WO2023047995A1 - Sputtering deposition source and deposition device - Google Patents

Sputtering deposition source and deposition device Download PDF

Info

Publication number
WO2023047995A1
WO2023047995A1 PCT/JP2022/033988 JP2022033988W WO2023047995A1 WO 2023047995 A1 WO2023047995 A1 WO 2023047995A1 JP 2022033988 W JP2022033988 W JP 2022033988W WO 2023047995 A1 WO2023047995 A1 WO 2023047995A1
Authority
WO
WIPO (PCT)
Prior art keywords
permanent magnet
target
yoke
deposition source
sputtering
Prior art date
Application number
PCT/JP2022/033988
Other languages
French (fr)
Japanese (ja)
Inventor
寛 岩田
Original Assignee
株式会社アドバンスト・スパッタテック
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社アドバンスト・スパッタテック filed Critical 株式会社アドバンスト・スパッタテック
Publication of WO2023047995A1 publication Critical patent/WO2023047995A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • C23C14/35Sputtering by application of a magnetic field, e.g. magnetron sputtering

Definitions

  • the present invention relates to a sputtering film formation source and a film formation apparatus, and is suitable for application to the manufacture of various devices for forming thin films by the sputtering method.
  • the sputtering area on the target faces the object to be deposited. Since it collides with a large kinetic energy, it causes a great deal of damage to the object to be deposited, and a thin film is formed by sputtering directly on materials that are vulnerable to damage, such as organic light emitting materials, power generation materials, semiconductor silicon passivation films, etc. it was impossible to
  • the facing target type sputtering film formation source is a film formation source developed for the purpose of forming a thin film while reducing the damage to the materials that are vulnerable to the above damage.
  • a conventional facing-target-type sputtering deposition source those described in Patent Documents 1 and 2 are known.
  • Patent Document 1 a pair of targets are arranged facing each other at a predetermined interval, magnetic field generating means made of permanent magnets are provided along the outer periphery of each target, and the targets are perpendicularly opposed to each other to surround the facing space between the targets.
  • a facing target section is provided in which a mode magnetic field and a magnetron mode magnetic field extending from the vicinity of the front of the outer circumference of the target to the surface near the center are formed, plasma is formed in the facing space, and is arranged on the side of the facing space.
  • a permanent magnet is provided in the magnetic path as magnetic field adjusting means for adjusting the magnetic field of the magnetron mode.
  • a pair of targets are arranged via a facing space, and a pair of permanent magnets are arranged on the side surfaces thereof so that the N pole and the S pole face each other,
  • a yoke is arranged to magnetically connect the magnetic poles on the opposite side of the facing space of the pair of permanent magnets.
  • the yoke is composed of a core portion arranged behind one permanent magnet, a core portion arranged behind the other permanent magnet, and a connecting portion connecting these two core portions. These core portion and connecting portion are formed of a ferromagnetic material.
  • FIG. 1 schematically shows a representative embodiment of the facing target type sputtering deposition source described in Patent Documents 1 and 2.
  • reference numeral 1 is a film-forming object
  • 10 is a facing space
  • 11a and 11b are targets
  • 12a, 12b, 13a and 13b are permanent magnets
  • 14a, 14b and 14c are yokes
  • 16a, 16b, 16a' and 16b. ', 17, 17' indicate lines of magnetic force.
  • the problem to be solved by the present invention is to be able to reduce the damage inflicted on the film-forming object, or to simultaneously realize the reduction of the damage inflicted on the film-forming object and the improvement of the film-forming rate.
  • An object of the present invention is to provide a sputtering deposition source and a deposition apparatus using this sputtering deposition source.
  • Another problem to be solved by the present invention is to realize a favorable film thickness distribution in addition to reduction of damage given to a film-forming object or reduction of damage given to a film-forming object and improvement of a film-forming rate. It is an object of the present invention to provide a sputtering deposition source and a deposition apparatus using this sputtering deposition source.
  • the present invention a first target and a second target arranged to face each other;
  • a first permanent magnet provided on the back surface of the first target and provided in a portion corresponding to the outer peripheral portion of the first target so that the magnetization direction is perpendicular to the first target; and the first target.
  • a second permanent magnet provided in a portion corresponding to the central portion of the first permanent magnet so as to have a polarity opposite to that of the first permanent magnet; and a first yoke connecting the first permanent magnet and the second permanent magnet to each other a first magnetic circuit;
  • a portion corresponding to the outer peripheral portion of the second target is provided so that the magnetization direction is perpendicular to the second target and has a polarity opposite to that of the first permanent magnet.
  • a fourth permanent magnet provided in a portion corresponding to the central portion of the second target so as to have a polarity opposite to that of the third permanent magnet, the third permanent magnet, and the fourth permanent magnet.
  • a second magnetic circuit formed by a second yoke coupling the a fifth permanent magnet provided on one end side of the first target in parallel with the first permanent magnet so as to have the same polarity as the first permanent magnet; a sixth permanent magnet provided on one end side of the second target parallel to the third permanent magnet and facing the fifth permanent magnet so as to have the same polarity as the third permanent magnet; a third yoke coupling the fifth permanent magnet and the sixth permanent magnet to each other outside the first magnetic circuit and the second magnetic circuit; is a sputtering deposition source having
  • the first magnetic circuit forms a magnetron magnetic field on the surface of the first target
  • the second magnetic circuit forms a magnetron magnetic field on the surface of the second target.
  • the third yoke may be provided so as to surround the first magnetic circuit and the second magnetic circuit, or may be provided so as not to surround the first magnetic circuit and the second magnetic circuit.
  • the surface of the fifth permanent magnet on the side of the first permanent magnet is magnetized in the direction of the fifth permanent magnet.
  • a first auxiliary permanent magnet and a second auxiliary permanent magnet having polarities opposite to each other are provided in order toward the tip of the fifth permanent magnet so as to be perpendicular to the magnetization direction, and the first auxiliary permanent magnet is provided on the opposite side of the fifth permanent magnet.
  • the magnetic poles of the sixth permanent magnets on the third permanent magnet side are arranged so that their magnetization directions are perpendicular to the magnetization directions of the sixth permanent magnets.
  • a third auxiliary permanent magnet and a fourth auxiliary permanent magnet with opposite polarities are provided in order toward the tip of the sixth permanent magnet, and the magnetic pole of the third auxiliary permanent magnet opposite to the sixth permanent magnet is the third auxiliary permanent magnet of the third permanent magnet. 2 It has the same polarity as the magnetic pole on the yoke side.
  • the second permanent magnet and the fourth permanent magnet are arranged closer to the third yoke side.
  • backing plates are optionally provided between the first target and the first and second permanent magnets and between the second target and the third and fourth permanent magnets, respectively. is provided. By cooling these backing plates, the first target and the second target can be cooled. If necessary, target shields are provided near the outer periphery of the first target and near the outer periphery of the second target, respectively.
  • the third yoke may also serve as a housing for the sputtering deposition source, if necessary.
  • This sputtering deposition source is significantly different from the conventional technology in the plasma generation mechanism and the characteristics of the sputtering deposition source.
  • Plasma generated by the magnetic field in the facing mode causes the main sputtering phenomenon of the film formation source, but in this sputtering film formation source, the plasma generated by the magnetic field in the magnetron mode causes almost all the sputtering phenomena in the film formation source.
  • It is also characterized by having an opposing mode magnetic field perpendicular to the target only on the side facing the object to be deposited in the space between the targets. It can be eliminated, and the film formation rate can be improved, and at the same time, low damage property can be realized.
  • the magnetron mode plasma that causes the sputtering phenomenon can realize high-speed film formation, and at the same time, can realize a favorable film thickness distribution due to the uniformity of the plasma.
  • the film formation rate is greatly improved compared to the conventional facing target type sputtering film formation source, and at the same time, the film can be formed at an extremely low temperature.
  • the reason for this is as follows.
  • the conventional facing target type sputtering deposition source has magnetic lines of force composed of permanent magnets arranged along the outer periphery of a pair of targets provided to face each other, that is, lines of force perpendicular to the targets.
  • the thickness of the ion sheath generated at the interface between the plasma generated by the magnetic field and the target was large, and the electric field strength generated there was weakened, resulting in insufficient sputtering. No film rate was obtained.
  • the plasma since the plasma has the characteristic of gathering in the center of the region surrounded by the pair of targets and the magnetic lines of force, the plasma density near the center of the target is high, while the plasma density near both ends of the target is low. As a result, the amount of film formed by sputtering from the vicinity of the center of the target is large, and the amount of film formed by sputtering from the vicinity of both ends of the target is small.
  • the targets are coupled by a yoke that does not face the object to be deposited in the space between the targets, the opposing mode magnetic field in the space facing the object to be deposited weakens as indicated by the dotted line in FIG. As a result, the plasma shielding ability is reduced, and the effect of the yoke is not sufficient, resulting in a problem of low damage.
  • this sputtering deposition source as is clear from the magnetic field distribution shown in FIG. is uniform, it is possible to realize a sputtering deposition source with a good film thickness distribution.
  • a fifth permanent magnet and a sixth permanent magnet are independently present as opposed mode magnetic field generating means in the space between the first target and the second target facing the object to be deposited, and these
  • the third yoke which couples the fifth permanent magnet and the sixth permanent magnet, so as not to face the object to be film-formed in the space, the opposite mode is generated in the space facing the object to be film-formed. Since the magnetic field is stronger and the plasma shielding ability is sufficiently large, it is also excellent in low damage.
  • this invention a target and a sputter particle collection shield positioned opposite each other;
  • a seventh permanent magnet provided on the back surface of the target and corresponding to the outer peripheral portion of the target so that the magnetization direction is perpendicular to the target, and a portion corresponding to the central portion of the target.
  • the surface of the ninth permanent magnet on the seventh permanent magnet side is preferably magnetized in the direction of the ninth permanent magnet.
  • a fifth auxiliary permanent magnet and a sixth auxiliary permanent magnet having polarities opposite to each other are provided in order toward the tip of the ninth permanent magnet so as to be perpendicular to the magnetization direction, and the fifth auxiliary permanent magnet is provided on the opposite side of the ninth permanent magnet. has the same polarity as the magnetic pole of the seventh permanent magnet on the fourth yoke side.
  • the eighth permanent magnet is preferably arranged closer to the fifth yoke side.
  • the fifth yoke may be provided so as to surround the magnetic circuit and the sputtered particle collection shield, or may be provided so as not to surround the magnetic circuit and the sputtered particle collection shield.
  • a heater is provided on the back surface of the sputter particle collection shield as needed.
  • the adhesion probability of the sputtered particles reaching the sputtered particle collection shield from the target is reduced, thereby increasing the number of sputtered particles re-adhering to the target. It is possible to improve the utilization rate of the target.
  • the sputter particle trapping shield may be provided parallel to the target, such that the distance between the sputter particle trapping shield and the target increases linearly towards the ninth and tenth permanent magnets.
  • the target may be slanted with respect to the target, or curved convexly toward the target such that the distance between the sputter particle collection shield and the target increases toward the ninth and tenth permanent magnets. It may also be provided to have a curvilinear cross-sectional shape. If necessary, a backing plate is provided between the target and the seventh and eighth permanent magnets. In addition, a target shield is provided near the outer periphery of the target as needed. If necessary, the fifth yoke may also serve as the casing of the sputtering deposition source.
  • This sputtering deposition source excludes one of the targets in the sputtering deposition source using the first target and the second target, and also excludes the magnetic circuit for forming the magnetron magnetic field existing on the back surface of the excluded target. , Instead, only on the side facing the film-forming object, a permanent magnet is arranged with the same magnetic pole direction as the outer peripheral permanent magnet facing the film-forming object of the magnetic circuit provided on the back surface of the target that is not excluded. Equivalent to. Furthermore, the characteristics of the plasma generation mechanism and the sputter deposition source are also significantly different from those of the prior art.
  • the plasma generated by the facing mode magnetic field perpendicular to the targets surrounding the space between the targets causes the main sputtering phenomenon of the deposition source.
  • the source is characterized in that the plasma generated by the magnetron-mode magnetic field causes all sputtering phenomena in the deposition source, and only the side facing the substrate between the target and the sputter particle collection shield.
  • the magnetron-mode plasma which causes the sputtering phenomenon, can simultaneously achieve a favorable film thickness distribution due to the uniformity of the plasma. Furthermore, since the target exists only on one side, the effect is greatly exhibited by applying it to a film forming apparatus using a roll-to-roll method. That is, when the deposition source is arranged with the target facing upward, foreign matter generated from a non-sputtering region, that is, a non-erosion portion existing in the vicinity of the sputtering region of the target falls on the lower target. Since the arc phenomenon does not occur structurally, the frequency of inclusion of foreign matter in the film formed on the object to be deposited is extremely low, and good-quality sputtering film deposition is possible.
  • the magnetron mode plasma is the entire plasma and the facing mode plasma does not exist, so the magnetron mode plasma density is uniform. Therefore, a sputtering deposition source with good film thickness distribution can be realized.
  • a ninth permanent magnet and a tenth permanent magnet independently exist as opposed mode magnetic field generating means in the space between the target facing the object to be deposited and the sputter particle collection shield, and By configuring the fifth yoke that couples the ninth permanent magnet and the tenth permanent magnet of each other so as not to face the object to be film-formed in the space, the opposite mode is generated in the space facing the object to be film-formed Since the magnetic field is strong and the plasma shielding ability is sufficiently large, excellent low damage property can also be obtained at the same time.
  • this invention a first cylindrical target and a second cylindrical target arranged parallel and facing each other;
  • One magnetic pole provided inside the first cylindrical target is provided so as to face the inner peripheral surface of the first cylindrical target and extend in the direction of the central axis of the first cylindrical target.
  • an eleventh permanent magnet and a twelfth permanent magnet which are separated from the eleventh permanent magnet so as to surround the outer periphery of the eleventh permanent magnet and which are opposite in polarity to the eleventh permanent magnet, the eleventh permanent magnet, and a third magnetic circuit formed by a sixth yoke coupling the twelfth permanent magnets together;
  • One magnetic pole provided inside the second cylindrical target is provided so as to face the inner peripheral surface of the second cylindrical target and extend in the direction of the central axis of the second cylindrical target.
  • a thirteenth permanent magnet provided with a polarity opposite to that of the eleventh permanent magnet; a fourth magnetic circuit formed by a fourteenth permanent magnet and a seventh yoke coupling the thirteenth permanent magnet and the fourteenth permanent magnet to each other; a fifteenth permanent magnet facing the first cylindrical target and parallel to a plane containing the central axis of the first cylindrical target and the central axis of the second cylindrical target; a 16th permanent magnet having the same polarity as the 15th permanent magnet provided parallel to the plane facing the second cylindrical target and facing the 15th permanent magnet; an eighth yoke coupling the fifteenth permanent magnet and the sixteenth permanent magnet to each other outside the third magnetic circuit and the fourth magnetic circuit; is a sputtering deposition source having
  • the magnetization direction of the 15th permanent magnet is on the surface of the 15th permanent magnet on the side of the first cylindrical target.
  • a seventh auxiliary permanent magnet and an eighth auxiliary permanent magnet having polarities opposite to each other are provided in order toward the tip of the fifteenth permanent magnet so as to be perpendicular to the magnetization direction of the seventh auxiliary permanent magnet and opposite to the fifteenth permanent magnet of the seventh auxiliary permanent magnet.
  • the side magnetic pole has the same polarity as the magnetic pole on the eighth yoke side of the fifteenth permanent magnet, and the magnetization direction of the second cylindrical target side surface of the sixteenth permanent magnet is perpendicular to the magnetization direction of the sixteenth permanent magnet.
  • a ninth auxiliary permanent magnet and a tenth auxiliary permanent magnet having opposite polarities to each other are provided in order toward the tip of the sixteenth permanent magnet, and the magnetic pole of the ninth auxiliary permanent magnet on the opposite side of the sixteenth permanent magnet is the sixteenth permanent magnet. has the same polarity as the magnetic pole on the side of the eighth yoke.
  • the eighth yoke may also serve as the casing of the sputtering deposition source.
  • the eighth yoke may be provided so as to surround the third magnetic circuit and the fourth magnetic circuit, or may be provided so as not to surround the third magnetic circuit and the fourth magnetic circuit.
  • this invention a cylindrical target and a sputter particle collection shield positioned opposite each other;
  • a seventeenth permanent magnet provided inside the cylindrical target so that one magnetic pole faces the inner peripheral surface of the cylindrical target and extends in the central axis direction of the cylindrical target.
  • an 18th permanent magnet provided away from the 17th permanent magnet so as to surround the outer periphery of the 17th permanent magnet and having a polarity opposite to that of the 17th permanent magnet, the 17th permanent magnet, and the 18th permanent magnet a magnetic circuit formed by a ninth yoke coupled to each other;
  • a twentieth permanent magnet having the same polarity as the nineteenth permanent magnet, provided facing the sputtered particle collection shield in parallel with the plane and facing the nineteenth permanent magnet;
  • a tenth yoke coupling the nineteenth permanent magnet and the twentieth permanent magnet to each other outside the magnetic circuit and the sputter particle collection shield; is a sp
  • the 11th auxiliary permanent magnets of opposite polarities are preferably arranged on the surface of the 19th permanent magnet on the cylindrical target side. and a 12th auxiliary permanent magnet are provided in order toward the tip of the 19th permanent magnet.
  • a heater is provided on the back surface of the sputtered particle collection shield as required.
  • the sputtered particle collection shield may be provided perpendicular to the plane containing the central axis of the cylindrical target, or may be provided at an angle to the plane.
  • the tenth yoke may also serve as the casing of the sputtering deposition source. The tenth yoke may be provided so as to surround the magnetic circuit and the sputtered particle collection shield, or may be provided so as not to surround the magnetic circuit and the sputtered particle collection shield.
  • a DC power supply, a DC pulse power supply, a high-frequency power supply, a high-frequency pulse power supply, etc. are used as the power supply for supplying power to any of the sputtering deposition sources described above, and are selected from among these as necessary.
  • the film forming apparatus is not particularly limited, but for example, it is a type that forms a film while transporting an object to be film-formed, typically a substrate, in one direction, while repeating reciprocating motion, or while repeating both of these.
  • the present invention it is possible to reduce the damage to the film-forming object, or to reduce the damage to the film-forming object and to improve the film-forming rate, or to improve the film thickness distribution. can also be obtained at the same time, and by using this excellent sputtering film formation source, a high-performance film formation apparatus can be realized.
  • FIG. 1 is a front view showing a sputtering deposition source according to a first embodiment of the invention
  • FIG. FIG. 4 is a front view showing a magnetic circuit provided on the back surface of the target of the sputtering film formation source according to the first embodiment of the present invention
  • FIG. 6 is a front view showing a sputtering deposition source according to a second embodiment of the invention
  • It is a front view which shows the sputtering film-forming source by the 3rd Embodiment of this invention.
  • FIG. 11 is a front view showing a sputtering film formation source according to a fifth embodiment of the present invention; It is a front view which shows the sputtering film-forming source by the 6th Embodiment of this invention.
  • FIG. 11 is a front view showing a sputtering film formation source according to a seventh embodiment of the invention;
  • FIG. 11 is a front view showing a sputtering film formation source according to an eighth embodiment of the present invention;
  • FIG. 12 is a front view showing a sputtering film formation source according to a ninth embodiment of the present invention; It is a front view which shows the sputtering film-forming source by the 10th Embodiment of this invention.
  • FIG. 20 is a front view showing a sputtering film formation source according to a twelfth embodiment of the invention
  • FIG. 22 is a front view showing a sputtering film formation source according to a thirteenth embodiment of the present invention
  • FIG. 21 is a front view showing a film forming apparatus according to a fifteenth embodiment of the present invention
  • FIG. 20 is a front view showing a sputtering film formation source according to a twelfth embodiment of the invention
  • FIG. 22 is a front view showing a sputtering film formation source according to a thirteenth embodiment of the present invention
  • FIG. 21 is a front view showing a film forming apparatus according to a fifteenth embodiment of the present invention
  • FIG. 20 is a front view showing a sp
  • FIG. 20 is a front view showing a sputtering film formation source according to a seventeenth embodiment of the present invention
  • FIG. 20 is a front view showing a sputtering film formation source according to an eighteenth embodiment of the present invention
  • FIG. 20 is a front view showing a sputtering deposition source according to a nineteenth embodiment of the present invention
  • FIG. 20 is a front view showing a sputtering deposition source according to a twentieth embodiment of the present invention.
  • FIG. 2A shows a sputtering deposition source according to the first embodiment.
  • a pair of targets 21a and 21b facing each other across a space 20 are provided parallel to each other.
  • the targets 21a, 21b have a rectangular shape extending in a direction perpendicular to FIG. 2A.
  • a permanent magnet 22a is provided on the outer peripheral portion of the back surface of the target 21a so that the magnetization direction is perpendicular to the back surface of the target 21a, and a permanent magnet 23a having a polarity opposite to that of the permanent magnet 22a is provided in the central portion in parallel with the long side of the target 21a. is provided.
  • a yoke 24a having the same shape as the target 21a is provided on the opposite side of the permanent magnets 22a and 23a from the target 21a.
  • a magnetic circuit is formed by the target 21a, the permanent magnets 22a and 23a, and the yoke 24a. Magnetic lines of force 26a, 26a', 25a' are formed in this magnetic circuit.
  • FIG. 2B shows an example of a front view of the permanent magnets 22a, 23a and the yoke 24a.
  • FIG. 2A shows the case where the magnetic pole of the permanent magnet 22a on the target 21a side is the N pole, and the magnetic pole on the opposite side of the target 21a is the S pole, but the polarities of the permanent magnets 22a and 23a are opposite. good too.
  • a permanent magnet 22b is provided on the outer peripheral portion of the back surface of the target 21b so that the magnetization direction is perpendicular to the back surface of the target 21b, and a permanent magnet 22b having a polarity opposite to that of the permanent magnet 22b is provided in the central portion in parallel with the long side of the target 21b.
  • a magnet 23b is provided.
  • a yoke 24b having the same shape as the target 21b is provided on the opposite side of the permanent magnets 22b and 23b from the target 21a.
  • a magnetic circuit is formed by the target 21b, the permanent magnets 22b and 23b, and the yoke 24b. Magnetic force lines 26b, 26b' and 25b' are formed in this magnetic circuit.
  • Target 21a, permanent magnets 22a, 23a and yoke 24a and target 21b, permanent magnets 22b, 23b and yoke 24b are arranged symmetrically with respect to a bisecting plane of space 20 parallel to targets 21a, 21b.
  • a yoke 29a is provided in parallel with the yoke 24a, sufficiently spaced from the yoke 24a and in an independent state.
  • the yoke 29a has a rectangular shape larger than the yoke 24a and completely covers the yoke 24a.
  • a yoke 29b is provided in parallel with the yoke 24b, sufficiently separated from the yoke 24b.
  • the yoke 29b has a rectangular shape larger than the yoke 24b and completely covers the yoke 24b.
  • a permanent magnet 28a having a magnetization direction perpendicular to this surface is provided facing the permanent magnet 22a at a predetermined distance.
  • the tip of the permanent magnet 28a is positioned substantially flush with the surface of the target 21a.
  • the magnetic pole of the permanent magnet 28a is the south pole on the yoke 29a side.
  • a permanent magnet 28b whose magnetization direction is perpendicular to this surface is provided facing the permanent magnet 22b at a predetermined distance.
  • the tip of the permanent magnet 28b is positioned substantially flush with the surface of the target 21b.
  • the magnetic pole of the permanent magnet 28b is the north pole on the yoke 29b side.
  • a yoke 29c is formed between the end of the yoke 29a opposite to the one end provided with the permanent magnet 28a and the end of the yoke 29b opposite to the one end provided with the permanent magnet 28b. 29a and the yoke 29b are provided to be connected.
  • the yoke 29c is provided at a position sufficiently distant from the permanent magnets 22a and 22b so that the magnetic lines of force 25a' of the permanent magnet 22a and the magnetic lines of force 25b' of the permanent magnet 22b do not enter the yoke 29c.
  • a magnetic circuit is formed by the yokes 29a, 29b, 29c and the permanent magnets 28a, 28b.
  • Magnetic force lines 25a, 27 and 25b are formed in this magnetic circuit.
  • the yokes 29a, 29b, 29c and the permanent magnets 28a, 28b are arranged symmetrically with respect to a bisecting plane of the space 20 parallel to the targets 21a, 21b.
  • the deposition target 1 on which deposition is performed is placed at a position facing the space 20 .
  • the yoke 24a of the magnetic circuit provided on the back surface of the target 21a and the yoke 24b of the magnetic circuit provided on the back surface of the target 21b are sufficiently separated and independent.
  • a permanent magnet 28a and a permanent magnet 28b are arranged on one end side of the targets 21a and 21b on the film-forming object 1 side, respectively, and furthermore, a space 20 between the yokes 29a and 29b is provided in opposite directions. Since the yoke 29c is provided on the side, the magnetic lines of force 27 that shield the plasma generated on the film-forming object 1 side of the space 20 can effectively shield the magnetron plasma (not shown) generated on the targets 21a and 21b. .
  • the plasma does not leak toward the film-forming object 1, and film formation can be effectively realized with low damage. That is, the magnetic circuit for generating the magnetic lines of force 27 that shield the plasma, the magnetic lines of force generated on the surfaces of the targets 21a and 21b and the yokes 24a and 24b and participating in the film formation, in other words, the magnetron plasma is generated on the targets 21a and 21b. Since the magnetic circuit that generates the generated magnetic lines of force exists independently of each other, the magnetic flux density of the magnetic lines of force 27 that shields the plasma can be secured sufficiently high, so that a high plasma shielding effect can be obtained. 1 can be further reduced.
  • the plasma related to deposition is only the plasma generated by the magnetron mode magnetic field, and the magnetic field shielding the plasma reaching the deposition target 1 is generated independently of the magnetron mode magnetic field. Moreover, since the opposing mode magnetic field is generated only in the vicinity of the opening on the film-forming object 1 side, the plasma reaching the film-forming object 1 can be shielded effectively and reliably.
