WO2023050088A1 - 双线圈电感及电子设备 - Google Patents

双线圈电感及电子设备 Download PDF

Info

Publication number
WO2023050088A1
WO2023050088A1 PCT/CN2021/121440 CN2021121440W WO2023050088A1 WO 2023050088 A1 WO2023050088 A1 WO 2023050088A1 CN 2021121440 W CN2021121440 W CN 2021121440W WO 2023050088 A1 WO2023050088 A1 WO 2023050088A1
Authority
WO
WIPO (PCT)
Prior art keywords
coil
double
groove
patch
magnetic cores
Prior art date
Application number
PCT/CN2021/121440
Other languages
English (en)
French (fr)
Inventor
程志刚
郭海
侯勤田
沈品帆
Original Assignee
深圳顺络电子股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳顺络电子股份有限公司 filed Critical 深圳顺络电子股份有限公司
Priority to PCT/CN2021/121440 priority Critical patent/WO2023050088A1/zh
Publication of WO2023050088A1 publication Critical patent/WO2023050088A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F27/00Details of transformers or inductances, in general
    • H01F27/24Magnetic cores
    • H01F27/26Fastening parts of the core together; Fastening or mounting the core on casing or support
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F27/00Details of transformers or inductances, in general
    • H01F27/28Coils; Windings; Conductive connections
    • H01F27/30Fastening or clamping coils, windings, or parts thereof together; Fastening or mounting coils or windings on core, casing, or other support
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F27/00Details of transformers or inductances, in general
    • H01F27/34Special means for preventing or reducing unwanted electric or magnetic effects, e.g. no-load losses, reactive currents, harmonics, oscillations, leakage fields

Definitions

  • the application relates to the field of inductance, in particular to a double-coil inductance and electronic equipment.
  • Inductor is the most common component in electronic equipment, and it is also one of the important components in the circuit. It is widely used in various circuits and can achieve the functions of filtering, energy storage, matching and resonance. With the continuous development of high-tech such as computers and the Internet of Things in recent years, as the hardware foundation of the above-mentioned technologies, various types of intelligent electrical equipment are updated more and more frequently, and the design and manufacture of these electrical equipment has gradually begun to move towards integration and miniaturization. Under such a development trend, it becomes an inevitable technical choice to make full use of the space inside the equipment and make the layout of the internal components more compact. In addition, as the CPU core voltage of electronic equipment continues to decrease and the operating frequency continues to increase, the demand for operating current also increases unreasonably. How to obtain a smaller volume inductor to withstand large current and high power has become an urgent need in the industry. One of the problems solved.
  • the embodiment of the present application provides a double-coil inductor and electronic equipment, which is beneficial to integrate the inductor with characteristics of small volume, high current and high power.
  • the embodiment of the present application provides a dual-coil inductor, including a first coil, a second coil, and two magnetic cores, one of which is provided with a first groove, and the other magnetic core is provided with a second concave Slots, two magnetic cores are stacked, the first groove and the second groove are oppositely arranged and communicated, the first coil is sleeved outside the second coil, and the first coil and the second coil are arranged between the two magnetic cores , and located in the connected first groove and second groove.
  • the first coil includes two first patch pins arranged opposite to each other
  • the second coil includes two second patch pins oppositely arranged, the first patch pins and the second patch pins
  • the pins are located on the same side of the double-coil inductor and are flush, and the adjacent first patch pins and the second patch pins are arranged facing away from each other.
  • a first insulating layer and a first adhesive layer are disposed between the first coil and the second coil, the first insulating layer is disposed on the conductor surfaces of the first coil and the second coil, and the first adhesive layer It is arranged on the first insulating layer and used for bonding the first coil and the second coil.
  • the magnetic core includes a base body, a first part disposed on the base body, a second part and a third part, the third part is disposed between the opposite first part and the second part, and the first part and the third part are spaced apart
  • the arrangement, the second part and the third part are arranged at intervals to form a first groove or a second groove, and the first coil and the second coil are sleeved outside the third part.
  • the base body is provided with a notch and two protrusions
  • the second patch leads extend into the notch
  • the two protrusions are respectively arranged on both sides of the notch
  • the two first patch pins are respectively Set on two protrusions.
  • the distance between the first part and the edge of the substrate is D1
  • the depth of the notch is equal to the distance between the third part and the edge of the substrate and is D2
  • the side of the first coil facing away from the first patch lead is flush with the edge of the substrate.
  • the second insulating layer is disposed on the side of the two magnetic cores facing the second patch pin; and/or, the second insulating layer is disposed in the first groove and the second groove.
  • the double-coil inductor further includes a second adhesive layer, the second adhesive layer bonds the two magnetic cores, the adhesive layer is doped with particles, and the particles are used to form the two magnetic cores air gap.
  • an embodiment of the present application provides an electronic device, including the above-mentioned double-coil inductor.
  • the double-coil inductor and electronic equipment of the embodiment of the present application include a first coil, a second coil and two magnetic cores, one of which is provided with a first groove, and the other is provided with a second groove. Groove, two magnetic cores are stacked, the first groove and the second groove are oppositely arranged and communicated, the first coil is sleeved outside the second coil, and the first coil and the second coil are arranged between the two magnetic cores and located in the connected first groove and the second groove, the two coils of the inductor can reduce the occupied space, which is beneficial to reduce the volume of the inductor, and the double coil setting can increase the cross-sectional area of the coil, and It can be regarded as a bidirectional power supply design, which can shunt the working current and reduce the DC resistance (DCR) in high current and high power applications, so that the inductor can be integrated with small size, high current and high power characteristics.
  • DCR DC resistance
  • Fig. 1 is a schematic structural view of a dual-coil inductor according to an embodiment of the present application
  • Fig. 2 is a schematic structural view of removing a magnetic core above the double-coil inductance shown in Fig. 1;
  • Fig. 3 is a schematic structural diagram of a second coil according to an embodiment of the present application.
  • Fig. 4 is a schematic structural diagram of a first coil according to an embodiment of the present application.
  • FIG. 5 is a schematic structural view of a magnetic core according to an embodiment of the present application.
  • FIG. 6 is a schematic flowchart of a method for manufacturing a double-coil inductor according to an embodiment of the present application.
  • a double-coil inductor 10 provided by the embodiment of the present application includes a first coil 1, a second coil 2 and two magnetic cores, which are respectively marked as magnetic core 3 and core 4.
  • the magnetic core 3 and the magnetic core 4 are stacked and disposed along the second direction y, wherein, in the placement orientation shown in FIG. 1 , the second direction y is a vertical direction.
  • One of the magnetic cores 4 (that is, located at the bottom in FIG. 1 ) is provided with a first groove 4a, and the other magnetic core 3 (that is, located at the top of FIG.
  • the structure of the magnetic core 3 and the magnetic core 4 can be exactly the same, and they are symmetrically stacked up and down, and then the first groove 4 a and the second groove are arranged opposite and connected up and down.
  • the first coil 1 is sheathed outside the second coil 2, and the first coil 1 and the second coil 2 are arranged between the magnetic core 3 and the magnetic core 4, and are located in the first groove 4a and the second groove which communicate.
  • the main body of the first coil 1 has an internal space that can accommodate the main body of the second coil 2, and the outer contour of the main body of the second coil 2 is consistent with the outer contour of the inner space of the second coil 2, the first coil 1 After being assembled with the second coil 2, a double coil assembly structure is formed.
