WO2023050122A1 - 显示面板和显示装置 - Google Patents

显示面板和显示装置 Download PDF

Info

Publication number
WO2023050122A1
WO2023050122A1 PCT/CN2021/121584 CN2021121584W WO2023050122A1 WO 2023050122 A1 WO2023050122 A1 WO 2023050122A1 CN 2021121584 W CN2021121584 W CN 2021121584W WO 2023050122 A1 WO2023050122 A1 WO 2023050122A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
layer
emitting device
light emitting
display panel
Prior art date
Application number
PCT/CN2021/121584
Other languages
English (en)
French (fr)
Inventor
刘玉杰
杨松
吴谦
方正
石戈
孙艳六
韩佳慧
梁蓬霞
李鸿鹏
Original Assignee
京东方科技集团股份有限公司
北京京东方显示技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 京东方科技集团股份有限公司, 北京京东方显示技术有限公司 filed Critical 京东方科技集团股份有限公司
Priority to CN202180002755.3A priority Critical patent/CN116210365B/zh
Priority to PCT/CN2021/121584 priority patent/WO2023050122A1/zh
Publication of WO2023050122A1 publication Critical patent/WO2023050122A1/zh

Links

Images

Definitions

  • the present disclosure relates to the field of display technology, in particular to a display panel and a display device.
  • the display architecture combining quantum dot layer and OLED Organic Light-Emitting Diode, organic light-emitting diode
  • OLED Organic Light-Emitting Diode, organic light-emitting diode
  • the present disclosure proposes a display panel and a display device.
  • the present disclosure provides a display panel, including: multiple light-emitting device groups, multiple light-emitting part groups, and multiple optical structural units, wherein,
  • the plurality of light emitting device groups are disposed on the first substrate, each of the plurality of light emitting device groups includes a plurality of light emitting devices, the plurality of light emitting devices includes a first light emitting device and a second light emitting device, the Both the first light-emitting device and the second light-emitting device are used to emit light of a preset color;
  • the plurality of light emitting unit groups are disposed on the light emitting side of the plurality of light emitting device groups, each of the plurality of light emitting unit groups includes a first color conversion unit and a second color conversion unit;
  • the plurality of optical structural units are arranged between the plurality of light-emitting device groups and the plurality of light-emitting part groups, and the orthographic projection of each of the plurality of optical structural units on the first substrate covers all Orthographic projection of at least one of the plurality of light emitting device groups on the first substrate, each of the plurality of optical structure groups is used to inject light emitted by the first light emitting device into the first a color conversion part for injecting the light emitted by the second light-emitting device into the second color conversion part, and the first color conversion part is used to convert the light of the preset color into light of the first color, so The second color conversion part is used for converting the light of the preset color into light of the second color.
  • the first light emitting device there is no overlap between the first light emitting device and the orthographic projection of the first color converting portion on the first substrate; and/or,
  • the orthographic projections of the second light emitting device and the second color conversion portion on the first substrate do not overlap.
  • the first color light and the second color light have different wavelength ranges.
  • the plurality of light-emitting devices in the group of light-emitting devices further include: a third light-emitting device, each of the plurality of light-emitting part groups further includes a light-transmitting part, and the plurality of optical structural units
  • Each of the orthographic projections on the first substrate also covers the orthographic projection of the third light emitting device on the first substrate,
  • Each of the plurality of light-emitting structural units is also used to inject light emitted by the third light-emitting device into the light-transmitting portion.
  • the optical structural unit is a condensing lens
  • the equivalent air thickness between the light-emitting surface of the light-emitting device and the light-emitting surface of the optical structural unit is 1 to 50% of the focal length of the condensing lens. 2 times.
  • the equivalent air thickness between the light-emitting surface of the optical structural unit and the light-emitting device is greater than or equal to a target thickness, and the target thickness H satisfies the following formula:
  • h1 is the crown height of the condensing lens
  • h2 is the equivalent air thickness between the light-emitting surface of the condensing lens and the light-incident surface of the light-emitting part
  • f is the focal length of the condensing lens.
  • the light-emitting device includes: a first electrode and a light-emitting layer, the light-emitting layer is located on a side of the first electrode away from the first substrate,
  • the display panel further includes: a pixel defining layer arranged on the first substrate, the pixel defining layer has a plurality of first receiving grooves, and a plurality of the light emitting devices in the same light emitting device group are arranged in In the same first accommodation groove, different groups of light emitting devices are arranged in different first accommodation grooves, and the first electrodes of the plurality of light emitting devices in the same first accommodation groove are insulated from each other.
  • the display panel also includes:
  • the encapsulation layer is disposed on a side of the plurality of light emitting device groups away from the first substrate, and is used for encapsulating the plurality of light emitting device groups;
  • a first filling layer located on a side of the encapsulation layer away from the first substrate
  • the second filling layer is located between the first filling layer and the plurality of light exit groups;
  • the optical structural unit is arranged between the first filled layer and the second filled layer, and is in contact with the first filled layer and the second filled layer, and the optical structural unit is close to the
  • the surface of the second filling layer is a convex surface
  • Both the first filling layer and the second filling layer have a refractive index different from that of the optical structural unit.
  • the display panel further includes a pixel defining layer disposed between the encapsulation layer and the first substrate, any two adjacent groups of light emitting devices are separated by the pixel defining layer,
  • the encapsulation layer includes: a first encapsulation sublayer, a second encapsulation sublayer and a third encapsulation sublayer arranged in sequence along a direction away from the first substrate,
  • ⁇ 1 is the maximum angle between the light incident on the first encapsulation sublayer and the thickness direction of the display panel
  • ⁇ 2 is the maximum angle between the light incident on the second encapsulation sublayer and the display panel
  • ⁇ 3 is the maximum angle between the light incident on the third encapsulation sublayer and the thickness direction of the display panel
  • ⁇ 4 is the maximum angle between the light incident on the first filling layer
  • d 1 is the thickness of the first encapsulation sublayer
  • d 2 is the thickness of the second encapsulation sublayer
  • d 3 is the thickness of the third encapsulation sublayer
  • d 4 is the thickness of the first filling layer.
  • the display panel also includes:
  • a pixel defining layer disposed between the encapsulation layer and the first substrate, wherein any two adjacent groups of light emitting devices are separated by the pixel defining layer
  • the light-shielding layer is disposed between the encapsulation layer and the first filling layer, and the orthographic projection of the light-shielding layer on the first substrate is within the range of the orthographic projection of the pixel defining layer on the first substrate.
  • the plurality of light-emitting devices in the light-emitting device group are arranged in sequence along the first direction
  • the light-shielding layer includes a plurality of first light-shielding strips arranged along the first direction, each of the first light-shielding strips are all arranged along the second direction, and every interval area between two adjacent light-emitting device groups arranged along the first direction corresponds to one of the first light-shielding strips.
  • the encapsulation layer includes: a first encapsulation sublayer, a second encapsulation sublayer, and a third encapsulation sublayer arranged in sequence away from the first substrate, and the width W of the first light-shielding strip is SL meets:
  • ⁇ 1 is the maximum angle between the light incident on the first encapsulation sublayer and the thickness direction of the display panel
  • ⁇ 2 is the maximum angle between the light incident on the second encapsulation sublayer and the display panel
  • ⁇ 3 is the maximum angle between the light incident on the third encapsulation sublayer and the thickness direction of the display panel
  • ⁇ 4 is the maximum angle between the light incident on the first filling layer The maximum angle between the ray of light and the thickness direction of the display panel
  • W PDL is the width of the pixel defining layer
  • d 1 is the thickness of the first encapsulation sublayer
  • d 2 is the second encapsulation sublayer layer thickness
  • d 3 is the thickness of the third encapsulation sublayer.
  • the refractive index of the optical structural unit is between 1.54 and 2.0.
  • the orthographic projections of each of the light exit groups on the first substrate are located within the range of the orthographic projections of the optical structural units on the first substrate.
  • the light emitting device includes: a first electrode, a second electrode and a light emitting layer, the first electrode is located on the side of the light emitting layer facing the first substrate, the second electrode is located on the side of the light emitting layer The side of the luminescent layer away from the first substrate, the first electrode is a reflective electrode, the second electrode is a transflective electrode, and a microcavity structure is formed between the first electrode and the second electrode, The microcavity structure is used to adjust the intensity of the outgoing light of the light-emitting device, so that the intensity of the outgoing light with an outgoing angle exceeding 50° is smaller than the intensity of the outgoing light with an outgoing angle between 0° and 30°.
  • the light emitting device further includes: a hole injection layer, a hole transport layer, an electron injection layer, and an electron transport layer, the hole injection layer is located between the first electrode and the light emitting layer , the hole transport layer is located between the hole injection layer and the light-emitting layer, the electron transport layer is located between the light-emitting layer and the second electrode, and the electron injection layer is located between the electron Between the transport layer and the electron injection layer, wherein,
  • the thickness of the first electrode is between 90nm and 110nm;
  • the thickness of the hole injection layer is between 70nm and 80nm;
  • the thickness of the hole transport layer is between 40nm and 50nm;
  • the thickness of the luminescent layer is between 45nm and 55nm;
  • the thickness of the electron transport layer is between 190nm and 210nm;
  • the thickness of the electron injection layer is between 210nm and 230nm;
  • the thickness of the second electrode is between 20nm and 30nm.
  • the display panel further includes a receiving structure, the receiving structure has a plurality of second receiving grooves, each of the first color conversion parts and each of the second color conversion parts are arranged in one In the second storage grooves, different first color conversion parts are arranged in different second storage grooves, different second color conversion parts are arranged in different second storage grooves, and the first color conversion parts are arranged in different second storage grooves.
  • the color conversion part and the second color conversion part are arranged in different second receiving grooves.
  • the display panel also includes:
  • a color filter layer located on a side of the plurality of light-emitting portion groups away from the first substrate, the color filter layer includes a plurality of first color filter portions and a plurality of second color filter portions, the The first color filter part is in one-to-one correspondence with the first color conversion part, the second color filter part is in one-to-one correspondence with the second color conversion part, and the first color filter part is used to transmit The first color light, the second color filter is used to transmit the second color light;
  • a black matrix located on a side of the plurality of light-emitting part groups away from the first substrate; wherein, the orthographic projection of at least a part of each of the first color conversion parts on the first substrate, each of the The orthographic projection of at least a part of the second color conversion portion on the first substrate does not overlap with the orthographic projection of the black matrix on the substrate;
  • the second base is disposed on a side of the color filter layer away from the first base.
  • the optical structural unit is a condensing lens.
  • multiple light emitting devices in the same light emitting device group are arranged along the first direction, the condenser lens is a cylindrical lens, and the axis corresponding to the cylindrical lens extends along the second direction, the a second direction intersects the first direction;
  • the first color light is red light
  • the orthographic projection of the axis corresponding to the condensing lens on the first substrate passes through the orthographic projection of the first color converting portion on the first substrate.
  • the materials of the first color conversion portion and the second color conversion portion both include quantum dot materials.
  • An embodiment of the present disclosure also provides a display device, including the above-mentioned display panel.
  • FIG. 1 is a schematic diagram of a display panel provided in a related art.
  • FIG. 2A is a plan view of a display panel provided in some embodiments of the present disclosure.
  • Fig. 2B is a schematic diagram of the distribution of light emitting devices on the first substrate provided in some embodiments of the present disclosure.
  • FIG. 3 is a cross-sectional view along line AA' in FIG. 2A provided in some embodiments of the present disclosure.
  • Fig. 4A is a schematic diagram of the imaging principle of the lens.
  • Fig. 4B is a schematic diagram of light emitted by the light emitting device group irradiating multiple light exiting parts provided in some embodiments of the present disclosure.
  • Fig. 5 is a schematic diagram of the connection between the driving structure layer and the light emitting device provided in some embodiments of the present disclosure.
  • Fig. 6 is a schematic diagram of specific film layer distribution of a light emitting device provided in some embodiments of the present disclosure.
  • FIG. 7 is a schematic diagram illustrating the dimensions of some structures provided in some embodiments of the present disclosure.
  • Fig. 8 is a schematic diagram of the light of each light-emitting device provided in some embodiments of the present disclosure after being modulated by the optical structural unit.
  • Fig. 9 is a spectrum diagram of light emitting angles of a pair of light-emitting devices provided in the examples.
  • Fig. 10 is a spectrum diagram of light emitting angles of a light emitting device provided in an example of the present disclosure.
  • Words such as “comprises” or “comprising” and similar terms mean that the elements or items listed before “comprising” or “comprising” include the elements or items listed after “comprising” or “comprising” and their equivalents, and do not exclude other component or object.
  • Words such as “connected” or “connected” are not limited to physical or mechanical connections, but may include electrical connections, whether direct or indirect. “Up”, “Down”, “Left”, “Right” and so on are only used to indicate relative positional relationship. When the absolute position of the described object changes, the relative positional relationship may also change accordingly.
  • Fig. 1 is a schematic diagram of a display panel provided in a related art.
  • the display panel can adopt a box-to-box structure.
  • the display panel includes: a display substrate and a box-to-box substrate arranged oppositely.
  • a filling layer 40 is provided between the cell substrates.
  • the display substrate includes: a first substrate 11 , a driving structure layer 20 disposed on the first substrate 11 , a pixel defining layer PDL, a plurality of light emitting devices 23 and a first encapsulation layer 30 .
  • the pixel defining layer PDL has a plurality of pixel openings, and a light emitting device 23 is disposed in each pixel opening.
  • the driving structure layer 20 is used to provide driving current for each light emitting device 23 to drive the light emitting device 23 to emit light.
  • the light emitting device 23 is used to emit light of a preset color, for example, blue light.
  • the first encapsulation layer 30 covers a plurality of light emitting devices 23, and is used for encapsulating the light emitting devices 23.
  • the box-matching substrate includes: a second substrate 12 , and also includes a color filter layer, a black matrix BM, a light exit group and a second encapsulation layer 74 disposed on the second substrate 12 .
  • the light-emitting unit group includes: a plurality of light-emitting units 71 , for example, the plurality of light-emitting units 71 includes: a plurality of red light-emitting units 71r, a plurality of green light-emitting units 71g, and a plurality of blue light-emitting units 71b.
  • Each light emitting portion 71 corresponds to one light emitting device 23
  • different light emitting portions 71 correspond to different light emitting devices 23 .
  • the red light emitting portion 71r emits red light when excited by light of a predetermined color
  • the green light emitting portion 71g emits green light when excited by light of a predetermined color
  • the blue light emitting portion 71b directly transmits blue light.
  • the materials of the red light emitting portion 71r and the green light emitting portion 71g both include quantum dot materials.
  • the material of the blue light emitting portion 71b may include scattering particle material.
  • the color filter layer includes a plurality of color filter portions 72 , the color filter portions 72 correspond to the light exit portions 71 one by one, and the color of the color filter portions 72 is the same as that of the corresponding light exit portions 71 .
  • the second encapsulation layer 74 is disposed on the side of the light exit group away from the second substrate 12 for encapsulating the light exit group.
  • the light emitted by the light-emitting device 23 is not all collimated, but some large-angle light will be generated, so that some light emitted by the light-emitting device 23 will be irradiated to the adjacent light-emitting device 23.
  • Corresponding light-emitting part For example, as shown in FIG. 1 , part of the light emitted by the light-emitting device 23 corresponding to the red light-emitting portion 71r will irradiate the green light-emitting portion 71g, thereby stimulating the green light-emitting portion 71g to emit light, thereby causing crosstalk between pixels.
  • FIG. 2A is a plan view of a display panel provided in some embodiments of the present disclosure
  • FIG. 2B is a schematic diagram of the distribution of light emitting devices on a first substrate provided in some embodiments of the present disclosure
  • FIG. 3 is a schematic diagram of a display panel provided in some embodiments of the present disclosure.
  • the display panel includes: a first substrate 11 , a plurality of light emitting device groups, a plurality of light emitting part groups 70 and a plurality of optical structural units 60 .
  • the first substrate 11 can be a glass substrate, or a flexible substrate made of flexible materials such as polyimide (PI), which is beneficial to realize flexible display.
  • PI polyimide
  • the light emitting device group 23a is disposed on the first substrate 11, and each pixel unit is provided with a light emitting device group 23a, and each light emitting device group 23a includes a plurality of light emitting devices 23, and the light emitting device 23 is used to emit light of a predetermined color.
  • the plurality of light emitting devices 23 in each light emitting device group 23a may include a first light emitting device 23r and a second light emitting device 23g.
  • a driving structure layer 20 may also be disposed on the first substrate 11, and the driving structure layer 20 is used to provide a driving signal for each light emitting device 23, so as to drive each light emitting device 23 to emit light.
  • a plurality of light-emitting unit groups 70 are arranged on the light-emitting side of the light-emitting device group 23a, each light-emitting unit group 70 includes a plurality of light-emitting units 71, and the plurality of light-emitting units 71 in each light-emitting unit group 70 includes a first color conversion unit and a second color conversion unit.
  • a plurality of optical structural units 60 are disposed between the plurality of light emitting device groups 23a and the plurality of light emitting part groups 70, and the orthographic projection of each optical structural unit 60 on the first substrate 11 covers at least one light emitting device group 23a on the first substrate. 11 , the orthographic projections of different optical structural units 60 on the first substrate do not overlap.
  • Each optical structural unit 60 is used to inject the light emitted by the first light emitting device 23r into the first color conversion part, so that the first color conversion part converts the light of the preset color into the first color light; The light emitted by the light emitting device 23g enters the second color conversion part, so that the second color conversion part converts the light of the preset color into the second color light.
  • each optical structure unit 60 has at least one curved surface, for example, the surface of the optical structure unit 60 away from the first substrate 11 is a curved surface.
  • the curved surface of the optical structural unit 60 is a continuous and smooth curved surface without an inflection point.
  • the curved surface of the optical lens unit 60 is a convex arc surface.
  • an optical structural unit 60 is arranged between the light emitting device group 23a and the plurality of light emitting part groups 70, and the light emitted by the first light emitting device 23r in the light emitting device group 23a passes through the optical structural unit 60 and can illuminate To the first color conversion part, the light emitted by the second light-emitting device 23g can be irradiated to the second color conversion part after passing through the optical structure unit 60, thereby reducing or preventing the light incident on the first color conversion part and the second color conversion part. The incident light generates crosstalk, which improves the display effect.
  • the wavelength ranges of the first color light and the second color light may be different.
  • the first color light is red light
  • the second color light is green light.
  • the orthographic projections of the first light emitting device 23r and the first color conversion portion on the first substrate 11 do not overlap; and/or, the second light emitting device 23g and the second color conversion portion are on the first substrate 11
  • the orthographic projection on has no overlap.
  • the optical structure unit 60 adopts a condensing lens, such as a convex lens.
  • FIG. 4A is a schematic diagram of the principle of lens imaging. As shown in FIG. 4A , the mark F is the focus position of the convex lens 91 , and the mark 2F is twice the focal length of the convex lens 91 . When the light source 90 is on one side of the convex lens 91 and between one focal length and two focal lengths of the convex lens 91 , an inverted image can be formed on the other side of the convex lens 91 .
  • Fig. 4B is a schematic diagram of the light emitted by the light-emitting device group provided in some embodiments of the present disclosure irradiating multiple light-emitting parts.
  • the light-emitting device 23 on the left After the emitted light passes through the optical structural unit 60, the light is irradiated to the light emitting part 71 on the right; after the light emitted by the light emitting device 23 in the middle passes through the optical structural unit 60, the light is irradiated to the light emitting part 71 in the middle; the light emitting device 23 on the right After the emitted light passes through the optical structural unit 60 , the light irradiates to the left light exit portion 71 .
  • the display panel in the embodiment of the present disclosure will be specifically introduced below by taking the multiple light emitting devices 23 arranged in sequence along the first direction in the light emitting device group 23a as an example.
  • the driving structure layer 20 is disposed on the first substrate 11, the driving structure layer 20 includes a plurality of pixel driving circuits, the pixel driving circuits correspond to the light emitting devices 23 one by one, and the pixel driving circuits It is used to provide driving current for the light emitting device 23 to drive the light emitting device 23 to emit light.
  • the pixel driving circuit includes a plurality of thin film transistors 21 .
  • FIG. 5 is a schematic diagram of the connection between the driving structure layer and the light emitting device provided in some embodiments of the present disclosure.
  • the thin film transistor 21 takes a top-gate thin film transistor as an example, and the active layer 212 is located between the gate 211 and the first substrate 11 .
  • the material of the active layer 212 may include, for example, an inorganic semiconductor material (eg, polysilicon, amorphous silicon, etc.), an organic semiconductor material, an oxide semiconductor material.
  • the active layer 212 includes a channel portion and a source connection portion and a drain connection portion located on both sides of the channel portion, the source connection portion is connected to the source 213 of the thin film transistor 21, and the drain connection portion is connected to the TFT 21
  • the drain 214 is connected.
  • Both the source connection part and the drain connection part may be doped with an impurity (eg, N-type impurity or P-type impurity) higher than that of the channel part.
  • the channel portion is opposite to the gate 211 of the thin film transistor 21. When the voltage signal loaded on the gate 211 reaches a certain value, a carrier path is formed in the channel portion, so that the source 213 and the drain 214 of the thin film transistor 21 conduct. Pass.
  • the buffer layer BFL is disposed between the thin film transistor 21 and the first substrate 11 for preventing or reducing diffusion of metal atoms and/or impurities from the first substrate 11 into the active layer 212 of the transistor.
  • the buffer layer BFL may include an inorganic material such as silicon oxide, silicon nitride, and/or silicon oxynitride, and may be formed as a multi-layer or a single layer.
  • the first gate insulating layer GI1 is disposed on a side of the active layer 212 away from the first substrate 11 .
  • the material of the first gate insulating layer GI1 may include silicon compound, metal oxide.
  • the material of the first gate insulating layer GI1 includes silicon oxynitride, silicon oxide, silicon nitride, silicon oxycarbide, silicon carbide nitride, aluminum oxide, aluminum nitride, tantalum oxide, hafnium oxide, zirconium oxide, titanium oxide and the like.
  • the first gate insulating layer GI1 may be a single layer or a multi-layer.
  • the gate electrode layer is disposed on a side of the first gate insulating layer GI1 away from the first substrate 11 .
  • the gate electrode layer includes the gate 211 of each thin film transistor and the first electrode plate of the capacitor.
  • the material of the gate electrode layer may include, for example, metal, metal alloy, metal nitride, conductive metal oxide, transparent conductive material, and the like.
  • the gate electrode layer may include gold, gold alloys, silver, silver alloys, aluminum, aluminum alloys, aluminum nitride, tungsten, tungsten nitride, copper, copper alloys, nickel, chromium, chromium nitride, molybdenum , Molybdenum alloys, titanium, titanium nitride, platinum, tantalum, tantalum nitride, neodymium, scandium, strontium ruthenium oxide, zinc oxide, tin oxide, indium oxide, gallium oxide, indium tin oxide, indium zinc oxide, etc.
  • the gate electrode layer may have a single layer or multiple layers.
  • the second gate insulating layer GI2 is disposed on the side of the gate electrode layer away from the first substrate 11 , and the material of the second gate insulating layer GI2 may include, for example, silicon compounds and metal oxides.
  • the material of the second gate insulating layer GI2 may include silicon oxynitride, silicon oxide, silicon nitride, silicon oxycarbide, silicon carbide nitride, aluminum oxide, aluminum nitride, tantalum oxide, hafnium oxide, zirconium oxide, titanium oxide, etc.
  • the second gate insulating layer GI2 may be formed in a single layer or in multiple layers.
  • the second electrode plate (not shown) of the capacitor is disposed on the side of the second gate insulating layer GI2 away from the first substrate 11 , and its material may be the same as that of the first electrode plate, for details, refer to the conductive materials listed above.
  • the interlayer insulating layer ILD is disposed on the side of the second electrode plate of the capacitor away from the first substrate 11 , and the material of the interlayer insulating layer ILD may include, for example, silicon compound, metal oxide, and the like. Specifically, the silicon compounds and metal oxides listed above can be selected, which will not be repeated here.
  • the source-drain conductive layer is disposed on a side of the interlayer insulating layer ILD away from the first substrate 11 .
  • the first source-drain conductive layer may include a source 213 and a drain 214 of each transistor, the source 213 is electrically connected to the source connection part, and the drain 214 is electrically connected to the drain connection part.
  • the source-drain conductive layer can include metal, alloy, metal nitride, conductive metal oxide, transparent conductive material, etc.
  • the source-drain conductive layer can be a single layer or multiple layers of metal, such as Mo/Al/Mo or Ti /Al/Ti.
  • the passivation layer PVX is disposed on the side of the source-drain conductive layer away from the first substrate 11 , and the material of the passivation layer PVX may include, for example, silicon oxynitride, silicon oxide, silicon nitride, and the like.
  • the planarization layer PLN is arranged on the side of the passivation layer PVX away from the first substrate 11, and the planarization layer PLN can be made of an organic insulating material, for example, the organic insulating material includes polyimide, epoxy resin, acrylic , polyester, photoresist, polyacrylate, polyamide, siloxane and other resin materials.
  • the pixel defining layer PDL is arranged on the side of the driving structure layer 20 away from the first substrate 11, the pixel defining layer has a plurality of first accommodation grooves Ca1, and the plurality of light emitting device groups 23a in the same light emitting device group 23a
  • the light emitting devices 23 are disposed in the same first accommodation groove Ca1, and different light emitting device groups 23a are disposed in different first accommodation grooves Ca1.
  • the plurality of light emitting devices 23 in each light emitting device group 23a includes: a first light emitting device 23r, a second light emitting device 23g and a third light emitting device 23b. As shown in FIG.
  • the light emitting device 23 includes: a first electrode 231 , a second electrode 232 and a light emitting layer 233 located between the first electrode 231 and the second electrode 232 .
  • the first electrode 231 may be an anode
  • the second electrode 232 may be a cathode.
  • the first electrodes 231 of the plurality of light emitting devices 23 in the same first accommodation groove Ca1 are insulated from each other.
  • the second electrodes 232 of the plurality of light emitting devices 23 may be formed as an integral structure.
  • arranging multiple light-emitting devices 23 of the same light-emitting device group 23a in the same first accommodating groove Ca1 is conducive to reducing the distance between the light-emitting devices 23, thereby reducing the optical structure.
  • the distance between adjacent first electrodes 231 may be about 1.5 ⁇ m, for example, between 1.5 ⁇ m ⁇ 1.8 ⁇ m.
  • the first electrode 231 can be formed by a sputtering process. During sputtering, a mask plate is placed between the first substrate 11 and the sputtering source, so that a plurality of first accommodating grooves Ca1 with intervals are formed. An electrode 231 .
  • FIG. 5 is only for schematic illustration, and the light emitting device 23 may also include other film layers.
  • FIG. 6 is a schematic diagram of the specific film layer distribution of the light-emitting device provided in some embodiments of the present disclosure. As shown in FIG.
  • the hole injection layer 234 is located between the first electrode 231 and the light emitting layer 233
  • the hole transport layer 235 is located between the hole injection
  • the electron injection layer 237 is located between the light emitting layer 233 and the second electrode 232
  • the electron transport layer 236 is located between the electron injection layer 237 and the light emitting layer 233 .
  • the light-emitting device 23 is an OLED device, and at this time, the light-emitting layer adopts an organic light-emitting material; or, the light-emitting device 23 is a QLED (Quantum Dot Light Emitting Diodes, quantum dot light-emitting diode) device, and at this time, the light-emitting layer adopts a quantum dot Luminescent material.
  • Each light emitting device 23 is configured to emit light of a preset color.
  • the display panel further includes: a first encapsulation layer 30 covering the pixel defining layer PDL and a plurality of light emitting devices 23 for encapsulating the light emitting devices 23 to prevent water vapor in the external environment And/or oxygen corrodes the light emitting device 23 .
  • the first encapsulation layer 30 includes: a first encapsulation sub-layer 31 , a second encapsulation sub-layer 32 and a third encapsulation sub-layer 33 arranged in sequence along a direction away from the first substrate 11 .
  • Both the first encapsulation sublayer 31 and the third encapsulation sublayer 33 can be made of highly dense inorganic materials such as silicon oxynitride, silicon oxide, and silicon nitride.
  • the second encapsulation sublayer 32 can be made of a polymer material containing a desiccant, or a polymer material that can block water vapor.
  • polymer resin is used to relieve the stress of the first encapsulation sublayer 31 and the third encapsulation sublayer 33
  • water-absorbing materials such as desiccant can also be included to absorb water molecules and/or oxygen molecules intruding inside.
  • the first filling layer 41 is disposed on the side of the first encapsulation layer 30 away from the first substrate 11, the first filling layer 41 may be made of a transparent organic material, and the surface of the first filling layer 41 away from the first substrate 11 is substantially flat, In order to facilitate the setting of the optical structural unit 60 .
  • the display panel further includes: a second base 12 , and a plurality of light emitting portion groups 70 disposed on the second base 12 .
  • the second substrate 12 is arranged opposite to the first substrate 11.
  • the second substrate 12 can be a glass substrate, or a flexible substrate made of flexible materials such as polyimide (PI), which is beneficial to realize flexible display.
  • a plurality of light outlet groups 70 are arranged on the side of the second base 12 facing the first base 11, the light outlet group 70 includes a plurality of light outlets 71, and the plurality of light outlets 71 includes, for example: a first color conversion part 71r, a second color The conversion part 71g and the light-transmitting part 71b.
  • the first color conversion part 71r is used for converting the light of the preset color into the first color light when receiving the light of the preset color, and the first color light is, for example, red light;
  • the second color conversion part 71g is used for When receiving the light of the preset color, the light of the preset color is converted into light of the second color. light.
  • the materials of the first color conversion portion 71r and the second color conversion portion 71g both include quantum dot materials, for example, the material of the first color conversion portion 71r includes red quantum dot materials, and the material of the second color conversion portion 71g can be Including the green quantum dot material, the material of the light-transmitting portion 71b includes scattering particle material.
  • the red quantum dot material is used to emit red light when excited by the blue light emitted by the light emitting device 23 ; the green quantum dot material is used to emit green light when excited by the blue light emitted by the light emitting device 23 .
  • both the red quantum dot material and the green quantum dot material can be indium phosphide (InP), zinc oxide (ZnO), graphene, cadmium selenide (CdSe), cadmium sulfide (CdS), cadmium telluride (CdTe), At least one of zinc selenide (ZnSe), zinc telluride (ZnTe) or zinc sulfide (ZnS).
  • the luminescent color of the quantum dot material can be controlled by controlling the particle size of the quantum dot material.
  • both the red quantum dot material and the green quantum dot material are zinc sulfide.
  • the particle size of the red quantum dot material is between 9nm and 10nm, thereby emitting red light; the particle size of the green quantum dot material is between 6.5nm and 7.5nm between, thereby emitting green light.
  • the material of the light-transmitting portion 71b includes scattering particle material, so as to scatter the received blue light.
  • first color conversion part 71r and the second color conversion part 71g may also be doped with scattering particles, so as to increase the emission angle of the light output part 71 .
  • the display panel further includes a housing structure 73, the housing structure 73 has a plurality of second housing parts, and each second housing part is provided with a light emitting part 71, and different light emitting parts 71 are arranged in different second housing parts. in the accommodating part. That is, each first color conversion part 71r, each second color conversion part 71g and each light-transmitting part 71b are arranged in one second accommodating part, and different first color conversion parts 71r are arranged in different second accommodating parts.
  • different second color converting portions 71g are arranged in different second accommodating portions
  • different light-transmitting portions 71b are arranged in different second accommodating portions
  • the first color converting portion 71r, the second color converting portion 71g and the light-transmitting portion 71b are disposed in second accommodation portions different from each other.
  • the cross-sectional area of each second receiving portion may gradually increase along a direction approaching the first base 11 .
  • the material of the containment structure 73 may include: acrylic polymer photoinitiator, organic pigment, resinous organic material and their mixture, wherein, the organic pigment may be black, so that the containment structure has a light-shielding effect, preventing different light exiting parts 71 Crosstalk occurs between them.
  • the first color conversion part 71r, the second color conversion part 71g, the light output part 71b, and the orthographic projection of each light emitting device 23 on the first substrate 11 are located on the first substrate 11 of the optical structural unit 60 within the range of the orthographic projection.
  • a plurality of optical structural units 60 are disposed on the side of the first filling layer 41 away from the first substrate 11 , and the orthographic projection of each optical structural unit 60 on the first substrate 11 covers at least one light emitting device group 23 a
  • the orthographic projection on the first substrate 11 covers the orthographic projection of the first color conversion part 71r, the second color conversion part 71g and the light output part 71b on the first substrate 11.
  • the orthographic projections of different optical structural units 60 on the first substrate 11 do not overlap.
  • Each optical structural unit 60 is used to inject the light emitted by the first light emitting device 23r into the first color conversion part 71r, so that the first color conversion part 71r emits the first color light; and the light emitted by the second light emitting device 23g The light enters the second color conversion part 71g, so that the second color conversion part 71g emits light of the second color; it is also used to inject the light emitted by the third light-emitting device 23b into the light-transmitting part 71b, so that the light-emitting part 71b transmits light through a preset color.
  • the optical structural unit 60 has a first surface facing the light-emitting device group 23 a and a second surface facing the plurality of light-emitting part groups 70 , the first surface is a plane, and the second surface is a convex curved surface.
  • the optical structure unit 60 is a lenticular lens, and the axis corresponding to the lenticular lens extends along a second direction, and the second direction intersects the first direction.
  • the first direction is perpendicular to the second direction.
  • the fact that the optical structural unit 60 is a lenticular lens means that the condensing lens is a part of a cylinder, and the central axis of the cylinder is the axis corresponding to the lenticular lens.
  • the light emitting devices 23 on the first substrate 11 are arranged in multiple rows and columns, the first direction is the row direction, and the second direction is the column direction.
  • the device groups 23a may correspond to the same lenticular lens, that is, the orthographic projection of each lenticular lens on the first substrate 11 may cover the orthographic projection of the plurality of light emitting device groups 23a arranged in the second direction on the first substrate 11 .
  • the top side of the longitudinal section of the optical structural unit 60 in the first direction is a convex arc
  • the top side of the longitudinal section of the optical structural unit 60 in the second direction is also a convex arc.
  • the optical structural unit 60 can make the emitted light of the first light emitting device 23r enter the first color conversion part 71r, so that the light of the second light emitting device 23g The emitted light enters the second color conversion portion 71g, and the emitted light of the third light-emitting device 23b enters the light-transmitting portion 23b.
  • the optical structure unit 60 can also prevent crosstalk of light from adjacent light emitting device groups 23 a in the second direction.
  • the light emitting device group 23a includes an odd number of light emitting devices 23
  • the first color light emitted by the first light emitting device 23r is red light
  • the first light emitting device 23r and the first color conversion part 71r both correspond to the optical
  • the structural unit 60 is in the middle of the first direction.
  • the orthographic projection of the first light-emitting device 23r on the first substrate 11 overlaps with the orthographic projection of the first color conversion part 71r on the first substrate 11, and
  • the orthographic projection of the second light-emitting device 23g on the first substrate 11 does not overlap with the orthographic projection of the second color conversion part 71g on the first substrate 11, and the orthographic projection of the third light-emitting device 23b on the first substrate 11 and the transparent
  • the orthographic projection of the light portion 71b on the first substrate 11 has no overlap.
  • the orthographic projection of the axis corresponding to the lenticular lens on the first substrate 11 passes through the first color converting portion 71r on the first substrate
  • the orthographic projection on 11 may also pass through the orthographic projection of the first light emitting device 23r on the first substrate 11 .
  • the orthographic projection of the axis corresponding to the optical structural unit 60 on the first substrate 11 passes through the center of the orthographic projection of the first color conversion part 71r on the first substrate 11, and passes through the first light emitting device 23r on the first substrate 11.
  • the orthographic projection of the axis corresponding to the optical structural unit 60 on the first substrate 11 passes through the orthographic projection of the middle first light emitting device 23 r on the first substrate 11 .
  • the light utilization efficiency of the first light emitting device 23r in the middle is the highest, therefore, the first color conversion part 71r with low light efficiency is placed at a position corresponding to the middle of the optical structural unit 60, thereby improving
  • the brightness of the first color converting portion 71r makes the light emitting effects of the light emitting portions 71 of different colors more uniform.
  • the display panel further includes a second encapsulation layer 74 , and the second encapsulation layer 74 is disposed on a side of the plurality of light-emitting portion groups 70 away from the second substrate 12 for encapsulating the plurality of light-emitting portion groups 70 .
  • the material of the second encapsulation layer 74 may be any one of silicon nitride, silicon oxide, and silicon oxynitride.
  • the display panel further includes a color filter layer and a black matrix BM.
  • the color filter layer includes a plurality of color filter parts 72, the color filter parts 72 correspond to the light exit parts 71 one by one, and the colors of the light emitted by the color filter parts 72 and the corresponding light exit parts 71 Similarly, for example, the plurality of color filter portions 72 includes: a plurality of first color filter portions 72r, a plurality of second color filter portions 72g, and a plurality of color filter portions 72g.
  • the first color filter part 72r has the same light color as the first color conversion part 71r, and is used to transmit the first color light;
  • the second color filter part 72g is the same color as the second color conversion part 71g, and is used to transmit the second color light;
  • the third color filter part 72b has the same light color as the light-transmitting part 71b, and is used to transmit the light of the preset color.
  • the black matrix BM is located between the containing structure 73 and the second substrate 12 , and the black matrix BM is formed into a grid structure to define a plurality of sub-pixels.
  • the orthographic projection of at least a part of each light emitting portion 71 on the first substrate 11 does not overlap with the orthographic projection of the black matrix BM on the first substrate 11 .
  • the orthographic projection of the receiving structure 73 on the first substrate 11 and the orthographic projection of the black matrix BM on the first substrate 11 may coincide or approximately coincide.
  • the display panel may further include a second filling layer 42 located on a side of the second encapsulation layer 74 away from the first substrate 11 , and the second filling layer 42 may be an optical glue layer.
  • structures such as the driving structure layer 20, the pixel defining layer PDL, the light emitting device 23, the first encapsulation layer 30, and the optical structural unit 60 can be fabricated on the first substrate 11 to obtain a display substrate; and
  • structures such as a color filter layer and a plurality of light exit groups 70 are fabricated to obtain a box-matching substrate.
  • the display substrate and the box-matching substrate are arranged in a box-to-box arrangement, and the display substrate is sealed by the second filling layer 42. It is fixed together with the base plate of the box.
  • both the first filling layer 41 and the second filling layer 42 are in contact with the optical structure unit 60 , and the surface of the optical structure unit 60 close to the second filling layer 42 is a convex curved surface.
  • the refractive index of the first filling layer 41 and the second filling layer 42 is different from that of the optical structural unit 60 .
  • optical structural unit 60 The relevant parameters of the optical structural unit 60 will be introduced below.
  • the lens imaging principle shown in FIG. After the emitted light passes through the optical structure unit 60, it will not be able to reach the light exit portion; and when the equivalent air thickness between the light exit surface of the light emitting device 23 and the light exit surface of the optical structure unit 60 is greater than 2 times the focal length of the optical structure unit 60
  • the light emitted by the light emitting device 23 will form a reduced image after passing through the optical structure unit 60, which requires the area of the light emitting device 23 to be set larger so that the light emitted by the light emitting device 23 can be fully utilized.
  • the area of the light-emitting device 23 is larger and the area of the light-emitting parts is set smaller, then the distance between the light-emitting parts 71 will increase, resulting in a grainy display screen.
  • the equivalent air thickness between the light-emitting surface of the light-emitting device 23 and the light-emitting surface of the optical structural unit 60 is set to 1 to 2 times the focal length of the optical structural unit 60, so as to ensure the display of the display panel. Effect.
  • the light-emitting surface of a certain structure refers to the surface of the structure that emits light
  • the light-incoming surface refers to the surface of the structure that receives light
  • the equivalent air thickness between two surfaces refers to the thickness of the equivalent air layer after the medium between the two surfaces is equivalent to an air layer.
  • n medium 1 *d medium 1 n air * d air layer
  • n medium 1 is the refractive index of the first medium
  • d medium 1 is the thickness of the first medium
  • n air layer is the refractive index of air
  • n air is the thickness of the equivalent air layer
  • FIG. 7 is a schematic diagram illustrating the dimensions of some structures provided in some embodiments of the present disclosure.
  • the optical structural unit 60 adopts a condenser lens
  • the width of the sub-pixel is p
  • the refractive index of the optical structural unit 60 is n Lens
  • the focal length of the optical structural unit 60 is f.
  • the width of the sub-pixel can be determined according to the resolution required by the actual product.
  • at least a dielectric layer such as an encapsulation layer is provided between the optical structure unit 60 and the light emitting device 23.
  • the thickness range of the medium layer between the optical structural unit 60 and the light-emitting device 23 in combination with actual needs.
  • the range of the focal length of the optical structural unit 60 can be determined according to the thickness range of the medium layer between the optical structural unit 60 and the light emitting device 23 .
  • the refractive index of the optical structural unit 60 can be determined according to the material selected in the process, for example, the refractive index of the optical structural unit 60 is between 1.5-2.0.
  • the collimated light emitted from the left end of the middle light-emitting device 23 to the optical structural unit 60 passes through the optical structural unit 60 Afterwards, the refracted light goes to the right end of the middle light exit part 71 (that is, the red light exit part 71r); The left end of the light emitting part 71.
  • the width of the light-emitting surface of the light-emitting device 23 is w1
  • the crown height of the optical structural unit 60 is h1
  • the width of the light-emitting portion 71 is w2
  • the target distance is H
  • the light-emitting surface of the optical structural unit 60 and the light-incident surface of the light-emitting portion 71 The equivalent air thickness between is h2, and the focal length of the optical structure unit 60 is f, then, according to the light path in Fig. 7, the following relationship can be drawn:
  • the target thickness H satisfies the following formula (3):
  • the equivalent air thickness between the light-emitting surface of the optical structure unit 60 and the light-emitting surface of the light-emitting device 23 is greater than or equal to the target thickness H.
  • the equivalent air thickness between the light-emitting surface of the optical structural unit 60 and the light-emitting surface of the light emitting device 23 is set as a target thickness H, so as to reduce the overall thickness of the display panel.
  • the optical path diagram in FIG. 7 is simulated under the premise of an air medium.
  • the medium layer between the optical structural unit 60 and the light-emitting device 23 is not air. Then, after determining the light-emitting device After the equivalent air thickness between the light emitting surface of the optical structural unit 60 and the light emitting surface of the optical structural unit 60, it is necessary to calculate the thickness of the air according to the equivalent air thickness, air refractive index, and the distance between the light emitting surface of the optical structural unit 60 and the light emitting surface of the light emitting device 23.
  • the physical distance between the light emitting surfaces of the light emitting device 23 is the distance between the highest point of the optical structural unit 60 and the light emitting surface of the light emitting device 23 .
  • width W bank of the accommodation structure 73 between the two light emitting parts 71 arranged along the first direction and the spacing W space between two adjacent first electrodes 231 in the same first accommodation groove Ca1 satisfy The following formula (5):
  • the width W PDL D-3*w1-2*W space of the pixel defining layer PDL between two adjacent light-emitting device groups 23 a arranged along the first direction.
  • Fig. 8 is a schematic diagram of the light of each light-emitting device provided in some embodiments of the present disclosure after being modulated by the optical structural unit. As shown in Fig. 8, both ends of the optical structural unit 60 in the first direction exceed the light-emitting device group, And the dimension of the excess part in the first direction is W PDL /2.
  • the maximum light-emitting angle of the light-emitting device 23 is ⁇ , and the maximum light-emitting angle refers to the maximum angle that can be presented between the light emitted by the light-emitting device 23 and the thickness direction of the display panel.
  • the light emitted by the rightmost light emitting device 23 at the maximum light angle can illuminate the right end of the optical structural unit 60 .
  • ⁇ 1 is the maximum angle between the light incident on the first encapsulation sublayer 31 and the thickness direction of the display panel, that is, the light emitted by the light emitting device 23 at the maximum light emitting angle is incident on the first encapsulation sublayer 31.
  • ⁇ 2 is the maximum angle between the light incident on the second encapsulation sublayer 32 and the thickness direction of the display panel, That is, after the light with the maximum light emitting angle emitted by the light emitting device 23 passes through the first encapsulation sublayer 31 and enters the second encapsulation sublayer 32, the gap between the light propagating in the second encapsulation sublayer 32 and the thickness direction of the display panel is angle;
  • ⁇ 3 is the maximum angle between the light entering the third encapsulation sublayer 33 and the thickness direction of the display panel, that is, the light with the maximum light emitting angle emitted by the light emitting device 23 passes through the first encapsulation sublayer 31 and the second encapsulation sublayer 31 Encapsulation sub-layer 32, after entering the third encapsulation sub-layer 33, the included angle between the light propagating in the third encapsulation sub-layer 33 and the thickness direction of the display panel;
  • d 1 is the thickness of the first encapsulation sublayer 31
  • d 2 is the thickness of the second encapsulation sublayer 32
  • d 3 is the thickness of the third encapsulation sublayer 33
  • d 4 is the thickness of the first filling layer 41 .
  • d 1 , sin ⁇ 1 , d 2 , sin ⁇ 2 , d 3 , sin ⁇ 3 , d 4 , and sin ⁇ 4 satisfy the following formula (7):
  • ⁇ 1 , ⁇ 2 , ⁇ 3 , ⁇ 4 , d 1 , d 2 , d 3 , d 4 , and W PDL can satisfy the formula (7) and the following formula (8):
  • the orthographic projection of the light-shielding layer 80 on the first substrate 11 is located within the range of the orthographic projection of the pixel defining layer PDL on the first substrate 11, that is, the orthographic projection of the light-shielding layer 80 on the first substrate 11 is located
  • the layer PDL is within the range of the orthographic projection on the first substrate 11 .
  • the light-shielding layer 80 may include a plurality of first light-shielding strips 81 arranged along the first direction, and the first light-shielding strips 81 extend along the second direction; Each interval area corresponds to a first light-shielding strip 81 .
  • the light-shielding layer 80 may also include a plurality of second light-shielding strips arranged along the second direction, each second light-shielding strip extending along the first direction, and between every two adjacent light-emitting device groups 23a arranged along the second direction The interval areas of each correspond to a second shading strip.
  • the “width” of each structure above refers to the size of the structure in the first direction.
  • the parameters of each structure are determined according to the first condition, the second condition and the third condition.
  • the equivalent air thickness between the light-emitting surfaces is 1-2 times the focal length of the optical structural unit 60; the second condition is: formulas (1)-(5); the third condition is: formulas (7)-(8), And/or, formula (9).
  • the resolution required by the display panel is 508 PPI, that is, the width of a pixel unit is 50 ⁇ m, and the width of a sub-pixel is 16.6 ⁇ m.
  • the refractive index n lens of the optical structural unit 60 is 1.54
  • the width D of the optical structural unit 60 is 50 ⁇ m
  • the arch height h1 is 25 ⁇ m
  • the radius of curvature r is 25 ⁇ m
  • the focal length f is 72 ⁇ m.
  • the equivalent air thickness between the light-emitting surface of the light-emitting device 23 and the light-emitting surface of the optical structural unit 60 is determined according to the first condition, for example, the equivalent air thickness is equal to the target thickness H, Both are 80 ⁇ m.
  • W bank 3.3 ⁇ m.
  • the thickness and refractive index of the first packaging sublayer 31 By adjusting the thickness and refractive index of the first packaging sublayer 31, the thickness and refractive index of the second packaging sublayer 32, the thickness and refractive index of the third packaging sublayer 33, and the thickness and refractive index of the first filling layer 41, to The equivalent air thickness between the light emitting surface of the light emitting device 23 and the light emitting surface of the optical structural unit 60 is 80 ⁇ m. After adjustment, the refractive index, thickness and equivalent air thickness of each package sublayer are shown in Table 1.
  • light crosstalk between pixel units is prevented by setting the light shielding layer 80 and adjusting the width of the pixel defining layer PDL.
  • the crosstalk between sub-pixels can be further prevented by adjusting the thickness of each film layer in the light emitting device 23 .
  • the first electrode 231 is a reflective electrode, for example, the first electrode 231 adopts a metal material layer, or adopts a laminated layer of a metal material layer and a transparent material layer such as indium tin oxide (ITO);
  • the electrode 232 is a transflective electrode, and the second electrode 232 may adopt a thin metal material layer.
  • a microcavity structure is formed between the first electrode 231 and the second electrode 232, and the microcavity structure is used to adjust the intensity of the outgoing light of the light emitting device 23, so that the intensity of the outgoing light with an outgoing angle exceeding 50° is smaller than that of the outgoing light at an outgoing angle between 0° and The intensity of the outgoing light rays between 30°.
  • the emission angle refers to the included angle between the emission direction and the thickness direction of the display panel.
  • the intensity of the outgoing light with an outgoing angle exceeding 50° is less than 0.3 times the intensity of the collimated outgoing light, that is, the outgoing light with an outgoing angle of 0°.
  • the emission peak of the light-emitting device 23 transmission peak of the microcavity structure*intrinsic light-emitting peak of the light-emitting device 23 .
  • the thickness of the first electrode 231 is between 90nm and 110nm; the thickness of the hole injection layer 234 is between 70nm and 80nm; the thickness of the hole transport layer 235 is between 40nm and 50nm, and the light emitting layer 233
  • the thickness of the electron transport layer 236 is between 190nm and 210nm; the thickness of the electron injection layer 237 is between 210nm and 230nm; the thickness of the second electrode 232 is between 20nm and 30nm.
  • the transmission peak of the microcavity structure roughly coincides with the intrinsic peak of the light emitting device 23, so that the light can be emitted; for the outgoing light with a large angle, the microcavity
  • the transmission peak of the structure is blue-shifted and does not coincide with the intrinsic peak of the light emitting device 23, thereby reducing the intensity of the emitted light at a large angle.
  • FIG. 9 is a spectrum diagram of each light output angle of the light emitting device provided in a pair of examples
  • FIG. 10 is a spectrum diagram of each light output angle of the light emitting device provided in an example of the present disclosure.
  • the material of the first electrode 231 is a stack of silver and ITO
  • the thickness is 180nm
  • the thickness of the hole injection layer is 105nm
  • the thickness of the hole transport layer is 60nm
  • the thickness of the light emitting layer is 50nm.
  • the thickness of the transport layer is 160nm
  • the thickness of the electron injection layer is 140nm
  • the material of the second electrode 232 includes magnesium and silver
  • the thickness of the second electrode 232 is 25nm.
  • the material of the first electrode 231 is a stack of silver and ITO, the thickness of the first electrode 231 is 100 nm, the thickness of the hole injection layer 234 is 75 nm, and the thickness of the hole transport layer 235 is 45 nm. , the thickness of the light emitting layer 233 is 50nm, the thickness of the electron transport layer 236 is 200nm, the thickness of the electron injection layer 237 is 220nm, the material of the second electrode 232 includes magnesium and silver, and the thickness of the second electrode 232 is 25nm.
  • the intensity of blue light with an exit angle of 0°-30° is relatively high; while the intensity of blue light with an exit angle of 50° or more is reduced. Therefore, by adjusting the thickness of each film layer, the intensity of light emitted at a large angle can be reduced, thereby further improving the crosstalk phenomenon between sub-pixels.
  • Embodiments of the present disclosure also provide a display device, which includes the display panel in the above embodiments.
  • the display device can be any product or component with a display function such as a mobile phone, a tablet computer, a television, a monitor, a notebook computer, a digital photo frame, a navigator, and the like.

Landscapes

  • Electroluminescent Light Sources (AREA)
  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Devices For Indicating Variable Information By Combining Individual Elements (AREA)

Abstract

一种显示面板和显示装置,显示面板包括:多个发光器件组(23a)、多个出光部组(70)和多个光学结构单元(60),多个发光器件组(23a)中的每个包括多个发光器件(23),多个发光器件(23)包括第一发光器件(23r)和第二发光器件(23g),第一发光器件(23r)和第二发光器件(23g)均用于发射预设颜色的光线;多个出光部组(70)中的每个包括第一色转换部(71r)和第二色转换部(71g);多个光学结构单元(60)中的每个在第一基底(11)上的正投影覆盖多个发光器件组(23a)中的至少一个在第一基底(11)上的正投影,多个光学结构单元(60)中的每个用于将第一发光器件(23r)发射的光线射入第一色转换部(71r),将第二发光器件(23g)所发射的光线射入第二色转换部(71g),第一色转换部(71r)用于将预设颜色的光线转换为第一颜色光,第二色转换部(71g)用于将预设颜色的光线转换为第二颜色光。

Description

显示面板和显示装置 技术领域
本公开涉及显示技术领域,具体涉及一种显示面板和显示装置。
背景技术
量子点层与OLED(Organic Light-Emitting Diode,有机发光二极管)相结合的显示架构,可以实现更高的色域、更高的分辨率和更大的视角,适合于大尺寸的自发光显示技术中。
发明内容
本公开提出了一种显示面板和显示装置。
为了实现上述目的,本公开提供一种显示面板,包括:多个发光器件组、多个出光部组和多个光学结构单元,其中,
所述多个发光器件组设置在第一基底上,所述多个发光器件组中的每个包括多个发光器件,所述多个发光器件包括第一发光器件和第二发光器件,所述第一发光器件和所述第二发光器件均用于发射预设颜色的光线;
所述多个出光部组设置在所述多个发光器件组的出光侧,所述多个出光部组中的每个包括第一色转换部和第二色转换部;
所述多个光学结构单元设置在所述多个发光器件组和所述多个出光部组之间,所述多个光学结构单元中的每个在所述第一基底上的正投影覆盖所述多个发光器件组中的至少一个在所述第一基底上的正投影,所述多个光学结构组中的每个用于将所述第一发光器件发射的光线射入所述第一色转换部,将所述第二发光器件所发射的光线射入所述第二色转换部,所述第一色转换部用于将所述预设颜色的光线转换为第一颜色光,所述第二色转换部用于将所述预设颜色的光线转换为第二颜色光。
在一些实施例中,所述第一发光器件与所述第一色转换部在所述第一基底上的正投影无交叠;和/或,
所述第二发光器件与所述第二色转换部在所述第一基底上的正投影无交叠。
在一些实施例中,所述第一颜色光与所述第二颜色光的波长范围不同。
在一些实施例中,所述发光器件组中的多个发光器件还包括:第三发光器件,所述多个出光部组中的每个还包括透光部,所述多个光学结构单元中的每个在所述第一基底上的正投影还覆盖所述第三发光器件在所述第一基底上的正投影,
所述多个发光结构单元中的每个还用于将所述第三发光器件发射的光线射入所述透光部。
在一些实施例中,所述光学结构单元为聚光透镜,所述发光器件的出光面与所述光学结构单元的出光面之间的等效空气厚度为所述聚光透镜的焦距的1~2倍。
在一些实施例中,所述光学结构单元的出光面与所述发光器件的出光面之间的等效空气厚度大于或等于目标厚度,所述目标厚度H满足以下公式:
Figure PCTCN2021121584-appb-000001
其中,h1为所述聚光透镜的拱高,h2为所述聚光透镜的出光面与所述出光部的入光面之间的等效空气厚度,f为所述聚光透镜的焦距。
在一些实施例中,所述发光器件包括:第一电极和发光层,所述发光层位于所述第一电极远离所述第一基底的一侧,
所述显示面板还包括:设置在所述第一基底上的像素界定层,所述像素界定层具有多个第一容纳槽,同一个所述发光器件组中的多个所述 发光器件设置在同一个所述第一容纳槽中,不同的所述发光器件组设置在不同的第一容纳槽中,同一个所述第一容纳槽中的多个发光器件的第一电极之间绝缘间隔。
在一些实施例中,所述显示面板还包括:
封装层,所述封装层设置在所述多个发光器件组远离所述第一基底的一侧,用于对所述多个发光器件组进行封装;
第一填充层,位于所述封装层远离所述第一基底的一侧;
第二填充层,位于所述第一填充层与所述多个出光部组之间;
其中,所述光学结构单元设置在所述第一填充层与所述第二填充层之间,且与所述第一填充层和所述第二填充层接触,所述光学结构单元靠近所述第二填充层的表面为凸曲面;
所述第一填充层和所述第二填充层的折射率均与所述光学结构单元的折射率不同。
在一些实施例中,所述显示面板还包括设置在所述封装层与所述第一基底之间的像素界定层,任意两相邻的发光器件组均被所述像素界定层间隔开,
所述封装层包括沿远离所述第一基底的方向依次设置的:第一封装子层、第二封装子层和第三封装子层,
其中,同一个所述发光器件组中的多个发光器件沿第一方向排列,沿所述第一方向排列的相邻两个发光器件组之间的像素界定层的宽度W PDL满足:
d 1*sinθ 1+d 2*sinθ 2+d 3*sinθ 3+d 4*sinθ 4≤W PDL/2
其中,θ 1为射入所述第一封装子层的光线与所述显示面板的厚度方向之间的最大夹角,θ 2为射入所述第二封装子层的光线与所述显示面板的厚度方向之间的最大夹角,θ 3为射入所述第三封装子层的光线与所述显示面板的厚度方向之间的最大夹角,θ 4为射入所述第一填充层的光线 与所述显示面板的厚度方向之间的最大夹角;d 1为所述第一封装子层的厚度,d 2为所述第二封装子层的厚度,d 3为所述第三封装子层的厚度,d 4为所述第一填充层的厚度。
在一些实施例中,所述显示面板还包括:
像素界定层,设置在所述封装层与所述第一基底之间,其中,任意两相邻的发光器件组均被所述像素界定层间隔开,
遮光层,设置在所述封装层与第一填充层之间,所述遮光层在所述第一基底上的正投影位于所述像素界定层在所述第一基底上的正投影范围内。
在一些实施例中,所述发光器件组中的多个发光器件沿第一方向依次排列,所述遮光层包括沿第一方向排列的多个第一遮光条,每个所述第一遮光条均沿第二方向排列,沿所述第一方向排列的每相邻两个所述发光器件组之间的间隔区域均对应一个所述第一遮光条。
在一些实施例中,所述封装层包括远离所述第一基底的方向依次设置的:第一封装子层、第二封装子层和第三封装子层,所述第一遮光条的宽度W SL满足:
W SL≥W PDL-(d 1*sinθ 1+d 2*sinθ 2+d 3*sinθ 3)*2
其中,θ 1为射入所述第一封装子层的光线与所述显示面板的厚度方向之间的最大夹角,θ 2为射入所述第二封装子层的光线与所述显示面板的厚度方向之间的最大夹角,θ 3为射入所述第三封装子层的光线与所述显示面板的厚度方向之间的最大夹角,θ 4为射入所述第一填充层的光线与所述显示面板的厚度方向之间的最大夹角;W PDL为所述像素界定层的宽度,d 1为所述第一封装子层的厚度,d 2为所述第二封装子层的厚度,d 3为所述第三封装子层的厚度。
在一些实施例中,所述光学结构单元的折射率在1.54~2.0之间。
在一些实施例中,每个所述出光部组在所述第一基底上的正投影均 位于所述光学结构单元在所述第一基底上的正投影范围内。
在一些实施例中,所述发光器件包括:第一电极、第二电极和发光层,所述第一电极位于所述发光层朝向所述第一基底的一侧,所述第二电极位于所述发光层远离所述第一基底的一侧,所述第一电极为反射电极,所述第二电极为透反电极,所述第一电极与所述第二电极之间形成微腔结构,所述微腔结构用于调节所述发光器件的出射光的强度,以使出射角超过50°的出射光线的强度小于出射角在0°~30°之间的出射光线的强度。
在一些实施例中,所述发光器件还包括:空穴注入层、空穴传输层、电子注入层和电子传输层,所述空穴注入层位于所述第一电极与所述发光层之间,所述空穴传输层位于所述空穴注入层与所述发光层之间,所述电子传输层位于所述发光层与所述第二电极之间,所述电子注入层位于所述电子传输层与所述电子注入层之间,其中,
所述第一电极的厚度在90nm~110nm之间;
所述空穴注入层的厚度在70nm~80nm之间;
所述空穴传输层的厚度在40nm~50nm之间;
所述发光层的厚度在45nm~55nm之间;
所述电子传输层的厚度在190nm~210nm之间;
所述电子注入层的厚度在210nm~230nm之间;
所述第二电极的厚度在20nm~30nm之间。
在一些实施例中,所述显示面板还包括容纳结构,所述容纳结构具有多个第二容纳槽,每个所述第一色转换部和每个所述第二色转换部均设置在一个所述第二容纳槽中,不同的所述第一色转换部设置在不同的第二容纳槽中,不同的所述第二色转换部设置在不同的第二容纳槽中,所述第一色转换部和所述第二色转换部设置在不同的所述第二容纳槽中。
在一些实施例中,所述显示面板还包括:
彩色滤光层,位于所述多个出光部组远离所述第一基底的一侧,所述彩色滤光层包括多个第一彩色滤光部和多个第二彩色滤光部,所述第一彩色滤光部与所述第一色转换部一一对应,所述第二彩色滤光部与所述第二色转换部一一对应,所述第一彩色滤光部用于透过所述第一颜色光,所述第二彩色滤光部用于透过所述第二颜色光;
黑矩阵,位于所述多个出光部组远离所述第一基底的一侧;其中,每个所述第一色转换部的至少一部分在所述第一基底上的正投影、每个所述第二色转换部的至少一部分在所述第一基底上的正投影与所述黑矩阵在所述基底上的正投影均无交叠;
第二基底,设置在所述彩色滤光层远离所述第一基底的一侧。
在一些实施例中,所述光学结构单元为聚光透镜。
在一些实施例中,同一个所述发光器件组中的多个发光器件沿第一方向排列,所述聚光透镜为柱状透镜,所述柱状透镜所对应的轴线沿第二方向延伸,所述第二方向与所述第一方向交叉;
所述第一颜色光为红光,所述聚光透镜所对应的轴线在所述第一基底上的正投影穿过所述第一色转换部在所述第一基底上的正投影。
在一些实施例中,所述第一色转换部和所述第二色转换部的材料均包括量子点材料。
本公开实施例还提供一种显示装置,包括上述的显示面板。
附图说明
附图是用来提供对本公开的进一步理解,并且构成说明书的一部分,与下面的具体实施方式一起用于解释本公开,但并不构成对本公开的限制。在附图中:
图1为一相关技术中提供的显示面板的示意图。
图2A为本公开的一些实施例中提供的显示面板的平面图。
图2B为本公开的一些实施例中提供第一基底上的发光器件的分布示意图。
图3为本公开的一些实施例中提供的沿图2A中A-A'线的剖视图。
图4A为透镜成像原理的示意图。
图4B为本公开的一些实施例中提供的发光器件组发射的光线照射至多个出光部的示意图。
图5为本公开的一些实施例中提供的驱动结构层与发光器件的连接示意图。
图6为本公开的一些实施例中提供的发光器件的具体膜层分布示意图。
图7为本公开的一些实施例中提供的部分结构的尺寸说明示意图。
图8为本公开的一些实施例中提供的各发光器件的光线被光学结构单元调制后的示意图。
图9为一对比例中提供的发光器件各出光角度的光谱图。
图10为本公开的一个示例中提供的发光器件各出光角度的光谱图。
具体实施方式
以下结合附图对本公开的具体实施方式进行详细说明。应当理解的是,此处所描述的具体实施方式仅用于说明和解释本公开,并不用于限制本公开。
为使本公开实施例的目的、技术方案和优点更加清楚,下面将结合本公开实施例的附图,对本公开实施例的技术方案进行清楚、完整地描述。显然,所描述的实施例是本公开的一部分实施例,而不是全部的实施例。基于所描述的本公开的实施例,本领域普通技术人员在无需创造性劳动的前提下所获得的所有其他实施例,都属于本公开保护的范围。
这里用于描述本公开的实施例的术语并非旨在限制和/或限定本公 开的范围。例如,除非另外定义,本公开使用的技术术语或者科学术语应当为本发明所属领域内具有一般技能的人士所理解的通常意义。应该理解的是,本公开中使用的“第一”、“第二”以及类似的词语并不表示任何顺序、数量或者重要性,而只是用来区分不同的组成部分。除非上下文另外清楚地指出,否则单数形式“一个”、“一”或者“该”等类似词语也不表示数量限制,而是表示存在至少一个。“包括”或者“包含”等类似的词语意指出现在“包括”或者“包含”前面的元件或者物件涵盖出现在“包括”或者“包含”后面列举的元件或者物件及其等同,并不排除其他元件或者物件。“连接”或者“相连”等类似的词语并非限定于物理的或者机械的连接,而是可以包括电性的连接,不管是直接的还是间接的。“上”、“下”、“左”、“右”等仅用于表示相对位置关系,当被描述对象的绝对位置改变后,则所述相对位置关系也可能相应地改变。
在下面的描述中,当元件或层被称作“在”另一元件或层“上”或“连接到”另一元件或层时,该元件或层可以直接在所述另一元件或层上、直接连接到所述另一元件或层,或者可以存在中间元件或中间层。然而,当元件或层被称作“直接在”另一元件或层“上”、“直接连接到”另一元件或层时,不存在中间元件或中间层。术语“和/或”包括一个或更多个相关列出项的任意和全部组合。
图1为一相关技术中提供的显示面板的示意图,如图1所示,显示面板可以采用对盒式结构,具体地,显示面板包括:相对设置的显示基板和对盒基板,显示基板与对盒基板之间设置有填充层40。其中,显示基板包括:第一基底11、以及设置在第一基底11上的驱动结构层20、像素界定层PDL、多个发光器件23和第一封装层30。像素界定层PDL具有多个像素开口,每个像素开口中设置有一个发光器件23。驱动结构层20用于为每个发光器件23提供驱动电流,以驱动发光器件23发光。发光器件23用于发射预设颜色的光线,例如,蓝光。第一封装层30覆 盖多个发光器件23,用于对发光器件23进行封装。对盒基板包括:第二基底12,还包括设置在第二基底12上的彩色滤光层、黑矩阵BM、出光部组和第二封装层74。出光部组包括:多个出光部71,多个出光部71例如包括:多个红色出光部71r、多个绿色出光部71g和多个蓝色出光部71b。每个出光部71对应一个发光器件23,不同的出光部71对应不同的发光器件23。其中,红色出光部71r在预设颜色的光线的激发下出射红光,绿色出光部71g在预设颜色的光线的激发下出射绿光,蓝色出光部71b直接透射蓝光。例如,红色出光部71r和绿色出光部71g的材料均包括量子点材料。蓝色出光部71b的材料可以包括散射粒子材料。彩色滤光层包括多个彩色滤光部72,彩色滤光部72与出光部71一一对应,彩色滤光部72的颜色与相应的出光部71的颜色相同。第二封装层74设置在出光部组远离第二基底12的一侧,用于对出光部组进行封装。
显示面板在进行显示时,发光器件23所发射的光线并不是全部准直的,而是会产生一些大角度的光线,从而导致发光器件23所发射的一些光线会照射至相邻发光器件23所对应的出光部。例如,如图1中,红色出光部71r对应的发光器件23所发射的一部分光线会照射至绿色出光部71g,从而激发绿色出光部71g发光,进而导致像素间的串扰问题。
图2A为本公开的一些实施例中提供的显示面板的平面图,图2B为本公开的一些实施例中提供第一基底上的发光器件的分布示意图,图3为本公开的一些实施例中提供的沿图2A中A-A'线的剖视图,如图2A所示,显示面板划分为多个子像素Pix,例如,多个子像素Pix呈阵列排布,并且可以组成多个像素单元,每个像素单元包括:沿第一方向排列的红色子像素、绿色子像素和蓝色子像素。需要说明的是,图2A中的子像素Pix排布方式仅为示例性说明,也可以采用其他排布方式。结合图2A至图3所示,显示面板包括:第一基底11、多个发光器件组、多个出光部组70和多个光学结构单元60。
第一基底11可以为玻璃衬底,也可以为诸如聚酰亚胺(PI)等柔性材料制作的柔性基底,从而有利于实现柔性显示。
发光器件组23a设置在第一基底11上,每个像素单元内设置有一个发光器件组23a,每个发光器件组23a包括多个发光器件23,发光器件23用于发射预设颜色的光线。其中,每个发光器件组23a中的多个发光器件23可以包括第一发光器件23r和第二发光器件23g。第一基底11上还可以设置有驱动结构层20,该驱动结构层20用于为每个发光器件23提供驱动信号,以驱动每个发光器件23发光。
多个出光部组70设置在发光器件组23a的出光侧,每个出光部组70包括多个出光部71,每个出光部组70中的多个出光部71包括第一色转换部和第二色转换部。第一色转换部用于在接收到预设颜色的光线时,将预设颜色的光线转换为第一颜色光;第二色转换部用于在接收到预设颜色的光线时,将预设颜色的光线转换为第二颜色光。
多个光学结构单元60设置在多个发光器件组23a与多个出光部组70之间,每个光学结构单元60在第一基底11上的正投影覆盖至少一个发光器件组23a在第一基底11上的正投影,不同的光学结构单元60在第一基底上的正投影无重叠。每个光学结构单元60用于将第一发光器件23r所发射的光线射入第一色转换部,从而使第一色转换部将预设颜色的光转换为第一颜色光;并将第二发光器件23g所发射的光线射入第二色转换部,从而使第二色转换部将预设颜色的光转换为第二颜色光。
其中,每个光学结构单元60至少具有一个曲面,例如,光学结构单元60远离第一基底11的表面为曲面。另外,光学结构单元60的曲面为连续平滑的曲面,并不具有拐点。例如,光学透镜单元60的曲面为外凸的弧面。
在本公开实施例中,发光器件组23a与多个出光部组70间设置有光学结构单元60,发光器件组23a中的第一发光器件23r所发射的光线经 过光学结构单元60后,可以照射至第一色转换部,第二发光器件23g所发射的光线经过光学结构单元60后,可以照射至第二色转换部,从而减少或防止入射至第一色转换部和第二色转换部的入射光发生串扰,进而改善显示效果。
在一些实施例中,第一颜色光和第二颜色光的波长范围可以不同。例如,第一颜色光为红光,第二颜色光为绿光。
在一些实施例中,第一发光器件23r与第一色转换部在第一基底11上的正投影无交叠;和/或,第二发光器件23g与第二色转换部在第一基底11上的正投影无交叠。
在一些实施例中,光学结构单元60采用聚光透镜,例如凸透镜。图4A为透镜成像原理的示意图,如图4A所示,标记F为凸透镜91的焦点位置,标记2F为凸透镜91的两倍焦距处。当光源90处于凸透镜91的一侧,并处于凸透镜91的1倍焦距至2倍焦距之间时,可以在凸透镜91的另一侧呈倒立的像。
图4B为本公开的一些实施例中提供的发光器件组发射的光线照射至多个出光部的示意图,如图4B所示,发光器件组23a的三个发光器件23中,左边的发光器件23所发射的光线经过光学结构单元60后,光线照射至右边的出光部71;中间的发光器件23所发射的光线经过光学结构单元60后,光线照射至中间的出光部71;右边的发光器件23所发射的光线经过光学结构单元60后,光线照射至左边的出光部71。
下面以发光器件组23a中的多个发光器件23沿第一方向依次排列为例,对本公开实施例中的显示面板进行具体介绍。
在一些实施例中,如图3所示,驱动结构层20设置在第一衬底11上,驱动结构层20包括多个像素驱动电路,像素驱动电路与发光器件23一一对应,像素驱动电路用于为发光器件23提供驱动电流,以驱动发光器件23发光。例如,像素驱动电路包括多个薄膜晶体管21。
图5为本公开的一些实施例中提供的驱动结构层与发光器件的连接示意图,如图5所示,薄膜晶体管21包括栅极211、有源层212、源极213和漏极214,以薄膜晶体管21采用顶栅型薄膜晶体管为例,有源层212位于栅极211与第一基底11之间。有源层212的材料可以包括例如无机半导体材料(例如,多晶硅、非晶硅等)、有机半导体材料、氧化物半导体材料。有源层212包括沟道部和位于该沟道部两侧的源极连接部和漏极连接部,源极连接部与薄膜晶体管21的源极213连接,漏极连接部与薄膜晶体管21的漏极214连接。源极连接部和漏极连接部均可以掺杂有比沟道部的杂质浓度高的杂质(例如,N型杂质或P型杂质)。沟道部与薄膜晶体管21的栅极211正对,当栅极211加载的电压信号达到一定值时,沟道部中形成载流子通路,使薄膜晶体管21的源极213和漏极214导通。
缓冲层BFL设置在薄膜晶体管21与第一基底11之间,用于防止或减少金属原子和/或杂质从第一基底11扩散到晶体管的有源层212中。缓冲层BFL可以包括诸如氧化硅、氮化硅和/或氮氧化硅的无机材料,并且可以形成为多层或单层。
第一栅绝缘层GI1设置在有源层212远离第一基底11的一侧。第一栅绝缘层GI1的材料可以包括硅化合物、金属氧化物。例如,第一栅绝缘层GI1的材料包括氮氧化硅、氧化硅、氮化硅、碳氧化硅、氮碳化硅、氧化铝、氮化铝、氧化钽、氧化铪、氧化锆、氧化钛等。另外,第一栅绝缘层GI1可以为单层或多层。
栅电极层设置在第一栅绝缘层GI1远离第一基底11的一侧。其中,栅电极层包括各薄膜晶体管的栅极211、电容的第一电极板。栅电极层的材料可以包括例如金属、金属合金、金属氮化物、导电金属氧化物、透明导电材料等。例如,栅电极层可以包括金、金的合金、银、银的合金、铝、铝的合金、氮化铝、钨、氮化钨、铜、铜的合金、镍、铬、氮 化铬、钼、钼的合金、钛、氮化钛、铂、钽、氮化钽、钕、钪、氧化锶钌、氧化锌、氧化锡、氧化铟、氧化镓、氧化铟锡、氧化铟锌等。栅电极层可以具有单层或多层。
第二栅绝缘层GI2设置在栅电极层远离第一基底11的一侧,第二栅绝缘层GI2的材料可以包括例如硅化合物、金属氧化物。例如,第二栅绝缘层GI2的材料可以包括氮氧化硅、氧化硅、氮化硅、碳氧化硅、氮碳化硅、氧化铝、氮化铝、氧化钽、氧化铪、氧化锆、氧化钛等。第二栅绝缘层GI2可以形成为单层或多层。
电容的第二电极板(未示出)设置在第二栅绝缘层GI2远离第一基底11的一侧,其材料可以与第一电极板的材料相同,具体参见上文中所列举的导电材料。
层间绝缘层ILD设置在电容的第二电极板远离第一基底11的一侧,层间绝缘层ILD的材料可以包括例如硅化合物、金属氧化物等。具体可以选择上文所列举的硅化合物和金属氧化物,这里不再赘述。
源漏导电层设置在层间绝缘层ILD远离第一基底11的一侧。第一源漏导电层可以包括各晶体管的源极213和漏极214,源极213与源极连接部电连接,漏极214与漏极连接部电连接。源漏导电层可以包括金属、合金、金属氮化物、导电金属氧化物、透明导电材料等,例如,源漏导电层可以为金属构成的单层或多层,例如为Mo/Al/Mo或Ti/Al/Ti。
钝化层PVX设置在源漏导电层远离第一基底11的一侧,钝化层PVX的材料可以包括例如氮氧化硅、氧化硅、氮化硅等。平坦化层PLN设置在钝化层PVX远离第一基底11的一侧,平坦化层PLN可以采用有机绝缘材料制成,例如,该有机绝缘材料包括聚酰亚胺、环氧树脂、压克力、聚酯、光致抗蚀剂、聚丙烯酸酯、聚酰胺、硅氧烷等树脂类材料等。
结合图2和图5所示,像素界定层PDL设置在驱动结构层20远离 第一基底11的一侧,像素界定层具有多个第一容纳槽Ca1,同一个发光器件组23a中的多个发光器件23设置在同一个第一容纳槽Ca1中,不同的发光器件组23a设置在不同的第一容纳槽Ca1中。每个发光器件组23a中的多个发光器件23包括:第一发光器件23r、第二发光器件23g和第三发光器件23b。如图5所示,发光器件23包括:第一电极231、第二电极232以及位于第一电极231与第二电极232之间的发光层233。第一电极231可以为阳极,第二电极232可以为阴极。同一个第一容纳槽Ca1中的多个发光器件23的第一电极231之间绝缘间隔。多个发光器件23的第二电极232可以形成为一体结构。
在本公开实施例中,将同一个发光器件组23a的多个发光器件23设置在同一个第一容纳槽Ca1中,有利于减小发光器件23之间的间距,从而有利于减小光学结构单元60在第一方向上的尺寸。
同一个第一容纳槽Ca1中,相邻的第一电极231之间的间隔可以在1.5μm左右,例如在1.5μm~1.8μm之间。第一电极231可以采用溅射工艺形成,在进行溅射时,在第一基底11与溅射源之间放置掩膜板,从而在每个第一容纳槽Ca1中形成具有间隔的多个第一电极231。
需要说明的是,图5中的发光器件23的结构仅为示意性说明,发光器件23还可以包括其他膜层。图6为本公开的一些实施例中提供的发光器件的具体膜层分布示意图,如图6所示,发光器件23除了包括发光层233、第一电极231和第二电极232之外,还可以包括:空穴注入层234、空穴传输层235、电子注入层237和电子传输层236,空穴注入层234位于第一电极231与发光层233之间,空穴传输层235位于空穴注入层234与发光层233之间,电子注入层237位于发光层233与第二电极232之间,电子传输层236位于电子注入层237与发光层233之间。
可选地,发光器件23为OLED器件,此时,发光层采用有机发光材料;或者,发光器件23为QLED(Quantum Dot Light Emitting Diodes, 量子点发光二极管)器件,此时,发光层采用量子点发光材料。每个发光器件23配置为发射预设颜色的光线。
如图3所示,显示面板还包括:第一封装层30,第一封装层30覆盖像素界定层PDL和多个发光器件23,用于对发光器件23进行封装,以防止外界环境中的水汽和/或氧气侵蚀发光器件23。在一些实施例中,第一封装层30包括沿远离第一基底11的方向依次设置的:第一封装子层31、第二封装子层32和第三封装子层33。第一封装子层31和第三封装子层33均可以采用氮氧化硅、氧化硅、氮化硅等致密性高的无机材料制成。第二封装子层32可以采用含有干燥剂的高分子材料制成,或采用可阻挡水汽的高分子材料制成。例如,采用高分子树脂,从而可以缓解第一封装子层31和第三封装子层33的应力,还可以包括干燥剂等吸水性材料以吸收侵入内部的水分子和/或氧气分子。
第一填充层41设置在第一封装层30远离第一基底11的一侧,第一填充层41可以采用透明的有机材料制成,第一填充层41远离第一基底11的表面大致平坦,以便于光学结构单元60的设置。
请继续参阅图3,显示面板还包括:第二基底12、设置在第二基底12上的多个出光部组70。第二基底12与第一基底11相对设置,第二基底12可以为玻璃基底,也可以为诸如聚酰亚胺(PI)等柔性材料制作的柔性基底,从而有利于实现柔性显示。多个出光部组70设置在第二基底12朝向第一基底11的一侧,出光部组70包括多个出光部71,多个出光部71例如包括:第一色转换部71r、第二色转换部71g和透光部71b。其中,第一色转换部71r用于在接收到预设颜色的光线时,将预设颜色的光线转换为第一颜色光,该第一颜色光例如为红光;第二色转换部71g用于在接收到预设颜色的光线时,将预设颜色的光线转换为第二颜色光,该第二颜色光例如为绿光,透光部71b透过发光器件23所发射的预设颜色的光线。
其中,第一色转换部71r和第二色转换部71g的材料均包括量子点材料,例如,例如,第一色转换部71r的材料包括红色量子点材料,第二色转换部71g的材料可以包括绿色量子点材料,透光部71b的材料包括散射粒子材料。红色量子点材料用于在发光器件23所发射的蓝光的激发下发射红光;绿色量子点材料用于在发光器件23所发射的蓝光的激发下发射绿光。其中,红色量子点材料和绿色量子点材料均可以为磷化铟(InP)、氧化锌(ZnO)、石墨烯、硒化镉(CdSe)、硫化镉(CdS)、碲化镉(CdTe)、硒化锌(ZnSe)、碲化锌(ZnTe)或硫化锌(ZnS)中的至少一种。其中,可以通过控制量子点材料的粒径来控制量子点材料的发光颜色。例如,红色量子点材料和绿色量子点材料均硫化锌,此时,红色量子点材料的粒径在9nm~10nm之间,从而发射红光;绿色量子点材料的粒径在6.5nm~7.5nm之间,从而发射绿光。透光部71b的材料包括散射粒子材料,从而对接收到的蓝色光线进行散射。
另外,第一色转换部71r和第二色转换部71g中也可以掺杂有散射粒子,从而提高出光部71的出射角度。
如图3所示,显示面板还包括容纳结构73,容纳结构73具有多个第二容纳部,每个第二容纳部中设置有一个出光部71,不同的出光部71设置在不同的第二容纳部中。即,每个第一色转换部71r、每个第二色转换部71g和每个透光部71b均设置在一个第二容纳部中,不同的第一色转换部71r设置在不同的第二容纳部中,不同的第二色转换部71g设置在不同的第二容纳部中,不同的透光部71b设置在不同的第二容纳部中,第一色转换部71r、第二色转换部71g和透光部71b设置在彼此不同的第二容纳部中。每个第二容纳部的横截面积可以沿靠近第一基底11的方向逐渐增大。
其中,容纳结构73的材料可以包括:丙烯酸聚合物光引发剂、有机颜料、树脂类有机材料和他们的混合物,其中,有机颜料可以为黑色, 以使容纳结构具有遮光作用,防止不同出光部71之间发生串扰。
在一些实施例中,第一色转换部71r、第二色转换部71g、出光部71b、每个发光器件23在第一基底11上的正投影均位于光学结构单元60在第一基底11上的正投影范围内。
如图3所示,多个光学结构单元60设置在第一填充层41远离第一基底11的一侧,每个光学结构单元60在第一基底11上的正投影覆盖至少一个发光器件组23a在第一基底11上的正投影,且覆盖第一色转换部71r、第二色转换部71g和出光部71b在第一基底11上的正投影。不同的光学结构单元60在第一基底11上的正投影无交叠。每个光学结构单元60用于将第一发光器件23r发射的光线射入第一色转换部71r,以使得第一色转换部71r出射第一颜色光;并将第二发光器件23g所发射的光线射入第二色转换部71g,以使第二色转换部71g出射第二颜色光;还用于将第三发光器件23b所发射的光线射入透光部71b,以使出光部71b透过预设颜色的光线。
在一些实施例中,光学结构单元60具有朝向发光器件组23a的第一表面和朝向多个出光部组70的第二表面,第一表面为平面,第二表面为外凸的曲面。
在一个示例中,光学结构单元60为柱状透镜,所述柱状透镜所对应的轴线沿第二方向延伸,第二方向与所述第一方向交叉。例如,第一方向与第二方向垂直。应当理解的是,光学结构单元60为柱状透镜是指,聚光透镜为圆柱形的一部分,该圆柱形的中心轴线即为柱状透镜所对应的轴线。如图2B所示,第一基底11上的发光器件23排成多行多列,第一方向为行方向,第二方向为列方向,这种情况下,沿第二方向排列的多个发光器件组23a可以对应同一个柱状透镜,即,每一个柱状透镜在第一基底11上的正投影可以覆盖第二方向排列的多个发光器件组23a在第一基底11上的正投影。
在另一个示例中,光学结构单元60在第一方向上的纵截面的顶边为外凸的弧形,光学结构单元60在第二方向上的纵截面的顶边同样为外凸的弧形。这样,发光器件组23a中的多个发光器件23沿第一方向排列时,光学结构单元60可以使第一发光器件23r的出射光射入第一色转换部71r,使第二发光器件23g的出射光射入第二色转换部71g,使第三发光器件23b的出射光射入透光部23b。同时,光学结构单元60还可以防止第二方向上的相邻发光器件组23a的光线发生串扰。
另外,当发光器件组23a中包括奇数个发光器件23时,若第一发光器件23r发射的第一颜色光为红光,那么,第一发光器件23r以及第一色转换部71r均对应于光学结构单元60在第一方向上的中部位置,此时,第一发光器件23r在第一基底11上的正投影与第一色转换部71r在第一基底11上的正投影存在交叠,而第二发光器件23g在第一基底11上的正投影与第二色转换部71g在第一基底11上的正投影无交叠,第三发光器件23b在第一基底11上的正投影与透光部71b在第一基底11上的正投影无交叠。例如,当光学结构单元60为柱状透镜,且柱状透镜的轴线沿第二方向延伸时,柱状透镜所对应的轴线在第一基底11上的正投影穿过第一色转换部71r在第一基底11上的正投影,还可以穿过第一发光器件23r在第一基底11上的正投影。例如,光学结构单元60所对应的轴线在第一基底11上的正投影穿过第一色转换部71r在第一基底11上的正投影的中心,并穿过第一发光器件23r在第一基底11上的正投影的中心。另外,光学结构单元60所对应的轴线在第一基底11上的正投影穿过中间的第一发光器件23r在第一基底11上的正投影。在发光器件组23a中,位于中间的第一发光器件23r的光线利用率最高,因此,将光效较低的第一色转换部71r放置在对应于光学结构单元60中部的位置,从而可以提高第一色转换部71r的亮度,使不同颜色的出光部71的出光效果更均一。
继续参阅图3,显示面板还包括第二封装层74,第二封装层74设置在多个出光部组70远离第二基底12的一侧,用于对多个出光部组70进行封装。其中,第二封装层74的材料可以为氮化硅、氧化硅、氮氧化硅中的任意一种。
