WO2023050365A1 - 一种滤光材料、显示模组及其制作方法 - Google Patents

一种滤光材料、显示模组及其制作方法 Download PDF

Info

Publication number
WO2023050365A1
WO2023050365A1 PCT/CN2021/122325 CN2021122325W WO2023050365A1 WO 2023050365 A1 WO2023050365 A1 WO 2023050365A1 CN 2021122325 W CN2021122325 W CN 2021122325W WO 2023050365 A1 WO2023050365 A1 WO 2023050365A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
substrate
scattering particles
blue
band
Prior art date
Application number
PCT/CN2021/122325
Other languages
English (en)
French (fr)
Inventor
李威
骆欣涛
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to PCT/CN2021/122325 priority Critical patent/WO2023050365A1/zh
Priority to CN202180027943.1A priority patent/CN116209927A/zh
Priority to KR1020247012017A priority patent/KR20240060815A/ko
Publication of WO2023050365A1 publication Critical patent/WO2023050365A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/20Filters
    • G02B5/22Absorbing filters
    • G02B5/223Absorbing filters containing organic substances, e.g. dyes, inks or pigments
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/20Filters
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/20Filters
    • G02B5/206Filters comprising particles embedded in a solid matrix
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/20Filters
    • G02B5/22Absorbing filters
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/50Wavelength conversion elements
    • H01L33/501Wavelength conversion elements characterised by the materials, e.g. binder
    • H01L33/502Wavelength conversion materials
    • H01L33/504Elements with two or more wavelength conversion materials
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/10OLED displays
    • H10K59/12Active-matrix OLED [AMOLED] displays
    • H10K59/1201Manufacture or treatment
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/30Devices specially adapted for multicolour light emission
    • H10K59/35Devices specially adapted for multicolour light emission comprising red-green-blue [RGB] subpixels
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/30Devices specially adapted for multicolour light emission
    • H10K59/38Devices specially adapted for multicolour light emission comprising colour filters or colour changing media [CCM]
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/40OLEDs integrated with touch screens
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/80Constructional details
    • H10K59/8791Arrangements for improving contrast, e.g. preventing reflection of ambient light
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2933/00Details relating to devices covered by the group H01L33/00 but not provided for in its subgroups
    • H01L2933/0008Processes
    • H01L2933/0033Processes relating to semiconductor body packages
    • H01L2933/0041Processes relating to semiconductor body packages relating to wavelength conversion elements

