WO2023050685A1 - 一种窄线宽单频掺铥分布反馈光纤激光器及系统 - Google Patents

一种窄线宽单频掺铥分布反馈光纤激光器及系统 Download PDF

Info

Publication number
WO2023050685A1
WO2023050685A1 PCT/CN2022/076626 CN2022076626W WO2023050685A1 WO 2023050685 A1 WO2023050685 A1 WO 2023050685A1 CN 2022076626 W CN2022076626 W CN 2022076626W WO 2023050685 A1 WO2023050685 A1 WO 2023050685A1
Authority
WO
WIPO (PCT)
Prior art keywords
frequency
laser
signal
thulium
doped
Prior art date
Application number
PCT/CN2022/076626
Other languages
English (en)
French (fr)
Inventor
潘伟巍
张磊
董金岩
Original Assignee
上海频准激光科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 上海频准激光科技有限公司 filed Critical 上海频准激光科技有限公司
Publication of WO2023050685A1 publication Critical patent/WO2023050685A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/05Construction or shape of optical resonators; Accommodation of active medium therein; Shape of active medium
    • H01S3/06Construction or shape of active medium
    • H01S3/063Waveguide lasers, i.e. whereby the dimensions of the waveguide are of the order of the light wavelength
    • H01S3/067Fibre lasers
    • H01S3/0675Resonators including a grating structure, e.g. distributed Bragg reflectors [DBR] or distributed feedback [DFB] fibre lasers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/05Construction or shape of optical resonators; Accommodation of active medium therein; Shape of active medium
    • H01S3/06Construction or shape of active medium
    • H01S3/063Waveguide lasers, i.e. whereby the dimensions of the waveguide are of the order of the light wavelength
    • H01S3/067Fibre lasers
    • H01S3/06708Constructional details of the fibre, e.g. compositions, cross-section, shape or tapering
    • H01S3/06716Fibre compositions or doping with active elements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/05Construction or shape of optical resonators; Accommodation of active medium therein; Shape of active medium
    • H01S3/06Construction or shape of active medium
    • H01S3/063Waveguide lasers, i.e. whereby the dimensions of the waveguide are of the order of the light wavelength
    • H01S3/067Fibre lasers
    • H01S3/06754Fibre amplifiers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/23Arrangements of two or more lasers not provided for in groups H01S3/02 - H01S3/22, e.g. tandem arrangements of separate active media

