofibers as self-supported bifunctional catalysts for overall water splitting
CN106025200B (zh) 一种氮掺杂MXene电池负极材料的制备方法及其应用
JP5191483B2 (ja) 多孔性伝導カーボン物質とその使用
WO2016184355A1 (zh) 以煤炭为原料制备石墨烯的方法
CN112194112B (zh) 一种高电容多级孔碳材料及其制备方法与应用
CN113603078B (zh) 一种多孔碳、其制备方法及其应用
CN112830472B (zh) 一种多孔碳的制备方法及由其得到的多孔碳和应用
Ye et al. Emerging covalent triazine frameworks-based nanomaterials for electrochemical energy storage and conversion
Xu et al. High-performance zeolitic imidazolate frameworks derived three-dimensional Co3S4/polyaniline nanocomposite for supercapacitors
JP2006335596A (ja) 規則性のある大表面積ミクロポーラス炭素の簡便な合成方法
Abdolahi et al. Engineering of nickel‐cobalt oxide nanostructures based on biomass material for high performance supercapacitor and catalytic water splitting
CN109559902B (zh) 一种金属有机框架衍生钴镍硼硫化物材料及其制备方法与应用
CN112410849B (zh) 一种缺陷黑磷烯碳纳米管复合材料的制备方法和应用
Wang et al. Hierarchically porous nanosheets-constructed 3D carbon network for ultrahigh-capacity supercapacitor and battery anode
WO2023050800A1 (zh) 一种复合材料的制备方法和应用
CN111933455A (zh) 应用于超级电容器的PNT@NiCo-LDH复合材料及其制备方法
Zhao et al. Metal-organic framework derived nickel‑cobalt layered double hydroxide nanosheets cleverly constructed on interconnected nano-porous carbon for high-performance supercapacitors
CN111834130A (zh) 塌陷碳基纳米笼电极材料及其制备方法
Mao et al. Metal-organic frameworks/carboxyl graphene derived porous carbon as a promising supercapacitor electrode material
CN115036516A (zh) 一种钴、氮共掺杂的中空管状多孔碳复合材料及其制备方法与应用
CN105036130A (zh) 一种以榆钱为原料制备超级电容器用活性炭材料的方法
Yue et al. Multi-element co-doped biomass porous carbon with uniform cellular pores as a supercapacitor electrode material to realise high value-added utilisation of agricultural waste
Zhao et al. Engineering monodispersed 2 nm Sb 2 S 3 particles embedded in a porphyrin-based MOF-derived mesoporous carbon network via an adsorption method to construct a high-performance sodium-ion battery anode

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22874198

Country of ref document: EP

Kind code of ref document: A1