  • the two coils of the inductor 10 are nested, which can reduce the occupied space and help reduce the volume of the inductor 10.
  • the double-coil assembly structure can increase the cross-sectional area of the coil, and can be regarded as a two-way power supply design, which can shunt the working current , and reduce the DC resistance in high current and high power applications, so that the inductor 10 integrates small volume, high current and high power characteristics; in addition, it can effectively shorten the transient response time and reduce the number of back-end filter capacitors to reduce cost.
  • the first coil 1 and the second coil 2 are a hardware terminal, and the other
  • the layer is a flat coil, so that there is good insulation between the coil and the terminal, and between the coil and the magnet, so that the characteristic requirements of high voltage resistance can be met.
  • flat coils can also be used.
  • the so-called flat coil refers to the " ⁇ "-shaped coil that is bent into a fixed size and shape with a flat wire;
  • the so-called hardware terminal refers to a " ⁇ "-shaped coil that is punched into a fixed size and shape with copper (or other metal materials) .
  • the second coil 2 includes three parts, respectively a first branch 21, a second branch 22 and a third branch 23, the third branch 23 extends along the first direction x, and the third branch 23 is connected to At one end of the first branch 21 and one end of the second branch 22, the first branch 21 and the second branch 22 are extended along the third direction z and both can be parallel, and the other end of the first branch 21 faces the second branch 22 Bending to form a second patch pin 24, the other end of the second branch 22 is bent toward the first branch 21 to form another second patch pin 24, two second patch pins 24 along the first branch One direction x is set opposite to each other, and the first direction x, the second direction y and the third direction z can be perpendicular to each other.
  • the so-called vertical in the whole application does not require that the angle between the two must be 90°, and parallel does not require that the angle between the two must be 0 Or 180°, but a deviation of ⁇ 10° is allowed, that is, the so-called vertical can be understood as the angle between any two directions is 80° to 100°, and the so-called parallel can be understood as the angle between any two directions 0° to 10° or 170° to 180°.
  • the size range of the second coil 2 is: the width D20 (that is, the length along the second direction y) is 2.0 mm to 3.5 mm; the thickness H2 (such as the length of the first branch 21 along the first direction x) is 0.2mm-0.8mm; or, the width D20 is 1mm-5.5mm; the thickness H2 is 0.1mm-0.8mm; optionally, the first branch 21 and the second branch 22 are bent to form the inner part of the second patch pin 24
  • the R angle is between 0.1 mm and 1.2 mm, and the size of the outer R angle is between 0.4 mm and 1.5 mm.
  • the first coil 1 includes three parts, respectively the fourth branch 11, the fifth branch 12 and the sixth branch 13, the sixth branch 13 extends along the first direction x, and the sixth branch 13 is connected to At one end of the fourth branch 11 and one end of the fifth branch 12, both the fourth branch 11 and the fifth branch 12 extend along the third direction z and both can be parallel, and the other end of the fourth branch 11 faces the fifth branch 12 Bending to form a first patch pin 14, the other end of the fifth branch 12 is bent toward the fourth branch 11 to form another first patch pin 14, and the two first patch pins 14 are along the first patch pin 14.
  • One direction x is arranged in the opposite direction, that is to say, as shown in Figure 4, the first coil 1 can be regarded as a " ⁇ " shape, and the ends on the left and right sides are reversely bent outwards as two first patches pin 14.
  • the size range of the first coil 1 is: the width D10 (ie, the length along the second direction y) is 2.0 mm to 3.5 mm; the thickness H1 (eg, the length of the fourth branch 11 along the first direction x) is 0.6mm ⁇ 1.55mm;
  • the fourth branch 11 and the fifth branch 12 are bent to form the first patch pin 14.
  • the inner R angle is between 0mm ⁇ 1.5mm, and the outer R angle is 0.9mm ⁇ 2.5mm between mm.
  • the first coil 1 is sheathed outside the second coil 2, the fourth branch 11 is attached to the first branch 21, the fifth branch 12 is attached to the second branch 22, and the sixth branch 13 is attached to the third branch 23. set up.
  • the patch pins of the first coil 1 and the second coil 2 are in the same plane, that is, the first patch pin 14 and the second patch pin 24 are located on the same side of the double-coil inductor 10 and are flush, Any one of the first patch pins 14 and its adjacent second patch pins 24 are arranged opposite to each other.
  • a first insulating layer (not shown in the figure) and a first adhesive layer (not shown in the figure) are arranged between the first coil 1 and the second coil 2.
  • the first insulating layer And the first adhesive layer may be formed on the surface of the conductor of at least one of the first coil 1 and the second coil 2 .
  • the first insulating layer is arranged on the conductor surface of the first coil 1 and the second coil 2, and the thickness may be 0.005 mm to 0.1 mm; the first adhesive layer is arranged on the first insulating layer and is used to connect the first coil 1 and the second coil 2
  • the bonding between the second coils 2 may have a thickness of 0.5 ⁇ m ⁇ 8 ⁇ m.
  • the first adhesive layer does not have viscosity at normal temperature, but becomes viscous when it is contacted with alcohol or heated, and the adhesive force can bond the first coil 1 and the second coil 2 together, thereby fixing The relative position of the first coil 1 and the second coil 2.
  • the magnetic core 4 includes a base 40, a first portion 41, a second portion 42 and a third portion 43 disposed on the base 40, the first portion 41 and the second portion 42 are respectively along The third direction z extends and the two can be parallel, the third part 43 is arranged between the first part 41 and the second part 42 opposite to each other along the first direction x, the first part 41 and the third part 43 are arranged at intervals, and the second part 42 and the third part 43 are arranged at intervals to form the first groove 4a, which has the effect of facilitating processing and assembly.
  • the first coil 1 and the second coil 2 are sleeved outside the third part 43, and the fourth branch 11 of the first coil 1 and the first branch 21 of the second coil 2 are both arranged between the first part 41 and the third part 43 , the fifth branch 12 of the first coil 1 and the second branch 22 of the second coil 2 are both disposed between the second part 42 and the third part 43 .
  • the first part 41 and the second part 42 are flush with the second edge 402 of the base 40, the distance between the first part 41 and the first edge 401 of the base 40 is D1 , and the second The distance between the part 42 and the first edge 401 of the base 40 can also be D1 , and there is a certain distance between the third part 43 and the first edge 401 of the base 40, so that the bottom wall of the base 40 forms a notch 4b and two The depth of the protrusion 4c and the notch 4b (the length along the third direction z) is equal to the distance between the third portion 43 and the first edge 401 of the base body 40 and is D 2 , D 1 >D 2 .
  • first direction x two protruding parts 4c are respectively disposed on both sides of the notch 4b, and two first patch pins 14 are respectively disposed on the two protruding parts 4c.
  • first portion 41 ie, the third direction z
  • the side of the first coil 1 facing away from the first patch lead 14 is flush with the second edge 402 of the substrate 40 .
  • the thickness of the first coil 1 can be greater than the thickness of the second coil 2, D 1 >D 2 , so that the first patch pin 14 and the second patch pin 24 are flush after assembly, and the first patch pin 14 and the second patch pin 24 can slightly protrude from the first edge 401 of the base body 40, as shown in Figures 1 and 2, so as to facilitate the first patch pin 14 and the second patch pin 24 mount.
  • the magnetic core 3 and the magnetic core 4 do not necessarily have symmetrical or identical structures.
  • the upper magnetic core 3 and the lower magnetic core 4 may be Different thicknesses, that is, different groove depths, that is, the depths of the first groove and the second groove along the second direction y are different, as long as the requirements for accommodating the double coil assembly structure can be met.
  • the magnetic core 3 and the magnetic core 4 are arranged symmetrically and/or have the same structure, which is beneficial to reduce the cost of mold opening and simplify the production process.
  • the structure of the magnetic core 3 can refer to the foregoing description about the magnetic core 4 .
  • the double-coil inductor 10 also includes a second adhesive layer (not shown in the figure), the second adhesive layer bonds the magnetic core 3 and the magnetic core 4, and the second adhesive layer can be Doped with particles, the particles are used to form the air gap between core 3 and core 4 .
  • a second adhesive layer (not shown in the figure)
  • the second adhesive layer bonds the magnetic core 3 and the magnetic core 4
  • the second adhesive layer can be Doped with particles, the particles are used to form the air gap between core 3 and core 4 .
  • the air gap glue can effectively maintain the distance between the two magnetic cores while connecting them, so that Obtain and maintain a predetermined air gap configuration.
  • insulating beads such as glass beads or epoxy beads
  • predetermined hardness and size used to control the size of the air gap are uniformly dispersed in the air gap glue (such as epoxy resin glue), so as to facilitate and reliably control the size of the air gap. size.
  • a second adhesive layer is also provided between the double-coil assembly structure and the inner wall of the groove of at least one of the magnetic cores, through which the second adhesive layer is fixedly connected to facilitate the assembly of the product and maintain the integrity of the product structure. stability, and the particles in the second bonding layer form an air gap corresponding to the magnetic core.
  • a second insulating layer is provided on the side of the two magnetic cores facing the second patch pin 24 (that is, the bottom surface of the magnetic core close to the first edge 401), and the second insulating layer is used for the second patch.
  • the electrical insulation between the pin 24 and the two magnetic cores can also enhance the high-voltage resistance performance of the double-coil inductor 10 .
  • the thickness of the second insulating layer may be between 0.01 mm and 0.5 mm.
  • the inner surfaces of the first groove and the second groove may also be provided with a second insulating layer; in addition, optionally, the second insulating layer is also provided on the two protrusions 4c of the base 40 facing the first The surface of SMD pin 14.
  • the second insulating layer can be provided by coating or pasting, and the second insulating layer can be at least one of high temperature tape, Mylar tape, Mylar sheet or other insulating materials.
  • the embodiment of the present application also provides an electronic device, which includes the double-coil inductor 10 described in any one of the above-mentioned embodiments, so it has the beneficial effect that the corresponding double-coil inductor 10 can produce.
  • the present application does not limit the specific expression form of the electronic device, which may be determined according to actual needs.
  • the embodiment of the present application also provides a method for manufacturing the double-coil inductor 10 , which is used to prepare the double-coil inductor 10 described in any of the foregoing embodiments. As shown in Fig. 6, the method includes the following steps S1 to S4.
  • S1 providing a first coil, a second coil and two magnetic cores, wherein one magnetic core is provided with a first groove, and the other magnetic core is provided with a second groove, and the first coil is sleeved outside the second coil.
  • the first coil and the second coil are arranged between the two magnetic cores and located in the connected first groove and the second groove, the first groove and the second groove are arranged opposite and communicated, and the two Core stack setup.
  • the step S3 may be referred to as a coil embedding process. After embedding the two coils into corresponding grooves, the two coils may be fixed by the second adhesive layer.
  • a second adhesive layer is arranged between the two magnetic cores, the second adhesive layer bonds the two magnetic cores, the second adhesive layer can be doped with particles, and the particles are used to form the two magnetic cores core air gap.
  • an air gap glue used to control the size of the air gap on the facing fastening surfaces of the two magnetic cores.
  • the air gap glue can effectively maintain the gap between the two magnetic cores while connecting the two magnetic cores. The spacing between them, so as to obtain and maintain a predetermined air gap structure.
  • insulating beads such as glass beads or epoxy beads
  • predetermined hardness and size used to control the size of the air gap are uniformly dispersed in the air gap glue (such as epoxy resin glue), so as to facilitate and reliably control the size of the air gap. size.
  • the assembled product is baked at a preset temperature and time, so that the adhesive layer in the product is cured, so as to obtain the finished product of the double-coil inductor.
  • the two magnetic cores provided (for example, the inner surface corresponding to the groove and/or the corresponding bottom surface) can be directly provided with the second insulating layer; or, the second insulating layer is not provided, but is After the step, it is set by, for example, coating or pasting, which is not limited in this embodiment of the present application.
  • the manufacturing method of the double-coil inductor can be adaptively changed according to the specific structure of the aforementioned double-coil inductor 10.
  • the detailed process of each step can be determined by referring to the description of the aforementioned embodiment of the double-coil inductor 10.
  • the embodiment of the present application No further details will be given here.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Coils Or Transformers For Communication (AREA)