Definitions

  • the disclosure relates to the field of laser technology, in particular to a narrow-linewidth single-frequency thulium-doped distributed feedback fiber laser and a system.
  • the current technology can use solid-state lasers, semiconductor lasers, fiber lasers and other types of lasers combined with different gain media and various nonlinear frequency conversion technologies to achieve narrow-bandwidth single-frequency laser output in different bands, among which single-frequency Ti:Sapphire laser As the most mature solid-state single-frequency laser, it can achieve watt-level single-frequency laser output near 800nm, and further combine nonlinear frequency conversion to extend the wavelength to the ultraviolet band. , poor stability, and susceptible to environmental interference; single-frequency semiconductor lasers can achieve single-frequency laser output in each band by flexibly designing the PN junction interval in the chip, and are small in size and good in stability, but there is a problem of relatively low output power.
  • single-frequency fiber laser generally adopts the structure of single-frequency seed laser plus fiber amplifier, by selecting different gains, it can already achieve high-power single-frequency laser output at 950-2200nm, Further combining nonlinear frequency conversion technology can extend the wavelength to the whole band. But in the thulium-doped fiber laser band, that is, 1700-2200nm, the related technology only uses a single-frequency semiconductor seed laser combined with a fiber amplifier to output a single-frequency laser signal, but the output single-frequency laser linewidth is greater than 1MHz.
  • the present disclosure provides a narrow-linewidth single-frequency thulium-doped distributed feedback fiber laser and system, aiming to provide high-power single-frequency laser signals with a linewidth less than 1 MHz, for example:
  • the present disclosure provides a narrow-linewidth single-frequency thulium-doped distributed feedback fiber laser, including a thulium-doped fiber, which also includes:
  • a distributed feedback fiber Bragg grating written on the thulium-doped fiber, the distributed feedback fiber Bragg grating is preset with a phase shift, and is set to form a phase shift grating;
  • a pumping light source unit configured to form the pumping light signal and input it into the phase-shift grating
  • the thulium-doped optical fiber is configured to receive the pumping light signal, and the pumping light signal is transmitted to a phase shift grating, and the phase shifting grating forms a laser oscillation based on the pumping light signal and outputs a single frequency laser signal.
  • the present disclosure further provides a high-power single-frequency thulium-doped fiber laser system, which includes a narrow-linewidth single-frequency thulium-doped distributed feedback fiber laser described in any one of the above, and also includes,
  • the optical fiber amplification module is connected to the output end of the narrow-linewidth single-frequency thulium-doped distributed feedback fiber laser, and the optical fiber amplification module is configured to amplify the single-frequency laser signal to form a single-frequency laser amplification signal.
  • the present disclosure further provides a high-power single-frequency fiber laser system, which includes:
  • the first laser unit is formed by the high-power single-frequency thulium-doped fiber laser system described in any one of the above or a single-frequency fiber laser system based on a gain medium, and is configured to output a first single-frequency laser signal;
  • the second laser unit is formed by the high-power single-frequency thulium-doped fiber laser system described in any one of the above or a single-frequency fiber laser system based on other gain media, and is configured to output a second single-frequency laser signal;
  • the fiber coupling unit is configured to receive the first single-frequency laser signal and/or the second single-frequency laser signal, and form a laser according to the first single-frequency laser signal and/or the second single-frequency laser signal coupled signal;
  • the nonlinear frequency conversion unit is configured to receive the laser coupling signal, and perform nonlinear conversion on the laser coupling signal to form a single-frequency laser conversion signal for output.
  • FIG. 1 is a schematic structural diagram of a narrow-linewidth single-frequency thulium-doped distributed feedback fiber laser provided by some embodiments of the present disclosure
  • FIG. 2 is a schematic structural diagram of a narrow linewidth single-frequency thulium-doped distributed feedback fiber laser provided by some embodiments of the present disclosure
  • Fig. 3 is a grating transmission spectrum diagram of a narrow-linewidth single-frequency thulium-doped distributed feedback fiber laser provided by some embodiments of the present disclosure
  • Fig. 4 is a grating transmission spectrum diagram of a narrow-linewidth single-frequency thulium-doped distributed feedback fiber laser provided by some embodiments of the present disclosure
  • Fig. 5 is a grating transmission spectrum diagram of a narrow-linewidth single-frequency thulium-doped distributed feedback fiber laser provided by some embodiments of the present disclosure
  • FIG. 6 is a structural diagram of a narrow-linewidth single-frequency high-power thulium-doped fiber laser system provided by some embodiments of the present disclosure
  • Fig. 7 is a structural diagram of a narrow-linewidth single-frequency high-power fiber laser system provided by some embodiments of the present disclosure.
  • the present disclosure provides a narrow-linewidth single-frequency thulium-doped distributed feedback fiber laser, which includes:
  • a thulium-doped optical fiber 1 is preset with a phase-shift grating 11, and the thulium-doped optical fiber is configured to receive a pumping optical signal, and the pumping optical signal is transmitted to the phase-shifting grating, and the phase-shifting grating is based on the pumping
  • the optical signal forms a laser oscillation and outputs a single-frequency laser signal; wherein, the phase shift amount of the phase shift grating is (2N+P) ⁇ , N is an integer not less than 0, and P is any number greater than 0 and less than 2 number, the phase shift grating can be located at any position of the single-frequency thulium-doped distributed optical fiber, and the phase shift amount of the grating can be any value.
  • the phase shift grating may be a fiber Bragg grating.
  • the pumping light source unit 3 is connected to the wavelength division multiplexer and configured to form a pumping signal.
  • the wavelength division multiplexer 2 is arranged on the track of the output optical path of the single-frequency laser signal, and is arranged to receive the pumping light signal and output the pumping light signal to the phase shift grating.
  • a thulium-doped gain fiber is formed by doping thulium ions on the gain fiber, and a grating with a phase shift is arranged on the thulium-doped fiber.
  • the pump light signal is transmitted to the phase-shift grating through the thulium-doped fiber, and the phase-shift grating establishes a laser resonant cavity, introduces a preset phase shift to achieve filtering, and converts the light signal to It is narrow-linewidth single-frequency laser output, and the wavelength range of narrow-linewidth single-frequency laser is 1700-2200nm.
  • the phase shift of the phase shift grating is (2N+P) ⁇ , when P is 0.5, the preset phase shift is (2N+0.5 ⁇ ), as shown in Figure 3, the transmission peak is located at the grating The shortwave side of the very middle of the reflectance spectrum.
  • the preset phase shift amount is (2N+1) ⁇ , as shown in Figure 4
  • the transmission peak is located in the middle of the reflection spectrum of the grating.
  • the preset phase shift amount is (2N+1.5) ⁇ , as shown in Figure 5
  • the transmission peak is located on the short-wave side of the middle of the reflection spectrum of the grating.
  • the depressions in Fig. 3, Fig. 4 and Fig. 5 are grating reflection areas, and the 3dB bandwidth of the grating reflection spectrum is greater than or equal to 0.01nm.
  • the above-mentioned narrow-linewidth single-frequency thulium-doped distributed feedback fiber laser has the characteristics of compact structure, strong anti-environmental interference, narrow output single-frequency laser linewidth, and good frequency stability.
  • the wavelength can cover 1700-2200nm, and the output single-frequency laser
  • the linewidth is less than 1MHz.
  • the above-mentioned narrow-linewidth single-frequency thulium-doped distributed feedback fiber laser which also includes,
  • an isolation unit 4 arranged on the optical path track of the single-frequency laser signal, and configured to receive the single-frequency laser signal output by the wavelength division multiplexer, the output end of the isolation unit forms the narrow linewidth single Frequency-doped thulium distribution feeds back to the output of a fiber laser.
  • the isolation unit is used to protect the phase shift grating, the wavelength division multiplexer and the pumping light source unit, and prevent the reversely input light from damaging the phase shifting grating, the wavelength division multiplexer and the pumping light source unit.
  • the structure is reverse pumped state.
  • the present disclosure provides a narrow-linewidth single-frequency thulium-doped distributed feedback fiber laser, which includes:
  • the thulium-doped optical fiber 1 is preset with a phase shift grating 11 .
  • the wavelength division multiplexer 2 is configured to receive the mixed signal of the single-frequency laser signal and the pumping optical signal, and divide the two optical signals into two different optical fibers.
  • the pumping light source unit 3 is connected to the thulium-doped optical fiber, and is configured to form a pumping light signal, and input it into the phase-shifting grating.
  • the above-mentioned narrow-linewidth single-frequency thulium-doped distributed feedback fiber laser which also includes,
  • the isolation unit 4 is arranged on the optical path track of the single-frequency laser signal, and is configured to receive the single-frequency laser signal output by the wavelength division multiplexer, and the output end of the isolation unit forms the narrow-linewidth single-frequency Thulium-doped distribution fed back to the output of the fiber laser.
  • the isolation unit is used to protect the phase shift grating, the wavelength division multiplexer and the pumping light source unit, and prevent the reversely input light from damaging the phase shifting grating, the wavelength division multiplexer and the pumping light source unit.
  • the structure is in the forward pumped state.
  • a high-power single-frequency thulium-doped fiber laser system which includes a narrow linewidth single-frequency thulium-doped distributed feedback fiber laser described in any one of the above, also includes,
  • the optical fiber amplification module 21 is connected to the output end of the narrow-linewidth single-frequency thulium-doped distributed feedback fiber laser 20, and the optical fiber amplification module is configured to amplify the single-frequency laser signal to form a single-frequency laser amplification signal.
  • the above-mentioned high-power single-frequency thulium-doped fiber laser system which also includes,
  • the nonlinear frequency conversion module 22 is connected to the optical fiber amplification module 21, and is configured to receive the single-frequency laser amplification signal, and perform nonlinear frequency conversion processing on the single-frequency laser amplification signal to form a single-frequency laser conversion amplification signal output.
  • the wavelength range of the converted and amplified signal of the single-frequency laser is 212.5nm-1100nm.
  • the frequency conversion method of the nonlinear frequency conversion module can be frequency doubling, triple frequency, quadruple frequency, quintuple frequency, six times frequency, seven times frequency and eight times frequency, etc., aiming to amplify the wavelength range of the single-frequency laser signal From 1700-2200nm to 212.5-1100nm, the output power can reach tens of watts.
  • the present disclosure further provides a high-power single-frequency fiber laser system, which includes:
  • the first laser unit 30 is set to output the first single-frequency laser signal; the first laser unit includes a narrow-linewidth single-frequency thulium-doped distribution feedback fiber laser, connected to the output of the narrow-linewidth single-frequency thulium-doped distribution feedback fiber laser end of the fiber optic amplifier module.
  • the first single-frequency laser signal is a high-power single-frequency laser signal.
  • the second laser unit 31 is set to output the second single-frequency laser signal; the second laser unit includes a narrow-linewidth single-frequency thulium-doped distribution feedback fiber laser and is connected to the narrow-linewidth single-frequency thulium-doped distribution feedback fiber laser output The end of the fiber amplifier module, or a high-power single-frequency fiber laser system based on other gain media.
  • the second single-frequency laser signal is a high-power single-frequency laser signal, and the power or wavelength of the first single-frequency laser signal is different from the power and/or wavelength of the second single-frequency laser signal.
  • the fiber coupling unit 32 is configured to receive the first single-frequency laser signal and the second single-frequency laser signal, and form a laser coupling signal according to the first single-frequency laser signal and the second single-frequency laser signal; The first single-frequency laser signal and the second single-frequency laser signal are coupled into the same optical fiber and then enter the nonlinear frequency conversion.
  • the fiber coupling unit is a fiber coupler for fiber input and output; when the first laser When at least one path of the laser unit and the second laser unit is a spatial light output, the fiber coupling unit can be used to couple the first single-frequency laser signal and/or the second single-frequency laser signal into the same optical path and then enter the nonlinear For frequency conversion, schematically, the fiber coupling unit may be a coupler for spatial light input and output.
  • the nonlinear frequency conversion unit 33 is configured to receive the laser coupling signal, and perform nonlinear conversion on the laser coupling signal to form a single-frequency laser conversion signal for output.
  • the conversion mode of the nonlinear frequency conversion unit may be a sum frequency, a difference frequency, a sum frequency first and then a frequency multiplication, and the like.
  • the wavelength of the single-frequency laser conversion signal is not less than 55.5nm, and the maximum output power can reach tens of watts.

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Engineering & Computer Science (AREA)
  • Plasma & Fusion (AREA)
  • Optics & Photonics (AREA)
  • Lasers (AREA)

Abstract

一种窄线宽单频掺铥分布反馈光纤激光器包括掺铥光纤(1),预置有带相移的光纤布拉格光栅,掺铥光纤(1)设置为接收一泵浦光信号,泵浦光信号被传输至相移光栅(11)处,相移光栅(11)基于泵浦光信号形成一激光振荡并输出一单频激光信号;波分复用器(2),设置于单频激光信号输出光路轨迹上,设置为接收泵浦光信号并输出泵浦光信号至相移光栅(11),或者,设置为接收单频激光信号和泵浦光信号的混合信号,并将两个光信号分到两路不同的光纤中。

Description

一种窄线宽单频掺铥分布反馈光纤激光器及系统
本公开要求申请日为2021年9月30日、申请号202111161630.3的中国专利申请的优先权,该申请的全部内容通过引用结合在本公开中。
技术领域
本公开涉及激光技术领域,具体涉及一种窄线宽单频掺铥分布反馈光纤激光器及系统。
背景技术
目前的技术可以采用固体激光器,半导体激光器,光纤激光器等类型的激光器结合不同的增益介质再加以各种非线性频率变换技术来实现不同波段的窄线宽单频激光输出,其中单频钛宝石激光器作为最成熟的固体单频激光器可以在800nm附近实现瓦量级的单频激光器输出,进一步结合非线性频率变换可以将波长拓展至紫外波段,但其整个系统为全空间光路结构,存在着体积大,稳定性不佳,易受环境干扰的问题;单频半导体激光器通过灵活设计芯片中PN结间隔可以实现每个波段的单频激光输出,且体积小巧,稳定性好,但存在着输出功率较低的缺点,在某些情况下无法满足应用需求;单频光纤激光器一般采用单频种子激光器加光纤放大器的结构,通过选择不同的增益,已经可以在950-2200nm实现高功率单频激光输出,进一步结合非线性频率变换技术可以将波长拓展至全波段。但在掺铥光纤激光器波段,也就是1700-2200nm,相关技术仅有采用单频半导体种子激光器结合光纤放大器可输出单频激光信号,但输出的单频激光线宽大于1MHz。
发明内容
针对目前技术的不足之处,本公开提供一种窄线宽单频掺铥分布反馈光纤激光器及系统,旨在提供高功率、线宽小于1MHz的单频激光信号,例如:
一方面,本公开提供一种窄线宽单频掺铥分布反馈光纤激光器,包括掺铥光纤,其中,还包括:
分布反馈光纤布拉格光栅,写在所述掺铥光纤上,所述分布反馈光纤布拉格光栅预置有相移,设置为形成相移光栅;
泵浦光源单元,设置为形成所述一泵浦光信号,并输入到相移光栅中;
所述掺铥光纤设置为接收所述泵浦光信号,所述泵浦光信号被传输至相移光栅处,所述相移光栅基于所述泵浦光光信号形成一激光振荡并输出一单频激光信号。
另一方面,本公开再提供一种高功率单频掺铥光纤激光系统,其中,包括上述任一项所述的一种窄线宽单频掺铥分布反馈光纤激光器,还包括,
光纤放大模块,连接窄线宽单频掺铥分布反馈光纤激光器的输出端,所述光纤放大模块设置为对所述单频激光信号做放大处理以形成一单频激光放大信号。
再一方面,本公开再提供一种高功率单频光纤激光系统,其中,包括:
第一激光单元,由上述任一项所述的高功率单频掺铥光纤激光系统或基于增益介质的单频光纤激光系统形成,设置为输出第一单频激光信号;
第二激光单元,由上述任一项所述的高功率单频掺铥光纤激光系统或基于其它增益介质的单频光纤激光系统形成,设置为输出第二单频激光信号;
光纤耦合单元,设置为接收所述第一单频激光信号和/或所述第二单频激光信号,根据所述第一单频激光信号和/或所述第二单频激光信号形成一激光耦合信号;
非线性频率变换单元,设置为接收所述激光耦合信号,对所述激光耦合信号做非线性变换以形成一单频激光变换信号输出。
附图说明
图1为本公开一些实施例提供的一种窄线宽单频掺铥分布反馈光纤激光器的结构示意图;
图2为本公开一些实施例提供的一种窄线宽单频掺铥分布反馈光纤激光器的结构示意图;
图3为本公开一些实施例提供的一种窄线宽单频掺铥分布反馈光纤激光器的光栅透射谱图;
图4为本公开一些实施例提供的一种窄线宽单频掺铥分布反馈光纤激光器的光栅透射谱图;
图5为本公开一些实施例提供的一种窄线宽单频掺铥分布反馈光纤激光器的光栅透射谱图;
图6为本公开一些实施例提供的一种窄线宽单频高功率掺铥光纤激光系统的结构图;
图7为本公开一些实施例提供的一种窄线宽单频高功率光纤激光系统的结构图。
具体实施方式
下面将结合本公开一些实施例中的附图,对本公开一些实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本公开一部分实施例,而不是全部的实施例。基于本公开中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本公开保护的范围。
实施例一
如图1所示,一方面,本公开提供一种窄线宽单频掺铥分布反馈光纤激光器,其中,包括:
掺铥光纤1,预置有相移光栅11,掺铥光纤设置为接收一泵浦光信号,于 所述泵浦光信号被传输至相移光栅处,所述相移光栅基于所述泵浦光信号形成一激光振荡并输出一单频激光信号;其中,所述相移光栅的相移量为(2N+P)π,N为不小于0的整数,P为大于0并小于2的任意数,所述相移光栅可位于所述单频掺铥分布光纤的任意位置,所述光栅的相移量可为任意值。进一步地,所述相移光栅可为光纤布拉格光栅。
泵浦光源单元3,连接所述波分复用器,设置为形成一泵浦信号。
波分复用器2,设置于单频激光信号输出光路轨迹上,设置为接收所述泵浦光信号并输出所述泵浦光信号至所述相移光栅。,
上述技术方案的工作原理是:
通过在增益光纤上掺杂铥离子以形成掺铥增益光纤,于所述掺铥光纤设置有带相移的光栅。于泵浦光照射的状态下,泵浦光信号通过所述掺铥光纤被传输至相移光栅,相移光栅建立激光谐振腔、引入预置的相移以实现滤波,将所述光信号转化为窄线宽单频激光输出,窄线宽单频激光波长范围在1700-2200nm。
示意性地,相移光栅的相移量为(2N+P)π,P取值为0.5时,预置的相移量为(2N+0.5π),如图3所示,透射峰位于光栅反射谱的正中间的短波侧。当N取值为0,P取值为1时,预置的相移量为(2N+1)π,如图4所示,透射峰位于光栅反射谱的正中间。当N取值为0,P取值为1.5时,预置的相移量为(2N+1.5)π,如图5所示,透射峰位于光栅反射谱的正中间的短波侧。其中图3、图4、图5中的凹陷为光栅反射区域,所述光栅反射谱的3dB带宽大于等于0.01nm。
上述的窄线宽单频掺铥分布反馈光纤激光器,具有结构紧凑、抗环境干扰能力强、输出单频激光线宽窄,频率稳定性好等特点,波长可覆盖1700-2200nm,输出的单频激光线宽小于1MHz。
作为进一步优选实施方案,上述的一种窄线宽单频掺铥分布反馈光纤激光器,其中,还包括,
包括隔离单元4,设置于所述单频激光信号光路轨迹上,设置为接收所述波 分复用器输出的所述单频激光信号,所述隔离单元的输出端形成所述窄线宽单频掺铥分布反馈光纤激光器的输出端。
所述隔离单元用于保护相移光栅,波分复用器和泵浦光源单元,防止被反向输入的光损坏相移光栅,波分复用器和泵浦光源单元。该结构为反向泵浦状态。
实施例二
如图2所示,一方面,本公开提供一种窄线宽单频掺铥分布反馈光纤激光器,其中,包括:
掺铥光纤1,预置有相移光栅11。
波分复用器2,设置为接收所述单频激光信号和泵浦光信号的混合信号,并将两个光信号分到两路不同的光纤中。
泵浦光源单元3,连接掺铥光纤,设置为形成一泵浦光信号,并输入到相移光栅中。
作为进一步优选实施方案,上述的一种窄线宽单频掺铥分布反馈光纤激光器,其中,还包括,
隔离单元4,设置于所述单频激光信号光路轨迹上,设置为接收所述波分复用器输出的所述单频激光信号,所述隔离单元的输出端形成所述窄线宽单频掺铥分布反馈光纤激光器的输出端。
所述隔离单元用于保护相移光栅,波分复用器和泵浦光源单元,防止被反向输入的光损坏相移光栅,波分复用器和泵浦光源单元。
该结构为正向泵浦状态。
实施例三
如图6所示,再一方面,一种高功率单频掺铥光纤激光系统,其中,包括上述任一项所述的一种窄线宽单频掺铥分布反馈光纤激光器,还包括,
光纤放大模块21,连接窄线宽单频掺铥分布反馈光纤激光器20的输出端,所述光纤放大模块设置为对所述单频激光信号做放大处理以形成一单频激光放大信号。
进一步地,上述的一种高功率单频掺铥光纤激光系统,其中,还包括,
非线性频率变换模块22,连接所述光纤放大模块21,设置为接收所述单频激光放大信号,并对所述单频激光放大信号做非线性频率变换处理以形成一单频激光变换放大信号输出。其中,所述单频激光变换放大信号的波长范围为212.5nm~1100nm。
非线性频率变换模块的频率变换方式可以是倍频、三倍频、四倍频、五倍频、六倍频、七倍频和八倍频等,旨在将单频激光放大信号的波长范围从1700-2200nm变换至212.5-1100nm,输出功率可达数十瓦量级。
实施例四
如图7所示,最后,本公开再提供一种高功率单频光纤激光系统,其中,包括:
第一激光单元30,设置为输出第一单频激光信号;所述第一激光单元包括一种窄线宽单频掺铥分布反馈光纤激光器、连接窄线宽单频掺铥分布反馈光纤激光器输出端的光纤放大模块。所述第一单频激光信号为高功率单频激光信号。
第二激光单元31,设置为输出第二单频激光信号;所述第二激光单元包括一种窄线宽单频掺铥分布反馈光纤激光器和连接窄线宽单频掺铥分布反馈光纤激光器输出端的光纤放大模块,或者是基于其它增益介质的高功率单频光纤激光系统。所述第二单频激光信号为高功率单频激光信号,且所述第一单频激光信号的功率或波长与第二单频激光信号的功率和/或波长不相同。
光纤耦合单元32,设置为接收所述第一单频激光信号和所述第二单频激光信号,根据所述第一单频激光信号和所述第二单频激光信号形成一激光耦合信号;所述第一单频激光信号和所述第二单频激光信号耦合至同一路光纤中再进 入到非线性频率变换,此时光纤耦合单元为光纤输入和输出的光纤耦合器;当第一激光单元和第二激光单元中至少有一路为空间光输出时,可以用光纤耦合单元将第一单频激光信号和/或所述第二单频激光信号耦合到同一个光路中再进入到非线性频率变换,示意性地,光纤耦合单元可为空间光输入和输出的耦合器。
非线性频率变换单元33,设置为接收所述激光耦合信号,对所述激光耦合信号做非线性变换以形成一单频激光变换信号输出。非线性频率变换单元的变换方式可以是和频、差频和先和频后倍频等。进一步地,所述单频激光变换信号的波长不小于55.5nm,输出功率最大可达数十瓦。
需要说明的是,在本文中,术语“包括”、“包含”或者其任何其他变体意在涵盖非排他性的包含,从而使得包括一系列要素的过程、方法、物品或者设备不仅包括那些要素,而且还包括没有明确列出的其他要素,或者是还包括为这种过程、方法、物品或者设备所固有的要素。
尽管已经示出和描述了本公开的实施例,对于本领域的普通技术人员而言,可以理解在不脱离本公开的原理和精神的情况下可以对这些实施例进行多种变化、修改、替换和变型,本公开的范围由所附权利要求及其等同物限定。

Claims (8)

  1. 一种窄线宽单频掺铥分布反馈光纤激光器,包括掺铥光纤,其中,还包括:
    分布反馈光纤布拉格光栅,写在所述掺铥光纤上,所述分布反馈光纤布拉格光栅预置有相移,设置为形成相移光栅;
    泵浦光源单元,设置为形成所述一泵浦光信号,并输入到相移光栅中;
    所述掺铥光纤设置为接收所述泵浦光信号,所述泵浦光信号被传输至相移光栅处,所述相移光栅基于所述泵浦光光信号形成一激光振荡并输出一单频激光信号。
  2. 根据权利要求1所述的一种窄线宽单频掺铥分布反馈光纤激光器,其中,所述单频激光信号的波长范围为1700nm~2200nm。
  3. 根据权利要求1所述的一种窄线宽单频掺铥分布反馈光纤激光器,其中,还包括,
    一波分复用器,设置于单频激光信号输出光路轨迹上,设置为接收所述泵浦光信号并输出泵浦所述光信号至所述相移光栅,或者,
    设置为接收所述单频激光信号和所述泵浦光信号的混合信号,并将两个信号分开至两路光纤中。
  4. 根据权利要求1所述的一种窄线宽单频掺铥分布反馈光纤激光器,其中,还包括,
    一隔离单元,设置于所述单频激光信号光路轨迹上,设置为接收所述单频激光信号,所述隔离单元的输出端形成所述窄线宽单频掺铥分布反馈光纤激光器的输出端。
  5. 一种高功率单频掺铥光纤激光系统,其中,包括权利要求1~3任一项所述的一种窄线宽单频掺铥分布反馈光纤激光器,还包括,
    光纤放大模块,连接窄线宽单频掺铥分布反馈光纤激光器的输出端,所述光纤放大模块设置为对所述单频激光信号做放大处理以形成一单频激光放大信号。
  6. 根据权利要求5所述的一种高功率单频掺铥光纤激光系统,其中,还包括,
    非线性频率变换模块,连接所述光纤放大模块,设置为接收所述单频激光放大信号,并对所述单频激光放大信号做非线性频率变换处理以形成一单频激光变换放大信号输出。
  7. 根据权利要求5所述的一种高功率单频掺铥光纤激光系统,其中,所述单频激光变换放大信号的波长范围为212.5nm~1100nm。
  8. 一种高功率单频光纤激光系统,其中,包括:
    第一激光单元,由权利要求5~7任一项所述的高功率单频掺铥光纤激光系统形成,设置为输出第一单频激光信号;
    第二激光单元,由权利要求5~7任一项所述的高功率单频掺铥光纤激光系统或基于其它增益介质的单频光纤激光系统形成,设置为输出第二单频激光信号;
    光纤耦合单元,设置为接收所述第一单频激光信号和/或所述第二单频激光信号,根据所述第一单频激光信号和/或所述第二单频激光信号形成一激光耦合信号;
    非线性频率变换单元,设置为接收所述激光耦合信号,对所述激光耦合信号做非线性变换以形成一单频激光变换信号输出。
    根据权利要求8所述的一种高功率单频光纤激光系统,其中,所述单频激光变换信号的波长不小于55.5nm。
PCT/CN2022/076626 2021-09-30 2022-02-17 一种窄线宽单频掺铥分布反馈光纤激光器及系统 WO2023050685A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202111161630.3 2021-09-30
CN202111161630.3A CN113922195A (zh) 2021-09-30 2021-09-30 一种窄线宽单频掺铥分布反馈光纤激光器及系统

Publications (1)

Publication Number Publication Date
WO2023050685A1 true WO2023050685A1 (zh) 2023-04-06

Family

ID=79237473

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/076626 WO2023050685A1 (zh) 2021-09-30 2022-02-17 一种窄线宽单频掺铥分布反馈光纤激光器及系统

Country Status (2)

Country Link
CN (1) CN113922195A (zh)
WO (1) WO2023050685A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113922195A (zh) * 2021-09-30 2022-01-11 上海频准激光科技有限公司 一种窄线宽单频掺铥分布反馈光纤激光器及系统
CN114927923A (zh) * 2022-04-18 2022-08-19 中国电子科技集团公司第十一研究所 一种极窄线宽光纤激光器及系统

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20020076156A1 (en) * 2000-12-15 2002-06-20 Kringlebotn Jon Thomas Waveguide laser source
CN1585213A (zh) * 2004-05-28 2005-02-23 清华大学 分布反馈式光波导激光器
CN101055967A (zh) * 2007-03-08 2007-10-17 中国科学院西安光学精密机械研究所 基于对称式布拉格光栅的双波长分布反馈式光纤激光器
CN103346464A (zh) * 2013-07-16 2013-10-09 山东省科学院激光研究所 一种复合腔分布反馈式光纤激光器
CN106684675A (zh) * 2016-11-30 2017-05-17 合肥脉锐光电技术有限公司 一种单频光纤激光器及其制作方法
CN110867718A (zh) * 2019-09-18 2020-03-06 华南理工大学 一种宽范围高精度线宽可调的窄线宽光纤激光器
CN212485782U (zh) * 2020-07-10 2021-02-05 中国计量大学 一种基于随机相移光纤光栅的2μm随机光纤激光器
CN113054519A (zh) * 2021-05-08 2021-06-29 江苏朗普达光电科技有限公司 超窄线宽单频光纤激光器
CN113922195A (zh) * 2021-09-30 2022-01-11 上海频准激光科技有限公司 一种窄线宽单频掺铥分布反馈光纤激光器及系统
CN215989624U (zh) * 2021-09-30 2022-03-08 上海频准激光科技有限公司 一种窄线宽单频掺铥分布反馈光纤激光器及系统

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101483304A (zh) * 2009-02-25 2009-07-15 中国科学院上海光学精密机械研究所 基于相移光纤光栅的分布式布拉格反射型单频光纤激光器
CN101777722B (zh) * 2010-01-26 2011-08-31 天津理工大学 一种双波长单纵模光纤激光器及其工作方法
CN103441414A (zh) * 2013-07-31 2013-12-11 天津理工大学 基于相移取样光栅的双波长光纤激光器
CN111129923B (zh) * 2019-12-20 2022-02-25 江苏师范大学 一种单频、单偏振的光纤分布式反馈激光器
CN113131314A (zh) * 2021-03-31 2021-07-16 华南理工大学 一种宽波段可调谐窄线宽单频脉冲激光器

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20020076156A1 (en) * 2000-12-15 2002-06-20 Kringlebotn Jon Thomas Waveguide laser source
CN1585213A (zh) * 2004-05-28 2005-02-23 清华大学 分布反馈式光波导激光器
CN101055967A (zh) * 2007-03-08 2007-10-17 中国科学院西安光学精密机械研究所 基于对称式布拉格光栅的双波长分布反馈式光纤激光器
CN103346464A (zh) * 2013-07-16 2013-10-09 山东省科学院激光研究所 一种复合腔分布反馈式光纤激光器
CN106684675A (zh) * 2016-11-30 2017-05-17 合肥脉锐光电技术有限公司 一种单频光纤激光器及其制作方法
CN110867718A (zh) * 2019-09-18 2020-03-06 华南理工大学 一种宽范围高精度线宽可调的窄线宽光纤激光器
CN212485782U (zh) * 2020-07-10 2021-02-05 中国计量大学 一种基于随机相移光纤光栅的2μm随机光纤激光器
CN113054519A (zh) * 2021-05-08 2021-06-29 江苏朗普达光电科技有限公司 超窄线宽单频光纤激光器
CN113922195A (zh) * 2021-09-30 2022-01-11 上海频准激光科技有限公司 一种窄线宽单频掺铥分布反馈光纤激光器及系统
CN215989624U (zh) * 2021-09-30 2022-03-08 上海频准激光科技有限公司 一种窄线宽单频掺铥分布反馈光纤激光器及系统

Also Published As

Publication number Publication date
CN113922195A (zh) 2022-01-11

Similar Documents

Publication Publication Date Title
WO2023050685A1 (zh) 一种窄线宽单频掺铥分布反馈光纤激光器及系统
KR100312013B1 (ko) 효율적인펌프파워특성을갖는광섬유증폭기
US8687659B2 (en) All-optical generation of 60 GHz millimeter wave using multiple wavelength Brillouin-Erbium fiber laser
JP7060648B2 (ja) ラマン増幅用光源、ラマン増幅用光源システム、ラマン増幅器、ラマン増幅システム
US6181467B1 (en) Optical fiber amplifier using synchronized etalon filter
GB2306245A (en) Optical fibre amplifier
JP7153271B2 (ja) 光信号処理装置
CA2384196A1 (en) Raman fiber amplifier
CN215989624U (zh) 一种窄线宽单频掺铥分布反馈光纤激光器及系统
US20020149842A1 (en) Pump source with increased pump power for optical broadband raman amplification
CN217281617U (zh) 一种脉宽可调光纤激光器
WO2016182068A1 (ja) ラマン増幅用光源、ラマン増幅用光源システム、ラマン増幅器、ラマン増幅システム
JP4977283B2 (ja) 光信号増幅装置
CN113872029B (zh) 一种双波长单频分布反馈光纤激光器及系统
US7233431B2 (en) Semiconductor optical amplifier based Raman pump
JPH0496287A (ja) 多段光増幅器
JP2012005104A (ja) 光データ伝送に使用するミリ波光信号を生成する装置、及び方法
JPS5965828A (ja) 光信号増幅方式
WO2022142754A1 (zh) 光信号放大装置及相关光通信设备
CN213905814U (zh) 一种可调谐拉曼光纤激光器
CN216251606U (zh) 一种基于碲酸盐玻璃光纤的后向泵浦拉曼光纤放大器
CN216015994U (zh) 一种激光器
JP2005183999A (ja) 広帯域光源
CN117254335B (zh) 基于半导体光放大器的可调谐双频全光振荡器及振荡方法
CN113098609B (zh) 一种40GHz毫米波信号的光学产生装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22874088

Country of ref document: EP

Kind code of ref document: A1