  • This sputtering deposition source can be applied to substrates that are difficult to deposit using conventional techniques, such as organic film substrates, organic light-emitting layers, organic power-generating layers, organic electron injection layers, organic hole injection layers, etc., with low plasma resistance.
  • a film can also be formed on a substrate made of a material characterized by low heat resistance and low high-energy particle resistance.
  • a sputtering power supply capable of pulse output sputtering film formation can be achieved at a high film formation rate with almost no damage to the film target, even with target materials that are prone to arcing. , it is possible to provide thin film formation technology for new materials and to form thin films of new materials.
  • This sputtering film formation source is suitable for film formation of electrode materials and the like in semiconductor devices, solar cells, liquid crystal displays, organic EL devices, and the like.
  • FIG. 3 shows a sputtering deposition source according to a second embodiment.
  • auxiliary permanent magnets M 1 having opposite polarities are arranged on the surface of the permanent magnet 28a on the side of the permanent magnet 22a so that the magnetization direction of the permanent magnet 28a is perpendicular to the magnetization direction of the permanent magnet 28a.
  • M 2 are provided in order toward the tip of the permanent magnet 28a.
  • the magnetic pole of the auxiliary permanent magnet M1 on the side opposite to the permanent magnet 28a is the same S pole as the magnetic pole of the permanent magnet 22a on the yoke 24a side.
  • auxiliary permanent magnets M 3 and M 4 with opposite polarities are arranged toward the tip of the permanent magnet 28a so that the magnetization direction is perpendicular to the magnetization direction of the permanent magnet 28b. are set in order.
  • the magnetic pole of the auxiliary permanent magnet M3 on the side opposite to the permanent magnet 28b is the same N pole as the magnetic pole of the permanent magnet 22b on the yoke 24b side, and the magnetic pole of the auxiliary permanent magnet M4 on the side opposite to the permanent magnet 28b is the magnetic pole of the permanent magnet 22b. It is the same S pole as the magnetic pole on the target 21b side. Others are the same as those of the first embodiment.
  • the following advantages can be obtained. That is, by providing the auxiliary permanent magnets M 1 , M 2 , M 3 , and M 4 , the leakage magnetic flux density to the film-forming object 1 can be reduced. It is possible to reduce plasma damage.
  • FIG. 4 shows a sputtering deposition source according to a third embodiment.
  • the target 21b, permanent magnets 22b and 23b, and yoke 24b in the sputtering deposition source according to the first embodiment are not provided, and instead the target 21b is provided.
  • a sputtered particle collection shield 310 is provided at the position where it was.
  • FIG. 4 shows a sputtering deposition source according to a third embodiment.
  • the target 21b, permanent magnets 22b and 23b, and yoke 24b in the sputtering deposition source according to the first embodiment are not provided, and instead the target 21b is provided.
  • a sputtered particle collection shield 310 is provided at the position where it was.
  • FIG. 4 shows a sputtering deposition source according to a third embodiment.
  • the space 20, the target 21a, the permanent magnets 22a, 23a, 28a, 28b, the yokes 24a, 29a, 29b, 29c, the magnetic force lines 26a, 26a', 25a' and 27 are represented as space 30, target 31, permanent magnets 32, 33, 38a and 38b, yokes 34, 39a, 39b and 39c, magnetic lines of force 36, 36a', 35a' and 37, respectively.
  • Others are the same as those of the first embodiment as long as they do not contradict their nature.
  • the following advantages can be obtained. That is, in the sputtering deposition source according to the first embodiment, for example, when the vertical direction in FIG. , deposits peel off from the non-erosion portion generated on the upper target 21a in the non-sputtered portion, and when they fall onto the lower target 21b, arc discharge occurs, and at the same time, the foreign matter scatters to form a film. It pollutes the body 1.
  • the sputtered particle collection shield 310 is provided at the position where the lower target 21b was, so that the portion of the target 31 which is not sputtered Even if the deposits are peeled off from the non-erosion portion generated in the sputter particle collection shield 310, the above-mentioned arc discharge can be prevented, thereby contamination of the film-forming object 1 due to the scattering of the foreign matter. can be prevented.
  • FIG. 5 shows a sputtering deposition source according to a fourth embodiment.
  • this sputtering film formation source in the sputtering film formation source according to the third embodiment, as in the second embodiment, the surface of the permanent magnet 38a on the side of the permanent magnet 32 is assisted.
  • Permanent magnets M 1 , M 2 are provided. Others are the same as those of the third embodiment as long as they do not contradict its nature.
  • FIG. 6 shows a sputtering deposition source according to a fifth embodiment.
  • a heater 41 is provided behind the sputter particle collection shield 310 in the sputtering film formation source according to the third embodiment.
  • the collection shield 310 can be heated. This heating temperature can be adjusted by controlling the current supplied from the heater power source 42 to the heater 41, and can be maintained at an appropriate temperature.
  • the following advantages can be obtained. That is, since the sputtered particle collection shield 310 can be heated by the heater 41, the adhesion probability of the sputtered particles reaching the sputtered particle collection shield 310 from the target 31 is reduced, in other words, the detachment probability is improved. By reattaching the sputtered particles proportional to , to the target 31, the utilization efficiency of the target 31 can be improved.
  • FIG. 7 shows a sputtering deposition source according to a sixth embodiment.
  • the central permanent magnet 33 constituting the magnetic circuit provided on the back surface of the target 31 is the target. 31, the difference is that the permanent magnet 33 is shifted by a predetermined distance from the center line of the target 31 to the opposite side of the magnetic field lines 37 shielding the plasma.
  • Others are the same as those of the third embodiment.
  • the following advantages can be obtained in addition to the advantages similar to those of the third embodiment. That is, the permanent magnet 33 forming a magnetic circuit provided on the back surface of the target 31 is shifted by a predetermined distance from the center line to the opposite side of the magnetic line of force 37 shielding the plasma. The amount of sputtering on the 1 side is increased, so that the film formation rate can be improved while maintaining the low damage property.
  • FIG. 8 shows a sputtering deposition source according to a seventh embodiment.
  • the central permanent magnet 23a constituting the magnetic circuit provided on the back surface of the target 21a is the target.
  • the central permanent magnet 23b which is positioned on the center line of the target 21a and similarly forms a magnetic circuit provided on the back surface of the target 21b, is positioned on the center line of the target 21b. The difference is that they are shifted by a predetermined distance from the centerlines of the targets 21a and 21b to the opposite side of the magnetic field lines 27 that shield the plasma. Others are the same as those of the first embodiment.
  • advantages similar to those of the sixth embodiment can be obtained in addition to advantages similar to those of the first embodiment.
  • FIG. 9 shows a sputtering deposition source according to an eighth embodiment.
  • a target 21a is fixed to a backing plate 71a with indium (not shown), which is a good thermal conductor, and the backing plate 71a is water-cooled. It is fixed to the yoke 29c, which also serves as a housing, with bolts (not shown) that ensure electrical insulation via connecting parts 72a made of an insulating material.
  • the target 21b is fixed to a backing plate 71b with indium (not shown), which is a good thermal conductor.
  • the backing plates 71a and 71b are preferably made of oxygen-free copper, which has excellent thermal conductivity, electrical conductivity, and corrosion resistance. Copper, optionally aluminum or non-magnetic stainless steel may be used.
  • the yoke 24a is fixed to the yoke 29c with an electrically conductive bolt (not shown) through a connection part 74a made of a non-magnetic material, and the potential is the ground potential together with the yoke 29c, which also serves as the housing. is ensured.
  • An electrical insulating sheet 73a made of fluororesin or the like is inserted between the backing plate 71a and the magnetic circuit to ensure high electrical insulation.
  • the target 21b side has a similar structure, and the yoke 24b is fixed to the yoke 29c via a connecting part 74b made of a non-magnetic material with an electrically conductive bolt (not shown), and the potential is A ground potential is ensured together with the yoke 29c that also serves as the housing.
  • An electrical insulating sheet 73b made of fluororesin or the like is inserted between the backing plate 71b and the magnetic circuit to ensure high electrical insulation.
  • the target 21a is surrounded by target shields 75a and 76a and two target shields (not shown) around the target 21a.
  • the target shields are arranged electrically insulated from the target 21a and the backing plate 71a, and the ground potential is ensured, so that excess electrons in the magnetron discharge plasma are prevented from being released from these target shields. It is configured to return to the positive pole of the DC power source 77 for plasma generation via the .
  • the same applies to the target 21b side, and the four peripheral edges of the target 21b and their outsides are surrounded by target shields 75b and 76b and two target shields (not shown), and these target shields secure the ground potential.
  • the negative electrode of the plasma generating DC power supply 77 for sputtering film formation is electrically connected to the backing plates 71a and 71b.
  • the plasma-generating DC power sources 77 connected to the backing plates 71a and 71b may be connected independently one by one.
  • the plasma generating DC power supply 77 may be replaced with a high frequency power supply. Propagation to the target 21b is ensured.
  • the sputtering film formation may be performed by applying sinusoidal or rectangular AC power so that the targets 21a and 21b are alternately sputtered. Further, one or more thermoelectron supply sources may be provided between the target 21a and the target 21b to increase the plasma density for sputtering film formation.
  • a DC power supply may be connected to one of the backing plates 71a and 71b, and a high frequency power supply and an impedance matching device may be connected to the other.
  • a thin film can be formed with low damage.
  • the DC power source and the high frequency power source it is possible to use a power source that outputs pulses. It is possible to prevent foreign matter from entering the product and improve the non-defective product rate.
  • the backing plate 71a connected to the target 21a with good thermal conductivity is cooled with cooling water.
  • the interior of the backing plate 71a is configured with a channel through which cooling water flows, and the cooling water flows into and out of the interior of the backing plate 71a via the yoke 29c and a connection piece 72a made of an insulator. It is configured. The same applies to the target 21b side.
  • the backing plate 71b connected to the target 21b with good thermal conductivity is cooled with cooling water.
  • the interior of the backing plate 71b is configured with channels through which cooling water flows, and the cooling water flows into and out of the interior of the backing plate 71b via the yoke 29c and the connecting piece 72b, which is made of an insulator.
  • the channels through which the cooling water flows to the backing plates 71a and 71b are connected in parallel, but may be connected in series as long as the cooling capacity is ensured.
  • the following advantages can be obtained in addition to the advantages similar to those of the first embodiment. That is, since the targets 21a and 21b are fixed to the backing plates 71a and 71b, respectively, and are water-cooled, it is possible to prevent the temperature of the targets 21a and 21b from rising during the use of the sputtering film forming source, thereby stabilizing the temperature of the targets 21a and 21b. film formation can be performed.
  • the distance between the N pole of the permanent magnet 28a and the S pole of the permanent magnet 28b of the magnetic circuit that generates the magnetic lines of force that shield the plasma is the magnetic lines of force that are generated on the surface of the target 21a and the yoke 24a and participate in the film formation.
  • the target shields 75a, 76a, 75b, 76b can maintain the plasma by returning excess electrons in the magnetron mode plasma to the sputtering power supply.
  • FIG. 10 shows a sputtering deposition source according to the ninth embodiment.
  • auxiliary permanent magnets M 1 , M2 is provided, and auxiliary permanent magnets M3 and M4 are provided on the surface of the permanent magnet 28b on the side of the permanent magnet 22b.
  • Others are the same as those of the eighth embodiment as long as it does not contradict its nature.
  • FIG. 11 shows a sputtering deposition source according to the tenth embodiment.
  • the target 21b, permanent magnets 22b and 23b, yoke 24b, backing plate 71b, electrical insulation sheet 73b, etc. in the eighth embodiment are not provided. Instead, a sputter particle collection shield 310 is provided at the position where the target 21b was. Others are the same as those of the eighth embodiment as long as it does not contradict its nature.
  • the same advantages as in the third embodiment can be obtained in the ninth embodiment.
  • FIG. 12 shows a sputtering deposition source according to the eleventh embodiment.
  • auxiliary permanent magnets M 1 , M2 is provided in this sputtering deposition source. Others are the same as the tenth embodiment as long as it does not contradict its nature.
  • FIG. 13 shows a sputtering deposition source according to the twelfth embodiment.
  • the sputtered particle collection shield 310a is positioned with respect to the target 31, and the distance between the target 31 and the sputtered particle collection shield 310a is on the side of the permanent magnets 38a and 38b. It is different in that it is inclined so as to increase linearly toward it. Others are the same as those of the tenth embodiment.
  • the sputtered particle collection shield 310a is linearly inclined with respect to the target 31 so that the distance between the target 31 and the sputtered particle collection shield 310a linearly increases toward the permanent magnets 38a and 38b. Therefore, when some of the sputtered particles adhering to the sputtered particle collection shield 310a are separated, the probability of the separated sputtered particles traveling toward the film-forming object 1 increases, thereby improving the film formation speed.
  • this sputter particle collection shield 310a is heated from the back surface by a heater like the sputter particle collection shield 310 in the fifth embodiment, so that detached sputter particles moving toward the film-forming object 1 are generated. can be further increased, and the film formation rate can be further improved.
  • FIG. 14 shows a sputtering deposition source according to a thirteenth embodiment.
  • the sputtered particle collection shield 310b is positioned with respect to the target 31, and the distance between the target 31 and the sputtered particle collection shield 310b is on the side of the permanent magnets 38a and 38b. It is different in that it is curved to have an upwardly convex curvilinear cross-sectional shape that increases toward it. Others are the same as those of the tenth embodiment.
  • the sputtered particle collection shield 310b is formed in an upward convex curved shape with respect to the target 31 so that the distance between the target 31 and the sputtered particle collection shield 310b increases toward the permanent magnets 38a and 38b. Since it is curved to have a cross-sectional shape, when some of the sputtered particles adhering to the sputtered particle collection shield 310b are separated, the probability of the separated sputtered particles traveling toward the film-forming object 1 increases. , the film formation speed can be improved.
  • this sputtered particle collection shield 310b is heated from the back surface by a heater like the sputtered particle collection shield 310 in the fifth embodiment, thereby generating detached sputtered particles traveling in the direction of the object 1 to be deposited. can be further increased, and the film formation rate can be further improved.
  • FIG. 15 shows a film forming apparatus according to the fourteenth embodiment.
  • This film forming apparatus uses the sputtering film forming source according to the eighth embodiment.
  • This film-forming apparatus is a vacuum film-forming apparatus that is mainly used when the object to be film-formed is in the form of a substrate. is.
  • This film forming apparatus has a vacuum chamber 110 .
  • the vacuum chamber 110 is evacuated to a vacuum pressure called high vacuum by turbomolecular pumps 111 and 111', which are pumps for exhausting molecular flow.
  • a viscous flow exhaust pump (not shown) is connected to the exhaust side of each of the turbomolecular pumps 111 and 111'. After that, the turbomolecular pumps 111 and 111' are activated to evacuate to a vacuum pressure called high vacuum.
  • a cryopump or a diffusion pump may be used instead of the turbomolecular pumps 111 and 111'.
  • At least one of the sputtering deposition sources S 1 according to the eighth embodiment is arranged in the vacuum chamber 110 with the opening of the space 20 facing the deposition target 1 .
  • a sputtering gas 112 is introduced into the space 20 of the sputtering deposition source S1 .
  • the object 1 to be deposited passes through the area facing the space 20 at a constant transport speed in the direction indicated by the arrow 2 or in the opposite direction by a transport driving mechanism (not shown). can be formed with good film thickness distribution and low damage.
  • This transfer speed control is performed by feedback control of the rotation speed of the electric motor that generates the driving force by the signal from the encoder built into the electric motor, and then the conversion of the worm gear, ball screw, rack and pinion gear, etc.
  • the sputtering film formation source S 1 installed in the vacuum chamber 110 may be the sputtering film formation source according to any one of the first to seventh embodiments. faces the object 1 to be film-formed, and at least one unit is installed. As a result, it becomes possible to form a film by sputtering without damaging the object 1 to be film-formed as compared with the conventional art.
  • the substrate of the film formation target 1 is smaller than the film formation region of the sputtering film formation source S 1 , the substrate of the film formation target 1 is held still in the film formation region in FIG.
  • the film forming speed is improved and the productivity is increased.
  • the size of the film-forming apparatus can be reduced and the economic efficiency can be improved. can.
  • FIG. 16 shows a film forming apparatus according to the fifteenth embodiment.
  • This film forming apparatus uses the sputtering film forming source S 1 according to the eighth embodiment and the sputtering film forming sources S 2 and S 3 according to the tenth embodiment.
  • This film forming apparatus has a vacuum chamber 120 .
  • the vacuum chamber 120 is evacuated to a vacuum pressure called high vacuum by turbomolecular pumps 121 and 121', which are pumps for exhausting molecular flow.
  • a viscous flow exhaust pump (not shown) is connected to the exhaust side of each of the turbomolecular pumps 121 and 121'. After that, the turbomolecular pumps 121 and 121' are started to evacuate to a vacuum pressure called high vacuum.
  • a cryopump or a diffusion pump may be used instead of the turbomolecular pumps 121 and 121'.
  • a sputtering deposition source S1 similar to that of the eighth embodiment is arranged.
  • a target support roller 4 is provided above the sputtering film formation source S1 .
  • the rotating shaft of the film-forming object support roller 4 is set in a direction parallel to the gravity.
  • the film-forming object 3 is adhered or fixed to the film-forming object supporting roller 4 .
  • the sputtering film forming sources S2 and S3 according to the tenth embodiment are arranged on both sides of the film-forming object supporting roller 4 so as to face the film-forming object supporting roller 4.
  • a sputtering gas 112 is introduced into the space 20 of the sputtering deposition source S 1 , and sputtering gases 122 and 122 ′ are introduced into the spaces 30 of the sputtering deposition sources S 2 and S 3 , respectively.
  • the object 3 to be film-formed is rotated at a constant angular velocity in the direction of rotation indicated by an arrow 5 or in the direction of reverse rotation by a rotary drive mechanism (not shown), through the space 20 of the sputtering film-forming source S 1 , the sputtering film-forming source S 2 , and the film-forming source S 2 .
  • a film having a desired film thickness can be formed with good film thickness distribution and low damage.
  • This control of the angular velocity is performed by feedback-controlling the rotational angular velocity of the electric motor that generates the driving force by means of a signal from an encoder built into the electric motor.
  • the power is transmitted to the roller 4 by a combination of gears, a timing belt, or the like.
  • the peripheral speed at which the film-forming object 3 is conveyed is accurately determined by the diameter of the film-forming object supporting roller 4 and the rotational angular velocity control of the electric motor. As a result, it becomes possible to form a film by sputtering without damaging the object 3 to be film-formed as compared with the conventional art.
  • the rotation axis of the film formation target support roller 4 is set in a direction parallel to gravity. There is no problem even if it is installed in a vertical direction.
  • three sputtering deposition sources S 1 , S 2 , S 3 can be used to perform deposition at high speed, or two Advantages can also be obtained in that one or three types of films can be deposited.
  • FIG. 17 shows a film forming apparatus according to the sixteenth embodiment.
  • This film-forming apparatus is a roll-to-roll type film-forming apparatus using a roll-shaped film as the object 3 to be film-formed.
  • this film forming apparatus has a vacuum chamber 130 in addition to the vacuum chamber 120 .
  • the vacuum chamber 130 is separated from the vacuum chamber 120 by partition plates 131 and 131'.
  • the object support roller 7 similarly to the film forming apparatus according to the fifteenth embodiment, there are installed the object support roller 7 and the three sputtering film forming sources S1 , S2 and S3 .
  • a sputtering gas 112 is introduced into the space 20 of the sputtering deposition source S 1 , and sputtering gases 122 and 122 ′ are introduced into the spaces 30 of the sputtering deposition sources S 2 and S 3 , respectively.
  • An opening is provided between the partition plate 131 and the partition plate 131', and the uppermost part of the film-formed body support roller 7 is inserted into this opening.
  • an unwinding side roll 132, a winding side roll 133, and guide rollers 134 and 134' are installed in parallel with the support rollers 7 for the object to be deposited.
  • the film-shaped object 3 is attached to the unwinding roll 132 in a roll state.
  • film formation is carried out with little damage by the respective sputtering film formation sources S1 , S2 , and S3 .
  • it is continuously wound up by the winding side roll 133 via the guide roller 134 ′, so that the film of the desired film thickness is formed with good film thickness distribution and low damage. is completed.
  • Sputtered particles, that is, film-forming material, leaking out from the film-forming region are shielded by the partition plates 131 and 131′, so that they do not reach the unwinding-side roll 132 and the winding-side roll 133. , to prevent excess film-forming material from adhering to the film-form object 3 to be film-formed.
  • the control of the peripheral speed is performed by feedback-controlling the rotation angular speed of the electric motor that generates the driving force by the signal from the encoder built in the electric motor, and then the substrate that supports the film-forming object 3.
  • the power is transmitted to the film forming body support roller 7 by a combination of gears, a timing belt, or the like.
  • the peripheral speed at which the film-forming object 3 is conveyed is accurately determined by the diameter of the film-forming object supporting roller 7 and the rotational angular velocity control of the electric motor described above.
  • the unwinding side roll 132 and the winding side roll 133 are driven by an electric motor, and the torque applied to this electric motor is constantly monitored and controlled so that the torque is always a constant value set in advance.
  • the guide rollers 134 and 134' are free rollers, they are not driven by an electric motor or the like, and have a mechanism that rotates according to the peripheral speed of the transported film-like object 3 that is transported in close contact. . In the case of rotation in the direction opposite to arrow 5, the functions of the unwinding roll 132 and the winding roll 133 are reversed; It becomes the delivery side roll.
  • film deposition can be performed by roll-to-roll sputtering without damaging the film-forming object 3 as compared with the conventional art. You can get the advantage of being able to
  • FIG. 18 shows a sputtering deposition source according to the seventeenth embodiment.
  • This sputtering deposition source uses a rotary type target.
  • targets 141a and 141b arranged to face each other with a space 140 interposed therebetween are formed in a cylindrical shape, and each of them is rotated at a constant angular velocity at all times to achieve
  • the targets 141a and 141b are intended to have a longer life.
  • the magnetic circuits built in the targets 141a and 141b are respectively composed of peripheral permanent magnets 142a and 142b, central permanent magnets 143a and 143b, and yokes 144a and 144b. Magnetic lines of force 145a and 145b for generating plasma are formed.
  • yokes 29a and 29b are provided in an independent state with a sufficient distance from the yoke 144a of the magnetic circuit provided on the target 141a and the yoke 144b of the magnetic circuit provided on the target 141b.
  • the seventeenth embodiment in addition to being able to obtain the same advantages as the first embodiment, it is possible to obtain the advantage of being able to extend the life of the targets 141a and 141b.
  • FIG. 19 shows a sputtering deposition source according to the eighteenth embodiment.
  • this sputtering deposition source in this sputtering deposition source, in the seventeenth embodiment, as in the second embodiment, auxiliary permanent magnets M 1 and M 2 are provided, and auxiliary permanent magnets M 3 and M 4 are provided on the surface of the permanent magnet 28b on the target 141b side.
  • Others are the same as those of the seventeenth embodiment as long as it does not contradict its nature.
  • FIG. 20 shows a sputtering deposition source according to the nineteenth embodiment.
  • This sputtering deposition source uses a rotary type target.
  • the cylindrical target 141 is always rotated at a constant angular velocity to extend its life.
  • a magnetic circuit built in the cylindrical target 141 is composed of an outer peripheral permanent magnet 142, a central permanent magnet 143, and a yoke 144, and forms magnetic lines of force 145 for generating magnetron plasma on the surface of the cylindrical target 141.
  • the sputtered particle collection shield 310a is arranged with the space 30 interposed therebetween. Since arc discharge does not occur even if deposits fall on the surface, there is an advantage in that the film-forming object 1 is not contaminated by foreign matters scattered when an arc occurs. Furthermore, as in the twelfth embodiment, the sputtered particle collection shield 310a is inclined toward the opening of the space 150 on the film formation target 1 side, so that the sputtered particle collection shield 310a is adhered to. When some of the sputtered particles are detached, the probability of generation of the detached sputtered particles moving in the direction of the film-forming object 1 is increased, so that the deposition rate can be improved. In addition, this sputtered particle collection shield 310a may be heated from the back surface by a heater as in the fifth embodiment. The number can be further increased, and the film forming speed can be further improved.
  • FIG. 21 shows a sputtering deposition source according to the twentieth embodiment.
  • this sputtering deposition source in the 19th embodiment, as in the second embodiment, an auxiliary permanent magnet M 1 is provided on the surface of the permanent magnet 38a on the side of the cylindrical target 141 in the same manner as in the second embodiment.
  • M 2 are provided.
  • Others are the same as those of the nineteenth embodiment as long as it does not contradict its nature.
  • the permanent magnet 28a in the second, ninth and eighteenth embodiments may be a permanent magnet formed by auxiliary permanent magnets M.sub.1 and M.sub.2 using a magnetic material, and the permanent magnet 28b is magnetic.
  • a body may be used to form a permanent magnet with auxiliary permanent magnets M 3 and M 4 .
  • the permanent magnet 38a in the fourth, eleventh and twentieth embodiments may be a permanent magnet made of a magnetic material and formed by auxiliary permanent magnets M1 and M2 .
  • Reference Signs List 1 3 film-formed object 4 film-formed object support roller 20, 30, 140, 150 space 21a, 21b, 31 target 22a, 22b, 23a, 23b, 28a, 28b, 32, 33 permanent magnet 38a, 38b, 142a , 142b, 143a, 143b Permanent magnets 145a, 145b Permanent magnets 24a, 24b, 29a, 29b, 29c, 34, 39a, 39b, 39c Yokes 144a, 144b Yokes 26a, 26a', 26b, 26b', 27, 36, 36 ', 37 Magnetic lines of force 145a, 145b Magnetic lines of force 41, 41a Heater 42 Power source for heater 71a, 71b Backing plate 73a, 73b Electrical insulation sheet 77 DC power source for plasma generation 110, 120, 130 Vacuum chamber 141a, 141b Cylindrical target 310, 310a Sputtering Particle collection shield M1 - M4 auxiliary permanent magnet

Abstract

In this sputtering deposition source, a magnetic circuit comprising permanent magnets (22a, 23a) and a yoke (24a) and a magnetic circuit comprising permanent magnets (22b, 23b) and a yoke (24b) are provided on the respective back surfaces of targets (21a, 21b) arranged facing each other across a space (20); permanent magnets (28a, 28b) for generating magnetic lines of force (27) for shielding plasma are provided facing each other on one end side of the targets (21a, 21b); yokes (29a, 29b, 29c) connecting these permanent magnets (28a, 28b) to each other are provided so as to surround the targets (21a, 21b) and the magnetic circuits on the back surfaces thereof; a deposition substrate (1) is arranged on the opening side of the space (20) so as to face the space (20), and deposition is performed.

Description

スパッタリング成膜源および成膜装置Sputtering deposition source and deposition equipment
 この発明は、スパッタリング成膜源および成膜装置に関し、スパッタリング法により薄膜を成膜する各種のデバイス等の製造に適用して好適なものである。 The present invention relates to a sputtering film formation source and a film formation apparatus, and is suitable for application to the manufacture of various devices for forming thin films by the sputtering method.
 一般的なスパッタリング成膜源は、ターゲット上のスパッタ領域が被成膜体の方向を向いているため、プラズマのみならず、ターゲット表面で反射されるスパッタガス原子あるいは分子が当該被成膜体へ大きな運動エネルギーで衝突するため、被成膜体へ多大なダメージを与えてしまい、ダメージに弱い材料、例えば有機物の発光材料や発電材料あるいは半導体シリコンのパッシベーション膜等の直上にスパッタリング法で薄膜を形成することが不可能であった。 In a general sputtering deposition source, the sputtering area on the target faces the object to be deposited. Since it collides with a large kinetic energy, it causes a great deal of damage to the object to be deposited, and a thin film is formed by sputtering directly on materials that are vulnerable to damage, such as organic light emitting materials, power generation materials, semiconductor silicon passivation films, etc. it was impossible to
 対向ターゲット式スパッタリング成膜源は、上記のダメージに弱い材料へのダメージを軽減させて薄膜を形成する目的で開発された成膜源である。従来の対向ターゲット式スパッタリング成膜源としては特許文献1、2に記載されたものが知られている。特許文献1には、所定の間隔を隔てて一対のターゲットを対向配置し、各ターゲットの外周に沿って永久磁石からなる磁界発生手段を設けて該ターゲット間の対向空間を囲むターゲットに垂直な対向モードの磁界と該ターゲットの外周の前方近傍から中心寄りの表面に至るマグネトロンモードの磁界を形成した対向ターゲット部を備え、該対向空間内にプラズマを形成し、該対向空間の側方に配置した基板上に薄膜を形成するようにした対向ターゲット式スパッタ装置において、マグネトロンモードの磁界を調整する磁界調整手段としての永久磁石をその磁路中に設けることが記載されている。特許文献2に記載された対向ターゲット式スパッタ装置においては、対向空間を介して一対のターゲットを配置し、その側面部に、N極とS極とが向き合うように一対の永久磁石を配置し、この一対の永久磁石の対向空間と反対側の磁極同士を磁気的に接続するためにヨークを配置する。ヨークは、一方の永久磁石の背面に配置されるコア部と、他方の永久磁石の背面に配置されるコア部と、これらの二つのコア部を接続する連結部とから構成される。これらのコア部と連結部とは強磁性体により形成される。 The facing target type sputtering film formation source is a film formation source developed for the purpose of forming a thin film while reducing the damage to the materials that are vulnerable to the above damage. As a conventional facing-target-type sputtering deposition source, those described in Patent Documents 1 and 2 are known. In Patent Document 1, a pair of targets are arranged facing each other at a predetermined interval, magnetic field generating means made of permanent magnets are provided along the outer periphery of each target, and the targets are perpendicularly opposed to each other to surround the facing space between the targets. A facing target section is provided in which a mode magnetic field and a magnetron mode magnetic field extending from the vicinity of the front of the outer circumference of the target to the surface near the center are formed, plasma is formed in the facing space, and is arranged on the side of the facing space. In a facing target type sputtering apparatus for forming a thin film on a substrate, it is described that a permanent magnet is provided in the magnetic path as magnetic field adjusting means for adjusting the magnetic field of the magnetron mode. In the facing target type sputtering apparatus described in Patent Document 2, a pair of targets are arranged via a facing space, and a pair of permanent magnets are arranged on the side surfaces thereof so that the N pole and the S pole face each other, A yoke is arranged to magnetically connect the magnetic poles on the opposite side of the facing space of the pair of permanent magnets. The yoke is composed of a core portion arranged behind one permanent magnet, a core portion arranged behind the other permanent magnet, and a connecting portion connecting these two core portions. These core portion and connecting portion are formed of a ferromagnetic material.
 しかし、本発明者の検討によれば、特許文献1、2に記載された従来の対向ターゲット式スパッタリング成膜源においては、次のような問題が存在する。すなわち、図1は、特許文献1、2に記載されている対向ターゲット式スパッタリング成膜源の代表的な実施の形態を模式的に示したものである。図1中、符号1は被成膜体、10は対向空間、11a、11bはターゲット、12a、12b、13a、13bは永久磁石、14a、14b、14cはヨーク、16a、16b、16a’、16b’、17、17’は磁力線を示す。この従来の対向ターゲット式スパッタリング成膜源においては、被成膜体1に面している対向空間10から被成膜体1に向かって図示しないスパッタ粒子が飛び出していくが、磁力線17の磁束密度が不十分だと、当該対向空間10に存在するプラズマも被成膜体1の方向に漏れ出してしまい、低ダメージの下での成膜ができない。ヨーク14aとヨーク14bとをヨーク14cで結合することにより、本従来技術よりも以前に用いられていた技術と比べると、磁力線17の磁束密度が大きくなり被成膜体1の方向に漏れ出すプラズマの量は減少したが、低ダメージ性の効果は十分でなかった。その技術的な理由は、永久磁石の外側の磁力線はN極からS極に向かうため、図1において永久磁石12aを起点とすると、そのN極から出た磁力線17は永久磁石12bのS極に入り、さらにヨーク14bからヨーク14cを経てヨーク14aに入って永久磁石12aのS極に戻る。しかし、前記した磁力線の流れは、ヨーク14bからヨーク14cを経てヨーク14aに入っていく途中で、磁力線16b’の向きと磁力線16a’の向きとがヨーク14a、14b中で反対向きのため、前記した磁力線の流れの強さが全体的に弱まってしまい、結果的に磁力線17の磁束密度も小さくなって、当該対向空間10に存在するプラズマの被成膜体1の方向に漏れ出す量が増えてしまい、低ダメージ成膜の効果が減少してしまうという問題点が存在した。 However, according to the study of the present inventor, the following problems exist in the conventional facing-target-type sputtering deposition sources described in Patent Documents 1 and 2. That is, FIG. 1 schematically shows a representative embodiment of the facing target type sputtering deposition source described in Patent Documents 1 and 2. In FIG. In FIG. 1, reference numeral 1 is a film-forming object, 10 is a facing space, 11a and 11b are targets, 12a, 12b, 13a and 13b are permanent magnets, 14a, 14b and 14c are yokes, and 16a, 16b, 16a' and 16b. ', 17, 17' indicate lines of magnetic force. In this conventional facing target type sputtering film formation source, sputtered particles (not shown) fly out toward the film-forming object 1 from the facing space 10 facing the film-forming object 1, but the magnetic flux density of the magnetic lines of force 17 is insufficient, the plasma existing in the facing space 10 also leaks toward the film-forming object 1, and film formation cannot be performed with low damage. By connecting the yoke 14a and the yoke 14b with the yoke 14c, the magnetic flux density of the lines of magnetic force 17 is increased compared to the technology used prior to the present prior art, and the plasma leaks toward the object 1 to be deposited. Although the amount of was reduced, the low-damage effect was not sufficient. The technical reason for this is that since the magnetic lines of force outside the permanent magnet go from the N pole to the S pole, if the permanent magnet 12a in FIG. It enters the yoke 14b, passes through the yoke 14c, enters the yoke 14a, and returns to the S pole of the permanent magnet 12a. However, since the magnetic lines of force 16b' and the lines of magnetic force 16a' are opposite directions in the yokes 14a and 14b on the way from the yoke 14b to the yoke 14c and into the yoke 14a, the magnetic lines of force flow into the yoke 14a. As a result, the magnetic flux density of the magnetic lines of force 17 is reduced, and the amount of plasma leaking from the opposing space 10 toward the film-forming object 1 increases. Therefore, there is a problem that the effect of low-damage film formation is reduced.
特開2003-155564号公報JP-A-2003-155564 特開2004-107733号公報Japanese Patent Application Laid-Open No. 2004-107733
 そこで、この発明が解決しようとする課題は、被成膜体に与えるダメージの低減を図ることができ、あるいは被成膜体に与えるダメージの低減および成膜レートの向上を同時に実現することができるスパッタリング成膜源およびこのスパッタリング成膜源を用いた成膜装置を提供することである。 Therefore, the problem to be solved by the present invention is to be able to reduce the damage inflicted on the film-forming object, or to simultaneously realize the reduction of the damage inflicted on the film-forming object and the improvement of the film-forming rate. An object of the present invention is to provide a sputtering deposition source and a deposition apparatus using this sputtering deposition source.
 この発明が解決しようとする他の課題は、被成膜体に与えるダメージの低減あるいは被成膜体に与えるダメージの低減および成膜レートの向上に加えて良好な膜厚分布をも同時に実現することができるスパッタリング成膜源およびこのスパッタリング成膜源を用いた成膜装置を提供することである。 Another problem to be solved by the present invention is to realize a favorable film thickness distribution in addition to reduction of damage given to a film-forming object or reduction of damage given to a film-forming object and improvement of a film-forming rate. It is an object of the present invention to provide a sputtering deposition source and a deposition apparatus using this sputtering deposition source.
 上記課題を解決するために、この発明は、
 互いに対向して配置された第1ターゲットおよび第2ターゲットと、
 上記第1ターゲットの裏面に設けられた、上記第1ターゲットの外周部に対応する部分に磁化方向が上記第1ターゲットに対して垂直となるように設けられた第1永久磁石と上記第1ターゲットの中央部に対応する部分に上記第1永久磁石と逆極性となるように設けられた第2永久磁石と上記第1永久磁石および上記第2永久磁石を互いに結合する第1ヨークとにより形成された第1磁気回路と、
 上記第2ターゲットの裏面に設けられた、上記第2ターゲットの外周部に対応する部分に磁化方向が上記第2ターゲットに対して垂直となり、かつ上記第1永久磁石と逆極性となるように設けられた第3永久磁石と上記第2ターゲットの中央部に対応する部分に上記第3永久磁石と逆極性となるように設けられた第4永久磁石と上記第3永久磁石および上記第4永久磁石を互いに結合する第2ヨークとにより形成された第2磁気回路と、
 上記第1ターゲットの一端側に上記第1永久磁石に平行に上記第1永久磁石と同一の極性となるように設けられた第5永久磁石と、
 上記第2ターゲットの一端側に上記第3永久磁石に平行に、かつ上記第5永久磁石に対向して上記第3永久磁石と同一の極性となるように設けられた第6永久磁石と、
 上記第5永久磁石および上記第6永久磁石を上記第1磁気回路および上記第2磁気回路の外部で互いに結合する第3ヨークと、
を有するスパッタリング成膜源である。
In order to solve the above problems, the present invention
a first target and a second target arranged to face each other;
A first permanent magnet provided on the back surface of the first target and provided in a portion corresponding to the outer peripheral portion of the first target so that the magnetization direction is perpendicular to the first target; and the first target. a second permanent magnet provided in a portion corresponding to the central portion of the first permanent magnet so as to have a polarity opposite to that of the first permanent magnet; and a first yoke connecting the first permanent magnet and the second permanent magnet to each other a first magnetic circuit;
Provided on the back surface of the second target, a portion corresponding to the outer peripheral portion of the second target is provided so that the magnetization direction is perpendicular to the second target and has a polarity opposite to that of the first permanent magnet. and a fourth permanent magnet provided in a portion corresponding to the central portion of the second target so as to have a polarity opposite to that of the third permanent magnet, the third permanent magnet, and the fourth permanent magnet. a second magnetic circuit formed by a second yoke coupling the
a fifth permanent magnet provided on one end side of the first target in parallel with the first permanent magnet so as to have the same polarity as the first permanent magnet;
a sixth permanent magnet provided on one end side of the second target parallel to the third permanent magnet and facing the fifth permanent magnet so as to have the same polarity as the third permanent magnet;
a third yoke coupling the fifth permanent magnet and the sixth permanent magnet to each other outside the first magnetic circuit and the second magnetic circuit;
is a sputtering deposition source having
 このスパッタリング成膜源においては、第1磁気回路により第1ターゲットの表面にマグネトロン磁場が形成され、第2磁気回路により第2ターゲットの表面にマグネトロン磁場が形成されるようになっている。これらのマグネトロン磁場により、第1ターゲットおよび第2ターゲットの近傍にプラズマを拘束することができ、第1ターゲットおよび第2ターゲットをそれぞれ効率的にスパッタして被成膜体に薄膜を形成することができる。第3ヨークは、第1磁気回路および第2磁気回路を取り囲むように設けられることもあるし、第1磁気回路および第2磁気回路を取り囲まないように設けられることもある。 In this sputtering deposition source, the first magnetic circuit forms a magnetron magnetic field on the surface of the first target, and the second magnetic circuit forms a magnetron magnetic field on the surface of the second target. By these magnetron magnetic fields, the plasma can be confined near the first target and the second target, and the first target and the second target can be efficiently sputtered, respectively, to form a thin film on the object to be deposited. can. The third yoke may be provided so as to surround the first magnetic circuit and the second magnetic circuit, or may be provided so as not to surround the first magnetic circuit and the second magnetic circuit.
 このスパッタリング成膜源においては、被成膜体の位置における漏洩磁束密度の低減を図る観点から、好適には、第5永久磁石の第1永久磁石側の面に磁化方向が第5永久磁石の磁化方向と垂直となるように互いに逆極性の第1補助永久磁石および第2補助永久磁石が第5永久磁石の先端に向かって順に設けられ、第1補助永久磁石の第5永久磁石と反対側の磁極は第1永久磁石の第1ヨーク側の磁極と同じ極性であり、第6永久磁石の第3永久磁石側の面に磁化方向が第6永久磁石の磁化方向と垂直となるように互いに逆極性の第3補助永久磁石および第4補助永久磁石が第6永久磁石の先端に向かって順に設けられ、第3補助永久磁石の第6永久磁石と反対側の磁極は第3永久磁石の第2ヨーク側の磁極と同じ極性である。また、被成膜体側でのスパッタ量の増加を図る観点から、好適には、第2永久磁石および第4永久磁石が第3ヨーク側に寄って配置される。 In this sputtering film formation source, from the viewpoint of reducing the leakage magnetic flux density at the position of the object to be film-formed, preferably, the surface of the fifth permanent magnet on the side of the first permanent magnet is magnetized in the direction of the fifth permanent magnet. A first auxiliary permanent magnet and a second auxiliary permanent magnet having polarities opposite to each other are provided in order toward the tip of the fifth permanent magnet so as to be perpendicular to the magnetization direction, and the first auxiliary permanent magnet is provided on the opposite side of the fifth permanent magnet. has the same polarity as the magnetic poles of the first permanent magnets on the first yoke side, and the magnetic poles of the sixth permanent magnets on the third permanent magnet side are arranged so that their magnetization directions are perpendicular to the magnetization directions of the sixth permanent magnets. A third auxiliary permanent magnet and a fourth auxiliary permanent magnet with opposite polarities are provided in order toward the tip of the sixth permanent magnet, and the magnetic pole of the third auxiliary permanent magnet opposite to the sixth permanent magnet is the third auxiliary permanent magnet of the third permanent magnet. 2 It has the same polarity as the magnetic pole on the yoke side. Moreover, from the viewpoint of increasing the amount of sputtering on the film-forming object side, preferably, the second permanent magnet and the fourth permanent magnet are arranged closer to the third yoke side.
 このスパッタリング成膜源においては、必要に応じて、第1ターゲットと第1永久磁石および第2永久磁石との間および第2ターゲットと第3永久磁石および第4永久磁石との間にそれぞれバッキングプレートが設けられる。これらのバッキングプレートを冷却することにより第1ターゲットおよび第2ターゲットを冷却することができる。必要に応じて、第1ターゲットの外周の近傍および第2ターゲットの外周の近傍にそれぞれターゲットシールドが設けられる。第3ヨークは、必要に応じて、スパッタリング成膜源の筐体を兼用することもある。 In this sputtering deposition source, backing plates are optionally provided between the first target and the first and second permanent magnets and between the second target and the third and fourth permanent magnets, respectively. is provided. By cooling these backing plates, the first target and the second target can be cooled. If necessary, target shields are provided near the outer periphery of the first target and near the outer periphery of the second target, respectively. The third yoke may also serve as a housing for the sputtering deposition source, if necessary.
 このスパッタリング成膜源は、従来技術と比較してプラズマ発生機構およびスパッタ成膜源の特性が大きく異なっており、従来技術の対向ターゲット式スパッタリング成膜源はターゲット間の空間を囲むターゲットに垂直な対向モードの磁界によって発生するプラズマが当該成膜源の主なスパッタ現象を引き起こしていたが、このスパッタリング成膜源はマグネトロンモードの磁界によって発生するプラズマが当該成膜源における殆ど全てのスパッタ現象を引き起こすことに特徴があり、なおかつターゲット間の空間における被成膜体に面した側のみにおいてターゲットに垂直な対向モードの磁界を有するという特徴も併せ持つことで被成膜体方向へ漏れ出るプラズマを殆ど無くすことができ、成膜レートの向上と同時に低ダメージ性を実現することができる。また、スパッタ現象を引き起こすマグネトロンモードのプラズマは高速成膜を実現すると同時に、そのプラズマの均一性から良好な膜厚分布も同時に実現できる。 This sputtering deposition source is significantly different from the conventional technology in the plasma generation mechanism and the characteristics of the sputtering deposition source. Plasma generated by the magnetic field in the facing mode causes the main sputtering phenomenon of the film formation source, but in this sputtering film formation source, the plasma generated by the magnetic field in the magnetron mode causes almost all the sputtering phenomena in the film formation source. It is also characterized by having an opposing mode magnetic field perpendicular to the target only on the side facing the object to be deposited in the space between the targets. It can be eliminated, and the film formation rate can be improved, and at the same time, low damage property can be realized. In addition, the magnetron mode plasma that causes the sputtering phenomenon can realize high-speed film formation, and at the same time, can realize a favorable film thickness distribution due to the uniformity of the plasma.
 このスパッタリング成膜源によれば、従来の対向ターゲット式スパッタリング成膜源と比較して大幅に成膜レートが向上し、かつ同時に極めて低温で成膜できる。この理由は下記の通りである。従来の対向ターゲット式スパッタリング成膜源は、図1に示す磁界分布から分かるように、対向させて設けた1対のターゲットの外周に沿って配置した永久磁石から成る磁力線、すなわち当該ターゲットに垂直な対向モードの磁力線による磁界が支配的であったため、当該磁界で発生するプラズマと当該ターゲットの界面に生じるイオンシースの厚さが大きく、そこに発生する電界強度が弱くなってしまい、十分なスパッタ成膜レートが得られなかった。同時に、当該プラズマは1対の当該ターゲットと当該磁力線で囲まれる領域の中央に集まる特性を有するため、当該ターゲットの中央付近のプラズマ密度が高くなる反面、当該ターゲットの両端部付近のプラズマ密度が低くなることで、当該ターゲット中央付近からスパッタされる成膜量が多く、かたや当該ターゲット両端部付近からスパッタされる成膜量が少ないため、膜厚分布の悪さが顕著に現れていた。さらにターゲット間の空間における被成膜体に面さないヨークで結合されてはいるものの、被成膜体に面している当該空間において対向モードの磁界が図1の点線で示されるように弱まってしまうため、プラズマ遮蔽能力が小さくなり当該ヨークの効果の発現としては十分でなく、低ダメージ性に問題があった。これに対し、このスパッタリング成膜源によれば、後述の図2Aに示す磁界分布から明らかなように、対向モードのプラズマは殆ど有しないため、マグネトロンモードのプラズマが支配的であり、そのプラズマ密度が均一なことから、膜厚分布の良好なスパッタリング成膜源を実現することができる。さらに、被成膜体に面している第1ターゲットおよび第2ターゲットの間の空間における対向モードの磁界発生手段として第5永久磁石および第6永久磁石が独立に存在しており、かつこれらの第5永久磁石および第6永久磁石を互いに結合する第3ヨークを当該空間における被成膜体に面さないように構成することにより、被成膜体に面している当該空間において対向モードの磁界が強くなり、プラズマ遮蔽能力が十分に大きいため、低ダメージ性にも優れている。 According to this sputtering film formation source, the film formation rate is greatly improved compared to the conventional facing target type sputtering film formation source, and at the same time, the film can be formed at an extremely low temperature. The reason for this is as follows. As can be seen from the magnetic field distribution shown in FIG. 1, the conventional facing target type sputtering deposition source has magnetic lines of force composed of permanent magnets arranged along the outer periphery of a pair of targets provided to face each other, that is, lines of force perpendicular to the targets. Since the magnetic field due to the magnetic field lines in the opposing mode was dominant, the thickness of the ion sheath generated at the interface between the plasma generated by the magnetic field and the target was large, and the electric field strength generated there was weakened, resulting in insufficient sputtering. No film rate was obtained. At the same time, since the plasma has the characteristic of gathering in the center of the region surrounded by the pair of targets and the magnetic lines of force, the plasma density near the center of the target is high, while the plasma density near both ends of the target is low. As a result, the amount of film formed by sputtering from the vicinity of the center of the target is large, and the amount of film formed by sputtering from the vicinity of both ends of the target is small. Furthermore, although the targets are coupled by a yoke that does not face the object to be deposited in the space between the targets, the opposing mode magnetic field in the space facing the object to be deposited weakens as indicated by the dotted line in FIG. As a result, the plasma shielding ability is reduced, and the effect of the yoke is not sufficient, resulting in a problem of low damage. On the other hand, according to this sputtering deposition source, as is clear from the magnetic field distribution shown in FIG. is uniform, it is possible to realize a sputtering deposition source with a good film thickness distribution. Furthermore, a fifth permanent magnet and a sixth permanent magnet are independently present as opposed mode magnetic field generating means in the space between the first target and the second target facing the object to be deposited, and these By configuring the third yoke, which couples the fifth permanent magnet and the sixth permanent magnet, so as not to face the object to be film-formed in the space, the opposite mode is generated in the space facing the object to be film-formed. Since the magnetic field is stronger and the plasma shielding ability is sufficiently large, it is also excellent in low damage.
 また、この発明は、
 互いに対向して配置されたターゲットおよびスパッタ粒子捕集シールドと、
 上記ターゲットの裏面に設けられた、上記ターゲットの外周部に対応する部分に磁化方向が上記ターゲットに対して垂直となるように設けられた第7永久磁石と上記ターゲットの中央部に対応する部分に上記第7永久磁石と逆極性となるように設けられた第8永久磁石と上記第7永久磁石および上記第8永久磁石を互いに結合する第4ヨークとにより形成された磁気回路と、
 上記ターゲットの一端側に上記第7永久磁石に平行に上記第7永久磁石と同一の極性となるように設けられた第9永久磁石と、
 上記スパッタ粒子捕集シールドの一端側に上記第7永久磁石に平行に、かつ上記第9永久磁石に対向して上記第9永久磁石と同一の極性となるように設けられた第10永久磁石と、
 上記第9永久磁石および上記第10永久磁石を上記磁気回路および上記スパッタ粒子捕集シールドの外部で互いに結合する第5ヨークと、
を有するスパッタリング成膜源である。
Also, this invention
a target and a sputter particle collection shield positioned opposite each other;
A seventh permanent magnet provided on the back surface of the target and corresponding to the outer peripheral portion of the target so that the magnetization direction is perpendicular to the target, and a portion corresponding to the central portion of the target. a magnetic circuit formed by an eighth permanent magnet provided to have a polarity opposite to that of the seventh permanent magnet and a fourth yoke coupling the seventh permanent magnet and the eighth permanent magnet to each other;
a ninth permanent magnet provided on one end side of the target in parallel with the seventh permanent magnet so as to have the same polarity as the seventh permanent magnet;
a tenth permanent magnet provided on one end side of the sputter particle collection shield parallel to the seventh permanent magnet and opposed to the ninth permanent magnet so as to have the same polarity as the ninth permanent magnet; ,
a fifth yoke coupling the ninth permanent magnet and the tenth permanent magnet to each other outside the magnetic circuit and the sputter particle collection shield;
is a sputtering deposition source having
 このスパッタリング成膜源においては、被成膜体の位置における漏洩磁束密度の低減を図る観点から、好適には、第9永久磁石の第7永久磁石側の面に磁化方向が第9永久磁石の磁化方向と垂直となるように互いに逆極性の第5補助永久磁石および第6補助永久磁石が第9永久磁石の先端に向かって順に設けられ、第5補助永久磁石の第9永久磁石と反対側の磁極は第7永久磁石の上記第4ヨーク側の磁極と同じ極性である。また、被成膜体側でのスパッタ量の増加を図る観点から、好適には、第8永久磁石が第5ヨーク側に寄って配置される。第5ヨークは磁気回路およびスパッタ粒子捕集シールドを取り囲むように設けられることもあるし、磁気回路およびスパッタ粒子捕集シールドを取り囲まないように設けられることもある。 In this sputtering film formation source, from the viewpoint of reducing the leakage magnetic flux density at the position of the object to be film-formed, the surface of the ninth permanent magnet on the seventh permanent magnet side is preferably magnetized in the direction of the ninth permanent magnet. A fifth auxiliary permanent magnet and a sixth auxiliary permanent magnet having polarities opposite to each other are provided in order toward the tip of the ninth permanent magnet so as to be perpendicular to the magnetization direction, and the fifth auxiliary permanent magnet is provided on the opposite side of the ninth permanent magnet. has the same polarity as the magnetic pole of the seventh permanent magnet on the fourth yoke side. Also, from the viewpoint of increasing the amount of sputtering on the film-forming object side, the eighth permanent magnet is preferably arranged closer to the fifth yoke side. The fifth yoke may be provided so as to surround the magnetic circuit and the sputtered particle collection shield, or may be provided so as not to surround the magnetic circuit and the sputtered particle collection shield.
 このスパッタリング成膜源においては、必要に応じて、スパッタ粒子捕集シールドの裏面にヒーターが設けられる。このヒーターによりスパッタ粒子捕集シールドを加熱することにより、ターゲットからスパッタ粒子捕集シールドに到達するスパッタ粒子の付着確率が低下し、それによってターゲットに再付着するスパッタ粒子を増加させることができ、ひいてはターゲットの利用率の向上を図ることができる。スパッタ粒子捕集シールドは、ターゲットに平行に設けられることもあるし、スパッタ粒子捕集シールドとターゲットとの間の距離が第9永久磁石および第10永久磁石に向かって直線的に増加するようにターゲットに対して傾斜して設けられることもあるし、スパッタ粒子捕集シールドとターゲットとの間の距離が第9永久磁石および第10永久磁石に向かって増加するようにターゲットに向かって凸の湾曲した曲線状の断面形状を有するように設けられることもある。必要に応じて、ターゲットと第7永久磁石および第8永久磁石との間にバッキングプレートが設けられる。また、必要に応じて、ターゲットの外周の近傍にターゲットシールドが設けられる。必要に応じて、第5ヨークがスパッタリング成膜源の筐体を兼用することもある。 In this sputtering deposition source, a heater is provided on the back surface of the sputter particle collection shield as needed. By heating the sputtered particle collection shield with this heater, the adhesion probability of the sputtered particles reaching the sputtered particle collection shield from the target is reduced, thereby increasing the number of sputtered particles re-adhering to the target. It is possible to improve the utilization rate of the target. The sputter particle trapping shield may be provided parallel to the target, such that the distance between the sputter particle trapping shield and the target increases linearly towards the ninth and tenth permanent magnets. It may be slanted with respect to the target, or curved convexly toward the target such that the distance between the sputter particle collection shield and the target increases toward the ninth and tenth permanent magnets. It may also be provided to have a curvilinear cross-sectional shape. If necessary, a backing plate is provided between the target and the seventh and eighth permanent magnets. In addition, a target shield is provided near the outer periphery of the target as needed. If necessary, the fifth yoke may also serve as the casing of the sputtering deposition source.
 このスパッタリング成膜源は、第1ターゲットおよび第2ターゲットを用いる上述のスパッタリング成膜源における一方のターゲットを除外し、当該除外されたターゲットの裏面に存在したマグネトロン磁場形成用の磁気回路も除外し、代わりに被成膜体に面した側のみに、除外してないターゲット裏面に設けた磁気回路の被成膜体に面した外周部永久磁石と同じ磁極の向きで永久磁石を配置したものに相当する。さらに、プラズマ発生機構とスパッタ成膜源の特性も従来技術と大きく異なっている。すなわち、従来技術の対向ターゲット式スパッタリング源では、ターゲット間の空間を囲むターゲットに垂直な対向モードの磁界によって発生するプラズマが当該成膜源の主なスパッタ現象を引き起こしていたが、このスパッタリング成膜源は、マグネトロンモードの磁界によって発生するプラズマが当該成膜源における全てのスパッタ現象を引き起こすことに特徴があり、なおかつターゲットとスパッタ粒子捕集シールドとの間における被成膜体に面した側のみにおいて、ターゲットに垂直な対向モードの磁界を有するという特徴も併せ持つことで、被成膜体方向へ漏れ出るプラズマを殆ど無くすことができ、低ダメージ性を重視したスパッタ成膜を実現することができる。また、スパッタ現象を引き起こすマグネトロンモードのプラズマは、そのプラズマの均一性から良好な膜厚分布も同時に実現できる。さらに、ターゲットが片側にのみ存在する特徴から、ロールツーロール法によるフィルム成膜装置に適用することで、その効果が大きく発揮される。すなわち、当該ターゲットを上側にして当該成膜源を配置した場合、当該ターゲットのスパッタ領域近傍に存在する非スパッタ領域すなわち非エロージョン部から発生する異物が下側のターゲット上に落下した際に発生するアーク現象が、構造的に全く起こらないため、被成膜体に形成される膜中への異物混入頻度が極めて小さくなり、良好な品質のスパッタ成膜が可能になる。 This sputtering deposition source excludes one of the targets in the sputtering deposition source using the first target and the second target, and also excludes the magnetic circuit for forming the magnetron magnetic field existing on the back surface of the excluded target. , Instead, only on the side facing the film-forming object, a permanent magnet is arranged with the same magnetic pole direction as the outer peripheral permanent magnet facing the film-forming object of the magnetic circuit provided on the back surface of the target that is not excluded. Equivalent to. Furthermore, the characteristics of the plasma generation mechanism and the sputter deposition source are also significantly different from those of the prior art. That is, in the conventional facing target type sputtering source, the plasma generated by the facing mode magnetic field perpendicular to the targets surrounding the space between the targets causes the main sputtering phenomenon of the deposition source. The source is characterized in that the plasma generated by the magnetron-mode magnetic field causes all sputtering phenomena in the deposition source, and only the side facing the substrate between the target and the sputter particle collection shield In , by also having the feature of having a facing mode magnetic field perpendicular to the target, it is possible to almost eliminate the plasma leaking in the direction of the object to be deposited, and it is possible to realize sputtering deposition with an emphasis on low damage. . In addition, the magnetron-mode plasma, which causes the sputtering phenomenon, can simultaneously achieve a favorable film thickness distribution due to the uniformity of the plasma. Furthermore, since the target exists only on one side, the effect is greatly exhibited by applying it to a film forming apparatus using a roll-to-roll method. That is, when the deposition source is arranged with the target facing upward, foreign matter generated from a non-sputtering region, that is, a non-erosion portion existing in the vicinity of the sputtering region of the target falls on the lower target. Since the arc phenomenon does not occur structurally, the frequency of inclusion of foreign matter in the film formed on the object to be deposited is extremely low, and good-quality sputtering film deposition is possible.
 このスパッタリング成膜源によれば、後述の図4に示す磁界分布から明らかなように、マグネトロンモードのプラズマが全てであり、対向モードのプラズマは存在しないため、マグネトロンモードのプラズマ密度が均一なことから、膜厚分布の良好なスパッタリング成膜源を実現することができる。さらに、被成膜体に面しているターゲットとスパッタ粒子捕集シールドとの間の空間における対向モードの磁界発生手段として第9永久磁石および第10永久磁石が独立に存在しており、かつこれらの第9永久磁石および第10永久磁石を互いに結合する第5ヨークを当該空間における被成膜体に面さないように構成することにより、被成膜体に面している当該空間において対向モードの磁界が強くなり、プラズマ遮蔽能力が十分に大きいため、優れた低ダメージ性も同時に得ることができる。 According to this sputtering film formation source, as is clear from the magnetic field distribution shown in FIG. 4, which will be described later, the magnetron mode plasma is the entire plasma and the facing mode plasma does not exist, so the magnetron mode plasma density is uniform. Therefore, a sputtering deposition source with good film thickness distribution can be realized. Furthermore, a ninth permanent magnet and a tenth permanent magnet independently exist as opposed mode magnetic field generating means in the space between the target facing the object to be deposited and the sputter particle collection shield, and By configuring the fifth yoke that couples the ninth permanent magnet and the tenth permanent magnet of each other so as not to face the object to be film-formed in the space, the opposite mode is generated in the space facing the object to be film-formed Since the magnetic field is strong and the plasma shielding ability is sufficiently large, excellent low damage property can also be obtained at the same time.
 また、この発明は、
 互いに平行に対向して配置された第1円筒形ターゲットおよび第2円筒形ターゲットと、
 上記第1円筒形ターゲットの内部に設けられた、一方の磁極が上記第1円筒形ターゲットの内周面に対向するように、かつ上記第1円筒形ターゲットの中心軸方向に延在して設けられた第11永久磁石と上記第11永久磁石の外周を取り囲むように上記第11永久磁石から離れてかつ上記第11永久磁石と逆極性に設けられた第12永久磁石と上記第11永久磁石および上記第12永久磁石を互いに結合する第6ヨークとにより形成された第3磁気回路と、
 上記第2円筒形ターゲットの内部に設けられた、一方の磁極が上記第2円筒形ターゲットの内周面に対向するように、かつ上記第2円筒形ターゲットの中心軸方向に延在して設けられ、かつ上記第11永久磁石と逆極性に設けられた第13永久磁石と上記第13永久磁石の外周を取り囲むように上記第13永久磁石から離れてかつ上記第13永久磁石と逆極性に設けられた第14永久磁石と上記第13永久磁石および上記第14永久磁石を互いに結合する第7ヨークとにより形成された第4磁気回路と、
 上記第1円筒形ターゲットに対向して上記第1円筒形ターゲットの中心軸と上記第2円筒形ターゲットの中心軸とを含む平面に平行に設けられた第15永久磁石と、
 上記第2円筒形ターゲットに対向して上記平面に平行に、かつ上記第15永久磁石に対向して設けられた上記第15永久磁石と同じ極性の第16永久磁石と、
 上記第15永久磁石および上記第16永久磁石を上記第3磁気回路および上記第4磁気回路の外部で互いに結合する第8ヨークと、
を有するスパッタリング成膜源である。
Also, this invention
a first cylindrical target and a second cylindrical target arranged parallel and facing each other;
One magnetic pole provided inside the first cylindrical target is provided so as to face the inner peripheral surface of the first cylindrical target and extend in the direction of the central axis of the first cylindrical target. an eleventh permanent magnet and a twelfth permanent magnet which are separated from the eleventh permanent magnet so as to surround the outer periphery of the eleventh permanent magnet and which are opposite in polarity to the eleventh permanent magnet, the eleventh permanent magnet, and a third magnetic circuit formed by a sixth yoke coupling the twelfth permanent magnets together;
One magnetic pole provided inside the second cylindrical target is provided so as to face the inner peripheral surface of the second cylindrical target and extend in the direction of the central axis of the second cylindrical target. a thirteenth permanent magnet provided with a polarity opposite to that of the eleventh permanent magnet; a fourth magnetic circuit formed by a fourteenth permanent magnet and a seventh yoke coupling the thirteenth permanent magnet and the fourteenth permanent magnet to each other;
a fifteenth permanent magnet facing the first cylindrical target and parallel to a plane containing the central axis of the first cylindrical target and the central axis of the second cylindrical target;
a 16th permanent magnet having the same polarity as the 15th permanent magnet provided parallel to the plane facing the second cylindrical target and facing the 15th permanent magnet;
an eighth yoke coupling the fifteenth permanent magnet and the sixteenth permanent magnet to each other outside the third magnetic circuit and the fourth magnetic circuit;
is a sputtering deposition source having
 このスパッタリング成膜源においては、被成膜体の位置における漏洩磁束密度の低減を図る観点から、好適には、第15永久磁石の第1円筒形ターゲット側の面に磁化方向が第15永久磁石の磁化方向と垂直となるように互いに逆極性の第7補助永久磁石および第8補助永久磁石が第15永久磁石の先端に向かって順に設けられ、第7補助永久磁石の第15永久磁石と反対側の磁極は第15永久磁石の第8ヨーク側の磁極と同じ極性であり、第16永久磁石の第2円筒形ターゲット側の面に磁化方向が第16永久磁石の磁化方向と垂直となるように互いに逆極性の第9補助永久磁石および第10補助永久磁石が第16永久磁石の先端に向かって順に設けられ、第9補助永久磁石の第16永久磁石と反対側の磁極は第16永久磁石の第8ヨーク側の磁極と同じ極性である。必要に応じて、第8ヨークがスパッタリング成膜源の筐体を兼用することもある。第8ヨークは第3磁気回路および第4磁気回路を取り囲むように設けられることもあるし、第3磁気回路および第4磁気回路を取り囲まないように設けられることもある。 In this sputtering film formation source, from the viewpoint of reducing the leakage magnetic flux density at the position of the object to be film-formed, preferably, the magnetization direction of the 15th permanent magnet is on the surface of the 15th permanent magnet on the side of the first cylindrical target. A seventh auxiliary permanent magnet and an eighth auxiliary permanent magnet having polarities opposite to each other are provided in order toward the tip of the fifteenth permanent magnet so as to be perpendicular to the magnetization direction of the seventh auxiliary permanent magnet and opposite to the fifteenth permanent magnet of the seventh auxiliary permanent magnet. The side magnetic pole has the same polarity as the magnetic pole on the eighth yoke side of the fifteenth permanent magnet, and the magnetization direction of the second cylindrical target side surface of the sixteenth permanent magnet is perpendicular to the magnetization direction of the sixteenth permanent magnet. A ninth auxiliary permanent magnet and a tenth auxiliary permanent magnet having opposite polarities to each other are provided in order toward the tip of the sixteenth permanent magnet, and the magnetic pole of the ninth auxiliary permanent magnet on the opposite side of the sixteenth permanent magnet is the sixteenth permanent magnet. has the same polarity as the magnetic pole on the side of the eighth yoke. If necessary, the eighth yoke may also serve as the casing of the sputtering deposition source. The eighth yoke may be provided so as to surround the third magnetic circuit and the fourth magnetic circuit, or may be provided so as not to surround the third magnetic circuit and the fourth magnetic circuit.
 また、この発明は、
 互いに対向して配置された円筒形ターゲットおよびスパッタ粒子捕集シールドと、
 上記円筒形ターゲットの内部に設けられた、一方の磁極が上記円筒形ターゲットの内周面に対向するように、かつ上記円筒形ターゲットの中心軸方向に延在して設けられた第17永久磁石と上記第17永久磁石の外周を取り囲むように上記第17永久磁石から離れてかつ上記第17永久磁石と逆極性に設けられた第18永久磁石と上記第17永久磁石および上記第18永久磁石を互いに結合する第9ヨークとにより形成された磁気回路と、
 上記円筒形ターゲットに対向して上記円筒形ターゲットの中心軸を含む平面に平行に設けられた第19永久磁石と、
 上記スパッタ粒子捕集シールドに対向して上記平面に平行に、かつ上記第19永久磁石に対向して設けられた上記第19永久磁石と同じ極性の第20永久磁石と、
 上記第19永久磁石および上記第20永久磁石を上記磁気回路および上記スパッタ粒子捕集シールドの外部で互いに結合する第10ヨークと、
を有するスパッタリング成膜源である。
Also, this invention
a cylindrical target and a sputter particle collection shield positioned opposite each other;
A seventeenth permanent magnet provided inside the cylindrical target so that one magnetic pole faces the inner peripheral surface of the cylindrical target and extends in the central axis direction of the cylindrical target. and an 18th permanent magnet provided away from the 17th permanent magnet so as to surround the outer periphery of the 17th permanent magnet and having a polarity opposite to that of the 17th permanent magnet, the 17th permanent magnet, and the 18th permanent magnet a magnetic circuit formed by a ninth yoke coupled to each other;
a nineteenth permanent magnet facing the cylindrical target and parallel to a plane including the central axis of the cylindrical target;
a twentieth permanent magnet having the same polarity as the nineteenth permanent magnet, provided facing the sputtered particle collection shield in parallel with the plane and facing the nineteenth permanent magnet;
a tenth yoke coupling the nineteenth permanent magnet and the twentieth permanent magnet to each other outside the magnetic circuit and the sputter particle collection shield;
is a sputtering deposition source having
 このスパッタリング成膜源においては、被成膜体の位置における漏洩磁束密度の低減を図る観点から、好適には、第19永久磁石の円筒形ターゲット側の面に互いに逆極性の第11補助永久磁石および第12補助永久磁石が第19永久磁石の先端に向かって順に設けられる。必要に応じて、スパッタ粒子捕集シールドの裏面にヒーターが設けられる。スパッタ粒子捕集シールドは、上記の円筒形ターゲットの中心軸を含む平面に垂直に設けられることもあるし、その平面に対して傾斜して設けられることもある。必要に応じて、第10ヨークがスパッタリング成膜源の筐体を兼用することもある。第10ヨークは磁気回路およびスパッタ粒子捕集シールドを取り囲むように設けられることもあるし、磁気回路およびスパッタ粒子捕集シールドを取り囲まないように設けられることもある。 In this sputtering film formation source, from the viewpoint of reducing the leakage magnetic flux density at the position of the object to be film-formed, the 11th auxiliary permanent magnets of opposite polarities are preferably arranged on the surface of the 19th permanent magnet on the cylindrical target side. and a 12th auxiliary permanent magnet are provided in order toward the tip of the 19th permanent magnet. A heater is provided on the back surface of the sputtered particle collection shield as required. The sputtered particle collection shield may be provided perpendicular to the plane containing the central axis of the cylindrical target, or may be provided at an angle to the plane. If necessary, the tenth yoke may also serve as the casing of the sputtering deposition source. The tenth yoke may be provided so as to surround the magnetic circuit and the sputtered particle collection shield, or may be provided so as not to surround the magnetic circuit and the sputtered particle collection shield.
 上記のいずれかのスパッタリング成膜源に電力を供給する電源としては、直流電源、直流パルス電源、高周波電源、高周波パルス電源等が用いられ、必要に応じてこれらの中から選択される。 A DC power supply, a DC pulse power supply, a high-frequency power supply, a high-frequency pulse power supply, etc. are used as the power supply for supplying power to any of the sputtering deposition sources described above, and are selected from among these as necessary.
 上記のいずれか一つまたは二つ以上のスパッタリング成膜源を用いて様々なタイプの成膜装置を構成することができる。成膜装置は、特に制限はないが、例えば、被成膜体、典型的には基板を一方向に搬送しながら、あるいは往復運動を繰り返しながら、あるいはこれらの両方を繰り返しながら成膜を行うタイプの成膜装置、被成膜体を静止させて成膜を行うタイプの成膜装置、被成膜体を一方向に回転させながら、あるいはこの一方向の回転と逆方向の回転とを繰り返しながら、あるいはこれらの両方を繰り返しながら成膜を行うタイプの成膜装置、ロール状の被成膜体フィルムを一方向に搬送しながら、あるいは往復運動を繰り返しながら、あるいはこれらの両方を繰り返しながら成膜を行うロールツーロールタイプの成膜装置等である。 Various types of film forming apparatuses can be configured using any one or two or more of the above sputtering film forming sources. The film forming apparatus is not particularly limited, but for example, it is a type that forms a film while transporting an object to be film-formed, typically a substrate, in one direction, while repeating reciprocating motion, or while repeating both of these. A film deposition apparatus of the type in which film formation is performed with the object to be deposited stationary, while rotating the object to be deposited in one direction, or while repeating rotation in one direction and rotation in the opposite direction , or a type of film-forming apparatus that forms a film while repeating both of these, while conveying a roll-shaped film to be film-formed in one direction, or while repeating a reciprocating motion, or while repeating both of these and a roll-to-roll type film forming apparatus.
 この発明によれば、被成膜体に与えるダメージの低減を図ることができ、あるいは被成膜体に与えるダメージの低減および成膜レートの向上を図ることができ、あるいはさらに良好な膜厚分布をも同時に実現することができるスパッタリング成膜源を得ることができ、この優れたスパッタリング成膜源を用いて高性能の成膜装置を実現することができる。 According to the present invention, it is possible to reduce the damage to the film-forming object, or to reduce the damage to the film-forming object and to improve the film-forming rate, or to improve the film thickness distribution. can also be obtained at the same time, and by using this excellent sputtering film formation source, a high-performance film formation apparatus can be realized.
従来の対向ターゲット式スパッタリング成膜源の課題を説明するための正面図である。It is a front view for explaining the problem of the conventional facing target type sputtering deposition source. この発明の第1の実施の形態によるスパッタリング成膜源を示す正面図である。1 is a front view showing a sputtering deposition source according to a first embodiment of the invention; FIG. この発明の第1の実施の形態によるスパッタリング成膜源のターゲットの裏面に設けられている磁気回路を示す正面図である。FIG. 4 is a front view showing a magnetic circuit provided on the back surface of the target of the sputtering film formation source according to the first embodiment of the present invention; この発明の第2の実施の形態によるスパッタリング成膜源を示す正面図である。FIG. 6 is a front view showing a sputtering deposition source according to a second embodiment of the invention; この発明の第3の実施の形態によるスパッタリング成膜源を示す正面図である。It is a front view which shows the sputtering film-forming source by the 3rd Embodiment of this invention. この発明の第4の実施の形態によるスパッタリング成膜源を示す正面図である。It is a front view which shows the sputtering film-forming source by the 4th Embodiment of this invention. この発明の第5の実施の形態によるスパッタリング成膜源を示す正面図である。FIG. 11 is a front view showing a sputtering film formation source according to a fifth embodiment of the present invention; この発明の第6の実施の形態によるスパッタリング成膜源を示す正面図である。It is a front view which shows the sputtering film-forming source by the 6th Embodiment of this invention. この発明の第7の実施の形態によるスパッタリング成膜源を示す正面図である。FIG. 11 is a front view showing a sputtering film formation source according to a seventh embodiment of the invention; この発明の第8の実施の形態によるスパッタリング成膜源を示す正面図である。FIG. 11 is a front view showing a sputtering film formation source according to an eighth embodiment of the present invention; この発明の第9の実施の形態によるスパッタリング成膜源を示す正面図である。FIG. 12 is a front view showing a sputtering film formation source according to a ninth embodiment of the present invention; この発明の第10の実施の形態によるスパッタリング成膜源を示す正面図である。It is a front view which shows the sputtering film-forming source by the 10th Embodiment of this invention. この発明の第11の実施の形態によるスパッタリング成膜源を示す正面図である。It is a front view which shows the sputtering film-forming source by the 11th Embodiment of this invention. この発明の第12の実施の形態によるスパッタリング成膜源を示す正面図である。FIG. 20 is a front view showing a sputtering film formation source according to a twelfth embodiment of the invention; この発明の第13の実施の形態によるスパッタリング成膜源を示す正面図である。FIG. 22 is a front view showing a sputtering film formation source according to a thirteenth embodiment of the present invention; この発明の第14の実施の形態による成膜装置を示す正面図である。It is a front view which shows the film-forming apparatus by the 14th Embodiment of this invention. この発明の第15の実施の形態による成膜装置を示す正面図である。FIG. 21 is a front view showing a film forming apparatus according to a fifteenth embodiment of the present invention; この発明の第16の実施の形態による成膜装置を示す正面図である。It is a front view which shows the film-forming apparatus by the 16th Embodiment of this invention. この発明の第17の実施の形態によるスパッタリング成膜源を示す正面図である。FIG. 20 is a front view showing a sputtering film formation source according to a seventeenth embodiment of the present invention; この発明の第18の実施の形態によるスパッタリング成膜源を示す正面図である。FIG. 20 is a front view showing a sputtering film formation source according to an eighteenth embodiment of the present invention; この発明の第19の実施の形態によるスパッタリング成膜源を示す正面図である。FIG. 20 is a front view showing a sputtering deposition source according to a nineteenth embodiment of the present invention; この発明の第20の実施の形態によるスパッタリング成膜源を示す正面図である。FIG. 20 is a front view showing a sputtering deposition source according to a twentieth embodiment of the present invention;
 以下、発明を実施するための形態(以下、「実施の形態」という)について図面を参照しながら説明する。 Hereinafter, the modes for carrying out the invention (hereinafter referred to as "embodiments") will be described with reference to the drawings.
〈第1の実施の形態〉
[スパッタリング成膜源]
 図2Aは第1の実施の形態によるスパッタリング成膜源を示す。図2Aに示すように、このスパッタリング成膜源においては、空間20を隔てて互いに対向する一対のターゲット21a、21bが互いに平行に設けられている。ターゲット21a、21bは図2Aに垂直な方向に延びた長方形の形状を有する。ターゲット21aの裏面の外周部には磁化方向がこの裏面に垂直となるように永久磁石22aが設けられ、中央部にはターゲット21aの長辺に平行に永久磁石22aと逆極性の永久磁石23aが設けられている。これらの永久磁石22a、23aのターゲット21aと反対側にはターゲット21aと同一の形状のヨーク24aが設けられている。そして、これらのターゲット21a、永久磁石22a、23aおよびヨーク24aにより磁気回路が形成されている。この磁気回路には磁力線26a、26a’、25a’が形成される。図2Bに永久磁石22a、23aおよびヨーク24aの正面図の一例を示す。図2Aにおいては、永久磁石22aのターゲット21a側の磁極がN極、ターゲット21aと反対側の磁極がS極である場合が示されているが、永久磁石22a、23aの極性は逆であってもよい。同様に、ターゲット21bの裏面の外周部には磁化方向がこの裏面に垂直となるように永久磁石22bが設けられ、中央部にはターゲット21bの長辺に平行に永久磁石22bと逆極性の永久磁石23bが設けられている。これらの永久磁石22b、23bのターゲット21aと反対側にはターゲット21bと同一の形状のヨーク24bが設けられている。そして、これらのターゲット21b、永久磁石22b、23bおよびヨーク24bにより磁気回路が形成されている。この磁気回路には磁力線26b、26b’、25b’が形成される。ターゲット21a、永久磁石22a、23aおよびヨーク24aとターゲット21b、永久磁石22b、23bおよびヨーク24bとは、空間20のターゲット21a、21bに平行な二等分面に関して互いに対称に配置されている。
<First embodiment>
[Sputtering deposition source]
FIG. 2A shows a sputtering deposition source according to the first embodiment. As shown in FIG. 2A, in this sputtering deposition source, a pair of targets 21a and 21b facing each other across a space 20 are provided parallel to each other. The targets 21a, 21b have a rectangular shape extending in a direction perpendicular to FIG. 2A. A permanent magnet 22a is provided on the outer peripheral portion of the back surface of the target 21a so that the magnetization direction is perpendicular to the back surface of the target 21a, and a permanent magnet 23a having a polarity opposite to that of the permanent magnet 22a is provided in the central portion in parallel with the long side of the target 21a. is provided. A yoke 24a having the same shape as the target 21a is provided on the opposite side of the permanent magnets 22a and 23a from the target 21a. A magnetic circuit is formed by the target 21a, the permanent magnets 22a and 23a, and the yoke 24a. Magnetic lines of force 26a, 26a', 25a' are formed in this magnetic circuit. FIG. 2B shows an example of a front view of the permanent magnets 22a, 23a and the yoke 24a. FIG. 2A shows the case where the magnetic pole of the permanent magnet 22a on the target 21a side is the N pole, and the magnetic pole on the opposite side of the target 21a is the S pole, but the polarities of the permanent magnets 22a and 23a are opposite. good too. Similarly, a permanent magnet 22b is provided on the outer peripheral portion of the back surface of the target 21b so that the magnetization direction is perpendicular to the back surface of the target 21b, and a permanent magnet 22b having a polarity opposite to that of the permanent magnet 22b is provided in the central portion in parallel with the long side of the target 21b. A magnet 23b is provided. A yoke 24b having the same shape as the target 21b is provided on the opposite side of the permanent magnets 22b and 23b from the target 21a. A magnetic circuit is formed by the target 21b, the permanent magnets 22b and 23b, and the yoke 24b. Magnetic force lines 26b, 26b' and 25b' are formed in this magnetic circuit. Target 21a, permanent magnets 22a, 23a and yoke 24a and target 21b, permanent magnets 22b, 23b and yoke 24b are arranged symmetrically with respect to a bisecting plane of space 20 parallel to targets 21a, 21b.
 ヨーク24aの空間20と反対側に、このヨーク24aと十分に距離をとって独立な状態になっているヨーク29aがこのヨーク24aに平行に設けられている。このヨーク29aはヨーク24aよりも大きい長方形状の形状を有し、ヨーク24aを完全に覆っている。同様に、ヨーク24bの空間20と反対側に、このヨーク24bと十分に距離をとって独立な状態になっているヨーク29bがこのヨーク24bと平行に設けられている。このヨーク29bはヨーク24bよりも大きい長方形状の形状を有し、ヨーク24bを完全に覆っている。ヨーク29aの空間20側の面の一端部には磁化方向がこの面に垂直な永久磁石28aが永久磁石22aと所定の距離隔てて対向して設けられている。永久磁石28aの先端はターゲット21aの表面とほぼ同一面に位置している。永久磁石28aの磁極はヨーク29a側がS極となっている。同様に、ヨーク29bの空間20側の面の一端部には磁化方向がこの面に垂直な永久磁石28bが永久磁石22bと所定の距離隔てて対向して設けられている。永久磁石28bの先端はターゲット21bの表面とほぼ同一面に位置している。永久磁石28bの磁極はヨーク29b側がN極となっている。ヨーク29aの永久磁石28aが設けられている一端部とは反対側の端部とヨーク29bの永久磁石28bが設けられている一端部とは反対側の端部との間にはヨーク29cがヨーク29aとヨーク29bとを結合するように設けられている。ヨーク29cは、永久磁石22aの磁力線25a’および永久磁石22bの磁力線25b’がヨーク29cの中に入り込まないようこれらの永久磁石22a、22bから十分に離れた位置に設けられている。そして、ヨーク29a、29b、29cおよび永久磁石28a、28bにより磁気回路が形成されている。この磁気回路には、磁力線25a、27、25bが形成される。ヨーク29a、29b、29cおよび永久磁石28a、28bは空間20のターゲット21a、21bに平行な二等分面に関して互いに対称に配置されている。 On the opposite side of the yoke 24a from the space 20, a yoke 29a is provided in parallel with the yoke 24a, sufficiently spaced from the yoke 24a and in an independent state. The yoke 29a has a rectangular shape larger than the yoke 24a and completely covers the yoke 24a. Similarly, on the opposite side of the yoke 24b from the space 20, a yoke 29b is provided in parallel with the yoke 24b, sufficiently separated from the yoke 24b. The yoke 29b has a rectangular shape larger than the yoke 24b and completely covers the yoke 24b. At one end of the space 20 side surface of the yoke 29a, a permanent magnet 28a having a magnetization direction perpendicular to this surface is provided facing the permanent magnet 22a at a predetermined distance. The tip of the permanent magnet 28a is positioned substantially flush with the surface of the target 21a. The magnetic pole of the permanent magnet 28a is the south pole on the yoke 29a side. Similarly, at one end of the space 20 side surface of the yoke 29b, a permanent magnet 28b whose magnetization direction is perpendicular to this surface is provided facing the permanent magnet 22b at a predetermined distance. The tip of the permanent magnet 28b is positioned substantially flush with the surface of the target 21b. The magnetic pole of the permanent magnet 28b is the north pole on the yoke 29b side. A yoke 29c is formed between the end of the yoke 29a opposite to the one end provided with the permanent magnet 28a and the end of the yoke 29b opposite to the one end provided with the permanent magnet 28b. 29a and the yoke 29b are provided to be connected. The yoke 29c is provided at a position sufficiently distant from the permanent magnets 22a and 22b so that the magnetic lines of force 25a' of the permanent magnet 22a and the magnetic lines of force 25b' of the permanent magnet 22b do not enter the yoke 29c. A magnetic circuit is formed by the yokes 29a, 29b, 29c and the permanent magnets 28a, 28b. Magnetic force lines 25a, 27 and 25b are formed in this magnetic circuit. The yokes 29a, 29b, 29c and the permanent magnets 28a, 28b are arranged symmetrically with respect to a bisecting plane of the space 20 parallel to the targets 21a, 21b.
 図2Aに示すように、このスパッタリング成膜源においては、成膜が行われる被成膜体1は空間20に面する位置に配置される。 As shown in FIG. 2A, in this sputtering deposition source, the deposition target 1 on which deposition is performed is placed at a position facing the space 20 .
 このように、第1の実施の形態によれば、ターゲット21aの裏面に設けてある磁気回路のヨーク24aおよびターゲット21bの裏面に設けてある磁気回路のヨーク24bと十分に距離をとって独立な状態にしたヨーク29a、ヨーク29bを設け、ターゲット21a、21bの被成膜体1側の一端側に永久磁石28aおよび永久磁石28bを各々配置し、さらにヨーク29a、29bの空間20を介して反対側にヨーク29cを設けているので、空間20の被成膜体1側に発生するプラズマを遮蔽する磁力線27が、ターゲット21a、21b上に発生する図示しないマグネトロンプラズマを有効に遮蔽することができる。このため、被成膜体1の方向にプラズマが漏れ出すことがなくなり、低ダメージでの成膜を効果的に実現することができる。すなわち、プラズマを遮蔽する磁力線27を発生させる磁気回路と、ターゲット21a、21bの表面とヨーク24a、24bに発生して成膜に関与する磁力線、言い換えると、ターゲット21a、21b上にマグネトロンプラズマを起生する磁力線を発生させる磁気回路とが互いに独立して存在することから、プラズマを遮蔽する磁力線27の磁束密度を十分に高く確保できるため、高いプラズマ遮蔽効果を得ることができ、被成膜体1へのダメージをより低減することができる。また、このスパッタリング成膜源においては、成膜に係るプラズマはマグネトロンモード磁界によるプラズマのみで、被成膜体1へ到達するプラズマを遮蔽する磁界は、そのマグネトロンモード磁界と独立して発生し、かつ被成膜体1側開口部付近のみに発生する対向モード磁界であるため、効果的かつ確実に被成膜体1へ到達するプラズマを遮蔽することができる。このスパッタリング成膜源は、従来技術では成膜が困難な被成膜体、すなわち有機フィルム基材、有機発光層、有機発電層、有機電子注入層、有機正孔注入層等の、低いプラズマ耐性や低い耐熱性や低い高エネルギー粒子耐性を特徴として持つ材料から成る被成膜体にも成膜を行うことができる。また、パルス出力が可能なスパッタリング用電源を使用することにより、アークが発生しやすいターゲット材料でもスパッタリング成膜が、被成膜体へのダメージを殆ど無くした状態かつ高い成膜速度で実現できることから、新たな材料の薄膜形成技術を提供することができ、新素材の薄膜形成が可能となる。このスパッタリング成膜源は、例えば、半導体デバイス、太陽電池、液晶ディスプレイ、有機EL等の各種のデバイス等において電極材料等の成膜に適用して好適なものである。 As described above, according to the first embodiment, the yoke 24a of the magnetic circuit provided on the back surface of the target 21a and the yoke 24b of the magnetic circuit provided on the back surface of the target 21b are sufficiently separated and independent. A permanent magnet 28a and a permanent magnet 28b are arranged on one end side of the targets 21a and 21b on the film-forming object 1 side, respectively, and furthermore, a space 20 between the yokes 29a and 29b is provided in opposite directions. Since the yoke 29c is provided on the side, the magnetic lines of force 27 that shield the plasma generated on the film-forming object 1 side of the space 20 can effectively shield the magnetron plasma (not shown) generated on the targets 21a and 21b. . As a result, the plasma does not leak toward the film-forming object 1, and film formation can be effectively realized with low damage. That is, the magnetic circuit for generating the magnetic lines of force 27 that shield the plasma, the magnetic lines of force generated on the surfaces of the targets 21a and 21b and the yokes 24a and 24b and participating in the film formation, in other words, the magnetron plasma is generated on the targets 21a and 21b. Since the magnetic circuit that generates the generated magnetic lines of force exists independently of each other, the magnetic flux density of the magnetic lines of force 27 that shields the plasma can be secured sufficiently high, so that a high plasma shielding effect can be obtained. 1 can be further reduced. Further, in this sputtering deposition source, the plasma related to deposition is only the plasma generated by the magnetron mode magnetic field, and the magnetic field shielding the plasma reaching the deposition target 1 is generated independently of the magnetron mode magnetic field. Moreover, since the opposing mode magnetic field is generated only in the vicinity of the opening on the film-forming object 1 side, the plasma reaching the film-forming object 1 can be shielded effectively and reliably. This sputtering deposition source can be applied to substrates that are difficult to deposit using conventional techniques, such as organic film substrates, organic light-emitting layers, organic power-generating layers, organic electron injection layers, organic hole injection layers, etc., with low plasma resistance. A film can also be formed on a substrate made of a material characterized by low heat resistance and low high-energy particle resistance. In addition, by using a sputtering power supply capable of pulse output, sputtering film formation can be achieved at a high film formation rate with almost no damage to the film target, even with target materials that are prone to arcing. , it is possible to provide thin film formation technology for new materials and to form thin films of new materials. This sputtering film formation source is suitable for film formation of electrode materials and the like in semiconductor devices, solar cells, liquid crystal displays, organic EL devices, and the like.
〈第2の実施の形態〉
[スパッタリング成膜源]
 図3は第2の実施の形態によるスパッタリング成膜源を示す。図3に示すように、このスパッタリング成膜源においては、永久磁石28aの永久磁石22a側の面に磁化方向が永久磁石28aの磁化方向と垂直となるように互いに逆極性の補助永久磁石M、Mが永久磁石28aの先端に向かって順に設けられている。補助永久磁石Mの永久磁石28aと反対側の磁極は永久磁石22aのヨーク24a側の磁極と同じS極であり、補助永久磁石Mの永久磁石28aと反対側の磁極は永久磁石22aのターゲット21a側の磁極と同じN極である。同様に、永久磁石28bの永久磁石22b側の面に磁化方向が永久磁石28bの磁化方向と垂直となるように互いに逆極性の補助永久磁石M、Mが永久磁石28aの先端に向かって順に設けられている。補助永久磁石Mの永久磁石28bと反対側の磁極は永久磁石22bのヨーク24b側の磁極と同じN極であり、補助永久磁石Mの永久磁石28bと反対側の磁極は永久磁石22bのターゲット21b側の磁極と同じS極である。その他のことは、第1の実施の形態と同様である。
<Second embodiment>
[Sputtering deposition source]
FIG. 3 shows a sputtering deposition source according to a second embodiment. As shown in FIG. 3, in this sputtering deposition source, auxiliary permanent magnets M 1 having opposite polarities are arranged on the surface of the permanent magnet 28a on the side of the permanent magnet 22a so that the magnetization direction of the permanent magnet 28a is perpendicular to the magnetization direction of the permanent magnet 28a. , M 2 are provided in order toward the tip of the permanent magnet 28a. The magnetic pole of the auxiliary permanent magnet M1 on the side opposite to the permanent magnet 28a is the same S pole as the magnetic pole of the permanent magnet 22a on the yoke 24a side. It has the same N pole as the magnetic pole on the target 21a side. Similarly, on the permanent magnet 22b side of the permanent magnet 28b, auxiliary permanent magnets M 3 and M 4 with opposite polarities are arranged toward the tip of the permanent magnet 28a so that the magnetization direction is perpendicular to the magnetization direction of the permanent magnet 28b. are set in order. The magnetic pole of the auxiliary permanent magnet M3 on the side opposite to the permanent magnet 28b is the same N pole as the magnetic pole of the permanent magnet 22b on the yoke 24b side, and the magnetic pole of the auxiliary permanent magnet M4 on the side opposite to the permanent magnet 28b is the magnetic pole of the permanent magnet 22b. It is the same S pole as the magnetic pole on the target 21b side. Others are the same as those of the first embodiment.
 第2の実施の形態によれば、第1の実施の形態と同様な利点を得ることができることに加えて、次のような利点を得ることができる。すなわち、補助永久磁石M、M、M、Mが設けられていることにより、被成膜体1への漏洩磁束密度を減少させることができ、それによって被成膜体1へのプラズマダメージの低減を図ることができる。 According to the second embodiment, in addition to the advantages similar to those of the first embodiment, the following advantages can be obtained. That is, by providing the auxiliary permanent magnets M 1 , M 2 , M 3 , and M 4 , the leakage magnetic flux density to the film-forming object 1 can be reduced. It is possible to reduce plasma damage.
〈第3の実施の形態〉
[スパッタリング成膜源]
 図4は第3の実施の形態によるスパッタリング成膜源を示す。図4に示すように、このスパッタリング成膜源においては、第1の実施の形態によるスパッタリング成膜源におけるターゲット21b、永久磁石22b、23bおよびヨーク24bが設けられておらず、代わりにターゲット21bがあった位置にスパッタ粒子捕集シールド310が設けられている。ただし、図4においては、第1の実施の形態によるスパッタリング成膜源における空間20、ターゲット21a、永久磁石22a、23a、28a、28b、ヨーク24a、29a、29b、29c、磁力線26a、26a’、25a’、27はそれぞれ空間30、ターゲット31、永久磁石32、33、38a、38b、ヨーク34、39a、39b、39c、磁力線36、36a’、35a’、37と表されている。その他のことは、その性質に反しない限り、第1の実施の形態と同様である。
<Third embodiment>
[Sputtering deposition source]
FIG. 4 shows a sputtering deposition source according to a third embodiment. As shown in FIG. 4, in this sputtering deposition source, the target 21b, permanent magnets 22b and 23b, and yoke 24b in the sputtering deposition source according to the first embodiment are not provided, and instead the target 21b is provided. A sputtered particle collection shield 310 is provided at the position where it was. However, in FIG. 4, the space 20, the target 21a, the permanent magnets 22a, 23a, 28a, 28b, the yokes 24a, 29a, 29b, 29c, the magnetic force lines 26a, 26a', 25a' and 27 are represented as space 30, target 31, permanent magnets 32, 33, 38a and 38b, yokes 34, 39a, 39b and 39c, magnetic lines of force 36, 36a', 35a' and 37, respectively. Others are the same as those of the first embodiment as long as they do not contradict their nature.
 第3の実施の形態によれば、第1の実施の形態と同様な利点に加えて、次のような利点を得ることができる。すなわち、第1の実施の形態によるスパッタリング成膜源においては、例えば図2Aの上下方向が重力方向となるように設置する場合、言い換えるとターゲット21a、21bが水平となるように設置する場合には、上側のターゲット21a上でスパッタされない部位に発生する非エロージョン部から付着物が剥がれて、下側のターゲット21bの上へ落下した際にアーク放電が起き、それと同時に異物が飛散して被成膜体1を汚染してしまう。これに対し、この第3の実施の形態によるスパッタリング成膜源においては、下側のターゲット21bがあった位置にスパッタ粒子捕集シールド310が設けられていることにより、ターゲット31上でスパッタされない部位に発生する非エロージョン部から付着物が剥がれてもスパッタ粒子捕集シールド310で捕集されるため、上述のアーク放電を防止することができ、それによって異物の飛散による被成膜体1の汚染を防止することができる。 According to the third embodiment, in addition to the advantages similar to those of the first embodiment, the following advantages can be obtained. That is, in the sputtering deposition source according to the first embodiment, for example, when the vertical direction in FIG. , deposits peel off from the non-erosion portion generated on the upper target 21a in the non-sputtered portion, and when they fall onto the lower target 21b, arc discharge occurs, and at the same time, the foreign matter scatters to form a film. It pollutes the body 1. On the other hand, in the sputtering deposition source according to the third embodiment, the sputtered particle collection shield 310 is provided at the position where the lower target 21b was, so that the portion of the target 31 which is not sputtered Even if the deposits are peeled off from the non-erosion portion generated in the sputter particle collection shield 310, the above-mentioned arc discharge can be prevented, thereby contamination of the film-forming object 1 due to the scattering of the foreign matter. can be prevented.
〈第4の実施の形態〉
[スパッタリング成膜源]
 図5は第4の実施の形態によるスパッタリング成膜源を示す。図5に示すように、このスパッタリング成膜源においては、第3の実施の形態によるスパッタリング成膜源において、第2の実施の形態と同様に、永久磁石38aの永久磁石32側の面に補助永久磁石M、Mが設けられている。その他のことは、その性質に反しない限り、第3の実施の形態と同様である。
<Fourth Embodiment>
[Sputtering deposition source]
FIG. 5 shows a sputtering deposition source according to a fourth embodiment. As shown in FIG. 5, in this sputtering film formation source, in the sputtering film formation source according to the third embodiment, as in the second embodiment, the surface of the permanent magnet 38a on the side of the permanent magnet 32 is assisted. Permanent magnets M 1 , M 2 are provided. Others are the same as those of the third embodiment as long as they do not contradict its nature.
 この第4の実施の形態によれば、第3の実施の形態と同様な利点に加えて、第2の実施の形態と同様な利点を得ることができる。 According to the fourth embodiment, in addition to advantages similar to those of the third embodiment, advantages similar to those of the second embodiment can be obtained.
〈第5の実施の形態〉
[スパッタリング成膜源]
 図6は第5の実施の形態によるスパッタリング成膜源を示す。図6に示すように、このスパッタリング成膜源においては、第3の実施の形態によるスパッタリング成膜源におけるスパッタ粒子捕集シールド310の裏側にヒーター41が設けられており、このヒーター41によりスパッタ粒子捕集シールド310を加熱することができるようになっている。この加熱温度は、ヒーター用電源42からヒーター41に供給される電流を制御することにより調整することができ、適温に保つことができる。
<Fifth embodiment>
[Sputtering deposition source]
FIG. 6 shows a sputtering deposition source according to a fifth embodiment. As shown in FIG. 6, in this sputtering film formation source, a heater 41 is provided behind the sputter particle collection shield 310 in the sputtering film formation source according to the third embodiment. The collection shield 310 can be heated. This heating temperature can be adjusted by controlling the current supplied from the heater power source 42 to the heater 41, and can be maintained at an appropriate temperature.
 この第5の実施の形態によれば、第3の実施の形態と同様な利点に加えて、次のような利点を得ることができる。すなわち、ヒーター41によりスパッタ粒子捕集シールド310を加熱することができることにより、ターゲット31からスパッタ粒子捕集シールド310に到達したスパッタ粒子の付着確率が低下し、言い換えると離脱確率が向上し、その値に比例するスパッタ粒子がターゲット31に再付着することで、ターゲット31の利用効率の向上を図ることができる。 According to the fifth embodiment, in addition to the advantages similar to those of the third embodiment, the following advantages can be obtained. That is, since the sputtered particle collection shield 310 can be heated by the heater 41, the adhesion probability of the sputtered particles reaching the sputtered particle collection shield 310 from the target 31 is reduced, in other words, the detachment probability is improved. By reattaching the sputtered particles proportional to , to the target 31, the utilization efficiency of the target 31 can be improved.
〈第6の実施の形態〉
[スパッタリング成膜源]
 図7は第6の実施の形態によるスパッタリング成膜源を示す。図7に示すように、このスパッタリング成膜源においては、第3の実施の形態によるスパッタリング成膜源においては、ターゲット31の裏面に設けられた磁気回路を構成する中央部の永久磁石33がターゲット31の中心線上に位置していたのに対し、永久磁石33がプラズマを遮蔽する磁力線37と反対側にターゲット31の中心線から所定の距離だけシフトしていることが異なる。その他のことは、第3の実施の形態と同様である。
<Sixth Embodiment>
[Sputtering deposition source]
FIG. 7 shows a sputtering deposition source according to a sixth embodiment. As shown in FIG. 7, in this sputtering film formation source, in the sputtering film formation source according to the third embodiment, the central permanent magnet 33 constituting the magnetic circuit provided on the back surface of the target 31 is the target. 31, the difference is that the permanent magnet 33 is shifted by a predetermined distance from the center line of the target 31 to the opposite side of the magnetic field lines 37 shielding the plasma. Others are the same as those of the third embodiment.
 この第6の実施の形態によれば、第3の実施の形態と同様な利点に加えて、次のような利点を得ることができる。すなわち、ターゲット31の裏面に設けられた磁気回路を構成する永久磁石33がプラズマを遮蔽する磁力線37と反対側に中心線から所定の距離だけシフトしていることにより、空間30の被成膜体1側でのスパッタ量が増え、これによって低ダメージ性を維持したまま成膜レートを向上させることができる。 According to the sixth embodiment, the following advantages can be obtained in addition to the advantages similar to those of the third embodiment. That is, the permanent magnet 33 forming a magnetic circuit provided on the back surface of the target 31 is shifted by a predetermined distance from the center line to the opposite side of the magnetic line of force 37 shielding the plasma. The amount of sputtering on the 1 side is increased, so that the film formation rate can be improved while maintaining the low damage property.
〈第7の実施の形態〉
[スパッタリング成膜源]
 図8は第7の実施の形態によるスパッタリング成膜源を示す。図8に示すように、このスパッタリング成膜源においては、第1の実施の形態によるスパッタリング成膜源においては、ターゲット21aの裏面に設けられた磁気回路を構成する中央部の永久磁石23aがターゲット21aの中心線上に位置し、同様にターゲット21bの裏面に設けられた磁気回路を構成する中央部の永久磁石23bがターゲット21bの中心線上に位置していたのに対し、永久磁石23a、23bがプラズマを遮蔽する磁力線27と反対側にターゲット21a、21bの中心線から所定の距離だけシフトしていることが異なる。その他のことは、第1の実施の形態と同様である。
<Seventh Embodiment>
[Sputtering deposition source]
FIG. 8 shows a sputtering deposition source according to a seventh embodiment. As shown in FIG. 8, in this sputtering film formation source, in the sputtering film formation source according to the first embodiment, the central permanent magnet 23a constituting the magnetic circuit provided on the back surface of the target 21a is the target. The central permanent magnet 23b, which is positioned on the center line of the target 21a and similarly forms a magnetic circuit provided on the back surface of the target 21b, is positioned on the center line of the target 21b. The difference is that they are shifted by a predetermined distance from the centerlines of the targets 21a and 21b to the opposite side of the magnetic field lines 27 that shield the plasma. Others are the same as those of the first embodiment.
 この第7の実施の形態によれば、第1の実施の形態と同様な利点に加えて、第6の実施の形態と同様な利点を得ることができる。 According to the seventh embodiment, advantages similar to those of the sixth embodiment can be obtained in addition to advantages similar to those of the first embodiment.
〈第8の実施の形態〉
[スパッタリング成膜源]
 図9は第8の実施の形態によるスパッタリング成膜源を示す。図9に示すように、このスパッタリング成膜源においては、ターゲット21aがバッキングプレート71aに良熱伝導体のインジウム(図示せず)で固定されており、さらにこのバッキングプレート71aは水冷される構造になっており、筐体を兼ねるヨーク29cに対し、絶縁体から成る接続部品72aを介して電気絶縁性が確保されたボルト(図示せず)で固定されている。ターゲット21bに関しても同様であり、ターゲット21bがバッキングプレート71bに良熱伝導体のインジウム(図示せず)で固定されており、さらにこのバッキングプレート71bは水冷される構造になっており、筐体を兼ねるヨーク29cに対し、絶縁体から成る接続部品72bを介して電気絶縁性が確保されたボルト(図示せず)で固定されている。バッキングプレート71aおよび71bの材質は、好適には、熱伝導性と電気伝導性および耐腐食性のいずれにも優れている無酸素銅が使用されるが、クロム銅やリン青銅、ニッケル青銅あるいはベリリウム銅、場合によってはアルミニウムや非磁性のステンレス鋼を使用しても良い。
<Eighth embodiment>
[Sputtering deposition source]
FIG. 9 shows a sputtering deposition source according to an eighth embodiment. As shown in FIG. 9, in this sputtering deposition source, a target 21a is fixed to a backing plate 71a with indium (not shown), which is a good thermal conductor, and the backing plate 71a is water-cooled. It is fixed to the yoke 29c, which also serves as a housing, with bolts (not shown) that ensure electrical insulation via connecting parts 72a made of an insulating material. The same applies to the target 21b. The target 21b is fixed to a backing plate 71b with indium (not shown), which is a good thermal conductor. It is fixed to the yoke 29c, which also functions, by a bolt (not shown) that ensures electrical insulation through a connecting part 72b made of an insulator. The backing plates 71a and 71b are preferably made of oxygen-free copper, which has excellent thermal conductivity, electrical conductivity, and corrosion resistance. Copper, optionally aluminum or non-magnetic stainless steel may be used.
 また、ヨーク24aはヨーク29cに対し、非磁性体から成る接続部品74aを介して電気導通性のボルト(図示せず)で固定されており、電位は当該筐体を兼ねたヨーク29cとともにアース電位を確保している。バッキングプレート71aと磁気回路との間には、フッ素樹脂等からなる電気絶縁シート73aが挿入されており、電気絶縁性を高い状態で確保することができる。ターゲット21b側に関しても同様な構成になっており、ヨーク24bはヨーク29cに対し、非磁性体から成る接続部品74bを介して電気導通性のボルト(図示せず)で固定されており、電位は当該筐体を兼ねたヨーク29cとともにアース電位を確保している。バッキングプレート71bと磁気回路との間には、フッ素樹脂等からなる電気絶縁シート73bが挿入されており、電気絶縁性を高い状態で確保することができる。 In addition, the yoke 24a is fixed to the yoke 29c with an electrically conductive bolt (not shown) through a connection part 74a made of a non-magnetic material, and the potential is the ground potential together with the yoke 29c, which also serves as the housing. is ensured. An electrical insulating sheet 73a made of fluororesin or the like is inserted between the backing plate 71a and the magnetic circuit to ensure high electrical insulation. The target 21b side has a similar structure, and the yoke 24b is fixed to the yoke 29c via a connecting part 74b made of a non-magnetic material with an electrically conductive bolt (not shown), and the potential is A ground potential is ensured together with the yoke 29c that also serves as the housing. An electrical insulating sheet 73b made of fluororesin or the like is inserted between the backing plate 71b and the magnetic circuit to ensure high electrical insulation.
 ターゲット21aの外周四辺端部およびそれらの外側は、ターゲットシールド75a、76aおよび図示しない二枚のターゲットシールドで囲まれており、ターゲット21aからスパッタされたスパッタ粒子が、このターゲット21a以外の部位に付着することを防ぐとともに、これらのターゲットシールドがターゲット21aおよびバッキングプレート71aから電気的に絶縁されて配置され、かつアース電位が確保されていることで、マグネトロン放電プラズマ中の過剰電子がこれらのターゲットシールドを介してプラズマ発生用直流電源77の正極に戻る構成になっている。ターゲット21b側に関しても同様であり、ターゲット21bの外周四辺端部およびそれらの外側は、ターゲットシールド75b、76bおよび図示しない二枚のターゲットシールドで囲まれており、これらのターゲットシールドはアース電位が確保され、ターゲット21bおよびバッキングプレート71bから電気的に絶縁されて配置され、かつアース電位が確保されていることで、マグネトロン放電プラズマ中の過剰電子がこれらのターゲットシールドを介してプラズマ発生用直流電源77の正極に戻る構成になっている。 The target 21a is surrounded by target shields 75a and 76a and two target shields (not shown) around the target 21a. The target shields are arranged electrically insulated from the target 21a and the backing plate 71a, and the ground potential is ensured, so that excess electrons in the magnetron discharge plasma are prevented from being released from these target shields. It is configured to return to the positive pole of the DC power source 77 for plasma generation via the . The same applies to the target 21b side, and the four peripheral edges of the target 21b and their outsides are surrounded by target shields 75b and 76b and two target shields (not shown), and these target shields secure the ground potential. are electrically insulated from the target 21b and the backing plate 71b, and the ground potential is ensured, so that excess electrons in the magnetron discharge plasma are discharged to the plasma generation DC power supply 77 through these target shields. It is configured to return to the positive electrode of
 また、スパッタリング成膜を行うためのプラズマ発生用直流電源77は、負極がバッキングプレート71a、71bに電気的に接続されている。ただし、この際、ヨーク29cおよび上記のターゲットシールドとは電気的な絶縁が確保されている。ここで、バッキングプレート71a、71bに接続するプラズマ発生用直流電源77は、各々一台ずつ独立させて接続しても良い。さらに、プラズマ発生用直流電源77は高周波電源に置き換えても良く、その際は、バッキングプレート71a、71bと高周波電源との間にインピーダンス整合器を挿入し調整することで、高周波電力をターゲット21a、ターゲット21bへ確実に伝搬させる。高周波電源をバッキングプレート71a、71bに各々独立させて接続する際は、各々にインピーダンス整合器を挿入し、さらに、各々の高周波の発振器を共通とし、位相に180°の差を設けることで、各々の高周波が干渉して発生する不具合を未然に防止することができる。正弦波もしくは矩形波の交流電力をターゲット21a、ターゲット21bが交互にスパッタされるように印加してスパッタリング成膜を行っても良い。さらに、ターゲット21aとターゲット21bとの間に一つ以上の熱電子供給源を設け、プラズマ密度を高くしてスパッタリング成膜を行っても良い。 In addition, the negative electrode of the plasma generating DC power supply 77 for sputtering film formation is electrically connected to the backing plates 71a and 71b. However, at this time, electrical insulation is ensured between the yoke 29c and the target shield. Here, the plasma-generating DC power sources 77 connected to the backing plates 71a and 71b may be connected independently one by one. Furthermore, the plasma generating DC power supply 77 may be replaced with a high frequency power supply. Propagation to the target 21b is ensured. When the high-frequency power sources are independently connected to the backing plates 71a and 71b, an impedance matching device is inserted in each of them, and the high-frequency oscillators are made common and have a phase difference of 180°. It is possible to prevent problems caused by interference of high frequencies. The sputtering film formation may be performed by applying sinusoidal or rectangular AC power so that the targets 21a and 21b are alternately sputtered. Further, one or more thermoelectron supply sources may be provided between the target 21a and the target 21b to increase the plasma density for sputtering film formation.
 なお、バッキングプレート71a、71bの片方に直流電源を、もう一方に高周波電源およびインピーダンス整合器を接続して使用しても構わず、このようにすることで、導電性材料と絶縁性材料の合成薄膜を低ダメージで成膜できる。さらには、前記した直流電源および高周波電源には、パルス出力するものを使用しても構わず、このようにすることで、アーク放電がターゲット上で発生しやすい材料に関して、アーク放電による薄膜中への異物混入を未然に防ぎ、良品率を向上させることができる。 A DC power supply may be connected to one of the backing plates 71a and 71b, and a high frequency power supply and an impedance matching device may be connected to the other. A thin film can be formed with low damage. Furthermore, for the DC power source and the high frequency power source, it is possible to use a power source that outputs pulses. It is possible to prevent foreign matter from entering the product and improve the non-defective product rate.
 ターゲット21aを冷却するため、熱伝導性が良好な状態でターゲット21aと接続されたバッキングプレート71aが冷却水で冷却される構造になっている。典型的には、バッキングプレート71aの内部に冷却水が流れるチャネルが構成されており、ヨーク29cおよび絶縁体から成る接続部品72aを介して、冷却水がバッキングプレート71aの内部に流入し排出される構成になっている。ターゲット21b側も同様であり、ターゲット21bを冷却するため、熱伝導性が良好な状態でターゲット21bと接続されたバッキングプレート71bが冷却水で冷却される構造になっている。典型的には、バッキングプレート71bの内部に冷却水が流れるチャネルが構成されており、ヨーク29cおよび絶縁体から成る接続部品72bを介して、冷却水がバッキングプレート71bの内部に流入し排出されるようになっている。ここでは、バッキングプレート71a、71bへ冷却水を流すチャネルは並列接続としたが、冷却能力が確保されていれば直列接続でも構わない。 In order to cool the target 21a, the backing plate 71a connected to the target 21a with good thermal conductivity is cooled with cooling water. Typically, the interior of the backing plate 71a is configured with a channel through which cooling water flows, and the cooling water flows into and out of the interior of the backing plate 71a via the yoke 29c and a connection piece 72a made of an insulator. It is configured. The same applies to the target 21b side. In order to cool the target 21b, the backing plate 71b connected to the target 21b with good thermal conductivity is cooled with cooling water. Typically, the interior of the backing plate 71b is configured with channels through which cooling water flows, and the cooling water flows into and out of the interior of the backing plate 71b via the yoke 29c and the connecting piece 72b, which is made of an insulator. It's like Here, the channels through which the cooling water flows to the backing plates 71a and 71b are connected in parallel, but may be connected in series as long as the cooling capacity is ensured.
 この第8の実施の形態によれば、第1の実施の形態と同様な利点に加えて、次のような利点を得ることができる。すなわち、ターゲット21a、21bがそれぞれバッキングプレート71a、71bに固定されて水冷されるようになっているため、スパッタリング成膜源の使用中のターゲット21a、21bの温度上昇を防止することができ、安定して成膜を行うことができる。また、プラズマを遮蔽する磁力線を発生させる磁気回路の永久磁石28aのN極と永久磁石28bのS極との間の距離が、ターゲット21aの表面とヨーク24aに発生して成膜に関与する磁力線を発生させる永久磁石22aのN極と同じくターゲット21bの表面とヨーク24bに発生して成膜に関与する永久磁石22bのS極との間の距離よりも短いので、各々の目的として発生する磁力線の有効性が極めて効果的に実現し、より優位な低ダメージ成膜が実現できる。さらに、ターゲットシールド75a、76a、75b、76bにより、マグネトロンモードによるプラズマ中の過剰な電子をスパッタ電源に戻すことで当該プラズマを維持することができる。 According to the eighth embodiment, the following advantages can be obtained in addition to the advantages similar to those of the first embodiment. That is, since the targets 21a and 21b are fixed to the backing plates 71a and 71b, respectively, and are water-cooled, it is possible to prevent the temperature of the targets 21a and 21b from rising during the use of the sputtering film forming source, thereby stabilizing the temperature of the targets 21a and 21b. film formation can be performed. In addition, the distance between the N pole of the permanent magnet 28a and the S pole of the permanent magnet 28b of the magnetic circuit that generates the magnetic lines of force that shield the plasma is the magnetic lines of force that are generated on the surface of the target 21a and the yoke 24a and participate in the film formation. is shorter than the distance between the north pole of the permanent magnet 22a that generates the magnetic field line The effectiveness of is extremely effectively realized, and more superior low-damage film formation can be realized. In addition, the target shields 75a, 76a, 75b, 76b can maintain the plasma by returning excess electrons in the magnetron mode plasma to the sputtering power supply.
〈第9の実施の形態〉
[スパッタリング成膜源]
 図10は第9の実施の形態によるスパッタリング成膜源を示す。図10に示すように、このスパッタリング成膜源においては、第8の実施の形態において、第2の実施の形態と同様に、永久磁石28aの永久磁石22a側の面に補助永久磁石M、Mが設けられ、永久磁石28bの永久磁石22b側の面に補助永久磁石M、Mが設けられている。その他のことは、その性質に反しない限り、第8の実施の形態と同様である。
<Ninth Embodiment>
[Sputtering deposition source]
FIG. 10 shows a sputtering deposition source according to the ninth embodiment. As shown in FIG. 10, in this sputtering deposition source, in the eighth embodiment, as in the second embodiment, auxiliary permanent magnets M 1 , M2 is provided, and auxiliary permanent magnets M3 and M4 are provided on the surface of the permanent magnet 28b on the side of the permanent magnet 22b. Others are the same as those of the eighth embodiment as long as it does not contradict its nature.
 この第9の実施の形態によれば、第8の実施の形態と同様な利点に加えて、第2の実施の形態と同様な利点を得ることができる。 According to the ninth embodiment, in addition to advantages similar to those of the eighth embodiment, advantages similar to those of the second embodiment can be obtained.
〈第10の実施の形態〉
[スパッタリング成膜源]
 図11は第10の実施の形態によるスパッタリング成膜源を示す。図11に示すように、このスパッタリング成膜源においては、第8の実施の形態におけるターゲット21b、永久磁石22b、23b、ヨーク24b、バッキングプレート71b、電気絶縁シート73b等が設けられておらず、代わりにターゲット21bがあった位置にスパッタ粒子捕集シールド310が設けられている。その他のことは、その性質に反しない限り、第8の実施の形態と同様である。
<Tenth Embodiment>
[Sputtering deposition source]
FIG. 11 shows a sputtering deposition source according to the tenth embodiment. As shown in FIG. 11, in this sputtering deposition source, the target 21b, permanent magnets 22b and 23b, yoke 24b, backing plate 71b, electrical insulation sheet 73b, etc. in the eighth embodiment are not provided. Instead, a sputter particle collection shield 310 is provided at the position where the target 21b was. Others are the same as those of the eighth embodiment as long as it does not contradict its nature.
 この第10の実施の形態によれば、第9の実施の形態において、第3の実施の形態と同様な利点を得ることができる。 According to the tenth embodiment, the same advantages as in the third embodiment can be obtained in the ninth embodiment.
〈第11の実施の形態〉
[スパッタリング成膜源]
 図12は第11の実施の形態によるスパッタリング成膜源を示す。図12に示すように、このスパッタリング成膜源においては、第10の実施の形態において、第2の実施の形態と同様に、永久磁石38aの永久磁石32側の面に補助永久磁石M、Mが設けられている。その他のことは、その性質に反しない限り、第10の実施の形態と同様である。
<Eleventh Embodiment>
[Sputtering deposition source]
FIG. 12 shows a sputtering deposition source according to the eleventh embodiment. As shown in FIG. 12, in this sputtering deposition source, in the tenth embodiment, as in the second embodiment, auxiliary permanent magnets M 1 , M2 is provided. Others are the same as the tenth embodiment as long as it does not contradict its nature.
 この第11の実施の形態によれば、第10の実施の形態と同様な利点に加えて、第2の実施の形態と同様な利点を得ることができる。 According to the eleventh embodiment, in addition to advantages similar to those of the tenth embodiment, advantages similar to those of the second embodiment can be obtained.
〈第12の実施の形態〉
[スパッタリング成膜源]
 図13は第12の実施の形態によるスパッタリング成膜源を示す。図13に示すように、このスパッタリング成膜源においては、スパッタ粒子捕集シールド310aがターゲット31に対して、ターゲット31とスパッタ粒子捕集シールド310aとの間の距離が永久磁石38a、38b側に向かって直線的に増加するように傾斜していることが異なる。その他のことは、第10の実施の形態と同様である。
<Twelfth Embodiment>
[Sputtering deposition source]
FIG. 13 shows a sputtering deposition source according to the twelfth embodiment. As shown in FIG. 13, in this sputtering deposition source, the sputtered particle collection shield 310a is positioned with respect to the target 31, and the distance between the target 31 and the sputtered particle collection shield 310a is on the side of the permanent magnets 38a and 38b. It is different in that it is inclined so as to increase linearly toward it. Others are the same as those of the tenth embodiment.
 この第12の実施の形態によれば、第3の実施の形態と同様な利点に加えて、次のような利点を得ることができる。すなわち、スパッタ粒子捕集シールド310aがターゲット31に対して、ターゲット31とスパッタ粒子捕集シールド310aとの間の距離が永久磁石38a、38b側に向かって直線的に増加するように直線的に傾斜しているため、このスパッタ粒子捕集シールド310aに付着したスパッタ粒子の一部が離脱する際に、被成膜体1の方向へ進む離脱スパッタ粒子の確率が増えることで、成膜速度を向上させることができる。また、このスパッタ粒子捕集シールド310aは、第5の実施の形態におけるスパッタ粒子捕集シールド310のように裏面からヒーターで加熱することにより、被成膜体1の方向へ進む離脱スパッタ粒子の生成の確率をさらに増やすことができ、成膜速度の更なる向上が実現される。 According to the twelfth embodiment, in addition to the advantages similar to those of the third embodiment, the following advantages can be obtained. That is, the sputtered particle collection shield 310a is linearly inclined with respect to the target 31 so that the distance between the target 31 and the sputtered particle collection shield 310a linearly increases toward the permanent magnets 38a and 38b. Therefore, when some of the sputtered particles adhering to the sputtered particle collection shield 310a are separated, the probability of the separated sputtered particles traveling toward the film-forming object 1 increases, thereby improving the film formation speed. can be made In addition, this sputter particle collection shield 310a is heated from the back surface by a heater like the sputter particle collection shield 310 in the fifth embodiment, so that detached sputter particles moving toward the film-forming object 1 are generated. can be further increased, and the film formation rate can be further improved.
〈第13の実施の形態〉
[スパッタリング成膜源]
 図14は第13の実施の形態によるスパッタリング成膜源を示す。図14に示すように、このスパッタリング成膜源においては、スパッタ粒子捕集シールド310bがターゲット31に対して、ターゲット31とスパッタ粒子捕集シールド310bとの間の距離が永久磁石38a、38b側に向かって増加するように上方に凸の曲線状の断面形状を有するように湾曲していることが異なる。その他のことは、第10の実施の形態と同様である。
<Thirteenth Embodiment>
[Sputtering deposition source]
FIG. 14 shows a sputtering deposition source according to a thirteenth embodiment. As shown in FIG. 14, in this sputtering deposition source, the sputtered particle collection shield 310b is positioned with respect to the target 31, and the distance between the target 31 and the sputtered particle collection shield 310b is on the side of the permanent magnets 38a and 38b. It is different in that it is curved to have an upwardly convex curvilinear cross-sectional shape that increases toward it. Others are the same as those of the tenth embodiment.
 この第13の実施の形態によれば、第3の実施の形態と同様な利点に加えて、次のような利点を得ることができる。すなわち、スパッタ粒子捕集シールド310bがターゲット31に対して、ターゲット31とスパッタ粒子捕集シールド310bとの間の距離が永久磁石38a、38b側に向かって増加するように上方に凸の曲線状の断面形状を有するように湾曲しているため、このスパッタ粒子捕集シールド310bへ付着したスパッタ粒子の一部が離脱する際に、被成膜体1の方向へ進む離脱スパッタ粒子の確率が増えることで、成膜速度を向上させることができる。また、このスパッタ粒子捕集シールド310bは、第5の実施の形態におけるスパッタ粒子捕集シールド310のように裏面からヒーターで加熱することにより、被成膜体1の方向へ進む離脱スパッタ粒子の生成の確率をさらに増やすことができ、成膜速度の更なる向上が実現される。 According to the thirteenth embodiment, in addition to the advantages similar to those of the third embodiment, the following advantages can be obtained. In other words, the sputtered particle collection shield 310b is formed in an upward convex curved shape with respect to the target 31 so that the distance between the target 31 and the sputtered particle collection shield 310b increases toward the permanent magnets 38a and 38b. Since it is curved to have a cross-sectional shape, when some of the sputtered particles adhering to the sputtered particle collection shield 310b are separated, the probability of the separated sputtered particles traveling toward the film-forming object 1 increases. , the film formation speed can be improved. In addition, this sputtered particle collection shield 310b is heated from the back surface by a heater like the sputtered particle collection shield 310 in the fifth embodiment, thereby generating detached sputtered particles traveling in the direction of the object 1 to be deposited. can be further increased, and the film formation rate can be further improved.
〈第14の実施の形態〉
[成膜装置]
 図15は第14の実施の形態による成膜装置を示す。この成膜装置は、第8の実施の形態によるスパッタリング成膜源を用いたものである。この成膜装置は、主に、被成膜体が基板状のものであるときに多く使用される真空成膜装置であり、また、被成膜体を搬送させながら成膜を行う成膜装置である。この成膜装置は真空槽110を有する。真空槽110内は分子流排気用ポンプのターボ分子ポンプ111、111’により高真空と呼ばれる真空圧力まで排気される。このターボ分子ポンプ111、111’の排気側には図示しない粘性流排気用ポンプが各々接続されており、真空槽110が大気圧の状態の際は、まず初めに当該粘性流排気用ポンプを起動させて10Pa前後の低圧力まで排気し、その後ターボ分子ポンプ111、111’を起動して、高真空と呼ばれる真空圧力まで排気する構成になっている。なお、ターボ分子ポンプ111、111’の代わりにクライオポンプあるいは拡散ポンプを使用しても良い。
<Fourteenth embodiment>
[Deposition equipment]
FIG. 15 shows a film forming apparatus according to the fourteenth embodiment. This film forming apparatus uses the sputtering film forming source according to the eighth embodiment. This film-forming apparatus is a vacuum film-forming apparatus that is mainly used when the object to be film-formed is in the form of a substrate. is. This film forming apparatus has a vacuum chamber 110 . The vacuum chamber 110 is evacuated to a vacuum pressure called high vacuum by turbomolecular pumps 111 and 111', which are pumps for exhausting molecular flow. A viscous flow exhaust pump (not shown) is connected to the exhaust side of each of the turbomolecular pumps 111 and 111'. After that, the turbomolecular pumps 111 and 111' are activated to evacuate to a vacuum pressure called high vacuum. A cryopump or a diffusion pump may be used instead of the turbomolecular pumps 111 and 111'.
 第8の実施の形態によるスパッタリング成膜源Sは、その空間20の開口部が被成膜体1に向いて少なくとも一台が真空槽110の中に配置されている。スパッタリング成膜源Sの空間20にスパッタリングガス112が導入される。被成膜体1は、搬送駆動機構(図示せず)によって矢印2で示す方向あるいはその逆方向に、一定の搬送速度で空間20に面した領域を通過する構成になっていることで、所望の膜厚の膜を膜厚分布が良好な状態かつ低ダメージで成膜することができる。この搬送速度の制御は、駆動力を発生する電気モーターの回転速度を当該電気モーターに内蔵されたエンコーダーからの信号によりフィードバック制御を行った上で、ウォームギヤ、あるいはボールネジ、あるいはラックアンドピニオンギヤ等の変換機構で直線運動に変換することで行われる。ここで、被成膜体1が搬送される直線運動の速度と電気モーターの回転運動の速度との関係は、前記した変換機構の構成により正確に決定される。なお、真空槽110内に設置するスパッタリング成膜源Sは第1~第7の実施の形態のいずれかによるスパッタリング成膜源であっても構わず、その際には、空間20あるいは空間30が被成膜体1に向いて、少なくとも一台が設置されていれば良い。この結果として、従来よりも被成膜体1へダメージを与えずにスパッタリング成膜することが可能になる。 At least one of the sputtering deposition sources S 1 according to the eighth embodiment is arranged in the vacuum chamber 110 with the opening of the space 20 facing the deposition target 1 . A sputtering gas 112 is introduced into the space 20 of the sputtering deposition source S1 . The object 1 to be deposited passes through the area facing the space 20 at a constant transport speed in the direction indicated by the arrow 2 or in the opposite direction by a transport driving mechanism (not shown). can be formed with good film thickness distribution and low damage. This transfer speed control is performed by feedback control of the rotation speed of the electric motor that generates the driving force by the signal from the encoder built into the electric motor, and then the conversion of the worm gear, ball screw, rack and pinion gear, etc. It is done by converting it into linear motion with a mechanism. Here, the relationship between the linear motion speed at which the film-forming object 1 is transported and the rotational motion speed of the electric motor is determined accurately by the configuration of the conversion mechanism described above. The sputtering film formation source S 1 installed in the vacuum chamber 110 may be the sputtering film formation source according to any one of the first to seventh embodiments. faces the object 1 to be film-formed, and at least one unit is installed. As a result, it becomes possible to form a film by sputtering without damaging the object 1 to be film-formed as compared with the conventional art.
 加えて、被成膜体1の基板がスパッタリング成膜源Sの被成膜領域と比較して小さい場合は、図15における当該被成膜領域に、被成膜体1の基板を静止させて成膜することで成膜速度が向上し生産性が高くなる。加えて、被成膜領域を一定の速度で被成膜体1を通過させるための機構を備えないで良いため、成膜装置の大きさを小型化することができ、経済性を高めることができる。さらに、従来よりも被成膜体1へダメージを与えず、かつ高い成膜速度でスパッタリング成膜することが可能になる。 In addition, when the substrate of the film formation target 1 is smaller than the film formation region of the sputtering film formation source S 1 , the substrate of the film formation target 1 is held still in the film formation region in FIG. By forming a film by using a thin film, the film forming speed is improved and the productivity is increased. In addition, since there is no need to provide a mechanism for passing the film-forming object 1 through the film-forming region at a constant speed, the size of the film-forming apparatus can be reduced and the economic efficiency can be improved. can. Furthermore, it becomes possible to form a film by sputtering at a higher film formation rate without damaging the object 1 to be film-formed than in the conventional art.
 この第14の実施の形態によれば、第8の実施の形態と同様な利点を得ることができる。 According to the fourteenth embodiment, advantages similar to those of the eighth embodiment can be obtained.
〈第15の実施の形態〉
[成膜装置]
 図16は第15の実施の形態による成膜装置を示す。この成膜装置は、第8の実施の形態によるスパッタリング成膜源Sと第10の実施の形態によるスパッタリング成膜源S、Sとを用いたものである。この成膜装置は真空槽120を有する。真空槽120内は分子流排気用ポンプのターボ分子ポンプ121、121’により高真空と呼ばれる真空圧力まで排気される。ターボ分子ポンプ121、121’の排気側には図示しない粘性流排気用ポンプが各々接続されており、真空槽120が大気圧の状態の際は、まず初めに当該粘性流排気用ポンプを起動させて10Pa前後の低圧力まで排気し、その後ターボ分子ポンプ121、121’を起動して、高真空と呼ばれる真空圧力まで排気する構成になっている。なお、ターボ分子ポンプ121、121’の代わりにクライオポンプあるいは拡散ポンプを使用しても良い。
<Fifteenth Embodiment>
[Deposition equipment]
FIG. 16 shows a film forming apparatus according to the fifteenth embodiment. This film forming apparatus uses the sputtering film forming source S 1 according to the eighth embodiment and the sputtering film forming sources S 2 and S 3 according to the tenth embodiment. This film forming apparatus has a vacuum chamber 120 . The vacuum chamber 120 is evacuated to a vacuum pressure called high vacuum by turbomolecular pumps 121 and 121', which are pumps for exhausting molecular flow. A viscous flow exhaust pump (not shown) is connected to the exhaust side of each of the turbomolecular pumps 121 and 121'. After that, the turbomolecular pumps 121 and 121' are started to evacuate to a vacuum pressure called high vacuum. A cryopump or a diffusion pump may be used instead of the turbomolecular pumps 121 and 121'.
 真空槽120の下部には、第8の実施の形態と同様なスパッタリング成膜源Sが配置されている。真空槽120内には、スパッタリング成膜源Sの上方に被成膜体支持ローラー4が設けられている。この場合、被成膜体支持ローラー4の回転軸は重力と平行な方向に設置されている。被成膜体3はこの被成膜体支持ローラー4に密着または固定される。真空槽120内にはさらに、被成膜体支持ローラー4の両側に、第10の実施の形態によるスパッタリング成膜源S、Sが被成膜体支持ローラー4に対向して配置されている。スパッタリング成膜源Sの空間20にスパッタリングガス112が導入され、スパッタリング成膜源S、Sの空間30にそれぞれスパッタリングガス122、122'が導入される。被成膜体3は、回転駆動機構(図示せず)によって矢印5で示す回転方向あるいはその逆回転方向に、一定の角速度でスパッタリング成膜源Sの空間20、スパッタリング成膜源S、Sの空間30に面した領域を通過する構成になっていることで、所望の膜厚の膜を膜厚分布が良好な状態かつ低ダメージで成膜することができる。この角速度の制御は、駆動力を発生する電気モーターの回転角速度を当該電気モーターに内蔵されたエンコーダーからの信号によりフィードバック制御を行った上で、被成膜体3を支持する被成膜体支持ローラー4へギヤの組み合わせ、タイミングベルト等により伝達される。なお、被成膜体3が搬送され周速度は、被成膜体支持ローラー4の直径と、前記した電気モーターの回転角速度制御とにより正確に決定される。この結果として、従来よりも被成膜体3へダメージを与えずにスパッタリング成膜することが可能になる。 In the lower part of the vacuum chamber 120, a sputtering deposition source S1 similar to that of the eighth embodiment is arranged. In the vacuum chamber 120, a target support roller 4 is provided above the sputtering film formation source S1 . In this case, the rotating shaft of the film-forming object support roller 4 is set in a direction parallel to the gravity. The film-forming object 3 is adhered or fixed to the film-forming object supporting roller 4 . In the vacuum chamber 120, the sputtering film forming sources S2 and S3 according to the tenth embodiment are arranged on both sides of the film-forming object supporting roller 4 so as to face the film-forming object supporting roller 4. there is A sputtering gas 112 is introduced into the space 20 of the sputtering deposition source S 1 , and sputtering gases 122 and 122 ′ are introduced into the spaces 30 of the sputtering deposition sources S 2 and S 3 , respectively. The object 3 to be film-formed is rotated at a constant angular velocity in the direction of rotation indicated by an arrow 5 or in the direction of reverse rotation by a rotary drive mechanism (not shown), through the space 20 of the sputtering film-forming source S 1 , the sputtering film-forming source S 2 , and the film-forming source S 2 . By passing through the region of S3 facing the space 30, a film having a desired film thickness can be formed with good film thickness distribution and low damage. This control of the angular velocity is performed by feedback-controlling the rotational angular velocity of the electric motor that generates the driving force by means of a signal from an encoder built into the electric motor. The power is transmitted to the roller 4 by a combination of gears, a timing belt, or the like. The peripheral speed at which the film-forming object 3 is conveyed is accurately determined by the diameter of the film-forming object supporting roller 4 and the rotational angular velocity control of the electric motor. As a result, it becomes possible to form a film by sputtering without damaging the object 3 to be film-formed as compared with the conventional art.
 なお、この第15の実施の形態では、被成膜体支持ローラー4の回転軸が重力と平行な方向に設置されている場合を挙げたが、被成膜体支持ローラー4の回転軸が重力と垂直な方向に設置されていても差し支えない。 In the fifteenth embodiment, the rotation axis of the film formation target support roller 4 is set in a direction parallel to gravity. There is no problem even if it is installed in a vertical direction.
 第15の実施の形態によれば、被成膜体3が密着または固定される被成膜体支持ローラー4を回転しながら被成膜体3に成膜を行うタイプの成膜装置において、第8および第10の実施の形態と同様な利点を得ることができることに加えて、三つのスパッタリング成膜源S、S、Sを用いて成膜を高速で行うことができ、あるいは二種類または三種類の膜の成膜を行うことができるという利点を得ることもできる。 According to the fifteenth embodiment, in the film forming apparatus of the type in which the film is formed on the film-forming object 3 while rotating the film-forming object support roller 4 to which the film-forming object 3 is in close contact or fixed, In addition to being able to obtain the same advantages as the eighth and tenth embodiments, three sputtering deposition sources S 1 , S 2 , S 3 can be used to perform deposition at high speed, or two Advantages can also be obtained in that one or three types of films can be deposited.
〈第16の実施の形態〉
[成膜装置]
 図17は第16の実施の形態による成膜装置を示す。この成膜装置は被成膜体3としてロール状のフィルムを用いるロールツーロール型成膜装置である。図17に示すように、この成膜装置は真空槽120に加えて真空槽130を有する。真空槽130は仕切板131、131’により真空槽120と分けられている。真空槽120には、第15の実施の形態による成膜装置と同様に、被成膜体支持ローラー7および三つのスパッタリング成膜源S、S、Sが設置されている。スパッタリング成膜源Sの空間20にスパッタリングガス112が導入され、スパッタリング成膜源S、Sの空間30にそれぞれスパッタリングガス122、122' が導入される。仕切板131と仕切板131’との間には開口が設けられており、被成膜体支持ローラー7の最上部はこの開口に入り込んでいる。真空槽130には、巻き出し側ロール132、巻き取り側ロール133、ガイドローラー134、134’が被成膜体支持ローラー7と平行に設置されている。フィルム状の被成膜体3はロールの状態で巻き出し側ロール132の部位に取り付けられ、このフィルム状の被成膜体3は巻き出し側ロール132から巻き出されて、ガイドローラー134を介して被成膜体支持ローラー7に密着しながら一定の周速度で回転している際に、前記した各々のスパッタリング成膜源S、S、Sによって低ダメージで成膜が行われる。その後、連続的にガイドローラー134’を介して巻き取り側ロール133で巻き取られることで、所望の膜厚の膜が膜厚分布が良好な状態かつ低ダメージで成膜されたロール状のフィルムが完成する。なお、被成膜領域から漏れ出てくるスパッタリング粒子すなわち成膜材料は、仕切板131、131’によって遮蔽されることで、巻き出し側ロール132および巻き取り側ロール133の部位には到達しないため、余分な成膜材料が当該フィルム状の被成膜体3へ付着することを防止している。ここで、当該周速度の制御は、駆動力を発生する電気モーターの回転角速度を当該電気モーターに内蔵されたエンコーダーからの信号によりフィードバック制御を行なった上で、被成膜体3を支持する被成膜体支持ローラー7へギヤの組み合わせ、タイミングベルト等により伝達される。ここで、被成膜体3が搬送される周速度は、被成膜体支持ローラー7の直径と、前記した電気モーターの回転角速度制御とにより正確に決定される。巻き出し側ロール132および巻き取り側ロール133は電気モーターによって駆動されており、この電気モーターに掛かるトルクが常時モニターされており、当該トルクが常に前もって設定した一定の値になるように制御されている。ガイドローラー134、134’はフリーローラーであるので電気モーター等による駆動はされておらず、密着して搬送するフィルム状の被成膜体3の搬送周速度に準じて回転する機構になっている。なお、矢印5と逆向き回転の場合は、巻き出し側ロール132および巻き取り側ロール133はそれぞれの機能が逆になり、巻き出し側ロール132が巻き取り側ロール、巻き取り側ロール133が巻き出し側ロールになる。
<Sixteenth Embodiment>
[Deposition equipment]
FIG. 17 shows a film forming apparatus according to the sixteenth embodiment. This film-forming apparatus is a roll-to-roll type film-forming apparatus using a roll-shaped film as the object 3 to be film-formed. As shown in FIG. 17, this film forming apparatus has a vacuum chamber 130 in addition to the vacuum chamber 120 . The vacuum chamber 130 is separated from the vacuum chamber 120 by partition plates 131 and 131'. In the vacuum chamber 120, similarly to the film forming apparatus according to the fifteenth embodiment, there are installed the object support roller 7 and the three sputtering film forming sources S1 , S2 and S3 . A sputtering gas 112 is introduced into the space 20 of the sputtering deposition source S 1 , and sputtering gases 122 and 122 ′ are introduced into the spaces 30 of the sputtering deposition sources S 2 and S 3 , respectively. An opening is provided between the partition plate 131 and the partition plate 131', and the uppermost part of the film-formed body support roller 7 is inserted into this opening. In the vacuum chamber 130, an unwinding side roll 132, a winding side roll 133, and guide rollers 134 and 134' are installed in parallel with the support rollers 7 for the object to be deposited. The film-shaped object 3 is attached to the unwinding roll 132 in a roll state. While rotating at a constant peripheral speed while being in close contact with the support roller 7, film formation is carried out with little damage by the respective sputtering film formation sources S1 , S2 , and S3 . After that, it is continuously wound up by the winding side roll 133 via the guide roller 134 ′, so that the film of the desired film thickness is formed with good film thickness distribution and low damage. is completed. Sputtered particles, that is, film-forming material, leaking out from the film-forming region are shielded by the partition plates 131 and 131′, so that they do not reach the unwinding-side roll 132 and the winding-side roll 133. , to prevent excess film-forming material from adhering to the film-form object 3 to be film-formed. Here, the control of the peripheral speed is performed by feedback-controlling the rotation angular speed of the electric motor that generates the driving force by the signal from the encoder built in the electric motor, and then the substrate that supports the film-forming object 3. The power is transmitted to the film forming body support roller 7 by a combination of gears, a timing belt, or the like. Here, the peripheral speed at which the film-forming object 3 is conveyed is accurately determined by the diameter of the film-forming object supporting roller 7 and the rotational angular velocity control of the electric motor described above. The unwinding side roll 132 and the winding side roll 133 are driven by an electric motor, and the torque applied to this electric motor is constantly monitored and controlled so that the torque is always a constant value set in advance. there is Since the guide rollers 134 and 134' are free rollers, they are not driven by an electric motor or the like, and have a mechanism that rotates according to the peripheral speed of the transported film-like object 3 that is transported in close contact. . In the case of rotation in the direction opposite to arrow 5, the functions of the unwinding roll 132 and the winding roll 133 are reversed; It becomes the delivery side roll.
 第16の実施の形態によれば、第15の実施の形態と同様な利点を得ることができることに加えて、従来よりも被成膜体3へダメージを与えずにロールツーロールによりスパッタリング成膜することが可能になるという利点を得ることができる。 According to the sixteenth embodiment, in addition to being able to obtain the same advantages as those of the fifteenth embodiment, film deposition can be performed by roll-to-roll sputtering without damaging the film-forming object 3 as compared with the conventional art. You can get the advantage of being able to
〈第17の実施の形態〉
[スパッタリング成膜源]
 図18は第17の実施の形態によるスパッタリング成膜源を示す。このスパッタリング成膜源はロータリー型のターゲットを用いたものである。図18に示すように、このスパッタリング成膜源においては、空間140を介して互いに対向して配置されたターゲット141a、141bを円筒型に構成し、各々を常時一定の角速度で回転させることによって、ターゲット141a、141bの長寿命化を図っている。そして、ターゲット141a、141bそれぞれに内蔵される磁気回路は、各々外周部永久磁石142a、142bと、中央部永久磁石143a 、143bと、ヨーク144a、144bとから成り、当該ターゲットの表面に各々につきマグネトロンプラズマを発生させる磁力線145a、145bを形成させる。また、ターゲット141aに設けてある磁気回路のヨーク144aおよびターゲット141bに設けてある磁気回路のヨーク144bと、十分に距離をとって独立な状態にしたヨーク29a、29bを設け、空間140の一端側に永久磁石28a、永久磁石28bを各々配置し、さらにヨーク29a、29bの空間140の反対側にヨーク29cを設けることで、空間140の被成膜体1側に発生するプラズマを遮蔽する磁力線27が、被成膜体1の方向に漏れ出す図示しないプラズマを有効に遮蔽することができるため、低ダメージでの成膜を効果的に実現することができる。
<Seventeenth embodiment>
[Sputtering deposition source]
FIG. 18 shows a sputtering deposition source according to the seventeenth embodiment. This sputtering deposition source uses a rotary type target. As shown in FIG. 18, in this sputtering film formation source, targets 141a and 141b arranged to face each other with a space 140 interposed therebetween are formed in a cylindrical shape, and each of them is rotated at a constant angular velocity at all times to achieve The targets 141a and 141b are intended to have a longer life. The magnetic circuits built in the targets 141a and 141b are respectively composed of peripheral permanent magnets 142a and 142b, central permanent magnets 143a and 143b, and yokes 144a and 144b. Magnetic lines of force 145a and 145b for generating plasma are formed. In addition, yokes 29a and 29b are provided in an independent state with a sufficient distance from the yoke 144a of the magnetic circuit provided on the target 141a and the yoke 144b of the magnetic circuit provided on the target 141b. By arranging a permanent magnet 28a and a permanent magnet 28b in each of the yokes 29a and 29b and a yoke 29c on the opposite side of the space 140 between the yokes 29a and 29b, the magnetic lines of force 27 shielding the plasma generated in the space 140 on the film-forming object 1 side. However, plasma (not shown) leaking toward the object 1 to be film-formed can be effectively shielded, so film formation with low damage can be effectively realized.
 第17の実施の形態によれば、第1の実施の形態と同様な利点を得ることができることに加えて、ターゲット141a、141bの長寿命化を図ることができるという利点を得ることができる。 According to the seventeenth embodiment, in addition to being able to obtain the same advantages as the first embodiment, it is possible to obtain the advantage of being able to extend the life of the targets 141a and 141b.
〈第18の実施の形態〉
[スパッタリング成膜源]
 図19は第18の実施の形態によるスパッタリング成膜源を示す。図19に示すように、このスパッタリング成膜源においては、第17の実施の形態において、第2の実施の形態と同様に、永久磁石28aのターゲット141a側の面に補助永久磁石M、Mが設けられ、永久磁石28bのターゲット141b側の面に補助永久磁石M、Mが設けられている。その他のことは、その性質に反しない限り、第17の実施の形態と同様である。
<Eighteenth Embodiment>
[Sputtering deposition source]
FIG. 19 shows a sputtering deposition source according to the eighteenth embodiment. As shown in FIG. 19, in this sputtering deposition source, in the seventeenth embodiment, as in the second embodiment, auxiliary permanent magnets M 1 and M 2 are provided, and auxiliary permanent magnets M 3 and M 4 are provided on the surface of the permanent magnet 28b on the target 141b side. Others are the same as those of the seventeenth embodiment as long as it does not contradict its nature.
 この第18の実施の形態によれば、第17の実施の形態と同様な利点に加えて、第2の実施の形態と同様な利点を得ることができる。 According to the eighteenth embodiment, in addition to advantages similar to those of the seventeenth embodiment, advantages similar to those of the second embodiment can be obtained.
〈第19の実施の形態〉
[スパッタリング成膜源]
 図20は第19の実施の形態によるスパッタリング成膜源を示す。このスパッタリング成膜源はロータリー型のターゲットを用いたものである。図20に示すように、このスパッタリング成膜源においては、円筒形ターゲット141を常時一定の角速度で回転させることにより、長寿命化を図っている。そして、円筒形ターゲット141に内蔵される磁気回路は、外周部永久磁石142と中央部永久磁石143とヨーク144とから成り、円筒形ターゲット141の表面にマグネトロンプラズマを発生させる磁力線145を形成させる。この場合、円筒形ターゲット141と対向したターゲットは存在せず、代わりにスパッタ粒子捕集シールド310aが空間30を介して配置されているため、上部に配置された円筒形ターゲット141からスパッタ成膜中に堆積物が落下してもアーク放電が発生しないので、アーク発生時に飛散する異物が被成膜体1を汚染してしまうことが皆無であるという利点を有している。さらにこのスパッタ粒子捕集シールド310aは、第12の実施の形態と同様に、空間150の被成膜体1側の開口部に向かって傾斜しているため、このスパッタ粒子捕集シールド310aへ付着したスパッタ粒子の一部が離脱する際に、被成膜体1の方向へ進む離脱スパッタ粒子の生成の確率が増えることで、成膜速度を向上させることができる。また、このスパッタ粒子捕集シールド310aは、第5の実施の形態と同様に裏面からヒーターで加熱しても良く、その場合、被成膜体1の方向へ進む離脱スパッタ粒子の生成の確率をさらに増やすことができ、成膜速度の更なる向上が実現できる。
<Nineteenth embodiment>
[Sputtering deposition source]
FIG. 20 shows a sputtering deposition source according to the nineteenth embodiment. This sputtering deposition source uses a rotary type target. As shown in FIG. 20, in this sputtering deposition source, the cylindrical target 141 is always rotated at a constant angular velocity to extend its life. A magnetic circuit built in the cylindrical target 141 is composed of an outer peripheral permanent magnet 142, a central permanent magnet 143, and a yoke 144, and forms magnetic lines of force 145 for generating magnetron plasma on the surface of the cylindrical target 141. In this case, there is no target facing the cylindrical target 141, and instead the sputtered particle collection shield 310a is arranged with the space 30 interposed therebetween. Since arc discharge does not occur even if deposits fall on the surface, there is an advantage in that the film-forming object 1 is not contaminated by foreign matters scattered when an arc occurs. Furthermore, as in the twelfth embodiment, the sputtered particle collection shield 310a is inclined toward the opening of the space 150 on the film formation target 1 side, so that the sputtered particle collection shield 310a is adhered to. When some of the sputtered particles are detached, the probability of generation of the detached sputtered particles moving in the direction of the film-forming object 1 is increased, so that the deposition rate can be improved. In addition, this sputtered particle collection shield 310a may be heated from the back surface by a heater as in the fifth embodiment. The number can be further increased, and the film forming speed can be further improved.
〈第20の実施の形態〉
[スパッタリング成膜源]
 図21は第20の実施の形態によるスパッタリング成膜源を示す。図21に示すように、このスパッタリング成膜源においては、第19の実施の形態において、第2の実施の形態と同様に、永久磁石38aの円筒形ターゲット141側の面に補助永久磁石M、Mが設けられている。その他のことは、その性質に反しない限り、第19の実施の形態と同様である。
<Twentieth Embodiment>
[Sputtering deposition source]
FIG. 21 shows a sputtering deposition source according to the twentieth embodiment. As shown in FIG. 21, in this sputtering deposition source, in the 19th embodiment, as in the second embodiment, an auxiliary permanent magnet M 1 is provided on the surface of the permanent magnet 38a on the side of the cylindrical target 141 in the same manner as in the second embodiment. , M 2 are provided. Others are the same as those of the nineteenth embodiment as long as it does not contradict its nature.
 この第20の実施の形態によれば、第19の実施の形態と同様な利点に加えて、第2の実施の形態と同様な利点を得ることができる。 According to the twentieth embodiment, in addition to advantages similar to those of the nineteenth embodiment, advantages similar to those of the second embodiment can be obtained.
 以上、この発明の実施の形態および実施例について具体的に説明したが、この発明は上述の実施の形態および実施例に限定されるものではなく、この発明の技術的思想に基づく各種の変形が可能である。 Although the embodiments and examples of the present invention have been specifically described above, the present invention is not limited to the above-described embodiments and examples, and various modifications based on the technical idea of the present invention can be made. It is possible.
 例えば、上述の実施の形態および実施例において挙げた数値、材料、構造、形状等はあくまでも例に過ぎず、必要に応じて、これらと異なる数値、材料、構造、形状等を用いてもよい。 For example, the numerical values, materials, structures, shapes, etc. given in the above-described embodiments and examples are merely examples, and numerical values, materials, structures, shapes, etc. different from these may be used as necessary.
 なお、第2、第9および第18の実施の形態における永久磁石28aは磁性体を用いて補助永久磁石M、Mにより永久磁石と成したものであってもよく、永久磁石28bは磁性体を用いて補助永久磁石M、Mにより永久磁石と成したものであってもよい。また、第4、第11および第20の実施の形態における永久磁石38aは磁性体を用いて補助永久磁石M、Mにより永久磁石と成したものであってもよい。 Incidentally, the permanent magnet 28a in the second, ninth and eighteenth embodiments may be a permanent magnet formed by auxiliary permanent magnets M.sub.1 and M.sub.2 using a magnetic material, and the permanent magnet 28b is magnetic. A body may be used to form a permanent magnet with auxiliary permanent magnets M 3 and M 4 . Further, the permanent magnet 38a in the fourth, eleventh and twentieth embodiments may be a permanent magnet made of a magnetic material and formed by auxiliary permanent magnets M1 and M2 .
 1、3 被成膜体
 4 被成膜体支持ローラー
 20、30、140、150 空間
 21a、21b、31 ターゲット
 22a、22b、23a、23b、28a、28b、32、33 永久磁石
 38a、38b、142a、142b、143a、143b 永久磁石
 145a、145b 永久磁石
 24a、24b、29a、29b、29c、34、39a、39b、39c ヨーク
 144a、144b ヨーク
 26a、26a’、26b、26b’、27、36、36’、37 磁力線
 145a、145b 磁力線
 41、41a ヒーター
 42 ヒーター用電源
 71a、71b バッキングプレート
 73a、73b 電気絶縁シート
 77 プラズマ発生用直流電源
 110、120、130 真空槽
 141a、141b 円筒形ターゲット
 310、310a スパッタ粒子捕集シールド
 M~M 補助永久磁石
Reference Signs List 1, 3 film-formed object 4 film-formed object support roller 20, 30, 140, 150 space 21a, 21b, 31 target 22a, 22b, 23a, 23b, 28a, 28b, 32, 33 permanent magnet 38a, 38b, 142a , 142b, 143a, 143b Permanent magnets 145a, 145b Permanent magnets 24a, 24b, 29a, 29b, 29c, 34, 39a, 39b, 39c Yokes 144a, 144b Yokes 26a, 26a', 26b, 26b', 27, 36, 36 ', 37 Magnetic lines of force 145a, 145b Magnetic lines of force 41, 41a Heater 42 Power source for heater 71a, 71b Backing plate 73a, 73b Electrical insulation sheet 77 DC power source for plasma generation 110, 120, 130 Vacuum chamber 141a, 141b Cylindrical target 310, 310a Sputtering Particle collection shield M1 - M4 auxiliary permanent magnet

Claims (26)

  1.  互いに対向して配置された第1ターゲットおよび第2ターゲットと、
     上記第1ターゲットの裏面に設けられた、上記第1ターゲットの外周部に対応する部分に磁化方向が上記第1ターゲットに対して垂直となるように設けられた第1永久磁石と上記第1ターゲットの中央部に対応する部分に上記第1永久磁石と逆極性となるように設けられた第2永久磁石と上記第1永久磁石および上記第2永久磁石を互いに結合する第1ヨークとにより形成された第1磁気回路と、
     上記第2ターゲットの裏面に設けられた、上記第2ターゲットの外周部に対応する部分に磁化方向が上記第2ターゲットに対して垂直となり、かつ上記第1永久磁石と逆極性となるように設けられた第3永久磁石と上記第2ターゲットの中央部に対応する部分に上記第3永久磁石と逆極性となるように設けられた第4永久磁石と上記第3永久磁石および上記第4永久磁石を互いに結合する第2ヨークとにより形成された第2磁気回路と、
     上記第1ターゲットの一端側に上記第1永久磁石に平行に上記第1永久磁石と同一の極性となるように設けられた第5永久磁石と、
     上記第2ターゲットの一端側に上記第3永久磁石に平行に、かつ上記第5永久磁石に対向して上記第3永久磁石と同一の極性となるように設けられた第6永久磁石と、
     上記第5永久磁石および上記第6永久磁石を上記第1磁気回路および上記第2磁気回路の外部で互いに結合する第3ヨークと、
    を有するスパッタリング成膜源。
    a first target and a second target arranged to face each other;
    A first permanent magnet provided on the back surface of the first target and provided in a portion corresponding to the outer peripheral portion of the first target so that the magnetization direction is perpendicular to the first target; and the first target. a second permanent magnet provided in a portion corresponding to the central portion of the first permanent magnet so as to have a polarity opposite to that of the first permanent magnet; and a first yoke connecting the first permanent magnet and the second permanent magnet to each other a first magnetic circuit;
    Provided on the back surface of the second target, a portion corresponding to the outer peripheral portion of the second target is provided so that the magnetization direction is perpendicular to the second target and has a polarity opposite to that of the first permanent magnet. and a fourth permanent magnet provided in a portion corresponding to the central portion of the second target so as to have a polarity opposite to that of the third permanent magnet, the third permanent magnet, and the fourth permanent magnet. a second magnetic circuit formed by a second yoke coupling the
    a fifth permanent magnet provided on one end side of the first target in parallel with the first permanent magnet so as to have the same polarity as the first permanent magnet;
    a sixth permanent magnet provided on one end side of the second target parallel to the third permanent magnet and facing the fifth permanent magnet so as to have the same polarity as the third permanent magnet;
    a third yoke coupling the fifth permanent magnet and the sixth permanent magnet to each other outside the first magnetic circuit and the second magnetic circuit;
    A sputtering deposition source having a
  2.  上記第5永久磁石の上記第1永久磁石側の面に磁化方向が上記第5永久磁石の磁化方向と垂直となるように互いに逆極性の第1補助永久磁石および第2補助永久磁石が上記第5永久磁石の先端に向かって順に設けられ、上記第1補助永久磁石の上記第5永久磁石と反対側の磁極は上記第1永久磁石の上記第1ヨーク側の磁極と同じ極性であり、上記第6永久磁石の上記第3永久磁石側の面に磁化方向が上記第6永久磁石の磁化方向と垂直となるように互いに逆極性の第3補助永久磁石および第4補助永久磁石が上記第6永久磁石の先端に向かって順に設けられ、上記第3補助永久磁石の上記第6永久磁石と反対側の磁極は上記第3永久磁石の上記第2ヨーク側の磁極と同じ極性である請求項1記載のスパッタリング成膜源。 A first auxiliary permanent magnet and a second auxiliary permanent magnet having opposite polarities are mounted on the surface of the fifth permanent magnet on the first permanent magnet side so that the magnetization direction is perpendicular to the magnetization direction of the fifth permanent magnet. 5 permanent magnets, the magnetic pole of the first auxiliary permanent magnet on the side opposite to the fifth permanent magnet has the same polarity as the magnetic pole of the first permanent magnet on the first yoke side, and A third auxiliary permanent magnet and a fourth auxiliary permanent magnet having opposite polarities are mounted on the surface of the sixth permanent magnet on the side of the third permanent magnet so that the magnetization direction is perpendicular to the magnetization direction of the sixth permanent magnet. 2. A magnetic pole of said third auxiliary permanent magnet which is provided in order toward the tip of said permanent magnet and which is on the opposite side of said sixth permanent magnet has the same polarity as the magnetic pole of said third permanent magnet on said second yoke side. A sputtering deposition source as described.
  3.  上記第2永久磁石および上記第4永久磁石が上記第3ヨーク側に寄って配置されている請求項1記載のスパッタリング成膜源。 The sputtering deposition source according to claim 1, wherein the second permanent magnet and the fourth permanent magnet are arranged closer to the third yoke.
  4.  上記第1ターゲットと上記第1永久磁石および上記第2永久磁石との間および上記第2ターゲットと上記第3永久磁石および上記第4永久磁石との間にそれぞれバッキングプレートが設けられている請求項1記載のスパッタリング成膜源。 3. A backing plate is provided between said first target and said first and second permanent magnets and between said second target and said third and fourth permanent magnets, respectively. 2. The sputtering deposition source according to 1.
  5.  上記第1ターゲットの外周の近傍および上記第2ターゲットの外周の近傍にそれぞれターゲットシールドが設けられている請求項1記載のスパッタリング成膜源。 The sputtering deposition source according to claim 1, wherein target shields are provided in the vicinity of the outer periphery of the first target and in the vicinity of the outer periphery of the second target.
  6.  上記第3ヨークが上記スパッタリング成膜源の筐体を兼用する請求項1記載のスパッタリング成膜源。 The sputtering film formation source according to claim 1, wherein the third yoke also serves as a housing of the sputtering film formation source.
  7.  互いに対向して配置されたターゲットおよびスパッタ粒子捕集シールドと、
     上記ターゲットの裏面に設けられた、上記ターゲットの外周部に対応する部分に磁化方向が上記ターゲットに対して垂直となるように設けられた第7永久磁石と上記ターゲットの中央部に対応する部分に上記第7永久磁石と逆極性となるように設けられた第8永久磁石と上記第7永久磁石および上記第8永久磁石を互いに結合する第4ヨークとにより形成された磁気回路と、
     上記ターゲットの一端側に上記第7永久磁石に平行に上記第7永久磁石と同一の極性となるように設けられた第9永久磁石と、
     上記スパッタ粒子捕集シールドの一端側に上記第7永久磁石に平行に、かつ上記第9永久磁石に対向して上記第9永久磁石と同一の極性となるように設けられた第10永久磁石と、
     上記第9永久磁石および上記第10永久磁石を上記磁気回路および上記スパッタ粒子捕集シールドの外部で互いに結合する第5ヨークと、
    を有するスパッタリング成膜源。
    a target and a sputter particle collection shield positioned opposite each other;
    A seventh permanent magnet provided on the back surface of the target and corresponding to the outer peripheral portion of the target so that the magnetization direction is perpendicular to the target, and a portion corresponding to the central portion of the target. a magnetic circuit formed by an eighth permanent magnet provided to have a polarity opposite to that of the seventh permanent magnet and a fourth yoke coupling the seventh permanent magnet and the eighth permanent magnet to each other;
    a ninth permanent magnet provided on one end side of the target in parallel with the seventh permanent magnet so as to have the same polarity as the seventh permanent magnet;
    a tenth permanent magnet provided on one end side of the sputter particle collection shield parallel to the seventh permanent magnet and opposed to the ninth permanent magnet so as to have the same polarity as the ninth permanent magnet; ,
    a fifth yoke coupling the ninth permanent magnet and the tenth permanent magnet to each other outside the magnetic circuit and the sputter particle collection shield;
    A sputtering deposition source having a
  8.  上記第9永久磁石の上記第7永久磁石側の面に磁化方向が上記第9永久磁石の磁化方向と垂直となるように互いに逆極性の第5補助永久磁石および第6補助永久磁石が上記第9永久磁石の先端に向かって順に設けられ、上記第5補助永久磁石の上記第9永久磁石と反対側の磁極は上記第7永久磁石の上記第4ヨーク側の磁極と同じ極性である請求項7記載のスパッタリング成膜源。 On the surface of the ninth permanent magnet on the seventh permanent magnet side, a fifth auxiliary permanent magnet and a sixth auxiliary permanent magnet having opposite polarities are mounted on the surface of the ninth permanent magnet so that the magnetization direction is perpendicular to the magnetization direction of the ninth permanent magnet. 9. The magnetic pole of the fifth auxiliary permanent magnet on the opposite side of the ninth permanent magnet is the same polarity as the magnetic pole of the seventh permanent magnet on the fourth yoke side. 8. The sputtering deposition source according to 7 above.
  9.  上記第8永久磁石が上記第5ヨーク側に寄って配置されている請求項7記載のスパッタリング成膜源。 The sputtering deposition source according to claim 7, wherein the eighth permanent magnet is arranged closer to the fifth yoke.
  10.  上記スパッタ粒子捕集シールドの裏面にヒーターが設けられている請求項7記載のスパッタリング成膜源。 The sputtering deposition source according to claim 7, wherein a heater is provided on the back surface of the sputter particle collection shield.
  11.  上記スパッタ粒子捕集シールドは上記ターゲットに平行に設けられている請求項7記載のスパッタリング成膜源。 The sputtering deposition source according to claim 7, wherein the sputter particle collection shield is provided parallel to the target.
  12.  上記スパッタ粒子捕集シールドは、上記スパッタ粒子捕集シールドと上記ターゲットとの間の距離が上記第9永久磁石および上記第10永久磁石に向かって直線的に増加するように上記ターゲットに対して傾斜している請求項7記載のスパッタリング成膜源。 The sputter particle trapping shield is inclined with respect to the target such that the distance between the sputter particle trapping shield and the target increases linearly toward the ninth permanent magnet and the tenth permanent magnet. 8. The sputtering deposition source according to claim 7.
  13.  上記スパッタ粒子捕集シールドは、上記スパッタ粒子捕集シールドと上記ターゲットとの間の距離が上記第9永久磁石および上記第10永久磁石に向かって増加するように上記ターゲットに向かって凸の湾曲した曲線状の断面形状を有する請求項7記載のスパッタリング成膜源。 The sputter particle trapping shield is curved convexly toward the target such that the distance between the sputter particle trapping shield and the target increases toward the ninth and tenth permanent magnets. 8. A sputtering deposition source according to claim 7, having a curved cross-sectional shape.
  14.  上記ターゲットと上記第7永久磁石および上記第8永久磁石との間にバッキングプレートが設けられている請求項7記載のスパッタリング成膜源。 The sputtering deposition source according to claim 7, wherein a backing plate is provided between the target and the seventh and eighth permanent magnets.
  15.  上記ターゲットの外周の近傍にターゲットシールドが設けられている請求項7記載のスパッタリング成膜源。 The sputtering deposition source according to claim 7, wherein a target shield is provided near the outer periphery of the target.
  16.  上記第5ヨークが上記スパッタリング成膜源の筐体を兼用する請求項7記載のスパッタリング成膜源。 The sputtering film formation source according to claim 7, wherein the fifth yoke also serves as a housing of the sputtering film formation source.
  17.  互いに平行に対向して配置された第1円筒形ターゲットおよび第2円筒形ターゲットと、
     上記第1円筒形ターゲットの内部に設けられた、一方の磁極が上記第1円筒形ターゲットの内周面に対向するように、かつ上記第1円筒形ターゲットの中心軸方向に延在して設けられた第11永久磁石と上記第11永久磁石の外周を取り囲むように上記第11永久磁石から離れてかつ上記第11永久磁石と逆極性に設けられた第12永久磁石と上記第11永久磁石および上記第12永久磁石を互いに結合する第6ヨークとにより形成された第3磁気回路と、
     上記第2円筒形ターゲットの内部に設けられた、一方の磁極が上記第2円筒形ターゲットの内周面に対向するように、かつ上記第2円筒形ターゲットの中心軸方向に延在して設けられ、かつ上記第11永久磁石と逆極性に設けられた第13永久磁石と上記第13永久磁石の外周を取り囲むように上記第13永久磁石から離れてかつ上記第13永久磁石と逆極性に設けられた第14永久磁石と上記第13永久磁石および上記第14永久磁石を互いに結合する第7ヨークとにより形成された第4磁気回路と、
     上記第1円筒形ターゲットに対向して上記第1円筒形ターゲットの中心軸と上記第2円筒形ターゲットの中心軸とを含む平面に平行に設けられた第15永久磁石と、
     上記第2円筒形ターゲットに対向して上記平面に平行に、かつ上記第15永久磁石に対向して設けられた上記第15永久磁石と同じ極性の第16永久磁石と、
     上記第15永久磁石および上記第16永久磁石を上記第3磁気回路および上記第4磁気回路の外部で互いに結合する第8ヨークと、
    を有するスパッタリング成膜源。
    a first cylindrical target and a second cylindrical target arranged parallel and facing each other;
    One magnetic pole provided inside the first cylindrical target is provided so as to face the inner peripheral surface of the first cylindrical target and extend in the direction of the central axis of the first cylindrical target. an eleventh permanent magnet and a twelfth permanent magnet which are separated from the eleventh permanent magnet so as to surround the outer periphery of the eleventh permanent magnet and which are opposite in polarity to the eleventh permanent magnet, the eleventh permanent magnet, and a third magnetic circuit formed by a sixth yoke coupling the twelfth permanent magnets together;
    One magnetic pole provided inside the second cylindrical target is provided so as to face the inner peripheral surface of the second cylindrical target and extend in the direction of the central axis of the second cylindrical target. a thirteenth permanent magnet provided with a polarity opposite to that of the eleventh permanent magnet; a fourth magnetic circuit formed by a fourteenth permanent magnet and a seventh yoke coupling the thirteenth permanent magnet and the fourteenth permanent magnet to each other;
    a fifteenth permanent magnet facing the first cylindrical target and parallel to a plane containing the central axis of the first cylindrical target and the central axis of the second cylindrical target;
    a 16th permanent magnet having the same polarity as the 15th permanent magnet provided parallel to the plane facing the second cylindrical target and facing the 15th permanent magnet;
    an eighth yoke coupling the fifteenth permanent magnet and the sixteenth permanent magnet to each other outside the third magnetic circuit and the fourth magnetic circuit;
    A sputtering deposition source having a
  18.  上記第15永久磁石の上記第1円筒形ターゲット側の面に磁化方向が上記第15永久磁石の磁化方向と垂直となるように互いに逆極性の第7補助永久磁石および第8補助永久磁石が上記第15永久磁石の先端に向かって順に設けられ、上記第7補助永久磁石の上記第15永久磁石と反対側の磁極は上記第15永久磁石の上記第8ヨーク側の磁極と同じ極性であり、上記第16永久磁石の上記第2円筒形ターゲット側の面に磁化方向が上記第16永久磁石の磁化方向と垂直となるように互いに逆極性の第9補助永久磁石および第10補助永久磁石が上記第16永久磁石の先端に向かって順に設けられ、上記第9補助永久磁石の上記第16永久磁石と反対側の磁極は上記第16永久磁石の上記第8ヨーク側の磁極と同じ極性である請求項17記載のスパッタリング成膜源。 A seventh auxiliary permanent magnet and an eighth auxiliary permanent magnet having opposite polarities are mounted on the surface of the fifteenth permanent magnet on the first cylindrical target side such that the magnetization direction is perpendicular to the magnetization direction of the fifteenth permanent magnet. The magnetic pole of the seventh auxiliary permanent magnet, which is provided in order toward the tip of the fifteenth permanent magnet and is opposite to the fifteenth permanent magnet, has the same polarity as the magnetic pole of the fifteenth permanent magnet on the eighth yoke side, A ninth auxiliary permanent magnet and a tenth auxiliary permanent magnet having opposite polarities are mounted on the surface of the sixteenth permanent magnet on the second cylindrical target side such that the magnetization direction is perpendicular to the magnetization direction of the sixteenth permanent magnet. The magnetic pole of the ninth auxiliary permanent magnet, which is provided in order toward the tip of the sixteenth permanent magnet and on the side opposite to the sixteenth permanent magnet, has the same polarity as the magnetic pole of the sixteenth permanent magnet on the eighth yoke side. Item 18. The sputtering deposition source according to Item 17.
  19.  上記第8ヨークが上記スパッタリング成膜源の筐体を兼用する請求項17記載のスパッタリング成膜源。 The sputtering film formation source according to claim 17, wherein the eighth yoke also serves as a housing of the sputtering film formation source.
  20.  互いに対向して配置された円筒形ターゲットおよびスパッタ粒子捕集シールドと、
     上記円筒形ターゲットの内部に設けられた、一方の磁極が上記円筒形ターゲットの内周面に対向するように、かつ上記円筒形ターゲットの中心軸方向に延在して設けられた第17永久磁石と上記第17永久磁石の外周を取り囲むように上記第17永久磁石から離れてかつ上記第17永久磁石と逆極性に設けられた第18永久磁石と上記第17永久磁石および上記第18永久磁石を互いに結合する第9ヨークとにより形成された磁気回路と、
     上記円筒形ターゲットに対向して上記円筒形ターゲットの中心軸を含む平面に平行に設けられた第19永久磁石と、
     上記スパッタ粒子捕集シールドに対向して上記平面に平行に、かつ上記第19永久磁石に対向して設けられた上記第19永久磁石と同じ極性の第20永久磁石と、
     上記第19永久磁石および上記第20永久磁石を上記磁気回路および上記スパッタ粒子捕集シールドの外部で互いに結合する第10ヨークと、
    を有するスパッタリング成膜源。
    a cylindrical target and a sputter particle collection shield positioned opposite each other;
    A seventeenth permanent magnet provided inside the cylindrical target so that one magnetic pole faces the inner peripheral surface of the cylindrical target and extends in the central axis direction of the cylindrical target. and an 18th permanent magnet provided away from the 17th permanent magnet so as to surround the outer periphery of the 17th permanent magnet and having a polarity opposite to that of the 17th permanent magnet, the 17th permanent magnet, and the 18th permanent magnet a magnetic circuit formed by a ninth yoke coupled to each other;
    a nineteenth permanent magnet facing the cylindrical target and parallel to a plane including the central axis of the cylindrical target;
    a twentieth permanent magnet having the same polarity as the nineteenth permanent magnet, provided facing the sputtered particle collection shield in parallel with the plane and facing the nineteenth permanent magnet;
    a tenth yoke coupling the nineteenth permanent magnet and the twentieth permanent magnet to each other outside the magnetic circuit and the sputter particle collection shield;
    A sputtering deposition source having a
  21.  上記第19永久磁石の上記円筒形ターゲット側の面に互いに逆極性の第11補助永久磁石および第12補助永久磁石が上記第19永久磁石の先端に向かって順に設けられている請求項20記載のスパッタリング成膜源。 21. The apparatus according to claim 20, wherein an eleventh auxiliary permanent magnet and a twelfth auxiliary permanent magnet having polarities opposite to each other are provided on the cylindrical target side surface of the nineteenth permanent magnet in order toward the tip of the nineteenth permanent magnet. Sputtering deposition source.
  22.  上記スパッタ粒子捕集シールドの裏面にヒーターが設けられている請求項20記載のスパッタリング成膜源。 The sputtering deposition source according to claim 20, wherein a heater is provided on the back surface of the sputter particle collection shield.
  23.  上記スパッタ粒子捕集シールドは上記平面に垂直に設けられている請求項20記載のスパッタリング成膜源。 21. The sputtering deposition source according to claim 20, wherein said sputter particle collection shield is provided perpendicular to said plane.
  24.  上記スパッタ粒子捕集シールドは上記平面に対して傾斜している請求項20記載のスパッタリング成膜源。 The sputtering deposition source according to claim 20, wherein said sputter particle collection shield is inclined with respect to said plane.
  25.  上記第10ヨークが上記スパッタリング成膜源の筐体を兼用する請求項20記載のスパッタリング成膜源。 The sputtering film formation source according to claim 20, wherein the tenth yoke also serves as a housing of the sputtering film formation source.
  26.  請求項1~25のいずれか一項記載のスパッタリング成膜源を有する成膜装置。 A deposition apparatus having the sputtering deposition source according to any one of claims 1 to 25.
PCT/JP2022/033988 2021-09-27 2022-09-12 Sputtering deposition source and deposition device WO2023047995A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021-156337 2021-09-27
JP2021156337A JP7150364B1 (en) 2021-09-27 2021-09-27 Sputtering deposition source and deposition equipment

Publications (1)

Publication Number Publication Date
WO2023047995A1 true WO2023047995A1 (en) 2023-03-30

Family

ID=83558420

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/033988 WO2023047995A1 (en) 2021-09-27 2022-09-12 Sputtering deposition source and deposition device

Country Status (2)

Country Link
JP (1) JP7150364B1 (en)
WO (1) WO2023047995A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008127582A (en) * 2006-11-16 2008-06-05 Osaka Vacuum Ltd Composite type sputtering system and composite type sputtering method
JP2009191340A (en) * 2008-02-18 2009-08-27 Seiko Epson Corp Film-forming apparatus and film-forming method
JP2009293089A (en) * 2008-06-06 2009-12-17 Panasonic Corp Sputtering system
JP2012201971A (en) * 2011-03-28 2012-10-22 Shibaura Mechatronics Corp Film deposition device

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008127582A (en) * 2006-11-16 2008-06-05 Osaka Vacuum Ltd Composite type sputtering system and composite type sputtering method
JP2009191340A (en) * 2008-02-18 2009-08-27 Seiko Epson Corp Film-forming apparatus and film-forming method
JP2009293089A (en) * 2008-06-06 2009-12-17 Panasonic Corp Sputtering system
JP2012201971A (en) * 2011-03-28 2012-10-22 Shibaura Mechatronics Corp Film deposition device

Also Published As

Publication number Publication date
JP7150364B1 (en) 2022-10-11
JP2023047435A (en) 2023-04-06

Similar Documents

Publication Publication Date Title
US6841051B2 (en) High-power ion sputtering magnetron
TWI427170B (en) Film forming method and thin film forming apparatus
JP5485077B2 (en) Sputtering system
EP1905865A1 (en) Sputtering apparatus and method for manufacturing transparent conducting film
KR101050121B1 (en) Sputtering Device and Sputtering Method
KR20130129859A (en) Sputtering method
KR100984965B1 (en) Sputtering apparatus and film-forming processes
TWI433950B (en) Film forming method
JP2009293089A (en) Sputtering system
JP2012052191A (en) Sputtering apparatus
WO2023047995A1 (en) Sputtering deposition source and deposition device
WO2007046244A1 (en) Sputtering apparatus
CN101638773A (en) Sputtering device
JP5853487B2 (en) Discharge electrode and discharge method
WO2013073443A1 (en) Plasma modification and film formation apparatus
KR20190055710A (en) Sputter apparatus
KR102661883B1 (en) Film formation apparatus and manufacturing method of electronic device
JP2006213963A (en) Low temperature sputtering process and system
CN103074586A (en) Low-temperature and low-damage multifunctional composite coating device and method
CN203049026U (en) Low-temperature low-damage multifunctional composite film coating device
CN111902562B (en) Film forming method
EP2811508B1 (en) Gas configuration for magnetron deposition systems
KR102617710B1 (en) Substrate treatment apparatus
WO2022230857A1 (en) Sputtering device
JP2000239839A (en) Sputtering device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22872749

Country of ref document: EP

Kind code of ref document: A1