Abstract

本申请公开了一种双线圈电感及电子设备。双线圈电感包括第一线圈、第二线圈以及两个磁芯,其中一磁芯设置有第一凹槽,另一磁芯设置有第二凹槽,两个磁芯叠放设置,第一凹槽和第二凹槽相向设置并连通,第一线圈套设于第二线圈外,第一线圈和第二线圈设置于两个磁芯之间、且位于连通的第一凹槽和第二凹槽内。本申请有利于电感集成有小体积、大电流及高功率特性。

Description

双线圈电感及电子设备 技术领域
本申请涉及电感领域,具体涉及一种双线圈电感及电子设备。
背景技术
电感是电子设备中最为常见的一种元器件,同时也是电路中的重要组件之一,被广泛地使用于各类电路中,可以达到滤波、储能、匹配、谐振之功用。伴随着近年来计算机、物联网等高新技术的不断发展,作为上述技术的硬件基础、各类智能化电器设备的更新迭代日益频繁,这些电器设备的设计制造也逐渐开始朝着集成化、小型化的趋势发展,在这样的发展趋势下,使设备内部的空间得到充分利用、使其内部各元件间的设置布局更为紧密,也就成为了一种必然的技术选择。另外,随着电子设备的CPU核心电压不断降低而工作频率不断升高,对工作电流的需求也不端升高,如何获取较小体积的电感来承受大电流、高功率,已成为业界亟需解决的问题之一。
发明内容
本申请实施例提供一种双线圈电感及电子设备,有利于使得电感集成有小体积、大电流及高功率特性。
第一方面,本申请实施例提供一种双线圈电感,包括第一线圈、第二线圈以及两个磁芯,其中一磁芯设置有第一凹槽,另一磁芯设置有第二凹槽,两个磁芯叠放设置,第一凹槽和第二凹槽相向设置并连通,第一线圈套设于第二线圈外,第一线圈和第二线圈设置于两个磁芯之间、且位于连通的第一凹槽和第二凹槽内。
在一些实施例中,第一线圈包括背向设置的两个第一贴片引脚,第二线圈包括相向设置的两个第二贴片引脚,第一贴片引脚和第二贴片引脚位于双线圈电感的同一侧且平齐,相邻第一贴片引脚和第二贴片引脚背向设置。
在一些实施例中,第一线圈和第二线圈之间设置有第一绝缘层和第一粘接层,第一绝缘层设置于第一线圈和第二线圈的导体表面,第一粘接层设置于第一绝缘层上、且用于将第一线圈和第二线圈之间粘接。
在一些实施例中,磁芯包括基体、设置于基体上的第一部分、第二部分和第三部分,第三部分设置于相对的第一部分和第二部分之间,第一部分和第三部分间隔设置、第二部分和第三部分间隔设置以形成第一凹槽或第二凹槽,第一线圈和第二线圈套设于第三部分外。
在一些实施例中,基体设置有缺口和两个凸出部,第二贴片引脚延伸至缺口中,两个凸出部分别设置于缺口的两侧,两个第一贴片引脚分别设置于两个凸出部上。
在一些实施例中,沿第一部分的延伸方向,第一部分与基体边缘之间的距离为D 1,缺口的深度等于第三部分与基体边缘之间的距离且为D 2,D 1>D 2
在一些实施例中,沿第一部分的延伸方向,第一线圈背向第一贴片引脚的一侧与基体边缘平齐。
在一些实施例中,两个磁芯朝向第二贴片引脚的侧面上设置有第二绝缘层;和/或,第一凹槽和第二凹槽中设置有第二绝缘层。
在一些实施例中,双线圈电感还包括第二粘接层,第二粘接层将两个磁芯之间粘接,粘接层中掺杂有颗粒,颗粒用于形成两个磁芯的气隙。
第二方面,本申请实施例提供一种电子设备,包括上述双线圈电感。
如上所述,本申请实施例的双线圈电感及电子设备,包括第一线圈、第二线圈以及两个磁芯,其中一磁芯设置有第一凹槽,另一磁芯设置有第二凹槽,两个磁芯叠放设置,第一凹槽和第二凹槽相向设置并连通,第一线圈套设于第二线圈外,第一线圈和第二线圈设置于两个磁芯之间、且位于连通的第一凹槽和第二凹槽内,电感的两个线圈套设可以降低所占空间,有利于降低电感的体积,双线圈设置可以增大线圈横截面积,并且可视为双向供电设计,可以对工作电流进行分流,以及降低在大电流及高功率应用中的直流电阻(DCR),以此使得电感集成有小体积、大电流及高功率特性。
附图说明
图1是本申请一实施例的双线圈电感的结构示意图;
图2是图1所示的双线圈电感去除上方一磁芯的结构示意图;
图3是本申请一实施例的第二线圈的结构示意图;
图4是本申请一实施例的第一线圈的结构示意图;
图5是本申请一实施例的磁芯的结构示意图;
图6是本申请一实施例的双线圈电感的制造方法的流程示意图。
具体实施方式
为使本申请的目的、技术方案和优点更加清楚,下面将结合具体实施例及相应的附图,对本申请的技术方案进行清楚地描述。显然,下文所描述实施例仅是本申请的一部分实施例,而非全部的实施例。在不冲突的情况下,下述各个实施例及其技术特征可相互组合,且亦属于本申请的技术方案。
在本申请实施例的描述中,术语“中心”、“纵向”、“横向”、“长度”、“宽度”、“厚度”、“上”、“下”、“前”、“后”、“左”、“右”、“竖直”、“水平”、“顶”、“底”、“内”、“外”、“顺时针”、“逆时针”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本申请相应实施例的技术方案和简化描述,而非指示或暗示装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本申请的限制。
请一并参阅图1和图2所示,为本申请实施例提供的一种双线圈电感10,包括第一线圈1、第二线圈2以及两个磁芯,分别标示为磁芯3和磁芯4。磁芯3和磁芯4沿第二方向y叠放设置,其中,在图1所示的摆放方位中,第二方向y为竖直方向。其中一个(即位于图1中下方的)磁芯4设置有第一凹槽4a,另一磁芯3(即位于图1中上方的)设置有第二凹槽(图中未示出),磁芯3和磁芯4的结构可以完全相同,并且呈对称的上下叠放设置,则第一凹槽4a和第二凹槽相向设置并上下连通。
第一线圈1套设于第二线圈2外,第一线圈1和第二线圈2设置于磁芯3和磁芯4之间、且位于连通的第一凹槽4a和第二凹槽内。第一线圈1的主体部具有可容置第二线圈2的主体部的内部空间,且第二线圈2的主体部的外轮廓与第二线圈2的内部空间的外轮廓一致,第一线圈1和第二线圈2组装后形成双线圈组装结构。电感10的两个线圈套设,可以降低所占空间,有利于降低电感10的体积,双线圈组装结构可以增大线圈横截面积,并且可视为双向供电设计,可以对工作电流进行分流,以及降低在大电流及高功率应用中的直 流电阻,使得电感10集成有小体积、大电流及高功率特性;另外,可以有效缩短瞬态响应时间,减少后端滤波电容的数量,以降低成本。
由于双线圈组装结构在贴片使用过程中对耐压性能有更高的要求,因此,本实施例优选将第一线圈1和第二线圈2设计为:其中一者为五金端子,另一层为扁平线圈,使得线圈与端子之间、线圈与磁体之间具有良好的绝缘,从而可以满足耐高压的特性要求。当然,也可以均采用扁平线圈。所谓扁平线圈是指用扁平导线折弯成固定尺寸、固定形状的“冂”形线圈;所谓五金端子是指用铜材(或其他金属材料)冲压成固定尺寸、固定形状的“冂”形线圈。
请参阅图3所示,第二线圈2包括三个部分,分别为第一分支21、第二分支22和第三分支23,第三分支23沿第一方向x延伸设置,第三分支23连接于第一分支21的一端以及第二分支22的一端,第一分支21和第二分支22均沿第三方向z延伸设置且两者可以平行,第一分支21的另一端朝向第二分支22弯折而形成一个第二贴片引脚24,第二分支22的另一端朝向第一分支21弯折而形成另一个第二贴片引脚24,两个第二贴片引脚24沿第一方向x相向设置,第一方向x、第二方向y和第三方向z可以两两垂直,也就是说,如图3所示,可视为第二线圈2呈“冂”字形,且左右两侧的端部向内相向弯折作为第二贴片引脚24。需要说明的是,受限于实际加工或者测量时的误差,本申请全文中所谓的垂直并非要求两者之间的夹角必须为90°、平行并非要求两者之间的夹角必须为0或180°,而是允许存在±10°的偏差,即所谓垂直可理解为任意两个方向之间的夹角为80°至100°,所谓平行可理解为任意两个方向之间的夹角为0°至10°或者170°至180°。
在一些场景中,第二线圈2的尺寸范围为:宽度D20(即沿第二方向y的长度)为2.0mm~3.5mm;厚度H2(例如第一分支21沿第一方向x的长度)为0.2mm~0.8mm;或者,宽度D20为1mm~5.5mm;厚度H2为0.1mm~0.8mm;可选地,第一分支21和第二分支22弯折形成第二贴片引脚24的内R角为0.1mm~1.2mm之间,外R角大小在0.4mm~1.5mm之间。
请参阅图4所示,第一线圈1包括三个部分,分别为第四分支11、第五分支12和第六分支13,第六分支13沿第一方向x延伸设置,第六分支13连 接于第四分支11的一端以及第五分支12的一端,第四分支11和第五分支12均沿第三方向z延伸设置且两者可以平行,第四分支11的另一端朝向第五分支12弯折而形成一个第一贴片引脚14,第五分支12的另一端朝向第四分支11弯折而形成另一个第一贴片引脚14,两个第一贴片引脚14沿第一方向x背向设置,也就是说,如图4所示,可视为第一线圈1呈“冂”字形,且左右两侧的端部向外反向弯折作为两个第一贴片引脚14。
在一些场景中,第一线圈1的尺寸范围为:宽度D10(即沿第二方向y的长度)为2.0mm~3.5mm;厚度H1(例如第四分支11沿第一方向x的长度)为0.6mm~1.55mm;可选地,第四分支11和第五分支12弯折形成第一贴片引脚14的内R角为0mm~1.5mm之间,外R角大小在0.9mm~2.5mm之间。
第一线圈1套设于第二线圈2外,第四分支11与第一分支21贴合设置,第五分支12和第二分支22贴合设置,第六分支13和第三分支23贴合设置。第一线圈1和第二线圈2的各个贴片引脚处于同一平面内,即,第一贴片引脚14和第二贴片引脚24位于双线圈电感10的同一侧且平齐,其中任一个第一贴片引脚14和与其相邻的第二贴片引脚24背向设置。
在一些实施例中,第一线圈1和第二线圈2之间设置有第一绝缘层(图未示出)和第一粘接层(图未示出),可选地,第一绝缘层和第一粘接层可以形成于第一线圈1和第二线圈2中的至少一者的导体的表面。第一绝缘层设置于第一线圈1和第二线圈2的导体表面,厚度可以为0.005mm~0.1mm;第一粘接层设置于第一绝缘层上、且用于将第一线圈1和第二线圈2之间粘接,厚度可以为0.5μm~8μm。可选地,第一粘接层在常温下不具备粘性,而是在经过酒精接触或加热时会产生粘性,粘接力可以将第一线圈1和第二线圈2粘结在一起,从而固定第一线圈1和第二线圈2的相对位置。
请参阅图5所示,在一些实施例中,磁芯4包括基体40、设置于基体40上的第一部分41、第二部分42和第三部分43,第一部分41和第二部分42分别沿第三方向z延伸设置且两者可以平行,第三部分43设置于沿第一方向x相对的第一部分41和第二部分42之间,第一部分41和第三部分43间隔设置、第二部分42和第三部分43间隔设置以形成第一凹槽4a,这样具有方便 加工和组装的效果。第一线圈1和第二线圈2套设于第三部分43外,第一线圈1的第四分支11和第二线圈2的第一分支21均设置于第一部分41和第三部分43之间,第一线圈1的第五分支12和第二线圈2的第二分支22均设置于第二部分42和第三部分43之间。
