WO2023050397A1 - 一种吸阻调节组件及雾化组件、电源组件、电子雾化装置 - Google Patents

一种吸阻调节组件及雾化组件、电源组件、电子雾化装置 Download PDF

Info

Publication number
WO2023050397A1
WO2023050397A1 PCT/CN2021/122391 CN2021122391W WO2023050397A1 WO 2023050397 A1 WO2023050397 A1 WO 2023050397A1 CN 2021122391 W CN2021122391 W CN 2021122391W WO 2023050397 A1 WO2023050397 A1 WO 2023050397A1
Authority
WO
WIPO (PCT)
Prior art keywords
adjustment
resistance
air inlet
assembly
atomization
Prior art date
Application number
PCT/CN2021/122391
Other languages
English (en)
French (fr)
Inventor
姜茹
雷桂林
Original Assignee
深圳麦克韦尔科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳麦克韦尔科技有限公司 filed Critical 深圳麦克韦尔科技有限公司
Priority to PCT/CN2021/122391 priority Critical patent/WO2023050397A1/zh
Publication of WO2023050397A1 publication Critical patent/WO2023050397A1/zh

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A24TOBACCO; CIGARS; CIGARETTES; SIMULATED SMOKING DEVICES; SMOKERS' REQUISITES
    • A24FSMOKERS' REQUISITES; MATCH BOXES; SIMULATED SMOKING DEVICES
    • A24F40/00Electrically operated smoking devices; Component parts thereof; Manufacture thereof; Maintenance or testing thereof; Charging means specially adapted therefor
    • AHUMAN NECESSITIES
    • A24TOBACCO; CIGARS; CIGARETTES; SIMULATED SMOKING DEVICES; SMOKERS' REQUISITES
    • A24FSMOKERS' REQUISITES; MATCH BOXES; SIMULATED SMOKING DEVICES
    • A24F47/00Smokers' requisites not otherwise provided for

Definitions

  • the present application relates to the field of airflow regulation, in particular to a drag resistance adjustment assembly, an atomization assembly, a power supply assembly, and an electronic atomization device.
  • Existing electronic atomization devices usually include an atomizer and a power supply assembly.
  • the atomizer is used to heat the atomized aerosol-generating substrate, and the power supply assembly controls the operation of the atomizer.
  • the electronic atomization device also includes an air intake hole. When the user inhales, the outside air is introduced into the atomizer through the air intake hole, and the heated and atomized aerosol-generating substrate in the atomizer is conducted to the user's mouth following the outside air.
  • the current electronic atomization device is usually equipped with multiple air intake holes, and the purpose of adjusting the suction resistance is achieved by adjusting the number of air intake holes.
  • the present application provides a drag resistance adjustment component, an atomization component, a power supply component, and an electronic atomization device, so as to solve the problem of non-uniform draw resistance adjustment in the prior art.
  • a technical solution adopted by the present application is: provide a suction resistance adjustment assembly, including a main body and an adjusting part; the main body has an air inlet; The air port; when the adjusting member is continuously adjusted, the size of the air intake area of the air inlet changes; wherein, when the adjusting member is continuously adjusted, the suction resistance of the device using the suction resistance adjusting component changes uniformly.
  • the suction resistance of the device using the suction resistance adjustment component changes approximately linearly.
  • the air inlet includes at least three air inlets, and different air inlets have different cross-sectional sizes; the at least three air inlets are sequentially blocked in the first adjustment sequence.
  • the difference in cross-sectional area between two adjacent air holes decreases gradually in the first adjustment sequence.
  • the air inlet includes N air inlet holes, and N is greater than or equal to 5; in the first adjustment order, the difference in cross-sectional area from the first air inlet to the (N-1)th air inlet gradually decreases , the cross-sectional area of the Nth air inlet is larger than the cross-sectional area of the (N-1)th air inlet.
  • the adjustment member has multiple installation positions, and the suction resistance corresponding to each installation position is obtained according to the number of installation positions and the maximum and minimum suction resistance of the device using the suction resistance adjustment component; each installation position The total cross-sectional area of the intake holes corresponding to each gear position is obtained according to the suction resistance corresponding to each installation position; the cross-sectional area of each air intake hole is obtained according to the total area of the air intake holes corresponding to multiple installation positions .
  • the adjustment member moves the same adjustment distance, and the change amount of the exposed cross-sectional area of the air inlet decreases gradually.
  • the width of the air inlet is successively blocked in the first adjustment sequence and gradually becomes smaller.
  • the cross section of the air inlet includes a first side and a second side that are oppositely arranged, and a third side and a fourth side connecting the first side and the second side, and the third side and the fourth side are along the midpoint of the first side Set symmetrically with the connecting line at the midpoint of the second side.
  • the third side and the fourth side are linear or arc-shaped.
  • the slope of the third side or the fourth side gradually decreases.
  • the edge line of the air inlet is obtained according to the total moving distance of the adjustment member and the maximum and minimum suction resistance of the device using the resistance adjustment assembly, so that the adjustment member moves the same adjustment distance in the first adjustment sequence
  • the reduced resistance to draw is about the same.
  • the adjusting member is rotatably connected with the main body.
  • the present application also provides an atomization assembly, which is applied to an electronic atomization device, including an atomization tube, a suction resistance adjustment assembly and an atomization core assembly 20; wherein, the suction resistance adjustment assembly is formed on the atomization tube
  • the drag resistance adjustment component is any one of the above drag resistance adjustment components; the atomization core component 20 is arranged in the atomization tube, and is used for heating the atomized aerosol generating substrate.
  • the present application also provides a power supply assembly, which is applied to an electronic atomization device, including a casing, a battery, and a draw resistance adjustment assembly; wherein, the draw resistance adjustment assembly is formed on the housing; the draw resistance adjustment assembly is the above-mentioned Any one of the drag resistance adjustment components; the battery is arranged in the casing to provide power for the atomization components in the electronic atomization device.
  • the present application also provides an electronic atomization device, including an atomization component, a power supply component, and a suction resistance adjustment component; wherein, the atomization component is used to heat the atomized aerosol generating substrate to generate an aerosol; the power supply component and The atomization component is electrically connected to control the work of the atomization component; the suction resistance adjustment component is formed on the atomization component and/or the power supply component; the suction resistance adjustment component is any of the above suction resistance adjustment components; wherein, the outside air passes through the The air port is introduced into the atomization component, and the aerosol is carried out from the suction port of the atomization component.
  • the drawing resistance adjustment assembly is formed on the atomization assembly and the power supply assembly, wherein, one of the atomization assembly and the power supply assembly is provided with a body part, and the other is provided with an adjustment member.
  • the suction resistance adjustment assembly used in this application includes a body part and an adjustment part; the body part has an air inlet through which outside air is introduced into the device using the suction resistance adjustment assembly; the adjustment part is opposite to the body part
  • the movable setting is used to block the air inlet to achieve the purpose of adjusting the suction resistance; when the adjustment member is continuously adjusted, the size of the air intake area of the air inlet changes; among them, when the adjustment member is continuously adjusted, the device that uses the suction resistance adjustment component The suction resistance changes uniformly.
  • Fig. 1 is a schematic structural diagram of an electronic atomization device provided in an embodiment of the present application
  • Fig. 2 is a schematic structural diagram of the atomization assembly provided by the embodiment of the present application.
  • Fig. 3 is a sectional view along line A-A of Fig. 2;
  • Fig. 4 is the drawing resistance ratio experiment result figure under the different suction capacities that the comparative example of the present application provides;
  • Fig. 5 is a schematic structural diagram of the drag adjustment assembly provided by the embodiment of the present application.
  • Figure 6 is an exploded view of Figure 5;
  • Fig. 7 is a comparison diagram of the drag adjustment effect of the drag adjustment assembly provided by the present application and the comparative example
  • Fig. 8 is a schematic structural diagram of the air inlet provided by the embodiment of the present application.
  • Fig. 9 is another schematic structural view of the air inlet provided by the embodiment of the present application.
  • Fig. 10 is another schematic structural view of the air inlet provided by the embodiment of the present application.
  • Fig. 11 is another schematic structural view of the air inlet provided by the embodiment of the present application.
  • first”, “second”, and “third” in this application are used for descriptive purposes only, and cannot be understood as indicating or implying relative importance or implicitly specifying the quantity of indicated technical features. Thus, features defined as “first”, “second”, and “third” may explicitly or implicitly include at least one of these features.
  • “plurality” means at least two, such as two, three, etc., unless otherwise specifically defined. All directional indications (such as up, down, left, right, front, back%) in the embodiments of the present application are only used to explain the relative positional relationship between the various components in a certain posture (as shown in the drawings) , sports conditions, etc., if the specific posture changes, the directional indication also changes accordingly.
  • the applicant of the present application found that the multiple air intake holes of the existing electronic atomization device are evenly distributed in size, and the actual adjustment effect is indeed that the suction resistance increases very slowly in the first few stages of adjustment, and the suction resistance increases exponentially in the last stage of adjustment. The purpose of uniform adjustment of the suction resistance cannot be achieved.
  • the applicant of the present application designed a new resistance-to-draw adjustment assembly, as well as an atomization assembly, a power supply assembly and an electronic atomization device using the resistance-to-draw adjustment assembly.
  • FIG. 1 is a schematic structural view of an electronic atomization device provided in an embodiment of the present application
  • Fig. 2 is a schematic structural view of an atomization assembly provided in an embodiment of the present application
  • Fig. 3 is a cross-sectional view of Fig. 2 along line A-A
  • Fig. 4 is a schematic view of the present application
  • Figure 5 is a schematic diagram of the structure of the suction resistance adjustment assembly provided by the embodiment of the application
  • Figure 6 is an exploded view of Figure 5
  • Figure 7 is the application and the comparison The comparison diagram of the drag adjustment effect of the drag adjustment assembly provided by the ratio
  • FIG. 8 is a schematic structural diagram of the air inlet provided by the embodiment of the application
  • FIG. 9 is another schematic structural diagram of the air inlet provided by the embodiment of the application
  • FIG. 10 is another schematic structural diagram of the air inlet provided by the embodiment of the present application
  • FIG. 11 is another schematic structural diagram of the air inlet provided by the embodiment of the present application.
  • an electronic atomization device 300 generally includes an atomization assembly 100 and a power supply assembly 200, wherein the atomization assembly 100 is used to heat the atomized aerosol generating substrate to generate an aerosol, and the power supply assembly 200 is electrically connected to the atomization assembly 100 , the power supply assembly 200 includes a circuit board and a battery, and the circuit board controls the battery to supply power to the atomization assembly 100 .
  • the housing of the electronic atomization device 300 is provided with an air inlet 301. When the user takes a suction action, the outside air is introduced into the atomization assembly 100 through the air inlet 301, and the outside air flowing into the atomization assembly 100 carries the atomization.
  • the heated and atomized aerosol-generating substrate in the assembly 100 flows out from the suction port of the atomization assembly 100 for inhalation by the user.
  • the electronic atomization device 300 can be used in different fields, such as drug atomization, electronic aerosolization, and hairspray atomization.
  • the atomization assembly 100 includes an atomization tube 10 , an atomization core assembly 20 and a mounting seat 30 .
  • a suction nozzle 11 is formed at one end of the atomizing tube 10
  • an atomizing channel 12 and an accommodating cavity 13 are formed in the atomizing tube 10
  • the atomizing core assembly 20 is accommodated in the accommodating cavity 13
  • the mounting base 30 is connected to the end of the atomizing tube 10 away from the suction nozzle 11 .
  • one end of the atomizing core assembly 20 is connected to the atomizing channel 12 , and the other end is fixed to the mounting base 30 .
  • the liquid storage chamber 14 is used to store the aerosol generating substrate.
  • the shape and size of the liquid storage chamber 14 are not limited, and can be designed according to needs.
  • the liquid storage chamber 14 can be made of aluminum, stainless steel and other metals, or can be made of transparent or translucent plastic, as long as it can store the substance to be atomized and not react with it to make it deteriorate.
  • the atomizing core assembly 20 is used for heating the atomized aerosol generating substrate, and the atomizing core assembly 20 includes a liquid inlet pipe 21 and an atomizing core (not shown in the figure).
  • the liquid inlet pipe 21 has a liquid inlet hole 210, and the aerosol generating substrate in the liquid storage chamber 14 is introduced into the atomizing core through the liquid inlet hole 210, and the atomizing core heats and atomizes the aerosol generating substrate into an aerosol, and passes through the mist Channel 12 is imported into the user's mouth.
  • the atomizing core assembly 20 is a cotton core heating element (not shown in the figure), and the cotton core heating element includes a liquid inlet pipe 21 , a liquid guiding cotton and a heating element.
  • the aerosol-generating substrate in the liquid storage chamber 14 flows into the atomizing core assembly 20 through the liquid inlet hole 210, and then conducts to the heating element through the guide cotton, where it is heated and atomized into an aerosol.
  • the atomizing core assembly 20 is a ceramic heating element (not shown in the figure), and the ceramic heating element includes a liquid inlet pipe 21 and a ceramic heating core.
  • the ceramic heating core includes porous ceramics and a heating film.
  • the aerosol-generating substrate in the liquid storage chamber 14 flows into the atomizing core assembly 20 through the liquid inlet hole 210, and is introduced into the heating film through the porous ceramic, where it is heated and atomized into an aerosol.
  • the mounting seat 30 includes a mounting top seat 31 and a mounting base 32, which may also be an integral structure.
  • the mounting base 30 is provided with a conductive element (not shown in the figure), one end of the conductive element is electrically connected to the atomizing core, and the other end is electrically connected to the power supply assembly 200 .
  • the mounting seat 30 can be made of plastic, ceramics, stainless steel or other alloys; the shape and size of the mounting seat 30 are not limited, and can be designed according to needs.
  • the suction volume when using the electronic atomization device 300 is also different. If a single suction resistance value is used, it is difficult to meet the requirements of different users for the suction resistance of the electronic atomization device 300, making the user's suction experience poor. Therefore, some existing electronic atomization devices 300 are usually equipped with a draw resistance adjustment structure, so that different users can freely adjust the draw resistance according to actual conditions.
  • the electronic atomization device is provided with 5 inlet holes of the same size.
  • the suction capacity is 50ml/3s or 100ml/3s.
  • the suction capacity is 50ml/3s and 100ml/3s respectively, the relationship curves of the number of air intake holes 302 and the normalized suction resistance ratio approximately overlap, that is to say, the suction capacity is almost equal to that of the air intake holes 302.
  • the number of -normalized relationship between the draw resistance ratio has no effect.
  • normalization means that the maximum resistance of resistance is taken as the standard, that is, the ratio of other resistances of resistance to the maximum resistance of resistance; for example, the maximum resistance of resistance is selected as 1.
  • the suction resistances of the five gears are respectively 17%, 18%, 22%, 38%, and 100% of the maximum suction resistance.
  • the suction resistance increases slowly, and the user does not feel much change in the suction resistance.
  • the suction resistance increases exponentially, reaching the maximum value of the suction resistance. It can be understood that the adjustment of the existing suction resistance adjustment structure is not uniform, which affects the user's suction experience.
  • the drag adjustment assembly 40 includes a body part 41 and an adjustment part 42; the body part 41 has an air inlet 301; the adjustment part 42 is movable relative to the body part 41, and is used to block the air inlet 301; when the adjustment part 42 is adjusted continuously, The size of the air intake area of the air port 301 varies. Specifically, when the adjustment member 42 is adjusted continuously, the draw resistance of the device using the draw resistance adjustment assembly 40 changes uniformly.
  • the uniform change of the draw resistance in this application means that it is unreasonable compared with the draw resistance adjustment method in the prior art, so that when the draw resistance is adjusted in multiple stages, the draw resistance changes more uniformly between each successive adjustment level.
  • Air resistance adjustment method In an ideal state, uniform variation of the suction resistance means that when the adjustment member 42 is adjusted continuously, the suction resistance changes completely linearly.
  • the draw resistance of the device using the draw resistance adjustment assembly 40 can only change approximately linearly.
  • the difference between the actual suction resistance of each gear and the ideal suction resistance is no more than 300 Pa, which can be considered as an approximately linear change.
  • the reason for the difference between the design value and the actual value is that the air inlet 301 of the device using the suction resistance adjustment component 40 has a small aperture, and the boundary layer on the surface of the small aperture affects the air flow.
  • the body part 41 includes a mounting part 411 and a connecting part 412, the mounting part 411 is used to connect with the adjustment part 42, the mounting part 411 is a hollow structure and the side wall has an air intake composed of a plurality of air intake holes 302 port 301 , wherein each air inlet 302 corresponds to a mounting position; the regulating member 42 is a circular ring, sleeved on the outside of the mounting portion 411 , and has a through hole 421 .
  • the installation part 411 is accommodated in the adjustment part 42 and is rotatably connected with the adjustment part 42 .
  • Different numbers of air intake holes 302 are blocked by rotating the adjustment member 42 , so that a plurality of air intake holes 302 on the body portion 41 are partially or fully exposed through the through holes 421 . That is, by turning the adjustment member 42 to different gears, the cross-sectional area of the air inlet 301 is blocked by different sizes. Threads are provided on the connecting portion 412 for threaded connection with the power supply assembly 200 .
  • the adjusting member 42 can also be disposed on the inner surface of the mounting portion 411 , and by rotating the main body portion 41 or the adjusting member 42 , the cross-sectional area of the adjusting member 42 shielding the air inlet 301 is different.
  • the body part 41 and the adjustment member 42 can be connected in a relatively sliding design or in other ways, as long as the adjustment member 42 is continuously adjusted, the air intake area of the air inlet 301 changes; and when the adjustment member 42 is continuously adjusted, The draw resistance of the device using the draw resistance adjustment assembly 40 can be changed uniformly.
  • the specific connection manner is not limited here.
  • the direction in which the air inlet 301 is gradually blocked by the adjustment member 42 is the first adjustment sequence.
  • the amount of change in the cross-sectional area gradually decreases.
  • the cross-sectional size of the air inlet 301 is obtained according to the maximum and minimum suction resistance of the atomization assembly 100 and the linear change rule of the suction resistance.
  • the suction resistance of the device using the suction resistance adjustment assembly 40 is 600Pa; when the adjustment member 42 is in the Nth gear, the suction resistance of the device using the suction resistance adjustment assembly 40 is 1400Pa, where the Nth gear represents the maximum suction resistance When the gear is at the maximum suction resistance gear, the air inlet 301 only exposes one air inlet 302 .
  • the number of installation stalls of the adjustment member 42 determines the number of installation stalls of the adjustment member 42, and then divide the number of installation stalls according to the difference between the maximum suction resistance and the minimum suction resistance, and finally determine the number of installation stalls according to the suction resistance corresponding to each installation stall.
  • the size of the exposed cross-sectional area of the air inlet 301 corresponding to the gear position realizes that the suction resistance of the device using the suction resistance adjustment assembly 40 changes uniformly when continuously changing between multiple installation gear positions. It can be understood that when the air inlet 301 includes a plurality of air intake holes 302 (see FIG.
  • the suction resistance corresponding to each installation gear is based on the number of installation gears and the maximum suction resistance of the device to which the suction resistance adjustment assembly 40 is applied.
  • the total cross-sectional area of the air intake hole 302 corresponding to each installation gear is obtained according to the suction resistance corresponding to each installation gear position; the cross-sectional area of each air intake hole 302 is obtained according to multiple The total area of the intake holes 302 corresponding to the respective installation gears is obtained.
  • the air inlet 301 is a connected opening (see FIGS. 8-11 )
  • the limit line of the air inlet 301 is based on the total moving distance of the adjustment member 42 and the maximum and minimum suction resistance of the device using the suction resistance adjustment assembly 40. It follows that the reduced suction resistance for moving the adjusting element 42 over the same adjusting distance in the first adjusting sequence is approximately the same.
  • the air inlet 301 includes at least three air inlets 302 , and different air inlets 302 have different cross-sectional sizes; the at least three air inlets 302 are sequentially blocked in the first adjustment order.
  • the difference between the cross-sectional areas of two adjacent air inlets 402 decreases gradually.
  • the cross-sectional area of the first air inlet hole 302 is the largest, and the second air inlet hole 302 has the largest cross-sectional area, and the second air inlet hole
  • the cross-sectional area of the hole 302 is smaller than that of the first air inlet 302
  • the cross-sectional area of the third air inlet 302 is smaller than that of the second air inlet 301 .
  • the cross-sectional area of the last air inlet 302 is determined according to the maximum suction resistance.
  • the number of air intake holes 302 can be selected according to actual needs. The more the number of air intake holes 302 is, the more gears the adjustment member 42 has, which can meet the needs of different users for suction resistance.
  • the air inlet 301 includes N air inlet holes 302, and N is greater than or equal to five; The difference in cross-sectional area decreases gradually, and the cross-sectional area of the Nth air inlet 302 is larger than the cross-sectional area of the (N ⁇ 1)th air inlet 302 .
  • the number of air intake holes 302 is five, that is, the adjusting member 42 has five gears; wherein, when the adjusting member 42 is in the first gear, the first air inlet to the fifth inlet The air holes jointly form an intake channel; when the adjusting member 42 is in the second gear position, the second air intake hole to the fifth air intake hole jointly form an intake channel; when the adjusting member 42 is in the third gear position, the third intake port The air hole to the fifth air intake hole jointly form an intake passage; when the adjustment member 42 is in the fourth gear position, the fourth air intake hole to the fifth air intake hole jointly form an intake passage; when the adjustment member 42 is in the fifth gear position When in position, the fifth air intake hole alone forms an air intake channel.
  • the cross-sectional area of the fifth air inlet is determined according to the maximum suction resistance.
  • the curve fitting formula is used according to the air intake hole 302
  • the quantity and the linear rule obtain the total area of the intake hole 302 corresponding to each gear position of the adjustment member 42, and then calculate the area of each intake hole 302.
  • the cross-sectional area of the last air inlet 302 in the first adjustment order is determined according to the maximum suction resistance.
  • the cross-sectional areas of the five air inlet holes 302 are determined.
  • the sum of the cross-sectional areas of the fourth and fifth air intake holes 302 exposed in the fourth gear can be calculated by the linear rule, and the cross-sectional area of the fifth air intake hole 302 can be subtracted to obtain the fourth The cross-sectional area of the air inlet 302.
  • the cross-sectional areas of all air intake holes 302 are obtained.
  • the cross-sectional area of each air inlet 302 is shown in Table 1.
  • the cross-sectional areas from the first air inlet to the fourth air inlet gradually decrease, and in the first adjustment order, the difference between the cross-sectional areas of two adjacent air inlets 302 is Decreasing trend changes, so as to realize uniform adjustment of the draw resistance in the device using the draw resistance adjustment assembly 40 .
  • the shape of the cross section of the air inlet hole 302 can be square, oval or other shapes, as long as the above conditions are met.
  • the original suction resistance represents the suction resistance corresponding to each installation gear in the prior art equipment
  • the optimized suction resistance represents the suction resistance corresponding to each installation gear of the adjustment member 42 in the embodiment of the application
  • the dotted line in the figure represents The suction resistance corresponding to each installation gear in the ideal state, according to Figure 7, between the maximum suction resistance and the minimum suction resistance, the suction resistance of each installation gear in the equipment using the prior art is from the suction resistance difference in the ideal state
  • the value is large, and when multiple installation gears are continuously changed, the suction resistance changes unevenly; while the suction resistance distance of each installation gear of the adjustment member 42 in the present application is smaller than the suction resistance difference under the ideal state. When continuously changing between the installation gears, the suction resistance changes more evenly.
  • the adjustment member 42 moves the same adjustment distance, and the variation of the blocked cross-sectional area of the air inlet 301 gradually decreases.
  • the air inlet 301 is a connected opening, and the width of the air inlet 301 is defined as the size of the air inlet 301 in a direction perpendicular to the direction in which the air inlet 301 is sequentially blocked by the adjusting member 42, and The width of the gas port 301 gradually becomes smaller in the first adjustment sequence.
  • the adjustment method is easier to control.
  • the shape of the cross-section of the air inlet 301 can be triangular, trapezoidal or other shapes, as long as it can meet the requirement that in the first adjustment sequence, the adjustment member 42 moves the same adjustment distance, and the air inlet 301 is blocked.
  • the amount of change in the cross-sectional area may be gradually reduced.
  • the cross section of the air inlet 301 includes a first side 4111 and a second side 4112 oppositely arranged, and a third side 4113 and a fourth side connecting the first side and the second side. 4114, and the third side 4113 and the fourth side 4114 are arranged symmetrically along the connecting line between the midpoint of the first side 4111 and the midpoint of the second side 4112.
  • the width of the air inlet 301 is defined as the distance between the third side 4113 and the fourth side 4114 .
  • the third side 4113 and the fourth side 4114 can also be linear or arc-shaped, which can be selected according to actual needs.
  • both the third side and the fourth side are arc-shaped, and the air inlet 301 is in the first adjustment sequence, the slope of the third side gradually decreases, and the suction resistance of the adjustment member 42 can be maximized when the adjustment member 42 is continuously adjusted. It is close to the ideal linear draw resistance, so as to achieve the purpose of evenly adjusting the draw resistance in the atomization assembly 100 .
  • the resistance-to-draw adjustment assembly 40 can be applied to the atomization assembly 100 , specifically, the body part 41 and the adjustment member 42 are both disposed on the atomization assembly 100 .
  • the atomization component 100 cooperates with the power supply component 200 to heat the atomized aerosol generating substrate, and adjust the suction resistance according to the user's needs.
  • the atomizing tube 10 is used as the body part 41, and the atomizing tube 10 has an air inlet 301 for introducing outside air into the atomizing core assembly 20;
  • the atomizing pipe 10 is rotated or slidably connected to cover the air inlet 301 ; when the adjustment member 42 is continuously adjusted, the size of the air intake area of the air inlet 301 changes.
  • the draw resistance of the device using the draw resistance adjustment assembly 40 changes uniformly.
  • the draw resistance adjustment assembly 40 provided above can also be applied to the power supply assembly 200 , and the body part 41 and the adjustment member 42 of the draw resistance adjustment assembly 40 are both arranged on the power supply assembly 200 .
  • the atomization component 100 cooperates with the power supply component 200 to heat the atomized aerosol generating substrate, and adjust the suction resistance according to the user's needs.
  • the body part 41 can be the casing (not shown) of the power supply assembly 200, and the casing has an air inlet 301 for introducing outside air into the atomizing core assembly 20 and the airflow detection element on the circuit board,
  • the power supply assembly 200 is controlled to supply power to the atomization assembly 100;
  • the regulator 42 is arranged on the casing of the power supply assembly 200 and is rotated or slidably connected relative to the casing to block the air inlet 301;
  • the adjusting member 42 is adjusted continuously, the size of the air intake area of the air inlet 301 changes.
  • the draw resistance of the device using the draw resistance adjustment assembly 40 changes uniformly.
  • the draw resistance adjustment assembly 40 provided above can also be applied to the electronic atomization device 300.
  • the electronic atomization device 300 includes an atomization assembly 100 and a power supply assembly 200, and the draw resistance adjustment assembly 40 is formed on the atomization assembly 100 and one of the power supply components 200.
  • the resistance-to-draw adjustment assembly 40 is formed on the atomization assembly 100 and the power supply assembly 200 , wherein one of the atomization assembly 100 and the power supply assembly 200 is provided with a body part 41 , and the other is provided with an adjustment member 42 .
  • the body part 41 is the atomizing tube 10 in the atomizing assembly 100, and the atomizing tube 10 has an air inlet 301;
  • the housing has a housing chamber, the part of the air inlet 301 in the atomizing tube 10, the battery, and the circuit board are all accommodated in the housing chamber, and by rotating the housing, the blocked cross-sectional area of the air inlet 301 is different in size, so that the electronic atomization
  • the resistance to draw within device 300 varies.
  • the adjusting member 42 is adjusted continuously, the draw resistance in the electronic atomization device 300 changes evenly.
  • the application idea of the drag adjustment assembly 40 in this application can also be applied to other devices, as long as the related devices need to uniformly adjust the draw resistance, they can be realized by using the draw resistance adjustment assembly 40 provided in this application.
  • the draw resistance adjustment assembly 40 provided in this application.
  • oxygen inhalation equipment for medical use for example, oxygen inhalation equipment for medical use, pumping equipment for agricultural irrigation, etc.
  • the draw resistance adjustment assembly 40 adopted in the present application includes a body portion 41 and an adjustment member 42; the body portion 41 has an air inlet 301 through which outside air is introduced into the device using the draw resistance adjustment assembly 40; the adjustment member 42 is relatively
  • the main body part 41 is movable and used to block the air inlet 301 to achieve the purpose of adjusting the suction resistance; when the adjustment member 42 is continuously adjusted, the size of the air intake area of the air inlet 301 changes; wherein, when the adjustment member 42 is continuously adjusted, The draw resistance of the device to which the draw resistance adjustment assembly 40 is applied varies uniformly.

Landscapes

  • Electrostatic Spraying Apparatus (AREA)

Abstract

本申请提供一种吸阻调节组件及雾化组件、电源组件、电子雾化装置。该吸阻调节组件包括本体部和调节件;本体部具有进气口,外界空气通过进气口导入应用吸阻调节组件的装置内部;调节件相对本体部可移动设置,用于遮挡进气口,以达到调节吸阻的目的;调节件连续调节时,进气口进气的面积大小变化;其中,调节件连续调节时,应用吸阻调节组件的装置的吸阻均匀变化。

Description

一种吸阻调节组件及雾化组件、电源组件、电子雾化装置 技术领域
本申请涉及气流调节领域,特别是涉及一种吸阻调节组件及雾化组件、电源组件、电子雾化装置。
背景技术
现有的电子雾化装置通常包括雾化器和电源组件,雾化器用于加热雾化气溶胶生成基质,电源组件控制雾化器工作。电子雾化装置还包括有进气孔,在用户抽吸时,外界空气通过进气孔导入雾化器,雾化器中被加热雾化后的气溶胶生成基质跟随外界空气传导至用户口中。
为满足不同用户对吸阻的要求,现在的电子雾化装置通常设置多个进气孔,通过调节进气孔的个数,实现调节吸阻的目的。
然而,现有的电子雾化装置的吸阻调节降低了用户的体验感。
发明内容
本申请提供一种吸阻调节组件及雾化组件、电源组件、电子雾化装置,以解决现有技术中吸阻调节不均匀的目的。
为解决上述技术问题,本申请采用的一个技术方案是:提供一种吸阻调节组件,包括本体部和调节件;本体部具有进气口;调节件相对本体部可移动设置,用于遮挡进气口;调节件连续调节时,进气口进气的面积大小变化;其中,调节件连续调节时,应用吸阻调节组件的装置的吸阻均匀变化。
其中,调节件在多个安装档位之间连续变换时,应用吸阻调节组件的装置的吸阻近似呈线性变化。
其中,进气口包括至少三个进气孔,且不同的进气孔的横截面大小不同;至少三个进气孔在第一调节顺序上被依次遮挡。
其中,相邻两个所气孔之间的横截面积的差值在第一调节顺序上逐渐减小。
其中,进气口包括N个进气孔,N大于等于5;在第一调节顺序上,第1个进气孔至第(N-1)进气孔的横截面积的差值逐渐减小,第N个进气孔的横截面积大于第(N-1)进气孔的横截面积。
其中,调节件具有多个安装档位,每个安装档位对应的吸阻根据安装档位的数量,以及应用吸阻调节组件的装置的最大吸阻和最小吸阻得出;每个安装档位对应的进气孔的总横截面积根据每个安装档位对应的吸阻得出;每个进气孔的横截面积根据多个安装档位各自对应的进气孔的总面积得出。
其中,在第一调节顺序上,调节件移动相同的调节距离,进气口暴露的横截面积的变化量逐渐减小。
其中,进气口的宽度在第一调节顺序上被依次遮挡逐渐变小。
其中,进气口的横截面包括相对设置的第一边和第二边,以及连接第一边和第二边的第三边和第四边,第三边与第四边沿第一边中点和第二边中点的连接线对称设置。
其中,第三边和第四边为直线形或弧形。
其中,在第一调节顺序上,第三边或第四边的斜率逐渐减小。
其中,进气口的边线根据调节件的移动总距离以及应用吸阻调节组件的装置的最大吸阻和最小吸阻得出,以使调节件在所述第一调节顺序上移动相同的调节距离减小的吸阻大致相同。
其中,调节件与本体部转动连接。
为解决上述问题,本申请还提供一种雾化组件,应用于电子雾化装置,包括雾化管、吸阻调节组件和雾化芯组件20;其中,吸阻调节组件形成于雾化管上;吸阻调节组件为上述任一项吸阻调节组件;雾化芯组件20设置于雾化管内,用于加热雾化气溶胶生成基质。
为解决上述问题,本申请还提供一种电源组件,应用于电子雾化装置,包括壳体、电池和吸阻调节组件;其中,吸阻调节组件形成于壳体上;吸阻调节组件为上述任一项吸阻调节组件;电池设置于壳体内,为电子雾化装置中的雾化组件供电。
为解决上述问题,本申请还提供一种电子雾化装置,包括雾化组件、电源组件和吸阻调节组件;其中,雾化组件用于加热雾化气溶胶生成基质生成气溶胶;电源组件与雾化组件电连接,用于控制雾化组件工作;吸阻调节组件形成于雾化组件和/或电源组件上;吸阻调节组件为上述任一项吸阻调节组件;其中,外界空气通过进气口导入雾化组件内,并携带气溶胶从雾化组件的抽吸口流出。
其中,吸阻调节组件形成于雾化组件和电源组件上,其中,雾化组件和电源组件中的一个设置有本体部,另一个设置有调节件。
区别于现有技术,本申请采用的吸阻调节组件,包括本体部和调节件;本体部具有进气口,外界空气通过进气口导入应用吸阻调节组件的装置内部;调节件相对本体部可移动设置,用于遮挡进气口,以达到调节吸阻的目的;调节件连续调节时,进气口进气的面积大小变化;其中,调节件连续调节时,应用吸阻调节组件的装置的吸阻均匀变化。
附图说明
图1是本申请实施例提供的电子雾化装置的结构示意图;
图2是本申请实施例提供的雾化组件的结构示意图;
图3是图2沿A-A线的剖视图;
图4是本申请的对比例提供的不同抽吸容量下的吸阻比实验结果图;
图5是本申请实施例提供的吸阻调节组件的结构示意图;
图6是图5的分解图;
图7是本申请和对比例提供的吸阻调节组件的吸阻调节效果对比图;
图8是本申请实施例提供的进气口的结构示意图;
图9是本申请实施例提供的进气口的另一结构示意图;
图10是本申请实施例提供的进气口的另一结构示意图;
图11是本申请实施例提供的进气口的另一结构示意图。
具体实施方式
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅是本申请的一部分实 施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
本申请中的术语“第一”、“第二”、“第三”仅用于描述目的,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有“第一”、“第二”、“第三”的特征可以明示或者隐含地包括至少一个该特征。本申请的描述中,“多个”的含义是至少两个,例如两个,三个等,除非另有明确具体的限定。本申请实施例中所有方向性指示(诸如上、下、左、右、前、后……)仅用于解释在某一特定姿态(如附图所示)下各部件之间的相对位置关系、运动情况等,如果该特定姿态发生改变时,则该方向性指示也相应地随之改变。此外,术语“包括”和“具有”以及它们任何变形,意图在于覆盖不排他的包含。例如包含了一系列步骤或单元的过程、方法、系统、产品或设备没有限定于已列出的步骤或单元,而是可选地还包括没有列出的步骤或单元,或可选地还包括对于这些过程、方法、产品或设备固有的其它步骤或单元。
在本文中提及“实施例”意味着,结合实施例描述的特定特征、结构或特性可以包含在本申请的至少一个实施例中。在说明书中的各个位置出现该短语并不一定均是指相同的实施例,也不是与其它实施例互斥的独立的或备选的实施例。本领域技术人员显式地和隐式地理解的是,本文所描述的实施例可以与其它实施例相结合。
本申请申请人研究发现,现有的电子雾化装置的多个进气孔为大小均匀分布,实际调节效果确实前几级调节时吸阻增加很慢,最后级调节时吸阻呈现指数增长,不能达到吸阻均匀调节的目的。为此,本申请申请人设计了新的吸阻调节组件,以及应用该吸阻调节组件的雾化组件、电源组件和电子雾化装置。
图1是本申请实施例提供的电子雾化装置的结构示意图;图2是本申请实施例提供的雾化组件的结构示意图;图3是图2沿A-A线的剖视图;图4是本申请的对比例提供的不同抽吸容量下的吸阻比实验结果图;图5是本申请实施例提供的吸阻调节组件的结构示意图;图6是图5的 分解图;图7是本申请和对比例提供的吸阻调节组件的吸阻调节效果对比图;图8是本申请实施例提供的进气口的结构示意图;图9是本申请实施例提供的进气口的另一结构示意图;图10是本申请实施例提供的进气口的另一结构示意图;图11是本申请实施例提供的进气口的另一结构示意图。
参见图1,电子雾化装置300通常包括雾化组件100和电源组件200,其中,雾化组件100用于加热雾化气溶胶生成基质以生成气溶胶,电源组件200与雾化组件100电连接,电源组件200包括线路板和电池,线路板控制电池为雾化组件100供电。其中,电子雾化装置300的外壳上设置有进气口301,当用户有抽吸动作时,外界空气通过进气口301导入雾化组件100,流入雾化组件100中的外界空气携带雾化组件100中被加热雾化后的气溶胶生成基质从雾化组件100的抽吸口流出,供用户吸食。其中,电子雾化装置300可以用于不同的领域,比如,药物雾化、电子气溶胶化、发胶雾化等。
参见图2-3,雾化组件100包括雾化管10、雾化芯组件20和安装座30。在一实施方式中,雾化管10的一端形成有吸嘴部11,雾化管10内形成有雾化通道12和容置腔13,雾化芯组件20容置于容置腔13中,安装座30与雾化管10远离吸嘴部11的一端连接。在一实施方式中,雾化芯组件20的一端与雾化通道12连接,另一端固定于安装座30。其中,雾化管10、雾化芯组件20和安装座30配合围设形成储液腔14。储液腔14用于存储气溶胶生成基质。具体的,储液腔14形状和大小不限,可以根据需要设计。在其他实施方式中,储液腔14可以由铝、不锈钢等金属制成,也可以由透明或半透明塑料制成,只需能够存储待雾化基质,不与之反应使其变质即可。
雾化芯组件20用于加热雾化气溶胶生成基质,雾化芯组件20包括进液管21和雾化芯(图未示)。其中,进液管21具有进液孔210,储液腔14中的气溶胶生成基质通过进液孔210导入雾化芯,雾化芯将气溶胶生成基质加热雾化为气溶胶,并通过雾化通道12导入用户口中。在一实施方式中,雾化芯组件20为棉芯发热体(图未示),棉芯发热体包括进液管21、导液棉和发热件。储液腔14中的气溶胶生成基质通 过进液孔210流入雾化芯组件20内,然后通过导液棉传导至发热件,在发热件上被加热雾化为气溶胶。在另一实施方式中,雾化芯组件20为陶瓷发热体(图未示),陶瓷发热体包括进液管21和陶瓷发热芯。其中,陶瓷发热芯包括多孔陶瓷和发热膜。储液腔14中的气溶胶生成基质通过进液孔210流入雾化芯组件20内,并通过多孔陶瓷导入到发热膜,在发热膜上被加热雾化为气溶胶。
安装座30包括安装顶座31和安装底座32,也可以是一体结构。安装座30上设置有导电件(图未示),导电件的一端与雾化芯电连接,另一端与电源组件200电连接。以使得电源组件200能够为雾化芯供电,加热雾化气溶胶生成基质。在一具体实施方式中,安装座30可以由塑料、陶瓷、不锈钢或者其他合金制成;安装座30的形状和大小不限,可以根据需要设计。
由于不同用户肺活量不同,使用电子雾化装置300时的抽吸量也不相同,如果采用单一吸阻值,难以满足不同用户对电子雾化装置300中吸阻的要求,使得用户抽吸体验差,因此,在现有的一些电子雾化装置300上通常还设有吸阻调节结构,以使得不同的用户根据实际情况,自由调节吸阻。
以现有的电子雾化装置(图未示)为对比例,电子雾化装置上设置有5个大小相同的进气孔,在抽吸容量为50ml/3s或100ml/3s时,参见图4可知,抽吸容量分别为50ml/3s、100ml/3s时,进气孔302的个数-归一化后吸阻比的关系曲线近似重叠,也就是说,抽吸容量几乎对进气孔302的个数-归一化后吸阻比之间的关系没有影响。图4中,归一化表示以最大吸阻为标准,即其他吸阻与最大吸阻的比值;例如,选取最大吸阻为1。从5个进气孔302全开到只开一个进气孔302时,五个档位的吸阻分别为最大吸阻的17%,18%,22%,38%,100%。在前几级吸阻调节时,吸阻增加速度较慢,用户对吸阻的变化感觉不大,在最后级吸阻调节时,吸阻呈指数增加,达到吸阻最大值。可以理解,现有的吸阻调节结构的吸阻调节不均匀,影响用户抽吸体验。
为解决上述问题,参见图5-6,本申请提供一种吸阻调节组件40。吸阻调节组件40包括本体部41和调节件42;本体部41具有进气口301; 调节件42相对本体部41可移动设置,用于遮挡进气口301;调节件42连续调节时,进气口301进气的面积大小变化。具体的,调节件42连续调节时,应用吸阻调节组件40的装置的吸阻均匀变化。可以理解,本申请中的吸阻均匀变化是指相对于现有技术中的吸阻调节方式不合理,从而提供一种吸阻多级调节时,各连续调节级之间吸阻变化较均匀的吸阻调节方式。理想状态下,吸阻均匀变化是指调节件42连续调节时,吸阻是完全线性变化的。然而,实际情况下调节件42在连续调节时,应用吸阻调节组件40的装置的吸阻只能近似呈线性变化。本申请中,每个档位的实际吸阻大小与理想的吸阻大小的差不超过300Pa,即可认为是近似呈线性变化。具体的,设计值和实际值有差异原因是:应用吸阻调节组件40的装置的进气口301的孔径较小,小孔径表面边界层对空气流动有影响。
在一实施方式中,本体部41包括安装部411和连接部412,安装部411用于与调节件42连接,安装部411为中空结构且侧壁具有由多个进气孔302组成的进气口301,其中,每一个进气口302对应一个安装档位;调节件42为一圆环状,套设于安装部411外侧,且具有通孔421。安装部411容置于调节件42中,与调节件42可转动连接。通过转动调节件42遮挡不同数量的进气孔302,使得本体部41上的多个进气孔302通过通孔421部分或全部暴露。即,通过转动调节件42至不同的档位,进气口301被遮挡的横截面积大小不同。连接部412上设置有螺纹,用于与电源组件200通过螺纹连接。在另一实施方式中,调节件42还可设置于安装部411内表面,通过转动本体部41或调节件42,从而实现调节件42遮挡进气口301的横截面积不同。在其他实施方式中,本体部41与调节件42可相对滑动设计或其他方式连接,只要使得调节件42连续调节时,进气口301进气的面积大小变化;且调节件42连续调节时,应用吸阻调节组件40的装置的吸阻均匀变化即可。具体连接方式在此不做限定。
在本申请提供的实施例中,进气口301被调节件42逐渐遮挡的方向为第一调节顺序,在第一调节顺序上,调节件42移动相同的调节距离,进气口301暴露的横截面积的变化量逐渐减小。具体的,进气口301 的横截面大小根据雾化组件100的最大吸阻和最小吸阻以及吸阻线性变化规则得出。以用户正常抽吸的有效范围1400Pa-600Pa为例,当调节件42为第一档位时,调节件42不遮挡进气口301时,进气口301的横截面积完全暴露在外界空气中,应用吸阻调节组件40的装置的吸阻为600Pa;当调节件42为第N档位时,应用吸阻调节组件40的装置的吸阻为1400Pa,其中,第N档位表示最大吸阻档位,在最大吸阻档位时,进气口301只暴露一个进气孔302。根据实际需要,确定调节件42的安装档位数,然后根据最大吸阻与最小吸阻的差值,除以安装档位数,最后根据每个安装档位对应的吸阻大小确定每个安装档位对应的进气口301暴露的横截面积大小,从而实现多个安装档位之间连续变换时,应用吸阻调节组件40的装置的吸阻均匀变化。可以理解,当进气口301包括多个进气孔302(参见图5)时,每个安装档位对应的吸阻根据安装档位的数量,以及应用吸阻调节组件40的装置的最大吸阻和最小吸阻得出;每个安装档位对应的进气孔302的总横截面积根据每个安装档位对应的吸阻得出;每个进气孔302的横截面积根据多个安装档位各自对应的进气孔302的总面积得出。当进气口301为一相连的开口(参见图8-11)时,进气口301的边线根据调节件42的移动总距离以及应用吸阻调节组件40的装置的最大吸阻和最小吸阻得出,以使调节件42在所述第一调节顺序上移动相同的调节距离减小的吸阻大致相同。
在一实施方式中,进气口301包括至少三个进气孔302,且不同的进气孔302的横截面大小不同;至少三个进气孔302在第一调节顺序上被依次遮挡。具体的,为实现多个安装档位之间连续变换时,应用吸阻调节组件40的装置的吸阻均匀变化,用户在逐渐调大应用吸阻调节组件40的装置的吸阻时,至少三个进气孔302的横截面在第一调节顺序上,相邻两个进气孔402的横截面积的差值逐渐减小。
可以理解,当应用吸阻调节组件40的装置的进气口301为三个进气孔302,在第一调节顺序上,第一个进气孔302的横截面积最大,第二个进气孔302的横截面积小于第一个进气孔302的横截面积,第三个进气孔302的横截面积小于第二个进气口301横截面积。需要指出的,最后一个进气孔302的横截面积根据最大吸阻决定。在本实施方式中, 进气孔302的数量可根据实际需要选择,进气孔302的数量越多,调节件42的档位数越多,可满足不同用户对吸阻的需求。
在一实施方式中,进气口301包括N个进气孔302,N大于等于五;在第一调节顺序上,第一个进气孔302至第(N-1)个进气孔302的横截面积的差值逐渐减小,第N个进气孔302的横截面积大于第(N-1)个进气孔302的横截面积。在一具体实施方式中,进气孔302的数量为五个,即,调节件42具有五个档位;其中,当调节件42位于第一档位时,第一进气孔至第五进气孔共同形成进气通道;当调节件42位于第二档位时,第二进气孔至第五进气孔共同形成进气通道;当调节件42位于第三档位时,第三进气孔至第五进气孔共同形成进气通道;当调节件42位于第四档位时,第四进气孔至第五进气孔共同形成进气通道;当调节件42位于第五档位时,第五进气孔单独形成进气通道。其中,第五进气孔的横截面积根据最大吸阻决定。
在一实施方式中,为满足调节件42在多个安装档位之间连续变换时,应用吸阻调节组件40的装置的吸阻近似呈线性变化,通过曲线拟合公式,根据进气孔302的数量和线性规则,得出调节件42每个档位对应的进气孔302的总面积,再计算出每个进气孔302的面积。以五个进气口301为例进行说明,在第一调节顺序上的最后一个进气孔302的横截面积根据最大吸阻决定,因此,当调节件42在第五档位时暴露的第五个进气孔302的横截面积是确定的。通过线性规则可以算出在第四档位时暴露的第四个和第五个进气孔302的横截面积总和,再减去第五个进气孔302的横截面积即可得到第四个进气孔302的横截面积。依次类推,得到所有进气孔302的横截面积。在一具体实施方式中,各进气孔302的横截面积如表1所示。
表1.进气孔横截面积与直径
序号 1 2 3 4 5
横截面积(mm 2) 0.4 0.21 0.16 0.12 1.16
孔直径(mm) 0.71365 0.517088 0.451352 0.390882 1.215301
通过表1可知,第一个进气孔到第四个进气孔的横截面积逐渐减小,且在第一调节顺序上,相邻两个进气孔302的横截面积的差值呈递减的 趋势变化,从而实现应用吸阻调节组件40的装置中吸阻的均匀调节。可以理解,进气孔302横截面的形状可以为方形,椭圆形或其他形状,只要满足上述条件即可。
通过上述在应用吸阻调节组件40的装置上设置多个进气孔302的吸阻调节方式,可解决现有技术中,多个安装档位之间连续变换时,吸阻变化不均匀的问题。具体参见图7,原吸阻表示现有技术设备中各安装档位对应的吸阻,优化后的吸阻表示本申请实施例中调节件42各安装档位对应的吸阻,图中虚线代表理想状态下各安装档位对应的吸阻,根据图7可知,在最大吸阻与最小吸阻之间,应用现有技术的设备中各安装档位的吸阻距离理想状态下的吸阻差值较大,且多个安装档位之间连续变换时,吸阻变化不均匀;而本申请中调节件42各安装档位的吸阻距离理想状态下的吸阻差值较小,在多个安装档位之间连续变换时,吸阻变化较均匀。
在一实施方式中,在第一调节顺序上,调节件42移动相同的调节距离,进气口301被遮挡的横截面积的变化量逐渐减小。具体的,进气口301为一相连的开口,进气口301的宽度被定义为与沿着进气口301被调节件42依次遮挡的方向垂直的方向的进气口301的尺寸,且进气口301的宽度在第一调节顺序上逐渐变小。本实施方式实现对一个进气口301的连续调节,调节距离可由用户控制,与上述进气口301为多个进气孔302的实施方式相比,调节方式更易控制。参见图8-11,进气口301的横截面的形状可以为三角形、梯形或其他形状,只要能够满足在第一调节顺序上,调节件42移动相同的调节距离,进气口301被遮挡的横截面积的变化量逐渐减小即可。
在一具体实施方式中,参见图8,进气口301的横截面包括相对设置的第一边4111和第二边4112,以及连接第一边和第二边的第三边4113和第四边4114,且第三边4113与第四边4114沿第一边4111中点和第二边4112中点的连接线对称设置。进气口301的宽度被定义为第三边4113与第四边4114的距离。在本实施方式中,第三边4113与第四边4114还可以为直线型或弧形,具体可根据实际需要选择。本实施方式中,第三边与第四边均为弧形,进气口301在第一调节顺序上,第三边的斜率 逐渐减小,调节件42在连续调节时,吸阻能够最大程度接近理想线性吸阻,以实现雾化组件100中吸阻均匀调节的目的。
上述提供的吸阻调节组件40,可以应用于雾化组件100,具体地,本体部41和调节件42均设置于雾化组件100。雾化组件100与电源组件200配合加热雾化气溶胶生成基质,并根据用户的使用需求调节吸阻。在一具体实施方式中,雾化管10作为本体部41,雾化管10具有进气口301,用于将外界空气导入雾化芯组件20;调节件42设置于雾化管10上且相对雾化管10转动或滑动连接,用于遮挡进气口301;当调节件42连续调节时,进气口301进气的面积大小变化。其中,调节件42在连续调节时,应用吸阻调节组件40的装置的吸阻均匀变化。
上述提供的吸阻调节组件40,还可以应用于电源组件200,吸阻调节组件40的本体部41和调节件42均设置在电源组件200上。雾化组件100与电源组件200配合加热雾化气溶胶生成基质,并根据用户的使用需求调节吸阻。在一具体实施方式中,本体部41可以是电源组件200的外壳(图未示),外壳具有进气口301,用于将外界空气导入雾化芯组件20和线路板上的气流检测元件,当气流检测元件检测到有气流变化时,控制电源组件200为雾化组件100供电;调节件42设置于电源组件200的外壳上且相对外壳转动或滑动连接,用于遮挡进气口301;当调节件42连续调节时,进气口301进气的面积大小变化。其中,调节件42在连续调节时,应用吸阻调节组件40的装置的吸阻均匀变化。
上述提供的吸阻调节组件40,还可以应用于电子雾化装置300,在一实施方式中,电子雾化装置300包括雾化组件100和电源组件200,吸阻调节组件40形成于雾化组件100和电源组件200中的一个上。在另一实施方式中,吸阻调节组件40形成于雾化组件100和电源组件200上,其中,雾化组件100和电源组件200中的一个设置有本体部41,另一个设置有调节件42。在一具体实施方式中,本体部41为雾化组件100中的雾化管10,雾化管10具有进气口301;调节件42为电源组件200的外壳或设置于电源组件200的外壳上,外壳具有收容腔,雾化管10中进气口301的部分、电池、线路板均容置于收容腔,通过转动外壳,进气口301被遮挡的横截面积大小不同,使得电子雾化装置300内的吸 阻不同。当调节件42连续调节时,电子雾化装置300内的吸阻均匀变化。
可以理解,本申请中吸阻调节组件40的申请思想也可应用到其他装置,只要相关装置需要均匀调节吸阻,都可采用本申请提供的吸阻调节组件40来实现。例如,医疗用的吸氧设备、农业灌溉用的抽水设备等。
本申请采用的吸阻调节组件40,包括本体部41和调节件42;本体部41具有进气口301,外界空气通过进气口301导入应用吸阻调节组件40的装置内部;调节件42相对本体部41可移动设置,用于遮挡进气口301,以达到调节吸阻的目的;调节件42连续调节时,进气口301进气的面积大小变化;其中,调节件42连续调节时,应用吸阻调节组件40的装置的吸阻均匀变化。
以上仅为本申请的实施方式,并非因此限制本申请的专利范围,凡是利用本申请说明书及附图内容所作的等效结构或等效流程变换,或直接或间接运用在其他相关的技术领域,均同理包括在本申请的专利保护范围内。

Claims (17)

  1. 一种吸阻调节组件,其中,包括:
    本体部,具有进气口;
    调节件,相对所述本体部可移动设置,用于遮挡所述进气口;所述调节件连续调节时,所述进气口进气的面积大小变化;
    其中,所述调节件连续调节时,应用所述吸阻调节组件的装置的吸阻均匀变化。
  2. 根据权利要求1所述的吸阻调节组件,其中,所述调节件在多个所述安装档位之间连续变换时,所述应用吸阻调节组件的装置的吸阻近似呈线性变化。
  3. 根据权利要求1所述的吸阻调节组件,其中,所述进气口包括至少三个进气孔,且不同的进气孔的横截面积大小不同;所述至少三个进气孔在第一调节顺序上被依次遮挡。
  4. 根据权利要求3所述的吸阻调节组件,其中,相邻两个所述进气孔之间的横截面积的差值在所述第一调节顺序上逐渐减小。
  5. 根据权利要求3所述的吸阻调节组件,其中,所述进气口包括N个进气孔,N大于等于5;在所述第一调节顺序上,第1个进气孔至第(N-1)个进气孔的横截面积逐渐减小,第N个进气孔的横截面积大于所述第(N-1)进气孔的横截面积。
  6. 根据权利要求3所述的吸阻调节组件,其中,所述调节件具有多个安装档位,每个所述安装档位对应的吸阻根据所述安装档位的数量,以及应用所述吸阻调节组件的装置的最大吸阻和最小吸阻得出;每个所述安装档位对应的进气孔的总横截面积根据每个所述安装档位对应的吸阻得出;每个所述进气孔的横截面积根据多个所述安装档位各自对应的进气孔的总面积得出。
  7. 根据权利要求1所述的吸阻调节组件,其中,在第一调节顺序上,所述调节件移动相同的调节距离,所述进气口被遮挡的的横截面积的变化量逐渐减小。
  8. 根据权利要求7所述的吸阻调节组件,其中,所述进气口的宽 度在所述第一调节顺序上逐渐变小。
  9. 根据权利要求8所述的吸阻调节组件,其中,所述进气口的横截面包括相对设置的第一边和第二边,以及连接所述第一边和所述第二边的第三边和第四边,所述第三边与所述第四边沿所述第一边中点和所述第二边中点的连接线对称设置。
  10. 根据权利要求9所述的吸阻调节组件,其中,所述第三边和所述第四边为直线形或弧形。
  11. 根据权利要求10所述的吸阻调节组件,其中,在所述第一调节顺序上,所述第三边或所述第四边的斜率逐渐减小。
  12. 根据权利要求7所述的吸阻调节组件,其中,所述进气口的边线根据所述调节件的移动总距离以及应用所述吸阻调节组件的装置的最大吸阻和最小吸阻得出,以使调节件在所述第一调节顺序上移动相同的调节距离减小的吸阻大致相同。
  13. 根据权利要求1所述的吸阻调节组件,其中,所述调节件与所述本体部转动连接。
  14. 一种雾化组件,应用于电子雾化装置,其中,包括:
    雾化管;
    吸阻调节组件,形成于所述雾化管上;所述吸阻调节组件为上述权利要求1-13任一项所述的吸阻调节组件;
    雾化芯组件,设置于所述雾化管内,用于加热雾化气溶胶生成基质。
  15. 一种电源组件,应用于电子雾化装置,其中,包括:
    壳体;
    吸阻调节组件,形成于所述壳体上;所述吸阻调节组件为上述权利要求1-13任一项所述的吸阻调节组件;
    电池,设置于所述壳体内,为电子雾化装置中的雾化组件供电。
  16. 一种电子雾化装置,其中,包括:
    雾化组件,用于加热雾化气溶胶生成基质生成气溶胶;
    电源组件,与所述雾化组件电连接,用于控制所述雾化组件工作;
    吸阻调节组件,形成于所述雾化组件和/或所述电源组件上;所述吸阻调节组件为上述权利要求1-13任一项所述的吸阻调节组件;
    其中,外界空气通过所述进气口导入所述雾化组件内,并携带所述气溶胶从所述雾化组件的抽吸口流出。
  17. 根据权利要求16所述的电子雾化装置,其中,所述吸阻调节组件形成于所述雾化组件和所述电源组件上,其中,所述雾化组件和所述电源组件中的一个设置有所述本体部,另一个设置有所述调节件。
PCT/CN2021/122391 2021-09-30 2021-09-30 一种吸阻调节组件及雾化组件、电源组件、电子雾化装置 WO2023050397A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2021/122391 WO2023050397A1 (zh) 2021-09-30 2021-09-30 一种吸阻调节组件及雾化组件、电源组件、电子雾化装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2021/122391 WO2023050397A1 (zh) 2021-09-30 2021-09-30 一种吸阻调节组件及雾化组件、电源组件、电子雾化装置

Publications (1)

Publication Number Publication Date
WO2023050397A1 true WO2023050397A1 (zh) 2023-04-06

Family

ID=85781205

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/122391 WO2023050397A1 (zh) 2021-09-30 2021-09-30 一种吸阻调节组件及雾化组件、电源组件、电子雾化装置

Country Status (1)

Country Link
WO (1) WO2023050397A1 (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105249536A (zh) * 2015-10-13 2016-01-20 卓尔悦(常州)电子科技有限公司 雾化器及其电子烟
CN205161898U (zh) * 2015-11-09 2016-04-20 徐鹏 一种电子烟
CN206043437U (zh) * 2016-08-29 2017-03-29 卓尔悦欧洲控股有限公司 雾化器及其电子烟
CN107549880A (zh) * 2011-12-08 2018-01-09 菲利普莫里斯生产公司 具有可调气流的气溶胶生成装置
CN207023240U (zh) * 2017-03-20 2018-02-23 云南中烟工业有限责任公司 一种具有可调烟气混合比的抽吸装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107549880A (zh) * 2011-12-08 2018-01-09 菲利普莫里斯生产公司 具有可调气流的气溶胶生成装置
CN105249536A (zh) * 2015-10-13 2016-01-20 卓尔悦(常州)电子科技有限公司 雾化器及其电子烟
CN205161898U (zh) * 2015-11-09 2016-04-20 徐鹏 一种电子烟
CN206043437U (zh) * 2016-08-29 2017-03-29 卓尔悦欧洲控股有限公司 雾化器及其电子烟
CN207023240U (zh) * 2017-03-20 2018-02-23 云南中烟工业有限责任公司 一种具有可调烟气混合比的抽吸装置

Similar Documents

Publication Publication Date Title
US20210138182A1 (en) Humidifier for breathing gas heating and humidification system
US8662479B2 (en) Respiratory humidification system
JP7554929B2 (ja) 電子霧化装置
JP7359512B2 (ja) 電子エアロゾル供給装置
WO2023050397A1 (zh) 一种吸阻调节组件及雾化组件、电源组件、电子雾化装置
CN115886345A (zh) 一种吸阻调节组件及雾化组件、电源组件、电子雾化装置
CN218303440U (zh) 发热组件、雾化器及电子雾化装置
CN218682022U (zh) 雾化器及气溶胶发生装置
CN111588087A (zh) 一种带调气结构的一次性气溶胶产生装置
CN219613043U (zh) 发热体、雾化器及电子雾化装置
CN217339636U (zh) 一种手术室麻醉师对麻醉剂雾化程度的调控装置
EP4268633B1 (en) Atomizer and electronic atomization device
CN220571555U (zh) 一种雾化装置及雾化设备
CN111135404B (zh) 导流管装置及药物传递装置
CN115119975A (zh) 发热组件、雾化器及电子雾化装置
CN217509887U (zh) 壳体组件及电子雾化装置
CN217791484U (zh) 一种可以调节气流的电子烟
CN220800035U (zh) 电子雾化装置
WO2023241125A1 (zh) 雾化器及电子雾化装置
CN211861803U (zh) 雾化器进气气流调节结构
CN217564950U (zh) 雾化器及气溶胶产生装置
WO2023207320A1 (zh) 电子雾化装置
WO2023035912A1 (zh) 雾化器及电子雾化装置
CN116998784A (zh) 电子雾化装置
TWM329479U (en) Nozzle

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21958968

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21958968

Country of ref document: EP

Kind code of ref document: A1