JP2018074652A - 電力変換装置 - Google Patents

電力変換装置 Download PDF

Info

Publication number
JP2018074652A
JP2018074652A JP2016208859A JP2016208859A JP2018074652A JP 2018074652 A JP2018074652 A JP 2018074652A JP 2016208859 A JP2016208859 A JP 2016208859A JP 2016208859 A JP2016208859 A JP 2016208859A JP 2018074652 A JP2018074652 A JP 2018074652A
Authority
JP
Japan
Prior art keywords
current command
harmonic
command value
control function
value
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2016208859A
Other languages
English (en)
Other versions
JP6798248B2 (ja
Inventor
健太郎 小藤
Kentaro Kofuji
健太郎 小藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Co Ltd filed Critical Fuji Electric Co Ltd
Priority to JP2016208859A priority Critical patent/JP6798248B2/ja
Priority to EP17194122.2A priority patent/EP3316436B1/en
Priority to DK17194122.2T priority patent/DK3316436T3/da
Publication of JP2018074652A publication Critical patent/JP2018074652A/ja
Application granted granted Critical
Publication of JP6798248B2 publication Critical patent/JP6798248B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/18Arrangements for adjusting, eliminating or compensating reactive power in networks
    • H02J3/1821Arrangements for adjusting, eliminating or compensating reactive power in networks using shunt compensators
    • H02J3/1835Arrangements for adjusting, eliminating or compensating reactive power in networks using shunt compensators with stepless control
    • H02J3/1842Arrangements for adjusting, eliminating or compensating reactive power in networks using shunt compensators with stepless control wherein at least one reactive element is actively controlled by a bridge converter, e.g. active filters
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J2300/00Systems for supplying or distributing electric power characterised by decentralized, dispersed, or local generation
    • H02J2300/20The dispersed energy generation being of renewable origin
    • H02J2300/28The renewable source being wind energy
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/38Arrangements for parallely feeding a single network by two or more generators, converters or transformers
    • H02J3/381Dispersed generators
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/20Active power filtering [APF]

Abstract

【課題】基本波制御機能および高調波制御機能を協調動作させて電圧形インバータを制御すると共に、基本波制御機能を優先的に動作させることができる電力変換装置を提供すること。【解決手段】電力系統に連係される電力変換装置において、前記電力系統に流れる系統電流の基本波を制御するための第1の電流指令値を生成する基本波制御機能回路と、前記系統電流の高調波を制御するための第2の電流指令値を生成する高調波制御機能回路と、前記電力系統に対する出力電圧であって前記第2の電流指令値に基づく出力電圧の増分に応じて当該第2の電流指令値を制限する制限回路と、を具備する。【選択図】図1

Description

本発明は、電力系統に連系する電圧形インバータに利用可能な電力変換装置に関する。
近年、再生可能エネルギーの普及が進んでおり、多くの風力発電機を備えた大規模なウィンドファーム(wind farm:集合型風力発電所)も建設されている。風力発電機は、発電した電力を一旦直流に変換するAC−DCコンバータと、その直流を交流に変換するDC−ACインバータとを備え、さらにインバータによって発生する高調波電流を除去する高調波フィルタを備えている。
高調波フィルタを備えた風力発電機が電力系統に連系されると、高調波フィルタのキャパシタンス(capacitance:静電容量)と電力系統や変圧器のインダクタンス(inductance:誘導係数)とによる共振が発生し、出力電圧が不安定になる場合がある。特許文献1には、高調波制御機能の1つとして共振抑制機能を備えた共振抑制装置が開示されている。この共振抑制装置は、高調波成分にゲインを乗算して電流指令値を演算し、電流指令値とインバータ出力電流との偏差を検出して電流制御部へ入力する。電流制御部が偏差に対応したインバータ電圧指令値を出力する。インバータ電圧指令値がインバータの出力能力を超過した場合に、電流指令値を制限する機能が開示されている。具体的には、電流制御部の出力が過大になった場合、電流指令値に1よりも小さいゲインを乗算することによって、電圧指令値が電圧リミッタに掛からないように制限している。
一方、風力発電機等の電力設備を電力系統に連系する場合、STATCOM(STATic synchronous COMpensator)、自励式SFCなどの機器が利用されるが、これらの機器は基本波成分を目標波形に近づける制御が望まれる。基本波成分に関する制御(以下、基本波制御機能と呼ぶ)は、その要件が系統連系規程で厳密に定められていることが多く、一般的に高調波制御機能よりも優先度が高い。
国際公開第2014/175214号パンフレット
しかしながら、これまで基本波制御機能と高調波制御機能との間で優先度については考慮されていなかった。インバータ出力能力を超過する可能性が有る時に、基本波制御機能と高調波制御機能のそれぞれを一律で制限すると、優先すべき基本波制御機能の能力を制限してしまう問題がある。
特に、電流指令値を出力するために必要なインバータ出力電圧の増分は周波数に比例して大きくなる。電圧形インバータは、自己消弧能力を持つIGBTなどの半導体素子によってインバータ出力電圧を制御し、所望の出力電流を発生させる装置である。通常、インバータは変圧器(又は連系リアクトル等)を介して系統と接続している。インバータ出力電圧Vc、系統接続点の電圧Vs、インバータ出力電流Ic、インバータから系統接続点までのインピーダンスZは、次の関係がある。
Vc=Vs+Z・Ic
Z=R+j2πfL
(Rは抵抗分、Lはインダクタンス分、fは周波数)
図4は電圧形インバータが変圧器を介して系統接続点(P1)に接続した模式図であり、図5は電圧型インバータの出力電圧と出力電流の関係を示している。Zは主にインダクタンス成分であるため、周波数に比例して大きくなる。そのため、高調波制御では、基本波制御に比べて、同じ大きさのインバータ出力電流Icであったとしても、インバータ出力電圧Vcが大きくなり、出力電圧の限界を超えるリスクが高くなる。例えば、電圧降下補償の場合、系統電圧Vsに対して出力電流Icの位相が90°遅れると、出力電流は容量性の無効電流になる。系統のインピーダンスは主にインダクタンスであるので、容量性の無効電流をインバータが供給すると、系統の電圧が上昇する効果がある。変圧器のインピーダンスがほとんどインダクタンスであるとすると、系統電圧Vsに対して出力電圧Vcは位相が等しく、振幅が大きくなる。
高調波制御機能によって出力電圧が過大にならないように制御する方法の1つとして電流指令値にリミッタなどを設けて間接的に制限する方法も考えられる。しかし、電流指令値に含まれる成分の周波数によっても出力電圧の増分が変わるため、比較的低い周波数の高調波を制御する場合は出力電圧を過剰に制限されることになってしまい、電圧利用率が悪化する。
本発明はかかる点に鑑みてなされたものであり、基本波制御機能および高調波制御機能を協調動作させると共に、基本波制御機能を優先的に動作させることができる電力変換装置を提供することを目的の1つとする。
本発明の一態様の電力変換装置は、電力系統に連係される電力変換装置であって、前記電力系統に流れる系統電流の基本波を制御するための第1の電流指令値を生成する基本波制御機能回路と、前記系統電流の高調波を制御するための第2の電流指令値を生成する高調波制御機能回路と、前記第2の電流指令値に基づく出力電圧の増分を推定した推定値に応じて当該第2の電流指令値を制限する制限回路と、を具備したことを特徴とする。
本発明によれば、基本波制御機能および高調波制御機能を協調動作させると共に、基本波制御機能を優先的に動作させることができる電力変換装置を提供できる。
第1実施形態の電力変換装置を適用した電力系統の模式図である。 第1実施形態の電力変換装置に備えられた推定部のブロック図である。 第1実施形態の電力変換装置に備えられた高調波制限部のブロック図である。 電圧型インバータが変圧器を介して系統接続点に接続した模式図である。 電圧型インバータの出力電圧と出力電流の関係を示す図である。
以下、添付図面を参照して本実施の形態の電力変換装置について説明する。
図1は、第1の実施形態の電力変換装置を適用した電力系統の模式図である。第1の実施形態は、電力設備として風力発電機が連系された電力系統を例示しているが、電力設備として水力発電機、動力発電機その他の発電設備であってもよいし、鉄道用やアルミニウム製錬プラント用などの電源装置をもつ需要家設備であっても良い。
図1には、風力発電機1が電力系統2に接続した状態が示されている。図示していない高調波フィルタのキャパシタンスがCで示され、電力系統2や図示していない変圧器のインダクタンスがL1,L2で示されている。電圧形インバータ3が風力発電機1と電力系統2の接続点P1に対して変圧器4を介して接続されている。
本実施形態の電力変換装置は、電圧形インバータ3及び当該電圧形インバータ3を制御する制御系を含んで構成される。電力変換装置の制御系は、基本波制御機能及び高調波制御機能が協働して電流指令値を生成する電流指令生成回路10と、電流指令生成回路10から出力される電流指令値に基づいて電圧形インバータ3に対する出力電圧指令を生成する電圧指令生成回路20とを有する。
電流指令生成回路10は、電力系統2に流れる系統電流Iの基本波を制御するための第1の電流指令値を生成する基本波制御機能回路30と、系統電流Iの高調波を制御するための第2の電流指令値を生成する高調波制御機能回路40と、電圧形インバータ3の出力電圧であって第2の電流指令値に基づく出力電圧の増分の推定値に応じて当該第2の電流指令値を制限する制限回路50と、を具備している。
基本波制御機能回路30は、系統電圧Vsを取り込んで無効電流指令Iq1 を生成する第1の基本波制御機能ブロック31と、系統電圧Vsの直流電圧VDCを取り込んで有効電流指令Id2 を生成する第2の基本波制御機能ブロック32と、第1の基本波制御機能ブロック31と第2の基本波制御機能ブロック32の電流指令を加算する加算部33と、を有する。
第1の基本波制御機能ブロック31は、交流成分を含む系統電圧Vsを取り込み、実効値計算部34において系統電圧Vsの電圧実効値Vrmsを計算する。計算した電圧実効値Vrmsと目標電圧Vrefとの偏差を加減算部35で計算する。系統電圧Vsに関して検出した偏差をゲイン乗算部36へ入力する。ゲイン乗算部36において偏差に対してゲインk1を乗算し、その乗算値(無効電流指令値)を、上下限リミッタ37を通してから無効電流指令Iq1 として出力する。上下限リミッタ37は無効電流指令Iq1 を許容範囲に制限する。
第2の基本波制御機能ブロック32は、第1の基本波制御機能ブロック31とは異なる方式で基本波制御機能を実現している。具体的には、系統電圧Vsの直流電圧VDCを取り込み、目標直流電圧VDC との偏差を加減算部38において計算する。直流電圧VDCに関して計算した偏差はPI調節器39でPI制御の下で有効電流指令Id2 に変換して出力される。無効電流指令Iq1 と有効電流指令Id2 を合計した指令値が基本波制御機能回路30の第1の電流指令値として出力される。なお、本実施形態では、基本波制御のための第1の電流指令値を無効電流指令Iq1 及び有効電流指令Id2 から計算しているが、いずれか一方でもよい。また、図1に示す以外の方式で基本波制御のための第1の電流指令値を生成してもよい。
高調波制御機能回路40は、系統電流Iから高調波電流指令値Ih1 を生成する第1の高調波制御機能ブロック41と、系統電圧Vsから高調波電流指令値Ih2 を生成する第2の高調波制御機能ブロック42と、第1の高調波制御機能ブロック41及び第2の高調波制御機能ブロック42の出力を合計する加算部43とを有する。
第1の高調波制御機能ブロック41は、系統電流Iから高調波電流Ih1を抽出するHPF44と、HPF44で抽出された高調波電流Ih1にゲインk2を乗算するゲイン乗算部45とを備える。第2の高調波制御機能ブロック42は、系統電圧Vsから高調波電圧Vshを抽出するHPF46と、HPF46で抽出された高調波電圧Vshにゲインk3を乗算するゲイン乗算部47とを備える。第1の高調波制御機能ブロック41から出力される高調波電流Ih1 と第2の高調波制御機能ブロック42から出力される高調波電流Ih2 とを合計した制限前高調波電流指令値I が第2の電流指令値として高調波制御機能回路40から出力される。
制限回路50は、第2の電流指令値(制限前高調波電流指令値I )に基づく電圧形インバータ3の出力電圧の増分を推定する推定部51と、出力電圧の増分の推定値が制限値を超過した場合に前記第2の電流指令値を制限する高調波制限部52とを有する。高調波制限部52は、出力電圧の増分の推定値が制限値を超過しないようにゲイン補正係数を演算する係数演算部53と、第2の電流指令値に対してゲイン補正係数を乗算する係数乗算部54と、を有する。
図2は三相制御の場合に対応した推定部51のブロック線図を示している。推定部51は高調波制御機能の電流指令値を出力するために必要な出力電圧の増分を推定する。推定部51は、制限前高調波電流指令値I を入力とし、出力電圧増分推定値ΔV を出力とする。図2に示すように、制限前高調波電流指令値I にインピーダンスZの抵抗分Rを乗算する第1演算部61と、制限前高調波電流指令値I を微分してインピーダンスZのインダクタンス分Lを乗算する第2演算部62と、第1及び第2演算部61,62の出力を加算して出力電圧増分推定値ΔV を算出する加算部63とを有する。なお、インピーダンスZは変圧器4を含む電圧形インバータ3から系統接続点P1までのインピーダンスである。このインピーダンスZの抵抗分Rが大きいと、電圧形インバータの出力電流による電力損失が大きくなるので、通常は抵抗分Rを小さく設計する。仮に抵抗分RがインピーダンスZの大きさに比べて小さい場合はR=0と近似し、第1演算部61及び加算部63を省略することができる。また、基本波電流指令値はdq変換によって交流量を直流量に変換することができるが、高調波電流指令値は複数の周波数成分が混在している交流量であるため、出力電圧増分推定値も交流量になる。
図3は三相制御の場合に対応した高調波制限部52の係数演算部53のブロック線図を示している。係数演算部53は、出力電圧増分推定値ΔV が既定の閾値(出力電圧増分制限値)を超過しないようにゲイン補正係数を演算する。図3に示すように、入力する各相の出力電圧増分推定値ΔV の絶対値を計算する絶対値回路64と、各相の絶定値の中から最大値を1つ抽出する最大値回路65と、リミッタ付き一次遅れ要素66と、出力電圧増分制限値を一次遅れ要素66の出力(各相の最大値)で割り算する除算回路67と、出力電圧増分推定値ΔV が出力電圧増分制限値よりも大きい場合に1より小さいゲイン補正係数を出力するリミッタ回路68とを有している。
基本波制御機能回路30と高調波制御機能回路40の出力段に加算部70が接続されている。加算部70は、基本波制御機能回路30の出力(無効電流指令Iq1 及び有効電流指令Id2 )と、制限回路50で適宜制限された高調波制御機能回路40の制限後高調波電流指令値I ´とを加算して電流指令値Icを出力する。加算回路70の出力段に、電流指令値Icと現在の系統電流Icとの偏差を検出する加減算部71、偏差に応じて電圧形インバータ3に対する出力電圧指令を生成する電流制御部72、及び電流制御部72の出力を制限する電圧リミッタ73が直列に接続されている。電圧リミッタ73を介して最終的な出力電圧指令Vcが電圧形インバータ3に供給される。
以上のように構成された本実施形態に係る電力変換装置の動作について説明する。
風力発電機1と電力系統2の系統接続点P1を流れる系統電流I及び系統電圧Vsが電流検出器及び電圧検出器を介して検出される。第1の基本波制御機能ブロック31及び第2の高調波制御機能ブロック42へ系統電圧Vsが入力される。第2の基本波制御ブロック32へ系統電圧Vsの直流電圧VDCが入力される。また、第1の高調波制御機能ブロック41へ系統電流Iが入力される。
第1の基本波制御機能ブロック31において、系統電圧Vsの電圧実効値Vrmsと目標電圧Vrefとの偏差に対応して無効電流指令Iq1 が算出される。第2の基本波制御機能ブロック32において、直流電圧VDCと目標直流電圧VDC との偏差に対応して有効電流指令Id2 が算出される。そして、基本波制御機能回路30から無効電流指令Iq1 と有効電流指令Id2 の合計値が基本波制御用の第1の電流指令値として出力される。
一方、第1の高調波制御機能ブロック41において、系統電流Iに基づいて高調波を抑制する高調波電流指令値Ih1 が算出される。また、第2の高調波制御機能ブロック42において、系統電圧Vsに基づいて高調波を抑制する高調波電流指令値Ih2 が算出される。そして、高調波制御機能回路40から高調波電流指令値Ih1 と高調波電流指令値Ih2 の合計値が高調波制御用の第2の電流指令値として出力される。
本実施形態は、基本波制御機能回路30から出力される第1の電流指令値は制限を受けることなく加算部70へ入力されるが、高調波制御機能回路40から出力される第2の電流指令値は制限回路50を経由して加算部70へ入力される。すなわち、基本波制御機能および高調波制御機能を協調動作させると共に、基本波制御機能を優先的に動作させている。制限回路50において高調波制御機能回路40から出力される第2の電流指令値に対して次のような制限が加えられる。推定部51は、高調波制御機能回路40からの第2の電流指令値を制限前高調波電流指令値I として取り込み、高調波制御機能による出力電圧(インバータ出力電圧)の増分が過大にならないように、高調波制御機能の電流指令値を出力するために必要な出力電圧の増分を推定する。具体的には、制限前高調波電流指令値I にインピーダンスZの抵抗分Rを乗算する一方、制限前高調波電流指令値I を微分してインピーダンスZのインダクタンス分Lを乗算し、両者を加算して出力電圧増分推定値として出力する。次に、高調波制限部52において、各相の最大値のうち最も大きい最大値を1つ抽出し、その最大値が出力電圧増分制限値を超過しないようにゲイン補正係数を算出する。出力電圧増分推定値が出力電圧増分制限値よりも小さい場合、出力電圧増分制限値/出力電圧増分推定値>1となるので、リミッタ回路68でリミッタがかかり1が出力される。この結果、出力電圧増分推定値が出力電圧増分制限値よりも小さければ、高調波制御機能回路40から出力される第2の電流指令値は制限されないで出力される。一方、出力電圧増分推定値が出力電圧増分制限値よりも大きい場合、出力電圧増分制限値/出力電圧増分推定値<1となるので、出力電圧増分推定値に応じて1より小さいゲイン補正係数がリミッタ回路68から出力される。この結果、出力電圧増分推定値が出力電圧増分制限値よりも大きければ、出力電圧増分推定値の大きさに応じて小さくなる1より小さいゲイン補正係数によって第2の電流指令値が小さくされる。このように、出力電圧増分推定値ΔV の大きさが閾値を超えるとゲイン補正係数が1より小さい値を取るように制御される。なお、出力電圧増分推定値ΔV の波高値(振幅)が閾値を超えていても位相によっては一時的に閾値を下回る場合があるが、1次遅れ要素66によってゆっくりと1に向かって回復する。一方、入力が増加方向に変化して閾値を超過した場合は1次遅れ要素66のリミッタ下限値を入力値とすることにより、出力はすぐに入力値と同じ値になる。このように制御されたゲイン補正係数が制限前高調波電流指令値I に乗算される。
この結果、基本波制御機能および高調波制御機能を協調動作させると共に、基本波制御機能を優先的に動作させて電流指令値Icを生成できる。電流指令値Icと系統電流Icの偏差に基づいて偏差を解消する出力電圧指令Vcが生成され、電圧形インバータ3へ供給される。
以上のように、本実施の形態によれば、基本波制御機能による電流指令値には制限が与えられないが、高調波制御機能による電流指令値には、出力電圧増分推定値が既定の閾値を超過した場合に、制限が加えられるので、基本波制御機能および高調波制御機能を協調動作させる電力変換装置において、基本波制御機能を優先的に動作させることができる。
なお、本発明は上記実施の形態に限定されず、種々変更して実施することが可能である。上記実施の形態において、添付図面に図示されている構成要素の大きさや形状、機能などについては、これに限定されず、本発明の効果を発揮する範囲内で適宜変更することが可能である。その他、本発明の目的の範囲を逸脱しない限りにおいて適宜変更して実施することが可能である。
本発明の電力変換装置は、例えば、風力発電機が連係する電力系統に適用して好適である。
1 風力発電機
2 電力系統
3 電圧形インバータ
4 変圧器
10 電流指令生成回路
20 電圧指令生成回路
30 基本波制御機能回路
31 第1の基本波制御機能ブロック
32 第2の基本波制御機能ブロック
33、43、70 加算部
40 高調波制御機能回路
41 第1の高調波制御機能ブロック
42 第2の高調波制御機能ブロック
50 制限回路
51 推定部
52 高調波制限部
53 係数演算部
54 ゲイン乗算部
71 加減算部
72 電流制御部
73 電圧リミッタ

Claims (7)

  1. 電力系統に連係される電力変換装置であって、
    前記電力系統に流れる系統電流の基本波を制御するための第1の電流指令値を生成する基本波制御機能回路と、前記系統電流の高調波を制御するための第2の電流指令値を生成する高調波制御機能回路と、前記第2の電流指令値に基づく出力電圧の増分を推定した推定値に応じて当該第2の電流指令値を制限する制限回路と、を具備したことを特徴とする電力変換装置。
  2. 前記制限回路は、前記第2の電流指令値に基づく出力電圧の増分を推定する推定部と、前記出力電圧の増分の推定値が制限値を超過した場合に前記高調波制御機能回路から出力される前記第2の電流指令値を制限する高調波制限部と、を有することを特徴とする請求項1記載の電力変換装置。
  3. 前記基本波制御機能回路は、無効電流指令及び又は有効電流指令を前記第1の電流指令値として出力し、前記高調波制御機能回路は、系統電流及び又は系統電圧から抽出された高調波成分に応じた高調波電流指令を前記第2の電流指令値として出力することを特徴とする請求項1又は請求項2記載の電力変換装置。
  4. 前記推定部は、前記高調波制限部による制限前の第2の電流指令値を微分して前記インピーダンスZのインダクタンス分Lを乗算し、前記出力電圧の増分の推定値として出力することを特徴とする請求項2又は請求項3記載の電力変換装置。
  5. 前記推定部は、前記高調波制限部による制限前の第2の電流指令値に系統接続点までのインピーダンスZの抵抗分Rを乗算する第1演算部と、前記制限前の第2の電流指令値を微分して前記インピーダンスZのインダクタンス分Lを乗算する第2演算部と、前記第1演算部及び前記第2演算部の出力を加算して前記出力電圧の増分の推定値として出力する加算部と、を有することを特徴とする請求項4記載の電力変換装置。
  6. 前記高調波制限部は、前記出力電圧の増分の推定値が制限値を超過しないようにゲイン補正係数を演算する係数演算部と、前記制限前の第2の電流指令値に対して前記ゲイン補正係数を乗算する係数乗算部と、を有することを特徴とする請求項2から請求項5のいずれかに記載の電力変換装置。
  7. 前記高調波制限部は、前記推定値の減少時のみ遅れ動作する遅れ要素を有することを特徴とする請求項6記載の電力変換装置。
JP2016208859A 2016-10-25 2016-10-25 電力変換装置 Active JP6798248B2 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2016208859A JP6798248B2 (ja) 2016-10-25 2016-10-25 電力変換装置
EP17194122.2A EP3316436B1 (en) 2016-10-25 2017-09-29 Power conversion device
DK17194122.2T DK3316436T3 (da) 2016-10-25 2017-09-29 Energiomdannelsesapparat

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016208859A JP6798248B2 (ja) 2016-10-25 2016-10-25 電力変換装置

Publications (2)

Publication Number Publication Date
JP2018074652A true JP2018074652A (ja) 2018-05-10
JP6798248B2 JP6798248B2 (ja) 2020-12-09

Family

ID=59997273

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016208859A Active JP6798248B2 (ja) 2016-10-25 2016-10-25 電力変換装置

Country Status (3)

Country Link
EP (1) EP3316436B1 (ja)
JP (1) JP6798248B2 (ja)
DK (1) DK3316436T3 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020010571A (ja) * 2018-07-12 2020-01-16 富士電機株式会社 電力変換装置

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07170749A (ja) * 1993-12-15 1995-07-04 Mitsubishi Electric Corp 電力変換装置
JPH11103600A (ja) * 1997-09-29 1999-04-13 Tokyo Electric Power Co Inc:The 誘導発電機の電圧制御方法
JP2003061250A (ja) * 2001-08-10 2003-02-28 Mitsubishi Electric Corp 電圧変動補償装置
WO2014175214A1 (ja) * 2013-04-26 2014-10-30 富士電機株式会社 共振抑制装置

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2760646B2 (ja) * 1990-09-18 1998-06-04 株式会社東芝 電力変換装置の電流指令値演算装置
CN103141004B (zh) * 2010-09-22 2016-12-07 东芝三菱电机产业系统株式会社 电力转换装置
JP5681785B2 (ja) * 2011-02-23 2015-03-11 東芝三菱電機産業システム株式会社 電力変換装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07170749A (ja) * 1993-12-15 1995-07-04 Mitsubishi Electric Corp 電力変換装置
JPH11103600A (ja) * 1997-09-29 1999-04-13 Tokyo Electric Power Co Inc:The 誘導発電機の電圧制御方法
JP2003061250A (ja) * 2001-08-10 2003-02-28 Mitsubishi Electric Corp 電圧変動補償装置
WO2014175214A1 (ja) * 2013-04-26 2014-10-30 富士電機株式会社 共振抑制装置

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020010571A (ja) * 2018-07-12 2020-01-16 富士電機株式会社 電力変換装置

Also Published As

Publication number Publication date
EP3316436B1 (en) 2020-03-11
JP6798248B2 (ja) 2020-12-09
DK3316436T3 (da) 2020-06-02
EP3316436A1 (en) 2018-05-02

Similar Documents

Publication Publication Date Title
JP6319501B2 (ja) 共振抑制装置
Arya et al. Power quality enhancement using DSTATCOM in distributed power generation system
Singh et al. A multifunctional grid-tied solar energy conversion system with ANF-based control approach
Leon et al. Control strategy of a DVR to improve stability in wind farms using squirrel-cage induction generators
Areerak et al. Aircraft power system stability study including effect of voltage control and actuators dynamic
US11296629B2 (en) Method, device for sub synchronous oscillation suppression and controller for converter
Çelik et al. Kalman filter-based super-twisting sliding mode control of shunt active power filter for electric vehicle charging station applications
JP6112198B2 (ja) 共振抑制装置
JP5830484B2 (ja) 無効電力比率制御器、無効電力比率制御方法、およびこれを用いた発電システム
Narayanan et al. Implementation of a multiobjective control for islanded hybrid microgrid
CN105186545B (zh) 一种逆变器的电流平衡控制方法及逆变器
Ibrahim et al. Ride-through strategy for DFIG wind turbine systems using dynamic voltage restorers
JP4017113B2 (ja) 配電系統用アクティブフィルタ
EP3316434A1 (en) Resonance suppression device
JP6798248B2 (ja) 電力変換装置
Khalid et al. Comparative evaluation of various control strategies for shunt active power filters in aircraft power utility of 400 Hz
Kalla Minor component analysis based anti-hebbian neural network scheme of decoupled voltage and frequency controller (DVFC) for nanohydro system
Mayakrishnan et al. Integrated Controller for Elimination of Harmonics in PMSG Based WECS Feeding Non Linear Load
CN106099953B (zh) 一种风电双馈变流器网侧整流器有源阻尼控制方法及系统
CN104836429B (zh) 三相并网型逆变器启动冲击电流抑制控制策略
JP7279309B2 (ja) 電力変換装置
Černelič et al. Control for Grid Connected Small Wind Turbine System
Sahoo et al. Voltage Regulation of Weak Grid-Tied DFIG based WECS using ε-VPNMN Control
Sowndarya et al. Voltage control of self-excited induction generator
Mahdavi et al. Reactive Power Management of a DFIG Wind System in Microgrids Based on Economics of the System

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190913

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20200731

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200804

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200925

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20201020

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20201102

R150 Certificate of patent or registration of utility model

Ref document number: 6798248

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250