WO2023245496A1 - 显示屏、显示屏的制备方法及电子设备 - Google Patents

显示屏、显示屏的制备方法及电子设备 Download PDF

Info

Publication number
WO2023245496A1
WO2023245496A1 PCT/CN2022/100450 CN2022100450W WO2023245496A1 WO 2023245496 A1 WO2023245496 A1 WO 2023245496A1 CN 2022100450 W CN2022100450 W CN 2022100450W WO 2023245496 A1 WO2023245496 A1 WO 2023245496A1
Authority
WO
WIPO (PCT)
Prior art keywords
sub
light
color block
layer
color
Prior art date
Application number
PCT/CN2022/100450
Other languages
English (en)
French (fr)
Inventor
姜贝
Original Assignee
闻泰通讯股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 闻泰通讯股份有限公司 filed Critical 闻泰通讯股份有限公司
Priority to CN202280001895.3A priority Critical patent/CN115336001A/zh
Priority to PCT/CN2022/100450 priority patent/WO2023245496A1/zh
Publication of WO2023245496A1 publication Critical patent/WO2023245496A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/15Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components having potential barriers, specially adapted for light emission
    • H01L27/153Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components having potential barriers, specially adapted for light emission in a repetitive configuration, e.g. LED bars
    • H01L27/156Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components having potential barriers, specially adapted for light emission in a repetitive configuration, e.g. LED bars two-dimensional arrays

Definitions

  • the present disclosure relates to display screens, display screen preparation methods, and electronic devices.
  • each sub-pixel unit of the light-emitting layer corresponds to each sub-color block of the color block layer to pass through each sub-pixel unit. Adjust the brightness of the display light and adjust the color of the display light through each sub-color block to achieve the effect of displaying a colorful picture.
  • each sub-pixel unit can be regarded as a point light source that emits light, there may be a situation where part of the light emitted by the sub-pixel unit is directed towards non-corresponding sub-color blocks at a large angle, causing cross-lighting to occur and causing the display screen to appear. Color cast problem.
  • the sub-pixel unit is approximately a point light source that emits divergent light, part of the light emitted by the sub-pixel unit at a large angle is directed toward non-corresponding sub-color blocks, resulting in a color shift in the display screen. question.
  • a display screen a method for preparing a display screen, and an electronic device are provided.
  • a display screen, the display screen includes:
  • a light-emitting layer is provided on one side of the driving backplane, the light-emitting layer includes a plurality of sub-pixel units arranged in an array, each of the sub-pixel units is electrically connected to the driving circuit, each of the The sub-pixel unit is configured to emit light under the driving of the driving circuit;
  • a color block layer the color block layer is located on the light-emitting side of the luminescent layer, the color block layer includes a plurality of color block units arranged in an array, each of the color block units includes a plurality of sub-color blocks, Each of the sub-color blocks corresponds to each of the sub-pixel units, and each of the sub-color blocks is configured to receive light emitted from the corresponding sub-pixel unit and emit light of a predetermined waveband;
  • a light-transmitting layer, the light-transmitting layer is formed on the side of the color block layer facing the light-emitting layer, and the surface connecting the light-transmitting layer and the color block layer is formed as a semi-transparent and semi-reflective surface, so The transflective surface is configured to receive the light emitted from the sub-pixel unit, transmit the light emitted from the sub-pixel unit to the corresponding sub-color block, and reflect the light emitted from the sub-pixel unit to the corresponding sub-color block. The light of the sub-color block outside the sub-color block.
  • the semi-transparent surface is configured to receive the light emitted from the sub-pixel unit, transmit the light whose incident angle is less than the included angle ⁇ , and reflect the incident angle The light ray is greater than or equal to the angle ⁇ ;
  • the angle ⁇ is configured as: between the direction from the sub-pixel unit to another sub-color block adjacent to the corresponding sub-color block and the normal direction of the translucent and semi-reflective surface The angle formed.
  • the refractive index of the light-transmitting layer is n1
  • the refractive index of the side of the color block layer connected to the light-transmitting layer is n2, where n2 is divided into The value of sin ⁇ is less than n1.
  • the side surface of each sub-pixel unit facing away from the color block layer reaches each side of the sub-pixel unit.
  • the distance between the sub-pixel units is h, in a direction parallel to the translucent surface, for any one of the sub-color blocks, the sub-pixel unit corresponding to the sub-color block and, and the There is a distance a between the other sub-color blocks adjacent to the sub-color block,
  • the material of the light-transmitting layer includes at least one material selected from Al 2 O 3 and TiO 2 .
  • the sub-pixel unit is configured as a structure that emits blue light under the action of current
  • Each of the color block units includes at least a first sub-color block, a second sub-color block and a third sub-color block, the first sub-color block and the second sub-color block include photoluminescent material, and the third sub-color block
  • the three sub-color blocks are light-transmitting color blocks, and the first sub-color block is configured to receive blue light emitted from the corresponding sub-pixel unit, and to emit green light under the excitation of the blue light emitted by the sub-pixel unit,
  • the second sub-color block is configured to receive blue light emitted from the corresponding sub-pixel unit and emit red light under the excitation of the blue light emitted by the sub-pixel unit, and the third sub-color block is configured to Receive the blue light emitted from the corresponding sub-pixel unit and transmit it.
  • the photoluminescent material at least includes quantum dot material or fluorescent material.
  • the display screen further includes a stray light filter layer, and the stray light filter layer is provided on a side of the color block layer away from the luminescent layer.
  • the stray light filter layer includes a first light-shielding structure and a plurality of filter units arranged in an array on the first light-shielding structure.
  • Each of the filter units includes a plurality of sub-filter blocks, and the outer periphery of each of the sub-filter blocks is connected to the third A light-shielding structure, each of the sub-filter blocks is arranged corresponding to each of the sub-color blocks, and the sub-filter blocks are configured to transmit light of the predetermined waveband corresponding to the corresponding sub-color block and block it. Light outside the predetermined wavelength band.
  • the color block layer further includes a flat layer, the flat layer is provided on a side of the color block unit facing the light-transmitting layer, and the flat layer The side facing away from the color block unit is connected to the light-transmitting layer, and the surface of the light-transmitting layer connected to the flat layer is formed as the semi-transparent and semi-reflective surface.
  • the light-emitting layer is spaced apart from the light-transmitting layer.
  • the display screen further includes a sealant, which is provided along the edge of the luminescent layer and connected to the edge of the luminescent layer and the color block. between layers.
  • the display screen further includes a packaging substrate, the packaging substrate is provided on a side of the color block layer away from the light-emitting layer, and the packaging substrate The edge is located on the outer periphery of the color block layer, and the sealant is connected between the edge of the packaging substrate and the edge of the light-emitting layer.
  • a transparent filling glue is filled between the luminescent layer and the color block layer, and the frame glue is located on the periphery of the transparent filling glue.
  • a method of preparing a display screen comprising:
  • the driving backplane carries a driving circuit
  • a luminescent layer is formed on one side of the plate;
  • a color block layer is provided.
  • the color block layer includes a plurality of color block units arranged in an array.
  • Each of the color block units includes a plurality of sub-color blocks.
  • Each of the sub-color blocks is configured to receive from the corresponding color block. The light emitted by the sub-pixel unit is described, and the light of the predetermined band is emitted;
  • a light-transmitting layer is formed on one side of the color block layer, so that the surface of the light-transmitting layer connected to the color block layer is formed as a semi-transparent and semi-reflective surface;
  • the luminescent layer is connected to the color block layer to obtain the display screen.
  • each of the color block units includes at least a first sub-color block, a second sub-color block and a third sub-color block.
  • the second sub-color block includes a photoluminescent material, and the third sub-color block is a light-transmitting color block;
  • the color block layer provided includes:
  • a plurality of hollow units arranged in an array are formed on the light-shielding material, and each of the hollow units includes a first hollow hole, a second hollow hole and a third hollow hole arranged at intervals;
  • the color emitted by the photoluminescent material filled in the first hollow hole is different from the color emitted by the photoluminescent material filled in the second hollow hole.
  • the photoluminescent material includes quantum dot material
  • the photoluminescent material is filled into the first hollow hole and the second hollow hole to form the first sub-color block and the second sub-color block
  • the light-transmitting material is filled into the first hollow hole and the second hollow hole to form the first sub-color block and the second sub-color block.
  • the third hollow hole is used to form the third sub-color block, and the color block layer is obtained, including:
  • the light-transmitting material is filled into each of the third hollow holes through at least one of a yellow light process, an evaporation process, and an inkjet printing process to form the third sub-color block.
  • the display screen further includes a stray light filter layer, and the stray light filter layer includes a first light-shielding structure and a plurality of filters arranged in an array on the first light-shielding structure.
  • each filter unit includes a plurality of sub-filter blocks, and the outer periphery of each sub-filter block is connected to the first light-shielding structure;
  • Each of the sub-filter blocks is respectively provided corresponding to each of the sub-color blocks of the color block layer, and each of the sub-filter blocks is configured to provide the predetermined band corresponding to each of the corresponding sub-color blocks. Light shines through.
  • the stray light filter layer includes a plurality of filter units arranged in an array, and each of the filter units includes a plurality of sub-filter blocks, including
  • Filter materials are respectively filled in the plurality of through holes to form a plurality of sub-filter blocks.
  • connecting the luminescent layer and the color block layer to obtain the display screen includes:
  • the frame glue and the transparent filling glue are cured to obtain the display screen.
  • An electronic device includes: a display screen according to one or more embodiments of the present disclosure.
  • Figure 1 is a schematic structural diagram of a display screen provided by one or more embodiments of the present disclosure
  • Figure 2 is an enlarged view of M in Figure 1;
  • Figure 3 is an exploded schematic diagram of the structure in Figure 2;
  • Figure 4 is a step flow chart of a method for manufacturing a display screen in one or more embodiments of the present disclosure
  • Figure 5 is a partial flow structure diagram of a method for manufacturing a display screen in one or more embodiments of the present disclosure
  • Figure 6 is a flow chart of step S3 of the method of manufacturing a display screen in one or more embodiments of the present disclosure
  • Figure 7 is a flow chart of step S5 of the method of manufacturing a display screen in one or more embodiments of the present disclosure
  • Figure 8 is a schematic structural diagram of an electronic device in one or more embodiments of the present disclosure.
  • first, second, etc. in the description and claims of the present disclosure are used to distinguish different objects, rather than to describe a specific order of objects.
  • first camera and the second camera are used to distinguish different cameras, rather than to describe a specific order of the cameras.
  • words such as “exemplary” or “for example” mean examples, illustrations or explanations. Any embodiment or design described as “exemplary” or “such as” in the present disclosure is not intended to be construed as preferred or advantageous over other embodiments or designs. To be precise, the use of words such as “exemplary” or “such as” is intended to present relevant concepts in a specific manner. In addition, in the description of the embodiments of the present disclosure, unless otherwise stated, the meaning of "plurality" refers to both one or more than two.
  • the display screen 1 provided by this application can be applied to electronic equipment.
  • the partially translucent surface 130 of one sub-color block 1201 transmits the light emitted by the corresponding sub-pixel unit 110 and reflects the light emitted by other non-corresponding sub-pixel units 110 to prevent the corresponding sub-color block 1201 from receiving
  • the light from the non-corresponding sub-pixel units 110 is thereby alleviated from the cross-light problem between the sub-color blocks 1201 to improve the display effect of the display screen 1 .
  • the electronic devices may include, but are not limited to, various personal computers, laptops, smart phones, tablets, portable wearable devices, vehicle-mounted display screens 1 and other devices with display functions.
  • the display screen 1 When the display screen 1 is applied to the above-mentioned electronic device, the display screen 1 can be used as at least one screen included in the above-mentioned electronic device.
  • Figure 1 is a schematic structural diagram of a display screen provided by an embodiment of the present disclosure.
  • Figure 2 is an enlarged view of M in Figure 1.
  • Figure 3 is an exploded schematic diagram of the structure in Figure 2. Please refer to Figures 1 to 3 together.
  • the display screen 1 provided by the embodiment includes:
  • the driving backplane 10 carries a driving circuit (not shown in the figure);
  • the light-emitting layer 11 is provided on one side of the driving backplane 10.
  • the light-emitting layer 11 includes a plurality of sub-pixel units 110 arranged in an array. Each sub-pixel unit 110 is electrically coupled to the driving circuit. Each sub-pixel unit 110 is A structure configured to emit light when driven by a driving circuit;
  • the color block layer 12 is located on the light emitting side of the light-emitting layer 11.
  • the color block layer 12 includes a plurality of color block units 120 arranged in an array.
  • Each color block unit 120 includes a plurality of sub-color blocks 1201.
  • the color blocks 1201 respectively correspond to each sub-pixel unit 110, and each sub-color block 1201 is configured to receive the light emitted from the corresponding sub-pixel unit 110 and to emit light of a predetermined wavelength band;
  • the light-transmitting layer 13 is formed on the side of the color block layer 12 facing the light-emitting layer 11.
  • the side of the light-transmitting layer 13 connected to the color block layer 12 is formed as a semi-transparent surface 130, which is semi-transparent and semi-transparent.
  • the back surface 130 is configured to receive the light emitted from the sub-pixel unit 110, transmit the light emitted from the sub-pixel unit 110 to the corresponding sub-color block 1201, and reflect the light emitted from the sub-pixel unit 110 to the outside of the corresponding sub-color block 1201.
  • the transflective surface 130 is configured to receive the light emitted from the sub-pixel unit 110 and transmit the light whose incident angle is less than the included angle ⁇ , and reflect the light whose incident angle is greater than or equal to the included angle ⁇ . light at angle ⁇ .
  • the included angle ⁇ is configured as the included angle formed between the direction from the sub-pixel unit 110 to another sub-color block 1201 adjacent to the corresponding sub-color block 1201 and the normal direction of the transflective surface 130 .
  • the included angle ⁇ can be a direction from any position of the sub-pixel unit 110 to any position of another sub-color block 1201 adjacent to the corresponding sub-color block 1201, and the transflective surface 130 Therefore, the value of the included angle ⁇ is not unique, as shown in Figure 2.
  • Figure 2 exemplarily shows the values of the included angle ⁇ at two different angles.
  • the thick dotted lines and arrows in Figure 2 exemplarily show two different optical paths.
  • one optical path is a light beam with an incident angle ⁇ 1 emitted from the sub-pixel unit 110 to the semi-transparent surface 130.
  • the incident angle ⁇ 1 is less than the included angle ⁇ , and the light passes through the transflective surface 130 and is emitted to the corresponding The sub-color block 1201 of , cannot shoot to the non-corresponding sub-color block 1201.
  • the light-transmitting layer 13 has a refractive index n1, and the side of the color block layer 12 connected to the light-transmitting layer 13 has a refractive index n2.
  • the refractive indexes n1 and n2 can satisfy : n1>n2, so when light is emitted from a propagation medium with a high refractive index to a propagation medium with a low refractive index, when the incident angle of the light is larger, total reflection will occur, causing the light-transmitting layer 13 to be in contact with the color block layer
  • the connection surface of 12 is formed as a semi-transparent surface 130.
  • connection between the light-transmitting layer 13 and the color block layer 12 can be formed to be able to pass through the first preset angle.
  • the transflective surface 130 reflects the light of ⁇ 1 and the light of the second preset angle ⁇ 2.
  • the semi-transparent surface 130 can also be formed by covering the side of the light-transmitting layer 13 facing the light-emitting layer 11 with a semi-transparent film, or by providing an optical microstructure that can achieve the semi-transmissive and semi-reflective function. .
  • the refractive index n1 and n2 can satisfy: the value of n2 divided by sin ⁇ is less than n1, that is, the refractive index n1 and n2 can satisfy:
  • sin ⁇ can be roughly 0.4 ⁇ sin ⁇ 1.
  • can be roughly: 23° ⁇ 90°
  • the refractive index n1 satisfies: Take 1 ⁇ n1 ⁇ 1.5 as an example.
  • the refractive index n2 can roughly satisfy: 1.5 ⁇ n2 ⁇ 2.5.
  • the refractive index n1 can be: 1, 1.1, 1.2, 1.3, 1.4 or 1.5, etc.
  • the refractive index n2 can be :, 1.5, 1.6, 1.7, 1.8, 1.9, 2, 2.1, 2.2, 2.3, 2.4 or 2.5, etc.
  • each sub-pixel unit 110 facing away from the color block layer 12 to the surface of each sub-pixel unit 110
  • the distance between is h, along the direction parallel to the translucent surface 130, for any sub-color block 1201, the sub-pixel unit 110 corresponding to the sub-color block 1201 and other sub-color blocks 1201 adjacent to the sub-color block 1201 There is a distance a between them.
  • each sub-pixel unit 110 is formed into a three-dimensional structure, and each outer surface of each sub-pixel unit 110 can emit light, in order to further improve the effect of preventing cross-light, the sub-pixel unit 110 can be Among the light emitted by the unit 110, the minimum incident angle of the light beam directed to the sub-color block 1201 adjacent to the corresponding sub-color block 1201 is the included angle ⁇ , that is, the included angle ⁇ can satisfy:
  • the emissivity n1 and n2 can satisfy: This can improve the effect of preventing cross-light, and the display effect of the display screen 1 is better.
  • the material of the light-transmitting layer 13 may include at least one material among Al 2 O 3 and TiO 2 so that the light-transmitting layer 13 has a higher refractive index.
  • the side of the light-transmitting layer 13 away from the color block layer 12 can also be covered with an encapsulation layer 131 , so that the light-transmitting layer 131 protects the light-transmitting layer 13 .
  • layer 13 and the color block layer 12 to block water and oxygen and prevent the light-transmitting layer 13 and the color block layer 12 from being damaged during transportation.
  • the color block layer 12 may also include a flat layer 122 , which may include a transparent organic material.
  • the flat layer 122 is provided in a plurality of color block units 120 arranged in an array. The side facing the light-transmitting layer 13, the side of the flat layer 122 away from the color block unit 120 is connected to the light-transmitting layer 13, and the connection surface between the flat layer 122 and the light-transmitting layer 13 is formed as a semi-transparent surface 130.
  • the flat layer 122 is formed as a side of the color block layer 12 connected to the light-transmitting layer 13. Therefore, the flat layer 122 has the refractive index n2 mentioned above.
  • the flat layer 122 is used to make the color
  • the surface of the block layer 12 is flat, so that the translucent surface 130 is formed into a flat surface, so that the translucent surface 130 has a more uniform direction of transmission or total reflection of light at the same angle at different positions to improve the semi-transparent surface.
  • the effectiveness and controllability of the overall anti-cross-light function of the transflective surface 130 is used to make the refractive index of the side of the color block layer 12 connected to the light-transmitting layer 13 more uniform, which can avoid various problems due to
  • the refractive index of the sub-color blocks 1201 is not exactly the same, which leads to the problem that the critical angle of the total reflection of light is different in various parts of the translucent surface 130, thereby further improving the effectiveness and effectiveness of the overall anti-cross-light function of the translucent surface 130. Controllability.
  • the color block layer 12 may include a second light-shielding structure 121 and an array of color block units 120 disposed on the second light-shielding structure 121.
  • the second light-shielding structure 121 may include a dark color , such as black or dark gray light-shielding materials, second light-shielding structures 121 are provided on the outer periphery of each sub-color block 1201, and the second light-shielding structures 121 on the outer peripheries of two adjacent sub-color blocks 1201 are connected, so that The second light-shielding structure 121 is used to block and absorb the light between the two adjacent sub-color blocks 1201 to reduce the phenomenon of cross-light interference between the two adjacent sub-color blocks 1201, thereby further improving the display screen. 1 display effect.
  • any two adjacent sub-pixel units 110 and between each sub-pixel unit 110 and the driving backplane 10 can be fixedly connected through filling glue 111, so that they can be fixedly connected through
  • the filling glue 111 fixes each sub-pixel unit 110 to the driving backplane 10 and stabilizes the relative position between any two adjacent sub-pixel units 110, thereby improving the connection between the light-emitting layer 11 and the driving backplane 10. It is stable and makes the overall structure of the light-emitting layer 11 stable.
  • the display screen 1 of the embodiment of the present disclosure may include, but is not limited to, a quantum dot display screen, an organic light-emitting display screen, and the like.
  • the sub-pixel unit 110 can be configured as a structure that emits blue light under the action of current, such as a blue light-emitting diode, each color block
  • the unit 120 may include at least a first sub-color block 120a, a second sub-color block 120b, and a third sub-color block 120c.
  • the first sub-color block 120a, the second sub-color block 120b includes a photoluminescent material, and the third sub-color block 120c.
  • 120c is a light-transmitting color block.
  • the first sub-color block 120a is configured to receive the blue light emitted from the corresponding sub-pixel unit 110 and emit green light under the excitation of the blue light emitted by the sub-pixel unit 110.
  • the second sub-color block 120b The third sub-color block 120c is configured to receive the blue light emitted from the corresponding sub-pixel unit 110 and to emit red light under the stimulation of the blue light emitted by the sub-pixel unit 110.
  • the third sub-color block 120c is configured to receive the blue light emitted from the corresponding sub-pixel unit 110.
  • the blue light is transmitted through each sub-pixel unit 110 to adjust the luminous brightness, and each sub-color block 120 adjusts the color of the display light to realize the function of displaying a color picture on the display screen 1 .
  • the predetermined wave band corresponding to the first sub-color block 120a is the wave band of light that is approximately green in colorimetry
  • the light in the predetermined wave band corresponding to the second sub-color block 120b is in colorimetry.
  • the wavelength band of light is approximately red
  • the light in the predetermined wavelength band corresponding to the third sub-color block 120c is the wavelength band of light that is approximately blue in colorimetry.
  • the predetermined waveband corresponding to the sub-color block 1201 can also be any other waveband, which is not specifically limited in this embodiment.
  • photoluminescent materials may include, but are not limited to, quantum dot materials or fluorescent materials that can emit green or red light under the excitation of blue light.
  • the display screen 1 may also include a stray light filter layer 14.
  • the stray light filter layer 14 is provided on a side of the color block layer 12 away from the luminescent layer 11.
  • the stray light filter layer 14 may include a first light-shielding structure 141 and a plurality of filter units 140 arranged in an array on the first light-shielding structure 141.
  • Each filter unit 140 includes a plurality of sub-filter blocks 140a, and the outer periphery of each sub-filter block 140a is connected to the first light-shielding structure 141.
  • each sub-filter block 140a is provided corresponding to each sub-color block 1201, and the sub-filter block 140a is configured to transmit the light of the predetermined waveband corresponding to the corresponding sub-color block 1201 and block the light outside the predetermined waveband, for example,
  • the sub-filter block 140a corresponding to the first sub-color block 120a is used to transmit green light and block light in wavelength bands other than the green light band, and the sub-filter block 140a corresponding to the second sub-color block 120b is used to transmit light.