Definitions

  • the present application relates to the field of display technology, in particular to a filter material, a display module and a manufacturing method thereof.
  • Filter film refers to the film layer that attenuates the light intensity or changes the spectral composition. The main purpose is to reduce or increase the color temperature, change the wavelength, block unwanted light, change the color of light, etc. Color filters play a very important role in display devices such as organic light emitting diode (OLED) display modules.
  • OLED organic light emitting diode
  • a color filter film can be set in the display module, so that the display module can realize color display.
  • a yellow filter film can also be provided.
  • the yellow filter film can be used as a compensation filter to filter out excess blue light in the display module, so that the display module has a wider color gamut.
  • the yellow filter film in the related art while increasing the spectral absorptivity of the blue light band, will inevitably affect the transmittance of the red and green light bands (450-780nm), so that the absorption of the display module in the blue light band The transmittance of red and green light bands cannot be achieved at the same time, which has a negative impact on the overall power consumption of the display module.
  • the present application provides a filter material, a display module and a manufacturing method thereof, which are used to solve the influence of the yellow filter material on the transmittance of red and green light bands.
  • the embodiment of the present application provides a filter material, which may include: a substrate, and pigments and scattering particles dispersed in the substrate, the pigment is used to absorb light in the blue band, and the scattering particles are used to Scattering the light in the blue band, so that the scattering degree of the light in the blue band in the filter material is greater than the scattering degree of the light in the red band and the green band in the filter material.
  • the degree of scattering of the light of each color band in the filter material can be characterized by detecting the haze of the light of each color band in the filter material, and the greater the haze, the higher the scattering degree of the light.
  • the light transmission path of each color band can be measured to reflect the scattering degree of the light of each color band in the filter material, and the longer the light transmission path is, the higher the scattering degree of the light is.
  • the scattering particles can increase the degree of scattering of the light in the blue band in the filter material, so as to increase the transmission optical path of the light in the blue band in the filter material , which is equivalent to increasing the concentration of the pigment in the filter material, which can increase the absorption rate of the filter material for light in the blue band.
  • the scattering particles since the scattering particles have no or weak scattering effect on the light in the red and green bands, the scattering particles will not affect the transmission path of the red and green bands in the filter material, that is, they will not It will cause the transmittance of light in the red and green bands to be significantly reduced.
  • the filter material provided by the embodiment of the present application can increase the absorption rate of the light in the blue band without affecting the transmittance of the light in the red band and the green band.
  • the absorption of light in the blue band can be further improved by increasing the thickness of the filter material or increasing the concentration of the pigment. Rate.
  • the above-mentioned substrate may be liquid, colloid or solid.
  • the base material is liquid or colloid
  • the base material mixed with pigments and scattering particles can be coated on the surface of the object, and a filter layer can be formed on the surface of the object after curing.
  • the substrate is solid
  • the substrate mixed with pigments and scattering particles can be used as a filter layer, and the filter layer can be directly attached to the surface of the object.
  • the formed optical filter layer can also be patterned so that the optical filter layer covers a specific area on the surface of the object.
  • the base material may be made of organic resin material, or other materials may be used for the base material, which is not limited here.
  • the pigment and scattering particles when the base material is liquid or colloid, can be uniformly mixed in the base material by physical means, for example, mechanical stirring can be used, and by adjusting physical parameters such as viscosity, the The pigment and the scattering particles are evenly mixed in the substrate, so that the stability of the system composed of the substrate, the pigment and the scattering particles is better.
  • the pigment and the scattering particles can also be uniformly mixed in the substrate by chemical means.
  • the above-mentioned filter material can also include: a dispersant dispersed in the substrate, and the dispersant can adjust the dispersion of the scattering particles in the substrate. degree of dispersion.
  • the pigment, scattering particles and dispersant are added to the substrate, the dispersant can be wrapped on the surface of the scattering particles, so that the scattering particles will not gather together, and the dispersant has the properties of hydrophilic and lipophilic amphiphilic, so that the One end of the dispersant can be connected to the scattering particles, and the other end can be connected to the substrate, so as to adjust the degree of dispersion of the scattering particles in the substrate, and achieve uniform mixing of the pigment and the scattering particles in the substrate.
  • the dispersant may be an organic functional group, or the dispersant may also be other materials, which are not limited here.
  • a laser diffraction particle size analyzer (laser diffraction particle diffusion) can be used to detect the degree of dispersion of the scattering particles in the substrate.
  • the degree of dispersion of scattering particles in the substrate can be indirectly reflected by the relationship between the median particle size (D50) and the real particle size.
  • the median particle size can represent the particle size value corresponding to when the cumulative distribution percentage of the scattering particles in the substrate reaches 50%, which means that the scattering particles in the substrate with a particle size larger than the particle size value account for 50%, and the particle size is smaller than the particle size value.
  • the scattering particles of the particle size value also account for 50%.
  • the true particle size is the average of all the scattering particles before being placed in the substrate.
  • the median diameter of the scattering particles in the substrate is close to the real particle diameter, it means that the scattering particles are dispersed relatively uniformly in the substrate. If the median diameter of the scattering particles in the substrate is much larger than the real particle diameter, it means that there are many scattering particles gathered together in the substrate, and the dispersion effect of the scattering particles in the substrate is poor. In the embodiment of the present application, the difference between the median particle diameter and the real particle diameter of the scattering particles in the substrate is less than 25%, so that the scattering particles can be dispersed relatively uniformly in the substrate.
  • the material of the pigment may be an organic material or an inorganic material, or other materials may be used for the pigment, which is not limited here.
  • the concentration of the pigment can be set to be greater than 10%.
  • the aforementioned scattering particles may be made of transparent materials.
  • the aforementioned scattering particles may include: silicon dioxide, aluminum oxide, titanium oxide, zirconium oxide, indium tin oxide, antimony-doped tin dioxide, organosiloxane, polystyrene, polyamide or polymethylene oxide. methyl acrylate.
  • the scattering particles may also use other materials with scattering effect, which is not limited here.
  • the diameter of the scattering particles may be less than 3 ⁇ m, for example, the diameter of the scattering particles may be less than 1 ⁇ m.
  • the scattering particles can play the effect of Mie scattering (a type of Rayleigh scattering), so that the scattering degree of the light in the blue light band is higher than that of the light in the red and green light bands. Therefore, the scattering particles can make the transmission optical distance of the light in the blue light band longer than the transmission optical distance of the light in the red light band and the green light band when passing through the filter material with the same thickness.
  • the pigment in the filter material can specifically increase the absorption of light in the blue light band, and reduce the absorption of light in the red and green light bands. absorption of light. It is possible to reduce the transmittance of the light in the blue band without affecting the transmittance of the light in the red band and the green band.
  • the shape of the scattering particles may be a sphere, of course, the scattering particles may also be in other shapes, for example, an ellipsoid or an irregular shape. It can be understood that, when the diameter of the scattering particle is non-spherical, the diameter of the scattering particle may be the distance between the two farthest points in the scattering particle.
  • the haze of the blue light band in the filter material is in the range of 30% to 50%; the green light band has a haze of less than 20% in the filter material, and the red light band The haze of light in the wavelength band in the filter material is less than 10%. In this way, the scattering degree of the filter material for the blue light band can be higher, and the scattering degree for the red and green light bands can be lower.
  • the embodiment of the present application also provides a display module, which may include: a base substrate, a plurality of light emitting devices located on the base substrate, and a light emitting device located on the side away from the base substrate filter layer.
  • the plurality of light-emitting devices include: at least one red light-emitting device, at least one green light-emitting device and at least one blue light-emitting device
  • the filter layer includes a plurality of openings, each opening corresponds to a blue light-emitting device, and the openings on the base substrate
  • the orthographic projection has an overlapping area with the orthographic projection of the corresponding blue light-emitting device on the base substrate.
  • the filter layer includes: a base material, and pigments and scattering particles inside the base material.
  • the base material in the filter layer can be solid, so that the structure of the filter layer is relatively stable.
  • Pigments are used to absorb light in the blue wavelength range.
  • the scattering particles are used to scatter the light in the blue band, so that the scattering degree of the light in the blue band in the filter layer is greater than the scattering degree of the light in the red band and the green band in the filter layer.
  • the filter layer can increase the absorption of light in the blue band without affecting the transmittance of light in the red and green bands. Therefore, the filter layer can filter out the redundant blue light band in the display module, so that the display module has a wider color gamut, improves the overall display effect of the display module, and reduces the power consumption of the display module.
  • the filter film layer is provided with an opening at a position corresponding to the blue light-emitting device, so that the blue light emitted by the blue light-emitting device can be directly emitted, and the excess blue light in the red light-emitting device and the green light-emitting device can be filtered out. The light will not affect the normal display effect of the display module.
  • the thickness of the filter layer may be in the range of 1 ⁇ m ⁇ 10 ⁇ m, so that the filter layer can have a higher absorption rate for the blue light band.
  • the thickness of the filter layer can also be greater than 10 ⁇ m or less than 1 ⁇ m, which can be set according to actual conditions, and the thickness of the filter layer is not limited here.
  • the absorption rate of the filter layer for the blue light band can also be adjusted by adjusting the concentration of pigments and scattering particles in the filter layer.
  • the thickness of the filter layer may be in the range of 1 ⁇ m ⁇ 10 ⁇ m, so that the filter layer can have a higher absorption rate for the blue light band.
  • the above-mentioned display module may be an organic light emitting diode display module.
  • the light-emitting device may include an organic light-emitting diode
  • the organic light-emitting diode may include an anode, a cathode, and a light-emitting layer between the anode and the cathode.
  • the redundant blue light in the organic light emitting diode display module can be filtered out, and the filter layer is provided with an opening at a position corresponding to the blue light emitting device , so that the blue light emitted by the blue light-emitting device can be directly emitted, and the redundant blue light in the red light-emitting device and the green light-emitting device can be filtered out, so that it can be used without affecting the normal display of the organic light-emitting diode display module. , to solve the problem of bluishness in the off-screen state.
  • the above display module may further include: an encapsulation layer covering a plurality of light-emitting devices, and a touch layer located on the side of the encapsulation layer away from the base substrate, and the filter layer is located on the side away from the substrate of the touch layer. side of the base substrate.
  • the encapsulation layer can block water vapor and oxygen, and prevent the light-emitting device from being corroded by water vapor and oxygen.
  • the display module can have a touch function. Arranging the filter layer on the side of the touch layer away from the base substrate can prevent the filter layer from affecting the encapsulation effect of the light-emitting device and prevent the touch effect of the filter layer.
  • the OLED display module may further include: a polarizer, and an optical adhesive layer between the polarizer and the filter layer.
  • a polarizer By arranging the polarizer, the reflectivity of the organic light emitting diode display module can be reduced, and the display contrast of the organic light emitting diode display module can be improved.
  • the above-mentioned display module may be a micro-LED display module, and in the micro-LED display module, a color conversion method may be used to realize color display.
  • the blue light emitting device may include: blue micro light emitting diodes.
  • the red light emitting device includes: blue micro light emitting diodes, and a first color conversion layer covering the blue micro light emitting diodes, the first color conversion layer is used to convert blue light into red light.
  • the green light-emitting device includes: a blue miniature light-emitting diode, and a second color conversion layer covering the blue miniature light-emitting diode.
  • the second color conversion layer is used to convert the light in the blue band into the light in the green band.
  • the filter layer is located at The side of the first color conversion layer and the second color conversion layer facing away from the base substrate.
  • the filter layer in the micro light-emitting diode display module, and the filter layer is located on the side of the first color conversion layer and the second color conversion layer away from the base substrate, the filter layer is on the An opening is provided at a position corresponding to the blue light emitting device. Therefore, the blue light emitted by the blue light emitting device can be directly emitted, and the excess blue light in the red light emitting device and the green light emitting device can be filtered out. Therefore, the filter layer can absorb the blue light leaked from the positions of the red light emitting device and the green light emitting device, increase the purity of the emitted light from the red light emitting device and the green light emitting device, and improve the display color gamut. Therefore, on the basis of not affecting the normal display of the micro light-emitting diode display module, the problems of bluish cast in the off-screen state and color cast in the normal display process can be solved.
  • the embodiment of the present application also provides a method for manufacturing a display module, the method may include:
  • a base substrate with a plurality of light emitting devices; wherein the plurality of light emitting devices include: at least one red light emitting device, at least one green light emitting device and at least one blue light emitting device;
  • a base material mixed with pigments and scattering particles is used to make a filter layer on multiple light-emitting devices; among them, the pigments are used to absorb light in the blue band, and the scattering particles are used to scatter the light in the blue band, so that the light in the blue band
  • the degree of scattering in the filter layer is greater than the degree of scattering of light in the red and green bands in the filter layer;
  • Partial areas in the filter layer are removed to form openings in areas corresponding to the blue light-emitting devices.
  • the filter layer can increase the absorption of light in the blue band without affecting the transmittance of light in the red and green bands. Therefore, the filter layer can filter out the excess blue light in the display module, so that the display module has a wider color gamut, improves the overall display effect of the display module, and reduces the power consumption of the display module .