另外,由于外界环境光中也含有蓝光,当外界环境光中的蓝光射入第一色转换部71r和第二色转换部71g时,会激发第一色转换部71r和第二色转换部71g发光,从而影响显示面板的显示效果。为了防止外界环境光对显示面板的显示造成干扰,在一些实施例中,如图3所示,显示面板还包括彩色滤光层和黑矩阵BM,彩色滤光层位于多个出光部组70远离第一基底11的一侧,彩色滤光层包括多个彩色滤光部72,彩色滤光部72与出光部71一一对应,彩色滤光部72与相应的出光部71所出射的光线颜色相同,例如,多个彩色滤光部72包括:多个第一彩色滤光部72r、多个第二彩色滤光部72g和多个彩色滤光部72g。第一彩色滤光部72r与第一色转换部71r的出光颜色相同,用于透过第一颜色光;第二彩色滤光部72g与第二色转换部71g的出光颜色相同,用于透过第二颜色光;第三彩色滤光部72b与透光部71b的出光颜色相同,用于透过所述预设颜色的光线。黑矩阵BM位于容纳结构73与第二基底12之间,黑矩阵BM形成为网格状结构,以限定出多个子像素。每个出光部71的至少一部分在第一基底11上的正投影与黑矩阵BM在第一基底11上的正投影无交叠。另外,容纳结构73在第一基底11上的正投影与黑矩阵BM在第一基底11上的正投影可以重合或大致重合。
如图3所示,显示面板还可以包括第二填充层42,第二填充层42位于第二封装层74远离第一基底11的一侧,第二填充层42可以为光学胶层。在显示面板的制作过程中,可以先在第一基底11上制作驱动结构层20、像素界定层PDL、发光器件23、第一封装层30、光学结构单元60等结构,以得到显示基板;并在第二基底12上制作彩色滤光层、多 个出光部组70等结构,以得到对盒基板,之后,将显示基板与对盒基板对盒设置,并利用第二填充层42将显示基板与对盒基板固定在一起。其中,第一填充层41和第二填充层42均与光学结构单元60接触,光学结构单元60靠近第二填充层42的表面为凸曲面。另外,第一填充层41和第二填充层42的折射率均与光学结构单元60的折射率不同。
下面对光学结构单元60的相关参数进行介绍。
其中,根据图3中所示的透镜成像原理,当发光器件23的出光面与光学结构单元60的出光面之间的等效空气厚度小于光学结构单元60的焦距的1倍时,发光器件23出射的光线经过光学结构单元60后,将无法射到出光部上;而当发光器件23的出光面与光学结构单元60的出光面之间的等效空气厚度大于光学结构单元60的焦距的2倍时,发光器件23出射的光经过光学结构单元60后,将形成缩小的像,这就需要将发光器件23的面积设置地较大,才能使发光器件23所出射的光线能够被充分利用,但如果将发光器件23的面积较大、将出光部的面积设置的较小,那么,出光部71之间的间距将增大,导致显示画面出现颗粒感。
因此,在本公开实施例中,将发光器件23的出光面与光学结构单元60的出光面之间的等效空气厚度设置为光学结构单元60的焦距1~2倍,从而保证显示面板的显示效果。
需要说明的是,本公开实施例中某一结构的出光面是指,该结构出射光线的表面,入光面是指,该结构接收光线的表面。另外,两个面之间的等效空气厚度是指,将两个面之间的介质等效为一个空气层之后,该等效空气层的厚度。其中,假设两个面之间的介质为第一介质,那么,光线在第一介质中的光程与在等效空气层的光程一致,即,n 介质1*d 介质1=n 空气*d 空气层,其中,n 介质1为第一介质的折射率,d 介质1为第一介质的厚度,n 空气层为空气的折射率,n 空气为等效空气层的厚度。
图7为本公开的一些实施例中提供的部分结构的尺寸说明示意图,如图7所示,光学结构单元60采用聚光透镜,子像素的宽度为p,光学结构单元60的折射率为n 透镜,光学结构单元60的焦距为f。在显示面板的生产过程中,可以根据实际产品所要求的分辨率来确定子像素的宽度。另外,在显示面板中,光学结构单元60与发光器件23之间至少设置有封装层等介质层,当封装层的厚度过小时,无法满足阻隔水氧的要求;当封装层的厚度过大时,会导致显示面板的厚度较大,因此,需要结合实际需求,来确定光学结构单元60与发光器件23之间的介质层的厚度范围,另外,由于发光器件23与光学结构单元60之间的等效空气宽度需要达到光学结构单元60的焦距f的1~2倍,因此,可以根据光学结构单元60与发光器件23之间的介质层的厚度范围,来确定光学结构单元60的焦距的范围。
而光学结构单元60的焦距f、折射率n 透镜、宽度D、曲率半径r以及空气折射率n 空气之间的关系满足以下公式(1)(2):
Figure PCTCN2021121584-appb-000002
r 2-(r-h1) 2=(D/2) 2        (2)
其中,光学结构单元60的折射率可以根据工艺上可选择的材料来确定,例如,光学结构单元60的折射率在1.5~2.0之间。
当光学结构单元60的出光面与发光器件23的出光面之间的等效空气厚度为目标厚度H时,中间的发光器件23的左端向光学结构单元60发射的准直光线经过光学结构单元60后,折射光射向中间的出光部71(即红色出光部71r)的右端;中间的发光器件23的右端向光学结构单元60发射的准直光线经过光学结构单元60后,折射光射向中间的出光部71的左端。假设发光器件23的出光面的宽度为w1,光学结构单元 60的拱高为h1,出光部71的宽度为w2,目标距离为H,光学结构单元60的出光面与出光部71的入光面之间的等效空气厚度为h2,光学结构单元60的焦距为f,那么,根据图7中的光路可以得出以下关系:
Figure PCTCN2021121584-appb-000003
因此,目标厚度H满足以下公式(3):
Figure PCTCN2021121584-appb-000004
而为了防止不同子像素之间发生串扰,光学结构单元60的出光面与发光器件23的出光面之间的等效空气厚度大于或等于目标厚度H。可选地,光学结构单元60的出光面与发光器件23的出光面之间的等效空气厚度设置为目标厚度H,以减小显示面板的整体厚度。
需要说明的是,图7中的光路图是在空气介质的前提下模拟的,在实际产品中,光学结构单元60与发光器件23之间的介质层并不是空气,那么,在确定出发光器件23的出光面与光学结构单元60的出光面之间的等效空气厚度后,还需根据该等效空气厚度、空气折射率、以及光学结构单元60的出光面与发光器件23的出光面之间的介质层的折射率,来确定光学结构单元60的出光面与发光器件23的出光面之间的介质层的厚度,也即,确定实际产品中光学结构单元60的出光面与发光器件23的出光面之间的物理距离,该物理距离为光学结构单元60的最高点与发光器件23的出光面之间的距离。
根据图7中的光路图,可以得出:w2/w1=h2/H。其中,将w2近似为D/3,则光学结构单元60的宽度D、发光器件23的出光面的宽度w1满足以下公式(4):
Figure PCTCN2021121584-appb-000005
另外,沿第一方向排列的两个出光部71之间的容纳结构73的宽度W bank、同一个第一容纳槽Ca1中的相邻两个第一电极231之间的间距 W space之间满足以下公式(5):
Figure PCTCN2021121584-appb-000006
当h2/H确定之后,根据工艺条件确定W space能够达到的最小值,或者确定W bank所能够达到的最小值,则另一个宽度可以根据以上公式(5)确定。沿第一方向排列的相邻两个发光器件组23a之间的像素界定层PDL的宽度W PDL=D-3*w1-2*W space
图8为本公开的一些实施例中提供的各发光器件的光线被光学结构单元调制后的示意图,如图8所示,光学结构单元60在第一方向上的两端均超过发光器件组,且超出部分在第一方向上的尺寸为W PDL/2。发光器件23的最大发光角度为θ,该最大发光角度是指,发光器件23所出的光线与显示面板厚度方向之间所能呈现的最大角度。
以图8中最右侧的发光器件23为例,当以下公式(6)成立时,则最右侧的发光器件23出射的最大发光角度的光线能够照射至光学结构单元60的右端。
d 1*sinθ 1+d 2*sinθ 2+d 3*sinθ 3+d 4*sinθ 4=W PDL/2      (6)
其中,θ 1为射入第一封装子层31的光线与显示面板的厚度方向之间的最大夹角,即,发光器件23发出的最大发光角度的光线入射至第一封装子层31内后,在第一封装子层31内传播的光线与显示面板的厚度方向之间的夹角;θ 2为射入第二封装子层32的光线与显示面板的厚度方向之间的最大夹角,即,发光器件23发出的最大发光角度的光线经过第一封装子层31,进入第二封装子层32后,在第二封装子层32内传播的光线与显示面板的厚度方向之间的夹角;θ 3为射入第三封装子层33的光线与显示面板的厚度方向之间的最大夹角,即,发光器件23发出的最大发光角度的光线经过第一封装子层31和第二封装子层32,进入第三封装子层33后,在第三封装子层33内传播的光线与显示面板的厚度方向之 间的夹角;θ 4为射入第一填充层41的光线与显示面板的厚度方向之间的最大夹角,即,发光器件23发出的最大发光角度的光线经过第一封装子层31、第二封装子层32和第三封装子层33,进入第一填充层41后,在第一填充层41内传播的光线与显示面板的厚度方向之间的夹角。d 1为第一封装子层31的厚度,d 2为第二封装子层32的厚度,d 3为第三封装子层33的厚度,d 4为第一填充层41的厚度。
其中,d 1、sinθ 1、d 2、sinθ 2、d 3、sinθ 3、d 4、sinθ 4满足以下公式(7):
d 1*sinθ 1=d 2*sinθ 2=d 3*sinθ 3=d 4*sinθ 4     (7)
而为了防止发光器件组23a出射的光线射到相邻的光学结构单元60,可以使θ 1、θ 2、θ 3、θ 4、d 1、d 2、d 3、d 4、W PDL满足公式(7)和以下公式(8):
d 1*sinθ 1+d 2*sinθ 2+d 3*sinθ 3+d 4*sinθ 4≤W PDL/2     (8)
当然,也可以通过其他方式来防止发光器件组23a出射的光线射到相邻的光学结构单元60,例如,如图3所示,在第一填充层41与第一封装层30之间设置遮光层80,遮光层80在第一基底11上的正投影位于像素界定层PDL在第一基底11上的正投影范围内,也即,遮光层80在第一基底11上的正投影位于像素界定层PDL在第一基底11上的正投影范围内。其中,遮光层80可以包括沿第一方向排列的多个第一遮光条81,第一遮光条81沿第二方向延伸;每相邻两个沿第一方向排列的发光器件组23a之间的间隔区域均对应一个第一遮光条81。另外,遮光层80还可以包括沿第二方向排列的多个第二遮光条,每个第二遮光条沿第一方向延伸,每相邻两个沿第二方向排列的发光器件组23a之间的间隔区域均对应一个第二遮光条。
这种情况下,可以不考虑公式(7)和公式(8),第一遮光条81 的宽度W SL满足以下公式(9):
W SL≥W PDL-(d 1*sinθ 1+d 2*sinθ 2+d 3*sinθ 3)*2      (9)
需要说明的是,在无特别说明的情况下,上文中各结构的“宽度”是指,该结构在第一方向上的尺寸。
综上,在设置显示面板中各结构的参数时,根据第一条件、第二条件和第三条件来确定各结构的参数,第一条件为:发光器件23的出光面与光学结构单元60的出光面之间的等效空气厚度为光学结构单元60的焦距的1~2倍;第二条件为:公式(1)~(5);第三条件为:公式(7)~(8),和/或,公式(9)。
下面结合具体示例对显示面板中各结构的参数设置进行说明。
显示面板所要求的分辨率为508PPI,即,像素单元的宽度为50μm,子像素的宽度为16.6μm。例如,光学结构单元60的折射率n 透镜为1.54,光学结构单元60的宽度D为50μm,拱高h1为25μm,则曲率半径r为25μm,焦距f为72μm。
当f=72μm,h1=25μm时,根据第一条件确定发光器件23的出光面与光学结构单元60的出光面之间的等效空气厚度,例如,该等效空气厚度和目标厚度H相等,均为80μm,根据公式(3)可得,光学结构单元60的出光面与出光部71的入光面之间的等效空气厚度h2=174μm,w2/w1=2.2。
根据公式(5)可得,
Figure PCTCN2021121584-appb-000007
假设生产工艺能够得到的W space的最小值为1.5μm,则W bank=3.3μm。
出光部71的宽度为w2=P-W bank=16.6-3.3=13.3μm。
发光器件23的出光面的宽度w1=w2/2.2=6.0μm。
沿第一方向排列的相邻两个发光器件组23a之间的像素界定层PDL的宽度W PDL=D-3*w1-2*W space=50-3*6.0-2*1.5=24μm。
通过调整第一封装子层31的厚度和折射率、第二封装子层32的厚度和折射率、第三封装子层33的厚度和折射率、第一填充层41的厚度和折射率,来使得发光器件23的出光面与光学结构单元60的出光面之间的等效空气厚度为80μm。经调整,各封装子层的折射率、厚度、等效空气厚度如表1所示。
Figure PCTCN2021121584-appb-000008
另外,假设发光器件23射入第一封装子层31内的光线与显示面板之间的最大角度θ 1为20°,则根据公式(9)可得,W SL≥13.3um,例如,可以将W SL设置为13.3um。
在上述实施例中,通过设置遮光层80、以及通过调整像素界定层PDL的宽度,来防止像素单元之间的光线串扰。而在本公开的另一些实施例中,还可以通过调整发光器件23中各膜层的厚度来进一步防止子像素之间的串扰。
具体地,在发光器件23中,第一电极231为反射电极,例如,第一电极231采用金属材料层,或者采用金属材料层与氧化铟锡(ITO)等透明材料层的叠层;第二电极232为透反电极,第二电极232可以采用厚度较小的金属材料层。第一电极231与第二电极232之间形成微腔结构,微腔结构用于调节发光器件23的出射光的强度,以使出射角超过50°的出射光线的强度小于出射角在0°~30°之间的出射光线的强度。其中,出射角是指出射方向与显示面板的厚度方向之间的夹角。
在一些实施例中,出射角超过50°的出射光线的强度小于准直出射 光线的强度的0.3倍,准直出射光线即为出射角0°的出射光线。
其中,发光器件23的出射峰=微腔结构的透过峰*发光器件23的本征发光峰。在一些实施例中,第一电极231的厚度在90nm~110nm之间;空穴注入层234的厚度在70nm~80nm之间;空穴传输层235的厚度在40nm~50nm之间,发光层233的厚度在45nm~55nm之间;电子传输层236的厚度在190nm~210nm之间;电子注入层237的厚度在210nm~230nm之间;第二电极232的厚度在20nm~30nm之间。这种情况下,对于出射角为0~30°的出射光线,微腔结构的透过峰与发光器件23的本征峰大致重合,从而使得光线能够出射;对于大角度的出射光线,微腔结构的透过峰蓝移,与发光器件23的本征峰不重合,从而减弱大角度的出射光的强度。
图9为一对比例中提供的发光器件各出光角度的光谱图,图10为本公开的一个示例中提供的发光器件各出光角度的光谱图。在对比例中,第一电极231的材料为为银和ITO的叠层,厚度为180nm,空穴注入层的厚度为105nm,空穴传输层的厚度为60nm,发光层的厚度为50nm,电子传输层的厚度为160nm,电子注入层的厚度为140nm;第二电极232的材料包括镁和银,第二电极232的厚度为25nm。在本公开的一个示例中,第一电极231的材料为银和ITO的叠层,第一电极231的厚度为100nm,空穴注入层234的厚度为75nm,空穴传输层235的厚度为45nm,发光层233的厚度为50nm,电子传输层236的厚度为200nm,电子注入层237的厚度为220nm,第二电极232的材料包括镁和银,第二电极232的厚度为25nm。通过对比图9至图10可以看出,在本公开实施例中,对于出射角为0°~30°的蓝光,其强度较大;而对于出射角在50°以上的蓝光,其强度降低。因此,通过调整各膜层的厚度,可以减小大角度出射光的强度,从而进一步改善子像素之间的串扰现象。
本公开实施例还提供了一种显示装置,其包括上述实施例中显示面 板。该显示装置可以为手机、平板电脑、电视机、显示器、笔记本电脑、数码相框、导航仪等任何具有显示功能的产品或部件。
可以理解的是,以上实施方式仅仅是为了说明本公开的原理而采用的示例性实施方式,然而本公开并不局限于此。对于本领域内的普通技术人员而言,在不脱离本公开的精神和实质的情况下,可以做出各种变型和改进,这些变型和改进也视为本公开的保护范围。

Claims (22)

  1. 一种显示面板,包括:多个发光器件组、多个出光部组和多个光学结构单元,其中,
    所述多个发光器件组设置在第一基底上,所述多个发光器件组中的每个包括多个发光器件,所述多个发光器件包括第一发光器件和第二发光器件,所述第一发光器件和所述第二发光器件均用于发射预设颜色的光线;
    所述多个出光部组设置在所述多个发光器件组的出光侧,所述多个出光部组中的每个包括第一色转换部和第二色转换部;
    所述多个光学结构单元设置在所述多个发光器件组和所述多个出光部组之间,所述多个光学结构单元中的每个在所述第一基底上的正投影覆盖所述多个发光器件组中的至少一个在所述第一基底上的正投影,所述多个光学结构组中的每个用于将所述第一发光器件发射的光线射入所述第一色转换部,将所述第二发光器件所发射的光线射入所述第二色转换部,所述第一色转换部用于将所述预设颜色的光线转换为第一颜色光,所述第二色转换部用于将所述预设颜色的光线转换为第二颜色光。
  2. 根据权利要求1所述的显示面板,其中,所述第一发光器件与所述第一色转换部在所述第一基底上的正投影无交叠;和/或,
    所述第二发光器件与所述第二色转换部在所述第一基底上的正投影无交叠。
  3. 根据权利要求1所述的显示面板,其中,所述第一颜色光与所述第二颜色光的波长范围不同。
  4. 根据权利要求1所述的显示面板,其中,所述发光器件组中的多 个发光器件还包括:第三发光器件,所述多个出光部组中的每个还包括透光部,所述多个光学结构单元中的每个在所述第一基底上的正投影还覆盖所述第三发光器件在所述第一基底上的正投影,
    所述多个发光结构单元中的每个还用于将所述第三发光器件发射的光线射入所述透光部。
  5. 根据权利要求1至4中任意一项所述的显示面板,其中,所述光学结构单元为聚光透镜,所述发光器件的出光面与所述光学结构单元的出光面之间的等效空气厚度为所述聚光透镜的焦距的1~2倍。
  6. 根据权利要求5所述的显示面板,其中,所述光学结构单元的出光面与所述发光器件的出光面之间的等效空气厚度大于或等于目标厚度,所述目标厚度H满足以下公式:
    Figure PCTCN2021121584-appb-100001
    其中,h1为所述聚光透镜的拱高,h2为所述聚光透镜的出光面与所述出光部的入光面之间的等效空气厚度,f为所述聚光透镜的焦距。
  7. 根据权利要求1至4中任意一项所述的显示面板,其中,所述发光器件包括:第一电极和发光层,所述发光层位于所述第一电极远离所述第一基底的一侧,
    所述显示面板还包括:设置在所述第一基底上的像素界定层,所述像素界定层具有多个第一容纳槽,同一个所述发光器件组中的多个所述发光器件设置在同一个所述第一容纳槽中,不同的所述发光器件组设置在不同的第一容纳槽中,同一个所述第一容纳槽中的多个发光器件的第一电极之间绝缘间隔。
  8. 根据权利要求1至4中任意一项所述的显示面板,其中,所述显示面板还包括:
    封装层,所述封装层设置在所述多个发光器件组远离所述第一基底的一侧,用于对所述多个发光器件组进行封装;
    第一填充层,位于所述封装层远离所述第一基底的一侧;
    第二填充层,位于所述第一填充层与所述多个出光部组之间;
    其中,所述光学结构单元设置在所述第一填充层与所述第二填充层之间,且与所述第一填充层和所述第二填充层接触,所述光学结构单元靠近所述第二填充层的表面为凸曲面;
    所述第一填充层和所述第二填充层的折射率均与所述光学结构单元的折射率不同。
  9. 根据权利要求8所述的显示面板,其中,所述显示面板还包括设置在所述封装层与所述第一基底之间的像素界定层,任意两相邻的发光器件组均被所述像素界定层间隔开,
    所述封装层包括沿远离所述第一基底的方向依次设置的:第一封装子层、第二封装子层和第三封装子层,
    其中,同一个所述发光器件组中的多个发光器件沿第一方向排列,沿所述第一方向排列的相邻两个发光器件组之间的像素界定层的宽度W PDL满足:
    d 1*sinθ 1+d 2*sinθ 2+d 3*sinθ 3+d 4*sinθ 4≤W PDL/2
    其中,θ 1为射入所述第一封装子层的光线与所述显示面板的厚度方向之间的最大夹角,θ 2为射入所述第二封装子层的光线与所述显示面板的厚度方向之间的最大夹角,θ 3为射入所述第三封装子层的光线与所述显示面板的厚度方向之间的最大夹角,θ 4为射入所述第一填充层的光线与所述显示面板的厚度方向之间的最大夹角;d 1为所述第一封装子层的 厚度,d 2为所述第二封装子层的厚度,d 3为所述第三封装子层的厚度,d 4为所述第一填充层的厚度。
  10. 根据权利要求8所述的显示面板,其中,所述显示面板还包括:
    像素界定层,设置在所述封装层与所述第一基底之间,其中,任意两相邻的发光器件组均被所述像素界定层间隔开,
    遮光层,设置在所述封装层与第一填充层之间,所述遮光层在所述第一基底上的正投影位于所述像素界定层在所述第一基底上的正投影范围内。
  11. 根据权利要求10所述的显示面板,其中,所述发光器件组中的多个发光器件沿第一方向依次排列,所述遮光层包括沿第一方向排列的多个第一遮光条,每个所述第一遮光条均沿第二方向排列,沿所述第一方向排列的每相邻两个所述发光器件组之间的间隔区域均对应一个所述第一遮光条。
  12. 根据权利要求11所述的显示面板,其中,所述封装层包括远离所述第一基底的方向依次设置的:第一封装子层、第二封装子层和第三封装子层,所述第一遮光条的宽度W SL满足:
    W SL≥W PDL-(d 1*sinθ 1+d 2*sinθ 2+d 3*sinθ 3)*2
    其中,θ 1为射入所述第一封装子层的光线与所述显示面板的厚度方向之间的最大夹角,θ 2为射入所述第二封装子层的光线与所述显示面板的厚度方向之间的最大夹角,θ 3为射入所述第三封装子层的光线与所述显示面板的厚度方向之间的最大夹角,θ 4为射入所述第一填充层的光线与所述显示面板的厚度方向之间的最大夹角;W PDL为所述像素界定层的宽度,d 1为所述第一封装子层的厚度,d 2为所述第二封装子层的厚度,d 3 为所述第三封装子层的厚度。
  13. 根据权利要求1至4中任一项所述的显示面板,其中,所述光学结构单元的折射率在1.54~2.0之间。
  14. 根据权利要求1至4中任一项所述的显示面板,其中,每个所述出光部组在所述第一基底上的正投影均位于所述光学结构单元在所述第一基底上的正投影范围内。
  15. 根据权利要求1至4中任一项所述的显示面板,其中,所述发光器件包括:第一电极、第二电极和发光层,所述第一电极位于所述发光层朝向所述第一基底的一侧,所述第二电极位于所述发光层远离所述第一基底的一侧,所述第一电极为反射电极,所述第二电极为透反电极,所述第一电极与所述第二电极之间形成微腔结构,所述微腔结构用于调节所述发光器件的出射光的强度,以使出射角超过50°的出射光线的强度小于出射角在0°~30°之间的出射光线的强度。
  16. 根据权利要求15所述的显示面板,其中,所述发光器件还包括:空穴注入层、空穴传输层、电子注入层和电子传输层,所述空穴注入层位于所述第一电极与所述发光层之间,所述空穴传输层位于所述空穴注入层与所述发光层之间,所述电子传输层位于所述发光层与所述第二电极之间,所述电子注入层位于所述电子传输层与所述电子注入层之间,其中,
    所述第一电极的厚度在90nm~110nm之间;
    所述空穴注入层的厚度在70nm~80nm之间;
    所述空穴传输层的厚度在40nm~50nm之间;
    所述发光层的厚度在45nm~55nm之间;
    所述电子传输层的厚度在190nm~210nm之间;
    所述电子注入层的厚度在210nm~230nm之间;
    所述第二电极的厚度在20nm~30nm之间。
  17. 根据权利要求1至4中任意一项所述的显示面板,其中,所述显示面板还包括容纳结构,所述容纳结构具有多个第二容纳槽,每个所述第一色转换部和每个所述第二色转换部均设置在一个所述第二容纳槽中,不同的所述第一色转换部设置在不同的第二容纳槽中,不同的所述第二色转换部设置在不同的第二容纳槽中,所述第一色转换部和所述第二色转换部设置在不同的所述第二容纳槽中。
  18. 根据权利要求1至4中任一项所述的显示面板,其中,所述显示面板还包括:
    彩色滤光层,位于所述多个出光部组远离所述第一基底的一侧,所述彩色滤光层包括多个第一彩色滤光部和多个第二彩色滤光部,所述第一彩色滤光部与所述第一色转换部一一对应,所述第二彩色滤光部与所述第二色转换部一一对应,所述第一彩色滤光部用于透过所述第一颜色光,所述第二彩色滤光部用于透过所述第二颜色光;
    黑矩阵,位于所述多个出光部组远离所述第一基底的一侧;其中,每个所述第一色转换部的至少一部分在所述第一基底上的正投影、每个所述第二色转换部的至少一部分在所述第一基底上的正投影与所述黑矩阵在所述基底上的正投影均无交叠;
    第二基底,设置在所述彩色滤光层远离所述第一基底的一侧。
  19. 根据权利要求1至4中任一项所述的显示面板,其中,所述光 学结构单元为聚光透镜。
  20. 根据权利要求19所述的显示面板,其中,同一个所述发光器件组中的多个发光器件沿第一方向排列,所述聚光透镜为柱状透镜,所述柱状透镜所对应的轴线沿第二方向延伸,所述第二方向与所述第一方向交叉;
    所述第一颜色光为红光,所述聚光透镜所对应的轴线在所述第一基底上的正投影穿过所述第一色转换部在所述第一基底上的正投影。
  21. 根据权利要求1至4中任一项所述的显示面板,其中,所述第一色转换部和所述第二色转换部的材料均包括量子点材料。
  22. 一种显示装置,其中,包括权利要求1至21中任意一项所述的显示面板。
PCT/CN2021/121584 2021-09-29 2021-09-29 显示面板和显示装置 WO2023050122A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN202180002755.3A CN116210365B (zh) 2021-09-29 2021-09-29 显示面板和显示装置
PCT/CN2021/121584 WO2023050122A1 (zh) 2021-09-29 2021-09-29 显示面板和显示装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2021/121584 WO2023050122A1 (zh) 2021-09-29 2021-09-29 显示面板和显示装置

Publications (1)

Publication Number Publication Date
WO2023050122A1 true WO2023050122A1 (zh) 2023-04-06

Family

ID=85781037

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/121584 WO2023050122A1 (zh) 2021-09-29 2021-09-29 显示面板和显示装置

Country Status (2)

Country Link
CN (1) CN116210365B (zh)
WO (1) WO2023050122A1 (zh)

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106033766A (zh) * 2015-03-17 2016-10-19 上海和辉光电有限公司 一种oled器件结构及显示装置
CN109166903A (zh) * 2018-09-12 2019-01-08 京东方科技集团股份有限公司 一种oled显示面板及其制作方法,以及显示装置
CN110323354A (zh) * 2019-04-25 2019-10-11 昆山工研院新型平板显示技术中心有限公司 显示面板及显示装置
JP2020035713A (ja) * 2018-08-31 2020-03-05 株式会社Joled 有機el表示パネル
CN111370592A (zh) * 2020-03-17 2020-07-03 京东方科技集团股份有限公司 显示面板及其制造方法、显示装置
CN111653683A (zh) * 2020-06-16 2020-09-11 京东方科技集团股份有限公司 显示面板和显示装置
CN112130236A (zh) * 2020-09-29 2020-12-25 厦门天马微电子有限公司 低反射结构、显示面板、显示装置及显示面板的制作方法
CN212517209U (zh) * 2020-09-27 2021-02-09 京东方科技集团股份有限公司 显示面板和电子装置
CN113013349A (zh) * 2019-12-19 2021-06-22 乐金显示有限公司 显示装置

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106033766A (zh) * 2015-03-17 2016-10-19 上海和辉光电有限公司 一种oled器件结构及显示装置
JP2020035713A (ja) * 2018-08-31 2020-03-05 株式会社Joled 有機el表示パネル
CN109166903A (zh) * 2018-09-12 2019-01-08 京东方科技集团股份有限公司 一种oled显示面板及其制作方法,以及显示装置
CN110323354A (zh) * 2019-04-25 2019-10-11 昆山工研院新型平板显示技术中心有限公司 显示面板及显示装置
CN113013349A (zh) * 2019-12-19 2021-06-22 乐金显示有限公司 显示装置
CN111370592A (zh) * 2020-03-17 2020-07-03 京东方科技集团股份有限公司 显示面板及其制造方法、显示装置
CN111653683A (zh) * 2020-06-16 2020-09-11 京东方科技集团股份有限公司 显示面板和显示装置
CN212517209U (zh) * 2020-09-27 2021-02-09 京东方科技集团股份有限公司 显示面板和电子装置
CN112130236A (zh) * 2020-09-29 2020-12-25 厦门天马微电子有限公司 低反射结构、显示面板、显示装置及显示面板的制作方法

Also Published As

Publication number Publication date
CN116210365B (zh) 2024-04-02
CN116210365A (zh) 2023-06-02

Similar Documents

Publication Publication Date Title
US9368754B2 (en) Display device
US7402939B2 (en) Organic EL display
EP3462514B1 (en) Electroluminescent display device
US10269777B2 (en) Display apparatus comprising reflection structure
TW201827900A (zh) 畫素結構與具有此畫素結構的顯示面板
US10896934B2 (en) Light-emitting device, display apparatus, and image pickup apparatus
US10629667B2 (en) Light-emitting device comprising first light-shielding layer having first opening and second light-shielding layer having second opening corresponding to the first opening
US20230045968A1 (en) Display substrate and display apparatus
US20210066643A1 (en) Organic light emitting display device and method of manufacturing the same
US20220376029A1 (en) Display substrate and display device
TWI709952B (zh) 電子裝置、電子裝置的驅動方法
KR20220019198A (ko) 표시 장치
WO2023050122A1 (zh) 显示面板和显示装置
WO2023028933A1 (zh) 显示面板和显示装置
US11974455B2 (en) Display device and method of manufacturing the same
WO2022094973A1 (zh) 显示面板及显示装置
US20240188367A1 (en) Display panel and display apparatus
US20240196715A1 (en) Display panel and display apparatus
KR20210036100A (ko) 표시 패널, 상기 표시 패널을 포함하는 표시 장치 및 상기 표시 패널의 제조 방법
US20220328578A1 (en) Display substrate, display panel, manufacturing method thereof and display device
WO2022261870A1 (zh) 显示面板和显示装置
US11957022B2 (en) Display panel having intra-substrate filler configuration, method of manufacturing such a display panel, and display device
WO2023151127A1 (zh) Oled显示面板及其制作方法、oled显示模组
WO2021184930A1 (zh) 显示面板
US20230217769A1 (en) Electronic device

Legal Events

Date Code Title Description
NENP Non-entry into the national phase

Ref country code: DE