  • the stray light filter layer 14 is used to filter out the blue light emitted by the quantum dot material from the light emitted from the first sub-color block 120a and the second sub-color block 120b to prevent the entire display screen of the display screen 1 from being bluish.
  • the first light-shielding structure 141 may include a dark color, such as black or dark gray light-shielding material, so that the first light-shielding structure 141 can block and absorb the light between the two adjacent sub-filter blocks 140a to reduce the light. Cross-light interference occurs between two adjacent sub-filter blocks 140a, thereby further improving the display effect of the display screen 1.
  • the light-emitting layer 11 and the light-transmitting layer 13 may be spaced apart to avoid damage caused by collision between the light-emitting layer 11 and the light-transmitting layer 13 .
  • the display screen 1 may also include a frame glue 16.
  • the frame glue 16 is provided along the edge of the luminescent layer 11 and is connected to the edge of the luminescent layer 11 and the color Between the color block layers 12, on the one hand, the frame glue 16 is used to form a stable spacing between the luminescent layer 11 and the color block layer 12; on the other hand, the frame glue 16 is used to seal the edge of the display screen 1, thus including
  • the color block layer 12 and the light-emitting layer 11 prevent water and oxygen from entering the interior of the display screen 1 and causing luminescence quenching of the photoluminescent material and sub-pixel unit 110.
  • the frame glue 16 can be formed by curing a shadowless glue filled with elastic support particles, so that the frame glue 16 can support and protect the luminescent layer 11, the light-transmitting layer 13 and the color block layer. 12, the light-emitting layer 11 and the light-transmitting layer 13 can also be glued together to stabilize the overall structure of the display screen 1.
  • the display screen 1 may also include a packaging substrate 15.
  • the packaging substrate 15 is provided on a side of the color block layer 12 away from the light-emitting layer 11, and the edge of the packaging substrate 15 is located on the color block layer 12.
  • the frame glue 16 is connected between the edge of the packaging substrate 15 and the edge of the light-emitting layer 11, so that on the one hand, the color block layer 12 can be protected by the packaging substrate 15, so as to change the shape of the color block layer 12. , the structure remains stable.
  • the packaging substrate 15 can be connected to the frame glue 16 through the edge of the packaging substrate 15, so that the outer periphery of the color block layer 12 can be surrounded by the frame glue 16, so that the color block layer 12 can be integrally packaged in the display screen. 1, thereby better protecting the color block layer 12.
  • the packaging substrate 15 can be disposed on the side of the stray light filter layer 14 facing away from the luminescent layer 11 to pass through The packaging substrate 15 supports and protects the stray light filter layer 14 and the color patch layer 12 .
  • transparent filler glue 17 can be filled between the luminescent layer 11 and the color block layer 12 to further prevent water and oxygen from contacting the color block layer 12 and the luminescent layer 11. Thereby, the color patch layer 12 and the light-emitting layer 11 are further encapsulated and protected. In order to facilitate viewing, the transparent filler glue 17 is omitted in FIG. 2 .
  • the display screen 1 provided in this embodiment is provided with a light-transmitting layer 13 to form a semi-transparent surface 130 to prevent the cross-light phenomenon between the sub-color blocks 1201, thereby alleviating the color shift problem of the display screen 1 to improve the performance of the display screen 1.
  • the refractive index of the side of the color block layer 12 connected to the light-transmitting layer 13 is consistent. High, and the surface flatness of this side is high, so that the shape and performance of the semi-transparent surface 130 are less different at different positions, so that the semi-transparent surface 130 has the same angle of light at different positions.
  • the direction of transmission or total reflection is more uniform, and the overall anti-cross-light function of the transflective and semi-reflective surface 130 is more effective and controllable.
  • the embodiment of the present disclosure also provides a method for preparing the display screen 1.
  • the embodiment of the preparation method corresponds to the aforementioned embodiment of the display screen 1.
  • this preparation method The embodiments will not elaborate on the details of the foregoing embodiments of the display screen 1 one by one, but it should be clear that the preparation method in this embodiment can correspondingly implement all the contents of the foregoing embodiments of the display screen 1 .
  • Figure 4 is a schematic structural diagram of a display screen provided by an embodiment of the present disclosure.
  • Figure 4 is a step flow chart of a method for preparing a display screen in one or more embodiments of the present disclosure.
  • the display screen provided by this embodiment The preparation method of 1 includes:
  • S1 Provides a drive backplane, which carries the drive circuit.
  • S2 Provide multiple sub-pixel units, and arrange multiple sub-pixel unit arrays on one side of the driving backplane.
  • Each sub-pixel unit is electrically coupled to the driving circuit, and each sub-pixel unit is configured to emit light when driven by the driving circuit. , to form a light-emitting layer on one side of the driving backplane.
  • this step S2 may include:
  • S20 Provide multiple sub-pixel units, and arrange multiple sub-pixel unit arrays on one side of the driving backplane.
  • Each sub-pixel unit is electrically coupled to the driving circuit, and each sub-pixel unit is configured to emit light when driven by the driving circuit. .
  • the color block layer includes a plurality of color block units arranged in an array.
  • Each color block unit includes a plurality of sub-color blocks.
  • Each sub-color block is configured to receive light emitted from the corresponding sub-pixel unit. , and for the light of the predetermined band to be emitted.
  • the color patch layer 12 may include a second light-shielding structure 121 and a plurality of color patch units 120 arranged in an array on the second light-shielding structure 121.
  • step S3 may include:
  • Each hollow unit includes a first hollow hole, a second hollow hole and a third hollow hole arranged at intervals, thereby obtaining a second light-shielding structure.
  • the color emitted by the photoluminescent material filled in the first hollow hole is different from the color emitted by the photoluminescent material filled in the second hollow hole.
  • FIG. 5 where (c) in FIG. 5 shows that the second light-shielding structure 121 is formed with a hollow unit 1210 .
  • the hollow unit 1210 includes a first hollow hole 1210 a , a second hollow hole 1210 b and a third hollow hole. 1210c.
  • step S32 may include:
  • steps S320, S321 and S322 are for forming the first sub-color block 120a, the second sub-color block 120b and the third sub-color block 120c respectively.
  • steps S320, S321 and S322 are mutually exclusive. Independent process steps, therefore, step S320, step S321 and step S322 do not necessarily have to be performed in the order described above, but can be performed in any order, or can be performed separately at the same time.
  • the display screen 1 may also include a stray light filter layer 14.
  • the method may further include:
  • S3a Provide light-shielding materials.
  • a color block layer is formed on one side of the stray light filter layer, and each sub-color block of the color block layer is arranged corresponding to each sub-filter block, and each sub-filter block is configured to be corresponding to each sub-color block.
  • a predetermined band of light is transmitted.
  • the display screen 1 may also include a packaging substrate 15.
  • the method may also include:
  • S3e provides packaging substrate.
  • step S3f may include:
  • a color block layer is formed on one side of the stray light filter layer, and each sub-color block of the color block layer is arranged corresponding to each sub-filter block, and each sub-filter block is configured to be corresponding to each sub-color block.
  • a predetermined band of light is transmitted.
  • FIG. 5 shows the first light-shielding structure 141 formed with a plurality of through holes 141 a arranged in an array, and (b) in FIG. 5 shows a plurality of through holes 141 a
  • the holes are respectively filled with filter materials to form multiple sub-filter blocks 140 to obtain the stray light filter layer 14 .
  • step S33f includes step S30, step S31 and step S32.
  • step S33d may include:
  • S330f Cover the side of the stray light filter layer away from the packaging substrate with a light-shielding material.
  • Each hollow unit includes a first hollow hole, a second hollow hole and a third hollow hole arranged at intervals, thereby obtaining a second light-shielding structure.
  • FIG. 5 shows that the second light-shielding structure 121 is provided with a hollow unit 1210 .
  • FIG. 5 shows that the first hollow hole 1210a, the second hollow hole 1210b and the third hollow hole 1210c are respectively filled with corresponding photoluminescent materials or light-transmitting materials.
  • the first sub-color block 120a, the second sub-color block 120b or the third sub-color block 120c are respectively filled with corresponding photoluminescent materials or light-transmitting materials.
  • the color block layer 12 may also include a flat layer 122.
  • the method may further include:
  • the light-transmitting organic material can be coated on the surfaces of the plurality of color block units 120 through a spin coating process, so that the light-transmitting organic material can be tightly coated on the surfaces of each color block unit 120 and the second light-shielding structure 121, and The gaps between each color block unit 120 and the second light-shielding structure 121 are filled so that the surface of the flat layer 122 is formed into a flat surface.
  • the light-transmitting layer 13 can be formed by covering one side of the color block layer 12 with a high-refractive-index light-transmitting material through a spin coating process, an evaporation process, or other film layer forming processes. Therefore, there is no need to provide an additional connection structure between the light-transmitting layer 13 and the color block layer 12 to prevent the connection structure from affecting the translucent and semi-reflective performance of the translucent surface 130 between the light-transmitting layer 13 and the color block layer 12 .
  • the display screen 1 may also include an encapsulation layer 131.
  • the method may further include:
  • the encapsulating material can be covered on the side of the light-transmitting layer 13 away from the color block layer 12 by atomic force deposition to form the encapsulating layer 131 .
  • steps S1 and S2 are to form the light-emitting layer 11 and the driving backplane 10 that are connected as a whole
  • steps S3 and S4 are to form the color patch layer 12 and are connected as a whole.
  • the light-transmitting layer 13, in other words, steps S1 and S2, and steps S3 and S4 are independent process steps for two different parts included in the display screen 1. Therefore, for step S1 and step S2, and steps S3 and step S4 do not necessarily have to be performed in the order described above, but can be performed in any order, or can be performed separately at the same time.
  • the display screen 1 may also include a frame glue 16 and a transparent filler glue 17.
  • step S5 may also include:
  • FIG. 8 is a schematic structural diagram of an electronic device in one or more embodiments of the present disclosure. As shown in Figure 8, based on the same inventive concept, an embodiment of the present disclosure also provides an electronic device 2 including the above-mentioned display screen 1.
  • the device 2 may include, but is not limited to, various personal computers, laptops, smart phones, tablets, portable wearable devices, vehicle-mounted displays and other devices with display functions.
  • the above-mentioned display screen 1 may be used as a component of the electronic device 2. At least one screen is used.
  • FIG. 8 taking the electronic device 2 as a smartphone as an example, a structure of the electronic device 2 is shown. Since the display screen 1 has a smaller color cast and a better display effect, the electronic device 2 also has a better display effect.
  • the display screen provided by the present disclosure can effectively alleviate the cross-light problem between different sub-color blocks, make the display color of the display screen smaller, and improve the display effect of the display screen, and has strong industrial practicability.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Devices For Indicating Variable Information By Combining Individual Elements (AREA)

Abstract

本公开提供了一种显示屏(1)、显示屏的制备方法及电子设备(2),显示屏(1)包括驱动背板(10),发光层(11),彩色色块层(12)以及透光层(13)。发光层(11)设于驱动背板(10),且包括多个子像素单元(110),彩色色块层(12)位于发光层(11)的出光侧,且包括多个子色块(1201),各子色块(1201)分别对应于各子像素单元(110),透光层(13)的与彩色色块层(12)连接的一面形成为半透半反面(130),通过对应于一个子色块(1201)的部分半透半反面(130),能够透过对应的子像素单元(110)发出的光线,并反射其他非对应的子像素单元(110)发出的光线,从而缓解各子色块(1201)之间的串光问题,提升显示屏(1)的显示效果。

Description

显示屏、显示屏的制备方法及电子设备 技术领域
本公开涉及显示屏、显示屏的制备方法及电子设备。
背景技术
在一些显示屏中(例如使用了MicroLED、OLED显示技术的显示屏中),是通过使发光层的各子像素单元与彩色色块层的各子色块一一对应,以通过各子像素单元调整显示光线的亮度,通过各子色块调整显示光线的颜色,从而实现显示彩色画面的效果。但是,由于各子像素单元可视为发散发光的点光源,因此,存在子像素单元发出的光线中,部分大角度的光线射向非对应的子色块,进而出现串光情况导致显示画面产生色偏的问题。
发明内容
(一)要解决的技术问题
在现有技术中,由于子像素单元近似为发出发散光的点光源,导致存在子像素单元发出的光线中,部分大角度的光线射向非对应的子色块,导致显示画面产生色偏的问题。
(二)技术方案
根据本公开公开的各种实施例,提供一种显示屏、显示屏的制备方法及电子设备。
一种显示屏,所述显示屏包括:
驱动背板,所述驱动背板承载有驱动电路;
发光层,所述发光层设于所述驱动背板的一侧,所述发光层包括多个阵列排布的子像素单元,各所述子像素单元电连接于所述驱动电路,各所述子像素单元被配置为在所述驱动电路的驱动下发光的结构;
彩色色块层,所述彩色色块层位于所述发光层的出光侧,所述彩色色块层包括多个阵列排布的色块单元,各所述色块单元均包括多个子色块,各所述子色块分别对应于各所述子像素单元,各所述子色块被配置为接收自对应的所述子像素单元发出的光线,并供预定波段的光线射出;以及
透光层,所述透光层形成于所述彩色色块层的朝向所述发光层的一侧,所述透光层与所述彩色色块层连接的面形成为半透半反面,所述半透半反面被配置为接收自所述子像素单元发出的光线,并透过自所述子像素单元射向对应的所述子色块的光线,反射自所述子像素单元射向对应的所述子色块之外的所述子色块的光线。
作为本公开实施例一种可选的实施方式,所述半透半反面被配置为接收自所述子像素单元发出的光线,并透过入射角度小于夹角θ的所述光线,反射入射角度大于或等于所述夹角θ的所述光线;
其中,所述夹角θ被配置为:自所述子像素单元指向与对应的所述子色块相邻的另一所述子色块的方向与所述半透半反面的法向之间形成的夹角。
作为本公开实施例一种可选的实施方式,所述透光层的折射率为n1,所述彩色色块层的连接于所述透光层的一侧的折射率为n2,其中n2除以sinθ的值小于n1。
作为本公开实施例一种可选的实施方式,沿所述发光层指向所述彩色色块层的方向上,各所述子像素单元的背离所述彩色色块层的一侧表面至各所述子像素单元之间的距离为h,沿平行于所述半透半反面的方向上,对于任意一个所述子色块,对应于所述子色块的所述子像素单元与,和所述子色块相邻的其他所述子色块之间具有距离a,
Figure PCTCN2022100450-appb-000001
作为本公开实施例一种可选的实施方式,所述透光层的材料包括Al 2O 3、TiO 2中的至少一种材料。
作为本公开实施例一种可选的实施方式,所述子像素单元被配置为在电流的作用下发出蓝光的结构;
各所述色块单元至少包括第一子色块、第二子色块以及第三子色块,所述第一子色块、所述第二子色块包括光致发光材料,所述第三子色块为透光色块,所述第一子色块被配置为接收自对应的所述子像素单元发出的蓝光,并在所述子像素单元发出的蓝光的激发下发出绿光,所述第二子色块被配置为接收自对应的所述子像素单元发出的蓝光,并在所述子像素单元发出的蓝光的激发下发出红光,所述第三子色块被配置为接收自对应的所述子像素单元发出的蓝光并透出。
作为本公开实施例一种可选的实施方式,所述光致发光材料至少包括量子点材料或荧光材料。
作为本公开实施例一种可选的实施方式,所述显示屏还包括杂光过滤层,所述杂光过滤层设于所述彩色色块层的背离所述发光层的一侧,所述杂光过滤层包括第一遮光结构以及多个阵列设置于所述第一遮光结构的过滤单元,各所述过滤单元包括多个子过滤块,各所述子过滤块的外周均连接于所述第一遮光结构,各所述子过滤块对应于各所述子色块设置,所述子过滤块被配置为供对应的所述子色块所对应的所述预定波段的光线透过,并阻挡所述预定波段之外的光线。
作为本公开实施例一种可选的实施方式,所述彩色色块层还包括平坦层,所述平坦层设于所述色块单元朝向所述透光层的一侧,所述平坦层的背离所述色块单元的一侧连接于所述透光层,所述透光层的与所述平坦层连接的面形成为所述半透半反面。
作为本公开实施例一种可选的实施方式,所述发光层与所述透光层间隔设置。
作为本公开实施例一种可选的实施方式,所述显示屏还包括框胶,所述框胶沿所述发光层的边缘设置,并连接于所述发光层的边缘与所述彩色色块层之间。
作为本公开实施例一种可选的实施方式,所述显示屏还包括封装基板,所述封装基板设于所述彩色色块层的背离所述发光层的一侧,且所述封装基板的边缘位于所述彩色色块层的外周,所述框胶连接于所述封装基板的边缘与所述发光层的边缘之间。
作为本公开实施例一种可选的实施方式,所述发光层与所述彩色色块层之间填充有透明填充胶,所述框胶位于所述透明填充胶的外围。
一种显示屏的制备方法,所述制备方法包括:
提供驱动背板,所述驱动背板承载有驱动电路;
提供多个子像素单元,将多个所述子像素单元阵列排布于所述驱动背板的一侧,并使得各所述子像素单元电耦接于所述驱动电路,以在所述驱动背板的一侧形成发光层;
提供彩色色块层,所述彩色色块层包括多个阵列排布的色块单元,各所述色块单元均包括多个子色块,各所述子色块被配置为接收自对应的所述子像素单元 发出的光线,并供预定波段的光线射出;
在所述彩色色块层的一侧形成透光层,以使所述透光层的与所述彩色色块层连接的面形成为半透半反面;
将所述发光层与所述彩色色块层连接,得到所述显示屏。
作为本公开实施例一种可选的实施方式,各所述色块单元至少包括第一子色块、第二子色块以及第三子色块,所述第一子色块、所述第二子色块包括光致发光材料,所述第三子色块为透光色块;
所述提供彩色色块层,包括:
提供遮光材料;
在所述遮光材料上形成阵列排布的多个镂空单元,各所述镂空单元均包括间隔设置的第一镂空孔、第二镂空孔以及第三镂空孔;
将光致发光材料填入所述第一镂空孔、所述第二镂空孔,以形成所述第一子色块、所述第二子色块,将透光材料填入所述第三镂空孔,以形成所述第三子色块,得到所述彩色色块层;
其中,填充于所述第一镂空孔中的所述光致发光材料发出的颜色与填入所述第二镂空孔中的所述光致发光材料发出的颜色不同。
作为本公开实施例一种可选的实施方式,所述光致发光材料包括量子点材料;
所述将所述光致发光材料填入所述第一镂空孔、所述第二镂空孔,以形成所述第一子色块、所述第二子色块,将透光材料填入所述第三镂空孔,以形成所述第三子色块,得到所述彩色色块层,包括:
将绿量子点材料通过黄光工艺、蒸镀工艺以及喷墨印刷工艺中的至少一种填入各所述第一镂空孔,以形成所述第一子色块;
将红量子点材料通过黄光工艺、蒸镀工艺以及喷墨印刷工艺中的至少一种填入各所述第二镂空孔,以形成所述第二子色块;
将透光材料通过黄光工艺、蒸镀工艺以及喷墨印刷工艺中的至少一种填入各所述第三镂空孔,以形成所述第三子色块。
作为本公开实施例一种可选的实施方式,所述显示屏还包括杂光过滤层,所述杂光过滤层包括第一遮光结构以及多个阵列排布于所述第一遮光结构的过滤单元,各所述过滤单元包括多个子过滤块,各所述子过滤块的外周均连接于所述第一遮光结构;
各所述子过滤块分别对应于所述彩色色块层的各所述子色块设置,各所述子过滤块被配置为供对应的各所述子色块所对应的所述预定波段的光线透过。
作为本公开实施例一种可选的实施方式,所述杂光过滤层包括多个阵列排布的过滤单元,各所述过滤单元包括多个子过滤块,包括
提供遮光材料;
在所述遮光材料上形成阵列排布的多个通孔,以形成第一遮光结构;
在多个所述通孔中分别填充滤光材料,以形成多个所述子过滤块。
作为本公开实施例一种可选的实施方式,所述将所述发光层与所述彩色色块层相连接,得到所述显示屏,包括:
沿所述发光层的边缘或沿所述彩色色块层的边缘设置框胶;
在所述框胶围合形成的空间内填充透明填充胶;
将所述发光层与所述彩色色块层通过所述框胶以及所述透明填充胶连接;
固化所述框胶以及所述透明填充胶,得到所述显示屏。
一种电子设备,包括:如本公开的一个或多个实施例的显示屏。
本公开的其他特征和优点将在随后的说明书中阐述,并且,部分地从说明书中变得显而易见,或者通过实施本公开而了解。本公开的目的和其他优点在说明书、权利要求书以及附图中所特别指出的结构来实现和获得,本公开的一个或多个实施例的细节在下面的附图和描述中提出。
为使本公开的上述目的、特征和优点能更明显易懂,下文特举可选实施例,并配合所附附图,作详细说明如下。
附图说明
此处的附图被并入说明书中并构成本说明书的一部分,示出了符合本公开的实施例,并与说明书一起用来解释本公开的原理。
为了更清楚地说明本公开实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,对于本领域普通技术人员而言,在不付出创造性劳动性的前提下,还可以根据这些附图获得其他的附图。
图1为本公开一个或多个实施例提供的显示屏的结构示意图;
图2为图1中M处的放大图;
图3为图2中的结构的分解示意图;
图4为本公开一个或多个实施例中显示屏的制备方法的步骤流程图;
图5为本公开一个或多个实施例中显示屏的制备方法的部分流程结构示意图;
图6为本公开一个或多个实施例中显示屏的制备方法的步骤S3的流程图;
图7为本公开一个或多个实施例中显示屏的制备方法的步骤S5的流程图;
图8为本公开一个或多个实施例中电子设备的结构示意图。
具体实施方式
为了能够更清楚地理解本公开的上述目的、特征和优点,下面将对本公开的方案进行进一步描述。需要说明的是,在不冲突的情况下,本公开的实施例及实施例中的特征可以相互组合。
在下面的描述中阐述了很多具体细节以便于充分理解本公开,但本公开还可以采用其他不同于在此描述的方式来实施;显然,说明书中的实施例只是本公开的一部分实施例,而不是全部的实施例。
本公开的说明书和权利要求书中的术语“第一”和“第二”等是用来区别不同的对象,而不是用来描述对象的特定顺序。例如,第一摄像头和第二摄像头是为了区别不同的摄像头,而不是为了描述摄像头的特定顺序。
在本公开实施例中,“示例性的”或者“例如”等词来表示作例子、例证或说明。本公开实施例中被描述为“示例性的”或者“例如”的任何实施例或设计方案不应被解释为比其它实施例或设计方案更优选或更具优势。确切而言,使用“示例性的”或者“例如”等词旨在以具体方式呈现相关概念,此外,在本公开实施例的描述中,除非另有说明,“多个”的含义是指两个或两个以上。
本申请提供的显示屏1,可以应用于电子设备中。通过在彩色色块层12的朝向发光层11的一侧设置透光层13,并使透光层13的与彩色色块层12连接的一面形成为半透半反面130,从而,能够通过对应于一个子色块1201的部分半透半反面130,透过对应的子像素单元110发出的光线,并反射其他非对应的子像素单元110发出的光线,以阻止对应的子色块1201接收到非对应的子像素单元110的光线,从而缓解各子色块1201之间的串光问题,以提升显示屏1的显示效果。其中,电子设备可包括但不限于是各种个人计算机、笔记本电脑、智能手机、平板电脑、 便携式可穿戴设备、车载显示屏1等具有显示功能的设备。当将该显示屏1应用于上述电子设备时,该显示屏1可作为上述电子设备的包括的至少一个屏幕使用。
图1为本公开实施例提供的显示屏的结构示意图,图2为图1中M处的放大图,图3为图2中的结构的分解示意图,请一并参阅图1至图3,本实施例提供的显示屏1包括:
驱动背板10,驱动背板10承载有驱动电路(图中未示出);
发光层11,发光层11设于驱动背板10的一侧,发光层11包括多个阵列排布的子像素单元110,各子像素单元110电耦接于驱动电路,各子像素单元110被配置为在驱动电路的驱动下发光的结构;
彩色色块层12,彩色色块层12位于发光层11的出光侧,彩色色块层12包括多个阵列排布的色块单元120,各色块单元120均包括多个子色块1201,各子色块1201分别对应于各子像素单元110,各子色块1201被配置为接收自对应的子像素单元110发出的光线,并供预定波段的光线射出;以及
透光层13,透光层13形成于彩色色块层12的朝向发光层11的一侧,透光层13的与彩色色块层12连接的一面形成为半透半反面130,半透半反面130被配置为接收自子像素单元110发出的光线,并透过自子像素单元110射向对应的子色块1201的光线,反射自子像素单元110射向对应的子色块1201之外的子色块1201的光线。
作为本公开实施例一种可选的实施方式,半透半反面130被配置为接收自子像素单元110发出的光线,并透过入射角度小于夹角θ的光线,反射入射角度大于或等于夹角θ的光线。其中,夹角θ被配置为:自子像素单元110指向与对应的子色块1201相邻的另一子色块1201的方向与半透半反面130的法向之间形成的夹角。可以理解的是,由于夹角θ可为自子像素单元110的任一位置指向与对应的子色块1201相邻的另一子色块1201的任一位置的方向,与半透半反面130的法向之间形成的夹角,因此,夹角θ的取值不唯一,如图2所示,图2中示例性地示出了两种不同角度的夹角θ的取值情况。
以夹角θ的角度取值为图2中所示的角度较小的夹角θ为例,如图2所示,图2中的粗虚线与箭头示例性地示出了两种不同的光路,其中,一种光路为自子像素单元110射向半透半反面130的入射角度为φ1的光线,该入射角度φ1小于夹角θ,且该光线透过半透半反面130,并射向对应的子色块1201,另一种光路为自子像素单元110射向半透半反面130的入射角度为φ2的光线,该入射角度φ2大于夹角θ,且该光线被半透半反面130反射,无法射向非对应的子色块1201。
作为本公开实施例一种可选的实施方式,透光层13具有折射率n1,彩色色块层12的连接于透光层13的一侧具有折射率n2,该折射率n1与n2可满足:n1>n2,从而利用光线自高折射率的传播介质射向低折射率的传播介质时,当光线的入射角较大,会发生全反射的性质,使透光层13与彩色色块层12的连接面形成为半透半反面130,换言之,无需额外设置其他的光学结构,即能够使透光层13与彩色色块层12的相连接处形成为,能够透过第一预设角度φ1的光线并反射第二预设角度φ2的光线的半透半反面130。
在其他实施方式中,半透半反面130还可通过在透光层13的朝向发光层11的一侧覆设半透半反膜,或者设置能够实现半透半反功能的光学微结构来形成。
作为本公开实施例一种可选的实施方式,为了使半透半反面130能够将入射角度为第二预设角度φ2的光线尽可能多地甚至全部反射,并透过入射角度为第一预设角度φ1的光线,以实现更好的防串光的效果,可使夹角θ为半透半反面130 的全反射临界角,而全反射临界角可以理解为折射角等于90°时的入射角角度,从而,根据折射率的计算公式,该折射率n1与n2可满足:n2除以sinθ的值小于n1,即,该折射率n1与n2可满足:
Figure PCTCN2022100450-appb-000002
作为本公开实施例一种可选的实施方式,考虑到实际情况中,sinθ可大致为0.4≤sinθ≤1,换言之,θ可大致为:23°≤θ≤90°,以折射率n1满足:1≤n1≤1.5为例,此时,折射率n2可大致满足:1.5≤n2≤2.5,例如,折射率n1可为:1、1.1、1.2、1.3、1.4或1.5等,折射率n2可为:、1.5、1.6、1.7、1.8、1.9、2、2.1、2.2、2.3、2.4或2.5等。
作为本公开实施例一种可选的实施方式,沿发光层11指向彩色色块层12的方向上,各子像素单元110的背离彩色色块层12的一侧表面至各子像素单元110之间的距离为h,沿平行于半透半反面130的方向上,对于任意一个子色块1201,对应于子色块1201的子像素单元110与和子色块1201相邻的其他子色块1201之间具有距离a,考虑到各子像素单元110形成为立体的结构,且各子像素单元110的各外表面均可发光,因此,为了更进一步地提升防止串光的效果,可使子像素单元110发出的光线中,射向与对应的子色块1201相邻的子色块1201的光束的最小入射角为夹角θ,即,夹角θ可满足:
Figure PCTCN2022100450-appb-000003
可见,射率n1与n2可满足:
Figure PCTCN2022100450-appb-000004
从而能够提升防止串光的效果,显示屏1的显示效果更好。
作为本公开实施例一种可选的实施方式,透光层13的材料可包括Al 2O 3、TiO 2中的至少一种材料,以使透光层13具有较高的折射率。
如图3所示,作为本公开实施例一种可选的实施方式,透光层13的背离彩色色块层12的一侧还可覆设有封装层131,从而通过封装层131保护透光层13以及彩色色块层12,以阻隔水氧,并避免透光层13、彩色色块层12在转运的过程中受到破坏。
作为本公开实施例一种可选的实施方式,彩色色块层12还可包括平坦层122,该平坦层122可包括透明有机材料,平坦层122设于多个阵列排布的色块单元120的朝向透光层13的一侧,平坦层122的背离色块单元120的一侧连接于透光层13,平坦层122与透光层13的连接面形成为半透半反面130,换言之,该平坦层122形成为彩色色块层12的连接于透光层13的一侧,因此,该平坦层122具有前文中所述的折射率n2,该平坦层122一方面,用于使彩色色块层12的表面平整,以使半透半反面130形成为形状平整的面,从而半透半反面130在各个不同位置处对相同角度的光线的透过或全反射方向更加统一,以提升半透半反面130整体的防串光功能的有效性及可控性,另一方面,用于使彩色色块层12的连接于透光层13的一侧的折射率更加统一,能够避免由于各子色块1201的折射率不完全相同,而导致半透半反面130各处对光线的全反射临界角存在差异的问题,从而进一步提升半透半反面130整体的防串光功能的有效性及可控性。
作为本公开实施例一种可选的实施方式,彩色色块层12可包括第二遮光结构121以及阵列设于第二遮光结构121的色块单元120,该第二遮光结构121可包括深色,例如黑色或深灰色等颜色的遮光材料,各子色块1201的外周均设置有第二遮光结构121,且相邻的两个子色块1201的外周的第二遮光结构121相连接,从而能够通过第二遮光结构121来遮挡、吸收相邻的两个子色块1201之间的光线, 以减少光线在相邻的两个子色块1201之间发生串光干扰的现象,从而进一步地提升显示屏1的显示效果。
作为本公开实施例一种可选的实施方式,任意相邻的两个子像素单元110之间、以及各子像素单元110与驱动背板10之间可通过填充胶111相固定连接,从而能够通过该填充胶111将各子像素单元110固定于驱动背板10的同时,使任意相邻的两个子像素单元110之间的相对位置稳定,从而使发光层11与驱动背板10之间的连接稳固,并使发光层11整体的结构稳定。
可以理解的是,本公开实施例的显示屏1,可包括但不限于量子点显示屏以及有机发光显示屏等。
以显示屏1为量子点显示屏为例,作为本公开实施例一种可选的实施方式,子像素单元110可被配置为在电流的作用下发出蓝光的结构,例如蓝光发光二极管,各色块单元120可至少包括第一子色块120a、第二子色块120b以及第三子色块120c,第一子色块120a、第二子色块120b包括光致发光材料,第三子色块120c为透光色块,第一子色块120a被配置为接收自对应的子像素单元110发出的蓝光,并在子像素单元110发出的蓝光的激发下发出绿光,第二子色块120b被配置为接收自对应的子像素单元110发出的蓝光,并在子像素单元110发出的蓝光的激发下发出红光,第三子色块120c被配置为接收自对应的子像素单元110发出的蓝光并透出,从而通过各子像素单元110来调整发光亮度,通过各子色块120来调整显示光线的颜色,以实现使显示屏1显示彩色画面的功能。
可以理解的是,此时,第一子色块120a对应的预定波段为在色度学中大致成绿色的光线的波段,第二子色块120b对应的预定波段的光线为在色度学中大致成红色的光线的波段,第三子色块120c对应的预定波段的光线为在色度学中大致成蓝色的光线的波段。在其他实施方式中,子色块1201对应的预定波段还可为其他的任意波段,本实施例不作具体限定。
作为本公开实施例一种可选的实施方式,光致发光材料可包括但不限于能够在蓝光的激发下发出绿光或红光的量子点材料或荧光材料等。
作为本公开实施例一种可选的实施方式,显示屏1还可包括杂光过滤层14,杂光过滤层14设于彩色色块层12的背离发光层11的一侧,杂光过滤层14可包括第一遮光结构141以及阵列设置于第一遮光结构141的多个过滤单元140,各过滤单元140包括多个子过滤块140a,各子过滤块140a的外周均连接于第一遮光结构141,各子过滤块140a对应于各子色块1201设置,子过滤块140a被配置为供对应的子色块1201所对应的预定波段的光线透过,并阻挡预定波段之外的光线,例如,对应于第一子色块120a的子过滤块140a用于透过绿光,并阻挡除绿光波段之外的波段的光线,对应于第二子色块120b的子过滤块140a用于透过红光,并阻挡除红光波段之外的波段的光线,对应于第三子色块120c的子过滤块140a用于透过蓝光,并阻挡除蓝光波段之外的波段的光线,从而,通过杂光过滤层14来滤除自第一子色块120a、第二子色块120b射出的光线中,未激发量子点材料发光的蓝光,以防止出现显示屏1的显示画面整体偏蓝的情况。该第一遮光结构141可包括深色,例如黑色或深灰色等颜色的遮光材料,从而能够通过第一遮光结构141来遮挡、吸收相邻的两个子过滤块140a之间的光线,以减少光线在相邻的两个子过滤块140a之间发生串光干扰的现象,从而进一步地提升显示屏1的显示效果。
作为本公开实施例一种可选的实施方式,发光层11与透光层13可间隔设置,以避免发光层11与透光层13相碰撞而导致损坏。
如图1所示,作为本公开实施例一种可选的实施方式,显示屏1还可包括框 胶16,框胶16沿发光层11的边缘设置,并连接于发光层11的边缘与彩色色块层12之间,以一方面通过框胶16来使发光层11与彩色色块层12之间形成稳定的间距,另一方面,通过框胶16封闭显示屏1的边缘处,从而包括彩色色块层12以及发光层11,避免水和氧气进入显示屏1的内部,导致光致发光材料、子像素单元110发生发光猝灭。
作为本公开实施例一种可选的实施方式,框胶16可由填充有弹性支撑颗粒的无影胶固化形成,从而框胶16能够支撑、保护发光层11、透光层13以及彩色色块层12的同时,还能够将发光层11与透光层13相胶接,以使显示屏1整体的结构稳定。
作为本公开实施例一种可选的实施方式,显示屏1还可包括封装基板15,封装基板15设于彩色色块层12的背离发光层11的一侧,且封装基板15的边缘位于彩色色块层12的外周,框胶16连接于封装基板15的边缘与发光层11的边缘之间,从而一方面能够通过封装基板15保护彩色色块层12,以使彩色色块层12的形状、结构保持稳定,另一方面,能够通过封装基板15的边缘连接于框胶16,从而能够使彩色色块层12的外周被框胶16包围,以将彩色色块层12整体封装于显示屏1的内部,从而对彩色色块层12的保护效果更好。可以理解的是,当彩色色块层12的背离发光层11的一侧设有杂光过滤层14时,封装基板15可设于杂光过滤层14的背离发光层11的一侧,以通过封装基板15支撑、保护杂光过滤层14以及彩色色块层12。
作为本公开实施例一种可选的实施方式,发光层11与彩色色块层12之间可填充有透明填充胶17,以进一步地避免水和氧气接触彩色色块层12以及发光层11,从而进一步地封装、保护彩色色块层12以及发光层11,其中,为了便于看,图2中省略了透明填充胶17。
本实施例提供的显示屏1,通过设置透光层13以形成半透半反面130,来阻止各子色块1201之间的串光现象,从而缓解了显示屏1的色偏问题,以提升显示屏1的显示效果。
此外,通过在多个阵列排布的色块单元120的朝向透光层13的一侧设置平坦层122,以使得彩色色块层12的连接于透光层13的一侧的折射率一致性高,且该一侧的表面平整度高,从而使半透半反面130的形状、性能在不同的位置的差异均较小,使得半透半反面130在各个不同位置处对相同角度的光线的透过或全反射方向更加统一,半透半反面130整体的防串光功能的有效性及可控性更好。
基于同一发明构思,为了制备得到上述显示屏1,本公开实施例还提供了一种显示屏1的制备方法,该制备方法实施例与前述显示屏1实施例对应,为便于阅读,本制备方法实施例不再对前述显示屏1实施例中的细节内容进行逐一赘述,但应当明确,本实施例中的制备方法能够对应实现前述显示屏1实施例中的全部内容。
图4为本公开实施例提供的显示屏的结构示意图,图4为本公开一个或多个实施例中显示屏的制备方法的步骤流程图,参照图4所示,本实施例提供的显示屏1的制备方法,制备方法包括:
S1、提供驱动背板,驱动背板承载有驱动电路。
S2、提供多个子像素单元,并将多个子像素单元阵列设置于驱动背板的一侧,各子像素单元电耦接于驱动电路,各子像素单元被配置为在驱动电路的驱动发光的结构,以在驱动背板的一侧形成发光层。
请结合图3所示,作为本公开实施例一种可选的实施方式,该步骤S2可包括:
S20、提供多个子像素单元,并将多个子像素单元阵列设置于驱动背板的一侧,各子像素单元电耦接于驱动电路,各子像素单元被配置为在驱动电路的驱动发光的结构。
S21、在任意相邻的两个子像素单元之间、以及各子像素单元与驱动背板之间设置填充胶。
S22、固化填充胶,以在驱动背板的一侧形成发光层。
S3、提供彩色色块层,彩色色块层包括多个阵列排布的色块单元,各色块单元均包括多个子色块,各子色块被配置为接收自对应的子像素单元发出的光线,并供预定波段的光线射出。
由前文所述,彩色色块层12可包括第二遮光结构121以及阵列设置于第二遮光结构121的多个色块单元120,在此一个或多个实施例中,该步骤S3可包括:
S30、提供遮光材料。
S31、通过黄光工艺在遮光材料上形成阵列排布的多个镂空单元,各镂空单元均包括间隔设置的第一镂空孔、第二镂空孔以及第三镂空孔,得到第二遮光结构。
S32、将光致发光材料填入第一镂空孔、第二镂空孔,以形成第一子色块、第二子色块,将透光材料填入第三镂空孔,以形成第三子色块,得到彩色色块层;
其中,填充于第一镂空孔中的光致发光材料发出的颜色与填入第二镂空孔中的光致发光材料发出的颜色不同。
请结合图5所示,其中,图5中的(c)示出了第二遮光结构121形成有镂空单元1210,镂空单元1210包括第一镂空孔1210a、第二镂空孔1210b以及第三镂空孔1210c。
以光致发光材料包括量子点材料为例,在此一个或多个实施例中,该步骤S32可包括:
S320、将绿量子点材料通过黄光工艺、蒸镀工艺以及喷墨印刷工艺中的至少一种工艺填入各第一镂空孔,以形成第一子色块。
S321、将红量子点材料通过黄光工艺、蒸镀工艺以及喷墨印刷工艺中的至少一种工艺填入各第二镂空孔,以形成第二子色块。
S322、将透光材料通过黄光工艺、蒸镀工艺以及喷墨印刷工艺中的至少一种工艺填入各第三镂空孔,以形成第三子色块。
应该理解的是,上述步骤S320、步骤S321以及步骤S322是为了分别形成第一子色块120a、第二子色块120b以及第三子色块120c,换言之,步骤S320、步骤S321以及步骤S322相互独立的工艺步骤,因此,对于步骤S320、步骤S321以及步骤S322,并不是必然按照上文所述的顺序依次进行,而是可以以任意的先后顺序进行,或者可以同时分别进行。
由前文所述,显示屏1还可包括杂光过滤层14,在此一个或多个实施例中,该方法还可包括:
S3a、提供遮光材料。
S3b、通过黄光工艺在遮光材料形成阵列排布的多个通孔,得到第一遮光结构。
S3c、在多个通孔中分别填充滤光材料,以形成多个子过滤块,得到杂光过滤层。
S3d、在杂光过滤层的一侧形成彩色色块层,且彩色色块层的各子色块对应于各子过滤块设置,各子过滤块被配置为供对应的各子色块所对应的预定波段的光线透过。
请一并参阅图5与图6,由前文所述,显示屏1还可包括封装基板15,在此 一个或多个实施例中,该方法还可包括:
S3e、提供封装基板。
S3f、在所述封装基板的一侧形成所述彩色色块层。
作为本公开实施例一种可选的实施方式,当显示屏1同时还包括封装基板15以及该杂光过滤层14时,步骤S3f可包括:
S30f、在封装基板的一侧覆设遮光材料。
S31f、通过黄光工艺在遮光材料形成阵列排布的多个通孔,得到第一遮光结构。
S32f、在多个通孔中分别填充滤光材料,以形成多个子过滤块,得到杂光过滤层。
S33f、在杂光过滤层的一侧形成彩色色块层,且彩色色块层的各子色块对应于各子过滤块设置,各子过滤块被配置为供对应的各子色块所对应的预定波段的光线透过。
其中,如图5所示,图5中的(a)示出了形成有阵列排布的多个通孔141a的第一遮光结构141,图5中的(b)示出了多个通141a孔中分别填充有滤光材料,形成多个子过滤块140,得到杂光过滤层14。
其中,步骤S33f中的“形成彩色色块层12”包括步骤S30、步骤S31与步骤S32。换言之,作为本公开实施例一种可选的实施方式,步骤S33d可包括:
S330f、在杂光过滤层的背离封装基板的一侧覆设遮光材料。
S331f、通过黄光工艺在遮光材料形成阵列排布的多个镂空单元,各镂空单元均包括间隔设置的第一镂空孔、第二镂空孔以及第三镂空孔,得到第二遮光结构。
其中,如图5所示,图5中的(c)示出了第二遮光结构121设有镂空单元1210。
S332f、将光致发光材料填入第一镂空孔、第二镂空孔,以形成第一子色块、第二子色块,将透光材料填入第三镂空孔,以形成第三子色块,得到彩色色块层。
其中,如图5所示,图5中的(d)示出了第一镂空孔1210a、第二镂空孔1210b以及第三镂空孔1210c中分别填入对应的光致发光材料或透光材料,以形成第一子色块120a、第二子色块120b或第三子色块120c。
请再次结合图3所示,由前文所述,彩色色块层12还可包括平坦层122,在此一个或多个实施例中,该方法还可包括:
S33、在第二遮光结构以及多个色块单元的背离封装基板的一侧表面涂覆透光有机材料;
S34、固化透光有机材料,形成平坦层,得到彩色色块层。
其中,可通过旋涂工艺将透光有机材料涂覆于多个色块单元120的表面,从而使透光有机材料能够紧密地涂覆于各色块单元120以及第二遮光结构121的表面,并且填充各色块单元120与第二遮光结构121之间的缝隙,以使平坦层122的表面形成为平整的面。
S4、在彩色色块层的一侧覆设透光层,以使透光层的与彩色色块层连接的一面形成为半透半反面。
其中,可通过旋涂工艺、蒸镀工艺或其他膜层成型工艺将高折射率的透光材料覆设于彩色色块层12的一侧,以形成透光层13。从而,无需在透光层13与彩色色块层12之间额外设置连接结构,避免该连接结构影响透光层13与彩色色块层12之间的半透半反面130的半透半反性能。
由前文所述,显示屏1还可包括封装层131,在此一个或多个实施例中,该方法还可包括:
S40、在透光层的背离彩色色块层的一侧覆设封装层。
其中,可通过原子力沉积的方式将封装材料覆设于透光层13的背离彩色色块层12的一侧,以形成封装层131。
应该理解的是,上述步骤S1与步骤S2是为了形成相连接形成为一个整体的发光层11以及驱动背板10,上述步骤S3与步骤S4形成相连接形成为一个整体的彩色色块层12以及透光层13,换言之,步骤S1与步骤S2,和步骤S3与步骤S4是为了显示屏1包括的两个不同的部分的,相独立的工艺步骤,因此,对于步骤S1与步骤S2,和步骤S3与步骤S4,并不是必然按照上文所述的顺序依次进行,而是可以以任意的先后顺序进行,或者可以同时分别进行。
S5、将发光层与彩色色块层相连接,得到显示屏。
请一并参阅图3、图4与图7,由前文所述,显示屏1还可包括框胶16以及透明填充胶17,在此一个或多个实施例中,该步骤S5还可包括:
S50、沿发光层的边缘或沿彩色色块层的边缘设置框胶。
S51、在框胶围合形成的空间内填充透明填充胶。
S52、将发光层与彩色色块层通过框胶以及透明填充胶连接。
S53、固化框胶以及透明填充胶,得到显示屏。
图8为本公开一个或多个实施例中电子设备的结构示意图,如图8所示,基于同一发明构思,本公开实施例还提供了一种包括上述显示屏1的电子设备2,该电子设备2可包括但不限于是各种个人计算机、笔记本电脑、智能手机、平板电脑、便携式可穿戴设备、车载显示屏等具有显示功能的设备,上述显示屏1可作为该电子设备2的包括的至少一个屏幕使用,其中,图8中以电子设备2为智能手机为例,示出了一种电子设备2的结构。由于该显示屏1的色偏小,显示效果更好,因此,电子设备2的显示效果也更好。
以上实施例的各技术特征可以进行任意的组合,为使描述简洁,未对上述实施例中的各个技术特征所有可能的组合都进行描述,然而,只要这些技术特征的组合不存在矛盾,都应当认为是本说明书记载的范围。
以上实施例仅表达了本公开的几种实施方式,其描述较为具体和详细,但并不能因此而理解为对发明专利范围的限制。应当指出的是,对于本领域的普通技术人员来说,在不脱离本公开构思的前提下,还可以做出若干变形和改进,这些都属于本公开的保护范围。因此,本公开专利的保护范围应以所附权利要求为准。
工业实用性
本公开提供的显示屏,可有效缓解不同子色块之间的串光问题,使显示屏的显示色偏小,显示屏的显示效果得到提升,具有很强的工业实用性。

Claims (20)

  1. 一种显示屏,所述显示屏包括:
    驱动背板,所述驱动背板承载有驱动电路;
    发光层,所述发光层设于所述驱动背板的一侧,所述发光层包括多个阵列排布的子像素单元,各所述子像素单元电连接于所述驱动电路,各所述子像素单元被配置为在所述驱动电路的驱动下发光的结构;
    彩色色块层,所述彩色色块层位于所述发光层的出光侧,所述彩色色块层包括多个阵列排布的色块单元,各所述色块单元均包括多个子色块,各所述子色块分别对应于各所述子像素单元,各所述子色块被配置为接收自对应的所述子像素单元发出的光线,并供预定波段的光线射出;以及
    透光层,所述透光层形成于所述彩色色块层的朝向所述发光层的一侧,所述透光层与所述彩色色块层连接的面形成为半透半反面,所述半透半反面被配置为接收自所述子像素单元发出的光线,并透过自所述子像素单元射向对应的所述子色块的光线,反射自所述子像素单元射向对应的所述子色块之外的所述子色块的光线。
  2. 根据权利要求1所述的显示屏,其中,所述半透半反面被配置为接收自所述子像素单元发出的光线,并透过入射角度小于夹角θ的所述光线,反射入射角度大于或等于所述夹角θ的所述光线;
    其中,所述夹角θ被配置为:自所述子像素单元指向与对应的所述子色块相邻的另一所述子色块的方向与所述半透半反面的法向之间形成的夹角。
  3. 根据权利要求2所述的显示屏,其中,所述透光层的折射率为n1,所述彩色色块层的连接于所述透光层的一侧的折射率为n2,其中n2除以sinθ的值小于n1。
  4. 根据权利要求1-3任一项所述的显示屏,其中,沿所述发光层指向所述彩色色块层的方向上,各所述子像素单元的背离所述彩色色块层的一侧表面至各所述子像素单元之间的距离为h,沿平行于所述半 透半反面的方向上,对于任意一个所述子色块,对应于所述子色块的所述子像素单元与,和所述子色块相邻的其他所述子色块之间的距离为a,
    Figure PCTCN2022100450-appb-100001
  5. 根据权利要求1所述的显示屏,其中,所述透光层的材料包括Al 2O 3、TiO 2中的至少一种。
  6. 根据权利要求1所述的显示屏,其中,所述子像素单元被配置为在电流的作用下发出蓝光的结构;
    各所述色块单元至少包括第一子色块、第二子色块以及第三子色块,所述第一子色块、所述第二子色块包括光致发光材料,所述第三子色块为透光色块,所述第一子色块被配置为接收自对应的所述子像素单元发出的蓝光,并在所述子像素单元发出的蓝光的激发下发出绿光,所述第二子色块被配置为接收自对应的所述子像素单元发出的蓝光,并在所述子像素单元发出的蓝光的激发下发出红光,所述第三子色块被配置为接收自对应的所述子像素单元发出的蓝光并透出。
  7. 根据权利要求6所述的显示屏,其中,所述光致发光材料至少包括量子点材料或荧光材料。
  8. 根据权利要求1所述的显示屏,其中,所述显示屏还包括杂光过滤层,所述杂光过滤层设于所述彩色色块层的背离所述发光层的一侧,所述杂光过滤层包括第一遮光结构以及多个阵列设置于所述第一遮光结构的过滤单元,各所述过滤单元包括多个子过滤块,各所述子过滤块的外周均连接于所述第一遮光结构,各所述子过滤块对应于各所述子色块设置,所述子过滤块被配置为供对应的所述子色块所对应的所述预定波段的光线透过,并阻挡所述预定波段之外的光线。
  9. 根据权利要求1-8任一项所述的显示屏,其中,所述彩色色块层还包括平坦层,所述平坦层设于所述色块单元朝向所述透光层的一侧,所述平坦层的背离所述色块单元的一侧连接于所述透光层,所述透光层的与所述平坦层连接的面形成为所述半透半反面。
  10. 根据权利要求1-8任一项所述的显示屏,其中,所述发光层与所述透光层间隔设置。
  11. 根据权利要求10所述的显示屏,其中,所述显示屏还包括框胶,所述框胶沿所述发光层的边缘设置,并连接于所述发光层的边缘与所述彩色色块层之间。
  12. 根据权利要求11所述的显示屏,其中,所述显示屏还包括封装基板,所述封装基板设于所述彩色色块层的背离所述发光层的一侧,且所述封装基板的边缘位于所述彩色色块层的外周,所述框胶连接于所述封装基板的边缘与所述发光层的边缘之间。
  13. 根据权利要求11所述的显示屏,其中,所述发光层与所述彩色色块层之间填充有透明填充胶,所述框胶位于所述透明填充胶的外围。
  14. 一种显示屏的制备方法,所述制备方法包括:
    提供驱动背板,所述驱动背板承载有驱动电路;
    提供多个子像素单元,将多个所述子像素单元阵列排布于所述驱动背板的一侧,并使得各所述子像素单元电耦接于所述驱动电路,以在所述驱动背板的一侧形成发光层;
    提供彩色色块层,所述彩色色块层包括多个阵列排布的色块单元,各所述色块单元均包括多个子色块,各所述子色块被配置为接收自对应的所述子像素单元发出的光线,并供预定波段的光线射出;
    在所述彩色色块层的一侧形成透光层,以使所述透光层的与所述彩色色块层连接的面形成为半透半反面;
    将所述发光层与所述彩色色块层连接,得到所述显示屏。
  15. 根据权利要求14所述显示屏的制备方法,其中,各所述色块单元至少包括第一子色块、第二子色块以及第三子色块,所述第一子色块、所述第二子色块包括光致发光材料,所述第三子色块为透光色块;
    所述提供彩色色块层,包括:
    提供遮光材料;
    在所述遮光材料上形成阵列排布的多个镂空单元,各所述镂空单 元均包括间隔设置的第一镂空孔、第二镂空孔以及第三镂空孔;
    将光致发光材料填入所述第一镂空孔、所述第二镂空孔,以形成所述第一子色块、所述第二子色块,将透光材料填入所述第三镂空孔,以形成所述第三子色块,得到所述彩色色块层;
    其中,填充于所述第一镂空孔中的所述光致发光材料发出的颜色与填入所述第二镂空孔中的所述光致发光材料发出的颜色不同。
  16. 根据权利要求15所述显示屏的制备方法,其中,所述光致发光材料包括量子点材料;
    所述将所述光致发光材料填入所述第一镂空孔、所述第二镂空孔,以形成所述第一子色块、所述第二子色块,将透光材料填入所述第三镂空孔,以形成所述第三子色块,得到所述彩色色块层,包括:
    将绿量子点材料通过黄光工艺、蒸镀工艺以及喷墨印刷工艺中的至少一种填入各所述第一镂空孔,以形成所述第一子色块;
    将红量子点材料通过黄光工艺、蒸镀工艺以及喷墨印刷工艺中的至少一种填入各所述第二镂空孔,以形成所述第二子色块;
    将透光材料通过黄光工艺、蒸镀工艺以及喷墨印刷工艺中的至少一种填入各所述第三镂空孔,以形成所述第三子色块。
  17. 根据权利要求14所述显示屏的制备方法,其中,所述显示屏还包括杂光过滤层,所述杂光过滤层包括第一遮光结构以及多个阵列排布于所述第一遮光结构的过滤单元,各所述过滤单元包括多个子过滤块,各所述子过滤块的外周均连接于所述第一遮光结构;
    各所述子过滤块分别对应于所述彩色色块层的各所述子色块设置,各所述子过滤块被配置为供对应的各所述子色块所对应的所述预定波段的光线透过。
  18. 根据权利要求17所述的制备方法,其中,所述杂光过滤层包括多个阵列排布的过滤单元,各所述过滤单元包括多个子过滤块,包括
    提供遮光材料;
    在所述遮光材料上形成阵列排布的多个通孔,以形成第一遮光结 构;
    在多个所述通孔中分别填充滤光材料,以形成多个所述子过滤块。
  19. 根据权利要求14-18任一项所述显示屏的制备方法,其中,所述将所述发光层与所述彩色色块层相连接,得到所述显示屏,包括:
    沿所述发光层的边缘或沿所述彩色色块层的边缘设置框胶;
    在所述框胶围合形成的空间内填充透明填充胶;
    将所述发光层与所述彩色色块层通过所述框胶以及所述透明填充胶连接;
    固化所述框胶以及所述透明填充胶,得到所述显示屏。
  20. 一种电子设备,包括:如权利要求1-13任一项所述的显示屏。
PCT/CN2022/100450 2022-06-22 2022-06-22 显示屏、显示屏的制备方法及电子设备 WO2023245496A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN202280001895.3A CN115336001A (zh) 2022-06-22 2022-06-22 显示屏、显示屏的制备方法及电子设备
PCT/CN2022/100450 WO2023245496A1 (zh) 2022-06-22 2022-06-22 显示屏、显示屏的制备方法及电子设备

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2022/100450 WO2023245496A1 (zh) 2022-06-22 2022-06-22 显示屏、显示屏的制备方法及电子设备

Publications (1)

Publication Number Publication Date
WO2023245496A1 true WO2023245496A1 (zh) 2023-12-28

Family

ID=83915390

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/100450 WO2023245496A1 (zh) 2022-06-22 2022-06-22 显示屏、显示屏的制备方法及电子设备

Country Status (2)

Country Link
CN (1) CN115336001A (zh)
WO (1) WO2023245496A1 (zh)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110911463A (zh) * 2019-11-28 2020-03-24 京东方科技集团股份有限公司 Oled显示背板及其制作方法和oled显示装置
CN112599705A (zh) * 2020-12-14 2021-04-02 京东方科技集团股份有限公司 显示面板及其制备方法
CN113053980A (zh) * 2021-03-15 2021-06-29 京东方科技集团股份有限公司 一种显示面板及其制备方法、显示装置

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110911463A (zh) * 2019-11-28 2020-03-24 京东方科技集团股份有限公司 Oled显示背板及其制作方法和oled显示装置
CN112599705A (zh) * 2020-12-14 2021-04-02 京东方科技集团股份有限公司 显示面板及其制备方法
CN113053980A (zh) * 2021-03-15 2021-06-29 京东方科技集团股份有限公司 一种显示面板及其制备方法、显示装置

Also Published As

Publication number Publication date
CN115336001A (zh) 2022-11-11

Similar Documents

Publication Publication Date Title
US10304813B2 (en) Display device having a plurality of bank structures
CN108630103B (zh) 显示装置
JP6998767B2 (ja) Oledアレイ基板及びその製造方法、oled表示パネル及びoled表示装置
CN109585487B (zh) 显示面板及其像素结构
TWI670549B (zh) 顯示單元結構及使用量子棒之顯示元件
CN110459581B (zh) 显示面板及显示装置
CN105929590B (zh) 显示基板、显示装置
KR20180017913A (ko) 발광소자 패키지 제조방법
CN108447895B (zh) 一种显示面板及显示装置
KR20150026928A (ko) 표시장치
CN212517209U (zh) 显示面板和电子装置
CN111564571B (zh) Oled显示面板及显示装置
JP5982745B2 (ja) 有機エレクトロルミネッセンス装置及び電子機器
US10761363B2 (en) Display device and method of fabricating the display device
WO2022083304A1 (zh) 显示面板及其制备方法、显示装置
WO2021004086A1 (zh) 色彩转化组件、显示面板及显示装置
KR102514873B1 (ko) 엘이디 디스플레이 장치
TWI830395B (zh) 顯示裝置
WO2023245496A1 (zh) 显示屏、显示屏的制备方法及电子设备
CN113253528A (zh) 阵列基板、反射式显示面板和反射式显示装置
WO2024082488A1 (zh) 封装发光单元、显示装置和封装发光单元的制作方法
US20210273024A1 (en) Color conversion assembly, display panel and manufacturing method of color conversion assembly
US20140077195A1 (en) Organic light-emitting diode package structure and method of manufacturing concavity on substrate
CN112103321B (zh) 显示面板及其制备方法和显示装置
JP7321867B2 (ja) 照明装置及び表示装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22947275

Country of ref document: EP

Kind code of ref document: A1