  • the filter layer can filter out the excess blue light in the display module, so that the display module has a wider color gamut, improves the overall display effect of the display module, and reduces the power consumption of the display module .
  • the blue light emitted by the blue light-emitting device can be directly emitted, and the redundant blue light in the red light-emitting device and the green light-emitting device can be filtered out. , will not affect the normal display effect of the display module.
  • the above-mentioned filter material is used, and the above-mentioned substrate mixed with pigments and scattering particles is used to make a filter layer on multiple light-emitting devices, which may include:
  • the filter layer is pasted on a plurality of light emitting devices.
  • the base material in the filter material is solid
  • the base material mixed with pigments and scattering particles can be used as a filter layer, and the filter layer can be directly attached to the light-emitting device, and the manufacturing process is relatively simple.
  • the above-mentioned use of the base material mixed with pigments and scattering particles to form a filter layer on a plurality of light-emitting devices may include:
  • the substrate coated on the plurality of light emitting devices is cured to obtain a light filter layer.
  • the filter layer is formed on the light-emitting device by adopting a coating process and a curing process. This manufacturing process is more compatible with the manufacturing processes of other film layers in the display module, and the manufacturing cost is saved.
  • the pigment and scattering particles can be uniformly mixed in the substrate in the following manner:
  • Method 1 The pigment and the scattering particles can be uniformly mixed in the substrate by physical means.
  • the pigment and scattering particles can be placed in the substrate, and the pigment and scattering particles can be uniformly dispersed in the substrate by means of mechanical stirring.
  • Method 2 The pigment and the scattering particles can be uniformly mixed in the base material by chemical means.
  • the pigment, the scattering particles and the dispersant are placed in the substrate; wherein the dispersant is used to adjust the degree of dispersion of the scattering particles in the substrate.
  • the data in the above-mentioned possible implementations of the present application for example, the median particle size and true particle size of the scattering particles, the concentration of the pigment, the diameter of the scattering particles, the haze of each color band, the For data such as thickness, when measuring, values within the error range of engineering measurement should be understood as being within the range defined in this application.
  • Figure 1a is a schematic diagram of the visible light spectrum of a yellow filter material in the related art
  • Figure 1b is a partially enlarged schematic diagram of the dotted box Q1 in Figure 1a;
  • Fig. 1c is a partially enlarged schematic diagram at the dotted box Q2 in Fig. 1a;
  • FIG. 2 is a schematic structural view of a filter material provided in an embodiment of the present application.
  • Figure 3 is a schematic diagram of the influence of particles with different diameters on the scattering characteristics of light
  • Figure 4 is a schematic diagram of the relationship between haze and wavelength when the diameter of the scattering particles is about 0.1 ⁇ m;
  • Fig. 5 is a schematic diagram showing the comparison of the filtering effect between the filter material without scattering particles and the filter material with scattering particles;
  • FIG. 6 is a schematic structural diagram of a display module provided by an embodiment of the present application.
  • FIG. 7 is another structural schematic diagram of the display module provided by the embodiment of the present application.
  • FIG. 8 is a flow chart of a manufacturing method of a display module provided by an embodiment of the present application.
  • 10-filter layer 101-substrate; 102-pigment; 103-scattering particles; 20-substrate; 21R-red light emitting device; 21G-green light emitting device; 21B-blue light emitting device; 211-blue micro Light-emitting diode; 212-first color conversion layer; 213-second color conversion layer; 22-encapsulation layer; 23-touch layer; 24-polarization layer; 25-optical adhesive layer; 26-cover plate; Y1-blue light band light; Y2-light in the green band; Y3-light in the red band; U-opening.
  • Figure 1a is a schematic diagram of the visible light spectrum of a yellow filter material in the related art
  • Figure 1b is a partially enlarged schematic diagram of the dotted box Q1 in Figure 1a
  • Figure 1c is a partially enlarged schematic diagram of the dotted box Q2 in Figure 1a.
  • the curve L1 is the visible light spectrum of the yellow filter material with thickness h1
  • the curve L2 is the visible light spectrum of the yellow filter material with thickness h2, wherein h1 is smaller than h2.
  • the transmittance of the yellow filter material in the blue light band of 350nm-480nm is relatively low, that is to say, the yellow filter material has a high absorption rate for the blue light band.
  • the thickness of the yellow filter material is increased, for example, the thickness of the yellow filter material is increased from h1 to h2 in the figure, the curve changes from L1 to L2. It can be seen that the transmission of the yellow filter material in the blue light band The rate decreases, but at this time the transmittance of the yellow filter material in the red and green light bands also decreases. Therefore, while reducing the transmittance of the blue light band, the yellow filter material also affects the transmittance of the red and green light bands (450nm ⁇ 780nm). The transmittance of the light band has a greater influence.
  • embodiments of the present application provide a filter material, a display module and a manufacturing method thereof.
  • the filter material provided by the embodiment of the present application can be applied to a display module, for example, the filter material can be applied to an organic light emitting diode display module or a micro light emitting diode (micro light emitting diode, micro LED) display module, or , the filter material can also be applied to other types of display modules, which is not limited here.
  • the filter material can filter out the excess light in the blue light band in the display module, so as to solve the problems such as the decrease of the display color gamut and the color shift of the screen caused by the leakage of blue light in the display module.
  • the display module in the embodiment of the present application can be applied to display devices such as mobile phones, tablet computers, notebook computers, smart watches, etc., and can make the display devices have better display effects and user experience.
  • FIG. 2 is a schematic structural diagram of the filter material provided in the embodiment of the present application.
  • the filter material in the embodiment of the present application may include: a substrate 101, And the pigment 102 and the scattering particles 103 dispersed in the substrate 101 .
  • the arrow Y1 represents light in the blue band, and the pigment 102 can be used to absorb the light Y1 in the blue band.
  • the arrow Y1 changes from a solid line to a dashed line, indicating that the light Y1 in the blue band is absorbed by the pigment 102 .
  • the scattering particles 103 are used to scatter the light Y1 in the blue band, so that the scattering degree of the light Y1 in the blue band in the filter material is greater than the scattering degree of the light in the red band and the green band in the filter material, that is, The scattering particles 103 will not affect the transmission optical path of the red light band and the green light band in the filter material.
  • the degree of scattering of the light of each color band in the filter material can be characterized by detecting the haze of the light of each color band in the filter material, and the greater the haze, the higher the scattering degree of the light.
  • the light transmission path of each color band can be measured to reflect the scattering degree of the light of each color band in the filter material, and the longer the light transmission path is, the higher the scattering degree of the light is.
  • the scattering particles 103 can increase the degree of scattering of light Y1 in the blue band in the filter material, so as to increase the scattering of light Y1 in the blue band in the filter material.
  • the transmission optical path is equivalent to increasing the concentration of the pigment 102 in the filter material, which can increase the absorption rate of the filter material for the light Y1 in the blue light band.
  • the scattering particles 103 since the scattering particles 103 have no or weak scattering effect on light in the red and green bands, the scattering particles 103 will not affect the transmission optical path of the red and green bands in the filter material, That is, the transmittance of the light in the red light band and the green light band will not be significantly reduced.
  • the filter material provided by the embodiment of the present application can increase the absorption rate of the light Y1 in the blue band without affecting the transmittance of the light in the red band and the green band.
  • the filter material since the filter material has less influence on the light in the red and green bands, the effect on the light in the blue band Y1 can be further improved by increasing the thickness of the filter material or increasing the concentration of the pigment 102. absorption rate.
  • the above-mentioned substrate 101 may be liquid, colloid or solid.
  • the base material 101 is liquid or colloid
  • the base material 101 mixed with the pigment 102 and the scattering particles 103 can be coated on the surface of the object, and a filter layer can be formed on the surface of the object after curing.
  • the substrate 101 is solid
  • the substrate 101 mixed with the pigment 102 and the scattering particles 103 can be used as a filter layer, and the filter layer can be directly attached to the surface of the object.
  • the formed optical filter layer can also be patterned so that the optical filter layer covers a specific area on the surface of the object.
  • the substrate 101 may be made of organic resin material, or the substrate 101 may also be made of other materials, which are not limited here.
  • the pigment 102 and the scattering particles 103 can be uniformly mixed in the base material 101 by physical means, for example, mechanical stirring can be used, and by adjusting the viscosity and other physical parameters, the pigment 102 and the scattering particles 103 can be uniformly mixed in the base material 101, so that the stability of the system composed of the base material 101, the pigment 102 and the scattering particles 103 is better.
  • the pigment 102 and the scattering particles 103 can also be uniformly mixed in the base material 101 by chemical means.
  • the above-mentioned filter material can also include: a dispersant dispersed in the base material 101 (not shown in FIG.
  • the dispersant can adjust the degree of dispersion of the scattering particles 103 in the substrate 101 .
  • the pigment 102, the scattering particles 103 and the dispersing agent are added to the substrate 101, the dispersing agent can be wrapped on the surface of the scattering particles 103, so that the scattering particles 103 will not gather together, and the dispersing agent has hydrophilic and lipophilic amphiphilic properties. properties, so that one end of the dispersant can be connected to the scattering particles 103, and the other end can be connected to the substrate 101, so as to achieve the effect of adjusting the degree of dispersion of the scattering particles 103 in the substrate 101, and realize the uniformity of the pigment 102 and the scattering particles 103.
  • the dispersant may be an organic functional group, or the dispersant may also be other materials, which are not limited here.
  • a laser diffraction particle size analyzer (laser diffraction particle diffusion) can be used to detect the degree of dispersion of the scattering particles in the substrate.
  • the degree of dispersion of scattering particles in the substrate can be indirectly reflected by the relationship between the median particle size (D50) and the real particle size.
  • the median particle size can represent the particle size value corresponding to when the cumulative distribution percentage of the scattering particles in the substrate reaches 50%, which means that the scattering particles in the substrate with a particle size larger than the particle size value account for 50%, and the particle size is smaller than the particle size value.
  • the scattering particles of the particle size value also account for 50%.
  • the true particle size is the average of all the scattering particles before being placed in the substrate.
  • the median diameter of the scattering particles in the substrate is close to the real particle diameter, it means that the scattering particles are dispersed relatively uniformly in the substrate. If the median diameter of the scattering particles in the substrate is much larger than the real particle diameter, it means that there are many scattering particles gathered together in the substrate, and the dispersion effect of the scattering particles in the substrate is poor. In the embodiment of the present application, the difference between the median particle diameter and the real particle diameter of the scattering particles in the substrate is less than 25%, so that the scattering particles can be dispersed relatively uniformly in the substrate.
  • the material of the pigment 102 may be an organic material or an inorganic material, or the pigment 102 may also use other materials, which are not limited here.
  • the concentration of the pigment 102 can be set to be greater than 10%.
  • the aforementioned scattering particles may be made of transparent materials.
  • the aforementioned scattering particles may include: silicon dioxide, aluminum oxide, titanium oxide, zirconium oxide, indium tin oxide, antimony-doped tin dioxide, organosiloxane, polystyrene, polyamide or polymethylene oxide. Polymethyl methacrylate (PMMA).
  • the scattering particles may also use other materials with scattering effect, which is not limited here.
  • the diameter of the scattering particles may be less than 3 ⁇ m, for example, the diameter of the scattering particles may be less than 1 ⁇ m.
  • the scattering particles can play the effect of mie scattering, which is a kind of Rayleigh scattering, so that the scattering degree of the light in the blue light band is higher than that of the light in the red and green light bands. degree. Therefore, the scattering particles can make the transmission optical distance of the light in the blue light band longer than the transmission optical distance of the light in the red light band and the green light band when passing through the filter material with the same thickness.
  • the pigment in the filter material can specifically increase the absorption of light in the blue light band, and reduce the absorption of light in the red and green light bands. absorption of light. It is possible to reduce the transmittance of the light in the blue band without affecting the transmittance of the light in the red band and the green band.
  • the shape of the scattering particles may be a sphere, of course, the scattering particles may also be in other shapes, for example, an ellipsoid or an irregular shape. It can be understood that, when the diameter of the scattering particle is non-spherical, the diameter of the scattering particle may be the distance between two farthest points in the scattering particle.
  • Figure 3 is a schematic diagram of the influence of particles with different diameters on the scattering characteristics of light, as shown in Figure 3, (1) in Figure 3 indicates the haze of light of different wavelengths when the particle diameter is less than 1 ⁇ m, and (2) in Figure 3 ) indicates the haze of light of different wavelengths when the particle diameter is between 1 ⁇ m and 3 ⁇ m, and (3) in Figure 3 indicates the haze of light of different wavelengths when the particle diameter is between 3 ⁇ m and 4 ⁇ m, in Figure 3 (4) represents the haze of different wavelengths of light when the particle diameter is between 5 ⁇ m and 7 ⁇ m.
  • the haze can reflect the scattering degree of light, and the greater the haze is, the higher the scattering degree of light is.
  • the haze in the blue light band is similar to that in the red and green light bands, that is, the degree of scattering of the particles on the blue light band , which is similar to the degree of scattering in the red and green bands. Therefore, it can be further proved that in the embodiment of the present application, by adding scattering particles with a diameter of less than 1 ⁇ m in the substrate, the pigment in the filter material can specifically increase the absorption of light in the blue band, and reduce the absorption of light in the red band and green band. The absorption of light in the light band. It is possible to reduce the transmittance of the light in the blue band without affecting the transmittance of the light in the red band and the green band.
  • Figure 4 is a schematic diagram of the relationship between haze and wavelength when the diameter of the scattering particles is about 0.1 ⁇ m. As shown in Figure 4, when the diameter of the scattering particles is about 0.1 ⁇ m, the haze in the blue light band can reach about 40%, The haze in the blue and green light bands is only about 10%, which further proves that when the diameter of the scattering particles is less than 1 ⁇ m, the scattering degree of the blue light band can be significantly stronger than that of the red and green light bands, which proves that the application The feasibility of the embodiment is high.
  • the haze of the light in the blue band in the filter material can be in the range of 30% to 50%, and the light in the green band can be in the range of 30% to 50%.
  • the haze in the filter material can be less than 20%; the haze of the red light band in the filter material can be less than 10%. In this way, the scattering degree of the filter material for the blue light band can be higher, and the scattering degree for the red and green light bands can be lower.
  • Fig. 5 is not provided with scattering particle and is provided with the schematic diagram of filter effect comparison of the filter material of scattering particle, (1) in Fig. 5 is not provided with the filter material of scattering particle, among the (1) in Fig. 5, filter A pigment 102 is dispersed in the substrate 101 of the optical material.
  • (2) in FIG. 5 is a filter material provided with scattering particles.
  • pigment 102 and scattering particles 103 are dispersed in the substrate 101 of the filter material, the haze of the light Y1 in the blue light band in the filter material is 40%, and the light Y2 in the green band
  • the haze in the filter material is 10%, and the haze of the red light Y3 in the filter material is 5% as an example.
  • a pigment 102 that can reduce the transmittance of light Y1 in the blue wavelength band can be added to the substrate 101 with a refractive index of about 1.5, and transparent scattering particles with a refractive index of less than 1.5 and a diameter of less than 0.1 ⁇ m can be added 103 , forming a blend system of the substrate 101 , the pigment 102 and the scattering particles 103 by mixing, or forming a filter layer with the pigment 102 or the scattering particles 103 .
  • the concentration of the scattering particles 103 the haze in the blue light band can be 40%, the haze in the green light band can be 10%, and the haze in the red light band can be 5%.
  • the filter material in (1) in FIG. 5 has the same structure as the filter material in (2) in FIG. 5 except that no scattering particles are provided.
  • the transmittance of the light Y1 in the blue band passing through the filter material is about 2%, and the transmittance of the light Y2 in the green band passing through the filter material is about 96%.
  • the transmittance of the red light Y3 passing through the filter material is about 96%.
  • the transmittance of the light Y1 in the blue band passing through the filter material is about 1.2%, and the transmittance of the light Y2 in the green band passing through the filter material is about 95.8%.
  • the transmittance of the red light Y3 passing through the filter material is about 95.8%.
  • the embodiment of this application also provides a display module
  • the display module can be an organic light emitting diode display module or a micro light emitting diode display module, or the display module can also be other types of The display module is not limited here.
  • the display module in the embodiment of the present application can be applied to display devices such as mobile phones, tablet computers, notebook computers, and smart watches.
  • Fig. 6 is a schematic structural diagram of the display module provided by the embodiment of the present application
  • Fig. 7 is another schematic structural diagram of the display module provided by the embodiment of the present application, as shown in Fig. 6 and Fig. 7, the display in the embodiment of the present application
  • the module may include: a base substrate 20 , a plurality of light emitting devices located on the base substrate 20 , and a filter layer 10 located on a side of the light emitting devices away from the base substrate 20 .
  • the plurality of light emitting devices in the display module may include: at least one red light emitting device 21R, at least one green light emitting device 21G and at least one blue light emitting device 21B.
  • the filter layer 10 includes a plurality of openings U, each opening U corresponds to a blue light-emitting device 21B, the orthographic projection of the opening U on the base substrate 20, and the orthographic projection of the corresponding blue light-emitting device 21B on the base substrate have overlapping regions.
  • the above-mentioned substrate may be solid, which may make the structure of the filter layer relatively stable.
  • the filter layer can be made of the above-mentioned filter material.
  • the material in the above-mentioned filter material is liquid or colloid
  • the base material mixed with pigments and scattering particles can be coated on the light-emitting device, and after After curing, a light filter layer is formed on the light emitting device.
  • the substrate in the above-mentioned filter material is solid, the substrate mixed with pigments and scattering particles can be used as a filter layer, and the filter layer can be directly attached to the light-emitting device.
  • the filter layer may include: a substrate 101, and a pigment 102 and scattering particles 103 located in the substrate 101, the pigment 102 is used to absorb light Y1 in the blue band, and the scattering particles 103 are used to scatter the light Y1 in the blue band , so that the scattering degree of the light Y1 in the blue light band in the filter layer is greater than the scattering degree of the light in the red light band and the green light band in the filter layer.
  • the above-mentioned scattering particles may include: silicon dioxide, aluminum oxide, titanium oxide, zirconium oxide, indium tin oxide, antimony-doped tin dioxide, organosiloxane, polystyrene, polyamide or polyamide Methyl methacrylate.
  • the diameter of the scattering particles may be less than 3 ⁇ m, for example, the diameter of the scattering particles may be less than 1 ⁇ m.
  • the implementation of the optical filter layer can refer to the implementation of the above-mentioned optical filter material, and repeated descriptions will not be repeated.
  • the filter layer can increase the absorption of light in the blue band without affecting the transmittance of light in the red and green bands. Therefore, the filter layer can filter out the excess blue light in the display module, so that the display module has a wider color gamut, improves the overall display effect of the display module, and reduces the power consumption of the display module .
  • the filter film layer is provided with an opening at a position corresponding to the blue light-emitting device, so that the blue light emitted by the blue light-emitting device can be directly emitted, and the excess blue light in the red light-emitting device and the green light-emitting device can be filtered out. The light will not affect the normal display effect of the display module.
  • the thickness of the filter layer may be in the range of 1 ⁇ m ⁇ 10 ⁇ m, so that the filter layer can have a higher absorption rate for the blue light band.
  • the thickness of the filter layer can also be greater than 10 ⁇ m or less than 1 ⁇ m, which can be set according to actual conditions, and the thickness of the filter layer is not limited here.
  • the absorption rate of the filter layer for the blue light band can also be adjusted by adjusting the concentration of pigments and scattering particles in the filter layer.
  • the above-mentioned display module may be an organic light emitting diode display module.
  • the light-emitting device may include an organic light-emitting diode
  • the organic light-emitting diode may include an anode, a cathode, and a light-emitting layer between the anode and the cathode.
  • the luminous efficiency and lifespan of the blue light emitting device 21B are relatively low, therefore, a corresponding structure is provided in the organic light emitting diode display module to increase the transmission of blue light rate, improving the overall display effect of the organic light emitting diode display module.
  • this structure also increases the transmittance of blue light in the reflected ambient light, making the overall effect of the organic light-emitting diode display module appear blue when the screen is turned off.
  • the filter layer 10 in the organic light emitting diode display module by setting the filter layer 10 in the organic light emitting diode display module, the redundant blue light in the organic light emitting diode display module can be filtered out, and the filter layer 10 corresponds to blue
  • the position of the light-emitting device 21B is provided with an opening U, so that the blue light emitted by the blue light-emitting device 21B can be directly emitted, and the excess blue light in the red light-emitting device 21R and the green light-emitting device 21G can be filtered out, so that it can be used without
  • the problem of bluishness in the off-screen state is solved.
  • the above-mentioned organic light emitting diode display module may further include: an encapsulation layer 22 covering a plurality of light emitting devices, and a touch layer 23 located on the side of the encapsulation layer 22 away from the base substrate 20 , and the filter layer 10 may be located on The side of the touch layer 23 is away from the base substrate 20 .
  • the encapsulation layer 22 can block water vapor and oxygen, and prevent the light-emitting device from being corroded by water vapor and oxygen.
  • the display module can have a touch function. Disposing the filter layer 10 on the side of the touch layer 23 away from the base substrate 20 can prevent the filter layer 10 from affecting the encapsulation effect of the light emitting device and the touch effect of the filter layer 10 .
  • the above OLED display module may further include: a polarizer 24 , and an optical adhesive layer 25 located between the polarizer 24 and the filter layer 10 .
  • a polarizer 24 By arranging the polarizer 24, the reflectivity of the OLED display module can be reduced, and the display contrast of the OLED display module can be improved.
  • the above-mentioned display module can be a micro-LED display module.
  • a color conversion method can be used to realize color display, as shown in FIG. 7, blue
  • the light emitting device 21B may include: a blue micro light emitting diode 211 .
  • the red light emitting device 21R may include: a blue micro light emitting diode 211, and a first color conversion layer 212 covering the blue micro light emitting diode 211, the first color conversion layer 212 is used to convert the light in the blue band into the red band light, so that the red light emitting device 21R emits light in the red band.
  • the green light emitting device 21G may include: a blue micro light emitting diode 211, and a second color conversion layer 213 covering the blue micro light emitting diode 211, the second color conversion layer 213 is used to convert the light in the blue band into the green band light, so that the green light emitting device 21G emits light in the green band.
  • the above-mentioned first color conversion layer 212 and second color conversion layer 213 may be materials such as phosphor powder or quantum dots.
  • the blue-purple light band components in the ambient light when the micro-LED display module is in the off-screen state, the blue-violet light band components will still cause the photoluminescent material in each blue micro-LED to be excited. As a result, the reflectivity of the screen of the micro light-emitting diode display module increases, and the display contrast of the display module decreases.
  • the red light-emitting device and the green light-emitting device after the blue excitation light emitted by the blue micro light-emitting diode passes through the color conversion layer, part of the blue excitation light will still be emitted, so that the light emitted by the red light-emitting device and the green light-emitting device Part of the blue light is mixed in the light, which causes the display color cast of the display module and the display color gamut is low.
  • the filter layer 10 by setting the filter layer 10 in the micro light-emitting diode display module, and the filter layer 10 is located on the first color conversion layer 212 and the second color conversion layer 213 away from the substrate On one side of the substrate 20 , the filter film layer 10 is provided with an opening U at a position corresponding to the blue light emitting device 21B. Therefore, the blue light emitted by the blue light emitting device 21B can be directly emitted, and the redundant blue light in the red light emitting device 21R and the green light emitting device 21G can be filtered out.
  • the filter layer 10 can absorb the blue light leaked from the positions of the red light emitting device 21R and the green light emitting device 21G, increase the purity of the emitted light from the red light emitting device 21R and the green light emitting device 21G, and improve the display color gamut. Therefore, on the basis of not affecting the normal display of the micro light-emitting diode display module, the problems of bluish cast in the off-screen state and color cast in the normal display process can be solved.
  • the above micro light emitting diode display module may further include: a touch layer 23 located on the side of the filter layer 10 away from the base substrate 20 , and a touch layer 23 located on the side of the touch layer 23 away from the base substrate. Cover plate 26.
  • the micro light emitting diode display module can have a touch function.
  • the cover plate 26 By setting the cover plate 26, the internal structure of the micro LED display module can be protected.
  • the touch layer 23 can be formed on the surface of the cover plate 26, and then the cover plate 26 is mounted on the filter layer 10 with the surface of the cover plate 26 having the touch layer 23 facing the base substrate 00.
  • the side away from the base substrate 20 therefore, in FIG. 7 , the touch layer 23 is disposed on the side of the filter layer 10 away from the base substrate 20 .
  • FIG. 8 is a flow chart of the method for manufacturing a display module provided by the embodiment of the present application. As shown in FIG. 8 , the display module The production methods can include:
  • the plurality of light emitting devices include: at least one red light emitting device, at least one green light emitting device, and at least one blue light emitting device;
  • a filter layer on multiple light-emitting devices; optionally, fabricate a filter layer directly on the surface of the light-emitting device, or on other light-emitting devices
  • a filter layer is made on the surface of the film layer.
  • the pigment is used to absorb the light in the blue band
  • the scattering particles are used to scatter the light in the blue band, so that the scattering degree of the light in the blue band in the filter layer is greater than that of the light in the red band and green band in the filter layer. the degree of scattering;
  • the filter layer can increase the absorption of light in the blue band without affecting the transmittance of light in the red and green bands. Therefore, the color filter layer can filter out redundant blue light bands in the display module, so that the display module has a wider color gamut, improves the overall display effect of the display module, and reduces the power consumption of the display module.
  • openings are provided at positions corresponding to the blue light-emitting devices, so that the blue light emitted by the blue light-emitting devices can be directly emitted, and excess light from the red and green light-emitting devices can be filtered out.
  • the Blu-ray band will not affect the normal display effect of the display module.
  • step S302 may include:
  • the filter layer is pasted on a plurality of light emitting devices.
  • the base material mixed with pigments and scattering particles can be used as a filter layer, and the filter layer can be directly attached to the light-emitting device, and the manufacturing process is relatively simple.
  • step S302 may include:
  • the substrate coated on the plurality of light emitting devices is cured to obtain a light filter layer.
  • the substrate coated on the plurality of light-emitting devices can be cured by photo-curing or heat-curing.
  • the filter layer is formed on the light-emitting device by adopting a coating process and a curing process. This manufacturing process is more compatible with the manufacturing processes of other film layers in the display module, and the manufacturing cost is saved.
  • the following methods can be used to uniformly mix the pigment and scattering particles in the substrate:
  • Method 1 The pigment and the scattering particles can be uniformly mixed in the substrate by physical means.
  • the pigment and scattering particles can be placed in the substrate, and the pigment and scattering particles can be uniformly dispersed in the substrate by means of mechanical stirring.
  • physical parameters such as viscosity can be adjusted to promote uniform mixing of pigments and scattering particles in the substrate.
  • the pigment and the scattering particles can be uniformly mixed in the base material by chemical means.
  • the pigment, the scattering particles and the dispersant are placed in the substrate; wherein the dispersant is used to adjust the degree of dispersion of the scattering particles in the substrate.
  • the dispersant can be wrapped on the surface of the scattering particles, so that the scattering particles will not gather together, and the dispersant has hydrophilic and lipophilic amphiphilic properties, so that one end of the dispersant can be connected with the scattering particles, and the other end can be It is connected with the substrate to achieve the function of adjusting the degree of dispersion of the scattering particles in the substrate, so that the pigment and the scattering particles are uniformly mixed in the substrate.
  • the dispersant may be an organic functional group, or the dispersant may also be other materials, which are not limited here.
  • the data in the above-mentioned possible implementations of the present application for example, the median particle size and true particle size of the scattering particles, the concentration of the pigment, the diameter of the scattering particles, the haze of each color band, the For data such as thickness, when measuring, values within the error range of engineering measurement should be understood as being within the range defined in this application.

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Power Engineering (AREA)
  • Optical Filters (AREA)

Abstract

本申请提供一种滤光材料、显示模组及其制作方法。滤光材料包括:基材,以及分散于基材内的颜料和散射粒子。颜料用于吸收蓝光波段的光线,散射粒子用于散射蓝光波段的光线,使蓝光波段的光线在滤光材料中的散射程度,大于红光波段和绿光波段的光线在滤光材料中的散射程度。通过在滤光材料中加入散射粒子,散射粒子可以增大蓝光波段的光线的散射程度,以增大蓝光波段的光线在滤光材料中的传输光程,并且,不会影响红光波段和绿光波段在滤光材料中的传输光程,不会导致红光波段和绿光波段的光线的透过率有较明显的降低。因此,可以在不影响红光波段和绿光波段的光线的透过率的基础上,增大对蓝光波段的光线的吸收率。

Description

一种滤光材料、显示模组及其制作方法 技术领域
本申请涉及显示技术领域,特别涉及一种滤光材料、显示模组及其制作方法。
背景技术
滤光膜是指衰减光强度或改变光谱成分的膜层。主要用途是降低或者增加色温、改变波长、遮住不需要的光线、改变光线颜色等。彩色滤光膜在有机发光二极管(organic light emitting diode,OLED)显示模组等显示设备中起到了非常重要的作用。
在相关技术中,可以在显示模组中设置彩色滤光膜,以使显示模组实现彩色显示。在一些显示模组中,还可以设置黄色滤光膜,黄色滤光膜可以作为补偿滤光,用于过滤掉显示模组中多余的蓝光部分,以使显示模组具有更广的色域。然而,相关技术中的黄色滤光膜,在提高蓝光波段的光谱吸收率的同时,不可避免的会影响红绿光波段(450~780nm)的透过率,使得显示模组在蓝光波段的吸收率和红绿光波段的透过率上无法兼得,对显示模组的整体功耗造成不利的影响。
发明内容
本申请提供了一种滤光材料、显示模组及其制作方法,用以解决黄色滤光材料对红绿光波段的透过率的影响。
第一方面,本申请实施例提供了一种滤光材料,该滤光材料可以包括:基材,以及分散于基材内的颜料和散射粒子,颜料用于吸收蓝光波段的光线,散射粒子用于散射蓝光波段的光线,使蓝光波段的光线在滤光材料中的散射程度,大于红光波段和绿光波段的光线在滤光材料中的散射程度。
在具体实施时,可以通过检测各颜色波段的光线在滤光材料中的雾度,来表征各颜色波段的光线在滤光材料中的散射程度,雾度越大表示光线的散射程度越高。或者,也可以通过测量各颜色波段的光线的传输光程,来反映各颜色波段的光线在滤光材料中的散射程度,光线的传输光程越长表示光线的散射程度越高。
本申请实施例中,通过在滤光材料中加入散射粒子,散射粒子可以增大蓝光波段的光线在滤光材料中的散射程度,以增大蓝光波段的光线在滤光材料中的传输光程,等效于增加了滤光材料中颜料的浓度,可以增大滤光材料对蓝光波段的光线的吸收率。并且,由于散射粒子对红光波段和绿光波段的光线无散射作用或起到弱散射作用,因而散射粒子不会影响红光波段和绿光波段在滤光材料中的传输光程,即不会导致红光波段和绿光波段的光线的透过率有较明显的降低。因此,本申请实施例提供的滤光材料可以在不影响红光波段和绿光波段的光线的透过率的基础上,增大对蓝光波段的光线的吸收率。此外,由于滤光材料对红光波段和绿光波段的光线的影响较小,因而,还可以通过增大滤光材料的厚度或增大颜料的浓度,来进一步提高对蓝光波段的光线的吸收率。
在本申请实施例中,上述基材可以为液体、胶体或固体。当基材为液体或胶体时,可以将混合有颜料和散射粒子的基材涂覆在物体的表面,经固化后在物体的表面形成滤光层。当基材为固体时,混合有颜料和散射粒子的基材可以作为滤光层,可以将该滤光层直接贴 附在物体的表面。此外,还可以对形成的滤光层进行图案化工艺,使得滤光层覆盖物体表面的特定区域。在实际应用中,基材可以采用有机树脂材料,或者基材也可以采用其他材料,此处不做限定。
在本申请实施例中,基材为液体或胶体时,可以采用物理方式将颜料和散射粒子均匀混合于基材中,例如,可以采用机械搅拌的方式,并通过调整粘度等物理参数,可以将颜料和散射粒子均匀混合于基材中,实现基材、颜料和散射粒子构成的体系的稳定性较好。此外,还可以采用化学方式将颜料和散射粒子均匀混合于基材中,可选地,上述滤光材料还可以包括:分散于基材内的分散剂,分散剂可以调节散射粒子在基材中的分散程度。将颜料、散射粒子和分散剂加入到基材中,分散剂可以包裹在散射粒子的表面,可以使散射粒子不会聚集在一起,并且分散剂具有亲水和亲油两亲的性质,从而可以使分散剂的一端可以与散射粒子连接,另一端可以与基材连接,以达到调节散射粒子在基材中的分散程度的作用,实现颜料和散射粒子均匀混合于基材中。可选地,分散剂可以为有机官能团,或者分散剂也可以为其他材料,此处不做限定。
在具体实施时,可以采用激光衍射粒度分析仪(laser diffraction particle diffusion)检测散射粒子在基材中的分散程度。可以通过中值粒径(D50)与真实粒径之间的关系,来间接反映散射粒子在基材中的分散程度。其中,中值粒径可以表示基材中散射粒子的累计分布百分数达到50%时所对应的粒径值,表示基材中粒径大于该粒径值的散射粒子占50%,粒径小于该粒径值的散射粒子也占50%。真实粒径为放入基材前所有的散射粒子的平均值。如果基材内的散射粒子的中值粒径与真实粒径相近,则表示散射粒子在基材中分散的比较均匀。如果基材内的散射粒子的中值粒径远大于真实粒径,则表示基材中存在很多散射粒子聚集在一起的情况,基材中的散射粒子的分散效果较差。本申请实施例中,基材内的散射粒子的中值粒径与真实粒径之间的差异小于25%,这样,可以使散射粒子在基材中分散的比较均匀。
在具体实施时,颜料的材料可以为有机材料也可以为无机材料,或者,颜料也可以采用其他材料,此处不做限定。为了使滤光材料对蓝光波段的光线的吸收率较高,可以将颜料的浓度设置为大于10%。
在本申请的一些实施例中,上述散射粒子可以采用透明材料制作。可选地,上述散射粒子可以包括:二氧化硅,三氧化二铝,氧化钛,氧化锆,氧化铟锡,锑掺杂二氧化锡,有机硅氧烷,聚苯乙烯,聚酰胺或者聚甲基丙烯酸甲酯。散射粒子也可以采用其他具有散射作用的材料,此处不做限定。
在实际应用中,本申请实施例提供的上述滤光材料中,散射粒子的直径可以小于3μm,例如,散射粒子的直径可以小于1μm。这样,散射粒子可以起到米氏散射(属于瑞利散射的一种)的效果,使得蓝光波段的光线的散射程度,高于红光波段和绿光波段的光线的散射程度。因此,该散射粒子可以使经过相同厚度的滤光材料时,蓝光波段的光线的传输光程大于红光波段和绿光波段的光线的传输光程。也就是说,本申请实施例中,通过在基材中加入直径小于3μm的散射粒子,可以特异性的增加滤光材料中颜料对蓝光波段的光线的吸收,降低对红光波段和绿光波段的光线的吸收。可以实现在不影响红光波段和绿光波段的光线的透过率的基础上,降低蓝光波段的光线的透过率。
在本申请的实施例中,散射粒子的形状可以为球体,当然,散射粒子也可以为其他形状,例如,椭球体或不规则形状。可以理解的是,当散射粒子的直径为非球体时,散射粒 子的直径可以为散射粒子中距离最远的两个点之间的距离。
在一种可能的实现方式中,蓝光波段的光线在滤光材料中的雾度在30%~50%的范围内;绿光波段的光线在滤光材料中的雾度小于20%,红光波段的光线在滤光材料中的雾度小于10%。这样,可以使滤光材料对蓝光波段的散射程度较高,对红光波段和绿光波段的散射程度较低。
第二方面,本申请实施例还提供了一种显示模组,该显示模组可以包括:衬底基板,位于衬底基板之上的多个发光器件,以及位于发光器件背离衬底基板一侧的滤光层。多个发光器件包括:至少一个红色发光器件、至少一个绿色发光器件及至少一个蓝色发光器件,滤光层包括多个开口,每一个开口对应一个蓝色发光器件,开口在衬底基板上的正投影,与对应的蓝色发光器件在衬底基板上的正投影具有交叠区域。滤光层包括:基材,以及位于基材内的颜料和散射粒子。可选地,滤光层中的基材可以为固体,从而使滤光层的结构比较稳定。颜料用于吸收蓝光波段的光线。散射粒子用于散射蓝光波段的光线,使蓝光波段的光线在滤光层中的散射程度,大于红光波段和绿光波段的光线在滤光层中的散射程度。
本申请实施例中,通过在显示模组中设置滤光层,滤光层可以在不影响红光波段和绿光波段的光线的透过率的基础上,增大对蓝光波段的光线的吸收率,因而,滤光层可以过滤掉显示模组中多余的蓝光波段,以使显示模组具有更广的色域,提升显示模组的整体显示效果,并降低显示模组的功耗。此外,滤光膜层在对应于蓝色发光器件的位置处设有开口,从而可以使蓝色发光器件出射的蓝光可以直接射出,并滤除红色发光器件和绿色发光器件中多余的蓝光波段的光线,不会影响显示模组的正常显示效果。
可选地,本申请实施例中,滤光层的厚度可以在1μm~10μm的范围内,从而使滤光层能够对蓝光波段的吸收率较高。当然,滤光层的厚度也可以为大于10μm或小于1μm,可以根据实际情况进行设置,此处不对滤光层的厚度进行限定。此外,还可以通过调整滤光层中颜料和散射粒子的浓度,来调整滤光层对蓝光波段的吸收率。本申请实施例中,滤光层的厚度可以在1μm~10μm的范围内,从而使滤光层能够对蓝光波段的吸收率较高。
在本申请的一种实施方式中,上述显示模组可以为有机发光二极管显示模组。在有机发光二极管显示模组中,发光器件可以包括有机发光二极管,该有机发光二极管可以包括阳极、阴极,以及位于阳极与阴极之间的发光层。通过在有机发光二极管显示模组中设置滤光层,可以滤除有机发光二极管显示模组中多余的蓝光波段的光线,并且,滤光膜层在对应于蓝色发光器件的位置处设有开口,从而可以使蓝色发光器件出射的蓝光可以直接射出,并滤除红色发光器件和绿色发光器件中多余的蓝光波段的光线,从而可以在不影响有机发光二极管显示模组的正常显示的基础上,解决息屏状态下偏蓝的问题。
在一种可能的实现方式中,上述显示模组还可以包括:覆盖多个发光器件的封装层,以及位于封装层背离衬底基板一侧的触控层,滤光层位于触控层背离衬底基板的一侧。封装层可以阻隔水汽和氧气,防止发光器件受到水汽和氧气的侵蚀。通过在显示模组内部设置触控层,可以使显示模组具有触控功能。将滤光层设置在触控层背离衬底基板的一侧,可以防止滤光层影响发光器件的封装效果,以及防止滤光层的触控效果。
此外,上述有机发光二极管显示模组还可以包括:偏光片,以及位于偏光片与滤光层之间的光学胶层。通过设置偏光片可以降低有机发光二极管显示模组的反射率,提高有机发光二极管显示模组的显示对比度。
在本申请的另一种实施方式中,上述显示模组可以为微型发光二极管显示模组,在微 型发光二极管显示模组中,可以采用色彩转换方法实现彩色显示。在具体实施时,蓝色发光器件可以包括:蓝色微型发光二极管。红色发光器件包括:蓝色微型发光二极管,以及覆盖该蓝色微型发光二极管的第一色彩转换层,第一色彩转换层用于将蓝光波段的光线转换为红光波段的光线。绿色发光器件包括:蓝色微型发光二极管,以及覆盖该蓝色微型发光二极管的第二色彩转换层,第二色彩转换层用于将蓝光波段的光线转换为绿光波段的光线,滤光层位于第一色彩转换层和第二色彩转换层背离衬底基板的一侧。
本申请实施例中,通过在微型发光二极管显示模组中设置滤光层,并且,滤光层位于第一色彩转换层和第二色彩转换层背离衬底基板的一侧,滤光膜层在对应于蓝色发光器件的位置处设有开口。从而可以使蓝色发光器件出射的蓝光可以直接射出,并滤除红色发光器件和绿色发光器件中多余的蓝光波段的光线。因而,滤光层可以吸收红色发光器件和绿色发光器件位置处泄露的蓝光,增加红色发光器件和绿色发光器件的出射光纯度,提升显示色域。从而,可以在不影响微型发光二极管显示模组的正常显示的基础上,解决息屏状态下偏蓝和正常显示过程中色偏的问题。
第三方面,本申请实施例还提供了一种显示模组的制作方法,该制作方法可以包括:
提供一设有多个发光器件的衬底基板;其中,多个发光器件包括:至少一个红色发光器件、至少一个绿色发光器件及至少一个蓝色发光器件;
采用混有颜料和散射粒子的基材,在多个发光器件之上制作滤光层;其中,颜料用于吸收蓝光波段的光线,散射粒子用于散射蓝光波段的光线,使蓝光波段的光线在滤光层中的散射程度,大于红光波段和绿光波段的光线在滤光层中的散射程度;
去除滤光层中的部分区域,以在与蓝色发光器件对应的区域形成开口。
本申请实施例中,通过在发光器件之上形成滤光层,滤光层可以在不影响红光波段和绿光波段的光线的透过率的基础上,增大对蓝光波段的光线的吸收率,因而,滤光层可以过滤掉显示模组中多余的蓝光波段的光线,以使显示模组具有更广的色域,提升显示模组的整体显示效果,并降低显示模组的功耗。此外,通过在滤光层中与蓝色发光器件对应的区域形成开口,从而可以使蓝色发光器件出射的蓝光可以直接射出,并滤除红色发光器件和绿色发光器件中多余的蓝光波段的光线,不会影响显示模组的正常显示效果。
在本申请的一些实施例中,上述采用滤光材料,上述采用混有颜料和散射粒子的基材,在多个发光器件之上制作滤光层,可以包括:
提供一采用混有颜料和散射粒子的基材形成的滤光层;
将该滤光层贴附在多个发光器件之上。
当滤光材料中的基材为固体时,混合有颜料和散射粒子的基材可以作为滤光层,可以将该滤光层直接贴附在发光器件之上,制作工艺较简单。
在本申请的另一些实施例中,上述采用混有颜料和散射粒子的基材,在多个发光器件之上制作滤光层,可以包括:
将颜料和散射粒子混合于液体或胶体状态的基材中;
将混合有颜料和散射粒子的基材涂覆于多个发光器件之上;
对涂覆于多个发光器件之上的基材进行固化,以得到滤光层。
采用涂覆工艺和固化工艺在发光器件之上形成滤光层,该制作工艺更容易与显示模组中的其他膜层的制作工艺兼容,节省制作成本。
在一种可能的实现方式中,可以采用以下方式将颜料和散射粒子均匀地混合于基材内:
方式一:可以采用物理方式将颜料和散射粒子均匀混合于基材中。可以将颜料和散射粒子置于基材内,采用机械搅拌的方式,使颜料和散射粒子均匀分散于基材内。
方式二:可以采用化学方式将颜料和散射粒子均匀混合于基材中。将颜料、散射粒子及分散剂置于基材内;其中,分散剂用于调节散射粒子在基材中的分散程度。
上述制作方法中任意一种可能设计可以带来的技术效果描述,可以参照上述第一方面或第二方面中任意一种可能设计可以带来的技术效果描述,重复之处不再赘述。
可以理解的是,本申请上述各可能实现方式中的数据,例如,散射粒子的中值粒径和真实粒径、颜料的浓度、散射粒子的直径、各颜色波段的雾度、滤光层的厚度等数据,在测量时,工程测量误差范围内的数值均应理解为在本申请所限定的范围内。
附图说明
图1a为相关技术中的黄色滤光材料的可见光光谱的示意图;
图1b为图1a中虚线框Q1处的局部放大示意图;
图1c为图1a中虚线框Q2处的局部放大示意图;
图2为本申请实施例提供的滤光材料的结构示意图;
图3为不同直径的粒子对光线的散射特性影响的示意图;
图4为散射粒子的直径在0.1μm左右时雾度与波长的关系示意图;
图5为未设置散射粒子与设有散射粒子的滤光材料的滤光效果对比示意图;
图6为本申请实施例提供的显示模组的结构示意图;
图7为本申请实施例提供的显示模组的另一结构示意图;
图8为本申请实施例提供的显示模组的制作方法的流程图。
附图标记:
10-滤光层;101-基材;102-颜料;103-散射粒子;20-衬底基板;21R-红色发光器件;21G-绿色发光器件;21B-蓝色发光器件;211-蓝色微型发光二极管;212-第一色彩转换层;213-第二色彩转换层;22-封装层;23-触控层;24-偏光层;25-光学胶层;26-盖板;Y1-蓝光波段的光线;Y2-绿光波段的光线;Y3-红光波段的光线;U-开口。
具体实施方式
为了使本申请的目的、技术方案和优点更加清楚,下面将结合附图对本申请作进一步地详细描述。
应注意的是,本申请的附图中相同的附图标记表示相同或类似的结构,因而将省略对它们的重复描述。本申请中所描述的表达位置与方向的词,均是以附图为例进行的说明,但根据需要也可以做出改变,所做改变均包含在本申请保护范围内。本申请的附图仅用于示意相对位置关系不代表真实比例。
图1a为相关技术中的黄色滤光材料的可见光光谱的示意图,图1b为图1a中虚线框Q1处的局部放大示意图,图1c为图1a中虚线框Q2处的局部放大示意图。图中曲线L1为厚度为h1的黄色滤光材料的可见光光谱,曲线L2为厚度为h2的黄色滤光材料的可见光光谱,其中,h1小于h2。如图1a至图1c所示,黄色滤光材料在350nm~480nm的蓝光波段内的透过率较低,也就是说,黄色滤光材料对蓝光波段的吸收率较高。但是,如果增大黄色滤光材料的厚度, 例如图中将黄色滤光材料的厚度由h1增大到h2,则曲线由L1变化到L2,可见,黄色滤光材料在蓝光波段内的透过率降低,但此时黄色滤光材料在红绿光波段的透过率也降低。因此,黄色滤光材料在降低蓝光波段的透过率的同时,对红绿光波段(450nm~780nm)的透过率也有影响,黄色滤光材料的厚度越大,黄色滤光材料对红绿光波段的透过率影响越大。
基于此,为了解决黄色滤光材料对红绿光波段的透过率的影响,本申请实施例提供了一种滤光材料、显示模组及其制作方法。以下结合附图进行详细说明。
本申请实施例提供的滤光材料可以应用于显示模组中,例如,滤光材料可以应用于有机发光二极管显示模组或微型发光二极管(micro light emitting diode,micro LED)显示模组中,或者,滤光材料也可以应用于其他类型的显示模组中,此处不做限定。滤光材料可以滤除显示模组中多余的蓝光波段的光线,以解决显示模组由于蓝光泄露导致的显示色域降低、屏幕色偏等问题。本申请实施例中的显示模组可以应用于手机、平板电脑、笔记本电脑、智能手表等显示设备中,可以使显示设备具有较好的显示效果和用户体验。
本申请实施例提供了一种滤光材料,图2为本申请实施例提供的滤光材料的结构示意图,如图2所示,本申请实施例中的滤光材料可以包括:基材101,以及分散于基材101内的颜料102和散射粒子103。图中以箭头Y1表示蓝光波段的光线,颜料102可以用于吸收蓝光波段的光线Y1,图中以箭头Y1由实线变为虚线,表示蓝光波段的光线Y1经颜料102后被吸收。散射粒子103用于散射蓝光波段的光线Y1,使蓝光波段的光线Y1在滤光材料中的散射程度,大于红光波段和绿光波段的光线在滤光材料中的散射程度,也就是说,散射粒子103不会影响红光波段和绿光波段在滤光材料中的传输光程。
在具体实施时,可以通过检测各颜色波段的光线在滤光材料中的雾度,来表征各颜色波段的光线在滤光材料中的散射程度,雾度越大表示光线的散射程度越高。或者,也可以通过测量各颜色波段的光线的传输光程,来反映各颜色波段的光线在滤光材料中的散射程度,光线的传输光程越长表示光线的散射程度越高。
本申请实施例中,通过在滤光材料中加入散射粒子103,散射粒子103可以增大蓝光波段的光线Y1在滤光材料中的散射程度,以增大蓝光波段的光线Y1在滤光材料中的传输光程,等效于增加了滤光材料中颜料102的浓度,可以增大滤光材料对蓝光波段的光线Y1的吸收率。并且,由于散射粒子103对红光波段和绿光波段的光线无散射作用或起到弱散射作用,因而散射粒子103不会影响红光波段和绿光波段在滤光材料中的传输光程,即不会导致红光波段和绿光波段的光线的透过率有较明显的降低。因此,本申请实施例提供的滤光材料可以在不影响红光波段和绿光波段的光线的透过率的基础上,增大对蓝光波段的光线Y1的吸收率。此外,由于滤光材料对红光波段和绿光波段的光线的影响较小,因而,还可以通过增大滤光材料的厚度或增大颜料102的浓度,来进一步提高对蓝光波段的光线Y1的吸收率。
继续参照图2,在本申请实施例中,上述基材101可以为液体、胶体或固体。当基材101为液体或胶体时,可以将混合有颜料102和散射粒子103的基材101涂覆在物体的表面,经固化后在物体的表面形成滤光层。当基材101为固体时,混合有颜料102和散射粒子103的基材101可以作为滤光层,可以将该滤光层直接贴附在物体的表面。此外,还可以对形成的滤光层进行图案化工艺,使得滤光层覆盖物体表面的特定区域。在实际应用中,基材101可以采用有机树脂材料,或者基材101也可以采用其他材料,此处不做限定。
在本申请实施例中,基材101为液体或胶体时,可以采用物理方式将颜料102和散射粒 子103均匀混合于基材101中,例如,可以采用机械搅拌的方式,并通过调整粘度等物理参数,可以将颜料102和散射粒子103均匀混合于基材101中,实现基材101、颜料102和散射粒子103构成的体系的稳定性较好。此外,还可以采用化学方式将颜料102和散射粒子103均匀混合于基材101中,可选地,上述滤光材料还可以包括:分散于基材101内的分散剂(图2中未示出),分散剂可以调节散射粒子103在基材101中的分散程度。将颜料102、散射粒子103和分散剂加入到基材101中,分散剂可以包裹在散射粒子103的表面,可以使散射粒子103不会聚集在一起,并且分散剂具有亲水和亲油两亲的性质,从而可以使分散剂的一端可以与散射粒子103连接,另一端可以与基材101连接,以达到调节散射粒子103在基材101中的分散程度的作用,实现颜料102和散射粒子103均匀混合于基材101中。可选地,分散剂可以为有机官能团,或者分散剂也可以为其他材料,此处不做限定。
在具体实施时,可以采用激光衍射粒度分析仪(laser diffraction particle diffusion)检测散射粒子在基材中的分散程度。可以通过中值粒径(D50)与真实粒径之间的关系,来间接反映散射粒子在基材中的分散程度。其中,中值粒径可以表示基材中散射粒子的累计分布百分数达到50%时所对应的粒径值,表示基材中粒径大于该粒径值的散射粒子占50%,粒径小于该粒径值的散射粒子也占50%。真实粒径为放入基材前所有的散射粒子的平均值。如果基材内的散射粒子的中值粒径与真实粒径相近,则表示散射粒子在基材中分散的比较均匀。如果基材内的散射粒子的中值粒径远大于真实粒径,则表示基材中存在很多散射粒子聚集在一起的情况,基材中的散射粒子的分散效果较差。本申请实施例中,基材内的散射粒子的中值粒径与真实粒径之间的差异小于25%,这样,可以使散射粒子在基材中分散的比较均匀。
在具体实施时,颜料102的材料可以为有机材料也可以为无机材料,或者,颜料102也可以采用其他材料,此处不做限定。为了使滤光材料对蓝光波段的光线的吸收率较高,可以将颜料102的浓度设置为大于10%。
在本申请的一些实施例中,上述散射粒子可以采用透明材料制作。可选地,上述散射粒子可以包括:二氧化硅,三氧化二铝,氧化钛,氧化锆,氧化铟锡,锑掺杂二氧化锡,有机硅氧烷,聚苯乙烯,聚酰胺或者聚甲基丙烯酸甲酯(polymethyl methacrylate,PMMA)。散射粒子也可以采用其他具有散射作用的材料,此处不做限定。
在实际应用中,本申请实施例提供的上述滤光材料中,散射粒子的直径可以小于3μm,例如,散射粒子的直径可以小于1μm。这样,散射粒子可以起到米氏散射(mie scattering)的效果,米氏散射属于瑞利散射的一种,使得蓝光波段的光线的散射程度,高于红光波段和绿光波段的光线的散射程度。因此,该散射粒子可以使经过相同厚度的滤光材料时,蓝光波段的光线的传输光程大于红光波段和绿光波段的光线的传输光程。也就是说,本申请实施例中,通过在基材中加入直径小于3μm的散射粒子,可以特异性的增加滤光材料中颜料对蓝光波段的光线的吸收,降低对红光波段和绿光波段的光线的吸收。可以实现在不影响红光波段和绿光波段的光线的透过率的基础上,降低蓝光波段的光线的透过率。
在本申请的实施例中,散射粒子的形状可以为球体,当然,散射粒子也可以为其他形状,例如,椭球体或不规则形状。可以理解的是,当散射粒子的直径为非球体时,散射粒子的直径可以为散射粒子中距离最远的两个点之间的距离。
图3为不同直径的粒子对光线的散射特性影响的示意图,如图3所示,图3中的(1)表示粒子直径小于1μm时,不同波长的光线的雾度,图3中的(2)表示粒子直径在1μ m~3μm之间时,不同波长的光线的雾度,图3中的(3)表示粒子直径在3μm~4μm之间时,不同波长的光线的雾度,图3中的(4)表示粒子直径在5μm~7μm之间时,不同波长的光线的雾度。其中,雾度可以反映光线的散射程度,雾度越大光线的散射程度越高。从图3中的(1)至(4)可以明显看出,粒子直径发生变化,粒子对不同波长的光线的散射作用也发生变化。从图3中的(1)中可以看出,当粒子直径小于1μm时,粒子可以发生瑞利散射,蓝光波段的雾度明显大于红光波段和绿光波段的雾度,即蓝光波段的散射程度明显强于红光波段和绿光波段的散射程度。从图3中的(2)至(4)中可以看出,当粒子直径大于1μm时,蓝光波段的雾度与红光波段和绿光波段的雾度近似,即粒子对蓝光波段的散射程度,与红光波段和绿光波段的散射程度近似。因此,可以进一步证明,本申请实施例中,通过在基材中加入直径小于1μm的散射粒子,可以特异性的增加滤光材料中颜料对蓝光波段的光线的吸收,降低对红光波段和绿光波段的光线的吸收。可以实现在不影响红光波段和绿光波段的光线的透过率的基础上,降低蓝光波段的光线的透过率。
图4为散射粒子的直径在0.1μm左右时雾度与波长的关系示意图,如图4所示,散射粒子的直径在0.1μm左右时,蓝光波段的雾度可以达到40%左右,红光波段和绿光波段的雾度仅在10%左右,进一步证明了,散射粒子的直径小于1μm时,能够使蓝光波段的散射程度明显强于红光波段和绿光波段的散射程度,证明了本申请实施例的可行性较高。
在具体实施时,在本申请实施例提供的上述滤光材料中,蓝光波段的光线在滤光材料中的雾度可以在30%~50%的范围内,绿光波段的光线在滤光材料中的雾度可以小于20%;红光波段的光线在滤光材料中的雾度可以小于10%。这样,可以使滤光材料对蓝光波段的散射程度较高,对红光波段和绿光波段的散射程度较低。
图5为未设置散射粒子与设有散射粒子的滤光材料的滤光效果对比示意图,图5中的(1)为未设置散射粒子的滤光材料,图5中的(1)中,滤光材料的基材101内分散有颜料102。图5中的(2)为设置散射粒子的滤光材料。图5中的(2)中,滤光材料的基材101内分散有颜料102和散射粒子103,以蓝光波段的光线Y1在滤光材料中的雾度为40%,绿光波段的光线Y2在滤光材料中的雾度为10%,红光波段的光线Y3在滤光材料中的雾度为5%为例。在具体实施时,可以在折射率约为1.5左右的基材101中,加入可以降低蓝光波段的光线Y1的透过率的颜料102,以及加入折射率小于1.5、直径小于0.1μm的透明散射粒子103,通过混合形成基材101、颜料102及散射粒子103的共混体系,或者形成具有颜料102或散射粒子103的滤光层。通过调节散射粒子103的浓度,可以使蓝光波段的雾度为40%,绿光波段的雾度为10%,红光波段的雾度为5%。图5中的(1)中的滤光材料除了未设置散射粒子外,其余结构与图5中的(2)中的滤光材料相同。
如图5中的(1)所示,蓝光波段的光线Y1穿过滤光材料后的透过率约为2%,绿光波段的光线Y2穿过滤光材料后的透过率约为96%,红光波段的光线Y3穿过滤光材料后的透过率约为96%。如图5中的(2)所示,蓝光波段的光线Y1穿过滤光材料后的透过率约为1.2%,绿光波段的光线Y2穿过滤光材料后的透过率约为95.8%,红光波段的光线Y3穿过滤光材料后的透过率约为95.8%。对比图5中的(1)和(2)可知,通过在滤光层中加入散射粒子103,可以大幅降低蓝光波段的透光率,例如图中蓝光波段的透过率从2%降低至1.2%。而红光波段和绿光波段的透过率降低的幅度很小,仅从96%降低至95.8,进一步证明了,本申请实施例中的滤光层,通过在基材101加入散射粒子103,可以实现在不影响红光波段和绿光波段的光线的透过率的基础上,降低蓝光波段的光线的透过率。
基于同一技术构思,本申请实施例还提供了一种显示模组,该显示模组可以为有机发光二极管显示模组或微型发光二极管显示模组,或者,该显示模组也可以为其他类型的显示模组,此处不做限定。本申请实施例中的显示模组可以应用于手机、平板电脑、笔记本电脑、智能手表等显示设备中。
图6为本申请实施例提供的显示模组的结构示意图,图7为本申请实施例提供的显示模组的另一结构示意图,如图6和图7所示,本申请实施例中的显示模组可以包括:衬底基板20,位于衬底基板20之上的多个发光器件,以及位于发光器件背离衬底基板20一侧的滤光层10。显示模组中的多个发光器件可以包括:至少一个红色发光器件21R、至少一个绿色发光器件21G及至少一个蓝色发光器件21B。滤光层10包括多个开口U,每一个开口U对应一个蓝色发光器件21B,开口U在衬底基板20上的正投影,与对应的蓝色发光器件21B在衬底基板上的正投影具有交叠区域。
在本申请的实施例中,上述基材可以为固体,可以使滤光层的结构比较稳定。在具体实施时,滤光层可以由上述滤光材料制作得到,上述滤光材料中的材料为液体或胶体时,可以将混合有颜料和散射粒子的基材涂覆于发光器件之上,经固化后在发光器件之上形成滤光层。当上述滤光材料中的基材为固体时,混合有颜料和散射粒子的基材可以作为滤光层,可以将该滤光层直接贴附在发光器件之上。
参照图2,滤光层可以包括:基材101,以及位于基材101内的颜料102和散射粒子103,颜料102用于吸收蓝光波段的光线Y1,散射粒子103用于散射蓝光波段的光线Y1,使蓝光波段的光线Y1在滤光层中的散射程度,大于红光波段和绿光波段的光线在滤光层中的散射程度。在具体实施时,上述散射粒子可以包括:二氧化硅,三氧化二铝,氧化钛,氧化锆,氧化铟锡,锑掺杂二氧化锡,有机硅氧烷,聚苯乙烯,聚酰胺或者聚甲基丙烯酸甲酯。上述散射粒子的直径可以小于3μm,例如,上述散射粒子的直径可以小于1μm。滤光层的实现方式可以参照上述滤光材料的实施,重复之处不再赘述。
本申请实施例中,通过在显示模组中设置滤光层,滤光层可以在不影响红光波段和绿光波段的光线的透过率的基础上,增大对蓝光波段的光线的吸收率,因而,滤光层可以过滤掉显示模组中多余的蓝光波段的光线,以使显示模组具有更广的色域,提升显示模组的整体显示效果,并降低显示模组的功耗。此外,滤光膜层在对应于蓝色发光器件的位置处设有开口,从而可以使蓝色发光器件出射的蓝光可以直接射出,并滤除红色发光器件和绿色发光器件中多余的蓝光波段的光线,不会影响显示模组的正常显示效果。
可选地,本申请实施例中,滤光层的厚度可以在1μm~10μm的范围内,从而使滤光层能够对蓝光波段的吸收率较高。当然,滤光层的厚度也可以为大于10μm或小于1μm,可以根据实际情况进行设置,此处不对滤光层的厚度进行限定。此外,还可以通过调整滤光层中颜料和散射粒子的浓度,来调整滤光层对蓝光波段的吸收率。
在本申请的一种实施方式中,上述显示模组可以为有机发光二极管显示模组。在有机发光二极管显示模组中,发光器件可以包括有机发光二极管,该有机发光二极管可以包括阳极、阴极,以及位于阳极与阴极之间的发光层。
如图6所示,在有机发光二极管显示模组中,蓝色发光器件21B的发光效率和寿命较低,因而,在有机发光二极管显示模组中设有相应的结构,以增加蓝光的透过率,提升有机发光二极管显示模组的整体显示效果。然而,该结构也导致了反射环境光中蓝光的透过率增大,使得有机发光二极管显示模组在息屏时整体效果偏蓝。本申请实施例中,通过在 有机发光二极管显示模组中设置滤光层10,可以滤除有机发光二极管显示模组中多余的蓝光波段的光线,并且,滤光膜层10在对应于蓝色发光器件21B的位置处设有开口U,从而可以使蓝色发光器件21B出射的蓝光可以直接射出,并滤除红色发光器件21R和绿色发光器件21G中多余的蓝光波段的光线,从而可以在不影响有机发光二极管显示模组的正常显示的基础上,解决息屏状态下偏蓝的问题。
继续参照图6,上述有机发光二极管显示模组还可以包括:覆盖多个发光器件的封装层22,以及位于封装层22背离衬底基板20一侧的触控层23,滤光层10可以位于触控层23背离衬底基板20的一侧。封装层22可以阻隔水汽和氧气,防止发光器件受到水汽和氧气的侵蚀。通过在显示模组内部设置触控层23,可以使显示模组具有触控功能。将滤光层10设置在触控层23背离衬底基板20的一侧,可以防止滤光层10影响发光器件的封装效果,以及防止滤光层10的触控效果。
此外,上述有机发光二极管显示模组还可以包括:偏光片24,以及位于偏光片24与滤光层10之间的光学胶层25。通过设置偏光片24可以降低有机发光二极管显示模组的反射率,提高有机发光二极管显示模组的显示对比度。
在本申请的另一种实施方式中,上述显示模组可以为微型发光二极管显示模组,在微型发光二极管显示模组中,可以采用色彩转换方法实现彩色显示,如图7所示,蓝色发光器件21B可以包括:蓝色微型发光二极管211。红色发光器件21R可以包括:蓝色微型发光二极管211,以及覆盖该蓝色微型发光二极管211的第一色彩转换层212,第一色彩转换层212用于将蓝光波段的光线转换为红光波段的光线,从而使红色发光器件21R出射红光波段的光线。绿色发光器件21G可以包括:蓝色微型发光二极管211,以及覆盖该蓝色微型发光二极管211的第二色彩转换层213,第二色彩转换层213用于将蓝光波段的光线转换为绿光波段的光线,从而使绿色发光器件21G出射绿光波段的光线。可选地,上述第一色彩转换层212和第二色彩转换层213可以为荧光粉或量子点等材料。
然而,由于环境光中存在蓝紫光波段的成分,在微型发光二极管显示模组在息屏状态下,该蓝紫光波段的成分仍会导致各蓝色微型发光二极管中的光致发光材料被激发,导致微型发光二极管显示模组的息屏反射率增大,显示模组的显示对比度降低。此外,红色发光器件和绿色发光器件中,蓝色微型发光二极管出射的蓝色激发光在经过色彩转换层后,仍然会有部分蓝色激发光出射,使得红色发光器件和绿色发光器件出射的光线中混有部分蓝色光线,造成显示模组的显示色偏,显示色域较低。
本申请实施例中,如图7所示,通过在微型发光二极管显示模组中设置滤光层10,并且,滤光层10位于第一色彩转换层212和第二色彩转换层213背离衬底基板20的一侧,滤光膜层10在对应于蓝色发光器件21B的位置处设有开口U。从而可以使蓝色发光器件21B出射的蓝光可以直接射出,并滤除红色发光器件21R和绿色发光器件21G中多余的蓝光波段的光线。因而,滤光层10可以吸收红色发光器件21R和绿色发光器件21G位置处泄露的蓝光,增加红色发光器件21R和绿色发光器件21G的出射光纯度,提升显示色域。从而,可以在不影响微型发光二极管显示模组的正常显示的基础上,解决息屏状态下偏蓝和正常显示过程中色偏的问题。
此外,如图7所示,上述微型发光二极管显示模组还可以包括:位于滤光层10背离衬底基板20一侧的触控层23,以及位于触控层23背离衬底基板一侧的盖板26。通过设置触控层23,可以使微型发光二极管显示模组具有触控功能。通过设置盖板26,可以保 护微型发光二极管显示模组的内部结构。在制作过程中,可以将触控层23形成于盖板26的表面,之后,以盖板26具有触控层23一侧的表面朝向衬底基板00,将盖板26安装在滤光层10背离衬底基板20一侧,因而,在图7中,触控层23设置在滤光层10背离衬底基板20的一侧。
基于同一技术构思,本申请实施例还提供了一种显示模组的制作方法,图8为本申请实施例提供的显示模组的制作方法的流程图,如图8所示,该显示模组的制作方法可以包括:
S301、提供一设有多个发光器件的衬底;其中,多个发光器件包括:至少一个红色发光器件、至少一个绿色发光器件及至少一个蓝色发光器件;
S302、采用混有颜料和散射粒子的基材,在多个发光器件之上制作滤光层;可选地,可以直接在发光器件的表面制作滤光层,也可以在发光器件之上的其他膜层的表面制作滤光层。其中,颜料用于吸收蓝光波段的光线,散射粒子用于散射蓝光波段的光线,使蓝光波段的光线在滤光层中的散射程度,大于红光波段和绿光波段的光线在滤光层中的散射程度;
S303、去除滤光层中的部分区域,以在蓝色发光器件对应的区域形成开口。
本申请实施例中,通过在发光器件之上形成滤光层,滤光层可以在不影响红光波段和绿光波段的光线的透过率的基础上,增大对蓝光波段的光线的吸收率,因而,色滤光层可以过滤掉显示模组中多余的蓝光波段,以使显示模组具有更广的色域,提升显示模组的整体显示效果,并降低显示模组的功耗。此外,通过对滤光层进行图案化,在对应于蓝色发光器件的位置处设置开口,从而可以使蓝色发光器件出射的蓝光可以直接射出,并滤除红色发光器件和绿色发光器件中多余的蓝光波段,不会影响显示模组的正常显示效果。
在本申请的一些实施例中,上述步骤S302可以包括:
提供一采用混有颜料和散射粒子的基材形成的滤光层;
将该滤光层贴附在多个发光器件之上。
当基材为固体时,混合有颜料和散射粒子的基材可以作为滤光层,可以将该滤光层直接贴附在发光器件之上,制作工艺较简单。
在本申请的另一些实施例中,上述步骤S302可以包括:
将颜料和散射粒子混合于液体或胶体状态的基材中;
将混合有颜料和散射粒子的基材涂覆于多个发光器件之上;
对涂覆于多个发光器件之上的基材进行固化,以得到滤光层。
可选地,可以采用光固化方式或热固化的方式,对涂覆于多个发光器件之上的基材进行固化。采用涂覆工艺和固化工艺在发光器件之上形成滤光层,该制作工艺更容易与显示模组中的其他膜层的制作工艺兼容,节省制作成本。
在具体实施时,可以采用以下方式将颜料和散射粒子均匀地混合于基材内:
方式一:可以采用物理方式将颜料和散射粒子均匀混合于基材中。可以将颜料和散射粒子置于基材内,采用机械搅拌的方式,使颜料和散射粒子均匀分散于基材内。此外,在机械搅拌的过程中可以通过调整粘度等物理参数,以促进颜料和散射粒子均匀的混合于基材中。
方式二:可以采用化学方式将颜料和散射粒子均匀混合于基材中。将颜料、散射粒子及分散剂置于基材内;其中,分散剂用于调节散射粒子在基材中的分散程度。分散剂可以 包裹在散射粒子的表面,可以使散射粒子不会聚集在一起,并且,分散剂具有亲水和亲油两亲的性质,从而可以使分散剂的一端可以与散射粒子连接,另一端可以与基材连接,以达到调节散射粒子在基材中的分散程度的作用,实现颜料和散射粒子均匀混合于基材中。可选地,分散剂可以为有机官能团,或者分散剂也可以为其他材料,此处不做限定。
上述制作方法中任意一种可能设计可以带来的技术效果描述,可以参照上述第一方面或第二方面中任意一种可能设计可以带来的技术效果描述,重复之处不再赘述。
可以理解的是,本申请上述各可能实现方式中的数据,例如,散射粒子的中值粒径和真实粒径、颜料的浓度、散射粒子的直径、各颜色波段的雾度、滤光层的厚度等数据,在测量时,工程测量误差范围内的数值均应理解为在本申请所限定的范围内。
尽管已描述了本申请的优选实施例,但本领域内的技术人员一旦得知了基本创造性概念,则可对这些实施例作出另外的变更和修改。所以,所附权利要求意欲解释为包括优选实施例以及落入本申请范围的所有变更和修改。
显然,本领域的技术人员可以对本申请实施例进行各种改动和变型而不脱离本申请实施例的精神和范围。这样,倘若本申请实施例的这些修改和变型属于本申请权利要求及其等同技术的范围之内,则本申请也意图包含这些改动和变型在内。

Claims (20)

  1. 一种滤光材料,其特征在于,包括:基材,以及分散于所述基材内的颜料和散射粒子;
    所述颜料用于吸收蓝光波段的光线;
    所述散射粒子用于散射蓝光波段的光线,使蓝光波段的光线在所述滤光材料中的散射程度,大于红光波段和绿光波段的光线在所述滤光材料中的散射程度。
  2. 如权利要求1所述的滤光材料,其特征在于,所述散射粒子包括:二氧化硅,三氧化二铝,氧化钛,氧化锆,氧化铟锡,锑掺杂二氧化锡,有机硅氧烷,聚苯乙烯,聚酰胺或者聚甲基丙烯酸甲酯。
  3. 如权利要求1或2所述的滤光材料,其特征在于,所述散射粒子的直径小于3μm。
  4. 如权利要求1所述的滤光材料,其特征在于,所述蓝光波段的光线在所述滤光材料中的雾度在30%~50%的范围内;所述绿光波段的光线在所述滤光材料中的雾度小于20%;所述红光波段的光线在所述滤光材料中的雾度小于10%。
  5. 如权利要求1~4任一项所述的滤光材料,其特征在于,还包括:分散于所述基材内的分散剂;
    所述分散剂用于调节所述散射粒子在所述基材中的分散程度;
    所述基材内的所述散射粒子的中值粒径与真实粒径之间的差异小于25%;其中,所述中值粒径为所述基材中所述散射粒子的累计分布百分数达到50%时所对应的粒径值,所述真实粒径为放入所述基材前所有的所述散射粒子的平均值。
  6. 如权利要求1~5任一项所述的滤光材料,其特征在于,所述颜料的浓度大于10%。
  7. 如权利要求1~6任一项所述的滤光材料,其特征在于,基材为液体、胶体或固体。
  8. 一种显示模组,其特征在于,包括:衬底基板,位于所述衬底基板之上的多个发光器件,以及位于所述发光器件背离所述衬底基板一侧的滤光层;
    所述多个发光器件包括:至少一个红色发光器件、至少一个绿色发光器件及至少一个蓝色发光器件;
    所述滤光层包括多个开口;每一个所述开口对应一个所述蓝色发光器件,所述开口在所述衬底基板上的正投影,与对应的所述蓝色发光器件在所述衬底基板上的正投影具有交叠区域;
    所述滤光层包括:基材,以及位于所述基材内的颜料和散射粒子;所述颜料用于吸收蓝光波段的光线;所述散射粒子用于散射蓝光波段的光线,使蓝光波段的光线在所述滤光层中的散射程度,大于红光波段和绿光波段的光线在所述滤光层中的散射程度。
  9. 如权利要求8所述的显示模组,其特征在于,所述发光器件包括有机发光二极管;
    所述显示模组还包括:覆盖所述多个发光器件的封装层,以及位于所述封装层背离所述衬底基板一侧的触控层;
    所述滤光层位于所述触控层背离所述衬底基板的一侧。
  10. 如权利要求8或9所述的显示模组,其特征在于,还包括:偏光片,以及位于所述偏光片与所述滤光层之间的光学胶层。
  11. 如权利要求8所述的显示模组,其特征在于,所述蓝色发光器件包括:蓝色微型发光二极管;
    所述红色发光器件包括:蓝色微型发光二极管,以及覆盖该蓝色微型发光二极管的第一色彩转换层,所述第一色彩转换层用于将蓝光波段的光线转换为红光波段的光线;
    所述绿色发光器件包括:蓝色微型发光二极管,以及覆盖该蓝色微型发光二极管的第二色彩转换层,所述第二色彩转换层用于将蓝光波段的光线转换为绿光波段的光线;
    所述滤光层位于所述第一色彩转换层和所述第二色彩转换层背离所述衬底基板的一侧。
  12. 如权利要求8~11任一项所述的显示模组,其特征在于,所述滤光层的厚度在1μm~10μm的范围内。
  13. 如权利要求8~12任一项所述的显示模组,其特征在于,所述散射粒子包括:二氧化硅,三氧化二铝,氧化钛,氧化锆,氧化铟锡,锑掺杂二氧化锡,有机硅氧烷,聚苯乙烯,聚酰胺或者聚甲基丙烯酸甲酯。
  14. 如权利要求8~13任一项所述的显示模组,其特征在于,所述散射粒子的直径小于3μm。
  15. 如权利要求8~14任一项所述的显示模组,其特征在于,所述基材为固体。
  16. 一种显示模组的制作方法,其特征在于,包括:
    提供一设有多个发光器件的衬底基板;其中,所述多个发光器件包括:至少一个红色发光器件、至少一个绿色发光器件及至少一个蓝色发光器件;
    采用混有颜料和散射粒子的基材,在所述多个发光器件之上制作滤光层;其中,所述颜料用于吸收蓝光波段的光线,所述散射粒子用于散射蓝光波段的光线,使蓝光波段的光线在所述滤光层中的散射程度,大于红光波段和绿光波段的光线在所述滤光层中的散射程度;
    去除所述滤光层中的部分区域,以在与所述蓝色发光器件对应的区域形成开口。
  17. 如权利要求16所述的制作方法,其特征在于,所述采用混有颜料和散射粒子的基材,在所述多个发光器件之上制作滤光层,包括:
    提供一采用混有颜料和散射粒子的基材形成的滤光层;
    将所述滤光层贴附在所述多个发光器件之上。
  18. 如权利要求16所述的制作方法,其特征在于,所述采用混有颜料和散射粒子的基材,在所述多个发光器件之上制作滤光层,包括:
    将所述颜料和所述散射粒子混合于液体或胶体状态的基材中;
    将混合有所述颜料和所述散射粒子的所述基材涂覆于所述多个发光器件之上;
    对涂覆于所述多个发光器件之上的所述基材进行固化,以得到所述滤光层。
  19. 如权利要求18所述的制作方法,其特征在于,采用以下方式将所述颜料和所述散射粒子均匀地混合于基材内:
    将所述颜料和所述散射粒子置于所述基材内;
    采用机械搅拌的方式,使所述颜料和所述散射粒子均匀分散于所述基材内。
  20. 如权利要求18所述的制作方法,其特征在于,采用以下方式将所述颜料和所述散射粒子均匀地混合于基材内:
    将所述颜料、所述散射粒子及分散剂置于所述基材内;其中,所述分散剂用于调节所述散射粒子在所述基材中的分散程度。
PCT/CN2021/122325 2021-09-30 2021-09-30 一种滤光材料、显示模组及其制作方法 WO2023050365A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
PCT/CN2021/122325 WO2023050365A1 (zh) 2021-09-30 2021-09-30 一种滤光材料、显示模组及其制作方法
CN202180027943.1A CN116209927A (zh) 2021-09-30 2021-09-30 一种滤光材料、显示模组及其制作方法
KR1020247012017A KR20240060815A (ko) 2021-09-30 2021-09-30 필터 물질, 디스플레이 모듈, 및 디스플레이 모듈의 제조 방법

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2021/122325 WO2023050365A1 (zh) 2021-09-30 2021-09-30 一种滤光材料、显示模组及其制作方法

Publications (1)

Publication Number Publication Date
WO2023050365A1 true WO2023050365A1 (zh) 2023-04-06

Family

ID=85781167

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/122325 WO2023050365A1 (zh) 2021-09-30 2021-09-30 一种滤光材料、显示模组及其制作方法

Country Status (3)

Country Link
KR (1) KR20240060815A (zh)
CN (1) CN116209927A (zh)
WO (1) WO2023050365A1 (zh)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6731359B1 (en) * 1999-10-05 2004-05-04 Dai Nippon Printing Co., Ltd. Color filters including light scattering fine particles and colorants
CN109192758A (zh) * 2018-08-27 2019-01-11 上海天马微电子有限公司 显示面板和显示装置
CN110072951A (zh) * 2016-12-28 2019-07-30 Dic株式会社 油墨组合物、光转换层和滤色器
CN110869452A (zh) * 2017-07-21 2020-03-06 Dic株式会社 油墨组合物及其制造方法、光转换层以及滤色器

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6731359B1 (en) * 1999-10-05 2004-05-04 Dai Nippon Printing Co., Ltd. Color filters including light scattering fine particles and colorants
CN110072951A (zh) * 2016-12-28 2019-07-30 Dic株式会社 油墨组合物、光转换层和滤色器
CN110869452A (zh) * 2017-07-21 2020-03-06 Dic株式会社 油墨组合物及其制造方法、光转换层以及滤色器
CN109192758A (zh) * 2018-08-27 2019-01-11 上海天马微电子有限公司 显示面板和显示装置

Also Published As

Publication number Publication date
CN116209927A (zh) 2023-06-02
KR20240060815A (ko) 2024-05-08

Similar Documents

Publication Publication Date Title
US10627561B2 (en) Lighting systems and devices including same
CN110888192B (zh) 颜色转换元件和包括该颜色转换元件的显示装置
US9140844B2 (en) Optical components, systems including an optical component, and devices
EP2757409B1 (en) Liquid crystal display device comprising a blue light source and a quantum-dot colour generating structure and method of manufacturing said device
TWI574430B (zh) 量子點薄膜、照明器件及照明方法
CN105259598B (zh) 一种量子点光学膜及背光模组
WO2014006987A1 (ja) 蛍光材料、蛍光塗料、蛍光体基板、電子機器およびledパッケージ
WO2015039557A1 (zh) 反射式滤光片及其制备方法、显示装置
JP6890470B2 (ja) フォトルミネセンス表示装置およびその製造方法
WO2019042151A1 (zh) 彩膜片及其制作方法、彩膜基板和显示装置
TW201624089A (zh) 增益型波長轉換結構、發光膜及背光元件
CN105259704B (zh) 一种量子点膜及背光模组
CN107450218B (zh) 光致发光显示装置及其制造方法
WO2017124839A1 (zh) 彩膜基板及其制作方法
TWI683449B (zh) 複合量子點材料、製備方法及其顯示裝置
WO2021004097A1 (zh) 色彩转换组件、显示面板及色彩转换组件的制造方法
Xu et al. Dual‐Modal Invisible Photonic Crystal Prints from Photo/Water Responsive Photonic Crystals
KR101427307B1 (ko) 금속 나노 입자를 포함하는 컬러 필터
JP2019083103A (ja) 照明装置および画像表示装置
JP2022096625A (ja) 表示素子、及び表示装置
WO2023050365A1 (zh) 一种滤光材料、显示模组及其制作方法
CN107942573B (zh) 液晶显示器
CN107807471A (zh) 量子点偏光片与液晶显示器
TWI567124B (zh) 波長轉換組成物、波長轉換結構及其應用
CN110794503A (zh) 量子点偏光片及其制作方法、显示装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21958937

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2024519445

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20247012017

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE