WO2013073443A1 - Plasma modification and film formation apparatus - Google Patents

Plasma modification and film formation apparatus Download PDF

Info

Publication number
WO2013073443A1
WO2013073443A1 PCT/JP2012/078966 JP2012078966W WO2013073443A1 WO 2013073443 A1 WO2013073443 A1 WO 2013073443A1 JP 2012078966 W JP2012078966 W JP 2012078966W WO 2013073443 A1 WO2013073443 A1 WO 2013073443A1
Authority
WO
WIPO (PCT)
Prior art keywords
plasma
ecr
film forming
forming apparatus
substrate
Prior art date
Application number
PCT/JP2012/078966
Other languages
French (fr)
Japanese (ja)
Inventor
建典 笹井
Original Assignee
東海ゴム工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 東海ゴム工業株式会社 filed Critical 東海ゴム工業株式会社
Publication of WO2013073443A1 publication Critical patent/WO2013073443A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/02Pretreatment of the material to be coated
    • C23C14/021Cleaning or etching treatments
    • C23C14/022Cleaning or etching treatments by means of bombardment with energetic particles or radiation
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • C23C14/35Sputtering by application of a magnetic field, e.g. magnetron sputtering
    • C23C14/354Introduction of auxiliary energy into the plasma
    • C23C14/357Microwaves, e.g. electron cyclotron resonance enhanced sputtering
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/56Apparatus specially adapted for continuous coating; Arrangements for maintaining the vacuum, e.g. vacuum locks
    • C23C14/562Apparatus specially adapted for continuous coating; Arrangements for maintaining the vacuum, e.g. vacuum locks for coating elongated substrates
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05HPLASMA TECHNIQUE; PRODUCTION OF ACCELERATED ELECTRICALLY-CHARGED PARTICLES OR OF NEUTRONS; PRODUCTION OR ACCELERATION OF NEUTRAL MOLECULAR OR ATOMIC BEAMS
    • H05H1/00Generating plasma; Handling plasma
    • H05H1/24Generating plasma
    • H05H1/46Generating plasma using applied electromagnetic fields, e.g. high frequency or microwave energy
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05HPLASMA TECHNIQUE; PRODUCTION OF ACCELERATED ELECTRICALLY-CHARGED PARTICLES OR OF NEUTRONS; PRODUCTION OR ACCELERATION OF NEUTRAL MOLECULAR OR ATOMIC BEAMS
    • H05H1/00Generating plasma; Handling plasma
    • H05H1/24Generating plasma
    • H05H1/46Generating plasma using applied electromagnetic fields, e.g. high frequency or microwave energy
    • H05H1/461Microwave discharges
    • H05H1/4622Microwave discharges using waveguides

Definitions

  • the present invention relates to a plasma reforming film forming apparatus capable of continuously performing reforming of the surface of a substrate and film formation on the surface in one chamber.
  • a product using a functional resin film has a problem that its lifetime is shorter than that of a conventional glass product.
  • One possible cause is a nodule (bloomed granular lump) derived from the resin component on the surface of the resin substrate. That is, when the functional thin film is formed on the resin base material, if there is a nodule on the surface of the resin base material, the thin film is formed unevenly along the nodule. If the thin film has irregularities, the electric field concentrates on the convex portions and the device is easily damaged.
  • FIG. 7 shows a cross-sectional view of the organic EL device.
  • the organic EL device 8 includes a hard coat layer 80, a resin base material 81, a front gas barrier film 82, an anode 83, a hole transport layer 84, and an electron transport from the front to the rear.
  • the light emission principle of the organic EL device 8 will be briefly described.
  • holes holes
  • electrons are generated from the cathode 86, respectively.
  • the holes pass from the anode 83 through the hole transport layer 84 and enter the electron transport light emitting layer 85.
  • electrons enter the electron transporting light emitting layer 85 from the cathode 86.
  • the electron-transporting light-emitting layer 85 light is emitted by combining holes and electrons.
  • the hard coat layer 80, the resin base material 81, the front gas barrier film 82, the anode 83, and the hole transport layer 84 disposed in front of the electron transporting light emitting layer 85 are transparent. For this reason, the emitted light can be viewed from the front of the organic EL device 8.
  • the gas barrier film 82 and the anode 83 are formed on the rear surface of the resin substrate 81 by sputtering, CVD (Chemical Vapor Deposition), or the like.
  • CVD Chemical Vapor Deposition
  • the unevenness of the film increases along the nodule. Then, the electric field concentrates on the convex portion of the anode 83, and the electron transporting light emitting layer 85 deteriorates due to the influence, and the light is not emitted.
  • the present inventor examined a method of modifying the surface of the resin base material by irradiating microwave plasma.
  • microwave plasma is generated under a pressure of 5 Pa or more. That is, it is difficult to generate microwave plasma under a lower pressure.
  • film formation by sputtering or the like is preferably performed under a low pressure of about 0.3 to 1 Pa in order to suppress the intrusion of impurities and maintain the film quality. Therefore, conventionally, since the pressure at which microwave plasma can be generated is different from the pressure at the time of film formation, it is necessary to perform the reforming process and the film forming process in separate chambers (for example, Patent Document 1). FIG. 7 and FIG. 8).
  • Patent Document 1 discloses a mode in which a magnet is disposed on the chamber side of the dielectric part.
  • a magnet is arranged on the chamber side of the dielectric part, the magnet is exposed to the generated plasma and the microwave propagating on the surface of the dielectric part. For this reason, the temperature of a magnet rises and magnetism will fall. Therefore, it is difficult to stably generate the microwave plasma under a low pressure.
  • Patent Document 3 discloses a mode in which a hollow hole is formed on the chamber side of the dielectric part. However, according to this aspect, it is difficult to generate the microwave plasma uniformly. In addition, it is difficult to produce stably under low pressure.
  • the present invention has been made in view of such a situation, and in one low-pressure chamber, plasma modification that can continuously perform the modification of the surface of the substrate and the film formation on the surface. It is an object to provide a film formation apparatus.
  • a plasma-modified film-forming apparatus of the present invention includes a chamber, a transport unit disposed in the chamber and transporting a substrate, and electron cyclotron resonance (ECR) using microwaves. And a film forming apparatus for forming a thin film on the surface of the substrate, and the plasma is generated in the one chamber.
  • a plasma-modified film forming apparatus capable of continuously modifying the surface of the substrate and forming a film on the surface, wherein the ECR plasma generating apparatus is a rectangular waveguide that transmits microwaves.
  • a wave tube a slot antenna disposed on one surface of the rectangular waveguide, and having a slot through which the microwave passes, and a surface of the plasma generation region side disposed to cover the slot of the slot antenna.
  • a dielectric part parallel to the incident direction of the microwave incident from the slot, a support plate disposed on the back surface of the dielectric part and supporting the dielectric part, and disposed on the back surface of the support plate.
  • a permanent magnet for forming a magnetic field in the plasma generation region, and generating plasma while generating ECR by the microwave propagating from the dielectric part into the magnetic field.
  • the surface modification treatment of the substrate is performed using an ECR plasma generating apparatus.
  • ECR plasma generation apparatus high-density plasma can be stably generated even under a low pressure of 1 Pa or less. The reason for this will be described below.
  • the surface on the plasma generation region side is referred to as “front surface”, and the surface facing away from the surface is referred to as “back surface”.
  • FIG. 6 is a perspective view of a conventional plasma generation unit.
  • the plasma generation unit 9 includes a waveguide 90, a slot antenna 91, and a dielectric unit 92.
  • the slot antenna 91 is disposed so as to close the right opening of the waveguide 90. That is, the slot antenna 91 forms the right wall of the waveguide 90.
  • the slot antenna 91 is formed with a plurality of slot-like slots 910.
  • the dielectric part 92 is disposed on the right surface (chamber side) of the slot antenna 91 so as to cover the slot 910.
  • the microwave transmitted from the front end of the waveguide 90 passes through the slot 910 and enters the dielectric portion 92 as indicated by the white arrow Y1 in the horizontal direction in the drawing.
  • the microwave incident on the dielectric portion 92 propagates along the right surface 920 of the dielectric portion 92 as indicated by the white arrow Y2 in the front-rear direction in the drawing. Thereby, the microwave plasma P is generated.
  • the incident direction (arrow Y1) of the microwave that enters the dielectric portion 92 from the slot 910 and the right surface 920 of the dielectric portion 92 are orthogonal to each other. For this reason, the microwave incident on the dielectric part 92 is blocked by the generated microwave plasma P and propagates through the right surface 920 of the dielectric part 92 by changing the traveling direction by 90 ° (arrow Y2). As described above, since the microwave is perpendicularly incident on the generated microwave plasma P, the microwave that is the plasma source is difficult to propagate to the microwave plasma P. For this reason, it is considered that plasma generation under low pressure is difficult.
  • FIG. 3 is a perspective view of a plasma generation unit in the ECR plasma generation apparatus of the present invention.
  • FIG. 3 is a diagram showing an embodiment of the plasma generation unit (see the embodiment described later).
  • FIG. 3 does not limit the ECR plasma generation apparatus of this invention at all.
  • the plasma generation unit 30 includes a waveguide 31, a slot antenna 32, a dielectric unit 33, a support plate 34, and a permanent magnet 35.
  • a tubular body 51 that transmits microwaves is connected to the left of the rear end of the waveguide 31.
  • the slot antenna 32 is disposed so as to close the upper opening of the waveguide 31. That is, the slot antenna 32 forms the upper wall of the waveguide 31.
  • the slot antenna 32 is formed with a plurality of slot-like slots 320.
  • the dielectric portion 33 is disposed on the upper surface of the slot antenna 32 so as to cover the slot 320.
  • the microwave transmitted from the tube part 51 passes through the slot 320 and enters the dielectric part 33 as indicated by the vertical arrow Y1 in the vertical direction in the drawing.
  • the microwave incident on the dielectric portion 33 propagates mainly along the right surface 330 of the dielectric portion 33 as indicated by the white arrow Y2 in the front-rear direction in the drawing. Thereby, microwave plasma is generated.
  • the incident direction of the microwave incident on the dielectric portion 33 from the slot 320 is parallel to the right surface 330 (surface on the plasma generation region side) of the dielectric portion 33. Since the microwave is incident along the generated microwave plasma, the microwave that is the plasma source easily propagates to the microwave plasma.
  • Each of the eight permanent magnets 35 is arranged on the left side of the dielectric portion 33 via the support plate 34.
  • Each of the eight permanent magnets 35 has an N pole on the right side and an S pole on the left side.
  • Magnetic field lines M are generated from each permanent magnet 35 to the right. Thereby, a magnetic field is formed on the right side (plasma generation region) of the dielectric portion 33.
  • Electrons in the generated microwave plasma perform a clockwise turning motion with respect to the direction of the magnetic force line M in accordance with the cyclotron angular frequency ⁇ ce .
  • the microwave propagating in the microwave plasma excites a clockwise circular polarization called an electron cyclotron wave.
  • the electron cyclotron wave propagates to the right and its angular frequency ⁇ matches the cyclotron angular frequency ⁇ ce , the electron cyclotron wave is attenuated and wave energy is absorbed by the electrons. That is, ECR occurs.
  • ECR occurs when the frequency of the microwave is 2.45 GHz, ECR occurs at a magnetic flux density of 0.0875T.
  • Electrons whose energy has been increased by ECR collide with surrounding neutral particles while being restrained by the magnetic lines of force M. Thereby, neutral particles are ionized one after another. Electrons generated by ionization are also accelerated by ECR and further ionize neutral particles. In this way, the high-density ECR plasma P1 is generated on the right side of the dielectric portion 33.
  • the microwave is incident along the generated microwave plasma, and the plasma density is increased by using the ECR.
  • Plasma can be generated even under an extremely low pressure of 0.1 Pa or less. That is, when the ECR plasma generation apparatus of the present invention is used, high-density plasma can be stably generated even under a low pressure in which film formation is performed. Therefore, the reforming process and the film forming process, which conventionally had to be performed in separate chambers due to the difference in processing pressure, can be performed continuously in one low-pressure chamber. Thereby, the gas supply, discharge device, substrate transport device, and the like, which are conventionally required for each of the reforming and film forming chambers, can be combined into one. Therefore, the equipment cost can be reduced.
  • the ECR plasma generation apparatus of the present invention it is possible to generate a plasma having a large energy with a low potential. Thereby, a large modification effect can be obtained while suppressing roughening and deformation of the substrate.
  • long plasma can be generated by arranging slots in the longitudinal direction using a long rectangular waveguide. Therefore, even when the substrate has a large width and a large area, the modification treatment can be easily performed.
  • the nodules on the surface of the resin base material can be refined by the modification treatment. For this reason, the unevenness
  • the pressure in the chamber is set to 0.05 Pa or more and 3 Pa or less to perform reforming and film formation.
  • the inside of the chamber By setting the inside of the chamber to a high vacuum state of 0.05 Pa or more and 3 Pa or less, the plasma for sputtering film formation can be stabilized and intrusion of impurities can be suppressed. In sputter deposition, the mean free path of the target particles can be increased. Thereby, the film quality of the formed thin film improves.
  • the support plate of the ECR plasma generation apparatus includes a support plate cooling means for suppressing a temperature increase of the permanent magnet.
  • the permanent magnet is arranged on the back side of the dielectric part via the support plate. For this reason, when generating plasma, the temperature of the permanent magnet is likely to rise. When the temperature of the permanent magnet is equal to or higher than the Curie temperature, the magnetism is lost. According to this configuration, the temperature rise of the permanent magnet is suppressed by the support plate cooling means. For this reason, there is little possibility that the magnetism of a permanent magnet will be lost. Therefore, according to this configuration, a stable magnetic field can be formed.
  • the film forming apparatus includes a target and a magnetic field forming unit for forming a magnetic field on the surface of the target, and a magnetron It is better to have a configuration that is a magnetron sputtering film forming apparatus in which the target is sputtered by plasma generated by electric discharge, and the sputtered particles that are ejected adhere to the surface of the substrate to form a thin film.
  • Examples of the film forming method by sputtering include a bipolar sputtering method and a magnetron sputtering method.
  • the magnetron sputtering method secondary electrons jumping out of the target are captured by the magnetic field generated on the target surface. For this reason, it is difficult for the temperature of the base material to rise.
  • the deposition rate can be increased. Therefore, according to this configuration, the deformation of the base material due to heat is small, and a thin film can be formed relatively quickly.
  • the magnetron sputtering film forming apparatus further includes the ECR plasma generation apparatus, and the ECR plasma generation apparatus causes an ECR between the base material and the target. It is better to have a configuration in which plasma is irradiated.
  • a high voltage of several hundred volts is often applied to a target in order to stabilize the generated plasma.
  • particles having a large particle size such as cluster particles may be ejected from the target.
  • particles having a large particle diameter adhere to the substrate, irregularities are generated on the surface of the formed film.
  • oxygen or the like is likely to be adsorbed in the recesses, which may deteriorate the film itself or the partner material in contact with the film.
  • a counterpart material may deteriorate by a convex part.
  • the magnetron sputtering film forming apparatus of the present configuration includes the above-described ECR plasma generating apparatus. That is, in the magnetron sputtering film forming apparatus of this configuration, film formation by magnetron plasma is performed while irradiating ECR plasma. By irradiating the ECR plasma between the substrate and the target, the magnetron plasma can be stably maintained even when the applied voltage is lowered.
  • the conveying means may include a roll member.
  • the chamber can be reduced in size as compared with a case where the substrate is transported linearly using a conveyor or the like.
  • the roll member may have a roll cooling means for lowering the temperature of the outer peripheral surface.
  • the substrate is conveyed while being supported on the outer peripheral surface of the roll member.
  • the substrate is irradiated with ECR plasma.
  • the temperature of the substrate tends to rise.
  • the base material may be deformed or damaged.
  • the temperature of the outer peripheral surface of the roll member can be lowered by the roll cooling means. Therefore, the temperature rise of the conveyed base material can be suppressed. Thereby, the deformation
  • generation apparatus which comprises the same magnetron sputter film-forming apparatus. It is a perspective view of the plasma generation part in the conventional microwave plasma generation apparatus. It is sectional drawing of an organic EL device.
  • Plasma reforming film forming apparatus 10: processing chamber (chamber), 11: supply chamber, 12: winding chamber, 101, 102: opening.
  • ECR plasma generator 40: plasma generator, 41: waveguide (rectangular waveguide), 42: slot antenna, 43: dielectric, 44: support plate, 45: permanent magnet, 420: slot, 430: Left side, 440: Refrigerant passage (support plate cooling means), 441: Cooling pipe.
  • F ′ Film formation film
  • M Magnetic field lines
  • P2 Magnetron plasma.
  • FIG. 1 shows a cross-sectional view in the left-right direction of the plasma modified film forming apparatus of this embodiment.
  • the front side and the back side are the front-rear direction.
  • the plasma modified film forming apparatus 1 includes a processing chamber 10, a processing roll 20, two guide rolls 200 and 201, an ECR plasma generating apparatus 3, a magnetron sputter film forming apparatus 6, A supply chamber 11 and a winding chamber 12 are provided.
  • the supply chamber 11 is made of stainless steel and has a rectangular parallelepiped box shape.
  • the supply chamber 11 is disposed on the left side of the processing chamber 10.
  • An opening 101 through which the substrate F can pass is formed in a partition wall that partitions the supply chamber 11 and the processing chamber 10.
  • a supply roll 21, a guide roll 210, and a microwave transmission unit 50 of the ECR plasma generation apparatus 3 described later are disposed in the supply chamber 11.
  • Both the supply roll 21 and the guide roll 210 have a cylindrical shape that is long in the front-rear direction.
  • a motor (not shown) is connected to the supply roll 21.
  • the base material F is wound around the supply roll 21.
  • the substrate F is a long polyethylene terephthalate (PET) film.
  • the winding chamber 12 is made of stainless steel and has a rectangular parallelepiped box shape.
  • the winding chamber 12 is disposed on the right side of the processing chamber 10.
  • the partition wall that partitions the winding chamber 12 and the processing chamber 10 is formed with an opening 102 through which the processed substrate F (deposition film F ′) can pass.
  • a winding roll 22, a guide roll 220, and a microwave transmission unit 50 of the ECR plasma generation apparatus 4 to be described later are arranged in the winding chamber 12.
  • the winding roll 22 and the guide roll 220 both have a columnar shape that is long in the front-rear direction.
  • a motor (not shown) is connected to the winding roll 22. When the take-up roll 22 rotates counterclockwise by driving the motor, the film formation film F ′ sent from the processing chamber 10 is guided by the guide roll 220 and taken up by the take-up roll 22.
  • the processing chamber 10 is made of stainless steel and has a rectangular parallelepiped box shape.
  • a gas supply hole is formed in a rear wall (not shown) of the processing chamber 10.
  • the gas supply hole is connected to a downstream end of a gas supply pipe for supplying argon (Ar) gas into the processing chamber 10.
  • An exhaust hole is formed in the lower wall of the processing chamber 10.
  • a vacuum exhaust device (not shown) for exhausting the gas inside the processing chamber 10 is connected to the exhaust hole.
  • the processing chamber 10 is included in the chamber of the present invention.
  • the treatment roll 20 has a long cylindrical shape in the front-rear direction.
  • the processing roll 20 is disposed near the center in the processing chamber 10.
  • a rotation shaft is disposed at the center of the processing roll 20 in the axial direction.
  • the processing roll 20 can rotate counterclockwise around the rotation axis.
  • a base material F is supported on the outer peripheral surface of the processing roll 20.
  • the processing roll 20 has a built-in cooling pipe (not shown). As the coolant circulates through the cooling pipe, the outer peripheral surface of the processing roll 20 is cooled.
  • the coolant and the cooling pipe are included in the roll cooling means of the present invention.
  • the two guide rolls 200 and 201 each have a columnar shape that is long in the front-rear direction.
  • the guide roll 200 is disposed on the upper left side of the processing roll 20.
  • the guide roll 201 is disposed on the upper right side of the processing roll 20.
  • the two guide rolls 200 and 201 are arranged in parallel to the processing roll 20 and spaced apart from each other at a predetermined interval.
  • the guide roll 200 can rotate clockwise around the rotation axis.
  • the guide roll 200 conveys the base material F sent from the supply chamber 11 to the processing roll 20.
  • the guide roll 201 can rotate clockwise around the rotation axis.
  • the guide roll 201 conveys the processed substrate F (deposition film F ′) sent from the processing roll 20 to the winding chamber 12.
  • the processing roll 20 and the guide rolls 200 and 201 are included in the roll member and the conveying unit of the present invention.
  • the ECR plasma generator 3 is disposed on the left side of the processing roll 20.
  • the ECR plasma generation apparatus 3 includes a plasma generation unit 30 and a microwave transmission unit 50.
  • the ECR plasma generator 3 generates ECR plasma P1 and modifies the surface of the substrate F with the ECR plasma P1. Details of the ECR plasma generation apparatus 3 will be described later.
  • the magnetron sputtering film forming apparatus 6 is disposed below the processing roll 20.
  • the magnetron sputtering film forming apparatus 6 includes a sputtering unit 60 and an ECR plasma generation apparatus 4.
  • the magnetron sputtering film forming apparatus 6 forms a thin film on the surface of the substrate F by sputtering with the magnetron plasma P2 of the sputtering unit 60 while irradiating the ECR plasma P1 with the ECR plasma generating apparatus 4. Details of the magnetron sputtering film forming apparatus 6 will be described later.
  • FIG. 2 is an enlarged cross-sectional view of the vicinity of the ECR plasma generation apparatus of FIG.
  • FIG. 3 is a perspective view of a plasma generation unit in the ECR plasma generation apparatus.
  • the ECR plasma generation apparatus 3 includes a plasma generation unit 30 and a microwave transmission unit 50.
  • the microwave transmission unit 50 includes a tube unit 51, a microwave power source 52, a microwave oscillator 53, an isolator 54, a power monitor 55, and an EH matching unit 56.
  • the microwave oscillator 53, the isolator 54, the power monitor 55, and the EH matching unit 56 are connected by the tube part 51.
  • the tube unit 51 is connected to the left side of the waveguide 31 of the plasma generation unit 30 through a waveguide hole formed in the left wall of the processing chamber 10.
  • the plasma generation unit 30 includes a waveguide 31, a slot antenna 32, a dielectric unit 33, a support plate 34, and a permanent magnet 35.
  • the waveguide 31 is made of aluminum and has a rectangular parallelepiped box shape opening upward.
  • the waveguide 31 extends in the front-rear direction.
  • the waveguide 31 is included in the rectangular waveguide in the present invention.
  • the tube part 51 and the waveguide 31 are sealed so that the internal pressure is atmospheric pressure or a high vacuum state of 0.01 Pa or less. For this reason, plasma is not generated inside the tube portion 51 and the waveguide 31.
  • the slot antenna 32 is made of aluminum and has a rectangular plate shape.
  • the slot antenna 32 closes the opening of the waveguide 31 from above. That is, the slot antenna 32 forms the upper wall of the waveguide 31.
  • Four slots 320 are formed in the slot antenna 32.
  • the slot 320 has a long hole shape extending in the front-rear direction.
  • the slot 320 is disposed at a position where the electric field is strong.
  • the dielectric portion 33 is made of quartz and has a rectangular parallelepiped shape.
  • the dielectric portion 33 is disposed on the right side of the upper surface of the slot antenna 32.
  • the dielectric portion 33 covers the slot 320 from above.
  • the right surface 330 of the dielectric portion 33 is disposed in parallel to the incident direction Y1 of the microwave incident from the slot 320.
  • the right surface 330 is included in the surface of the dielectric portion 33 on the plasma generation region side.
  • the support plate 34 is made of stainless steel and has a flat plate shape.
  • the support plate 34 is disposed on the upper surface of the slot antenna 32 so as to be in contact with the left surface (back surface) of the dielectric portion 33.
  • a refrigerant passage 340 is formed in the support plate 34.
  • the refrigerant passage 340 has a U shape extending in the front-rear direction.
  • the front end of the refrigerant passage 340 is connected to the cooling pipe 341.
  • the refrigerant passage 340 is connected to a heat exchanger and a pump (both not shown) outside the processing chamber 10 via a cooling pipe 341.
  • the coolant circulates in the path of the refrigerant passage 340 ⁇ the cooling pipe 341 ⁇ the heat exchanger ⁇ the pump ⁇ the cooling pipe 341 ⁇ the refrigerant passage 340 again.
  • the support plate 34 is cooled by the circulation of the coolant.
  • the refrigerant passage 340 and the cooling liquid are included in the support plate cooling means of the present invention.
  • the permanent magnet 35 is a neodymium magnet and has a rectangular parallelepiped shape. Eight permanent magnets 35 are arranged on the left surface (back surface) of the support plate 34. The eight permanent magnets 35 are arranged in series in the front-rear direction. Each of the eight permanent magnets 35 has an N pole on the right side and an S pole on the left side. Magnetic field lines M are generated from each permanent magnet 35 to the right. Thereby, a magnetic field is formed in the plasma generation region on the right side of the dielectric portion 33.
  • FIG. 4 is an enlarged cross-sectional view of the vicinity of the magnetron sputtering film forming apparatus of FIG.
  • FIG. 5 is a perspective view of the plasma generation unit of the ECR plasma generation apparatus constituting the magnetron sputtering film forming apparatus.
  • the magnetron sputtering film forming apparatus 6 includes a sputtering unit 60 and an ECR plasma generation apparatus 4.
  • the sputter unit 60 includes a target 61, a backing plate 62, permanent magnets 63a to 63c, and a cathode 64.
  • the cathode 64 is made of stainless steel and has a rectangular parallelepiped box shape opening upward.
  • An earth shield 65 is disposed around the cathode 64, the target 61, and the backing plate 62.
  • the cathode 64 is disposed on the lower surface of the processing chamber 10 via the earth shield 65.
  • the cathode 64 is connected to a DC pulse power supply 66.
  • the permanent magnets 63a to 63c are arranged inside the cathode 64.
  • Each of the permanent magnets 63a to 63c has a rectangular parallelepiped shape extending in the front-rear direction.
  • the permanent magnets 63a to 63c are spaced apart from each other in the left-right direction and arranged so as to be parallel to each other.
  • the upper side is the S pole and the lower side is the N pole.
  • the permanent magnet 63b the upper side is the N pole and the lower side is the S pole.
  • a magnetic field is formed on the upper surface of the target 61 by the permanent magnets 63a to 63c.
  • the permanent magnets 63a to 63c are included in the magnetic field forming means in the present invention.
  • the backing plate 62 is made of copper and has a rectangular plate shape.
  • the backing plate 62 is disposed so as to cover the upper opening of the cathode 64.
  • the target 61 is a composite oxide (ITO) of indium oxide and tin oxide, and has a rectangular thin plate shape.
  • the target 61 is disposed on the upper surface of the backing plate 62.
  • the target 61 is disposed so as to face the lower surface of the processing roll 20.
  • the ECR plasma generation apparatus 4 includes a plasma generation unit 40 and a microwave transmission unit 50.
  • the configuration of the microwave transmission unit 50 is as described in the ECR plasma generation apparatus 3.
  • the configuration of the plasma generation unit 40 is the same as the configuration of the plasma generation unit 30 of the ECR plasma generation apparatus 3.
  • the configuration of the plasma generation unit 40 will be briefly described.
  • the plasma generation unit 40 includes a waveguide 41, a slot antenna 42, a dielectric unit 43, a support plate 44, and a permanent magnet 45.
  • the waveguide 41 extends in the front-rear direction.
  • the waveguide 41 is included in the rectangular waveguide in the present invention.
  • the waveguide 41 is sealed so that the internal pressure becomes atmospheric pressure or a high vacuum state of 0.01 Pa or less. For this reason, similarly to the ECR plasma generation apparatus 3 described above, plasma is not generated inside the tube body portion 51 and the waveguide 41.
  • the slot antenna 42 closes the opening of the waveguide 41 from above.
  • Four slots 420 are formed in the slot antenna 42.
  • the dielectric portion 43 is disposed on the upper left side of the slot antenna 42.
  • the dielectric part 43 covers the slot 420 from above.
  • the left surface 430 of the dielectric part 43 is disposed in parallel to the incident direction Y1 of the microwave incident from the slot 420.
  • the left surface 430 is included in the surface of the dielectric part 43 on the plasma generation region side.
  • the support plate 44 is disposed on the upper surface of the slot antenna 42 so as to be in contact with the right surface (back surface) of the dielectric portion 43.
  • a refrigerant passage 440 is formed inside the support plate 44.
  • the front end of the refrigerant passage 440 is connected to the cooling pipe 441.
  • the refrigerant passage 440 is connected to a heat exchanger and a pump (both not shown) outside the processing chamber 10 via a cooling pipe 441.
  • the support plate 44 is cooled by circulation of the coolant through the refrigerant passage 440 and the cooling pipe 441.
  • the refrigerant passage 440 and the coolant are included in the support plate cooling means of the present invention.
  • Eight permanent magnets 45 are arranged on the right surface (back surface) of the support plate 44. Magnetic lines of force M are generated from each permanent magnet 45 toward the left. Thereby, a magnetic field is formed in the plasma generation region on the left side of the dielectric portion 43.
  • an evacuation apparatus (not shown) is operated to exhaust the gas inside the processing chamber 10 from the exhaust hole, thereby reducing the pressure inside the processing chamber 10.
  • argon gas is supplied into the processing chamber 10 from the gas supply pipe, and the pressure in the processing chamber 10 is set to about 0.1 Pa.
  • the motors of the rolls 20, 21, 22, 200, 201, 210, and 220 are driven to transport the substrate F from the supply roll 21 to the processing chamber 10.
  • the microwave power sources 52 of the two ECR plasma generators 3 and 4 are turned on.
  • the microwave oscillator 53 When the microwave power source 52 is turned on, the microwave oscillator 53 generates a microwave having a frequency of 2.45 GHz.
  • the generated microwave propagates in the tubular body portion 51.
  • the isolator 54 suppresses the microwaves reflected from the plasma generation units 30 and 40 from returning to the microwave oscillator 53.
  • the power monitor 55 monitors the output of the generated microwave and the output of the reflected microwave.
  • the EH matching device 56 adjusts the amount of reflected microwaves.
  • the microwave that has passed through the tube body 51 propagates inside the waveguide 31 of the plasma generator 30. Similarly, it propagates inside the waveguide 41 of the plasma generation unit 40.
  • Microwave propagating inside the waveguide 31 enters the slot 320 of the slot antenna 32. Then, as indicated by the hollow arrow Y 1 in FIG. 3, the light passes through the slot 320 and enters the dielectric portion 33.
  • the microwave incident on the dielectric portion 33 propagates mainly along the right surface 330 of the dielectric portion 33, as indicated by the white arrow Y2 in the figure. Due to the strong electric field of the microwave, the argon gas in the processing chamber 10 is ionized, and microwave plasma is generated on the right side of the dielectric portion 33. Electrons in the generated microwave plasma perform a clockwise turning motion with respect to the direction of the magnetic force line M in accordance with the cyclotron angular frequency.
  • the microwave propagating through the microwave plasma excites the electron cyclotron wave.
  • the angular frequency of the electron cyclotron wave is a magnetic flux density of 0.0875T, which matches the cyclotron angular frequency.
  • Electrons whose energy has been increased by ECR collide with surrounding neutral particles while being restrained by the magnetic lines of force M. Thereby, neutral particles are ionized one after another. Electrons generated by ionization are also accelerated by ECR and further ionize neutral particles.
  • the high-density ECR plasma P1 is generated on the right side of the dielectric portion 33. With this ECR plasma P1, the surface of the substrate F conveyed by the processing roll 20 is modified.
  • high-density ECR plasma P ⁇ b> 1 is also generated on the left side of the dielectric unit 43 of the plasma generation unit 40.
  • the DC pulse power supply 66 is turned on and a voltage is applied to the cathode 64.
  • the magnetron discharge generated thereby ionizes the argon gas, and magnetron plasma P ⁇ b> 2 is generated above the target 61.
  • the target 61 is sputtered by magnetron plasma P2 (argon ions), and sputtered particles are sputtered from the target 61.
  • the sputtered particles that have jumped out of the target 61 scatter toward the upper base material F and adhere to the modified surface of the base material F, thereby forming an ITO film.
  • the ECR plasma P1 is irradiated from the plasma generation unit 40 between the base material F and the target 61 (including the magnetron plasma P2 generation region).
  • the modified and film-formed substrate F that is, the film-forming film F ′, is guided by the guide rolls 201 and 220, conveyed from the processing chamber 10 to the winding chamber 12, and taken up by the winding roll 22. It is done.
  • the function and effect of the plasma modified film forming apparatus of this embodiment will be described.
  • the surface modification process of the substrate F is performed using the ECR plasma generation apparatus 3.
  • the ECR plasma generation apparatus 3 high-density plasma can be stably generated even under a low pressure of about 0.3 to 1 Pa in which film formation is performed. Therefore, the reforming process and the film forming process, which conventionally had to be performed in separate processing chambers due to the difference in processing pressure, can be performed continuously in one processing chamber 10.
  • the gas supply, discharge device, base material transport device, and the like, which are conventionally required for each processing chamber for reforming and film formation, can be combined into one. Therefore, the equipment cost can be reduced.
  • the substrate F is transported by the processing roll 20 or the like. Therefore, compared with the case where it conveys linearly using a conveyor etc., the process chamber 10 can be reduced in size.
  • a coolant is circulated through the cooling pipe inside the processing roll 20. Thereby, the outer peripheral surface of the processing roll 20 is cooled. Therefore, the temperature rise of the conveyed base material F can be suppressed and the deformation
  • the plasma-modified film forming apparatus 1 nodules on the surface of the PET substrate F are refined by the modification process. For this reason, the unevenness
  • the ECR plasma generation apparatus 3 it is possible to generate the ECR plasma P1 having a large energy with a low potential. Thereby, a large modification effect can be obtained while suppressing roughening and deformation of the substrate F.
  • the waveguide 31 has a long box shape extending in the front-rear direction. And the slot 320 is arrange
  • the eight permanent magnets 35 are arranged on the left surface of the support plate 34. Inside the support plate 34, the coolant circulates through the refrigerant passage 340. Thereby, the support plate 34 is cooled. Therefore, the temperature of the permanent magnet 35 is unlikely to increase. That is, the possibility that the magnetism of the permanent magnet 35 is lost is small. Therefore, a stable magnetic field is formed even during plasma generation.
  • the magnetron sputtering film forming apparatus 6 includes a sputtering unit 60 and an ECR plasma generation apparatus 4. Thereby, sputter film formation by magnetron plasma P2 can be performed while irradiating ECR plasma P1.
  • the sputter unit 60 In the sputter unit 60, secondary electrons that have jumped out of the target 61 are captured by the magnetic field generated on the surface of the target 61. For this reason, the temperature of the base material F hardly rises. Therefore, the deformation of the base material F due to heat is small. Further, since the ionization of argon gas is promoted by the captured secondary electrons, the film forming speed is high.
  • the magnetron plasma P2 can be stably maintained even when the applied voltage is lowered. Thereby, the jumping out of the target 61 with particles having a large particle diameter such as cluster particles can be suppressed. As a result, the variation in the particle diameter of the sputtered particles is suppressed, and the unevenness on the surface of the formed thin film can be reduced. Further, when the ECR plasma P1 is irradiated, the sputtered particles are miniaturized. For this reason, a finer thin film can be formed.
  • the magnetron plasma P2 can be stabilized, the intrusion of impurities can be suppressed, and the average free path of the target particles can be lengthened. Thereby, the film quality of the formed thin film improves.
  • the waveguide 41 has a long box shape extending in the front-rear direction.
  • the slots 420 are arranged in series in the front-rear direction. Therefore, according to the ECR plasma generator 4, the long ECR plasma P1 can be generated. Therefore, the ECR plasma generation apparatus 4 is suitable for forming a large area thin film.
  • a magnetron sputtering film forming apparatus is used as the film forming apparatus.
  • the film formation apparatus may be an apparatus that performs sputtering without forming a magnetic field (such as a bipolar sputtering apparatus) or a plasma CVD apparatus. Further, it is not always necessary to irradiate ECR plasma during film formation. That is, the film forming apparatus may be configured without using the ECR plasma generating apparatus.
  • an ECR plasma generation apparatus is used as the film formation apparatus, an ECR plasma generation apparatus that performs a modification process may also be used.
  • the material and shape of the backing plate of the sputtering part and the cathode are not particularly limited.
  • a nonmagnetic conductive material may be used for the backing plate.
  • a metal material such as copper having high conductivity and heat conductivity is desirable.
  • metals such as aluminum can be used in addition to stainless steel.
  • the configuration of the magnetic field forming means for forming a magnetic field on the surface of the target is not limited to the above embodiment.
  • the type and arrangement of the permanent magnet may be determined as appropriate.
  • the N pole and S pole of each permanent magnet may be the reverse of the above embodiment.
  • the substrate transport means is not limited to the system using the roll member as in the above embodiment.
  • the transfer means may be any means that can transfer the base material so that the reforming process and the film forming process can be continuously performed in one chamber.
  • positioning form of a roll member are not limited.
  • the plasma modified film forming apparatus is configured to include a supply chamber and a winding chamber in addition to the processing chamber.
  • the supply chamber and the winding chamber are not necessarily required.
  • the plasma reforming film forming apparatus may be configured only from a processing chamber (chamber) that performs the reforming process and the film forming process on the base material.
  • the material and shape of the chamber are not particularly limited.
  • the chamber may be made of a metal material. Among metal materials, it is desirable to adopt a material having high conductivity.
  • ITO was used as the target of the magnetron sputtering film forming apparatus.
  • the target material is not particularly limited, and may be appropriately determined according to the type of thin film to be formed.
  • the type of thin film to be formed is not limited.
  • the substrate may be appropriately selected according to the application.
  • PET film of the above embodiment for example, polyethylene naphthalate (PEN) film, polyphenylene sulfide (PPS) film, polyamide (PA) 6 film, PA11 film, PA12 film, PA46 film, polyamide MXD6 film, PA9T film, polyimide (PI) film, polycarbonate (PC) film, fluororesin film, ethylene-vinyl alcohol copolymer (EVOH) film, polyvinyl alcohol (PVA) film, polyethylene (PE), polypropylene (PP), polyolefin such as cycloolefin polymer A film or the like can be used.
  • PEN polyethylene naphthalate
  • PPS polyphenylene sulfide
  • PA polyamide
  • PA11 film PA11 film
  • PA12 film PA46 film
  • PA11 film PA11 film
  • PA46 film polyamide MXD6 film
  • PA9T film polyimide film
  • PC polycarbonate
  • fluororesin film ethylene-vinyl alcohol copoly
  • the material of the slot antenna, the number of slots, the shape, the arrangement, etc. are not particularly limited.
  • the material of the slot antenna may be a nonmagnetic metal, and may be stainless steel or brass in addition to aluminum.
  • the slots may be arranged in two or more rows instead of one row. The number of slots may be odd or even. Further, the slots may be arranged in a zigzag shape by changing the arrangement angle of the slots.
  • the material and shape of the dielectric part are not particularly limited.
  • a material of the dielectric portion a material having a low dielectric constant and hardly absorbing microwaves is desirable. For example, aluminum oxide (alumina) other than quartz is suitable.
  • the material and shape of the support plate are not particularly limited.
  • the refrigerant path and the cooling fluid were arrange
  • the structure of the support plate cooling means is not particularly limited.
  • the support plate may not have support plate cooling means.
  • the shape, type, number, arrangement form, etc. of the permanent magnet that forms the magnetic field on the right side or the left side (plasma generation region) of the dielectric part are not particularly limited as long as ECR can be generated.
  • only one permanent magnet may be disposed, or a plurality of permanent magnets may be disposed in two or more rows.
  • microwaves with a frequency of 2.45 GHz were used for generating ECR plasma.
  • the frequency of the microwave is not particularly limited. It may be 8.35 GHz, 1.98 GHz, 915 MHz, or the like.
  • the reforming and film forming processes were performed under a pressure of about 0.1 Pa.
  • the processing pressure is not limited to the pressure.
  • the modification and the film formation process may be performed under an optimum pressure as appropriate.
  • the gas to be supplied in addition to argon, helium (He), neon (Ne), krypton (Kr), xenon (Xe) and other rare gases, nitrogen (N 2 ), oxygen (O 2 ), hydrogen ( H 2 ) or the like may be used. Two or more kinds of gases may be mixed and used.
  • the plasma-modified film forming apparatus of the present invention is useful for forming a transparent conductive film used for, for example, a touch panel, a display, LED (light emitting diode) illumination, a solar cell, electronic paper, and the like.

Abstract

A plasma modification and film formation apparatus (1) is provided with a chamber (10), substrate (F) transport means (20, 200, 201), an electron cyclotron resonance (ECR) plasma generating device (3) that modifies a surface of the substrate (F), and a film formation device (6) that forms a thin film on said surface of the substrate (F). The ECR plasma generating device (3) is provided with: a rectangular waveguide tube (31) that transmits microwaves; a slot antenna (32) having a slot (320) through which said microwaves pass; a dielectric part (33) covering the slot (320), and having a surface (330) on the plasma-generating-region side which is parallel to the incident direction of the microwaves that enter from the slot (320); a support plate (34) disposed on the rear surface of the dielectric part (33); and a permanent magnet (35) disposed on the rear surface of the support plate (34). The ECR plasma generating device (3) generates ECR plasma (P1). The plasma modification and film formation apparatus (1) is capable of continuously performing modification of and film formation on the surface of the substrate (F) in a single low-pressure chamber (10).

Description

プラズマ改質成膜装置Plasma reforming deposition system
 本発明は、一つのチャンバー内において、基材の表面の改質と該表面への成膜とを連続して行うことができるプラズマ改質成膜装置に関する。 The present invention relates to a plasma reforming film forming apparatus capable of continuously performing reforming of the surface of a substrate and film formation on the surface in one chamber.
 ユビキタス社会の到来に向け、スマートフォンなどの携帯電話、PHS(Personal Handyphone System)、タブレットPC(Personal Computer)、モバイルノートPC等の携帯情報端末、小型ゲーム機器、電子ペーパー等のモバイル機器が普及拡大している。また、これらのモバイル機器に対して、軽量化、薄型化、フレキシブル化、落下、衝撃等による破損抑制等のニーズが高まっている。このため、現在多用されているガラス製の表示部に代わり、樹脂基材に機能性薄膜を積層した機能性樹脂フィルムを用いたタッチパネル、有機EL(Electro Luminescence)デバイス等の需要が増加している。さらに、太陽電池市場においても、機能性樹脂フィルムを用いた、フレキシブルで軽量、薄型の有機系薄膜太陽電池が脚光を浴びている。 Mobile devices such as smartphones, PHS (Personal Handyphone System), tablet PCs (Personal Computers), mobile notebook PCs, and other mobile devices such as small game machines and electronic paper are becoming increasingly popular with the arrival of the ubiquitous society. ing. In addition, there is an increasing need for these mobile devices to be lighter, thinner, flexible, and to prevent damage due to dropping, impact, and the like. For this reason, demands for touch panels, organic EL (Electro Luminescence) devices, etc. using functional resin films in which functional thin films are laminated on a resin substrate are increasing instead of glass display units that are widely used at present. . Furthermore, in the solar cell market, flexible, lightweight and thin organic thin-film solar cells using functional resin films are in the spotlight.
特開2009-224269号公報JP 2009-224269 A 特開2005-197371号公報JP 2005-197371 A 特開2007-184259号公報JP 2007-184259 A 特開2009-275251号公報JP 2009-275251 A
 しかし、機能性樹脂フィルムを用いた製品においては、従来のガラス製品と比較して、寿命が短いという課題がある。この原因の一つとして、樹脂基材の表面にある、樹脂成分に由来するノジュール(ブルームした粒状の塊)が考えられる。すなわち、樹脂基材へ機能性薄膜を形成する際、樹脂基材の表面にノジュールがあると、ノジュールに沿って薄膜が凹凸に形成されてしまう。薄膜に凹凸があると、凸部に電界が集中し、デバイスが破損しやすくなる。 However, a product using a functional resin film has a problem that its lifetime is shorter than that of a conventional glass product. One possible cause is a nodule (bloomed granular lump) derived from the resin component on the surface of the resin substrate. That is, when the functional thin film is formed on the resin base material, if there is a nodule on the surface of the resin base material, the thin film is formed unevenly along the nodule. If the thin film has irregularities, the electric field concentrates on the convex portions and the device is easily damaged.
 一例として、フレキシブル有機ELデバイスについて説明する。図7に、有機ELデバイスの断面図を示す。図7に示すように、有機ELデバイス8は、前方から後方に向かって、ハードコート層80と、樹脂基材81と、前面ガスバリア膜82と、陽極83と、ホール輸送層84と、電子輸送性発光層85と、陰極86と、後面ガスバリア層87と、を備えている。 As an example, a flexible organic EL device will be described. FIG. 7 shows a cross-sectional view of the organic EL device. As shown in FIG. 7, the organic EL device 8 includes a hard coat layer 80, a resin base material 81, a front gas barrier film 82, an anode 83, a hole transport layer 84, and an electron transport from the front to the rear. Luminescent layer 85, cathode 86, and rear gas barrier layer 87.
 有機ELデバイス8の発光原理について簡単に説明する。陽極83、陰極86に電圧を印加すると、陽極83からホール(正孔)が、陰極86から電子が、各々、発生する。ホールは、陽極83から、ホール輸送層84を通過し、電子輸送性発光層85に進入する。一方、電子は、陰極86から、電子輸送性発光層85に進入する。電子輸送性発光層85においてホールと電子とが結合することにより、発光する。ここで、電子輸送性発光層85の前方に配置されているハードコート層80、樹脂基材81、前面ガスバリア膜82、陽極83、ホール輸送層84は透明である。このため、当該発光は、有機ELデバイス8の前方から視認することができる。 The light emission principle of the organic EL device 8 will be briefly described. When a voltage is applied to the anode 83 and the cathode 86, holes (holes) are generated from the anode 83 and electrons are generated from the cathode 86, respectively. The holes pass from the anode 83 through the hole transport layer 84 and enter the electron transport light emitting layer 85. On the other hand, electrons enter the electron transporting light emitting layer 85 from the cathode 86. In the electron-transporting light-emitting layer 85, light is emitted by combining holes and electrons. Here, the hard coat layer 80, the resin base material 81, the front gas barrier film 82, the anode 83, and the hole transport layer 84 disposed in front of the electron transporting light emitting layer 85 are transparent. For this reason, the emitted light can be viewed from the front of the organic EL device 8.
 有機ELデバイス8において、ガスバリア膜82および陽極83は、スパッタやCVD(Chemical Vapor Deposition)等により、樹脂基材81の後面に形成される。しかしながら、樹脂基材81の後面に粒子径の大きなノジュールが存在したまま、ガスバリア膜82および陽極83を形成すると、当該ノジュールに沿って膜の凹凸が大きくなってしまう。そして、陽極83の凸部に電界が集中し、その影響で電子輸送性発光層85が劣化して、発光しなくなる。 In the organic EL device 8, the gas barrier film 82 and the anode 83 are formed on the rear surface of the resin substrate 81 by sputtering, CVD (Chemical Vapor Deposition), or the like. However, if the gas barrier film 82 and the anode 83 are formed while a nodule having a large particle diameter is present on the rear surface of the resin base material 81, the unevenness of the film increases along the nodule. Then, the electric field concentrates on the convex portion of the anode 83, and the electron transporting light emitting layer 85 deteriorates due to the influence, and the light is not emitted.
 形成する薄膜の凹凸を小さくするためには、成膜前に、樹脂基材の表面のノジュールを微細化、あるいは除去しておくことが望ましい。そこで、本発明者は、マイクロ波プラズマを照射して、樹脂基材の表面を改質する方法を検討した。しかし、例えば特許文献1、2に記載されているような従来の方法においては、5Pa以上の圧力下でマイクロ波プラズマを生成する。つまり、それよりも低い圧力下においては、マイクロ波プラズマを生成することは難しい。一方、スパッタ等による成膜は、不純物の侵入を抑制し、膜質を維持するために、0.3~1Pa程度の低圧下で行うことが望ましい。したがって、従来は、マイクロ波プラズマを生成できる圧力と、成膜時の圧力と、が異なっていたため、改質処理と成膜処理とを別々のチャンバーで行う必要があった(例えば、特許文献1の図7、図8参照)。 In order to reduce the unevenness of the thin film to be formed, it is desirable to refine or remove the nodules on the surface of the resin substrate before film formation. Therefore, the present inventor examined a method of modifying the surface of the resin base material by irradiating microwave plasma. However, in the conventional methods as described in Patent Documents 1 and 2, for example, microwave plasma is generated under a pressure of 5 Pa or more. That is, it is difficult to generate microwave plasma under a lower pressure. On the other hand, film formation by sputtering or the like is preferably performed under a low pressure of about 0.3 to 1 Pa in order to suppress the intrusion of impurities and maintain the film quality. Therefore, conventionally, since the pressure at which microwave plasma can be generated is different from the pressure at the time of film formation, it is necessary to perform the reforming process and the film forming process in separate chambers (for example, Patent Document 1). FIG. 7 and FIG. 8).
 この場合、ガスを供給、排出するための装置や、基材の搬送装置等が、チャンバーごとに必要になる。このため、設備費用が大きくなり製造コストがかさむ。また、改質処理を終えた基材が成膜チャンバーへ搬送される間に、表面に不純物が付着するなどして、基材が汚染されるおそれがある。 In this case, a device for supplying and discharging gas, a substrate transport device, and the like are required for each chamber. For this reason, equipment costs increase and manufacturing costs increase. Further, while the base material after the modification treatment is transported to the film forming chamber, impurities may adhere to the surface and the base material may be contaminated.
 ちなみに、低圧下でプラズマを維持する試みとして、上記特許文献1には、誘電体部のチャンバー側に磁石を配置する態様が、開示されている。しかしながら、誘電体部のチャンバー側に磁石を配置した場合、磁石が、生成したプラズマや、誘電体部の表面を伝播するマイクロ波に晒される。このため、磁石の温度が上昇して、磁性が低下してしまう。よって、マイクロ波プラズマを、低圧下で安定して生成することは難しい。また、上記特許文献3には、誘電体部のチャンバー側にホロー状穴を形成する態様が、開示されている。しかし、この態様によると、マイクロ波プラズマを均一に生成させることは難しい。加えて、低圧下で安定して生成することも難しい。 Incidentally, as an attempt to maintain the plasma under a low pressure, Patent Document 1 discloses a mode in which a magnet is disposed on the chamber side of the dielectric part. However, when a magnet is arranged on the chamber side of the dielectric part, the magnet is exposed to the generated plasma and the microwave propagating on the surface of the dielectric part. For this reason, the temperature of a magnet rises and magnetism will fall. Therefore, it is difficult to stably generate the microwave plasma under a low pressure. Further, Patent Document 3 discloses a mode in which a hollow hole is formed on the chamber side of the dielectric part. However, according to this aspect, it is difficult to generate the microwave plasma uniformly. In addition, it is difficult to produce stably under low pressure.
 本発明は、このような実情に鑑みてなされたものであり、一つの低圧チャンバー内で、基材の表面の改質と該表面への成膜とを連続して行うことができるプラズマ改質成膜装置を提供することを課題とする。 The present invention has been made in view of such a situation, and in one low-pressure chamber, plasma modification that can continuously perform the modification of the surface of the substrate and the film formation on the surface. It is an object to provide a film formation apparatus.
 (1)上記課題を解決するため、本発明のプラズマ改質成膜装置は、チャンバーと、該チャンバー内に配置され、基材を搬送する搬送手段と、マイクロ波を用いた電子サイクロトロン共鳴(ECR)によりプラズマを生成し、該プラズマにより該基材の表面を改質するECRプラズマ生成装置と、該基材の該表面に薄膜を形成する成膜装置と、を備え、一つの該チャンバー内において、該基材の該表面の改質と該表面への成膜とを連続して行うことができるプラズマ改質成膜装置であって、該ECRプラズマ生成装置は、マイクロ波を伝送する矩形導波管と、該矩形導波管の一面に配置され、該マイクロ波が通過するスロットを有するスロットアンテナと、該スロットアンテナの該スロットを覆うように配置され、プラズマ生成領域側の表面は該スロットから入射する該マイクロ波の入射方向に平行である誘電体部と、該誘電体部の裏面に配置され該誘電体部を支持する支持板と、該支持板の裏面に配置され該プラズマ生成領域に磁場を形成する永久磁石と、を備え、該誘電体部から該磁場中に伝播する該マイクロ波によりECRを発生させながらプラズマを生成することを特徴とする。 (1) In order to solve the above-mentioned problems, a plasma-modified film-forming apparatus of the present invention includes a chamber, a transport unit disposed in the chamber and transporting a substrate, and electron cyclotron resonance (ECR) using microwaves. And a film forming apparatus for forming a thin film on the surface of the substrate, and the plasma is generated in the one chamber. A plasma-modified film forming apparatus capable of continuously modifying the surface of the substrate and forming a film on the surface, wherein the ECR plasma generating apparatus is a rectangular waveguide that transmits microwaves. A wave tube, a slot antenna disposed on one surface of the rectangular waveguide, and having a slot through which the microwave passes, and a surface of the plasma generation region side disposed to cover the slot of the slot antenna. Is a dielectric part parallel to the incident direction of the microwave incident from the slot, a support plate disposed on the back surface of the dielectric part and supporting the dielectric part, and disposed on the back surface of the support plate. A permanent magnet for forming a magnetic field in the plasma generation region, and generating plasma while generating ECR by the microwave propagating from the dielectric part into the magnetic field.
 本発明のプラズマ改質成膜装置においては、基材の表面の改質処理を、ECRプラズマ生成装置を用いて行う。当該ECRプラズマ生成装置によると、1Pa以下の低圧下でも、高密度なプラズマを安定して生成することができる。この理由を、以下に説明する。なお、本発明のECRプラズマ生成装置においては、プラズマ生成領域側の面を「表面」とし、表面に背向する面を「裏面」と称する。 In the plasma modified film forming apparatus of the present invention, the surface modification treatment of the substrate is performed using an ECR plasma generating apparatus. According to the ECR plasma generation apparatus, high-density plasma can be stably generated even under a low pressure of 1 Pa or less. The reason for this will be described below. In the ECR plasma generation apparatus of the present invention, the surface on the plasma generation region side is referred to as “front surface”, and the surface facing away from the surface is referred to as “back surface”.
 まず、従来のマイクロ波プラズマ生成装置におけるプラズマ生成部の構成を説明する。図6に、従来のプラズマ生成部の斜視図を示す。図6に示すように、プラズマ生成部9は、導波管90と、スロットアンテナ91と、誘電体部92と、を有している。スロットアンテナ91は、導波管90の右方開口部を塞ぐように配置されている。すなわち、スロットアンテナ91は、導波管90の右壁を形成している。スロットアンテナ91には、複数の長孔状のスロット910が形成されている。誘電体部92は、スロット910を覆うように、スロットアンテナ91の右面(チャンバー側)に配置されている。導波管90の前端から伝送されたマイクロ波は、図中左右方向の白抜き矢印Y1で示すように、スロット910を通過して、誘電体部92に入射する。誘電体部92に入射したマイクロ波は、図中前後方向の白抜き矢印Y2で示すように、誘電体部92の右面920に沿って伝播する。これにより、マイクロ波プラズマPが生成される。 First, the configuration of the plasma generator in the conventional microwave plasma generator will be described. FIG. 6 is a perspective view of a conventional plasma generation unit. As shown in FIG. 6, the plasma generation unit 9 includes a waveguide 90, a slot antenna 91, and a dielectric unit 92. The slot antenna 91 is disposed so as to close the right opening of the waveguide 90. That is, the slot antenna 91 forms the right wall of the waveguide 90. The slot antenna 91 is formed with a plurality of slot-like slots 910. The dielectric part 92 is disposed on the right surface (chamber side) of the slot antenna 91 so as to cover the slot 910. The microwave transmitted from the front end of the waveguide 90 passes through the slot 910 and enters the dielectric portion 92 as indicated by the white arrow Y1 in the horizontal direction in the drawing. The microwave incident on the dielectric portion 92 propagates along the right surface 920 of the dielectric portion 92 as indicated by the white arrow Y2 in the front-rear direction in the drawing. Thereby, the microwave plasma P is generated.
 ここで、スロット910から誘電体部92へ入射するマイクロ波の入射方向(矢印Y1)と、誘電体部92の右面920と、は直交する。このため、誘電体部92に入射したマイクロ波は、生成したマイクロ波プラズマPに遮られ、進行方向を90°変えて、誘電体部92の右面920を伝播する(矢印Y2)。このように、生成したマイクロ波プラズマPに対して垂直にマイクロ波が入射するため、プラズマソースであるマイクロ波がマイクロ波プラズマPに伝播しにくい。このため、低圧下でのプラズマ生成が難しいと考えられる。 Here, the incident direction (arrow Y1) of the microwave that enters the dielectric portion 92 from the slot 910 and the right surface 920 of the dielectric portion 92 are orthogonal to each other. For this reason, the microwave incident on the dielectric part 92 is blocked by the generated microwave plasma P and propagates through the right surface 920 of the dielectric part 92 by changing the traveling direction by 90 ° (arrow Y2). As described above, since the microwave is perpendicularly incident on the generated microwave plasma P, the microwave that is the plasma source is difficult to propagate to the microwave plasma P. For this reason, it is considered that plasma generation under low pressure is difficult.
 次に、本発明のECRプラズマ生成装置におけるプラズマ生成部の構成を説明する。図3に、本発明のECRプラズマ生成装置におけるプラズマ生成部の斜視図を示す。なお、図3は、プラズマ生成部の一実施形態を示す図である(後述する実施形態参照)。図3は、本発明のECRプラズマ生成装置を、何ら限定するものではない。 Next, the configuration of the plasma generation unit in the ECR plasma generation apparatus of the present invention will be described. FIG. 3 is a perspective view of a plasma generation unit in the ECR plasma generation apparatus of the present invention. FIG. 3 is a diagram showing an embodiment of the plasma generation unit (see the embodiment described later). FIG. 3 does not limit the ECR plasma generation apparatus of this invention at all.
 図3に示すように、プラズマ生成部30は、導波管31と、スロットアンテナ32と、誘電体部33と、支持板34と、永久磁石35と、を有している。導波管31の後端左方には、マイクロ波を伝送する管体部51が接続されている。スロットアンテナ32は、導波管31の上方開口部を塞ぐように配置されている。すなわち、スロットアンテナ32は、導波管31の上壁を形成している。スロットアンテナ32には、複数の長孔状のスロット320が形成されている。誘電体部33は、スロット320を覆うように、スロットアンテナ32の上面に配置されている。 As shown in FIG. 3, the plasma generation unit 30 includes a waveguide 31, a slot antenna 32, a dielectric unit 33, a support plate 34, and a permanent magnet 35. A tubular body 51 that transmits microwaves is connected to the left of the rear end of the waveguide 31. The slot antenna 32 is disposed so as to close the upper opening of the waveguide 31. That is, the slot antenna 32 forms the upper wall of the waveguide 31. The slot antenna 32 is formed with a plurality of slot-like slots 320. The dielectric portion 33 is disposed on the upper surface of the slot antenna 32 so as to cover the slot 320.
 管体部51から伝送されたマイクロ波は、図中上下方向の白抜き矢印Y1で示すように、スロット320を通過して、誘電体部33に入射する。誘電体部33に入射したマイクロ波は、図中前後方向の白抜き矢印Y2で示すように、主に誘電体部33の右面330に沿って伝播する。これにより、マイクロ波プラズマが生成される。ここで、スロット320から誘電体部33に入射するマイクロ波の入射方向は、誘電体部33の右面330(プラズマ生成領域側の表面)に平行である。生成したマイクロ波プラズマに沿ってマイクロ波が入射するため、プラズマソースであるマイクロ波がマイクロ波プラズマに伝播しやすい。 The microwave transmitted from the tube part 51 passes through the slot 320 and enters the dielectric part 33 as indicated by the vertical arrow Y1 in the vertical direction in the drawing. The microwave incident on the dielectric portion 33 propagates mainly along the right surface 330 of the dielectric portion 33 as indicated by the white arrow Y2 in the front-rear direction in the drawing. Thereby, microwave plasma is generated. Here, the incident direction of the microwave incident on the dielectric portion 33 from the slot 320 is parallel to the right surface 330 (surface on the plasma generation region side) of the dielectric portion 33. Since the microwave is incident along the generated microwave plasma, the microwave that is the plasma source easily propagates to the microwave plasma.
 また、誘電体部33の左方には、支持板34を介して、永久磁石35が八つ配置されている。八つの永久磁石35は、いずれも右側がN極、左側がS極である。各々の永久磁石35から右方に向かって、磁力線Mが生じている。これにより、誘電体部33の右方(プラズマ生成領域)には、磁場が形成されている。 Further, eight permanent magnets 35 are arranged on the left side of the dielectric portion 33 via the support plate 34. Each of the eight permanent magnets 35 has an N pole on the right side and an S pole on the left side. Magnetic field lines M are generated from each permanent magnet 35 to the right. Thereby, a magnetic field is formed on the right side (plasma generation region) of the dielectric portion 33.
 生成したマイクロ波プラズマ中の電子は、サイクロトロン角周波数ωceに従って、磁力線M方向に対して右回りの旋回運動を行う。一方、マイクロ波プラズマ中を伝播するマイクロ波は、電子サイクロトロン波と呼ばれる右回りの円偏波を励起する。電子サイクロトロン波が右方に伝播し、その角周波数ωがサイクロトロン角周波数ωceに一致すると、電子サイクロトロン波が減衰し、波動エネルギーが電子に吸収される。すなわち、ECRが生じる。例えば、マイクロ波の周波数が2.45GHzの場合、磁束密度0.0875Tで、ECRが生じる。ECRによりエネルギーが増大した電子は、磁力線Mに拘束されながら、周辺の中性粒子と衝突する。これにより、中性粒子が次々に電離する。電離により生じた電子も、ECRにより加速され、さらに中性粒子を電離させる。このようにして、誘電体部33の右方に、高密度のECRプラズマP1が生成される。 Electrons in the generated microwave plasma perform a clockwise turning motion with respect to the direction of the magnetic force line M in accordance with the cyclotron angular frequency ωce . On the other hand, the microwave propagating in the microwave plasma excites a clockwise circular polarization called an electron cyclotron wave. When the electron cyclotron wave propagates to the right and its angular frequency ω matches the cyclotron angular frequency ω ce , the electron cyclotron wave is attenuated and wave energy is absorbed by the electrons. That is, ECR occurs. For example, when the frequency of the microwave is 2.45 GHz, ECR occurs at a magnetic flux density of 0.0875T. Electrons whose energy has been increased by ECR collide with surrounding neutral particles while being restrained by the magnetic lines of force M. Thereby, neutral particles are ionized one after another. Electrons generated by ionization are also accelerated by ECR and further ionize neutral particles. In this way, the high-density ECR plasma P1 is generated on the right side of the dielectric portion 33.
 このように、本発明のECRプラズマ生成装置によると、生成するマイクロ波プラズマに沿ってマイクロ波を入射させると共に、ECRを利用してプラズマ密度を大きくすることにより、1Pa以下の低圧下、さらには0.1Pa以下の極低圧下においても、プラズマを生成することができる。すなわち、本発明のECRプラズマ生成装置を用いると、成膜処理を行う低圧下においても、高密度なプラズマを安定して生成することができる。したがって、従来、処理圧力の違いから、別々のチャンバーにおいて行わなければならなかった改質処理と成膜処理とを、一つの低圧チャンバー内で連続して行うことができる。これにより、従来は改質、成膜の各チャンバーごとに必要であった、ガスの供給、排出装置や基材の搬送装置等を、一つにまとめることができる。よって、設備費用を削減することができる。また、改質と成膜とを同じチャンバー内で連続して行うため、改質処理された基材の表面に、不純物が付着するおそれは小さい。つまり、基材が汚染されにくくなる。このため、より凹凸の少ない薄膜を形成することができる。 As described above, according to the ECR plasma generation apparatus of the present invention, the microwave is incident along the generated microwave plasma, and the plasma density is increased by using the ECR. Plasma can be generated even under an extremely low pressure of 0.1 Pa or less. That is, when the ECR plasma generation apparatus of the present invention is used, high-density plasma can be stably generated even under a low pressure in which film formation is performed. Therefore, the reforming process and the film forming process, which conventionally had to be performed in separate chambers due to the difference in processing pressure, can be performed continuously in one low-pressure chamber. Thereby, the gas supply, discharge device, substrate transport device, and the like, which are conventionally required for each of the reforming and film forming chambers, can be combined into one. Therefore, the equipment cost can be reduced. In addition, since the modification and the film formation are continuously performed in the same chamber, there is little possibility that impurities will adhere to the surface of the modified substrate. That is, the base material is not easily contaminated. For this reason, a thin film with less unevenness can be formed.
 また、本発明のECRプラズマ生成装置によると、低電位のまま、エネルギーの大きなプラズマを生成することができる。これにより、基材の粗面化や変形を抑制しながら、大きな改質効果を得ることができる。 In addition, according to the ECR plasma generation apparatus of the present invention, it is possible to generate a plasma having a large energy with a low potential. Thereby, a large modification effect can be obtained while suppressing roughening and deformation of the substrate.
 また、本発明のECRプラズマ生成装置によると、長尺状の矩形導波管を用いて、長手方向にスロットを配置することにより、長尺状のプラズマを生成することができる。したがって、基材の幅が大きく大面積の場合でも、容易に改質処理を行うことができる。 Further, according to the ECR plasma generation apparatus of the present invention, long plasma can be generated by arranging slots in the longitudinal direction using a long rectangular waveguide. Therefore, even when the substrate has a large width and a large area, the modification treatment can be easily performed.
 本発明のプラズマ改質成膜装置によると、改質処理により、樹脂基材の表面のノジュールを微細化することができる。このため、その後に形成される薄膜の凹凸を小さくすることができる。したがって、例えば、有機ELデバイス用の樹脂基材に対して、本発明のプラズマ改質成膜装置を用いて改質および成膜を行えば、形成されるガスバリア膜や陽極の凹凸を小さくすることができる。その結果、陽極の凸部への電界集中を抑制し、電子輸送性発光層の劣化を抑制することができる。 According to the plasma modified film-forming apparatus of the present invention, the nodules on the surface of the resin base material can be refined by the modification treatment. For this reason, the unevenness | corrugation of the thin film formed after that can be made small. Therefore, for example, if the resin substrate for an organic EL device is modified and formed using the plasma modified film forming apparatus of the present invention, the unevenness of the formed gas barrier film or anode can be reduced. Can do. As a result, the electric field concentration on the convex part of the anode can be suppressed, and the deterioration of the electron transporting light emitting layer can be suppressed.
 (2)好ましくは、上記(1)の構成において、前記チャンバー内の圧力を0.05Pa以上3Pa以下にして、改質および成膜を行う構成とする方がよい。 (2) Preferably, in the configuration of (1) above, the pressure in the chamber is set to 0.05 Pa or more and 3 Pa or less to perform reforming and film formation.
 チャンバー内を0.05Pa以上3Pa以下の高真空状態にすることにより、スパッタ成膜用のプラズマが安定すると共に、不純物の侵入を抑制することができる。また、スパッタ成膜においては、ターゲット粒子の平均自由行程を長くすることができる。これにより、形成される薄膜の膜質が向上する。 By setting the inside of the chamber to a high vacuum state of 0.05 Pa or more and 3 Pa or less, the plasma for sputtering film formation can be stabilized and intrusion of impurities can be suppressed. In sputter deposition, the mean free path of the target particles can be increased. Thereby, the film quality of the formed thin film improves.
 (3)好ましくは、上記(1)または(2)の構成において、前記ECRプラズマ生成装置の前記支持板は、前記永久磁石の温度上昇を抑制するための支持板用冷却手段を有する構成とする方がよい。 (3) Preferably, in the configuration of the above (1) or (2), the support plate of the ECR plasma generation apparatus includes a support plate cooling means for suppressing a temperature increase of the permanent magnet. Better.
 永久磁石は、支持板を介して誘電体部の裏面側に配置される。このため、プラズマを生成する際、永久磁石の温度が上昇しやすい。永久磁石の温度がキュリー温度以上になると、磁性が失われてしまう。本構成によると、支持板用冷却手段により、永久磁石の温度上昇が抑制される。このため、永久磁石の磁性が失われるおそれは小さい。したがって、本構成によると、安定した磁場を形成することができる。 The permanent magnet is arranged on the back side of the dielectric part via the support plate. For this reason, when generating plasma, the temperature of the permanent magnet is likely to rise. When the temperature of the permanent magnet is equal to or higher than the Curie temperature, the magnetism is lost. According to this configuration, the temperature rise of the permanent magnet is suppressed by the support plate cooling means. For this reason, there is little possibility that the magnetism of a permanent magnet will be lost. Therefore, according to this configuration, a stable magnetic field can be formed.
 (4)好ましくは、上記(1)~(3)のいずれかの構成において、前記成膜装置は、ターゲットと、該ターゲットの表面に磁場を形成するための磁場形成手段と、を備え、マグネトロン放電で生成したプラズマにより該ターゲットをスパッタし、飛び出したスパッタ粒子を前記基材の前記表面に付着させて薄膜を形成するマグネトロンスパッタ成膜装置である構成とする方がよい。 (4) Preferably, in any one of the above configurations (1) to (3), the film forming apparatus includes a target and a magnetic field forming unit for forming a magnetic field on the surface of the target, and a magnetron It is better to have a configuration that is a magnetron sputtering film forming apparatus in which the target is sputtered by plasma generated by electric discharge, and the sputtered particles that are ejected adhere to the surface of the substrate to form a thin film.
 スパッタによる成膜方法としては、二極スパッタ法や、マグネトロンスパッタ法等がある。なかでも、マグネトロンスパッタ法によると、ターゲット表面に発生した磁場により、ターゲットから飛び出した二次電子が捕らえられる。このため、基材の温度が上昇しにくい。また、捕らえた二次電子でガスのイオン化が促進されるため、成膜速度を速くすることができる。したがって、本構成によると、熱による基材の変形が小さく、比較的速やかに薄膜を形成することができる。なお、本構成のマグネトロンスパッタ成膜装置においては、DC(直流)マグネトロンスパッタ法(DCパルス方式を含む)を採用することが、望ましい。 Examples of the film forming method by sputtering include a bipolar sputtering method and a magnetron sputtering method. In particular, according to the magnetron sputtering method, secondary electrons jumping out of the target are captured by the magnetic field generated on the target surface. For this reason, it is difficult for the temperature of the base material to rise. In addition, since ionization of the gas is promoted by the captured secondary electrons, the deposition rate can be increased. Therefore, according to this configuration, the deformation of the base material due to heat is small, and a thin film can be formed relatively quickly. In the magnetron sputtering film forming apparatus of this configuration, it is desirable to employ a DC (direct current) magnetron sputtering method (including a DC pulse method).
 (5)好ましくは、上記(4)の構成において、前記マグネトロンスパッタ成膜装置は、さらに、前記ECRプラズマ生成装置を備え、該ECRプラズマ生成装置により、該基材と該ターゲットとの間にECRプラズマが照射される構成とする方がよい。 (5) Preferably, in the configuration of (4), the magnetron sputtering film forming apparatus further includes the ECR plasma generation apparatus, and the ECR plasma generation apparatus causes an ECR between the base material and the target. It is better to have a configuration in which plasma is irradiated.
 マグネトロンスパッタ成膜装置においては、生成するプラズマを安定化させるため、ターゲットに数百ボルトの高電圧を印加することが多い。印加電圧が高いと、ターゲットから、クラスター粒子のような粒子径の大きな粒子が飛び出す場合がある。粒子径の大きな粒子が基材に付着すると、形成された膜の表面に凹凸が生じてしまう。膜の表面の凹凸が大きい場合、凹部に酸素等が吸着しやすくなり、膜自身や、膜と接する相手材を劣化させるおそれがある。また、凸部により、相手材を劣化させるおそれがある。 In a magnetron sputter deposition apparatus, a high voltage of several hundred volts is often applied to a target in order to stabilize the generated plasma. When the applied voltage is high, particles having a large particle size such as cluster particles may be ejected from the target. When particles having a large particle diameter adhere to the substrate, irregularities are generated on the surface of the formed film. When the film surface has large irregularities, oxygen or the like is likely to be adsorbed in the recesses, which may deteriorate the film itself or the partner material in contact with the film. Moreover, there exists a possibility that a counterpart material may deteriorate by a convex part.
 このような問題を解決すべく、本発明者が鋭意研究を重ねた結果、マグネトロン放電で生成したプラズマ(以下、適宜「マグネトロンプラズマ」と称す)による成膜を、マイクロ波プラズマを照射しながら行えば、印加電圧を下げることができるという見地に至った。このような見地に基づいた本構成のマグネトロンスパッタ成膜装置は、上述したECRプラズマ生成装置を備える。つまり、本構成のマグネトロンスパッタ成膜装置においては、マグネトロンプラズマによる成膜を、ECRプラズマを照射しながら行う。基材とターゲットとの間にECRプラズマを照射することにより、印加電圧を下げても、マグネトロンプラズマを安定に維持することができる。これにより、クラスター粒子のような粒子径の大きな粒子のターゲットからの飛び出しを、抑制することができる。その結果、スパッタ粒子の粒子径のばらつきが抑制され、形成される薄膜の表面の凹凸を、小さくすることができる。また、ECRプラズマを照射すると、スパッタ粒子が微細化される。このため、よりきめ細やかな薄膜を形成することができる。 As a result of extensive research conducted by the present inventor to solve such problems, film formation by plasma generated by magnetron discharge (hereinafter referred to as “magnetron plasma” as appropriate) is performed while irradiating microwave plasma. For example, it came to the standpoint that the applied voltage can be lowered. The magnetron sputtering film forming apparatus of the present configuration based on such a viewpoint includes the above-described ECR plasma generating apparatus. That is, in the magnetron sputtering film forming apparatus of this configuration, film formation by magnetron plasma is performed while irradiating ECR plasma. By irradiating the ECR plasma between the substrate and the target, the magnetron plasma can be stably maintained even when the applied voltage is lowered. Thereby, jumping out of a target having a large particle diameter such as cluster particles from the target can be suppressed. As a result, the variation in the particle diameter of the sputtered particles is suppressed, and the unevenness on the surface of the formed thin film can be reduced. Moreover, when ECR plasma is irradiated, sputtered particles are miniaturized. For this reason, a finer thin film can be formed.
 (6)好ましくは、上記(1)~(5)のいずれかの構成において、前記搬送手段は、ロール部材を備える構成とする方がよい。 (6) Preferably, in any one of the above configurations (1) to (5), the conveying means may include a roll member.
 基材をロール部材で搬送すると、例えば、コンベア等を用いて直線的に搬送する場合と比較して、チャンバーを小型化することができる。 When the substrate is transported by a roll member, for example, the chamber can be reduced in size as compared with a case where the substrate is transported linearly using a conveyor or the like.
 (7)好ましくは、上記(6)の構成において、前記ロール部材は、外周面の温度を低下させるロール用冷却手段を有する構成とする方がよい。 (7) Preferably, in the configuration of (6) above, the roll member may have a roll cooling means for lowering the temperature of the outer peripheral surface.
 上記(6)の構成によると、基材は、ロール部材の外周面に支持されて搬送される。基材には、ECRプラズマが照射される。この際、基材の温度が上昇しやすい。基材の温度が高くなると、基材が変形したり、損傷を受けるおそれがある。この点、本構成によると、ロール用冷却手段により、ロール部材の外周面の温度を低下させることができる。よって、搬送される基材の温度上昇を抑制することができる。これにより、熱による基材の変形や、損傷を抑制することができる。 According to the configuration of (6) above, the substrate is conveyed while being supported on the outer peripheral surface of the roll member. The substrate is irradiated with ECR plasma. At this time, the temperature of the substrate tends to rise. When the temperature of the base material increases, the base material may be deformed or damaged. In this regard, according to the present configuration, the temperature of the outer peripheral surface of the roll member can be lowered by the roll cooling means. Therefore, the temperature rise of the conveyed base material can be suppressed. Thereby, the deformation | transformation and damage of the base material by a heat | fever can be suppressed.
実施形態のプラズマ改質成膜装置の左右方向断面図である。It is a horizontal direction sectional view of the plasma modification film-forming device of an embodiment. 図1のECRプラズマ生成装置付近を拡大した断面図である。It is sectional drawing to which the ECR plasma generation apparatus vicinity of FIG. 1 was expanded. 同ECRプラズマ生成装置におけるプラズマ生成部の斜視図である。It is a perspective view of the plasma generation part in the ECR plasma generation apparatus. 図1のマグネトロンスパッタ成膜装置付近を拡大した断面図である。It is sectional drawing to which the magnetron sputtering film-forming apparatus vicinity of FIG. 1 was expanded. 同マグネトロンスパッタ成膜装置を構成するECRプラズマ生成装置のプラズマ生成部の斜視図である。It is a perspective view of the plasma production | generation part of the ECR plasma production | generation apparatus which comprises the same magnetron sputter film-forming apparatus. 従来のマイクロ波プラズマ生成装置におけるプラズマ生成部の斜視図である。It is a perspective view of the plasma generation part in the conventional microwave plasma generation apparatus. 有機ELデバイスの断面図である。It is sectional drawing of an organic EL device.
1:プラズマ改質成膜装置、10:処理室(チャンバー)、11:供給室、12:巻取り室、101、102:開口部。
20:処理ロール(搬送手段)、21:供給ロール、22:巻取りロール、200、201:ガイドロール(搬送手段)、210、220:ガイドロール。
3:ECRプラズマ生成装置、30:プラズマ生成部、31:導波管(矩形導波管)、32:スロットアンテナ、33:誘電体部、34:支持板、35:永久磁石、320:スロット、330:右面、340:冷媒通路(支持板用冷却手段)、341:冷却管。
4:ECRプラズマ生成装置、40:プラズマ生成部、41:導波管(矩形導波管)、42:スロットアンテナ、43:誘電体部、44:支持板、45:永久磁石、420:スロット、430:左面、440:冷媒通路(支持板用冷却手段)、441:冷却管。
50:マイクロ波伝送部、51:管体部、52:マイクロ波電源、53:マイクロ波発振器、54:アイソレータ、55:パワーモニタ、56:EH整合器。
6:マグネトロンスパッタ成膜装置、60:スパッタ部、61:ターゲット、62:バッキングプレート、63a~63c:永久磁石(磁場形成手段)、64:カソード、65:アースシールド、66:直流パルス電源。
F:基材、F’:成膜フィルム、M:磁力線、P1:ECRプラズマ、P2:マグネトロンプラズマ。
1: Plasma reforming film forming apparatus, 10: processing chamber (chamber), 11: supply chamber, 12: winding chamber, 101, 102: opening.
20: processing roll (conveying means), 21: supply roll, 22: winding roll, 200, 201: guide roll (conveying means), 210, 220: guide roll.
3: ECR plasma generator, 30: Plasma generator, 31: Waveguide (rectangular waveguide), 32: Slot antenna, 33: Dielectric part, 34: Support plate, 35: Permanent magnet, 320: Slot, 330: right side, 340: refrigerant passage (support plate cooling means), 341: cooling pipe.
4: ECR plasma generator, 40: plasma generator, 41: waveguide (rectangular waveguide), 42: slot antenna, 43: dielectric, 44: support plate, 45: permanent magnet, 420: slot, 430: Left side, 440: Refrigerant passage (support plate cooling means), 441: Cooling pipe.
50: Microwave transmission part, 51: Tube part, 52: Microwave power supply, 53: Microwave oscillator, 54: Isolator, 55: Power monitor, 56: EH matching device.
6: magnetron sputter deposition apparatus, 60: sputter unit, 61: target, 62: backing plate, 63a to 63c: permanent magnet (magnetic field forming means), 64: cathode, 65: earth shield, 66: DC pulse power supply.
F: Base material, F ′: Film formation film, M: Magnetic field lines, P1: ECR plasma, P2: Magnetron plasma.
 以下、本発明のプラズマ改質成膜装置の実施の形態について説明する。 Hereinafter, embodiments of the plasma modified film forming apparatus of the present invention will be described.
 <全体構成>
 まず、本実施形態のプラズマ改質成膜装置の全体構成について説明する。図1に、本実施形態のプラズマ改質成膜装置の左右方向断面図を示す。なお、図1において、紙面手前、奥方向が前後方向になる。図1に示すように、プラズマ改質成膜装置1は、処理室10と、処理ロール20と、二つのガイドロール200、201と、ECRプラズマ生成装置3と、マグネトロンスパッタ成膜装置6と、供給室11と、巻取り室12と、を備えている。
<Overall configuration>
First, the overall configuration of the plasma modified film forming apparatus of this embodiment will be described. FIG. 1 shows a cross-sectional view in the left-right direction of the plasma modified film forming apparatus of this embodiment. In FIG. 1, the front side and the back side are the front-rear direction. As shown in FIG. 1, the plasma modified film forming apparatus 1 includes a processing chamber 10, a processing roll 20, two guide rolls 200 and 201, an ECR plasma generating apparatus 3, a magnetron sputter film forming apparatus 6, A supply chamber 11 and a winding chamber 12 are provided.
 供給室11は、ステンレス鋼製であって、直方体箱状を呈している。供給室11は、処理室10の左側に配置されている。供給室11と処理室10とを区画する仕切り壁には、基材Fが通過可能な開口部101が形成されている。供給室11には、供給ロール21と、ガイドロール210と、後述するECRプラズマ生成装置3のマイクロ波伝送部50と、が配置されている。供給ロール21およびガイドロール210は、いずれも前後方向に長い、円柱状を呈している。供給ロール21には、モータ(図略)が接続されている。また、供給ロール21には、基材Fが巻回されている。基材Fは、長尺状のポリエチレンテレフタレート(PET)フィルムである。モータの駆動により、供給ロール21が反時計回りに回転することにより、基材Fは、ガイドロール210に案内されて、処理室10に送られる。 The supply chamber 11 is made of stainless steel and has a rectangular parallelepiped box shape. The supply chamber 11 is disposed on the left side of the processing chamber 10. An opening 101 through which the substrate F can pass is formed in a partition wall that partitions the supply chamber 11 and the processing chamber 10. In the supply chamber 11, a supply roll 21, a guide roll 210, and a microwave transmission unit 50 of the ECR plasma generation apparatus 3 described later are disposed. Both the supply roll 21 and the guide roll 210 have a cylindrical shape that is long in the front-rear direction. A motor (not shown) is connected to the supply roll 21. Further, the base material F is wound around the supply roll 21. The substrate F is a long polyethylene terephthalate (PET) film. When the supply roll 21 rotates counterclockwise by driving the motor, the base material F is guided by the guide roll 210 and sent to the processing chamber 10.
 巻取り室12は、ステンレス鋼製であって、直方体箱状を呈している。巻取り室12は、処理室10の右側に配置されている。巻取り室12と処理室10とを区画する仕切り壁には、処理後の基材F(成膜フィルムF’)が通過可能な開口部102が形成されている。巻取り室12には、巻取りロール22と、ガイドロール220と、後述するECRプラズマ生成装置4のマイクロ波伝送部50と、が配置されている。巻取りロール22およびガイドロール220は、いずれも前後方向に長い、円柱状を呈している。巻取りロール22には、モータ(図略)が接続されている。モータの駆動により、巻取りロール22が反時計回りに回転することにより、処理室10から送られる成膜フィルムF’は、ガイドロール220に案内されて、巻取りロール22に巻き取られる。 The winding chamber 12 is made of stainless steel and has a rectangular parallelepiped box shape. The winding chamber 12 is disposed on the right side of the processing chamber 10. The partition wall that partitions the winding chamber 12 and the processing chamber 10 is formed with an opening 102 through which the processed substrate F (deposition film F ′) can pass. In the winding chamber 12, a winding roll 22, a guide roll 220, and a microwave transmission unit 50 of the ECR plasma generation apparatus 4 to be described later are arranged. The winding roll 22 and the guide roll 220 both have a columnar shape that is long in the front-rear direction. A motor (not shown) is connected to the winding roll 22. When the take-up roll 22 rotates counterclockwise by driving the motor, the film formation film F ′ sent from the processing chamber 10 is guided by the guide roll 220 and taken up by the take-up roll 22.
 処理室10は、ステンレス鋼製であって、直方体箱状を呈している。処理室10の図示しない後壁には、ガス供給孔が穿設されている。ガス供給孔には、アルゴン(Ar)ガスを処理室10内に供給するためのガス供給管の下流端が接続されている。処理室10の下壁には、排気孔(図略)が穿設されている。排気孔には、処理室10の内部のガスを排出するための真空排気装置(図略)が接続されている。処理室10は、本発明のチャンバーに含まれる。 The processing chamber 10 is made of stainless steel and has a rectangular parallelepiped box shape. A gas supply hole is formed in a rear wall (not shown) of the processing chamber 10. The gas supply hole is connected to a downstream end of a gas supply pipe for supplying argon (Ar) gas into the processing chamber 10. An exhaust hole (not shown) is formed in the lower wall of the processing chamber 10. A vacuum exhaust device (not shown) for exhausting the gas inside the processing chamber 10 is connected to the exhaust hole. The processing chamber 10 is included in the chamber of the present invention.
 処理ロール20は、前後方向に長い、円柱状を呈している。処理ロール20は、処理室10内の中央付近に配置されている。処理ロール20の軸方向中心には、回転軸が配置されている。処理ロール20は、当該回転軸を中心に、反時計回りに回転可能である。処理ロール20の外周面には、基材Fが支持されている。また、処理ロール20は、冷却管(図略)を内蔵している。冷却液が冷却管を循環することにより、処理ロール20の外周面は冷却されている。冷却液および冷却管は、本発明のロール用冷却手段に含まれる。 The treatment roll 20 has a long cylindrical shape in the front-rear direction. The processing roll 20 is disposed near the center in the processing chamber 10. A rotation shaft is disposed at the center of the processing roll 20 in the axial direction. The processing roll 20 can rotate counterclockwise around the rotation axis. A base material F is supported on the outer peripheral surface of the processing roll 20. The processing roll 20 has a built-in cooling pipe (not shown). As the coolant circulates through the cooling pipe, the outer peripheral surface of the processing roll 20 is cooled. The coolant and the cooling pipe are included in the roll cooling means of the present invention.
 二つのガイドロール200、201は、各々、前後方向に長い、円柱状を呈している。ガイドロール200は、処理ロール20の左側上方に配置されている。同様に、ガイドロール201は、処理ロール20の右側上方に配置されている。二つのガイドロール200、201は、処理ロール20と平行に、所定の間隔で離間して、対向して配置されている。ガイドロール200は、回転軸を中心に、時計回りに回転可能である。ガイドロール200は、供給室11から送られる基材Fを、処理ロール20に搬送する。ガイドロール201は、回転軸を中心に、時計回りに回転可能である。ガイドロール201は、処理ロール20から送られる処理後の基材F(成膜フィルムF’)を、巻取り室12に搬送する。処理ロール20およびガイドロール200、201は、本発明のロール部材および搬送手段に含まれる。 The two guide rolls 200 and 201 each have a columnar shape that is long in the front-rear direction. The guide roll 200 is disposed on the upper left side of the processing roll 20. Similarly, the guide roll 201 is disposed on the upper right side of the processing roll 20. The two guide rolls 200 and 201 are arranged in parallel to the processing roll 20 and spaced apart from each other at a predetermined interval. The guide roll 200 can rotate clockwise around the rotation axis. The guide roll 200 conveys the base material F sent from the supply chamber 11 to the processing roll 20. The guide roll 201 can rotate clockwise around the rotation axis. The guide roll 201 conveys the processed substrate F (deposition film F ′) sent from the processing roll 20 to the winding chamber 12. The processing roll 20 and the guide rolls 200 and 201 are included in the roll member and the conveying unit of the present invention.
 ECRプラズマ生成装置3は、処理ロール20の左側に配置されている。ECRプラズマ生成装置3は、プラズマ生成部30と、マイクロ波伝送部50と、を備えている。ECRプラズマ生成装置3は、ECRプラズマP1を生成し、当該ECRプラズマP1により基材Fの表面を改質する。ECRプラズマ生成装置3の詳細については、後述する。 The ECR plasma generator 3 is disposed on the left side of the processing roll 20. The ECR plasma generation apparatus 3 includes a plasma generation unit 30 and a microwave transmission unit 50. The ECR plasma generator 3 generates ECR plasma P1 and modifies the surface of the substrate F with the ECR plasma P1. Details of the ECR plasma generation apparatus 3 will be described later.
 マグネトロンスパッタ成膜装置6は、処理ロール20の下側に配置されている。マグネトロンスパッタ成膜装置6は、スパッタ部60と、ECRプラズマ生成装置4と、を備えている。マグネトロンスパッタ成膜装置6は、ECRプラズマ生成装置4によりECRプラズマP1を照射しながら、スパッタ部60のマグネトロンプラズマP2によるスパッタにより、基材Fの表面に薄膜を形成する。マグネトロンスパッタ成膜装置6の詳細については、後述する。 The magnetron sputtering film forming apparatus 6 is disposed below the processing roll 20. The magnetron sputtering film forming apparatus 6 includes a sputtering unit 60 and an ECR plasma generation apparatus 4. The magnetron sputtering film forming apparatus 6 forms a thin film on the surface of the substrate F by sputtering with the magnetron plasma P2 of the sputtering unit 60 while irradiating the ECR plasma P1 with the ECR plasma generating apparatus 4. Details of the magnetron sputtering film forming apparatus 6 will be described later.
 <ECRプラズマ生成装置>
 次に、ECRプラズマ生成装置3の構成について説明する。図2に、図1のECRプラズマ生成装置付近を拡大した断面図を示す。図3に、同ECRプラズマ生成装置におけるプラズマ生成部の斜視図を示す。図2、図3に示すように、ECRプラズマ生成装置3は、プラズマ生成部30と、マイクロ波伝送部50と、を備えている。マイクロ波伝送部50は、管体部51と、マイクロ波電源52と、マイクロ波発振器53と、アイソレータ54と、パワーモニタ55と、EH整合器56と、を有している。マイクロ波発振器53、アイソレータ54、パワーモニタ55、およびEH整合器56は、管体部51により連結されている。管体部51は、処理室10の左壁に穿設された導波孔を通って、プラズマ生成部30の導波管31の左側に接続されている。
<ECR plasma generator>
Next, the configuration of the ECR plasma generation apparatus 3 will be described. FIG. 2 is an enlarged cross-sectional view of the vicinity of the ECR plasma generation apparatus of FIG. FIG. 3 is a perspective view of a plasma generation unit in the ECR plasma generation apparatus. As shown in FIGS. 2 and 3, the ECR plasma generation apparatus 3 includes a plasma generation unit 30 and a microwave transmission unit 50. The microwave transmission unit 50 includes a tube unit 51, a microwave power source 52, a microwave oscillator 53, an isolator 54, a power monitor 55, and an EH matching unit 56. The microwave oscillator 53, the isolator 54, the power monitor 55, and the EH matching unit 56 are connected by the tube part 51. The tube unit 51 is connected to the left side of the waveguide 31 of the plasma generation unit 30 through a waveguide hole formed in the left wall of the processing chamber 10.
 プラズマ生成部30は、導波管31と、スロットアンテナ32と、誘電体部33と、支持板34と、永久磁石35と、を有している。図3に示すように、導波管31は、アルミニウム製であって、上方に開口する直方体箱状を呈している。導波管31は、前後方向に延在している。導波管31は、本発明における矩形導波管に含まれる。管体部51および導波管31は、内部圧力が大気圧あるいは0.01Pa以下の高真空状態になるように、シールされている。このため、管体部51および導波管31の内部で、プラズマが生成されることはない。 The plasma generation unit 30 includes a waveguide 31, a slot antenna 32, a dielectric unit 33, a support plate 34, and a permanent magnet 35. As shown in FIG. 3, the waveguide 31 is made of aluminum and has a rectangular parallelepiped box shape opening upward. The waveguide 31 extends in the front-rear direction. The waveguide 31 is included in the rectangular waveguide in the present invention. The tube part 51 and the waveguide 31 are sealed so that the internal pressure is atmospheric pressure or a high vacuum state of 0.01 Pa or less. For this reason, plasma is not generated inside the tube portion 51 and the waveguide 31.
 スロットアンテナ32は、アルミニウム製であって、長方形板状を呈している。スロットアンテナ32は、導波管31の開口部を上方から塞いでいる。すなわち、スロットアンテナ32は、導波管31の上壁を形成している。スロットアンテナ32には、スロット320が四つ形成されている。スロット320は、前後方向に伸びる長孔状を呈している。スロット320は、電界が強い位置に配置されている。 The slot antenna 32 is made of aluminum and has a rectangular plate shape. The slot antenna 32 closes the opening of the waveguide 31 from above. That is, the slot antenna 32 forms the upper wall of the waveguide 31. Four slots 320 are formed in the slot antenna 32. The slot 320 has a long hole shape extending in the front-rear direction. The slot 320 is disposed at a position where the electric field is strong.
 誘電体部33は、石英製であって、直方体状を呈している。誘電体部33は、スロットアンテナ32の上面右側に配置されている。誘電体部33は、スロット320を上方から覆っている。上述したように、誘電体部33の右面330は、スロット320から入射するマイクロ波の入射方向Y1に対して平行に配置されている。右面330は、誘電体部33におけるプラズマ生成領域側の表面に含まれる。 The dielectric portion 33 is made of quartz and has a rectangular parallelepiped shape. The dielectric portion 33 is disposed on the right side of the upper surface of the slot antenna 32. The dielectric portion 33 covers the slot 320 from above. As described above, the right surface 330 of the dielectric portion 33 is disposed in parallel to the incident direction Y1 of the microwave incident from the slot 320. The right surface 330 is included in the surface of the dielectric portion 33 on the plasma generation region side.
 支持板34は、ステンレス鋼製であって、平板状を呈している。支持板34は、スロットアンテナ32の上面において、誘電体部33の左面(裏面)に接するように配置されている。支持板34の内部には、冷媒通路340が形成されている。冷媒通路340は、前後方向に延在するU字状を呈している。冷媒通路340の前端は、冷却管341に接続されている。冷媒通路340は、冷却管341を介して、処理室10の外部において、熱交換器およびポンプ(共に図略)に接続されている。冷却液は、冷媒通路340→冷却管341→熱交換器→ポンプ→冷却管341→再び冷媒通路340という経路を循環している。冷却液の循環により、支持板34は冷却されている。冷媒通路340および冷却液は、本発明の支持板用冷却手段に含まれる。 The support plate 34 is made of stainless steel and has a flat plate shape. The support plate 34 is disposed on the upper surface of the slot antenna 32 so as to be in contact with the left surface (back surface) of the dielectric portion 33. A refrigerant passage 340 is formed in the support plate 34. The refrigerant passage 340 has a U shape extending in the front-rear direction. The front end of the refrigerant passage 340 is connected to the cooling pipe 341. The refrigerant passage 340 is connected to a heat exchanger and a pump (both not shown) outside the processing chamber 10 via a cooling pipe 341. The coolant circulates in the path of the refrigerant passage 340 → the cooling pipe 341 → the heat exchanger → the pump → the cooling pipe 341 → the refrigerant passage 340 again. The support plate 34 is cooled by the circulation of the coolant. The refrigerant passage 340 and the cooling liquid are included in the support plate cooling means of the present invention.
 永久磁石35は、ネオジム磁石であり、直方体状を呈している。永久磁石35は、支持板34の左面(裏面)に八つ配置されている。八つの永久磁石35は、前後方向に直列に配置されている。八つの永久磁石35は、いずれも右側がN極、左側がS極である。各々の永久磁石35から右方に向かって、磁力線Mが生じている。これにより、誘電体部33の右方のプラズマ生成領域に、磁場が形成されている。 The permanent magnet 35 is a neodymium magnet and has a rectangular parallelepiped shape. Eight permanent magnets 35 are arranged on the left surface (back surface) of the support plate 34. The eight permanent magnets 35 are arranged in series in the front-rear direction. Each of the eight permanent magnets 35 has an N pole on the right side and an S pole on the left side. Magnetic field lines M are generated from each permanent magnet 35 to the right. Thereby, a magnetic field is formed in the plasma generation region on the right side of the dielectric portion 33.
 <マグネトロンスパッタ成膜装置>
 次に、マグネトロンスパッタ成膜装置6の構成について説明する。図4に、図1のマグネトロンスパッタ成膜装置付近を拡大した断面図を示す。図5に、同マグネトロンスパッタ成膜装置を構成するECRプラズマ生成装置のプラズマ生成部の斜視図を示す。図4、図5に示すように、マグネトロンスパッタ成膜装置6は、スパッタ部60と、ECRプラズマ生成装置4と、を備えている。
<Magnetron sputtering deposition system>
Next, the configuration of the magnetron sputtering film forming apparatus 6 will be described. FIG. 4 is an enlarged cross-sectional view of the vicinity of the magnetron sputtering film forming apparatus of FIG. FIG. 5 is a perspective view of the plasma generation unit of the ECR plasma generation apparatus constituting the magnetron sputtering film forming apparatus. As shown in FIGS. 4 and 5, the magnetron sputtering film forming apparatus 6 includes a sputtering unit 60 and an ECR plasma generation apparatus 4.
 スパッタ部60は、ターゲット61と、バッキングプレート62と、永久磁石63a~63cと、カソード64と、を備えている。カソード64は、ステンレス鋼製であって、上方に開口する直方体箱状を呈している。カソード64、ターゲット61、およびバッキングプレート62の周囲には、アースシールド65が配置されている。カソード64は、アースシールド65を介して、処理室10の下面に配置されている。カソード64は、直流パルス電源66に接続されている。 The sputter unit 60 includes a target 61, a backing plate 62, permanent magnets 63a to 63c, and a cathode 64. The cathode 64 is made of stainless steel and has a rectangular parallelepiped box shape opening upward. An earth shield 65 is disposed around the cathode 64, the target 61, and the backing plate 62. The cathode 64 is disposed on the lower surface of the processing chamber 10 via the earth shield 65. The cathode 64 is connected to a DC pulse power supply 66.
 永久磁石63a~63cは、カソード64の内側に配置されている。永久磁石63a~63cは、各々、前後方向に延びる直方体状を呈している。永久磁石63a~63cは、左右方向に離間して、互いに平行になるように配置されている。永久磁石63aおよび永久磁石63cについては、上側がS極、下側がN極である。永久磁石63bについては、上側がN極、下側がS極である。永久磁石63a~63cにより、ターゲット61の上面に磁場が形成される。永久磁石63a~63cは、本発明における磁場形成手段に含まれる。 The permanent magnets 63a to 63c are arranged inside the cathode 64. Each of the permanent magnets 63a to 63c has a rectangular parallelepiped shape extending in the front-rear direction. The permanent magnets 63a to 63c are spaced apart from each other in the left-right direction and arranged so as to be parallel to each other. Regarding the permanent magnet 63a and the permanent magnet 63c, the upper side is the S pole and the lower side is the N pole. As for the permanent magnet 63b, the upper side is the N pole and the lower side is the S pole. A magnetic field is formed on the upper surface of the target 61 by the permanent magnets 63a to 63c. The permanent magnets 63a to 63c are included in the magnetic field forming means in the present invention.
 バッキングプレート62は、銅製であって、長方形板状を呈している。バッキングプレート62は、カソード64の上部開口を覆うように配置されている。 The backing plate 62 is made of copper and has a rectangular plate shape. The backing plate 62 is disposed so as to cover the upper opening of the cathode 64.
 ターゲット61は、酸化インジウム-酸化錫の複合酸化物(ITO)であり、長方形薄板状を呈している。ターゲット61は、バッキングプレート62の上面に配置されている。ターゲット61は、処理ロール20の下面と対向するように配置されている。 The target 61 is a composite oxide (ITO) of indium oxide and tin oxide, and has a rectangular thin plate shape. The target 61 is disposed on the upper surface of the backing plate 62. The target 61 is disposed so as to face the lower surface of the processing roll 20.
 ECRプラズマ生成装置4は、プラズマ生成部40と、マイクロ波伝送部50と、を備えている。マイクロ波伝送部50の構成については、ECRプラズマ生成装置3において、説明した通りである。また、プラズマ生成部40の構成は、ECRプラズマ生成装置3のプラズマ生成部30の構成と、同じである。以下、プラズマ生成部40の構成を、簡単に説明する。 The ECR plasma generation apparatus 4 includes a plasma generation unit 40 and a microwave transmission unit 50. The configuration of the microwave transmission unit 50 is as described in the ECR plasma generation apparatus 3. The configuration of the plasma generation unit 40 is the same as the configuration of the plasma generation unit 30 of the ECR plasma generation apparatus 3. Hereinafter, the configuration of the plasma generation unit 40 will be briefly described.
 図5に示すように、プラズマ生成部40は、導波管41と、スロットアンテナ42と、誘電体部43と、支持板44と、永久磁石45と、を有している。導波管41は、前後方向に延在している。導波管41は、本発明における矩形導波管に含まれる。導波管41は、内部圧力が大気圧あるいは0.01Pa以下の高真空状態になるように、シールされている。このため、上述したECRプラズマ生成装置3と同様、管体部51および導波管41の内部で、プラズマが生成されることはない。スロットアンテナ42は、導波管41の開口部を上方から塞いでいる。スロットアンテナ42には、スロット420が四つ形成されている。誘電体部43は、スロットアンテナ42の上面左側に配置されている。誘電体部43は、スロット420を上方から覆っている。誘電体部43の左面430は、スロット420から入射するマイクロ波の入射方向Y1に対して平行に配置されている。左面430は、誘電体部43におけるプラズマ生成領域側の表面に含まれる。 As shown in FIG. 5, the plasma generation unit 40 includes a waveguide 41, a slot antenna 42, a dielectric unit 43, a support plate 44, and a permanent magnet 45. The waveguide 41 extends in the front-rear direction. The waveguide 41 is included in the rectangular waveguide in the present invention. The waveguide 41 is sealed so that the internal pressure becomes atmospheric pressure or a high vacuum state of 0.01 Pa or less. For this reason, similarly to the ECR plasma generation apparatus 3 described above, plasma is not generated inside the tube body portion 51 and the waveguide 41. The slot antenna 42 closes the opening of the waveguide 41 from above. Four slots 420 are formed in the slot antenna 42. The dielectric portion 43 is disposed on the upper left side of the slot antenna 42. The dielectric part 43 covers the slot 420 from above. The left surface 430 of the dielectric part 43 is disposed in parallel to the incident direction Y1 of the microwave incident from the slot 420. The left surface 430 is included in the surface of the dielectric part 43 on the plasma generation region side.
 支持板44は、スロットアンテナ42の上面において、誘電体部43の右面(裏面)に接するように配置されている。支持板44の内部には、冷媒通路440が形成されている。冷媒通路440の前端は、冷却管441に接続されている。冷媒通路440は、冷却管441を介して、処理室10の外部において、熱交換器およびポンプ(共に図略)に接続されている。冷媒通路440、冷却管441を通る冷却液の循環により、支持板44は冷却されている。冷媒通路440および冷却液は、本発明の支持板用冷却手段に含まれる。永久磁石45は、支持板44の右面(裏面)に八つ配置されている。各々の永久磁石45から左方に向かって、磁力線Mが生じている。これにより、誘電体部43の左方のプラズマ生成領域に、磁場が形成されている。 The support plate 44 is disposed on the upper surface of the slot antenna 42 so as to be in contact with the right surface (back surface) of the dielectric portion 43. A refrigerant passage 440 is formed inside the support plate 44. The front end of the refrigerant passage 440 is connected to the cooling pipe 441. The refrigerant passage 440 is connected to a heat exchanger and a pump (both not shown) outside the processing chamber 10 via a cooling pipe 441. The support plate 44 is cooled by circulation of the coolant through the refrigerant passage 440 and the cooling pipe 441. The refrigerant passage 440 and the coolant are included in the support plate cooling means of the present invention. Eight permanent magnets 45 are arranged on the right surface (back surface) of the support plate 44. Magnetic lines of force M are generated from each permanent magnet 45 toward the left. Thereby, a magnetic field is formed in the plasma generation region on the left side of the dielectric portion 43.
 <動き>
 次に、プラズマ改質成膜装置1の動きについて説明する。まず、真空排気装置(図略)を作動させて、処理室10の内部のガスを排気孔から排出し、処理室10の内部を減圧状態にする。次に、ガス供給管から、アルゴンガスを処理室10内へ供給して、処理室10内の圧力を約0.1Paにする。この状態で、各ロール20、21、22、200、201、210、220のモータを駆動させ、供給ロール21から基材Fを、処理室10に搬送する。
<Movement>
Next, the movement of the plasma modified film forming apparatus 1 will be described. First, an evacuation apparatus (not shown) is operated to exhaust the gas inside the processing chamber 10 from the exhaust hole, thereby reducing the pressure inside the processing chamber 10. Next, argon gas is supplied into the processing chamber 10 from the gas supply pipe, and the pressure in the processing chamber 10 is set to about 0.1 Pa. In this state, the motors of the rolls 20, 21, 22, 200, 201, 210, and 220 are driven to transport the substrate F from the supply roll 21 to the processing chamber 10.
 そして、二つのECRプラズマ生成装置3、4のマイクロ波電源52を、オンにする。マイクロ波電源52をオンにすると、マイクロ波発振器53が、周波数2.45GHzのマイクロ波を発生する。発生したマイクロ波は、管体部51内を伝播する。ここで、アイソレータ54は、プラズマ生成部30、40から反射されたマイクロ波が、マイクロ波発振器53に戻るのを抑制する。パワーモニタ55は、発生したマイクロ波の出力と、反射したマイクロ波の出力と、をモニタリングする。EH整合器56は、マイクロ波の反射量を調整する。管体部51内を通過したマイクロ波は、プラズマ生成部30の導波管31の内部を伝播する。同様に、プラズマ生成部40の導波管41の内部を伝播する。 Then, the microwave power sources 52 of the two ECR plasma generators 3 and 4 are turned on. When the microwave power source 52 is turned on, the microwave oscillator 53 generates a microwave having a frequency of 2.45 GHz. The generated microwave propagates in the tubular body portion 51. Here, the isolator 54 suppresses the microwaves reflected from the plasma generation units 30 and 40 from returning to the microwave oscillator 53. The power monitor 55 monitors the output of the generated microwave and the output of the reflected microwave. The EH matching device 56 adjusts the amount of reflected microwaves. The microwave that has passed through the tube body 51 propagates inside the waveguide 31 of the plasma generator 30. Similarly, it propagates inside the waveguide 41 of the plasma generation unit 40.
 導波管31の内部を伝播するマイクロ波は、スロットアンテナ32のスロット320に進入する。そして、前出図3中白抜き矢印Y1で示すように、スロット320を通過して、誘電体部33に入射する。誘電体部33に入射したマイクロ波は、同図中白抜き矢印Y2で示すように、主に誘電体部33の右面330に沿って伝播する。このマイクロ波の強電界により、処理室10内のアルゴンガスが電離して、誘電体部33の右方にマイクロ波プラズマが生成される。生成したマイクロ波プラズマ中の電子は、サイクロトロン角周波数に従って、磁力線M方向に対して右回りの旋回運動を行う。一方、マイクロ波プラズマ中を伝播するマイクロ波は、電子サイクロトロン波を励起する。電子サイクロトロン波の角周波数は、磁束密度0.0875Tで、サイクロトロン角周波数に一致する。これにより、ECRが生じる。ECRによりエネルギーが増大した電子は、磁力線Mに拘束されながら、周辺の中性粒子と衝突する。これにより、中性粒子が次々に電離する。電離により生じた電子も、ECRにより加速され、さらに中性粒子を電離させる。このようにして、誘電体部33の右方に、高密度のECRプラズマP1が生成される。このECRプラズマP1により、処理ロール20により搬送されてきた基材Fの表面を、改質する。また、プラズマ生成部30と同様にして、プラズマ生成部40の誘電体部43の左方にも、高密度のECRプラズマP1が生成される。 Microwave propagating inside the waveguide 31 enters the slot 320 of the slot antenna 32. Then, as indicated by the hollow arrow Y 1 in FIG. 3, the light passes through the slot 320 and enters the dielectric portion 33. The microwave incident on the dielectric portion 33 propagates mainly along the right surface 330 of the dielectric portion 33, as indicated by the white arrow Y2 in the figure. Due to the strong electric field of the microwave, the argon gas in the processing chamber 10 is ionized, and microwave plasma is generated on the right side of the dielectric portion 33. Electrons in the generated microwave plasma perform a clockwise turning motion with respect to the direction of the magnetic force line M in accordance with the cyclotron angular frequency. On the other hand, the microwave propagating through the microwave plasma excites the electron cyclotron wave. The angular frequency of the electron cyclotron wave is a magnetic flux density of 0.0875T, which matches the cyclotron angular frequency. This causes ECR. Electrons whose energy has been increased by ECR collide with surrounding neutral particles while being restrained by the magnetic lines of force M. Thereby, neutral particles are ionized one after another. Electrons generated by ionization are also accelerated by ECR and further ionize neutral particles. In this way, the high-density ECR plasma P1 is generated on the right side of the dielectric portion 33. With this ECR plasma P1, the surface of the substrate F conveyed by the processing roll 20 is modified. Similarly to the plasma generation unit 30, high-density ECR plasma P <b> 1 is also generated on the left side of the dielectric unit 43 of the plasma generation unit 40.
 スパッタ部60においては、直流パルス電源66をオンにして、カソード64に電圧を印加する。これにより生じたマグネトロン放電で、アルゴンガスが電離して、ターゲット61の上方にマグネトロンプラズマP2が生成される。そして、マグネトロンプラズマP2(アルゴンイオン)によりターゲット61をスパッタし、ターゲット61からスパッタ粒子を叩き出す。ターゲット61から飛び出したスパッタ粒子は、上方の基材Fに向かって飛散して、基材Fの改質処理された表面に付着することにより、ITO膜を形成する。この際、基材Fとターゲット61との間(マグネトロンプラズマP2生成領域を含む)には、プラズマ生成部40からECRプラズマP1が照射される。 In the sputter unit 60, the DC pulse power supply 66 is turned on and a voltage is applied to the cathode 64. The magnetron discharge generated thereby ionizes the argon gas, and magnetron plasma P <b> 2 is generated above the target 61. Then, the target 61 is sputtered by magnetron plasma P2 (argon ions), and sputtered particles are sputtered from the target 61. The sputtered particles that have jumped out of the target 61 scatter toward the upper base material F and adhere to the modified surface of the base material F, thereby forming an ITO film. At this time, the ECR plasma P1 is irradiated from the plasma generation unit 40 between the base material F and the target 61 (including the magnetron plasma P2 generation region).
 改質および成膜処理された基材F、つまり、成膜フィルムF’は、ガイドロール201、220に案内されて、処理室10から巻取り室12に搬送され、巻取りロール22に巻き取られる。 The modified and film-formed substrate F, that is, the film-forming film F ′, is guided by the guide rolls 201 and 220, conveyed from the processing chamber 10 to the winding chamber 12, and taken up by the winding roll 22. It is done.
 <作用効果>
 次に、本実施形態のプラズマ改質成膜装置の作用効果について説明する。本実施形態のプラズマ改質成膜装置1においては、基材Fの表面の改質処理を、ECRプラズマ生成装置3を用いて行う。ECRプラズマ生成装置3によると、成膜処理を行う0.3~1Pa程度の低圧下においても、高密度なプラズマを安定して生成することができる。したがって、従来、処理圧力の違いから、別々の処理室において行わなければならなかった改質処理と成膜処理とを、一つの処理室10内で連続して行うことができる。これにより、従来は改質、成膜の各処理室ごとに必要であった、ガスの供給、排出装置や基材の搬送装置等を、一つにまとめることができる。よって、設備費用を削減することができる。また、改質と成膜とを同じ処理室10内で連続して行うため、改質処理された基材Fの表面に、不純物が付着するおそれは小さい。つまり、基材Fが汚染されにくくなる。このため、より凹凸の少ない薄膜を形成することができる。
<Effect>
Next, the function and effect of the plasma modified film forming apparatus of this embodiment will be described. In the plasma modified film forming apparatus 1 of the present embodiment, the surface modification process of the substrate F is performed using the ECR plasma generation apparatus 3. According to the ECR plasma generation apparatus 3, high-density plasma can be stably generated even under a low pressure of about 0.3 to 1 Pa in which film formation is performed. Therefore, the reforming process and the film forming process, which conventionally had to be performed in separate processing chambers due to the difference in processing pressure, can be performed continuously in one processing chamber 10. Thus, the gas supply, discharge device, base material transport device, and the like, which are conventionally required for each processing chamber for reforming and film formation, can be combined into one. Therefore, the equipment cost can be reduced. In addition, since the modification and the film formation are continuously performed in the same processing chamber 10, there is little possibility that impurities adhere to the surface of the modified substrate F. That is, the base material F is hardly contaminated. For this reason, a thin film with less unevenness can be formed.
 プラズマ改質成膜装置1においては、基材Fを処理ロール20等により搬送する。よって、コンベア等を用いて直線的に搬送する場合と比較して、処理室10を小型化することができる。ここで、処理ロール20の内部には、冷却管を通して冷却液が循環している。これにより、処理ロール20の外周面は、冷却されている。よって、搬送される基材Fの温度上昇を抑制し、熱による基材Fの変形や、損傷を抑制することができる。 In the plasma reforming film forming apparatus 1, the substrate F is transported by the processing roll 20 or the like. Therefore, compared with the case where it conveys linearly using a conveyor etc., the process chamber 10 can be reduced in size. Here, a coolant is circulated through the cooling pipe inside the processing roll 20. Thereby, the outer peripheral surface of the processing roll 20 is cooled. Therefore, the temperature rise of the conveyed base material F can be suppressed and the deformation | transformation and damage of the base material F by a heat | fever can be suppressed.
 プラズマ改質成膜装置1によると、改質処理により、PET製の基材Fの表面のノジュールが、微細化される。このため、その後に形成されるITO膜の凹凸は小さい。よって、成膜フィルムF’を有機ELデバイスに用いれば、陽極の凸部への電界集中を抑制し、電子輸送性発光層の劣化を抑制することができる。 According to the plasma-modified film forming apparatus 1, nodules on the surface of the PET substrate F are refined by the modification process. For this reason, the unevenness | corrugation of the ITO film | membrane formed after that is small. Therefore, if the film formation film F ′ is used in an organic EL device, the electric field concentration on the convex portion of the anode can be suppressed, and the deterioration of the electron transporting light emitting layer can be suppressed.
 また、ECRプラズマ生成装置3によると、低電位のまま、エネルギーの大きなECRプラズマP1を生成することができる。これにより、基材Fの粗面化や変形を抑制しながら、大きな改質効果を得ることができる。また、導波管31は、前後方向に延びる長尺の箱状を呈している。そして、スロット320は、前後方向に直列に配置されている。これにより、長尺状のECRプラズマP1を生成することができる。したがって、基材Fの幅が大きく大面積の場合でも、容易に改質処理を行うことができる。また、八つの永久磁石35は、支持板34の左面に配置されている。支持板34の内部には、冷媒通路340を通して冷却液が循環している。これにより、支持板34は冷却されている。よって、永久磁石35の温度は上昇しにくい。つまり、永久磁石35の磁性が失われるおそれは小さい。したがって、プラズマ生成時においても、安定した磁場が形成される。 Further, according to the ECR plasma generation apparatus 3, it is possible to generate the ECR plasma P1 having a large energy with a low potential. Thereby, a large modification effect can be obtained while suppressing roughening and deformation of the substrate F. The waveguide 31 has a long box shape extending in the front-rear direction. And the slot 320 is arrange | positioned in series in the front-back direction. Thereby, the long ECR plasma P1 can be generated. Therefore, even when the base material F has a large width and a large area, the modification treatment can be easily performed. The eight permanent magnets 35 are arranged on the left surface of the support plate 34. Inside the support plate 34, the coolant circulates through the refrigerant passage 340. Thereby, the support plate 34 is cooled. Therefore, the temperature of the permanent magnet 35 is unlikely to increase. That is, the possibility that the magnetism of the permanent magnet 35 is lost is small. Therefore, a stable magnetic field is formed even during plasma generation.
 プラズマ改質成膜装置1においては、基材Fの表面への成膜を、マグネトロンスパッタ成膜装置6を用いて行う。マグネトロンスパッタ成膜装置6は、スパッタ部60と、ECRプラズマ生成装置4と、を備えている。これにより、マグネトロンプラズマP2によるスパッタ成膜を、ECRプラズマP1を照射しながら行うことができる。 In the plasma modified film forming apparatus 1, film formation on the surface of the substrate F is performed using a magnetron sputtering film forming apparatus 6. The magnetron sputtering film forming apparatus 6 includes a sputtering unit 60 and an ECR plasma generation apparatus 4. Thereby, sputter film formation by magnetron plasma P2 can be performed while irradiating ECR plasma P1.
 スパッタ部60において、ターゲット61表面に発生した磁場により、ターゲット61から飛び出した二次電子が捕らえられる。このため、基材Fの温度が上昇しにくい。よって、熱による基材Fの変形は小さい。また、捕らえた二次電子でアルゴンガスのイオン化が促進されるため、成膜速度が速い。 In the sputter unit 60, secondary electrons that have jumped out of the target 61 are captured by the magnetic field generated on the surface of the target 61. For this reason, the temperature of the base material F hardly rises. Therefore, the deformation of the base material F due to heat is small. Further, since the ionization of argon gas is promoted by the captured secondary electrons, the film forming speed is high.
 また、ECRプラズマP1を照射することにより、印加電圧を下げても、マグネトロンプラズマP2を安定に維持することができる。これにより、クラスター粒子のような粒子径の大きな粒子のターゲット61からの飛び出しを、抑制することができる。その結果、スパッタ粒子の粒子径のばらつきが抑制され、形成される薄膜の表面の凹凸を、小さくすることができる。また、ECRプラズマP1を照射すると、スパッタ粒子が微細化される。このため、よりきめ細やかな薄膜を形成することができる。また、処理室10内を0.1Pa程度の高真空状態にすることにより、マグネトロンプラズマP2が安定すると共に、不純物の侵入を抑制し、ターゲット粒子の平均自由行程を長くすることができる。これにより、形成される薄膜の膜質が向上する。 Further, by irradiating the ECR plasma P1, the magnetron plasma P2 can be stably maintained even when the applied voltage is lowered. Thereby, the jumping out of the target 61 with particles having a large particle diameter such as cluster particles can be suppressed. As a result, the variation in the particle diameter of the sputtered particles is suppressed, and the unevenness on the surface of the formed thin film can be reduced. Further, when the ECR plasma P1 is irradiated, the sputtered particles are miniaturized. For this reason, a finer thin film can be formed. Further, by setting the inside of the processing chamber 10 to a high vacuum state of about 0.1 Pa, the magnetron plasma P2 can be stabilized, the intrusion of impurities can be suppressed, and the average free path of the target particles can be lengthened. Thereby, the film quality of the formed thin film improves.
 ECRプラズマ生成装置4において、導波管41は、前後方向に延びる長尺の箱状を呈している。そして、スロット420は、前後方向に直列に配置されている。これにより、ECRプラズマ生成装置4によると、長尺状のECRプラズマP1を生成することができる。したがって、ECRプラズマ生成装置4は、大面積の薄膜を形成する場合に好適である。 In the ECR plasma generation apparatus 4, the waveguide 41 has a long box shape extending in the front-rear direction. The slots 420 are arranged in series in the front-rear direction. Thereby, according to the ECR plasma generator 4, the long ECR plasma P1 can be generated. Therefore, the ECR plasma generation apparatus 4 is suitable for forming a large area thin film.
 <その他>
 以上、本発明のプラズマ改質成膜装置の一実施形態について説明した。しかしながら、プラズマ改質成膜装置の実施の形態は上記形態に限定されるものではない。当業者が行いうる種々の変形的形態、改良的形態で実施することも可能である。
<Others>
The embodiment of the plasma modified film forming apparatus of the present invention has been described above. However, the embodiment of the plasma modified film forming apparatus is not limited to the above embodiment. Various modifications and improvements that can be made by those skilled in the art are also possible.
 例えば、上記実施形態においては、成膜装置として、マグネトロンスパッタ成膜装置を用いた。しかし、成膜装置は、磁場を形成せずにスパッタを行う装置(二極スパッタ装置等)でもよく、プラズマCVD装置でもよい。また、成膜の際、必ずしもECRプラズマを照射する必要はない。つまり、ECRプラズマ生成装置を用いずに成膜装置を構成してもよい。また、成膜装置としてECRプラズマ生成装置を用いる場合には、改質処理を行うECRプラズマ生成装置を兼用してもよい。 For example, in the above embodiment, a magnetron sputtering film forming apparatus is used as the film forming apparatus. However, the film formation apparatus may be an apparatus that performs sputtering without forming a magnetic field (such as a bipolar sputtering apparatus) or a plasma CVD apparatus. Further, it is not always necessary to irradiate ECR plasma during film formation. That is, the film forming apparatus may be configured without using the ECR plasma generating apparatus. In addition, when an ECR plasma generation apparatus is used as the film formation apparatus, an ECR plasma generation apparatus that performs a modification process may also be used.
 マグネトロンスパッタ成膜装置を用いる場合、スパッタ部のバッキングプレート、およびカソードの材質や形状については、特に限定されない。例えば、バッキングプレートには、非磁性の導電性材料を用いればよい。なかでも、導電性および熱伝導性が高い銅等の金属材料が望ましい。カソードには、ステンレス鋼の他、アルミニウム等の金属を用いることができる。また、ターゲットの表面に磁場を形成するための磁場形成手段の構成は、上記実施形態に限定されない。磁場形成手段として永久磁石を用いる場合、永久磁石の種類や配置形態については、適宜決定すればよい。例えば、各々の永久磁石のN極とS極とが、上記実施形態と逆でもよい。 When using a magnetron sputter deposition apparatus, the material and shape of the backing plate of the sputtering part and the cathode are not particularly limited. For example, a nonmagnetic conductive material may be used for the backing plate. Among these, a metal material such as copper having high conductivity and heat conductivity is desirable. For the cathode, metals such as aluminum can be used in addition to stainless steel. Further, the configuration of the magnetic field forming means for forming a magnetic field on the surface of the target is not limited to the above embodiment. When a permanent magnet is used as the magnetic field forming means, the type and arrangement of the permanent magnet may be determined as appropriate. For example, the N pole and S pole of each permanent magnet may be the reverse of the above embodiment.
 基材の搬送手段は、上記実施形態のようなロール部材を用いた方式には限定されない。搬送手段は、改質処理と成膜処理とを一つのチャンバー内で連続して行えるように、基材を搬送できるものであればよい。また、ロール部材を用いる場合でも、ロール部材の構成や配置形態は、限定されない。 The substrate transport means is not limited to the system using the roll member as in the above embodiment. The transfer means may be any means that can transfer the base material so that the reforming process and the film forming process can be continuously performed in one chamber. Moreover, even when using a roll member, the structure and arrangement | positioning form of a roll member are not limited.
 上記実施形態においては、プラズマ改質成膜装置を、処理室の他に、供給室、巻取り室を備えて構成した。しかし、供給室、巻取り室は必ずしも必要ではない。基材に改質処理と成膜処理とを行う処理室(チャンバー)のみから、プラズマ改質成膜装置を構成してもよい。チャンバーの材質や形状についても、特に限定されない。例えば、チャンバーは金属材料で形成されていればよい。金属材料のなかでも、導電性の高い材料を採用することが望ましい。 In the above embodiment, the plasma modified film forming apparatus is configured to include a supply chamber and a winding chamber in addition to the processing chamber. However, the supply chamber and the winding chamber are not necessarily required. The plasma reforming film forming apparatus may be configured only from a processing chamber (chamber) that performs the reforming process and the film forming process on the base material. The material and shape of the chamber are not particularly limited. For example, the chamber may be made of a metal material. Among metal materials, it is desirable to adopt a material having high conductivity.
 上記実施形態においては、マグネトロンスパッタ成膜装置のターゲットとして、ITOを用いた。しかし、ターゲットの材料は、特に限定されるものではなく、形成する薄膜の種類に応じて適宜決定すればよい。勿論、形成する薄膜の種類も限定されない。同様に、基材についても、用途に応じて、適宜選択すればよい。上記実施形態のPETフィルムの他、例えば、ポリエチレンナフタレート(PEN)フィルム、ポリフェニレンサルファイド(PPS)フィルム、ポリアミド(PA)6フィルム、PA11フィルム、PA12フィルム、PA46フィルム、ポリアミドMXD6フィルム、PA9Tフィルム、ポリイミド(PI)フィルム、ポリカーボネート(PC)フィルム、フッ素樹脂フィルム、エチレン-ビニルアルコール共重合体(EVOH)フィルム、ポリビニルアルコール(PVA)フィルム、ポリエチレン(PE)、ポリプロピレン(PP)、シクロオレフィンポリマー等のポリオレフィンフィルム等を用いることができる。 In the above embodiment, ITO was used as the target of the magnetron sputtering film forming apparatus. However, the target material is not particularly limited, and may be appropriately determined according to the type of thin film to be formed. Of course, the type of thin film to be formed is not limited. Similarly, the substrate may be appropriately selected according to the application. Besides the PET film of the above embodiment, for example, polyethylene naphthalate (PEN) film, polyphenylene sulfide (PPS) film, polyamide (PA) 6 film, PA11 film, PA12 film, PA46 film, polyamide MXD6 film, PA9T film, polyimide (PI) film, polycarbonate (PC) film, fluororesin film, ethylene-vinyl alcohol copolymer (EVOH) film, polyvinyl alcohol (PVA) film, polyethylene (PE), polypropylene (PP), polyolefin such as cycloolefin polymer A film or the like can be used.
 ECRプラズマ生成装置において、スロットアンテナの材質、スロットの数、形状、配置等は、特に限定されない。例えば、スロットアンテナの材質は、非磁性の金属であればよく、アルミニウムの他、ステンレス鋼や真鍮等でも構わない。また、スロットは、一列ではなく、二列以上に配置されていてもよい。スロットの数は、奇数個でも偶数個でもよい。また、スロットの配置角度を変えて、ジグザグ状に配置してもよい。誘電体部の材質、形状についても、特に限定されない。誘電体部の材質としては、誘電率が低く、マイクロ波を吸収しにくい材料が望ましい。例えば、石英の他、酸化アルミニウム(アルミナ)等が好適である。 In the ECR plasma generator, the material of the slot antenna, the number of slots, the shape, the arrangement, etc. are not particularly limited. For example, the material of the slot antenna may be a nonmagnetic metal, and may be stainless steel or brass in addition to aluminum. Further, the slots may be arranged in two or more rows instead of one row. The number of slots may be odd or even. Further, the slots may be arranged in a zigzag shape by changing the arrangement angle of the slots. The material and shape of the dielectric part are not particularly limited. As a material of the dielectric portion, a material having a low dielectric constant and hardly absorbing microwaves is desirable. For example, aluminum oxide (alumina) other than quartz is suitable.
 また、支持板の材質や形状は、特に限定されない。上記実施形態においては、支持板用冷却手段として、冷媒通路および冷却液を配置した。しかし、支持板用冷却手段の構成は、特に限定されない。支持板は、支持板用冷却手段を有していなくてもよい。 Further, the material and shape of the support plate are not particularly limited. In the said embodiment, the refrigerant path and the cooling fluid were arrange | positioned as a cooling means for support plates. However, the structure of the support plate cooling means is not particularly limited. The support plate may not have support plate cooling means.
 また、誘電体部の右方、あるいは左方(プラズマ生成領域)に磁場を形成する永久磁石は、ECRを発生させることができれば、その形状、種類、個数、配置形態等は特に限定されない。例えば、永久磁石を一つだけ配置してもよく、複数個を二列以上に配置してもよい。 Further, the shape, type, number, arrangement form, etc. of the permanent magnet that forms the magnetic field on the right side or the left side (plasma generation region) of the dielectric part are not particularly limited as long as ECR can be generated. For example, only one permanent magnet may be disposed, or a plurality of permanent magnets may be disposed in two or more rows.
 上記実施形態においては、ECRプラズマの生成に、周波数2.45GHzのマイクロ波を用いた。しかし、マイクロ波の周波数は特に限定されない。8.35GHz、1.98GHz、915MHz等であってもよい。 In the above embodiment, microwaves with a frequency of 2.45 GHz were used for generating ECR plasma. However, the frequency of the microwave is not particularly limited. It may be 8.35 GHz, 1.98 GHz, 915 MHz, or the like.
 上記実施形態においては、約0.1Paの圧力下で、改質および成膜処理を行った。しかし、処理の圧力は、当該圧力に限定されない。改質および成膜処理は、適宜最適な圧力下で行えばよい。また、供給するガスとしては、アルゴンの他、ヘリウム(He)、ネオン(Ne)、クリプトン(Kr)、キセノン(Xe)等の希ガス、窒素(N)、酸素(O)、水素(H)等を用いてもよい。なお、二種類以上のガスを混合して用いてもよい。 In the above embodiment, the reforming and film forming processes were performed under a pressure of about 0.1 Pa. However, the processing pressure is not limited to the pressure. The modification and the film formation process may be performed under an optimum pressure as appropriate. As the gas to be supplied, in addition to argon, helium (He), neon (Ne), krypton (Kr), xenon (Xe) and other rare gases, nitrogen (N 2 ), oxygen (O 2 ), hydrogen ( H 2 ) or the like may be used. Two or more kinds of gases may be mixed and used.
 本発明のプラズマ改質成膜装置は、例えば、タッチパネル、ディスプレイ、LED(発光ダイオード)照明、太陽電池、電子ペーパー等に用いられる透明導電膜等の形成に有用である。 The plasma-modified film forming apparatus of the present invention is useful for forming a transparent conductive film used for, for example, a touch panel, a display, LED (light emitting diode) illumination, a solar cell, electronic paper, and the like.

Claims (7)

  1.  チャンバーと、
     該チャンバー内に配置され、基材を搬送する搬送手段と、
     マイクロ波を用いた電子サイクロトロン共鳴(ECR)によりプラズマを生成し、該プラズマにより該基材の表面を改質するECRプラズマ生成装置と、
     該基材の該表面に薄膜を形成する成膜装置と、
    を備え、一つの該チャンバー内において、該基材の該表面の改質と該表面への成膜とを連続して行うことができるプラズマ改質成膜装置であって、
     該ECRプラズマ生成装置は、
     マイクロ波を伝送する矩形導波管と、
     該矩形導波管の一面に配置され、該マイクロ波が通過するスロットを有するスロットアンテナと、
     該スロットアンテナの該スロットを覆うように配置され、プラズマ生成領域側の表面は該スロットから入射する該マイクロ波の入射方向に平行である誘電体部と、
     該誘電体部の裏面に配置され該誘電体部を支持する支持板と、
     該支持板の裏面に配置され該プラズマ生成領域に磁場を形成する永久磁石と、
    を備え、該誘電体部から該磁場中に伝播する該マイクロ波によりECRを発生させながらプラズマを生成することを特徴とするプラズマ改質成膜装置。
    A chamber;
    A conveying means disposed in the chamber for conveying the substrate;
    An ECR plasma generation apparatus for generating plasma by electron cyclotron resonance (ECR) using microwaves and modifying the surface of the substrate by the plasma;
    A film forming apparatus for forming a thin film on the surface of the substrate;
    A plasma-modified film-forming apparatus capable of continuously performing the modification of the surface of the substrate and the film formation on the surface in one chamber,
    The ECR plasma generation apparatus includes:
    A rectangular waveguide for transmitting microwaves;
    A slot antenna disposed on one surface of the rectangular waveguide and having a slot through which the microwave passes;
    A dielectric part that is disposed so as to cover the slot of the slot antenna and whose surface on the plasma generation region side is parallel to the incident direction of the microwave incident from the slot;
    A support plate disposed on the back surface of the dielectric portion and supporting the dielectric portion;
    A permanent magnet disposed on the back surface of the support plate to form a magnetic field in the plasma generation region;
    A plasma reforming film forming apparatus, wherein plasma is generated while ECR is generated by the microwave propagating from the dielectric part into the magnetic field.
  2.  前記チャンバー内の圧力を0.05Pa以上3Pa以下にして、改質および成膜を行う請求項1に記載のプラズマ改質成膜装置。 The plasma-modified film forming apparatus according to claim 1, wherein the pressure in the chamber is set to 0.05 Pa or more and 3 Pa or less to perform reforming and film forming.
  3.  前記ECRプラズマ生成装置の前記支持板は、前記永久磁石の温度上昇を抑制するための支持板用冷却手段を有する請求項1または請求項2に記載のプラズマ改質成膜装置。 3. The plasma reforming film forming apparatus according to claim 1, wherein the support plate of the ECR plasma generation apparatus has a support plate cooling means for suppressing a temperature rise of the permanent magnet.
  4.  前記成膜装置は、ターゲットと、該ターゲットの表面に磁場を形成するための磁場形成手段と、を備え、マグネトロン放電で生成したプラズマにより該ターゲットをスパッタし、飛び出したスパッタ粒子を前記基材の前記表面に付着させて薄膜を形成するマグネトロンスパッタ成膜装置である請求項1ないし請求項3のいずれかに記載のプラズマ改質成膜装置。 The film forming apparatus includes a target and a magnetic field forming unit for forming a magnetic field on the surface of the target. The target is sputtered by plasma generated by magnetron discharge, and the sputtered particles ejected from the substrate are The plasma modified film forming apparatus according to any one of claims 1 to 3, which is a magnetron sputtering film forming apparatus for forming a thin film by adhering to the surface.
  5.  前記マグネトロンスパッタ成膜装置は、さらに、前記ECRプラズマ生成装置を備え、
     該ECRプラズマ生成装置により、該基材と該ターゲットとの間にECRプラズマが照射される請求項4に記載のプラズマ改質成膜装置。
    The magnetron sputter deposition apparatus further includes the ECR plasma generation apparatus,
    The plasma modified film forming apparatus according to claim 4, wherein the ECR plasma generation apparatus irradiates ECR plasma between the substrate and the target.
  6.  前記搬送手段は、ロール部材を備える請求項1ないし請求項5のいずれかに記載のプラズマ改質成膜装置。 The plasma reforming film forming apparatus according to any one of claims 1 to 5, wherein the transport means includes a roll member.
  7.  前記ロール部材は、外周面の温度を低下させるロール用冷却手段を有する請求項6に記載のプラズマ改質成膜装置。 The plasma reforming film forming apparatus according to claim 6, wherein the roll member has a roll cooling means for lowering the temperature of the outer peripheral surface.
PCT/JP2012/078966 2011-11-18 2012-11-08 Plasma modification and film formation apparatus WO2013073443A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011252390A JP2013108116A (en) 2011-11-18 2011-11-18 Plasma modification and film formation apparatus
JP2011-252390 2011-11-18

Publications (1)

Publication Number Publication Date
WO2013073443A1 true WO2013073443A1 (en) 2013-05-23

Family

ID=48429506

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/078966 WO2013073443A1 (en) 2011-11-18 2012-11-08 Plasma modification and film formation apparatus

Country Status (2)

Country Link
JP (1) JP2013108116A (en)
WO (1) WO2013073443A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106210417A (en) * 2014-07-25 2016-12-07 江苏贝腾特知识产权运营有限公司 One is taken pictures frame

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6576712B2 (en) * 2015-06-30 2019-09-18 住友理工株式会社 Microwave plasma generator
CN105088161B (en) * 2015-08-31 2017-06-27 北京大学 Based on processing method and system that microwave plasma is modified to CIGS surface

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04181646A (en) * 1990-11-14 1992-06-29 Mitsubishi Electric Corp Microwave plasma device
JPH11500185A (en) * 1995-02-13 1999-01-06 デポジション・サイエンシス,インコーポレイテッド Apparatus and method for reliable return current path for sputtering equipment
JPH11102519A (en) * 1997-09-30 1999-04-13 Kao Corp Method and apparatus for producing magnetic recording medium
JP2007246972A (en) * 2006-03-15 2007-09-27 Ulvac Japan Ltd Heater unit

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04181646A (en) * 1990-11-14 1992-06-29 Mitsubishi Electric Corp Microwave plasma device
JPH11500185A (en) * 1995-02-13 1999-01-06 デポジション・サイエンシス,インコーポレイテッド Apparatus and method for reliable return current path for sputtering equipment
JPH11102519A (en) * 1997-09-30 1999-04-13 Kao Corp Method and apparatus for producing magnetic recording medium
JP2007246972A (en) * 2006-03-15 2007-09-27 Ulvac Japan Ltd Heater unit

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106210417A (en) * 2014-07-25 2016-12-07 江苏贝腾特知识产权运营有限公司 One is taken pictures frame

Also Published As

Publication number Publication date
JP2013108116A (en) 2013-06-06

Similar Documents

Publication Publication Date Title
US9506142B2 (en) High density microwave plasma generation apparatus, and magnetron sputtering deposition system using the same
JP6724967B2 (en) Vapor deposition equipment with pretreatment equipment using plasma
JP5907701B2 (en) Film member manufacturing method
WO2013073443A1 (en) Plasma modification and film formation apparatus
JP2009293089A (en) Sputtering system
EP2607516B1 (en) Method for forming a gas blocking layer
TWI526564B (en) Film forming apparatus and film forming method
JP6067300B2 (en) Magnetron sputtering film forming apparatus and magnetron sputtering film forming method
JP5798454B2 (en) Microwave plasma reforming method
JP7426003B2 (en) Film forming equipment and film forming method
JP5829045B2 (en) Microwave plasma generating apparatus and magnetron sputtering film forming apparatus using the same
JP5023972B2 (en) Vacuum deposition system
JP5883274B2 (en) ECR plasma generation apparatus and magnetron sputtering film forming apparatus using the same
JP5636636B2 (en) Vacuum film forming apparatus, method for producing polymer film laminate, and polymer film laminate
KR20060057461A (en) Apparatus for evaporation by use of mirror shape target sputter and method for evaporation by use the same
TWI824225B (en) Film forming equipment and electronic device manufacturing equipment
WO2014119653A1 (en) Sputtering film forming device
WO2023047995A1 (en) Sputtering deposition source and deposition device
JP6644617B2 (en) Magnetron sputter deposition system
JP2010185124A (en) Vapor deposition method and vapor deposition apparatus
JP2009097062A (en) Method for manufacturing gas-barrier film, manufacturing apparatus, and gas-barrier film obtained by the manufacturing method
JP2019183253A (en) Film deposition apparatus and film deposition method
JP2014070233A (en) Filming apparatus, gas-barrier laminate, and optical member
JP2007073404A (en) Sputtering device
JP2010280961A (en) Thin film forming method

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12850171

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12850171

Country of ref document: EP

Kind code of ref document: A1