可选地,沿第三方向z,第一部分41和第二部分42与基体40的第二边缘402平齐,第一部分41与基体40的第一边缘401之间的距离为D 1,第二部分42与基体40的第一边缘401之间的距离也可以为D 1,第三部分43与基体40的第一边缘401之间具有一定距离,以此基体40底壁形成缺口4b和两个凸出部4c,缺口4b的深度(沿第三方向z的长度)等于第三部分43与基体40的第一边缘401之间的距离且为D 2,D 1>D 2。沿第一方向x,两个凸出部4c分别设置于缺口4b的两侧,两个第一贴片引脚14分别设置于两个凸出部4c上。沿第一部分41的延伸方向(即第三方向z),第一线圈1背向第一贴片引脚14的一侧与基体40的第二边缘402平齐。
第一线圈1的厚度可以大于第二线圈2的厚度,D 1>D 2,从而使得组装后第一贴片引脚14和第二贴片引脚24平齐,并且第一贴片引脚14和第二贴片引脚24可以均略凸出于基体40的第一边缘401,如图1和图2所示,从而便于第一贴片引脚14和第二贴片引脚24的贴装。
应当理解的是,磁芯3和磁芯4并不必然是对称或相同的结构,比如,在图1所示的摆放方位中,位于上方的磁芯3和位于下方的磁芯4可以是不同的厚度,即具有不同的凹槽深度,即第一凹槽和第二凹槽沿第二方向y的深度不相同,只要能满足容纳双线圈组装结构的要求即可。本实施例中,优选地,磁芯3和磁芯4呈对称设置和/或相同的结构,如此,有利于减少开模成本,简化生产工艺。磁芯3的结构可以参阅前述关于磁芯4的描述。
在一些实施例中,双线圈电感10还包括第二粘接层(图未示出),第二粘接层将磁芯3和磁芯4之间粘接,第二粘接层中可以掺杂有颗粒,颗粒用于形成磁芯3和磁芯4的气隙。例如,两个磁芯的相向的扣合面上还设有用于控制气隙大小的气隙胶水,气隙胶水在连接两个磁芯的同时还能有效地保持二者之间的间距,从而获得和保持预定的气隙结构。优选地,气隙胶水(例如环氧树 脂胶水)中均匀分散有预定硬度和大小的用于控制气隙大小的绝缘珠(例如玻璃珠或者环氧珠),以便于方便可靠地控制气隙的大小。
可选地,双线圈组装结构与其中至少一磁芯的凹槽内壁之间也设置有第二粘接层,通过第二粘接层予以固定连接,以方便产品的组装和保持产品结构的稳定性,并且第二粘接层中的颗粒形成对应磁芯的气隙。
在一些实施例中,两个磁芯朝向第二贴片引脚24的侧面(即磁芯靠近第一边缘401的底面)上设置有第二绝缘层,第二绝缘层用于第二贴片引脚24与两个磁芯之间的电气绝缘,另外还可以加强双线圈电感10的耐高压性能。第二绝缘层的厚度可以为0.01mm~0.5mm之间。可选地,第一凹槽和第二凹槽的内侧面也可以设置有第二绝缘层;另外,可选地,第二绝缘层还设置于基体40的两个凸出部4c朝向第一贴片引脚14的表面。
第二绝缘层可以采用涂敷或者粘贴方式设置,第二绝缘层可以是高温胶带、麦拉胶带、麦拉片或其他绝缘材料中的至少一种。
本申请实施例还提供一种电子设备,包括上述任一实施例所述的双线圈电感10,因此具有对应双线圈电感10所能产生的有益效果。
本申请并不限定电子设备的具体表现形式,可以根据实际需求而定。
本申请实施例还提供一种双线圈电感10的制造方法,用于制备前述任一实施例所述的双线圈电感10。如图6所示,该方法包括如下步骤S1至S4。
S1:提供第一线圈、第二线圈以及两个磁芯,其中一磁芯设置有第一凹槽,另一磁芯设置有第二凹槽,第一线圈套设于第二线圈外。
S2:在第一凹槽和第二凹槽内设置第二粘接层;例如点入胶水。
S3:将第一线圈和第二线圈设置于两个磁芯之间、且位于连通的第一凹槽和第二凹槽内,第一凹槽和第二凹槽相向设置并连通,两个磁芯叠放设置。
该S3步骤可称为线圈嵌入工序,将两个线圈嵌入对应的凹槽之后,两个线圈可以通过第二粘接层予以固定。
S4:在两个磁芯之间设置第二粘接层,第二粘接层将两个磁芯之间粘接,第二粘接层中可以掺杂有颗粒,颗粒用于形成两个磁芯的气隙。
在一些场景种,例如,两个磁芯的相向的扣合面上还设有用于控制气隙大小的气隙胶水,气隙胶水在连接两个磁芯的同时还能有效地保持二者之间的间距,从而获得和保持预定的气隙结构。优选地,气隙胶水(例如环氧树脂胶水)中均匀分散有预定硬度和大小的用于控制气隙大小的绝缘珠(例如玻璃珠或者环氧珠),以便于方便可靠地控制气隙的大小。
通过预设温度和时间对组装后的产品进行烘烤,使得产品中的粘接层固化,以此得到双线圈电感的成品。
在S1步骤中,所提供的两个磁芯(例如对应凹槽的内侧面和/或对应的底面)可以直接设置有第二绝缘层;或者,未设置有第二绝缘层,而是在S1步骤之后,再通过例如涂敷或者粘贴方式设置,本申请实施例不予以限定。
另外,双线圈电感的制造方法可以根据前述双线圈电感10的具体结构适应性改变,各个步骤的详细过程可参阅前述双线圈电感10实施例的描述适应性而定,本申请实施例此处不再予以赘述。
应该理解的是,以上所述仅为本申请的部分实施例,并非因此限制本申请的专利范围,对于本领域普通技术人员而言,凡是利用本说明书及附图内容所作的等效结构变换,均同理包括在本申请的专利保护范围内。
尽管本文采用术语“第一、第二”等描述各种信息,但这些信息不应限于这些术语。这些术语仅用来将同一类型的信息彼此区分开。本文中所使用的,单数形式“一”、“一个”和“该”旨在也包括复数形式。术语“或”和“和/或”被解释为包括性的,或意味着任一个或任何组合。仅当元件、功能、步骤或操作的组合在某些方式下内在地互相排斥时,才会出现该定义的例外。

Claims (10)

  1. 一种双线圈电感,其特征在于,包括第一线圈、第二线圈以及两个磁芯,其中一所述磁芯设置有第一凹槽,另一所述磁芯设置有第二凹槽,所述两个磁芯叠放设置,所述第一凹槽和所述第二凹槽相向设置并连通,所述第一线圈套设于所述第二线圈外,所述第一线圈和所述第二线圈设置于所述两个磁芯之间、且位于连通的所述第一凹槽和所述第二凹槽内。
  2. 根据权利要求1所述的双线圈电感,其特征在于,所述第一线圈包括背向设置的两个第一贴片引脚,所述第二线圈包括相向设置的两个第二贴片引脚,所述第一贴片引脚和所述第二贴片引脚位于所述双线圈电感的同一侧且平齐,相邻所述第一贴片引脚和所述第二贴片引脚背向设置。
  3. 根据权利要求1所述的双线圈电感,其特征在于,所述第一线圈和所述第二线圈之间设置有第一绝缘层和第一粘接层,所述第一绝缘层设置于所述第一线圈和所述第二线圈的导体表面,所述第一粘接层设置于所述第一绝缘层上、且用于将所述第一线圈和所述第二线圈之间粘接。
  4. 根据权利要求1所述的双线圈电感,其特征在于,所述磁芯包括基体、设置于所述基体上的第一部分、第二部分和第三部分,所述第三部分设置于相对的所述第一部分和所述第二部分之间,所述第一部分和所述第三部分间隔设置、所述第二部分和所述第三部分间隔设置以形成所述第一凹槽或所述第二凹槽,所述第一线圈和所述第二线圈套设于所述第三部分外。
  5. 根据权利要求4所述的双线圈电感,其特征在于,所述基体设置有缺口和两个凸出部,所述第二贴片引脚延伸至所述缺口中,所述两个凸出部分别设置于所述缺口的两侧,两个所述第一贴片引脚分别设置于两个所述凸出部上。
  6. 根据权利要求5所述的双线圈电感,其特征在于,沿所述第一部分的延伸方向,所述第一部分与所述基体边缘之间的距离为D 1,所述缺口的深度等于所述第三部分与所述基体边缘之间的距离且为D 2,D 1>D 2
  7. 根据权利要求5所述的双线圈电感,其特征在于,沿所述第一部分的延伸方向,所述第一线圈背向所述第一贴片引脚的一侧与所述基体边缘平齐。
  8. 根据权利要求1至7任一项所述的双线圈电感,其特征在于,所述两个磁 芯朝向所述第二贴片引脚的侧面上设置有第二绝缘层;和/或,所述第一凹槽和所述第二凹槽中设置有第二绝缘层。
  9. 根据权利要求1至7任一项所述的双线圈电感,其特征在于,所述双线圈电感还包括第二粘接层,所述第二粘接层将所述两个磁芯之间粘接,所述粘接层中掺杂有颗粒,所述颗粒用于形成所述两个磁芯的气隙。
  10. 一种电子设备,其特征在于,所述电子设备包括如上述权利要求1至9任一项所述的双线圈电感。
PCT/CN2021/121440 2021-09-28 2021-09-28 双线圈电感及电子设备 WO2023050088A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2021/121440 WO2023050088A1 (zh) 2021-09-28 2021-09-28 双线圈电感及电子设备

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2021/121440 WO2023050088A1 (zh) 2021-09-28 2021-09-28 双线圈电感及电子设备

Publications (1)

Publication Number Publication Date
WO2023050088A1 true WO2023050088A1 (zh) 2023-04-06

Family

ID=85780981

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/121440 WO2023050088A1 (zh) 2021-09-28 2021-09-28 双线圈电感及电子设备

Country Status (1)

Country Link
WO (1) WO2023050088A1 (zh)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008172155A (ja) * 2007-01-15 2008-07-24 Sumida Corporation コイル部品
CN209312582U (zh) * 2018-11-23 2019-08-27 深圳市京泉华科技股份有限公司 电感器
CN210535480U (zh) * 2019-11-01 2020-05-15 深圳市京泉华科技股份有限公司 变压器
CN113782319A (zh) * 2021-07-28 2021-12-10 深圳顺络电子股份有限公司 一种大电流功率电感及其加工方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008172155A (ja) * 2007-01-15 2008-07-24 Sumida Corporation コイル部品
CN209312582U (zh) * 2018-11-23 2019-08-27 深圳市京泉华科技股份有限公司 电感器
CN210535480U (zh) * 2019-11-01 2020-05-15 深圳市京泉华科技股份有限公司 变压器
CN113782319A (zh) * 2021-07-28 2021-12-10 深圳顺络电子股份有限公司 一种大电流功率电感及其加工方法

Similar Documents

Publication Publication Date Title
US11289262B2 (en) Electronic component
KR101555398B1 (ko) 자기 전기적 장치
US6774755B2 (en) Choke coil
EP1439553A1 (en) Low-profile transformer and method of manufacturing the transformer
CN100384070C (zh) 功率变换模块器件及使用其的电源装置
JP6551546B2 (ja) インダクタ部品およびその製造方法
CN207938440U (zh) 一种线圈部件
WO2003028050A1 (en) Capacitor, laminated capacitor, and capacitor built-in board
JP3551135B2 (ja) 薄形トランスおよびその製造方法
US7551053B2 (en) Coil device
CN111477425A (zh) 一种可实现微小化的引脚内嵌外露式电感元件
CN107799280B (zh) 一种应用金属敷接陶瓷基板的高温平面变压器
JP2004103624A (ja) トランス及びその製造方法
WO2023050088A1 (zh) 双线圈电感及电子设备
JP2004111456A (ja) コイル部品
JP2001035731A (ja) インダクタ部品およびその製造方法
CN111063505A (zh) 一种大功率电感
KR101858117B1 (ko) 이중 나선형 트랜스포머
JP2001196226A (ja) インダクタ及びその製造方法
CN113823491A (zh) 双线圈电感及电子设备
JP2002064016A (ja) 積層インダクタ
CN113782319A (zh) 一种大电流功率电感及其加工方法
TWI447759B (zh) 表面安裝磁性元件總成
WO2022133662A1 (zh) 一种平面绕线变压器及其制作方法
CN211125310U (zh) 一种平面变压器

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21958683

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE