WO2021004097A1 - 色彩转换组件、显示面板及色彩转换组件的制造方法 - Google Patents

色彩转换组件、显示面板及色彩转换组件的制造方法 Download PDF

Info

Publication number
WO2021004097A1
WO2021004097A1 PCT/CN2020/081770 CN2020081770W WO2021004097A1 WO 2021004097 A1 WO2021004097 A1 WO 2021004097A1 CN 2020081770 W CN2020081770 W CN 2020081770W WO 2021004097 A1 WO2021004097 A1 WO 2021004097A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
color conversion
curved
baffle
layer
Prior art date
Application number
PCT/CN2020/081770
Other languages
English (en)
French (fr)
Inventor
王岩
Original Assignee
成都辰显光电有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 成都辰显光电有限公司 filed Critical 成都辰显光电有限公司
Publication of WO2021004097A1 publication Critical patent/WO2021004097A1/zh
Priority to US17/323,193 priority Critical patent/US20210273024A1/en

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/1336Illuminating devices
    • G02F1/133602Direct backlight
    • G02F1/133606Direct backlight including a specially adapted diffusing, scattering or light controlling members
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/30Devices specially adapted for multicolour light emission
    • H10K59/38Devices specially adapted for multicolour light emission comprising colour filters or colour changing media [CCM]
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/133509Filters, e.g. light shielding masks
    • G02F1/133512Light shielding layers, e.g. black matrix
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/133509Filters, e.g. light shielding masks
    • G02F1/133514Colour filters
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/133509Filters, e.g. light shielding masks
    • G02F1/133514Colour filters
    • G02F1/133516Methods for their manufacture, e.g. printing, electro-deposition or photolithography
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/15Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components with at least one potential-jump barrier or surface barrier specially adapted for light emission
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/15Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components with at least one potential-jump barrier or surface barrier specially adapted for light emission
    • H01L27/153Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components with at least one potential-jump barrier or surface barrier specially adapted for light emission in a repetitive configuration, e.g. LED bars
    • H01L27/156Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components with at least one potential-jump barrier or surface barrier specially adapted for light emission in a repetitive configuration, e.g. LED bars two-dimensional arrays
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/80Constructional details
    • H10K50/86Arrangements for improving contrast, e.g. preventing reflection of ambient light
    • H10K50/865Arrangements for improving contrast, e.g. preventing reflection of ambient light comprising light absorbing layers, e.g. light-blocking layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/80Constructional details
    • H10K59/8791Arrangements for improving contrast, e.g. preventing reflection of ambient light
    • H10K59/8792Arrangements for improving contrast, e.g. preventing reflection of ambient light comprising light absorbing layers, e.g. black layers
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/1336Illuminating devices
    • G02F1/133602Direct backlight
    • G02F1/133603Direct backlight with LEDs
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/1336Illuminating devices
    • G02F1/133602Direct backlight
    • G02F1/133605Direct backlight including specially adapted reflectors
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/1336Illuminating devices
    • G02F1/133614Illuminating devices using photoluminescence, e.g. phosphors illuminated by UV or blue light
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F2202/00Materials and properties
    • G02F2202/36Micro- or nanomaterials
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/80Constructional details
    • H10K59/875Arrangements for extracting light from the devices
    • H10K59/879Arrangements for extracting light from the devices comprising refractive means, e.g. lenses

Definitions

  • This application relates to the technical field of display devices, and in particular to a color conversion component, a display panel, and a manufacturing method of the color conversion component.
  • LCD Liquid Crystal Display
  • OLED Organic Light Emitting Diode
  • LED Light Emitting Diode
  • the advantages of electricity, thin body and wide range of applications have been widely used in various consumer electronic products such as mobile phones, TVs, personal digital assistants, digital cameras, notebook computers, desktop computers, and have become the mainstream of display devices.
  • the display device can realize the display of supporting color patterns through a variety of colorization schemes, including the realization of colorization by adding a layer of color film on the light-emitting substrate.
  • colorization schemes including the realization of colorization by adding a layer of color film on the light-emitting substrate.
  • the embodiment of the present application provides a color conversion component, a display panel, and a manufacturing method of the color conversion component.
  • a color conversion component including: a color conversion layer, including an isolation structure, a plurality of accommodation spaces enclosed by the isolation structure, an opening connected to the accommodation space, and at least The light conversion unit at a part of the opening; the Bragg filter layer includes a curved filter corresponding to the light conversion unit, and the curved filter is bent in a direction away from the light conversion unit.
  • the color conversion component of the embodiment of the present application includes a color conversion layer and a Bragg filter layer.
  • the color conversion layer includes an isolation structure and a light conversion unit, and the isolation structure encloses an accommodation space.
  • the curved filter is arranged corresponding to the light conversion unit, so that the light emitted by the light conversion unit is directed to the curved filter.
  • the curved filter is formed by bending in the direction away from the light conversion unit, which can ensure that the incident angle of the light emitted by the light conversion unit when it enters the curved filter tends to be the same, for example, tends to 90 degrees, so as to ensure that the light is filtered on the curved surface.
  • the optical path in the light mirror tends to be uniform, which improves the filtering effect of the curved light filter, reduces light leakage and prevents light mixing.
  • it further includes a baffle, corresponding to the light conversion unit being disposed in the opening, and the baffle is connected to the isolation structure, and the baffle is provided with a light exit hole through which the light exiting through the light conversion unit passes through The light exit hole shoots out.
  • the baffle, the isolation structure and the drive back plate of the display panel can be enclosed to form a relatively closed space.
  • the light emitted by the light source can be reflected multiple times in a relatively enclosed space and enter the light conversion unit, increase the light absorption and conversion rate of the light conversion unit, reduce light leakage, and prevent light mixing.
  • Ejecting from the light exit hole can also reduce the light exit area, not only can further prevent light mixing, but also make the incident angle formed by the light exiting the curved filter on the inner wall surface of the curved filter tend to be consistent, thus ensuring The optical path of the light in the curved filter tends to be uniform, which improves the filtering effect of the curved filter and reduces the light leakage of the light source.
  • the projection of the curved filter in the thickness direction of the Bragg filter layer is arc; it can further ensure that the incident angle of the light from the light exit hole to the inner wall of the curved filter tends to be consistent .
  • the curved filter is at least a part of the hemisphere, and the center of the hemisphere where the curved filter is located is in the light exit hole. Make the distance from the light exit hole to the inner wall surface equal, so as to further ensure that the incident angle of the light is consistent. Further ensure that the optical path of the light in the curved filter is consistent, improve the filtering effect of the curved filter, and reduce the light leakage of the light source.
  • the curved filter has a hemispherical shape.
  • the curved filter can not only cover the light exit hole completely, so that the light emitted by two adjacent light exit holes will not be mixed, but the distance from the light exit hole to the inner wall of the curved filter is equal, and the incident angle of the light is equal, which further improves the curved surface.
  • the filtering ability of the filter is equal to the filter.
  • a light blocking structure is provided between two adjacent light exit holes, and the light blocking structure is connected between the Bragg filter layer and the baffle or isolation structure.
  • the light blocking structure can prevent the light emitted from two adjacent light exit holes from mixing with each other.
  • the material of the baffle includes a reflective metal material and/or a light-absorbing material.
  • the baffle can reflect light, and the light emitted by the light source can be reflected multiple times in the space, and the absorption and conversion rate of the light source by the light conversion unit can be improved, or the baffle can absorb light and prevent light from being emitted from the baffle.
  • the material of the isolation structure includes a reflective metal material and/or a light-absorbing material, or the outer surface of the isolation structure is provided with a reflective metal layer and/or a light-absorbing layer.
  • the isolation structure can reflect or absorb light, so as to prevent light mixing in two adjacent accommodating spaces.
  • a display panel which includes a driving backplane, and a plurality of light sources are distributed on the driving backplane; in the above-mentioned color conversion component, the light sources are arranged corresponding to the accommodation space.
  • Another aspect of the embodiments of the present application provides a method for manufacturing a color conversion component, including:
  • a model layer is formed on the substrate, and a Bragg filter layer is formed in the model layer.
  • the Bragg filter layer includes a plurality of curved filters, and the curved filters are recessed in a direction close to the substrate;
  • An isolation structure is formed on the leveling layer, and the isolation structure encloses to form multiple accommodation spaces;
  • a light conversion unit is formed in at least part of the accommodation space to form a color conversion component.
  • the method before forming the light conversion unit in at least part of the accommodating space, the method further includes:
  • a baffle is formed in at least part of the accommodating space, and the baffle has a light exit hole provided therethrough;
  • a light conversion unit is formed on the baffle to form a color conversion component.
  • FIG. 1 is a schematic structural diagram of a color conversion component according to an embodiment of the present application
  • FIG. 2 is a schematic structural diagram of a color conversion component according to another embodiment of the present application.
  • FIG. 3 is a schematic structural diagram of a color conversion component according to another embodiment of the present application.
  • FIG. 4 is a schematic structural diagram of a color conversion component according to another embodiment of the present application.
  • FIG. 5 is a schematic structural diagram of a color conversion component according to still another embodiment of the present application.
  • FIG. 6 is a schematic structural diagram of a display panel according to an embodiment of the present application.
  • FIG. 7 is a manufacturing flow chart of a display panel according to an embodiment of the present application.
  • 8a to 8i are process diagrams of a display panel according to an embodiment of the present application.
  • the color conversion component includes: a color conversion layer 200, including an isolation structure 210, an accommodation space 211 enclosed by the isolation structure 210, and is connected to the accommodation space 211 And the light conversion unit 220 disposed at least part of the opening in the accommodating space 211; the Bragg filter layer 400 includes a curved filter 410 corresponding to the light conversion unit 220, and the curved filter 410 is far away from the light conversion unit The direction of 220 is curved.
  • the color conversion component includes a color conversion layer 200 and a Bragg filter layer 400.
  • the color conversion layer 200 includes an isolation structure 210 and a light conversion unit 220.
  • the isolation structure 210 encloses an accommodation space 211.
  • the curved filter 410 is arranged corresponding to the light conversion unit 220, so that the light emitted by the light conversion unit 220 is directed toward the curved filter 410.
  • the curved filter 410 is formed by bending in a direction away from the light conversion unit 220, which can ensure that the incident angle of the light emitted by the light conversion unit 220 when entering the curved filter 410 tends to be the same, for example, tends to 90 degrees. Thereby, it is ensured that the optical path of the light in the curved filter 410 tends to be uniform, thereby improving the filtering effect of the curved filter 410, reducing light leakage and preventing light mixing.
  • the isolation structure 210 is coated with a reflective layer, such as a reflective metal material layer, so that the isolation structure 210 can reflect light.
  • the isolation structure 210 can not only prevent two adjacent accommodation spaces 211 The light inside is mixed and can also reflect the light reaching the surface of the isolation structure 210, thereby improving the light absorption conversion rate of the light conversion unit 220.
  • the surface of the isolation structure 210 is coated with a light-absorbing layer, such as a black light-absorbing material layer, so that the isolation structure 210 can prevent the light in two adjacent accommodation spaces 211 from mixing.
  • the isolation structure 210 may also be made of a metal reflective material or a black light-absorbing material. That is, the material of the isolation structure 210 includes a metal luminescent material or a black light absorbing material.
  • the surface of the isolation structure 210 facing the accommodating space 211 is a plane perpendicular to the driving backplane 100.
  • the isolation structure 210 is inclined on the surface facing the receiving space 211, so that the size of the receiving space 211 gradually increases in the direction away from the Bragg filter layer 400.
  • the size of the receiving space 211 refers to the direction parallel to the light conversion unit 220 ( The cross-sectional area in the X direction shown in Figure 1).
  • the isolation structure 210 is made of a reflective material
  • the isolation structure 210 is inclined on the surface facing the accommodation space 211 to increase the light reflection efficiency of the isolation structure 210 and further improve the light absorption and conversion rate of the light conversion unit 220.
  • the light conversion unit 220 includes a red conversion unit and a green conversion unit.
  • the light conversion unit 220 includes a red conversion unit, a green conversion unit, and a blue conversion unit.
  • the light conversion unit 220 contains red quantum dot material or green quantum dot material, so that the light conversion unit 220 can emit a red color corresponding to the sub-pixel under the excitation of the light emitted by the light source 110. Or green color light.
  • the color conversion component further includes a baffle 300, corresponding to the light conversion unit 220 being disposed in the opening, and the baffle 300 is connected to the isolation structure 210 to A reflection space is formed between the baffle 300 and the curved surface filter 410 facing the inner wall of the baffle 300.
  • the baffle 300 is provided with a light exit hole 310 so that the light emitted by the light source 110 passes through the light conversion unit 220 and exits the light exit hole 310 .
  • the baffle 300, the isolation structure 210 and the driving backplane 100 of the display panel can be enclosed to form a relatively closed space.
  • the light emitted by the light source 110 can be reflected multiple times in a relatively enclosed space and enter the light conversion unit 220, increase the light absorption and conversion rate of the light conversion unit 220, reduce light leakage, and prevent light mixing.
  • Ejecting from the light exit hole 310 can also reduce the light exit area, which not only can further prevent light mixing, but also can make the incident angle formed by the light exiting hole 310 to the curved filter 410 on the inner wall surface of the curved filter 410 tend to Consistent. Therefore, it is ensured that the optical path of the light in the curved filter 410 tends to be consistent, the filtering effect of the curved filter 410 is improved, and the light leakage of the light source 110 is reduced.
  • the baffle 300 is made of at least one of a reflective metal material and a light-absorbing material. That is, the material of the baffle 300 includes at least one of a reflective metal material and a light absorbing material.
  • the baffle 300 is made of reflective metal material, that is, the baffle 300 is a metal reflective layer, so that the baffle 300 can reflect light, so that the light emitted by the light source 110 is reflected multiple times in the space 211, and the light conversion unit 220 Absorption and conversion rate of light source 110.
  • the baffle 300 can absorb the light emitted by the light source 110 and prevent the light from being emitted from the baffle 300.
  • the shape and size of the light exit hole 310 on the baffle 300 are not limited, as long as the light exit hole 310 can reduce the light exit area so that the light exit hole 310 can form a point light with respect to the curved filter 410.
  • the Bragg filter layer 400 is formed by alternately stacking layers with different refractive indexes, so that the light of a specific wavelength band can be reflected back to the reflection space when passing through the Bragg filter layer 400.
  • the Bragg filter layer 400 is formed by alternately stacking two film layers with different refractive indices, so that light of a specific wavelength band can be reflected back to the reflection space when passing through the Bragg filter layer 400.
  • the film can be made by chemical vapor deposition.
  • the Bragg filter layer 400 adopts chemical vapor deposition to alternately grow transparent inorganic material films with different refractive indexes, such as silicon dioxide SiO 2 , silicon nitride Si 3 N 4, etc.; or the Bragg filter layer 400 adopts chemical vapor deposition
  • the method alternately grows organic material films with different refractive indexes, such as parylene films.
  • the film layer can also be made by a solution method, for example, a polymethylmethacrylate (PMMA) film made by a solution method.
  • PMMA polymethylmethacrylate
  • the light of a specific wavelength is, for example, blue light. When the color conversion component is applied to the display panel and the light source 110 of the display panel is the blue light source 110, the blue light can be reflected back to the reflection space when it reaches the Bragg filter layer 400.
  • the shape of the curved filter 410 is not limited here.
  • the projection of the curved filter 410 in the thickness direction of the Bragg filter layer 400 (the Z direction shown in FIG. 1) is arc-shaped, which can further ensure light output
  • the incident angle of the light from the hole 310 to the inner wall surface of the curved filter 410 tends to be uniform. That is, the curved surface of the curved filter 410 is arc-shaped.
  • the projection of the curved filter 410 in the thickness direction of the Bragg filter layer 400 refers to the projection of the curved filter 410 on the cross section of the Bragg filter layer 400 in the thickness direction.
  • the projection of the curved filter 410 in the thickness direction of the Bragg filter layer 400 is arc-shaped, that is, on the cross section of the Bragg filter layer 400 in the thickness direction, the curved filter 410 is arc-shaped.
  • the curved filter 410 is at least a part of a hemisphere, and the center of the hemisphere where the curved filter 410 is located is within the light exit hole 310. That is, the curved filter 410 is a spherical lens. The distance between the light exit hole 310 and the inner wall surface is equal, so as to further ensure that the incident angle of light is consistent. Further, the light emitted from the light exit hole 310 and the inner wall surface of the curved filter 410 are perpendicular to each other, which further ensures that the optical path of the light in the curved filter 410 is consistent, improves the filtering effect of the curved filter 410, and reduces Leakage of light from the light source 110.
  • the curved filter 410 is a hemisphere or at least a part of a hemisphere.
  • the sphere here is not strictly a sphere in the mathematical and geometrical sense, as long as the curved filter 410 is roughly a hemisphere or part of a hemisphere within the allowable error range. OK.
  • the center of the hemisphere where the curved filter 410 is located within the light exit hole 310 means that: in the plane where the baffle 300 is located, the center of the hemisphere where the curved filter 410 is located is within the light exit 310, or in the baffle In the thickness direction of 300, the center of the hemisphere where the curved filter 410 is located is inside the light exit hole 310.
  • the curved filter 410 has a hemispherical shape, and the center of the sphere of the curved filter 410 is inside the light exit hole 310.
  • the curved filter 410 not only can completely cover the light exit hole 310, so that the light emitted by two adjacent light exit holes 310 will not be mixed, but the distance from the light exit hole 310 to the inner wall of the curved filter 410 is equal, and the incident angle of the light is equal , To further improve the filtering capability of the curved filter 410.
  • the curved filter 410 is a part of a hemisphere, and the curved filter 410 and the baffle 300 are arranged at intervals along the thickness direction of the color conversion component.
  • a light blocking structure 500 is provided between two adjacent light exit holes 310, and the light blocking structure 500 is connected between the Bragg filter layer 400 and the baffle 300 or the isolation structure 210.
  • the curved filter 410 cannot completely cover the light exit hole 310, so a light blocking structure 500 is provided.
  • the light blocking structure 500 By providing the light blocking structure 500, the light emitted by two adjacent light exit holes 310 can be prevented from color mixing. .
  • the arrangement of the Bragg filter layer 400 is not limited to this.
  • two adjacent curved filters 410 intersect.
  • the Bragg filter layer 400 further includes a flat portion 420 connecting two adjacent curved filters 410, and the light blocking structure 500 may be connected to the flat Between the part 420 and the baffle 300 or the isolation structure 210.
  • a light blocking structure 500 may be provided between two adjacent curved light filters 410, and the light blocking structure 500 is located in the middle of the two adjacent curved light filters 410, then the light blocking structure 500 It is connected between the isolation structure 210 and the flat part 420.
  • FIG. 4 shows that two adjacent curved filters 410 intersect.
  • the Bragg filter layer 400 further includes a flat portion 420 connecting two adjacent curved filters 410, and the light blocking structure 500 may be connected to the flat Between the part 420 and the baffle 300 or the isolation structure 210.
  • a light blocking structure 500 may be provided between two adjacent curved light filters 410, and the light blocking structure 500 is located in the middle of the two adjacent curved light
  • two light blocking structures 500 may be connected between two adjacent curved light filters 410, the curved light filter 410 and the flattened portion 420 form an intersection, and the light blocking structure 500 is connected near the intersection Between the baffle 300 or the isolation structure 210, it is further ensured that the optical path between the light emitted by the light exit hole 310 and the inner wall surface of the curved filter 410 is consistent.
  • the light blocking structure 500 may not be provided. .
  • the color conversion component further includes a model layer 700 and a flat layer 600.
  • the model layer 700 has a shape similar to the curved filter 410.
  • the adapted recess 710 allows the reflective material to be deposited in the recess 710 to form the Bragg filter layer 400.
  • the model layer 700 is provided with a flattening layer 600 on the side close to the color conversion layer 200.
  • the flattening layer 600 can fill the curved filter 410
  • the voids ensure the flatness of the surface of the Bragg filter layer 400 close to the color conversion layer 200.
  • the flattening layer 600 is filled in the curved filter 410; when the curved filter 410 and the color conversion layer 200 are spaced apart, the flattening layer 600 is also filled with the curved filter The gap between the light mirror 410 and the color conversion layer 200. Further, a glass cover 800 is also provided on the side of the model layer 700 away from the flat layer 600 to form an encapsulation protection layer.
  • the second embodiment of the present application also provides a display panel including the above-mentioned color conversion component. Since the display panel of the embodiment of the present application includes the above-mentioned color conversion component, the display panel of the embodiment of the present application has the beneficial effects of the above-mentioned color conversion component, which will not be repeated here.
  • the display panel in the embodiment of the present application may be a liquid crystal display (LCD) display panel, an organic light emitting diode (OLED) display panel, and a display panel using light emitting diode (LED) devices.
  • LCD liquid crystal display
  • OLED organic light emitting diode
  • LED light emitting diode
  • the display panel further includes a driving backplane 100, and a plurality of light sources 110 are distributed on the driving backplane 100.
  • the light source 110 is provided corresponding to the accommodation space 211.
  • a light shielding structure 120 is further provided on the driving backplane 100, and the light shielding structure 120 encloses to form a receiving cavity, and the light source 110 is arranged in the receiving cavity.
  • the display panel includes a color conversion component for driving the backplane 100, the light-shielding structure 120 and the isolation structure 210 are aligned to form a relatively closed space, which further improves the effect of preventing light leakage.
  • the light source 110 may be a light source 110 of various colors, for example, the light source 110 is a white light source 110, a blue light source 110, and so on.
  • the relative positions of the light source 110 and the light exit hole 310 are not limited.
  • the light source 110 and the light exit hole 310 are correspondingly arranged along the thickness direction of the display panel (the Z direction in FIG. 6).
  • the projection of the light source 110 on the driving backplane 100 and the projection of the light exit hole 310 on the driving backplane 100 are at least partially overlapped, so as to ensure that the light emitted by the light source 110 can be more incident on the light.
  • the conversion unit 220 improves the absorption conversion rate of the light conversion unit 220.
  • the third embodiment of the present application also provides a display device including the above-mentioned display panel.
  • the display devices in the embodiments of this application include, but are not limited to, mobile phones, personal digital assistants (Personal Digital Assistant, PDA for short), tablet computers, electronic paper books, televisions, access control, smart fixed phones, consoles, etc., with display functions equipment. Since the display device of the embodiment of the present application includes the above-mentioned display panel, the display device of this embodiment has the beneficial effects of the above-mentioned display panel, which will not be repeated here.
  • a fourth embodiment of the present application also provides a manufacturing method of a display panel, including:
  • Step S01 Provide a backplane assembly.
  • the backplane assembly includes a driving backplane 100, a plurality of light sources 110 distributed on the driving backplane 100, and a light shielding structure 120 disposed around the light sources 110.
  • Step S02 forming a color conversion component.
  • the color conversion component includes a substrate, a Bragg filter layer 400 and a color conversion layer 200 on the substrate.
  • the Bragg filter layer 400 includes a plurality of curved filters 410.
  • the curved filters 410 are recessed in a direction close to the substrate.
  • the color conversion The layer 200 includes an isolation structure 210, an accommodation space 211 enclosed by the isolation structure 210, and a light conversion unit 220 in at least a part of the accommodation space 211.
  • Step S03 align the backplane component and the color conversion component to form a display panel.
  • step S02 and step S01 is not limited.
  • the backplane assembly or the color conversion assembly can be formed first, as long as the backplane assembly and the color conversion assembly are aligned and attached to each other to form a display panel.
  • step S02 includes:
  • Step S021 Provide a substrate, form a model layer on the substrate, and form a Bragg filter layer in the model layer.
  • the Bragg filter layer includes a plurality of curved filters, and the curved filters are recessed in a direction close to the substrate.
  • the model layer 700 can be made of plastic transparent materials, such as photoresist, resin, polydimethylsiloxane, and the like.
  • the model layer 700 can be formed by a mold nanoimprint method.
  • Step S022 forming a leveling layer on the model layer.
  • the flattening layer 600 can be made of transparent flattening layer materials, such as photoresist, encapsulating glue, etc., and the flattening layer 600 can be formed by printing, spraying, spin coating and other methods.
  • Step S023 forming an isolation structure on the flat layer, and the isolation structure encloses to form a plurality of containing spaces.
  • step S023 at least part of the accommodating space 211 is provided corresponding to the curved filter 410.
  • Step S024 Set up a light conversion unit in at least part of the accommodating space to form a color conversion component.
  • step S03 when the backplane assembly and the color conversion assembly are aligned and attached to each other, the light shielding structure 120 and the isolation structure 210 are connected to each other to form a relatively closed space, the light source 110 is arranged in the closed space, and the light conversion unit 220 Located in at least part of the enclosed space.
  • step S024 also includes:
  • Step S024a A baffle is formed in at least a part of the containing space, and the baffle has a light-exiting hole provided therethrough.
  • step S024a the baffle 300 and the curved filter 410 are correspondingly arranged.
  • Step S024b forming the light conversion unit on the baffle to form a color conversion component.
  • FIGS. 8a to 8i Please refer to FIGS. 8a to 8i together, taking the display panel of FIG. 6 as an example to briefly describe the forming process of the display panel:
  • the backplane assembly includes a driving backplane 100, a plurality of light sources 110 distributed on the driving backplane 100, and a shading structure 120 arranged to surround the light sources 110.
  • a cover 800 is provided.
  • the cover 800 is usually a glass cover 800, which has good hardness and can provide better protection.
  • a model layer 700 is formed on the cover 800.
  • the model layer 700 is made of a transparent material.
  • a recess 710 is formed on the model layer 700. It can be formed by etching and other means.
  • a Bragg filter layer 400 is formed on the model layer 700.
  • a curved filter 410 is formed on the Bragg filter layer 400 where the recess 710 is located.
  • a flattening layer 600 is formed on the Bragg filter layer 400.
  • the manufacturing material of the flat layer 600 may be the same as or different from the model layer 700.
  • the leveling layer 600 is also made of a transparent material.
  • an isolation structure 210 is formed on the flat layer 600, and the isolation structure 210 encloses to form an accommodation space 211.
  • the isolation structure 210 may be formed on the planarization layer 600 by evaporation or other patterning processes.
  • a baffle 300 is formed on the flat layer 600 of the containing space 211.
  • the baffle 300 has a light exit hole 310 penetrating through it.
  • a light conversion unit 220 is formed on the baffle 300 to form a color conversion component.
  • the tenth step is to align the backplane component and the color conversion component, and bond them together with adhesive glue or the like to form a display panel as shown in FIG. 6.

Abstract

一种色彩转换组件、显示面板及色彩转换组件的制造方法,色彩转换组件包括:色彩转换层(200),包括隔离结构(210)、由隔离结构(210)围合形成的多个容纳空间(211)、与容纳空间(211)连通的开口、以及设置于容纳空间内至少部分开口处的光转换单元(220);布拉格滤光层(400),包括对应于光转换单元(220)的曲面滤光镜(410),曲面滤光镜(410)沿远离光转换单元(220)的方向弯曲。曲面滤光镜(410)对应于光转换单元(220)设置,令光转换单元(220)射出的光射向曲面滤光镜(410)。曲面滤光镜(410)沿远离光转换单元(220)的方向弯折形成,能够保证光转换单元(220)射出的光在射入曲面滤光镜(410)时的入射角趋于一致,从而保证光在曲面滤光镜(410)内的光程趋于一致,提高曲面滤光镜(410)的滤光效果,减小光的泄漏,防止混光。

Description

色彩转换组件、显示面板及色彩转换组件的制造方法
相关申请的交叉引用
本申请要求享有于2019年07月11日提交的名称为“色彩转换组件、显示面板及色彩转换组件的制造方法”的中国专利申请第201910624305.2号的优先权,该申请的全部内容通过引用并入本文中。
技术领域
本申请涉及显示设备技术领域,尤其涉及一种色彩转换组件、显示面板及色彩转换组件的制造方法。
背景技术
液晶显示(Liquid Crystal Display,LCD)装置、有机发光二极管(Organic Light Emitting Diode,OLED)显示装置以及利用发光二极管(Light Emitting Diode,LED)器件的显示装置等平面显示装置因具有高画质、省电、机身薄及应用范围广等优点,而被广泛的应用于手机、电视、个人数字助理、数字相机、笔记本电脑、台式计算机等各种消费性电子产品,成为显示装置中的主流。
显示装置可以通过多种彩色化方案来实现支持彩色图案的显示,其中包括通过在发光基板上增加一层彩膜来实现彩色化。然而,在使用彩膜进行显示的方案中,通常出光单元间会产生混光导致出现视角色偏的问题。
发明内容
本申请实施例提供一种色彩转换组件、显示面板及色彩转换组件的制造方法。
本申请实施例一方面提供了一种色彩转换组件,包括:色彩转换层,包括隔离结构、由隔离结构围合形成的多个容纳空间、与容纳空间连通的 开口、以及设置于容纳空间内至少部分开口处的光转换单元;布拉格滤光层,包括对应于光转换单元的曲面滤光镜,曲面滤光镜沿远离光转换单元的方向弯曲。
本申请实施例的色彩转化组件包括色彩转换层和布拉格滤光层,色彩转换层包括隔离结构和光转换单元,隔离结构围合形成容纳空间。曲面滤光镜对应于光转换单元设置,令光转换单元射出的光射向曲面滤光镜。曲面滤光镜沿远离光转换单元的方向弯折形成,能够保证光转换单元射出的光在射入曲面滤光镜时的入射角趋于一致,例如趋于90度,从而保证光在曲面滤光镜内的光程趋于一致,提高曲面滤光镜的滤光效果,减小光的泄漏,防止混光。
根据本申请一方面的实施方式,还包括挡板,对应于光转换单元设置于开口内,且挡板连接于隔离结构,挡板贯穿设置有出光孔,以使经过光转换单元的出射光线经由出光孔射出。当色彩转换组件应用于显示面板时,挡板、隔离结构和显示面板的驱动背板能够围合形成较为封闭的空间。令光源发出的光在较为封闭的空间内能够多次反射并射入光转换单元,增加光转换单元对光的吸收和转换率,减小光的泄漏,防止混光。从出光孔射出,还能够减小出光面积,不仅能够进一步防止混光,还能够令出光孔射向曲面滤光镜的光在曲面滤光镜的内壁面形成的入射角趋于一致,从而保证光在曲面滤光镜内的光程趋于一致,提高曲面滤光镜的滤光效果,减小光源的光的泄漏。
根据本申请一方面前述任一实施方式,曲面滤光镜在布拉格滤光层的厚度方向上的投影呈弧形;能够进一步保证出光孔至曲面滤光镜内壁面的光的入射角趋于一致。
根据本申请一方面前述任一实施方式,曲面滤光镜为半球形的至少一部分,且曲面滤光镜所在半球形的球心在出光孔内。令出光孔至内壁面各处的距离相等,从而进一步保证光的入射角一致。进一步保证光在曲面滤光镜内的光程一致,提高曲面滤光镜的滤光效果,减小光源的光的泄漏。
根据本申请一方面前述任一实施方式,曲面滤光镜呈半球形。使得曲面滤光镜不仅能够完全覆盖出光孔,令相邻两个出光孔发出的光不会发生 混色,而且出光孔至曲面滤光镜内壁面的距离相等,光的入射角相等,进一步提高曲面滤光镜的滤光能力。
根据本申请一方面前述任一实施方式,相邻的两个出光孔之间设置有挡光结构,挡光结构连接于布拉格滤光层与挡板或隔离结构之间。通过设置挡光结构能够防止相邻两个出光孔发出的光相互混色。
根据本申请一方面前述任一实施方式,挡板的材料包括反光金属材料和/或吸光材料。令挡板能够反射光,使光源发出的光在空间内多次反射,提高光转换单元对光源的吸收和转换率,或者使得挡板能够吸收光,防止光从挡板处射出。
根据本申请一方面前述任一实施方式,隔离结构的材料包括反光金属材料和/或吸光材料,或者隔离结构的外表面设有反光金属层和/或吸光层。使得隔离结构能够反光或吸光,从而让防止相邻两个容纳空间内的光发生混光。
本申请实施例另一方面提供了一种显示面板,包括:驱动背板,驱动背板上分布有多个光源;上述的色彩转换组件,光源对应于容纳空间设置。
本申请实施例又一方面提供了一种色彩转换组件的制造方法,包括:
提供一种基板,
在基板上形成模型层,并在模型层内形成布拉格滤光层,布拉格滤光层包括多个曲面滤光镜,曲面滤光镜沿靠近基板的方向凹陷形成;
在模型层上形成平整层;
在平整层上形成隔离结构,隔离结构围合形成多个容纳空间;
在至少部分容纳空间内形成光转换单元,以形成色彩转换组件。
根据本申请一方面的实施方式,在至少部分容纳空间内形成光转换单元之前还包括:
在至少部分容纳空间内形成挡板,挡板具有贯穿设置的出光孔;
在挡板上形成光转换单元,以形成色彩转换组件。
附图说明
通过阅读以下参照附图对非限制性实施例所作的详细描述,本申请的其它特征、目的和优点将会变得更明显,其中,相同或相似的附图标记表示相同或相似的特征。
图1是本申请实施例的一种色彩转换组件的结构示意图;
图2是本申请另一实施例的一种色彩转换组件的结构示意图;
图3是本申请又一实施例的一种色彩转换组件的结构示意图;
图4是本申请再一实施例的一种色彩转换组件的结构示意图;
图5是本申请再一实施例的一种色彩转换组件的结构示意图;
图6是本申请实施例的一种显示面板的结构示意图;
图7是本申请实施例的一种显示面板的制造流程图;
图8a至图8i是本申请实施例的一种显示面板的工艺过程图。
具体实施方式
下面将详细描述本申请的各个方面的特征和示例性实施例。在下面的详细描述中,提出了许多具体细节,以便提供对本申请的全面理解。但是,对于本领域技术人员来说很明显的是,本申请可以在不需要这些具体细节中的一些细节的情况下实施。下面对实施例的描述仅仅是为了通过示出本申请的示例来提供对本申请的更好的理解。在附图和下面的描述中,至少部分的公知结构和技术没有被示出,以便避免对本申请造成不必要的模糊;并且,为了清晰,可能夸大了部分结构的尺寸。此外,下文中所描述的特征、结构或特性可以以任何合适的方式结合在一个或更多实施例中。
为了更好地理解本申请,下面结合图1至图8i对本申请实施例的色彩转换组件、显示面板及色彩转换组件的制造方法进行详细描述。
图1为本申请实施例提供的一种色彩转换组件的结构示意图,色彩转换组件包括:色彩转换层200,包括隔离结构210、由隔离结构210围合形成的容纳空间211、与容纳空间211连通的开口、以及设置于容纳空间211内至少部分开口处的光转换单元220;布拉格滤光层400,包括对应于光转换单元220的曲面滤光镜410,曲面滤光镜410沿远离光转换单元220的方向弯曲。
在本申请实施例的色彩转换组件中,色彩转换组件包括色彩转换层200和布拉格滤光层400,色彩转换层200包括隔离结构210和光转换单元220,隔离结构210围合形成容纳空间211。曲面滤光镜410对应于光转换单元220设置,令光转换单元220射出的光射向曲面滤光镜410。曲面滤光镜410沿远离光转换单元220的方向弯折形成,能够保证光转换单元220射出的光在射入曲面滤光镜410时的入射角趋于一致,例如趋于90度。从而保证光在曲面滤光镜410内的光程趋于一致,从而提高曲面滤光镜410的滤光效果,减小光的泄漏,防止混光。
隔离结构210的设置材料有多种,优选的,隔离结构210的表面涂覆有反光层,例如反光金属材料层,令隔离结构210能够反光,隔离结构210不仅能够防止相邻两个容纳空间211内的光发生混光,还能够反射抵达隔离结构210表面的光,从而提高光转换单元220对光的吸收转换率。或者,隔离结构210的表面涂覆有吸光层,例如黑色吸光材料层,令隔离结构210能够防止相邻两个容纳空间211内的光发生混光。
另一些可选的实施例中,隔离结构210还可以由金属反光材料或黑色吸光材料制成。即隔离结构210的材料包括金属发光材料或黑色吸光材料。
隔离结构210形状的设置方式有多种,例如隔离结构210朝向容纳空间211的表面为垂直于驱动背板100的平面。或者隔离结构210在朝向容纳空间211的表面为斜面,使得容纳空间211在远离布拉格滤光层400的方向上尺寸逐渐增大,容纳空间211的尺寸是指沿平行于光转换单元220方向上(图1中所示X方向)的截面面积。当隔离结构210由反光材料制成时,隔离结构210在朝向容纳空间211的表面为斜面能够增加隔离结构210的反光效率,进一步提高光转换单元220对光的吸收和转换率。
光转换单元220的设置方式有多种,例如当色彩转换组件应用于显示面板,且显示面板的光源110为蓝色光源时,光转换单元220的包括红色转换单元和绿色转换单元。当显示面板的光源110为其他颜色的光,例如UV光时,光转换单元220的包括红色转换单元、绿色转换单元和蓝色转换单元。
光转换单元220的设置方式有多种,例如光转换单元220中包含红色 量子点材料或绿色量子点材料,令光转换单元220在光源110发出的光的激发下能够发出与子像素对应的红色或绿色颜色的光。
色彩转换组件的设置方式不仅限于此,在一些可选的实施例中,色彩转换组件还包括挡板300,对应于光转换单元220设置于开口内,且挡板300连接于隔离结构210,以在挡板300和曲面滤光镜410朝向挡板300的内壁面之间形成反射空间,挡板300贯穿设置有出光孔310,以使光源110发出的光经过光转换单元220从出光孔310射出。
在这些可选的实施例中,当色彩转换组件应用于显示面板时,挡板300、隔离结构210和显示面板的驱动背板100能够围合形成较为封闭的空间。令光源110发出的光在较为封闭的空间内能够多次反射并射入光转换单元220,增加光转换单元220对光的吸收和转换率,减小光的泄漏,防止混光。从出光孔310射出,还能够减小出光面积,不仅能够进一步防止混光,还能够令出光孔310射向曲面滤光镜410的光在曲面滤光镜410的内壁面形成的入射角趋于一致。从而保证光在曲面滤光镜410内的光程趋于一致,提高曲面滤光镜410的滤光效果,减小光源110的光的泄漏。
挡板300的设置方式有多种,例如挡板300由反光金属材料、吸光材料中的至少一者制成。即挡板300的材料包括反光金属材料、吸光材料中至少一者。优选的,挡板300选用反光金属材料制成,即挡板300为金属反光层,令挡板300能够反射光,使光源110发出的光在211空间内多次反射,提高光转换单元220对光源110的吸收和转换率。当挡板300的材料包括吸光材料时,挡板300能够吸收光源110发出的光,防止光从挡板300处射出。
挡板300上出光孔310的形状及大小不做限定,只要出光孔310能够减小出光面积,令出光孔310相对于曲面滤光镜410能够形成点发光即可。
布拉格滤光层400的设置方式有多种,例如布拉格滤光层400由折射率不同的膜层交替层叠而成,以使特定波段的光经过布拉格滤光层400时能够反射回反射空间,从而达到滤光的目的。优选的,布拉格滤光层400由折射率不同的两种膜层依次交替层叠设置形成,以使特定波段的光经过布拉格滤光层400时能够反射回反射空间。膜层的设置方式有多种,例如 膜层可以选用化学气相沉积方法制成。例如布拉格滤光层400采用化学气相沉积的方法交替生长不同折射率的透明无机材料膜层,如二氧化硅SiO 2,氮化硅Si 3N 4等;或布拉格滤光层400采用化学气相沉积的方法交替生长不同折射率的有机材料膜层,如派瑞林膜层。膜层还可以选用溶液法制成,例如采用溶液法制成的聚甲基丙烯酸甲酯(Polymethylmethacrylate,PMMA)膜等。特定波长的光例如为蓝色光,当色彩转换组件应用于显示面板,且显示面板的光源110为蓝色光源110时,蓝色光抵达布拉格滤光层400时能够反射回反射空间。
曲面滤光镜410的形状在此不做限定,优选的,曲面滤光镜410在布拉格滤光层400的厚度方向上(图1中所示Z方向)的投影呈弧形,能够进一步保证出光孔310至曲面滤光镜410内壁面的光的入射角趋于一致。即曲面滤光镜410的曲面呈弧形。其中,曲面滤光镜410在布拉格滤光层400的厚度方向上的投影是指:曲面滤光镜410在布拉格滤光层400沿厚度方向上的截面上的投影。曲面滤光镜410在布拉格滤光层400的厚度方向上的投影呈弧形,即在布拉格滤光层400沿厚度方向上的横截面上,曲面滤光镜410呈弧形。
进一步优选的,曲面滤光镜410为半球形的至少一部分,且曲面滤光镜410所在半球形的球心在出光孔310之内。即曲面滤光镜410为球形透镜。设置出光孔310至内壁面各处的距离相等,从而进一步保证光的入射角一致。进一步地,设置出光孔310的出射光和曲面滤光镜410的内壁面相互垂直,进一步保证光在曲面滤光镜410内的光程一致,提高曲面滤光镜410的滤光效果,减小光源110的光的泄漏。
曲面滤光镜410为半球形或半球形的至少一部分,这里的球形并不是数学几何意义上严格的球形,只要曲面滤光镜410在误差允许的范围之内大致为半球形或半球形的一部分即可。曲面滤光镜410所在半球形的球心在出光孔310之内是指:在挡板300所在平面,曲面滤光镜410所在半球形的球心在出光孔310之内,或者,在挡板300的厚度方向上曲面滤光镜410所在半球形的球心在出光孔310之内。
如图2所示,在另一些可选的实施例中,曲面滤光镜410呈半球形, 且曲面滤光镜410的球心在出光孔310之内。曲面滤光镜410不仅能够完全覆盖出光孔310,令相邻两个出光孔310发出的光不会发生混色,而且出光孔310至曲面滤光镜410内壁面的距离相等,光的入射角相等,进一步提高曲面滤光镜410的滤光能力。
如图3至图5所示,在又一些可选的实施例中,曲面滤光镜410为半球形的一部分,且曲面滤光镜410和挡板300沿色彩转换组件的厚度方向间隔设置,相邻的两个出光孔310之间设置有挡光结构500,挡光结构500连接于布拉格滤光层400与挡板300或隔离结构210之间。
在这些可选的实施例中,曲面滤光镜410不能够完全覆盖出光孔310,因此设置有挡光结构500,通过设置挡光结构500能够防止相邻两个出光孔310发出的光相互混色。
布拉格滤光层400的设置方式不仅限于此,例如在一些可选的实施例中,如图3所示,相邻的两个曲面滤光镜410相交。或者在又一些可选的实施例中,如图4和图5所示,布拉格滤光层400还包括连接相邻两个曲面滤光镜410的平整部420,挡光结构500可以连接于平整部420和挡板300或隔离结构210之间。如图4所示,相邻的两个曲面滤光镜410之间可以设置有一个挡光结构500,挡光结构500位于相邻两个曲面滤光镜410的中间位置,则挡光结构500连接于隔离结构210和平整部420之间。或者,如图5所示,相邻的两个曲面滤光镜410之间可以连接有两个挡光结构500,曲面滤光镜410和平整部420形成交点,挡光结构500连接于交点附近和挡板300或隔离结构210之间,进一步保证出光孔310发出的光和曲面滤光镜410内壁面之间的光程一致。
考虑到当布拉格滤光层400包括曲面滤光镜410时,相邻两个出光孔310的光混色非常有限,为了简化色彩转换组件的工艺,如图1所示,可以不设置挡光结构500。
为了形成曲面滤光镜410且保证布拉格滤光层400靠近色彩转换层200表面的平整性,色彩转换组件还包括模型层700和平整层600,模型层700内具有和曲面滤光镜410形状相适配的凹部710,令反射材料在凹部710内沉积形成布拉格滤光层400,同时模型层700靠近色彩转换层200的一侧设 置有平整层600,平整层600能够填充曲面滤光镜410的空隙,保证布拉格滤光层400靠近色彩转换层200表面的平整性。当曲面滤光镜410为球形并完全覆盖出光孔310时,平整层600填充于曲面滤光镜410内;当曲面滤光镜410和色彩转换层200间隔设置时,平整层600还填充曲面滤光镜410和色彩转换层200之间的间隙。进一步的,在模型层700远离平整层600的一侧还设置有玻璃盖板800,以形成封装保护层。
请一并参阅图6,本申请第二实施例还提供一种显示面板,包括上述的色彩转换组件。由于本申请实施例的显示面板包括上述的色彩转换组件,因此本申请实施例的显示面板具有上述色彩转换组件所具有的有益效果,在此不再赘述。
本申请实施例的的显示面板可以为液晶(Liquid Crystal Display,LCD)显示面板、有机发光二极管(Organic Light Emitting Display,OLED)显示面板以及利用发光二极管(Light Emitting Diode,LED)器件的显示面板。
可选的,显示面板还包括驱动背板100,驱动背板100上分布有多个光源110。光源110对应于容纳空间211设置。
进一步的,驱动背板100上还设置有遮光结构120,遮光结构120围合形成容纳腔,光源110设置于容纳腔内。当显示面板包括驱动背板100的色彩转换组件时,遮光结构120和隔离结构210对位贴合形成较为封闭的空间,进一步提高防漏光效果。
光源110的设置方式有多种,光源110可以为各种颜色的光源110,例如光源110为白色光源110、蓝色光源110等。
光源110和出光孔310的相对位置不做限定,优选的,光源110和出光孔310沿显示面板的厚度方向(图6中的Z方向)对应设置。进一步优选的,在厚度方向上,光源110在驱动背板100上的投影与出光孔310在驱动背板100上的投影至少部分重叠设置,从而保证光源110射出的光能够更多的射入光转换单元220,提高光转换单元220的吸收转换率。
本申请第三实施例还提供一种显示装置,包括上述的显示面板。本申请实施例中的显示装置包括但不限于手机、个人数字助理(Personal Digital Assistant,简称:PDA)、平板电脑、电纸书、电视机、门禁、智 能固定电话、控制台等具有显示功能的设备。由于本申请实施例的的显示装置包括上述的显示面板,因此本实施例的显示装置具有上述显示面板所具有的有益效果,在此不再赘述。
请一并参阅图7,本申请第四实施例还提供一种显示面板的制造方法,包括:
步骤S01:提供背板组件。
其中,背板组件包驱动背板100、在驱动背板100上分布的多个光源110及围合光源110设置的遮光结构120。
步骤S02:形成色彩转换组件。
色彩转换组件包括基板、位于基板上的布拉格滤光层400和色彩转换层200,布拉格滤光层400包括多个曲面滤光镜410,曲面滤光镜410沿靠近基板的方向凹陷形成,色彩转换层200包括隔离结构210、由隔离结构210围合形成的容纳空间211、在至少部分容纳空间211内的光转换单元220。
步骤S03:将背板组件和色彩转换组件相互对位贴合形成显示面板。
步骤S02和步骤S01的先后顺序不做限定,可以先形成背板组件或者先形成色彩转换组件,只要最后背板组件和色彩转换组件相互对位贴合能够形成显示面板即可。
形成色彩转换组件的方法有多种,即步骤S02的设置方式有多种,在一些可选的实施例中,步骤S02包括:
步骤S021:提供一种基板,在基板上形成模型层,并在模型层内形成布拉格滤光层,布拉格滤光层包括多个曲面滤光镜,曲面滤光镜沿靠近基板的方向凹陷形成。
其中,模型层700可以选用可塑性的透明材料制成,如光刻胶、树脂、聚二甲基硅氧烷等。模型层700可通过模具纳米压印的方法制作成型。
步骤S022:在模型层上形成平整层。
平整层600可以选用透明平坦化层材料制成,如光刻胶、封装胶等,平整层600可通过打印、喷涂、旋涂等方法制作成型。
步骤S023:在平整层上形成隔离结构,隔离结构围合形成多个容纳空 间。
在步骤S023中,至少部分容纳空间211与曲面滤光镜410对应设置。
步骤S024:在至少部分容纳空间内设置光转换单元,以形成色彩转换组件。
此时在步骤S03中,将背板组件和色彩转换组件相互对位贴合时,令遮光结构120和隔离结构210相互对接形成较为封闭的空间,光源110设置于该封闭空间,光转换单元220位于至少部分该封闭空间。
步骤S024的设置方式有多种,例如步骤S024还包括:
步骤S024a:在至少部分所述容纳空间内形成挡板,挡板具有贯穿设置的出光孔。
在步骤S024a中,挡板300和曲面滤光镜410对应设置。
步骤S024b:在挡板上形成所述光转换单元,以形成色彩转换组件。
请一并参阅图8a至图8i,以图6的显示面板为例,简述显示面板的成型过程:
第一步,如图8a所示,提供背板组件。背板组件包驱动背板100、在驱动背板100上分布的多个光源110及围合光源110设置的遮光结构120。
第二步,如图8b所示,提供一种盖板800。盖板800通常为玻璃盖板800,具有良好的硬度,能够提供较好的保护。
第三步,如图8c所示,在盖板800上形成模型层700。为了保证透光效果,优选的,模型层700为透明材料制成。
第四步,如图8d所示,在模型层700上形成凹部710。可以通过刻蚀等手段形成。
第五步,如图8e所示,在模型层700上形成布拉格滤光层400。其中,布拉格滤光层400上在凹部710所在位置形成曲面滤光镜410。
第六步,如图8f所示,在布拉格滤光层400上形成平整层600。平整层600的制造材料可以和模型层700相同或不同。为了保证透光效果,优选的,平整层600也为透明材料制成。
第七步,如图8g所示,在平整层600上形成隔离结构210,隔离结构210围合形成容纳空间211。可以利用蒸镀或其他图案化工艺在平整层600 上形成隔离结构210。
第八步,如图8h所示,在容纳空间211的平整层600上形成挡板300。挡板300具有贯穿的出光孔310。
第九步,如图8i所示,在挡板300上形成光转换单元220,以形成色彩转换组件。
第十步,将背板组件和色彩转换组件对位贴合,利用粘接胶等粘接在一起,形成如图6所示的显示面板。
本申请可以以其他的具体形式实现,而不脱离其申请构思和本质特征。因此,当前的实施例在所有方面都被看作是示例性的而非限定性的,本申请的范围由所附权利要求而非上述描述定义,并且,落入权利要求的含义和等同物的范围内的全部改变都被包括在本申请的范围之中。

Claims (14)

  1. 一种色彩转换组件,包括:
    色彩转换层,包括隔离结构、由所述隔离结构围合形成的多个容纳空间、与所述容纳空间连通的开口、以及设置于所述容纳空间内至少部分所述开口处的光转换单元;
    布拉格滤光层,包括对应于所述光转换单元的曲面滤光镜,所述曲面滤光镜沿远离所述光转换单元的方向弯曲。
  2. 根据权利要求1所述的色彩转换组件,还包括挡板,对应于所述光转换单元设置于所述开口内,且所述挡板连接于所述隔离结构,所述挡板贯穿设置有出光孔,以使经过所述光转换单元的出射光线经由所述出光孔射出。
  3. 根据权利要求2所述的色彩转换组件,其中,
    所述曲面滤光镜在所述布拉格滤光层厚度方向上的投影呈弧形;
  4. 根据权利要求3所述的色彩转换组件,其中,
    所述曲面滤光镜为半球形的至少一部分,且所述曲面滤光镜所在半球形的球心在所述出光孔内。
  5. 根据权利要求3所述的色彩转换组件,其中,所述曲面滤光镜呈半球形。
  6. 根据权利要求3所述的色彩转换组件,其中,
    相邻的两个所述曲面滤光镜相交;
    或者,所述布拉格滤光层还包括连接相邻两个所述曲面滤光镜的平整部。
  7. 根据权利要求3所述的色彩转换组件,其中,
    所述曲面滤光镜为半球形的一部分,且所述曲面滤光镜和所述挡板沿所述色彩转换组件的厚度方向间隔设置。
  8. 根据权利要求7所述的色彩转换组件,其中,
    相邻的两个所述出光孔之间设置有挡光结构,所述挡光结构连接于所述布拉格滤光层与所述挡板或所述隔离结构之间。
  9. 根据权利要求2所述的色彩转换组件,其中,所述挡板的材料包括反光金属材料和/或吸光材料。
  10. 根据权利要求1所述的色彩转换组件,其中,
    所述隔离结构的材料包括反光金属材料和/或吸光材料,或者所述隔离结构的外表面设有反光金属层和/或吸光层。
  11. 一种显示面板,其中,包括:
    驱动背板,所述驱动背板上分布有多个光源;
    权利要求1-10任一项所述的色彩转换组件,所述光源对应于所述容纳空间设置。
  12. 根据权利要求11所述的显示面板,其中,
    所述色彩转换组件还包括挡板,所述挡板对应于所述光转换单元设置于所述开口内,且所述挡板连接于所述隔离结构,所述挡板贯穿设置有出光孔,以使经过所述光转换单元的出射光线经由所述出光孔射出;
    所述光源和所述出光孔沿所述显示面板的厚度方向间隔设置,且沿所述厚度方向所述光源在所述驱动背板上的投影和所述出光孔在所述驱动背板上的投影至少部分重叠设置。
  13. 一种色彩转换组件的制造方法,其中,所述方法包括:
    提供一种基板,
    在基板上形成模型层,并在所述模型层内形成布拉格滤光层,所述布拉格滤光层包括多个曲面滤光镜,所述曲面滤光镜沿靠近基板的方向凹陷形成;
    在所述模型层上形成平整层;
    在所述平整层上形成隔离结构,所述隔离结构围合形成多个容纳空间;
    在至少部分所述容纳空间内形成光转换单元,以形成色彩转换组件。
  14. 根据权利要求13所述的方法,其中,所述在至少部分所述容纳空间内形成光转换单元之前还包括:
    在至少部分所述容纳空间内形成挡板,所述挡板具有贯穿设置的出光孔;
    在所述挡板上形成所述光转换单元,以形成所述色彩转换组件。
PCT/CN2020/081770 2019-07-11 2020-03-27 色彩转换组件、显示面板及色彩转换组件的制造方法 WO2021004097A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US17/323,193 US20210273024A1 (en) 2019-07-11 2021-05-18 Color conversion assembly, display panel and manufacturing method of color conversion assembly

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910624305.2A CN112213880B (zh) 2019-07-11 2019-07-11 色彩转换组件、显示面板及色彩转换组件的制造方法
CN201910624305.2 2019-07-11

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/323,193 Continuation US20210273024A1 (en) 2019-07-11 2021-05-18 Color conversion assembly, display panel and manufacturing method of color conversion assembly

Publications (1)

Publication Number Publication Date
WO2021004097A1 true WO2021004097A1 (zh) 2021-01-14

Family

ID=74048437

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/081770 WO2021004097A1 (zh) 2019-07-11 2020-03-27 色彩转换组件、显示面板及色彩转换组件的制造方法

Country Status (3)

Country Link
US (1) US20210273024A1 (zh)
CN (1) CN112213880B (zh)
WO (1) WO2021004097A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20210391370A1 (en) * 2019-08-28 2021-12-16 Artilux, Inc. Photo-detecting apparatus with low dark current

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104752620A (zh) * 2013-12-26 2015-07-01 业鑫科技顾问股份有限公司 颜色转换层、有机电致发光显示面板及液晶显示面板
CN104834124A (zh) * 2015-04-07 2015-08-12 武汉华星光电技术有限公司 彩色滤光基板和液晶面板
CN105204222A (zh) * 2015-10-29 2015-12-30 武汉华星光电技术有限公司 彩膜基板、液晶显示面板及电子设备
CN108490678A (zh) * 2018-03-28 2018-09-04 武汉华星光电技术有限公司 彩膜基板及其制作方法、液晶面板
US10067372B2 (en) * 2015-11-12 2018-09-04 Shenzhen China Star Optoelectronics Technology Co., Ltd. LCD improving color shift at large viewing angle
CN108573992A (zh) * 2018-05-08 2018-09-25 业成科技(成都)有限公司 显示面板、制备方法及应用该显示面板的电子装置
US10133115B2 (en) * 2015-05-06 2018-11-20 Wuhan China Star Optoelectronics Technology Co., Ltd. Color filter and manufacturing method thereof, liquid crystal display panel
US20190041692A1 (en) * 2017-08-01 2019-02-07 Shenzhen China Star Optoelectronics Technology Co., Ltd. Display panel and display device

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101901832B1 (ko) * 2011-12-14 2018-09-28 삼성디스플레이 주식회사 유기 발광 표시 장치 및 유기 발광 표시 장치의 제조 방법
KR102540337B1 (ko) * 2015-08-28 2023-06-07 삼성디스플레이 주식회사 색변환 패널, 이를 포함하는 표시 장치 및 색변환 패널의 제조 방법
CN105223724B (zh) * 2015-10-08 2018-04-27 深圳市华星光电技术有限公司 量子点液晶显示装置
CN108169957A (zh) * 2018-02-07 2018-06-15 京东方科技集团股份有限公司 彩膜片及其制作方法和彩膜基板
CN108761894B (zh) * 2018-07-03 2022-04-15 京东方科技集团股份有限公司 一种彩膜基板、其制备方法、显示面板及显示装置

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104752620A (zh) * 2013-12-26 2015-07-01 业鑫科技顾问股份有限公司 颜色转换层、有机电致发光显示面板及液晶显示面板
CN104834124A (zh) * 2015-04-07 2015-08-12 武汉华星光电技术有限公司 彩色滤光基板和液晶面板
US10133115B2 (en) * 2015-05-06 2018-11-20 Wuhan China Star Optoelectronics Technology Co., Ltd. Color filter and manufacturing method thereof, liquid crystal display panel
CN105204222A (zh) * 2015-10-29 2015-12-30 武汉华星光电技术有限公司 彩膜基板、液晶显示面板及电子设备
US10067372B2 (en) * 2015-11-12 2018-09-04 Shenzhen China Star Optoelectronics Technology Co., Ltd. LCD improving color shift at large viewing angle
US20190041692A1 (en) * 2017-08-01 2019-02-07 Shenzhen China Star Optoelectronics Technology Co., Ltd. Display panel and display device
CN108490678A (zh) * 2018-03-28 2018-09-04 武汉华星光电技术有限公司 彩膜基板及其制作方法、液晶面板
CN108573992A (zh) * 2018-05-08 2018-09-25 业成科技(成都)有限公司 显示面板、制备方法及应用该显示面板的电子装置

Also Published As

Publication number Publication date
CN112213880B (zh) 2021-11-02
CN112213880A (zh) 2021-01-12
US20210273024A1 (en) 2021-09-02

Similar Documents

Publication Publication Date Title
TWI599822B (zh) 光學構件及包含其之顯示裝置與光學構件之製造方法
CN108931863B (zh) 显示设备及其制造方法
EP3605162B1 (en) Low refractive layer and electronic device including the same
TWI463189B (zh) 光學構件、包含其之顯示裝置、及其製造方法
JP6890470B2 (ja) フォトルミネセンス表示装置およびその製造方法
EP2734876B1 (en) Optical member for wavelength conversion and display device having the same
WO2019042151A1 (zh) 彩膜片及其制作方法、彩膜基板和显示装置
JP2012512518A (ja) ナノ粒子コーティングを有する光抽出フィルム
WO2015039557A1 (zh) 反射式滤光片及其制备方法、显示装置
KR102433156B1 (ko) 광학 부재 및 이를 포함하는 표시 장치
CN107450218B (zh) 光致发光显示装置及其制造方法
WO2021004086A1 (zh) 色彩转化组件、显示面板及显示装置
WO2021004097A1 (zh) 色彩转换组件、显示面板及色彩转换组件的制造方法
US10725225B2 (en) Display device
CN112150937A (zh) 色彩转化组件及显示面板
WO2020258755A1 (zh) 色彩转化组件、显示面板及色彩转化组件的制造方法
WO2021004090A1 (zh) 色彩转换组件、显示面板及制作方法
US10809437B2 (en) Optical member and display device including the same
US11895893B2 (en) Display panel including stack of light-converging structure and band-pass filtering structure, manufacturing method thereof, and display apparatus
US11171310B2 (en) Package structure having multiple organic layers with evenly distributed liquid crystal molecules. display panel, and display device
CN115036342A (zh) 一种显示基板、显示面板
WO2023245496A1 (zh) 显示屏、显示屏的制备方法及电子设备
WO2023201699A1 (zh) 显示基板及显示装置
TWI835828B (zh) 低折射層及包含其之電子裝置
TWI793857B (zh) 顯示裝置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20836614

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 20836614

Country of ref document: EP

Kind code of ref document: A1