WO2023050581A1 - 风力发电机组的网侧变流器的控制方法及装置 - Google Patents

风力发电机组的网侧变流器的控制方法及装置 Download PDF

Info

Publication number
WO2023050581A1
WO2023050581A1 PCT/CN2021/137416 CN2021137416W WO2023050581A1 WO 2023050581 A1 WO2023050581 A1 WO 2023050581A1 CN 2021137416 W CN2021137416 W CN 2021137416W WO 2023050581 A1 WO2023050581 A1 WO 2023050581A1
Authority
WO
WIPO (PCT)
Prior art keywords
coefficient
bus voltage
reference current
active reference
deviation value
Prior art date
Application number
PCT/CN2021/137416
Other languages
English (en)
French (fr)
Inventor
刘佳亮
秦承志
Original Assignee
新疆金风科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 新疆金风科技股份有限公司 filed Critical 新疆金风科技股份有限公司
Publication of WO2023050581A1 publication Critical patent/WO2023050581A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/01Arrangements for reducing harmonics or ripples
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/38Arrangements for parallely feeding a single network by two or more generators, converters or transformers
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/12Arrangements for reducing harmonics from ac input or output
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/70Wind energy
    • Y02E10/76Power conversion electric or electronic aspects

Definitions

  • the present disclosure generally relates to the technical field of wind power generation, and more specifically, relates to a control method and device for a grid-side converter of a wind power generating set.
  • the generator side is generally connected to the generator, and the grid side is connected to the power grid, as shown in Figure 1. Due to the impact of grid parity, the cost pressure of wind turbines has increased, and the generator has optimized the structure of the motor to reduce costs. As a result, in new products, there are serious 5th harmonics in the voltage and current of the motor (based on the machine side The frequency prevails), which leads to a relatively large 6th harmonic in the input power of the machine side.
  • the rated frequency of the generator is generally around 10Hz, and the corresponding input power fluctuation on the machine side is about 60Hz.
  • Embodiments of the present disclosure provide a control method and device for a grid-side converter of a wind power generating set, which can effectively solve the problem of large grid-side harmonics in the prior art.
  • a control method for a grid-side converter of a wind power generating set including: obtaining the bus voltage output by the machine-side converter; inputting the deviation value of the bus voltage into a band-stop filter to obtain The bus voltage deviation value is the difference between the actual bus voltage and the bus voltage reference value, and the band-stop filter is set at the input side of the controller of the voltage loop of the grid-side converter; the filtered Multiply the bus voltage deviation value by the first coefficient to obtain the processed first bus voltage deviation value; multiply the bus voltage deviation value by the second coefficient to obtain the processed second bus voltage deviation value; The deviation value and the second bus voltage deviation value are input to the controller of the voltage loop of the grid-side converter to obtain an active reference current; the grid-side converter is controlled based on the active reference current.
  • a control device for a grid-side converter of a wind power generating set including: a bus voltage acquisition unit configured to acquire the bus voltage output by the machine-side converter; a first filter unit, It is configured to input the bus voltage deviation value to the band-stop filter to obtain the filtered bus voltage deviation value, wherein the bus voltage deviation value is the difference between the actual bus voltage and the bus voltage reference value, and the band-stop filter is set in the network
  • the input side of the controller of the voltage loop of the side converter the first processing unit is configured to multiply the filtered bus voltage deviation value by the first coefficient to obtain the processed first bus voltage deviation value;
  • the second The processing unit is configured to multiply the bus voltage deviation value by the second coefficient to obtain the processed second bus voltage deviation value;
  • the first active reference current acquisition unit is configured to multiply the first bus voltage deviation value and the second
  • the bus voltage deviation value is input to the controller of the voltage loop of the grid-side converter to obtain an active reference current; the first control unit is configured to control the grid-side converter based on the active reference current.
  • a computer-readable storage medium storing instructions, wherein, when the instructions are executed by at least one computing device, at least one computing device is caused to perform grid-side conversion of any wind power generating set as described above device control method.
  • a system comprising at least one computing device and at least one storage device storing instructions, wherein the instructions, when executed by the at least one computing device, cause the at least one computing device to perform any of the above-described wind power A control method for a grid-side converter of a generating set.
  • a converter of a wind power generating set including any one of the control devices for the above-mentioned grid-side converter and any one of the above-mentioned systems.
  • a wind power generating set including the above-mentioned converter of the wind power generating set.
  • a band-stop filter is introduced at the input end of the controller of the voltage loop to filter out the harmonics of the bus voltage deviation value, and at the same time, after weighted
  • the feed-forward method obtains the active reference current, so as to control the grid-side converter to introduce the bus voltage into the grid based on this current, which can better suppress the grid-side harmonics caused by the fluctuation of the machine-side energy, and can ensure the wind turbine generator stability. Therefore, the present disclosure can effectively solve the problem of large grid-side harmonics in the prior art.
  • Fig. 1 is a schematic diagram showing a direct drive unit in the related art
  • Fig. 2 is a flow chart showing a control method of a grid-side converter of a wind power generating set according to an embodiment of the present disclosure
  • Fig. 3 is a common grid-side inverter control structure shown
  • FIG. 4 is a schematic diagram illustrating a voltage loop of an embodiment of the present disclosure
  • FIG. 5 is a schematic diagram showing amplitude-frequency and phase-frequency characteristics of a band-stop filter according to an embodiment of the present disclosure
  • FIG. 6 is a schematic diagram showing a proportional coefficient adjustment of an embodiment of the present disclosure.
  • Fig. 7 is an overall schematic flow diagram showing the method for the grid-side converter of the wind power generating set of the present disclosure
  • FIG. 8 is a schematic diagram showing test results of a DC side without a harmonic suppression function according to an embodiment of the present disclosure
  • FIG. 9 is a schematic diagram showing test results of adding a harmonic suppression function on the DC side according to an embodiment of the present disclosure.
  • Fig. 10 is a block diagram showing a control device of a grid-side converter of a wind power generating set according to the present disclosure.
  • first means “first”, “second” and “third” may be used herein to describe various members, components, regions, layers or sections, these members, components, regions, layers or sections should not be referred to as These terms are limited. Rather, these terms are only used to distinguish one element, component, region, layer or section from another element, component, region, layer or section.
  • a first member, a first component, a first region, a first layer, or a first portion referred to in examples described herein could also be termed a second member, a second component, or a first portion without departing from the teachings of the examples.
  • the present disclosure provides a control method and device for a grid-side converter of a wind power generating set, which can solve the above problems.
  • the control method of the grid-side converter of a wind generating set in the present disclosure can be applied to a server, and the server and wind power
  • the generator set can be connected wirelessly or wired, which is not limited here.
  • the above-mentioned server may be one server, or a server cluster composed of several servers, or a cloud computing platform or a virtualization center.
  • the server is taken as an example for illustration below.
  • the server obtains the bus voltage output by the machine-side converter, and inputs the bus voltage deviation value to the band-stop filter to obtain the filtered bus voltage deviation value, where the bus voltage deviation value is the difference between the actual bus voltage and the bus voltage reference value value, the band-stop filter is set on the input side of the controller of the voltage loop of the grid-side converter, and then the filtered bus voltage deviation value is multiplied by the first coefficient to obtain the processed first bus voltage deviation value, and multiplying the busbar voltage deviation value by the second coefficient to obtain the processed second busbar voltage deviation value, and inputting the first busbar voltage deviation value and the second busbar voltage deviation value into the voltage loop of the grid-side converter
  • the controller obtains the active reference current, so as to control the grid-side converter based on the active reference current.
  • FIG. 2 is a flow chart showing the control method for a grid-side converter of a wind generating set according to an embodiment of the present disclosure.
  • the control method of the grid-side converter of the wind power generating set includes the following steps:
  • step S201 the bus voltage output by the generator-side converter is acquired.
  • Bus voltage is u dc shown in Figure 1.
  • step S202 the bus voltage deviation value is input into the band stop filter to obtain the filtered bus voltage deviation value, wherein the bus voltage deviation value is the difference between the actual bus voltage and the bus voltage reference value, and the band stop filter setting On the input side of the controller of the voltage loop of the grid-side converter.
  • FIG. 3 shows a common grid-side inverter control structure
  • FIG. 4 is a schematic diagram showing a voltage loop of an embodiment of the present disclosure.
  • the voltage loop is the outer loop of the inverter control.
  • the English is Voltage-loop
  • the band-stop filter sets the input terminal of the PI controller in the voltage loop
  • the bus voltage deviation value is the bus voltage u dc and the bus voltage reference value u dc * The difference u err
  • the order of the band-stop filter should not be too high, generally 2-order, and the discretized form is:
  • Y n a 0 *X n +a 1 *X n-1 +a 2 *X n-2 -b 1 *Y n-1 -b 2 *Y n-2
  • Y n is the output of the band-stop filter
  • X n is the input of the band-stop filter
  • n represents different moments
  • a and b are weights, and the weight is determined based on the order of the band-stop filter and actual needs.
  • the magnitude-frequency and phase-frequency characteristics of the rejection filter are shown in Figure 5.
  • the frequency of the wind generator before obtaining the bus voltage output by the machine-side converter, can be obtained in real time, wherein the frequency is determined based on the rotational speed of the wind generator; based on the frequency, the target of the band-stop filter is determined Center Frequency; adjusts the center frequency of the bandstop filter to the center frequency of interest.
  • the center frequency of the band-stop filter is adjusted in real time to ensure that the band-stop filter is in an optimal state to better filter out harmonics.
  • the grid side uses this frequency to calculate the target center frequency of the band-stop filter in real time, thereby The center frequency of the bandstop filter can be adjusted in real time.
  • step S203 the filtered bus voltage deviation value is multiplied by a first coefficient to obtain a processed first bus voltage deviation value.
  • the bus voltage deviation value first passes through a band-stop filter, and then is input to the PI controller through the proportional coefficient K2 (namely the first coefficient above).
  • the purpose of adding a band-stop filter is Filter out the harmonics caused by bus voltage fluctuations caused by energy fluctuations on the machine side, and avoid being introduced into the current loop control on the grid side.
  • step S204 the bus voltage deviation value is multiplied by the second coefficient to obtain a processed second bus voltage deviation value.
  • the bus voltage deviation value is input to the PI controller through the proportional coefficient K1 (ie, the above-mentioned second coefficient).
  • step S205 the first bus voltage deviation value and the second bus voltage deviation value are input to the controller of the voltage loop of the grid-side converter to obtain an active reference current.
  • step S206 the grid-side converter is controlled based on the active reference current.
  • the active reference current i d* and the reactive reference current i q* are input into the dq-abc transformation unit, that is, the dq direct axis is transformed into the three-phase abc axis coordinate system, and then the transformed current is input into
  • the output voltage is obtained from the current loop, and the output voltage and the bus voltage are converted into 0 and 1 by the space quality pulse width modulation technology (SVPWM) to adjust the grid-side converter.
  • SVPWM space quality pulse width modulation technology
  • the above-mentioned band-stop filter can also be set at the output side of the controller of the voltage loop of the grid-side converter. Specifically, after obtaining the bus voltage output by the machine-side converter, the bus voltage The deviation value is input to the controller to obtain the active reference current; the active reference current is input to the band stop filter to obtain the filtered active reference current, wherein the band stop filter is set in the controller of the voltage loop of the grid side converter The output side of the output side; the filtered active reference current is multiplied by the third coefficient to obtain the processed first active reference current; the active reference current is multiplied by the fourth coefficient to obtain the processed second active reference current; An adjusted active reference current is obtained from the first active reference current and the second active reference current; and the grid-side converter is controlled based on the adjusted active reference current.
  • the output power of the grid-side converter before using the first coefficient or the second coefficient, can be obtained; the ratio of the output power to the rated output power can be determined; and the first coefficient or the third coefficient can be adjusted based on the ratio , where the sum of the first coefficient and the second coefficient is 1, and the sum of the third coefficient and the fourth coefficient is 1. Because the fluctuation of the bus voltage is related to the power, the fluctuation is large when the power is large, and the fluctuation is small when the power is small.
  • adjusting the first coefficient or the third coefficient based on the ratio may include: adjusting the first coefficient or the third coefficient in a manner positively correlated with the ratio. Because the fluctuation of the bus voltage is related to the power, the fluctuation is large when the power is large, and the fluctuation is small if the power is small. According to this embodiment, when the fluctuation of the bus voltage is small, the value of the first coefficient or the third coefficient is smaller. increases, the value of the first coefficient or the third coefficient increases, that is, more filtered values are used.
  • adjusting the first coefficient or the third coefficient in a manner positively correlated with the ratio may include: setting the first coefficient or the third coefficient to a first preset when the ratio is smaller than a first threshold value; when the ratio is greater than the first threshold and less than the second threshold, the first coefficient or the third coefficient is set to the second preset value, wherein the second preset value is greater than the first preset value; when the ratio is greater than In the case of the second threshold, the first coefficient or the third coefficient is set as a third preset value.
  • the first coefficient or the third coefficient can be adjusted conveniently and quickly.
  • the bus voltage fluctuations caused by different machine-side input power are different.
  • the power is small, the bus voltage fluctuation is small, and the harmonics on the grid side are small; the power becomes larger, the bus voltage fluctuation becomes larger, and the harmonics on the grid side increase synchronously; based on the above factors, design a band-stop filter
  • the feed-forward proportional coefficient K2 can be divided into three levels according to the output power of the grid-side converter, as shown in Figure 6, the first threshold can be set to 50%, and the second threshold can be set to 75%. , so that when the fluctuation is small, the proportion of the bus voltage deviation input to the PI control after filtering can be reduced.
  • FIG. 7 the frequency information on the machine side is obtained first, the center frequency of the band-stop filter is calculated based on the frequency information, and the center frequency is adjusted according to the calculation result. Then, the bus voltage deviation value in the voltage loop is fed forward proportionally after passing through the band-stop filter , and then superimpose the unfiltered proportional error value, and use the superimposed result as the input of the PI controller in the voltage loop.
  • the band-stop filter is used in the voltage loop to band-stop filter the control error of the voltage loop to filter out the fluctuation split caused by the machine side.
  • the deviation is then weighted and feed-forward, and the weighting coefficients are flexibly adjusted according to the active output power, which can not only ensure the stability of the control system, but also affect the DC side.
  • the grid side harmonics caused by side energy fluctuations have a better suppression effect.
  • the proportional coefficient of the voltage loop or the proportional coefficient of the current loop can also be reduced to reduce the following performance, but the suppression effect of this scheme is poor.
  • Fig. 10 is a block diagram showing a control device for a grid-side converter of a wind power generating set in the present disclosure.
  • the device includes a bus voltage obtaining unit 100, a first filtering unit 102, a first processing unit 104, The second processing unit 106 and the first active reference current acquisition unit 108 and the first control unit 1010 .
  • the bus voltage acquisition unit 100 is configured to acquire the bus voltage output by the machine-side converter; the first filter unit 102 is configured to input the bus voltage deviation value to the band-stop filter to obtain the filtered bus voltage deviation value, Wherein, the bus voltage deviation value is the difference between the actual bus voltage and the bus voltage reference value, and the band-stop filter is set on the input side of the controller of the voltage loop of the grid-side converter; the first processing unit 104 is configured to The filtered bus voltage deviation value is multiplied by the first coefficient to obtain the processed first bus voltage deviation value; the second processing unit 106 is configured to multiply the bus voltage deviation value by the second coefficient to obtain the processed The second bus voltage deviation value; the first active reference current acquisition unit 108 is configured to input the first bus voltage deviation value and the second bus voltage deviation value to the controller of the voltage loop of the grid-side converter to obtain the active power Reference current: the first control unit 1010 is configured to control the grid-side converter based on the active reference current.
  • a second active reference current acquisition unit 1012 configured to input the bus voltage deviation value to the controller to obtain an active reference current
  • a second filtering unit 1014 configured to input the active reference current Input to the band-stop filter to obtain the filtered active reference current, wherein the band-stop filter is set on the output side of the controller of the voltage loop of the grid-side converter
  • the third processing unit 1016 is also configured to filter The final active reference current is multiplied by the third coefficient to obtain the processed first active reference current
  • the fourth processing unit 1018 is also configured to multiply the active reference current by the fourth coefficient to obtain the processed second active reference current Reference current
  • the adjusting unit 1020 is configured to obtain an adjusted active reference current by combining the first active reference current and the second active reference current
  • the second control unit 1022 is configured to control the grid side based on the adjusted active reference current Converter.
  • the above device further includes: a frequency acquisition unit 1024 configured to acquire the frequency of the wind turbine in real time, wherein the frequency is determined based on the rotational speed of the wind turbine; a target center frequency determination unit 1026 configured to determine the frequency based on Frequency, to determine the target center frequency of the band-stop filter; the frequency adjustment unit 1028 is configured to adjust the center frequency of the band-stop filter to the target center frequency.
  • a frequency acquisition unit 1024 configured to acquire the frequency of the wind turbine in real time, wherein the frequency is determined based on the rotational speed of the wind turbine
  • a target center frequency determination unit 1026 configured to determine the frequency based on Frequency, to determine the target center frequency of the band-stop filter
  • the frequency adjustment unit 1028 is configured to adjust the center frequency of the band-stop filter to the target center frequency.
  • the above device further includes: a power acquisition unit 1030 configured to acquire the output power of the grid-side converter; a ratio determination unit 1032 configured to determine the ratio of the output power to the rated output power; coefficient adjustment The unit 1034 is configured to adjust the first coefficient or the third coefficient based on the ratio, where the sum of the first coefficient and the second coefficient is 1, and the sum of the third coefficient and the fourth coefficient is 1.
  • the coefficient adjusting unit 1034 is further configured to adjust the first coefficient or the third coefficient in a manner that is positively correlated with the ratio.
  • the coefficient adjustment unit 1034 is further configured to set the first coefficient or the third coefficient as a first preset value if the ratio is smaller than the first threshold; In the case of the second threshold, the first coefficient or the third coefficient is set to a second preset value, wherein the second preset value is greater than the first preset value; when the ratio is greater than the second threshold, the first coefficient is set to The coefficient or the third coefficient is set to a third preset value.
  • a computer-readable storage medium storing instructions, wherein, when the instructions are executed by at least one computing device, at least one computing device is prompted to execute the network operation of the wind power generating set according to any of the above-mentioned embodiments. Control method of side converter.
  • a system comprising at least one computing device and at least one storage device storing instructions, wherein the instructions, when executed by the at least one computing device, cause the at least one computing device to perform any one of the above-mentioned implementations.
  • the system is a converter control system of a wind power generating set.
  • a converter of a wind power generating set including any one of the above-mentioned control devices for a grid-side converter and any one of the above-mentioned systems.
  • a wind power generating set including the above-mentioned converter of the wind power generating set.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Control Of Eletrric Generators (AREA)

Abstract

公开了一种风力发电机组的网侧变流器的控制方法及装置,所述方法包括:获取机侧变流器输出的母线电压;将母线电压偏差值输入到带阻滤波器,得到滤波后的母线电压偏差值;将滤波后的母线电压偏差值与第一系数相乘得到第一母线电压偏差值;将母线电压偏差值与第二系数相乘得到第二母线电压偏差值;将第一母线电压偏差值和第二母线电压偏差值输入到网侧变流器的电压环的控制器,得到有功参考电流;基于有功参考电流控制网侧变流器。

Description

风力发电机组的网侧变流器的控制方法及装置 技术领域
本公开总体说来涉及风力发电技术领域,更具体地讲,涉及风力发电机组的网侧变流器的控制方法及装置。
背景技术
目前,对于风力发电直驱机组的全功率变流器,一般采用机侧连接发电机,网侧连接电网的结构,如图1所示。由于平价上网的影响,风力发电机组的成本压力增大,发电机为降低成本优化了电机的结构,导致在新产品中,电机的电压和电流中存在严重的5次谐波(以机侧基频为准),由此导致机侧的输入功率中出现较大的6次谐波。对于风力发电直驱机组,发电机的额定频率一般为10Hz附近,对应的机侧输入功率的波动即为60Hz左右,该功率波动将会导致在直流母线电压上产生相同频率的波动,进一步导致网侧谐波增大,进而严重影响风力发电机组的电能质量,此外经风电场线路的放大,会导致整个风电场接入电网处(PCC点处)的谐波增大,当谐波超标时,电网将限制风场接入。
发明内容
本公开的实施例提供一种风力发电机组的网侧变流器的控制方法及装置,能够有效解决现有技术中网侧谐波大的问题。
在一个总的方面,提供一种风力发电机组的网侧变流器的控制方法,包括:获取机侧变流器输出的母线电压;将母线电压偏差值输入到带阻滤波器,得到滤波后的母线电压偏差值,其中,母线电压偏差值为实际母线电压和母线电压参考值的差值,带阻滤波器设置在网侧变流器的电压环的控制器的输入侧;将滤波后的母线电压偏差值与第一系数相乘,得到处理后的第一母线电压偏差值;将母线电压偏差值与第二系数相乘,得到处理后的第二母线电压偏差值;将第一母线电压偏差值和第二母线电压偏差值,输入到网侧变流器的电压环的控制器,得到有功参考电流;基于有功参考电流控制网侧变流 器。
在另一总的方面,提供了一种风力发电机组的网侧变流器的控制装置,包括:母线电压获取单元,被配置为获取机侧变流器输出的母线电压;第一滤波单元,被配置为将母线电压偏差值输入到带阻滤波器,得到滤波后的母线电压偏差值,其中,母线电压偏差值为实际母线电压和母线电压参考值的差值,带阻滤波器设置在网侧变流器的电压环的控制器的输入侧;第一处理单元,被配置为将滤波后的母线电压偏差值与第一系数相乘,得到处理后的第一母线电压偏差值;第二处理单元,被配置为将母线电压偏差值与第二系数相乘,得到处理后的第二母线电压偏差值;第一有功参考电流获取单元,被配置为将第一母线电压偏差值和第二母线电压偏差值,输入到网侧变流器的电压环的控制器,得到有功参考电流;第一控制单元,被配置为基于有功参考电流控制网侧变流器。
在另一总的方面,提供了一种存储指令的计算机可读存储介质,其中,当指令被至少一个计算装置运行时,促使至少一个计算装置执行如上述任一风力发电机组的网侧变流器的控制方法。
在另一总的方面,提供了一种包括至少一个计算装置和至少一个存储指令的存储装置的系统,其中,指令在被至少一个计算装置运行时,促使至少一个计算装置执行如上述任一风力发电机组的网侧变流器的控制方法。
在另一总的方面,提供了一种风力发电机组的变流器,包括上述任一所述的网侧变流器的控制装置和上述任一所述的系统。
在另一总的方面,提供了一种风力发电机组,包括如上述的风力发电机组的变流器。
根据本公开的实施例的风力发电机组的网侧变流器的控制方法及装置,在电压环的控制器的输入端引入带阻滤波器滤除母线电压偏差值的谐波,同时再经加权前馈的方式,得到有功参考电流,从而基于该电流来控制网侧变流器将母线电压引入电网,可以较好的抑制因机侧能量的波动导致网侧谐波,而且可以保障风力发电机组的稳定性。因此,通过本公开,能够有效解决现有技术中网侧谐波大的问题。
将在接下来的描述中部分阐述本公开总体构思另外的方面和/或优点,还 有一部分通过描述将是清楚的,或者可以经过本公开总体构思的实施而得知。
附图说明
通过下面结合示出实施例的附图进行的描述,本公开的实施例的上述和其他目的和特点将会变得更加清楚,其中:
图1是示出相关技术中直驱机组示意图;
图2是示出本公开的实施例的风力发电机组的网侧变流器的控制方法的流程图;
图3是示出的常见的网侧逆变控制结构;
图4是示出本公开的实施例的电压环示意图;
图5是示出本公开的实施例的带阻滤波器的幅频和相频特性的示意图;
图6是示出本公开的实施例的比例系数调整示意图;
图7是示出本公开的风力发电机组的网侧变流器的方法的总体流程示意图;
图8是示出本公开的实施例的直流侧无谐波抑制功能的测试结果示意图;
图9是示出本公开的实施例的直流侧增加谐波抑制功能的测试结果示意图;
图10是示出本公开的风力发电机组的网侧变流器的控制装置的框图。
具体实施方式
提供下面的具体实施方式以帮助读者获得对在此描述的方法、设备和/或系统的全面理解。然而,在理解本公开的公开之后,在此描述的方法、设备和/或系统的各种改变、修改和等同物将是清楚的。例如,在此描述的操作的顺序仅是示例,并且不限于在此阐述的那些顺序,而是除了必须以特定的顺序发生的操作之外,可如在理解本公开的公开之后将是清楚的那样被改变。此外,为了更加清楚和简明,本领域已知的特征的描述可被省略。
在此描述的特征可以以不同的形式来实现,而不应被解释为限于在此描述的示例。相反,已提供在此描述的示例,以仅示出实现在此描述的方法、设备和/或系统的许多可行方式中的一些可行方式,所述许多可行方式在理解本公开的公开之后将是清楚的。
如在此使用的,术语“和/或”包括相关联的所列项中的任何一个以及任 何两个或更多个的任何组合。
尽管在此可使用诸如“第一”、“第二”和“第三”的术语来描述各种构件、组件、区域、层或部分,但是这些构件、组件、区域、层或部分不应被这些术语所限制。相反,这些术语仅用于将一个构件、组件、区域、层或部分与另一构件、组件、区域、层或部分进行区分。因此,在不脱离示例的教导的情况下,在此描述的示例中所称的第一构件、第一组件、第一区域、第一层或第一部分也可被称为第二构件、第二组件、第二区域、第二层或第二部分。
在说明书中,当元件(诸如,层、区域或基底)被描述为“在”另一元件上、“连接到”或“结合到”另一元件时,该元件可直接“在”另一元件上、直接“连接到”或“结合到”另一元件,或者可存在介于其间的一个或多个其他元件。相反,当元件被描述为“直接在”另一元件上、“直接连接到”或“直接结合到”另一元件时,可不存在介于其间的其他元件。
在此使用的术语仅用于描述各种示例,并不将用于限制公开。除非上下文另外清楚地指示,否则单数形式也意在包括复数形式。术语“包含”、“包括”和“具有”说明存在叙述的特征、数量、操作、构件、元件和/或它们的组合,但不排除存在或添加一个或多个其他特征、数量、操作、构件、元件和/或它们的组合。
除非另有定义,否则在此使用的所有术语(包括技术术语和科学术语)具有与由本公开所属领域的普通技术人员在理解本公开之后通常理解的含义相同的含义。除非在此明确地如此定义,否则术语(诸如,在通用词典中定义的术语)应被解释为具有与它们在相关领域的上下文和本公开中的含义一致的含义,并且不应被理想化或过于形式化地解释。
此外,在示例的描述中,当认为公知的相关结构或功能的详细描述将引起对本公开的模糊解释时,将省略这样的详细描述。
本公开提供了一种风力发电机组的网侧变流器的控制方法及装置,可以解决上述问题,本公开的风力发电机组的网侧变流器的控制方法可以应用在服务器上,服务器与风力发电机组可以通过无线连接也可以通过有线连接,此处不做限定。上述服务器可以是一个服务器,也可以是若干个服务器组成的服务器集群,还可以是云计算平台或虚拟化中心,下面以服务器为例进行说明。
服务器获取机侧变流器输出的母线电压,将母线电压偏差值输入到带阻滤波器,得到滤波后的母线电压偏差值,其中,母线电压偏差值为实际母线电压和母线电压参考值的差值,带阻滤波器设置在网侧变流器的电压环的控制器的输入侧,再将滤波后的母线电压偏差值与第一系数相乘,得到处理后的第一母线电压偏差值,以及将母线电压偏差值与第二系数相乘,得到处理后的第二母线电压偏差值,将第一母线电压偏差值和第二母线电压偏差值,输入到网侧变流器的电压环的控制器,得到有功参考电流,从而基于有功参考电流控制网侧变流器。
下面结合附图对本公开进行详细描述。
本公开提出了一种风力发电机组的网侧变流器的控制方法,图2是示出本公开的实施例的风力发电机组的网侧变流器的控制方法的流程图。参照图2,所述风力发电机组的网侧变流器的控制方法包括以下步骤:
在步骤S201中,获取机侧变流器输出的母线电压。母线电压即如图1所示的u dc
在步骤S202中,将母线电压偏差值输入到带阻滤波器,得到滤波后的母线电压偏差值,其中,母线电压偏差值为实际母线电压和母线电压参考值的差值,带阻滤波器设置在网侧变流器的电压环的控制器的输入侧。
例如,图3是示出的常见的网侧逆变控制结构,图4是示出本公开的实施例的电压环示意图,如图3所示,电压环是逆变器控制的外环,用于母线电压稳定的控制,英文为Voltage—loop,如图4所示,带阻滤波器设置电压环中PI控制器的输入端,母线电压偏差值为母线电压u dc和母线电压参考值u dc*的差值u err。考虑实际控制芯片的处理能力,带阻滤波器阶数不宜太高,一般采用2阶,离散化后的形式为:
Y n=a 0*X n+a 1*X n-1+a 2*X n-2-b 1*Y n-1-b 2*Y n-2
其中,Y n是带阻滤波器的输出,X n是带阻滤波器的输入,n表示不同的时刻,a、b是权重,权重是基于带阻滤波器的阶数以及实际需要确定,带阻滤波器的幅频和相频特性如图5所示。
根据本公开的实施例,在获取机侧变流器输出的母线电压之前,可以实时获取风力发电机的频率,其中,频率基于风力发电机的转速确定;基于频率,确定带阻滤波器的目标中心频率;将带阻滤波器的中心频率调整为目标中心频率。根据本实施例,实时调整带阻滤波器的中心频率,保证带阻滤波 器处于最优状态,以更好的滤除谐波。
例如,可以实时获取风力发电机组的转速,基于该转速确定风力发电机组的频率,并将该频率通过内部通讯传递至网侧,网侧利用该频率实时计算带阻滤波器的目标中心频率,从而可以实时调整带阻滤波器的中心频率。
在步骤S203中,将滤波后的母线电压偏差值与第一系数相乘,得到处理后的第一母线电压偏差值。例如,如图4所示,母线电压偏差值先经过一个带阻滤波器,再经过比例系数K2(即上述第一系数)输入到PI控制器,在该步骤中,增加带阻滤波器目的是将因机侧能量波动导致母线电压波动导致的谐波滤除,避免引入网侧的电流环控制中。
在步骤S204中,将母线电压偏差值与第二系数相乘,得到处理后的第二母线电压偏差值。例如,如图4所示,母线电压偏差值经过比例系数K1(即上述第二系数)输入到PI控制器。
在步骤S205中,将第一母线电压偏差值和第二母线电压偏差值,输入到网侧变流器的电压环的控制器,得到有功参考电流。
在步骤S206中,基于有功参考电流控制网侧变流器。例如,如图3所示,将有功参考电流i d*和无功参考电流i q*输入dq-abc变换单元,即dq直轴变换到三相abc轴坐标系,然后将变换后的电流输入到电流环得到输出的电压,将输出的电压与母线电压一起经空间质量脉宽调制技术(SVPWM)转换为0、1来调整网侧变流器。
根据本公开的实施例,上述带阻滤波器还可以设置在网侧变流器的电压环的控制器的输出侧,具体地,在获取机侧变流器输出的母线电压之后,将母线电压偏差值输入到控制器,得到有功参考电流;将有功参考电流输入到带阻滤波器,得到滤波后的有功参考电流,其中,带阻滤波器设置在网侧变流器的电压环的控制器的输出侧;将滤波后的有功参考电流与第三系数相乘,得到处理后的第一有功参考电流;将有功参考电流与第四系数相乘,得到处理后的第二有功参考电流;将第一有功参考电流和第二有功参考电流,得到调整后的有功参考电流;基于调整后的有功参考电流控制网侧变流器。
根据本公开的实施例,在使用上述第一系数或第二系数之前,可以获取网侧变流器的输出功率;确定输出功率与额定输出功率的比值;基于比值调整第一系数或第三系数,其中,第一系数与第二系数的和为1,第三系数与第四系数的和为1。由于母线电压的波动与功率有关,功率大波动大,功率 小波动小,根据本实施例,通过网侧变流器的输出功率实时调整第一系数或第三系数,从而可以根据母线电压波动的大小控制第一系数或第三系数以及第二系数或第四系数的取值,保证整个系统的稳定性。例如,一般情况下,保障能量的正常输送,取K1+K2=1.0。
根据本公开的实施例,基于比值调整第一系数或第三系数,可以包括:按与比值成正相关的方式调整第一系数或第三系数。由于母线电压的波动与功率有关,功率大波动大,功率小波动小,根据本实施例,在母线电压的波动小时,第一系数或第三系数取值小些,随着母线电压的波动的增加,第一系数或第三系数取值加大,即更多的采用滤波后的值。
根据本公开的实施例,按与比值成正相关的方式调整第一系数或第三系数,可以包括:在比值小于第一阈值的情况下,将第一系数或第三系数设置为第一预设值;在比值大于第一阈值且小于第二阈值的情况下,将第一系数或第三系数设置为第二预设值,其中,第二预设值大于第一预设值;在比值大于第二阈值的情况下,将第一系数或第三系数设置为第三预设值。根据本实施例,通过设置区间阈值,可以方便、快速的调整第一系数或第三系数。
例如,在实际设计时,不同的机侧输入功率导致的母线电压波动情况有所差异。一般而言,功率小时,母线电压波动较小,对网侧的谐波较小;功率变大,母线电压波动变大,网侧的谐波同步增大;基于以上因素,设计带阻滤波器前馈比例系数K2时,可以按照网侧变流器的输出的功率进行,分为三档,具体如图6所示,其中第一阈值可以设置为50%,第二阈值可以设置为75%,这样可以在波动小时,减少输入到PI控制中滤波后的母线电压偏差所占的比重。
下面结合图7,以带阻滤波器设置再PI控制器输入端为例对总体流程进行说明,图7是示出本公开的风力发电机组的网侧变流器的方法的总体流程示意图,如图7所示,首先获取机侧频率信息,基于频率信息计算带阻滤波器的中心频率并根据计算结果调整中心频率,然后,电压环中母线电压偏差值经带阻滤波器后按比例前馈,再叠加未经滤波的比例误差值,将叠加后的结果作为电压环中PI控制器的输入。该带阻滤波器用在电压环中,将电压环的控制误差进行带阻滤波,滤除因机侧导致的波动分裂。
综上,在直流侧增加带阻滤波器处理母线电压偏差,该偏差再经加权前馈的方式,按照有功输出功率灵活调节加权系数,不仅可以保障控制系统的 稳定性,而且对直流侧因机侧能量的波动导致的网侧谐波有较好的抑制效果。另外,还可以降低电压环的比例系数或电流环中的比例系数,降低跟随性能,但此方案抑制效果较差。
为了验证上述实施例的可行性,本公开通过实际风力发电机组进行了测试,测试验证结果如图8和图9所示,以上两图可以看出,直流侧增加对机侧能量波动抑制功能后,对其在网侧谐波产生很好的抑制作用。
图10是示出本公开的风力发电机组的网侧变流器的控制装置的框图,如图10所示,该装置包括母线电压获取单元100、第一滤波单元102、第一处理单元104、第二处理单元106和第一有功参考电流获取单元108和第一控制单元1010。
母线电压获取单元100,被配置为获取机侧变流器输出的母线电压;第一滤波单元102,被配置为将母线电压偏差值输入到带阻滤波器,得到滤波后的母线电压偏差值,其中,母线电压偏差值为实际母线电压和母线电压参考值的差值,带阻滤波器设置在网侧变流器的电压环的控制器的输入侧;第一处理单元104,被配置为将滤波后的母线电压偏差值与第一系数相乘,得到处理后的第一母线电压偏差值;第二处理单元106,被配置为将母线电压偏差值与第二系数相乘,得到处理后的第二母线电压偏差值;第一有功参考电流获取单元108,被配置为将第一母线电压偏差值和第二母线电压偏差值,输入到网侧变流器的电压环的控制器,得到有功参考电流;第一控制单元1010,被配置为基于有功参考电流控制网侧变流器。
根据本公开的实施例,还包括:第二有功参考电流获取单元1012,被配置为将母线电压偏差值输入到控制器,得到有功参考电流;第二滤波单元1014,被配置为将有功参考电流输入到带阻滤波器,得到滤波后的有功参考电流,其中,带阻滤波器设置在网侧变流器的电压环的控制器的输出侧;第三处理单元1016,还被配置为将滤波后的有功参考电流与第三系数相乘,得到处理后的第一有功参考电流;第四处理单元1018,还被配置为将有功参考电流与第四系数相乘,得到处理后的第二有功参考电流;调整单元1020,被配置为将第一有功参考电流和第二有功参考电流,得到调整后的有功参考电流;第二控制单元1022,被配置为基于调整后的有功参考电流控制网侧变流器。
根据本公开的实施例,上述装置还包括:频率获取单元1024,被配置为实时获取风力发电机的频率,其中,频率基于风力发电机的转速确定;目标 中心频率确定单元1026,被配置为基于频率,确定带阻滤波器的目标中心频率;频率调整单元1028,被配置为将带阻滤波器的中心频率调整为目标中心频率。
根据本公开的实施例,上述装置还包括:功率获取单元1030,被配置为获取网侧变流器的输出功率;比值确定单元1032,被配置为确定输出功率与额定输出功率的比值;系数调整单元1034,被配置为基于比值调整第一系数或第三系数,其中,第一系数与第二系数的和为1,第三系数与第四系数的和为1。
根据本公开的实施例,系数调整单元1034,还被配置为按与比值成正相关的方式调整第一系数或第三系数。
根据本公开的实施例,系数调整单元1034,还被配置为在比值小于第一阈值的情况下,将第一系数或第三系数设置为第一预设值;在比值大于第一阈值且小于第二阈值的情况下,将第一系数或第三系数设置为第二预设值,其中,第二预设值大于第一预设值;在比值大于第二阈值的情况下,将第一系数或第三系数设置为第三预设值。
根据本公开的实施例,提供了一种存储指令的计算机可读存储介质,其中,当指令被至少一个计算装置运行时,促使至少一个计算装置执行如上述任一实施例的风力发电机组的网侧变流器的控制方法。
根据本公开的实施例,提供了一种包括至少一个计算装置和至少一个存储指令的存储装置的系统,其中,指令在被至少一个计算装置运行时,促使至少一个计算装置执行如上述任一实施例的风力发电机组的网侧变流器的控制方法。
根据本公开的实施例,所述系统为风力发电机组的变流器控制系统。
根据本公开的实施例,提供了一种风力发电机组的变流器,包括上述任一所述的网侧变流器的控制装置和和上述任一所述的系统。
根据本公开的实施例,提供了一种风力发电机组,包括如上述的风力发电机组的变流器。
虽然已表示和描述了本公开的一些实施例,但本领域技术人员应该理解,在不脱离由权利要求及其等同物限定其范围的本公开的原理和精神的情况下,可以对这些实施例进行修改。

Claims (13)

  1. 一种风力发电机组的网侧变流器的控制方法,其特征在于,包括:
    获取机侧变流器输出的母线电压;
    将母线电压偏差值输入到带阻滤波器,得到滤波后的母线电压偏差值,其中,所述母线电压偏差值为实际母线电压和母线电压参考值的差值,所述带阻滤波器设置在网侧变流器的电压环的控制器的输入侧;
    将所述滤波后的母线电压偏差值与第一系数相乘,得到处理后的第一母线电压偏差值;
    将所述母线电压偏差值与第二系数相乘,得到处理后的第二母线电压偏差值;
    将所述第一母线电压偏差值和所述第二母线电压偏差值,输入到网侧变流器的电压环的控制器,得到有功参考电流;
    基于所述有功参考电流控制网侧变流器。
  2. 如权利要求1所述的控制方法,其特征在于,在获取机侧变流器输出的母线电压之后,还包括:
    将所述母线电压偏差值输入到所述控制器,得到有功参考电流;
    将所述有功参考电流输入到所述带阻滤波器,得到滤波后的有功参考电流,其中,所述带阻滤波器设置在网侧变流器的电压环的控制器的输出侧;
    将所述滤波后的有功参考电流与第三系数相乘,得到处理后的第一有功参考电流;
    将所述有功参考电流与第四系数相乘,得到处理后的第二有功参考电流;
    将所述第一有功参考电流和所述第二有功参考电流,得到调整后的有功参考电流;
    基于所述调整后的有功参考电流控制网侧变流器。
  3. 如权利要求1或2所述的控制方法,其特征在于,在获取机侧变流器输出的母线电压之前,还包括:
    实时获取风力发电机的频率,其中,所述频率基于所述风力发电机的转速确定;
    基于所述频率,确定所述带阻滤波器的目标中心频率;
    将所述带阻滤波器的中心频率调整为所述目标中心频率。
  4. 如权利要求1或2所述的控制方法,其特征在于,还包括:
    获取所述网侧变流器的输出功率;
    确定所述输出功率与额定输出功率的比值;
    基于所述比值调整所述第一系数或所述第三系数,其中,所述第一系数与所述第二系数的和为1,所述第三系数与所述第四系数的和为1。
  5. 如权利要求4所述的控制方法,其特征在于,所述基于所述比值调整所述第一系数或所述第三系数,包括:
    按与所述比值成正相关的方式调整所述第一系数或所述第三系数。
  6. 如权利要求5所述的控制方法,其特征在于,所述按与所述比值成正相关的方式调整所述第一系数或所述第三系数,包括:
    在所述比值小于第一阈值的情况下,将所述第一系数或所述第三系数设置为第一预设值;
    在所述比值大于所述第一阈值且小于第二阈值的情况下,将所述第一系数或所述第三系数设置为第二预设值,其中,所述第二预设值大于所述第一预设值;
    在所述比值大于所述第二阈值的情况下,将所述第一系数或所述第三系数设置为第三预设值。
  7. 一种风力发电机组的网侧变流器的控制装置,其特征在于,包括:
    母线电压获取单元,被配置为获取机侧变流器输出的母线电压;
    第一滤波单元,被配置为将母线电压偏差值输入到带阻滤波器,得到滤波后的母线电压偏差值,其中,所述母线电压偏差值为实际母线电压和母线电压参考值的差值,所述带阻滤波器设置在网侧变流器的电压环的控制器的输入侧;
    第一处理单元,被配置为将所述滤波后的母线电压偏差值与第一系数相乘,得到处理后的第一母线电压偏差值;
    第二处理单元,被配置为将所述母线电压偏差值与第二系数相乘,得到处理后的第二母线电压偏差值;
    第一有功参考电流获取单元,被配置为将第一母线电压偏差值和第二母线电压偏差值,输入到网侧变流器的电压环的控制器,得到有功参考电流;
    第一控制单元,被配置为基于所述有功参考电流控制网侧变流器。
  8. 如权利要求7所述的控制装置,其特征在于,还包括:
    第二有功参考电流获取单元,被配置为将所述母线电压偏差值输入到所述控制器,得到有功参考电流;
    第二滤波单元,被配置为将所述有功参考电流输入到所述带阻滤波器,得到滤波后的有功参考电流,其中,所述带阻滤波器设置在网侧变流器的电压环的控制器的输出侧;
    第三处理单元,还被配置为将所述滤波后的有功参考电流与第三系数相乘,得到处理后的第一有功参考电流;
    第四处理单元,还被配置为将所述有功参考电流与第四系数相乘,得到处理后的第二有功参考电流;
    调整单元,被配置为将所述第一有功参考电流和所述第二有功参考电流,得到调整后的有功参考电流;
    第二控制单元,被配置为基于所述调整后的有功参考电流控制网侧变流器;
    其中,所述第一系数与所述第二系数的和为1,所述第三系数与所述第四系数的和为1。
  9. 一种存储指令的计算机可读存储介质,其特征在于,当所述指令被至少一个计算装置运行时,促使所述至少一个计算装置执行如权利要求1至6中的任一权利要求所述的风力发电机组的网侧变流器的控制方法。
  10. 一种包括至少一个计算装置和至少一个存储指令的存储装置的系统,其特征在于,所述指令在被所述至少一个计算装置运行时,促使所述至少一个计算装置执行如权利要求1至6中的任一权利要求所述的风力发电机组的网侧变流器的控制方法。
  11. 如权利要求10所述的系统,其特征在于,所述系统为风力发电机组的变流器控制系统。
  12. 一种风力发电机组的变流器,其特征在于,包括如权利要求7或8所述的网侧变流器的控制装置或者如权利要求9或10所述的系统。
  13. 一种风力发电机组,其特征在于,包括如权利要求12所述的风力发电机组的变流器。
PCT/CN2021/137416 2021-09-29 2021-12-13 风力发电机组的网侧变流器的控制方法及装置 WO2023050581A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202111150147.5 2021-09-29
CN202111150147.5A CN115882457A (zh) 2021-09-29 2021-09-29 风力发电机组的网侧变流器的控制方法及装置

Publications (1)

Publication Number Publication Date
WO2023050581A1 true WO2023050581A1 (zh) 2023-04-06

Family

ID=85756044

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/137416 WO2023050581A1 (zh) 2021-09-29 2021-12-13 风力发电机组的网侧变流器的控制方法及装置

Country Status (2)

Country Link
CN (1) CN115882457A (zh)
WO (1) WO2023050581A1 (zh)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009033339A (ja) * 2007-07-25 2009-02-12 Oki Electric Ind Co Ltd ファクシミリ装置
CN104158222A (zh) * 2014-08-29 2014-11-19 东南大学 一种带电压补偿的并网逆变器直接功率控制方法
CN105790270A (zh) * 2016-03-10 2016-07-20 国家电网公司华北分部 通过双馈风机转子侧变流器抑制次同步谐振的方法及装置
CN112436766A (zh) * 2020-12-03 2021-03-02 华中科技大学 一种无刷双馈发电机抗负载扰动控制装置及方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009033339A (ja) * 2007-07-25 2009-02-12 Oki Electric Ind Co Ltd ファクシミリ装置
CN104158222A (zh) * 2014-08-29 2014-11-19 东南大学 一种带电压补偿的并网逆变器直接功率控制方法
CN105790270A (zh) * 2016-03-10 2016-07-20 国家电网公司华北分部 通过双馈风机转子侧变流器抑制次同步谐振的方法及装置
CN112436766A (zh) * 2020-12-03 2021-03-02 华中科技大学 一种无刷双馈发电机抗负载扰动控制装置及方法

Also Published As

Publication number Publication date
CN115882457A (zh) 2023-03-31

Similar Documents

Publication Publication Date Title
JP6319501B2 (ja) 共振抑制装置
Qais et al. A novel LMSRE-based adaptive PI control scheme for grid-integrated PMSG-based variable-speed wind turbine
US10819262B2 (en) Power generation system, system for suppressing sub-synchronous oscillation and method for controlling operation of power system
CN110611331B (zh) 一种并网电力电子设备对电网频率的支撑方法
CN108964040B (zh) 电网不平衡下虚拟同步发电机功率-电流协调控制方法
US11296629B2 (en) Method, device for sub synchronous oscillation suppression and controller for converter
CN110323775B (zh) 一种提高柔直电网直流端口稳定性的阻尼控制方法
CN109193760B (zh) 一种基于虚拟同步机的并网光伏逆变器自抗扰控制方法
Chernet et al. Input impedance based nyquist stability criterion for subsynchronous resonance analysis in DFIG based wind farms
Roy et al. Nonlinear adaptive direct power controllers of DFIG-based wind farms for enhancing FRT capabilities
Zhu et al. Second-order sliding-mode control of DFIG-based wind turbines
CN114207271A (zh) 控制具有减弱塔架振荡的风力涡轮机的风力发电场
CN109286200B (zh) 一种变速恒频风电机组的控制方法及其控制系统
CN109066735B (zh) 一种不平衡电网电压下的双馈风力发电系统及其控制方法
CN104265568A (zh) 一种风机的升功率运行控制方法、装置及系统
WO2023050581A1 (zh) 风力发电机组的网侧变流器的控制方法及装置
Azeem et al. Levenberg-Marquardt SMC control of grid-tied Doubly Fed Induction Generator (DFIG) using FRT schemes under symmetrical fault
CN116073398A (zh) 一种提升双馈风电机组同步稳定性的附加阻尼控制系统
Dinesh et al. Independent operation of DFIG-based WECS using resonant feedback compensators under unbalanced grid voltage conditions
CN113452023A (zh) 柔性直流换流器的谐波电流抑制方法、装置及存储介质
Karunanayake et al. A Novel Torsional Vibration Mitigation Strategy for DFIG Based Wind Turbines
CA3030508A1 (en) Dynamic direct power control method and system for a grid connected converter
CN116961449B (zh) 三次谐波注入矩阵变换器的有源阻尼参数自适应调节方法
CN110994644B (zh) 一种频率扰动下的逆变器有功电流优先分配方法及系统
JP2018074652A (ja) 電力変換装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21959141

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE