WO2014119653A1 - Sputtering film forming device - Google Patents

Sputtering film forming device Download PDF

Info

Publication number
WO2014119653A1
WO2014119653A1 PCT/JP2014/052063 JP2014052063W WO2014119653A1 WO 2014119653 A1 WO2014119653 A1 WO 2014119653A1 JP 2014052063 W JP2014052063 W JP 2014052063W WO 2014119653 A1 WO2014119653 A1 WO 2014119653A1
Authority
WO
WIPO (PCT)
Prior art keywords
microwave
dielectric
slot
film
plasma
Prior art date
Application number
PCT/JP2014/052063
Other languages
French (fr)
Japanese (ja)
Inventor
建典 笹井
浩孝 豊田
Original Assignee
東海ゴム工業株式会社
国立大学法人名古屋大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 東海ゴム工業株式会社, 国立大学法人名古屋大学 filed Critical 東海ゴム工業株式会社
Publication of WO2014119653A1 publication Critical patent/WO2014119653A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • C23C14/3471Introduction of auxiliary energy into the plasma
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/32009Arrangements for generation of plasma specially adapted for examination or treatment of objects, e.g. plasma sources
    • H01J37/32192Microwave generated discharge
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/34Gas-filled discharge tubes operating with cathodic sputtering
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/34Gas-filled discharge tubes operating with cathodic sputtering
    • H01J37/3411Constructional aspects of the reactor
    • H01J37/3414Targets
    • H01J37/3426Material

Definitions

  • the present invention relates to a sputtering film forming apparatus that performs sputtering film formation using microwave plasma with an insulator as a target.
  • a high frequency (RF) method is used because discharge is not stably maintained in the direct current method.
  • the high-frequency method has a problem that the electron density on the target surface is low and the film formation rate is low. Therefore, magnetron sputtering is often used in which a magnet is disposed on the rear surface of the target and the film formation speed is increased by increasing the electron density on the target surface by the generated magnetic field (see, for example, Patent Documents 1 to 3).
  • the present invention has been made in view of such circumstances, and it is an object of the present invention to provide a sputter deposition apparatus capable of forming a thin film with a uniform thickness on a base material at high speed using an insulator as a target.
  • a sputtering film forming apparatus of the present invention includes a rectangular conductor having a dielectric part as a target and a slot antenna in which a microwave is transmitted and a slot through which the microwave passes is formed.
  • a microwave tube generating mechanism for generating plasma on the surface of the dielectric part by the microwave passing through the slot, the slot being covered with the dielectric part, and the dielectric part A high-frequency plasma generation mechanism that generates plasma at a high frequency and is disposed on a back surface facing away from the surface; and a base material that is disposed to face the surface of the dielectric portion, from the dielectric portion
  • the sputtered particles that protrude are attached to the surface of the substrate to form a thin film.
  • a film is formed on the surface of a base material using a dielectric part made of an insulator as a target.
  • a high-frequency plasma generation mechanism is disposed on the back surface of the dielectric portion opposite to the substrate. Thereby, high-frequency plasma is generated on the surface of the dielectric portion.
  • microwave plasma is generated on the surface of the dielectric portion facing the substrate by the microwave plasma generation mechanism.
  • a gas such as argon is easily ionized, so that the number of positively charged particles that sputter the dielectric portion increases. Further, when a high frequency voltage is applied to the dielectric portion by the high frequency plasma generation mechanism, the dielectric portion is biased to a negative potential. Thereby, positively charged particles are attracted to the dielectric part.
  • the dielectric portion in the sputter film forming apparatus of the present invention plays two roles of a role as a target and a role of generating microwave plasma.
  • the incident direction of the microwave that passes through the slot and enters the dielectric portion is the surface of the dielectric portion. It is better to have a configuration parallel to
  • the microwave incident direction in the dielectric portion and the substrate-side surface are parallel to each other as in the apparatus described in Patent Document 4 above. . Since the microwave is incident on the dielectric portion along the generated microwave plasma, the microwave that is the plasma source easily propagates to the microwave plasma. Therefore, microwave plasma can be stably generated even under a low pressure of 3 Pa or less.
  • the dielectric portion is preferably composed of one kind selected from quartz, alumina, zirconia, aluminum nitride, and magnesium oxide.
  • the material of the dielectric part may be appropriately determined according to the thin film to be formed.
  • the material of this configuration is difficult to absorb microwaves. For this reason, there is little loss of the microwave used as a plasma source. In addition, there is little possibility that the dielectric portion is destroyed due to heat generated by the absorption of microwaves.
  • the slot antenna is preferably arranged on the H surface of the rectangular waveguide.
  • the film formation on the base material is performed under a pressure of 0.5 Pa or more and 100 Pa or less.
  • the pressure at the time of film formation is not particularly limited, but is preferably 0.5 Pa or more and 100 Pa or less.
  • the pressure during film formation is 10 Pa or less, the generated microwave plasma can be expanded.
  • stable plasma can be generated even under a low pressure of 3 Pa or less. In this case, since mixing of impurities is suppressed, a thin film with high purity can be formed.
  • Sputter deposition apparatus 20: base material, 21: base material support member, 210: leg part, 211: table part. 3: Sputtering part, 30: Dielectric part, 31: Support plate part, 32-35: Insulating member, 300: Front surface (surface). 4: High-frequency plasma generation mechanism, 40: electrode portion, 41: blocking capacitor, 42: high-frequency power source, 400: flat plate portion, 401: rod portion. 5: microwave plasma generation mechanism, 51: waveguide, 52: microwave power source, 53: microwave oscillator, 54: isolator, 55: power monitor, 56: EH matching device, 510: slot antenna, 511: slot. 8: vacuum container, 80: gas supply hole, 81: exhaust hole, 82: waveguide insertion hole, 83: electrode part insertion hole. P1: microwave plasma, P2: high frequency plasma.
  • FIG. 1 is a cross-sectional view in the front-rear direction of the sputter deposition apparatus of this embodiment.
  • FIG. 2 is a perspective view of the vicinity of the sputtering unit in the sputtering film forming apparatus. In FIG. 2, the rear wall of the vacuum vessel is omitted, and the interior of the waveguide is shown.
  • the sputter film forming apparatus 1 includes a vacuum vessel 8, a base material 20, a base material support member 21, and a sputter unit 3.
  • the vacuum vessel 8 is made of aluminum steel and has a rectangular parallelepiped box shape.
  • a gas supply hole 80 is formed in the upper wall of the vacuum vessel 8.
  • the gas supply hole 80 is connected to a downstream end of a gas supply pipe (not shown) for supplying argon (Ar) gas into the vacuum vessel 8.
  • An exhaust hole 81 is formed in the lower wall of the vacuum vessel 8.
  • a vacuum exhaust device (not shown) for exhausting the gas inside the vacuum vessel 8 is connected to the exhaust hole 81.
  • a waveguide insertion hole 82 and an electrode part insertion hole 83 are formed in the rear wall of the vacuum vessel 8. A downstream end of a waveguide 51 to be described later is inserted into the waveguide insertion hole 82.
  • a rod portion 401 of the electrode portion 40 to be described later is inserted into the electrode portion insertion hole 83.
  • the base material support member 21 has a pair of leg portions 210 and a table portion 211.
  • Each of the pair of leg portions 210 is made of stainless steel and has a cylindrical shape.
  • the outer peripheral surfaces of the pair of leg portions 210 are covered with an insulating layer.
  • the pair of leg portions 210 are spaced apart in the vertical direction.
  • the front ends of the pair of leg portions 210 are fixed to the front wall of the vacuum vessel 8.
  • the rear ends of the pair of leg portions 210 are fixed to the front surface of the table portion 211.
  • the table portion 211 is made of stainless steel and has a hollow rectangular plate shape.
  • the inside of the table portion 211 is filled with a cooling liquid.
  • the table portion 211 is cooled by circulating the coolant.
  • the base material 20 is made of a silicon wafer and has a rectangular plate shape.
  • the length of the base material 20 in the left-right direction is 200 mm.
  • the base material 20 is fixed to the rear surface of the table unit 211.
  • the sputter unit 3 includes a dielectric unit 30, a high-frequency plasma generation mechanism 4, and a microwave plasma generation mechanism 5.
  • the microwave plasma generation mechanism 5 includes a waveguide 51, a microwave power source 52, a microwave oscillator 53, an isolator 54, a power monitor 55, and an EH matching device 56.
  • the waveguide 51 is made of aluminum and has a tubular shape with a rectangular cross section.
  • the waveguide 51 is included in the rectangular waveguide in the present invention.
  • the waveguide 51 connects a microwave oscillator 53, an isolator 54, a power monitor 55, and an EH matching unit 56.
  • a slot antenna 510 is disposed on the lower surface of the waveguide 51 disposed in the vacuum vessel 8.
  • the slot antenna 510 is made of aluminum and has a rectangular plate shape.
  • the slot antenna 510 forms the lower wall of the waveguide 51.
  • the slot antenna 510 is disposed on the H surface of the waveguide 51.
  • One slot 511 is formed in the slot antenna 510.
  • the slot 511 has a long hole shape extending in the left-right direction.
  • the dielectric part 30 is made of quartz and has a square plate shape. Dielectric part 30 is arranged on the lower surface of slot antenna 510. The dielectric part 30 covers the slot 511 from below.
  • the front surface 300 of the dielectric part 30 is disposed in parallel to the incident direction Y1 of the microwave incident from the slot 511.
  • the size of the front surface 300 is vertical (vertical direction) 100 mm ⁇ horizontal (horizontal direction) 100 mm.
  • the dielectric portion 30 is disposed so that the front surface 300 faces the base material 20.
  • the front surface 300 of the dielectric part 30 is included in the surface of the dielectric part in the present invention.
  • the high-frequency plasma generation mechanism 4 includes an electrode unit 40, a blocking capacitor 41, and a high-frequency power source 42.
  • the electrode part 40 has a flat plate part 400 and a bar part 401.
  • the flat plate portion 400 is made of aluminum and has a rectangular flat plate shape.
  • the flat plate portion 400 is disposed on the rear surface facing away from the front surface 300 of the dielectric portion 30.
  • An insulating member 32 is interposed between the flat plate portion 400 and the slot antenna 510.
  • an insulating member 33 is interposed between the flat plate portion 400 and the support plate portion 31.
  • the insulating members 32 and 33 are both made of ceramics and have a thin plate shape.
  • the insulating member 32 insulates between the slot antenna 510 and the flat plate portion 400.
  • the insulating member 33 insulates between the support plate portion 31 and the flat plate portion 400.
  • an insulating member 34 is interposed between the flat plate portion 400 and the rear wall of the vacuum vessel 8.
  • the insulating member 34 is made of quartz and has a thin plate shape.
  • a circular hole for inserting the rod portion 401 is formed in the center of the insulating member 34.
  • the insulating member 34 insulates between the vacuum vessel 8 and the flat plate portion 400 and suppresses generation of plasma between the vacuum vessel 8 and the flat plate portion 400.
  • the bar 401 is made of aluminum and has a cylindrical shape.
  • the bar portion 401 protrudes rearward from the center of the rear surface of the flat plate portion 400.
  • the rod portion 401 penetrates the hole of the insulating member 34 and the electrode portion insertion hole 83 and protrudes to the rear of the vacuum vessel 8.
  • An insulating member 35 is disposed between the outer peripheral surface of the rod portion 401 and the inner peripheral surface of the electrode portion insertion hole 83.
  • the insulating member 35 is made of ceramics and has a cylindrical shape.
  • the insulating member 35 supports the rod portion 401 and insulates the vacuum vessel 8 from the rod portion 401.
  • the rear end of the bar 401 is connected to the high frequency power source 42 via the blocking capacitor 41.
  • the support plate portion 31 is made of stainless steel and has a flat plate shape.
  • the support plate portion 31 is attached to the rear wall of the vacuum vessel 8.
  • the support plate portion 31 is disposed so as to contact the lower surface of the dielectric portion 30 and the lower surfaces of the insulating members 33 and 34.
  • ⁇ Sputter deposition method> a film forming method using the sputter film forming apparatus 1 will be described.
  • an evacuation device (not shown) is operated to discharge the gas inside the vacuum vessel 8 from the exhaust hole 81, thereby reducing the pressure inside the vacuum vessel 8.
  • Ar gas is supplied into the vacuum vessel 8 from the gas supply pipe. At this time, the flow rate of the supply gas is adjusted so that the pressure in the vacuum vessel 8 is about 10 to 100 Pa.
  • the microwave power source 52 is turned on.
  • the microwave oscillator 53 oscillates a microwave having a frequency of 2.45 GHz.
  • the oscillated microwave propagates in the waveguide 51.
  • the isolator 54 suppresses the microwave reflected from the waveguide 51 from returning to the microwave oscillator 53.
  • the power monitor 55 monitors the output of the generated microwave and the output of the reflected microwave.
  • the EH matching device 56 adjusts the amount of reflected microwaves.
  • the microwave propagating through the waveguide 51 enters the slot 511 of the slot antenna 510. 2 passes through the slot 511 and enters the dielectric portion 30 as indicated by a hollow arrow Y1 in FIG.
  • the microwave incident on the dielectric part 30 mainly propagates along the front surface 300 of the dielectric part 30. Due to this strong microwave electric field, Ar gas is ionized, and microwave plasma P ⁇ b> 1 is generated forward from the front surface 300 of the dielectric part 30. Thereafter, while maintaining the generation of the microwave plasma P1, the flow rate of Ar gas is adjusted so that the pressure in the vacuum vessel 8 becomes 1 Pa.
  • the high frequency power source 42 is turned on, and a high frequency voltage is applied to the electrode unit 40.
  • high frequency plasma P ⁇ b> 2 is generated forward from the front surface 300 of the dielectric part 30.
  • a negative bias potential is generated on the front surface 300 of the dielectric part 30.
  • the argon ions in the generated microwave plasma P1 and high-frequency plasma P2 are attracted to the dielectric part 30, and the front surface 300 is sputtered.
  • the sputtered particles knocked out from the dielectric portion 30 are scattered toward the base material 20 and adhere to the rear surface of the base material 20. In this way, a silica thin film is formed on the rear surface of the substrate 20.
  • the dielectric part 30 serves as a target and plays a role of generating the microwave plasma P1.
  • Microwave plasma P1 and high-frequency plasma P2 are generated on the front surface 300 (plasma generation surface) of the dielectric portion 30.
  • the argon gas is easily ionized, so that the number of argon ions for sputtering the dielectric portion 30 increases. Further, when a high frequency voltage is applied to the dielectric part 30, a negative bias potential is generated on the front surface 300 of the dielectric part 30. Thereby, argon ions are attracted to the dielectric part 30. As described above, in the sputter film forming apparatus 1, a large amount of argon ions are generated by the microwave plasma P ⁇ b> 1 and the high-frequency plasma P ⁇ b> 2, attracted to the dielectric portion 30, and sputtered. For this reason, the film forming speed is high.
  • the front surface 300 of the dielectric part 30 is sputtered uniformly, so that a thin film having a uniform film thickness can be formed on the surface of the substrate 20. And the problem that the use efficiency of the target in magnetron sputtering is low is also eliminated.
  • the front surface 300 of the dielectric part 30 is arranged in parallel to the incident direction Y ⁇ b> 1 of the microwave that enters the dielectric part 30 from the slot 511.
  • the microwave is incident along the generated microwave plasma P1. Therefore, the microwave that is the plasma source is likely to propagate to the microwave plasma P1.
  • a stable microwave plasma P1 is generated even under a low pressure of about 1 Pa. Therefore, according to the sputter deposition apparatus 1, it is possible to form a thin film with high purity while suppressing the mixing of impurities.
  • the dielectric part 30 is made of quartz. Quartz is difficult to absorb microwaves. For this reason, there is little loss of the microwave used as a plasma source. Moreover, there is little possibility that the dielectric part 30 will be destroyed by the heat generated by the absorption of microwaves.
  • the waveguide is inserted from the rear wall of the vacuum vessel and arranged to protrude forward.
  • the arrangement form of the waveguide is not particularly limited. For example, you may arrange
  • the material and arrangement of the slot antenna in the waveguide, the number, shape, arrangement, etc. of the slots are not particularly limited.
  • the material of the slot antenna may be a nonmagnetic metal, and may be stainless steel or brass in addition to aluminum.
  • what gave electroconductive plating, such as silver plating may be used.
  • the number of slots may be one or two or more.
  • the slot may be formed at a position where the electric field is strong.
  • the arrangement of the slots may be one row or two or more rows. Further, the slots may be arranged in a zigzag shape by changing the arrangement angle of the slots.
  • microwaves are incident in a direction parallel to the surface of the dielectric part (plasma generation surface).
  • the incident direction of the microwave is not particularly limited. For example, microwaves may be incident in a direction perpendicular to the surface of the dielectric part (plasma generation surface).
  • the material, size, and shape of the dielectric part are not particularly limited. What is necessary is just to determine the material of a dielectric material part suitably according to the kind of thin film to form. From the viewpoint of generating microwave plasma, a material having a low dielectric constant and hardly absorbing microwaves is desirable. For example, alumina, zirconia, aluminum nitride, magnesium oxide and the like are preferable in addition to quartz.
  • the material, size, and shape of the electrode part are not particularly limited as long as a high-frequency voltage can be applied.
  • Examples of the material for the electrode part include aluminum, stainless steel, brass, copper, and silver-plated products thereof.
  • microwaves having a frequency of 2.45 GHz were used for generating microwave plasma.
  • the frequency of the microwave is not particularly limited. Any frequency band may be used as long as it is a frequency band of 300 MHz to 100 GHz. Examples of the frequency band in this range include 8.35 GHz, 1.98 GHz, and 915 MHz.
  • the film was formed under a pressure of 1 Pa.
  • the pressure during film formation is not particularly limited.
  • the pressure may be 0.5 Pa or more and 100 Pa or less, more preferably 10 Pa or less.
  • a pressure of 3 Pa or less is desirable from the viewpoint of suppressing the mixing of impurities and forming a thin film with high purity.
  • the type of gas to be supplied is not particularly limited.
  • noble gases such as helium (He), neon (Ne), krypton (Kr), and xenon (Xe), nitrogen (N 2 ), oxygen (O 2 ), hydrogen (H 2 ), and the like may be used. Good. Two or more kinds of gases may be mixed and used.
  • the base material may be appropriately selected according to the application.
  • PET polyethylene terephthalate
  • PEN polyethylene naphthalate
  • PPS polyphenylene sulfide
  • PA polyamide
  • PA11 PA11
  • PA12 PA46
  • PA9T PA9T
  • PC polycarbonate
  • EVOH ethylene-vinyl alcohol copolymer
  • PVA polyvinyl alcohol
  • PE polyethylene
  • PE polypropylene
  • polyolefin film such as cycloolefin polymer, etc.
  • the material and shape of the vacuum vessel, the substrate support member, the support plate portion, and the insulating member are not particularly limited.
  • the vacuum vessel may be made of metal, and it is desirable to employ a highly conductive material among them.
  • the table portion of the substrate support member may not be cooled.
  • Examples 1 to 3 A silica thin film was formed on the surface of the substrate using the sputter deposition apparatus of the above embodiment.
  • the reference numerals of the members correspond to those in FIGS.
  • the gas inside the vacuum vessel 8 was discharged from the exhaust hole 81, and the internal pressure of the vacuum vessel 8 was set to 8 ⁇ 10 ⁇ 3 Pa.
  • Ar gas was supplied from the gas supply pipe, and the internal pressure of the vacuum vessel 8 was set to 100 Pa.
  • the microwave power source 52 was turned on, and the microwave plasma P1 was generated by the oscillated microwave of 400 W (frequency: 2.45 GHz).
  • the flow rate of Ar gas was reduced, the internal pressure of the vacuum vessel 8 was set to 1 Pa, and the generation state of the microwave plasma P1 was visually confirmed. As a result, it was confirmed that the stable microwave plasma P1 was maintained.
  • the high-frequency power source 42 was turned on, and a high-frequency voltage having an output of 400 W and a frequency of 13.56 MHz was applied to the electrode unit 40 to generate a high-frequency plasma P2. In this state, sputter film formation was performed.
  • Sputter film formation was performed by changing the distance between the base material 20 and the front surface 300 of the dielectric portion 30 (hereinafter referred to as “base material / target distance”).
  • the base material / target distance was 6 cm.
  • the base material / target distance was 8 cm.
  • the base material / target distance was 10 cm.
  • the film formation time is 8 minutes in all cases.
  • the film formation position on the horizontal axis represents the reference point as 0 mm, the distance in the left direction from the reference point is minus, and the distance in the right direction is plus.
  • the substrate is directly opposed to the front surface of the dielectric portion at a film formation position of ⁇ 50 mm to 50 mm.
  • the film formation rate of Examples 1 to 3 in which film formation was performed while irradiating microwave plasma was significantly higher than the film formation rate of Comparative Example 1.
  • the film formation speed at the film formation position ⁇ 50 mm to 50 mm is substantially constant. That is, it can be seen that a silica thin film having a substantially uniform film thickness is formed at a position facing the front surface of the dielectric portion. From the above, it was confirmed that the sputter deposition apparatus of the present invention can form a thin film at a higher speed than conventional RF sputtering. Moreover, it was confirmed that a thin film with a uniform film thickness can be formed.
  • the sputter film forming apparatus of the present invention is useful for forming a gas barrier film, a transparent conductive film and the like in a functional resin film used for, for example, a touch panel, a display, LED (light emitting diode) illumination, a solar cell, electronic paper, and the like. .

Abstract

A sputtering film forming device (1) is provided with: a dielectric part (30) for a target; a microwave plasma generating mechanism (5) which is provided with a rectangular waveguide (51) which transmits microwaves and has a slot antenna (510) in which a slot (511) through which the microwaves pass is formed, wherein the slot (511) is covered by the dielectric part (30) and plasma (P1) is generated on a front surface (300) of the dielectric part (30) by the microwaves that pass through the slot (511); a high-frequency plasma generating mechanism (4) that is disposed on a reverse surface of the dielectric part (30), which is on the reverse side from the front surface (300) thereof, and that generates plasma (P2) at a high frequency; and a base material (20) disposed facing the front surface (300) of the dielectric part (30). The sputtering film forming device (1) causes sputtering particles that have been ejected from the dielectric part (30) to deposit on the base material (20) so as to form a thin film.

Description

スパッタ成膜装置Sputter deposition system
 本発明は、絶縁物をターゲットとし、マイクロ波プラズマを利用してスパッタ成膜を行うスパッタ成膜装置に関する。 The present invention relates to a sputtering film forming apparatus that performs sputtering film formation using microwave plasma with an insulator as a target.
 シリカ、アルミナなどの絶縁物をターゲットとするスパッタ成膜においては、直流方式では放電が安定的に持続しないため、高周波(RF)方式が用いられる。しかし、高周波方式においては、ターゲット表面の電子密度が低く、成膜速度が小さいという問題がある。そこで、ターゲット裏面に磁石を配置して、発生した磁場によりターゲット表面の電子密度を高めることにより成膜速度を大きくしたマグネトロンスパッタリングが、多用されている(例えば、特許文献1~3参照)。 In sputter film formation using an insulator such as silica or alumina as a target, a high frequency (RF) method is used because discharge is not stably maintained in the direct current method. However, the high-frequency method has a problem that the electron density on the target surface is low and the film formation rate is low. Therefore, magnetron sputtering is often used in which a magnet is disposed on the rear surface of the target and the film formation speed is increased by increasing the electron density on the target surface by the generated magnetic field (see, for example, Patent Documents 1 to 3).
特開平4-284630号公報JP-A-4-284630 特開平7-34245号公報JP 7-34245 A 特開2010-37656号公報JP 2010-37656 A 特開2012-234643号公報JP 2012-234463 A
 マグネトロンスパッタリングにおいては、磁場によりターゲット表面の電子を閉じこめて、電子密度を高めている。このため、ターゲットのスパッタ領域が、磁石の配置形態に依存する。すなわち、ターゲットにおいては、磁力によりターゲット表面に電子が捕捉されている箇所が集中的にスパッタリングされる。その結果、ターゲットには、大きく浸食されるエロージョン領域が形成される。このように、マグネトロンスパッタリングによると、ターゲットの特定領域しか用いることができず、ターゲットの使用効率が低い。また、ターゲット表面全体が均一にスパッタリングされないため、基材(被着体)の表面に付着する粒子の密度も均一にならない。したがって、基材に均一な厚みの薄膜を形成することは難しい。 In magnetron sputtering, electrons on the target surface are confined by a magnetic field to increase the electron density. For this reason, the sputter | spatter area | region of a target is dependent on the arrangement | positioning form of a magnet. That is, in the target, the portion where electrons are captured on the target surface by the magnetic force is intensively sputtered. As a result, an erosion region that is greatly eroded is formed on the target. As described above, according to magnetron sputtering, only a specific region of the target can be used, and the use efficiency of the target is low. Moreover, since the whole target surface is not sputtered uniformly, the density of the particles adhering to the surface of the substrate (adhered body) is not uniform. Therefore, it is difficult to form a thin film having a uniform thickness on the substrate.
 これらの問題を改善するため、例えば、基材や磁石を移動させながら成膜することも考えられる。しかしながら、基材や磁石を移動させるには、新たに駆動装置などが必要であり、コスト高になる。また、ウエハーなどの小片基材へ成膜する場合、成膜粒子が基材外へ飛散してしまい、ターゲットの使用効率を低下させたり、飛散粒子の清掃が必要になるなど、新たな問題が生じてしまう。 In order to improve these problems, for example, it may be possible to form a film while moving the base material or magnet. However, in order to move the base material and the magnet, a new driving device or the like is required, which increases the cost. In addition, when a film is formed on a small piece base material such as a wafer, the film formation particles are scattered outside the base material, resulting in a new problem such as a reduction in target use efficiency or the need to clean the scattering particles. It will occur.
 本発明は、このような実情に鑑みてなされたものであり、絶縁物をターゲットとし、基材に均一な厚みの薄膜を高速に形成することができるスパッタ成膜装置を提供することを、課題とする。 The present invention has been made in view of such circumstances, and it is an object of the present invention to provide a sputter deposition apparatus capable of forming a thin film with a uniform thickness on a base material at high speed using an insulator as a target. And
 (1)上記課題を解決するため、本発明のスパッタ成膜装置は、ターゲットとしての誘電体部と、マイクロ波を伝送し、該マイクロ波が通過するスロットが形成されたスロットアンテナを有する矩形導波管を備え、該スロットは該誘電体部により被覆され、該スロットを通過した該マイクロ波にて該誘電体部の表面にプラズマを生成するマイクロ波プラズマ生成機構と、該誘電体部の該表面に背向する背向面に配置され高周波にてプラズマを生成する高周波プラズマ生成機構と、該誘電体部の該表面に対向して配置される基材と、を備え、該誘電体部から飛び出したスパッタ粒子を該基材の表面に付着させて薄膜を形成することを特徴とする。 (1) In order to solve the above problems, a sputtering film forming apparatus of the present invention includes a rectangular conductor having a dielectric part as a target and a slot antenna in which a microwave is transmitted and a slot through which the microwave passes is formed. A microwave tube generating mechanism for generating plasma on the surface of the dielectric part by the microwave passing through the slot, the slot being covered with the dielectric part, and the dielectric part A high-frequency plasma generation mechanism that generates plasma at a high frequency and is disposed on a back surface facing away from the surface; and a base material that is disposed to face the surface of the dielectric portion, from the dielectric portion The sputtered particles that protrude are attached to the surface of the substrate to form a thin film.
 本発明のスパッタ成膜装置においては、絶縁物からなる誘電体部をターゲットとして、基材の表面に成膜する。基材と反対側の誘電体部の背向面には、高周波プラズマ生成機構が配置される。これにより、誘電体部の表面には、高周波プラズマが生成される。一方、基材に対向する誘電体部の表面には、マイクロ波プラズマ生成機構によりマイクロ波プラズマが生成される。高周波プラズマ生成機構とマイクロ波プラズマ生成機構とを併用することにより、誘電体部の表面付近の電子密度は、高くなる。すなわち、高周波プラズマ生成機構を単独で使用した場合と比較して、アルゴンなどのガスが電離しやすくなるため、誘電体部をスパッタリングする正荷電粒子の数が多くなる。また、高周波プラズマ生成機構により誘電体部に高周波電圧が印加されると、誘電体部は、負の電位にバイアスされる。これにより、正荷電粒子が誘電体部に引き寄せられる。 In the sputter film forming apparatus of the present invention, a film is formed on the surface of a base material using a dielectric part made of an insulator as a target. A high-frequency plasma generation mechanism is disposed on the back surface of the dielectric portion opposite to the substrate. Thereby, high-frequency plasma is generated on the surface of the dielectric portion. On the other hand, microwave plasma is generated on the surface of the dielectric portion facing the substrate by the microwave plasma generation mechanism. By using both the high-frequency plasma generation mechanism and the microwave plasma generation mechanism, the electron density near the surface of the dielectric portion is increased. That is, as compared with the case where the high-frequency plasma generation mechanism is used alone, a gas such as argon is easily ionized, so that the number of positively charged particles that sputter the dielectric portion increases. Further, when a high frequency voltage is applied to the dielectric portion by the high frequency plasma generation mechanism, the dielectric portion is biased to a negative potential. Thereby, positively charged particles are attracted to the dielectric part.
 このように、本発明のスパッタ成膜装置においては、多くの正荷電粒子を発生させ、それを誘電体部に引き寄せてスパッタリングするため、成膜速度が大きくなる。また、マグネトロンスパッタリングとは異なり、誘電体部の表面が万遍なくスパッタリングされるため、膜厚が均一な薄膜を形成することができる。そして、マグネトロンスパッタリングにおけるターゲットの使用効率が低いという問題も、解消される。このように、本発明のスパッタ成膜装置における誘電体部は、ターゲットとしての役割と、マイクロ波プラズマを生成する役割と、の二つの役割を果たす。 Thus, in the sputter film forming apparatus of the present invention, a large number of positively charged particles are generated and attracted to the dielectric part for sputtering, so that the film forming speed increases. Further, unlike magnetron sputtering, the surface of the dielectric portion is uniformly sputtered, so that a thin film with a uniform film thickness can be formed. And the problem that the use efficiency of the target in magnetron sputtering is low is also eliminated. As described above, the dielectric portion in the sputter film forming apparatus of the present invention plays two roles of a role as a target and a role of generating microwave plasma.
 (2)好ましくは、上記(1)の構成において、前記マイクロ波プラズマ生成機構において、前記スロットを通過して前記誘電体部に入射する前記マイクロ波の入射方向は、該誘電体部の前記表面に平行である構成とする方がよい。 (2) Preferably, in the configuration of the above (1), in the microwave plasma generation mechanism, the incident direction of the microwave that passes through the slot and enters the dielectric portion is the surface of the dielectric portion. It is better to have a configuration parallel to
 不純物の侵入を抑制して膜質を維持するためには、0.5~3Pa程度の低圧下で、スパッタ成膜することが望ましい。従来のマイクロ波プラズマ生成装置においては、5Pa以上の比較的高圧下で、マイクロ波プラズマを生成する。このため、従来のマイクロ波プラズマ生成装置を用いた場合、スパッタ成膜を行う低圧下でマイクロ波プラズマを安定的に生成することは難しい。そこで、本発明者は、生成するマイクロ波プラズマに沿ってマイクロ波を入射させることにより、低圧下においてもマイクロ波プラズマを安定的に生成することができる装置を開発した(上記特許文献4参照)。 In order to suppress the intrusion of impurities and maintain the film quality, it is desirable to perform sputter deposition under a low pressure of about 0.5 to 3 Pa. In a conventional microwave plasma generation apparatus, microwave plasma is generated under a relatively high pressure of 5 Pa or more. For this reason, when a conventional microwave plasma generation apparatus is used, it is difficult to stably generate microwave plasma under a low pressure in which sputtering film formation is performed. Therefore, the present inventor has developed an apparatus that can stably generate microwave plasma even under low pressure by making the microwave incident along the generated microwave plasma (see Patent Document 4). .
 本構成のマイクロ波プラズマ生成機構においては、上記特許文献4に記載された装置と同様に、誘電体部におけるマイクロ波の入射方向と基材側の表面(プラズマ生成面)とが、平行である。マイクロ波が、生成されるマイクロ波プラズマに沿うように誘電体部に入射するため、プラズマソースであるマイクロ波がマイクロ波プラズマに伝播しやすい。したがって、3Pa以下の低圧下においても、マイクロ波プラズマを安定して生成することができる。 In the microwave plasma generation mechanism of this configuration, the microwave incident direction in the dielectric portion and the substrate-side surface (plasma generation surface) are parallel to each other as in the apparatus described in Patent Document 4 above. . Since the microwave is incident on the dielectric portion along the generated microwave plasma, the microwave that is the plasma source easily propagates to the microwave plasma. Therefore, microwave plasma can be stably generated even under a low pressure of 3 Pa or less.
 (3)好ましくは、上記(1)または(2)の構成において、前記誘電体部は、石英、アルミナ、ジルコニア、窒化アルミニウム、酸化マグネシウムから選ばれる一種からなる構成とする方がよい。 (3) Preferably, in the configuration of the above (1) or (2), the dielectric portion is preferably composed of one kind selected from quartz, alumina, zirconia, aluminum nitride, and magnesium oxide.
 誘電体部の材質は、形成する薄膜に応じて適宜決定すればよい。本構成の材料は、マイクロ波を吸収しにくい。このため、プラズマソースとなるマイクロ波の損失が少ない。また、マイクロ波の吸収による発熱で、誘電体部が破壊されるおそれも少ない。 The material of the dielectric part may be appropriately determined according to the thin film to be formed. The material of this configuration is difficult to absorb microwaves. For this reason, there is little loss of the microwave used as a plasma source. In addition, there is little possibility that the dielectric portion is destroyed due to heat generated by the absorption of microwaves.
 (4)好ましくは、上記(1)ないし(3)のいずれかの構成において、前記スロットアンテナは、前記矩形導波管のH面に配置される構成とする方がよい。 (4) Preferably, in any one of the configurations (1) to (3), the slot antenna is preferably arranged on the H surface of the rectangular waveguide.
 (5)上記(1)ないし(4)のいずれかの構成において、前記基材への成膜は、0.5Pa以上100Pa以下の圧力下で行われる構成とする方がよい。 (5) In any one of the configurations (1) to (4), it is preferable that the film formation on the base material is performed under a pressure of 0.5 Pa or more and 100 Pa or less.
 成膜時の圧力は、特に限定されないが、0.5Pa以上100Pa以下にすることが望ましい。例えば、成膜時の圧力を10Pa以下にすると、生成したマイクロ波プラズマを広げることができる。また、上記(2)の構成によると、3Pa以下の低圧下でも安定したプラズマを生成することができる。この場合、不純物の混入が抑制されるため、純度の高い薄膜を形成することができる。 The pressure at the time of film formation is not particularly limited, but is preferably 0.5 Pa or more and 100 Pa or less. For example, if the pressure during film formation is 10 Pa or less, the generated microwave plasma can be expanded. Moreover, according to the configuration of (2) above, stable plasma can be generated even under a low pressure of 3 Pa or less. In this case, since mixing of impurities is suppressed, a thin film with high purity can be formed.
実施形態のスパッタ成膜装置の前後方向断面図である。It is a front-back direction sectional drawing of the sputter film deposition apparatus of embodiment. 同スパッタ成膜装置におけるスパッタ部付近の斜視図である。It is a perspective view of the vicinity of a sputter part in the sputter deposition apparatus. 基材表面の位置ごとの成膜速度を示すグラフである。It is a graph which shows the film-forming speed | rate for every position of the base-material surface.
1:スパッタ成膜装置。
20:基材、21:基材支持部材、210:脚部、211:テーブル部。
3:スパッタ部、30:誘電体部、31:支持板部、32~35:絶縁部材、300:前面(表面)。
4:高周波プラズマ生成機構、40:電極部、41:ブロッキングコンデンサ、42:高周波電源、400:平板部、401:棒部。
5:マイクロ波プラズマ生成機構、51:導波管、52:マイクロ波電源、53:マイクロ波発振器、54:アイソレータ、55:パワーモニタ、56:EH整合器、510:スロットアンテナ、511:スロット。
8:真空容器、80:ガス供給孔、81:排気孔、82:導波管挿入孔、83:電極部挿入孔。
P1:マイクロ波プラズマ、P2:高周波プラズマ。
1: Sputter deposition apparatus.
20: base material, 21: base material support member, 210: leg part, 211: table part.
3: Sputtering part, 30: Dielectric part, 31: Support plate part, 32-35: Insulating member, 300: Front surface (surface).
4: High-frequency plasma generation mechanism, 40: electrode portion, 41: blocking capacitor, 42: high-frequency power source, 400: flat plate portion, 401: rod portion.
5: microwave plasma generation mechanism, 51: waveguide, 52: microwave power source, 53: microwave oscillator, 54: isolator, 55: power monitor, 56: EH matching device, 510: slot antenna, 511: slot.
8: vacuum container, 80: gas supply hole, 81: exhaust hole, 82: waveguide insertion hole, 83: electrode part insertion hole.
P1: microwave plasma, P2: high frequency plasma.
 以下、本発明のスパッタ成膜装置の実施の形態について説明する。 Hereinafter, embodiments of the sputter deposition apparatus of the present invention will be described.
 <スパッタ成膜装置の構成>
 まず、本実施形態のスパッタ成膜装置の構成について説明する。図1に、本実施形態のスパッタ成膜装置の前後方向断面図を示す。図2に、同スパッタ成膜装置におけるスパッタ部付近の斜視図を示す。図2においては、真空容器の後壁を省略し、導波管の内部を透過して示す。
<Configuration of sputter deposition system>
First, the configuration of the sputter deposition apparatus of this embodiment will be described. FIG. 1 is a cross-sectional view in the front-rear direction of the sputter deposition apparatus of this embodiment. FIG. 2 is a perspective view of the vicinity of the sputtering unit in the sputtering film forming apparatus. In FIG. 2, the rear wall of the vacuum vessel is omitted, and the interior of the waveguide is shown.
 図1、図2に示すように、スパッタ成膜装置1は、真空容器8と、基材20と、基材支持部材21と、スパッタ部3と、を備えている。 As shown in FIGS. 1 and 2, the sputter film forming apparatus 1 includes a vacuum vessel 8, a base material 20, a base material support member 21, and a sputter unit 3.
 真空容器8は、アルミ鋼製であって、直方体箱状を呈している。真空容器8の上壁には、ガス供給孔80が穿設されている。ガス供給孔80には、アルゴン(Ar)ガスを真空容器8内に供給するためのガス供給管(図略)の下流端が接続されている。真空容器8の下壁には、排気孔81が穿設されている。排気孔81には、真空容器8の内部のガスを排出するための真空排気装置(図略)が接続されている。真空容器8の後壁には、導波管挿入孔82と電極部挿入孔83とが穿設されている。導波管挿入孔82には、後述する導波管51の下流端が挿入されている。電極部挿入孔83には、後述する電極部40の棒部401が挿入されている。 The vacuum vessel 8 is made of aluminum steel and has a rectangular parallelepiped box shape. A gas supply hole 80 is formed in the upper wall of the vacuum vessel 8. The gas supply hole 80 is connected to a downstream end of a gas supply pipe (not shown) for supplying argon (Ar) gas into the vacuum vessel 8. An exhaust hole 81 is formed in the lower wall of the vacuum vessel 8. A vacuum exhaust device (not shown) for exhausting the gas inside the vacuum vessel 8 is connected to the exhaust hole 81. A waveguide insertion hole 82 and an electrode part insertion hole 83 are formed in the rear wall of the vacuum vessel 8. A downstream end of a waveguide 51 to be described later is inserted into the waveguide insertion hole 82. A rod portion 401 of the electrode portion 40 to be described later is inserted into the electrode portion insertion hole 83.
 基材支持部材21は、一対の脚部210とテーブル部211とを有する。一対の脚部210は、各々、ステンレス鋼製であって、円柱状を呈している。一対の脚部210の外周面は、絶縁層で被覆されている。一対の脚部210は、上下方向に離間して配置されている。一対の脚部210の前端は、真空容器8の前壁に固定されている。一対の脚部210の後端は、テーブル部211の前面に固定されている。テーブル部211は、ステンレス鋼製であって、中空の長方形板状を呈している。テーブル部211の内部には、冷却液が充填されている。テーブル部211は、冷却液が循環することにより、冷却されている。 The base material support member 21 has a pair of leg portions 210 and a table portion 211. Each of the pair of leg portions 210 is made of stainless steel and has a cylindrical shape. The outer peripheral surfaces of the pair of leg portions 210 are covered with an insulating layer. The pair of leg portions 210 are spaced apart in the vertical direction. The front ends of the pair of leg portions 210 are fixed to the front wall of the vacuum vessel 8. The rear ends of the pair of leg portions 210 are fixed to the front surface of the table portion 211. The table portion 211 is made of stainless steel and has a hollow rectangular plate shape. The inside of the table portion 211 is filled with a cooling liquid. The table portion 211 is cooled by circulating the coolant.
 基材20は、シリコンウエハーからなり、長方形板状を呈している。基材20の左右方向長さは、200mmである。基材20は、テーブル部211の後面に固定されている。 The base material 20 is made of a silicon wafer and has a rectangular plate shape. The length of the base material 20 in the left-right direction is 200 mm. The base material 20 is fixed to the rear surface of the table unit 211.
 スパッタ部3は、誘電体部30と、高周波プラズマ生成機構4と、マイクロ波プラズマ生成機構5と、を備えている。マイクロ波プラズマ生成機構5は、導波管51と、マイクロ波電源52と、マイクロ波発振器53と、アイソレータ54と、パワーモニタ55と、EH整合器56と、を備えている。 The sputter unit 3 includes a dielectric unit 30, a high-frequency plasma generation mechanism 4, and a microwave plasma generation mechanism 5. The microwave plasma generation mechanism 5 includes a waveguide 51, a microwave power source 52, a microwave oscillator 53, an isolator 54, a power monitor 55, and an EH matching device 56.
 導波管51は、アルミニウム製であって、断面矩形の管状を呈している。導波管51は、本発明における矩形導波管に含まれる。導波管51は、マイクロ波発振器53、アイソレータ54、パワーモニタ55、およびEH整合器56を、連結している。 The waveguide 51 is made of aluminum and has a tubular shape with a rectangular cross section. The waveguide 51 is included in the rectangular waveguide in the present invention. The waveguide 51 connects a microwave oscillator 53, an isolator 54, a power monitor 55, and an EH matching unit 56.
 真空容器8内に配置される導波管51の下面には、スロットアンテナ510が配置されている。スロットアンテナ510は、アルミニウム製であって、長方形板状を呈している。スロットアンテナ510は、導波管51の下壁を形成している。スロットアンテナ510は、導波管51のH面に配置されている。スロットアンテナ510には、スロット511が一つ形成されている。スロット511は、左右方向に伸びる長孔状を呈している。 A slot antenna 510 is disposed on the lower surface of the waveguide 51 disposed in the vacuum vessel 8. The slot antenna 510 is made of aluminum and has a rectangular plate shape. The slot antenna 510 forms the lower wall of the waveguide 51. The slot antenna 510 is disposed on the H surface of the waveguide 51. One slot 511 is formed in the slot antenna 510. The slot 511 has a long hole shape extending in the left-right direction.
 誘電体部30は、石英製であって、正方形板状を呈している。誘電体部30は、スロットアンテナ510の下面に配置されている。誘電体部30は、スロット511を下方から覆っている。誘電体部30の前面300は、スロット511から入射するマイクロ波の入射方向Y1に対して平行に配置されている。前面300の大きさは、縦(上下方向)100mm×横(左右方向)100mmである。誘電体部30は、前面300が基材20に対向するように配置されている。誘電体部30の前面300は、本発明における誘電体部の表面に含まれる。 The dielectric part 30 is made of quartz and has a square plate shape. Dielectric part 30 is arranged on the lower surface of slot antenna 510. The dielectric part 30 covers the slot 511 from below. The front surface 300 of the dielectric part 30 is disposed in parallel to the incident direction Y1 of the microwave incident from the slot 511. The size of the front surface 300 is vertical (vertical direction) 100 mm × horizontal (horizontal direction) 100 mm. The dielectric portion 30 is disposed so that the front surface 300 faces the base material 20. The front surface 300 of the dielectric part 30 is included in the surface of the dielectric part in the present invention.
 高周波プラズマ生成機構4は、電極部40と、ブロッキングコンデンサ41と、高周波電源42と、を備えている。 The high-frequency plasma generation mechanism 4 includes an electrode unit 40, a blocking capacitor 41, and a high-frequency power source 42.
 電極部40は、平板部400と棒部401とを有している。平板部400は、アルミニウム製であり、長方形平板状を呈している。平板部400は、誘電体部30の前面300に背向する後面に、配置されている。平板部400とスロットアンテナ510との間には、絶縁部材32が介装されている。同様に、平板部400と支持板部31との間にも、絶縁部材33が介装されている。絶縁部材32、33は、いずれもセラミックス製であり、薄板状を呈している。絶縁部材32は、スロットアンテナ510と平板部400との間を絶縁している。絶縁部材33は、支持板部31と平板部400との間を絶縁している。 The electrode part 40 has a flat plate part 400 and a bar part 401. The flat plate portion 400 is made of aluminum and has a rectangular flat plate shape. The flat plate portion 400 is disposed on the rear surface facing away from the front surface 300 of the dielectric portion 30. An insulating member 32 is interposed between the flat plate portion 400 and the slot antenna 510. Similarly, an insulating member 33 is interposed between the flat plate portion 400 and the support plate portion 31. The insulating members 32 and 33 are both made of ceramics and have a thin plate shape. The insulating member 32 insulates between the slot antenna 510 and the flat plate portion 400. The insulating member 33 insulates between the support plate portion 31 and the flat plate portion 400.
 また、平板部400と真空容器8の後壁との間には、絶縁部材34が介装されている。絶縁部材34は、石英製であって、薄板状を呈している。絶縁部材34の中央には、棒部401を挿通するための円形状の孔が形成されている。絶縁部材34は、真空容器8と平板部400との間を絶縁すると共に、真空容器8と平板部400との間にプラズマが生成するのを抑制している。 Further, an insulating member 34 is interposed between the flat plate portion 400 and the rear wall of the vacuum vessel 8. The insulating member 34 is made of quartz and has a thin plate shape. A circular hole for inserting the rod portion 401 is formed in the center of the insulating member 34. The insulating member 34 insulates between the vacuum vessel 8 and the flat plate portion 400 and suppresses generation of plasma between the vacuum vessel 8 and the flat plate portion 400.
 棒部401は、アルミニウム製であり、円柱状を呈している。棒部401は、平板部400の後面中央から後方に突設されている。棒部401は、絶縁部材34の孔および電極部挿入孔83を貫通し、真空容器8の後方へ突出している。棒部401の外周面と、電極部挿入孔83の内周面と、の間には、絶縁部材35が配置されている。絶縁部材35は、セラミックス製であり、円筒状を呈している。絶縁部材35は、棒部401を支持すると共に、真空容器8と棒部401との間を絶縁している。棒部401の後端は、ブロッキングコンデンサ41を介して、高周波電源42に接続されている。 The bar 401 is made of aluminum and has a cylindrical shape. The bar portion 401 protrudes rearward from the center of the rear surface of the flat plate portion 400. The rod portion 401 penetrates the hole of the insulating member 34 and the electrode portion insertion hole 83 and protrudes to the rear of the vacuum vessel 8. An insulating member 35 is disposed between the outer peripheral surface of the rod portion 401 and the inner peripheral surface of the electrode portion insertion hole 83. The insulating member 35 is made of ceramics and has a cylindrical shape. The insulating member 35 supports the rod portion 401 and insulates the vacuum vessel 8 from the rod portion 401. The rear end of the bar 401 is connected to the high frequency power source 42 via the blocking capacitor 41.
 支持板部31は、ステンレス鋼製であって、平板状を呈している。支持板部31は、真空容器8の後壁に取り付けられている。支持板部31は、誘電体部30の下面、および絶縁部材33、34の下面に接するように配置されている。 The support plate portion 31 is made of stainless steel and has a flat plate shape. The support plate portion 31 is attached to the rear wall of the vacuum vessel 8. The support plate portion 31 is disposed so as to contact the lower surface of the dielectric portion 30 and the lower surfaces of the insulating members 33 and 34.
 <スパッタ成膜方法>
 次に、スパッタ成膜装置1による成膜方法について説明する。まず、真空排気装置(図略)を作動させて、真空容器8の内部のガスを排気孔81から排出し、真空容器8の内部を減圧状態にする。次に、ガス供給管から、Arガスを真空容器8内へ供給する。この際、真空容器8内の圧力が、約10~100Paになるように、供給ガスの流量を調整する。
<Sputter deposition method>
Next, a film forming method using the sputter film forming apparatus 1 will be described. First, an evacuation device (not shown) is operated to discharge the gas inside the vacuum vessel 8 from the exhaust hole 81, thereby reducing the pressure inside the vacuum vessel 8. Next, Ar gas is supplied into the vacuum vessel 8 from the gas supply pipe. At this time, the flow rate of the supply gas is adjusted so that the pressure in the vacuum vessel 8 is about 10 to 100 Pa.
 それから、マイクロ波電源52をオンにする。マイクロ波電源52をオンにすると、マイクロ波発振器53が周波数2.45GHzのマイクロ波を発振する。発振されたマイクロ波は、導波管51内を伝播する。ここで、アイソレータ54は、導波管51から反射されたマイクロ波が、マイクロ波発振器53に戻るのを抑制する。パワーモニタ55は、発生したマイクロ波の出力と、反射したマイクロ波の出力と、をモニタリングする。EH整合器56は、マイクロ波の反射量を調整する。導波管51の内部を伝播するマイクロ波は、スロットアンテナ510のスロット511に進入する。そして、図2中白抜き矢印Y1で示すように、スロット511を通過して、誘電体部30に入射する。誘電体部30に入射したマイクロ波は、主に誘電体部30の前面300に沿って伝播する。このマイクロ波の強電界により、Arガスが電離して、誘電体部30の前面300から前方にマイクロ波プラズマP1が生成される。この後、マイクロ波プラズマP1の生成を維持したまま、真空容器8内の圧力が1Paになるように、Arガスの流量を調整する。 Then, the microwave power source 52 is turned on. When the microwave power source 52 is turned on, the microwave oscillator 53 oscillates a microwave having a frequency of 2.45 GHz. The oscillated microwave propagates in the waveguide 51. Here, the isolator 54 suppresses the microwave reflected from the waveguide 51 from returning to the microwave oscillator 53. The power monitor 55 monitors the output of the generated microwave and the output of the reflected microwave. The EH matching device 56 adjusts the amount of reflected microwaves. The microwave propagating through the waveguide 51 enters the slot 511 of the slot antenna 510. 2 passes through the slot 511 and enters the dielectric portion 30 as indicated by a hollow arrow Y1 in FIG. The microwave incident on the dielectric part 30 mainly propagates along the front surface 300 of the dielectric part 30. Due to this strong microwave electric field, Ar gas is ionized, and microwave plasma P <b> 1 is generated forward from the front surface 300 of the dielectric part 30. Thereafter, while maintaining the generation of the microwave plasma P1, the flow rate of Ar gas is adjusted so that the pressure in the vacuum vessel 8 becomes 1 Pa.
 次に、高周波電源42をオンにして、電極部40に高周波電圧を印加する。すると、誘電体部30の前面300から前方に、高周波プラズマP2が生成される。また、誘電体部30の前面300には、負のバイアス電位が発生する。これにより、生成したマイクロ波プラズマP1および高周波プラズマP2中のアルゴンイオンが誘電体部30に引き寄せられて、前面300をスパッタリングする。誘電体部30から叩き出されたスパッタ粒子は、基材20に向かって飛散して、基材20の後面に付着する。このようにして、基材20の後面に、シリカ薄膜を形成する。 Next, the high frequency power source 42 is turned on, and a high frequency voltage is applied to the electrode unit 40. Then, high frequency plasma P <b> 2 is generated forward from the front surface 300 of the dielectric part 30. Further, a negative bias potential is generated on the front surface 300 of the dielectric part 30. Thereby, the argon ions in the generated microwave plasma P1 and high-frequency plasma P2 are attracted to the dielectric part 30, and the front surface 300 is sputtered. The sputtered particles knocked out from the dielectric portion 30 are scattered toward the base material 20 and adhere to the rear surface of the base material 20. In this way, a silica thin film is formed on the rear surface of the substrate 20.
 <作用効果>
 次に、本実施形態のスパッタ成膜装置1の作用効果について説明する。本実施形態のスパッタ成膜装置1において、誘電体部30は、ターゲットであると共に、マイクロ波プラズマP1を生成する役割を果たす。誘電体部30の前面300(プラズマ生成面)には、マイクロ波プラズマP1および高周波プラズマP2が生成される。高周波プラズマ生成機構4とマイクロ波プラズマ生成機構5とを併用することにより、誘電体部30の前面300付近の電子密度は、高くなる。すなわち、高周波プラズマ生成機構4を単独で使用した場合と比較して、アルゴンガスが電離しやすくなるため、誘電体部30をスパッタリングするアルゴンイオンの数が多くなる。また、誘電体部30に高周波電圧が印加されると、誘電体部30の前面300には、負のバイアス電位が発生する。これにより、アルゴンイオンが誘電体部30に引き寄せられる。このように、スパッタ成膜装置1においては、マイクロ波プラズマP1および高周波プラズマP2により多量のアルゴンイオンを発生させ、それを誘電体部30に引き寄せてスパッタリングする。このため、成膜速度が大きい。また、マグネトロンスパッタリングとは異なり、誘電体部30の前面300が万遍なくスパッタリングされるため、基材20の表面に、膜厚が均一な薄膜を形成することができる。そして、マグネトロンスパッタリングにおけるターゲットの使用効率が低いという問題も、解消される。
<Effect>
Next, the function and effect of the sputter deposition apparatus 1 of this embodiment will be described. In the sputter deposition apparatus 1 of the present embodiment, the dielectric part 30 serves as a target and plays a role of generating the microwave plasma P1. Microwave plasma P1 and high-frequency plasma P2 are generated on the front surface 300 (plasma generation surface) of the dielectric portion 30. By using the high-frequency plasma generation mechanism 4 and the microwave plasma generation mechanism 5 in combination, the electron density near the front surface 300 of the dielectric part 30 is increased. That is, as compared with the case where the high-frequency plasma generation mechanism 4 is used alone, the argon gas is easily ionized, so that the number of argon ions for sputtering the dielectric portion 30 increases. Further, when a high frequency voltage is applied to the dielectric part 30, a negative bias potential is generated on the front surface 300 of the dielectric part 30. Thereby, argon ions are attracted to the dielectric part 30. As described above, in the sputter film forming apparatus 1, a large amount of argon ions are generated by the microwave plasma P <b> 1 and the high-frequency plasma P <b> 2, attracted to the dielectric portion 30, and sputtered. For this reason, the film forming speed is high. In addition, unlike magnetron sputtering, the front surface 300 of the dielectric part 30 is sputtered uniformly, so that a thin film having a uniform film thickness can be formed on the surface of the substrate 20. And the problem that the use efficiency of the target in magnetron sputtering is low is also eliminated.
 スパッタ成膜装置1において、誘電体部30の前面300は、スロット511から誘電体部30へ入射するマイクロ波の入射方向Y1に平行に配置される。この場合、マイクロ波は、生成するマイクロ波プラズマP1に沿うように入射される。よって、プラズマソースであるマイクロ波が、マイクロ波プラズマP1に伝播しやすい。これにより、1Pa程度の低圧下においても、安定したマイクロ波プラズマP1が生成される。したがって、スパッタ成膜装置1によると、不純物の混入を抑制して、純度の高い薄膜を形成することができる。 In the sputter deposition apparatus 1, the front surface 300 of the dielectric part 30 is arranged in parallel to the incident direction Y <b> 1 of the microwave that enters the dielectric part 30 from the slot 511. In this case, the microwave is incident along the generated microwave plasma P1. Therefore, the microwave that is the plasma source is likely to propagate to the microwave plasma P1. As a result, a stable microwave plasma P1 is generated even under a low pressure of about 1 Pa. Therefore, according to the sputter deposition apparatus 1, it is possible to form a thin film with high purity while suppressing the mixing of impurities.
 スパッタ成膜装置1において、誘電体部30は、石英製である。石英は、マイクロ波を吸収しにくい。このため、プラズマソースとなるマイクロ波の損失が少ない。また、マイクロ波の吸収による発熱で、誘電体部30が破壊されるおそれも少ない。 In the sputter deposition apparatus 1, the dielectric part 30 is made of quartz. Quartz is difficult to absorb microwaves. For this reason, there is little loss of the microwave used as a plasma source. Moreover, there is little possibility that the dielectric part 30 will be destroyed by the heat generated by the absorption of microwaves.
 <その他>
 以上、本発明のスパッタ成膜装置の実施形態について説明した。しかしながら、スパッタ成膜装置の実施の形態は上記形態に限定されるものではない。当業者が行いうる種々の変形的形態、改良的形態で実施することが可能である。
<Others>
The embodiment of the sputter film forming apparatus of the present invention has been described above. However, the embodiment of the sputter deposition apparatus is not limited to the above embodiment. It is possible to implement various modifications and improvements that can be made by those skilled in the art.
 例えば、上記実施形態においては、導波管を真空容器の後壁から挿入し、前方に突出するように配置した。しかし、導波管の配置形態は、特に限定されない。例えば、真空容器の左右方向に延在するように配置してもよい。また、導波管におけるスロットアンテナの材質および配置形態、スロットの数、形状、配置形態などは、特に限定されない。例えば、スロットアンテナの材質は、非磁性の金属であればよく、アルミニウムの他、ステンレス鋼や真鍮などでも構わない。また、銀めっきなどの導電めっきを施したものでも構わない。スロットの数は、一つでも二つ以上でもよい。スロットは、電界が強い位置に形成すればよい。スロットを複数形成する場合、スロットの配列は、一列でも、二列以上でもよい。また、スロットの配置角度を変えて、ジグザグ状に配置してもよい。上記実施形態においては、誘電体部の表面(プラズマ生成面)に対して平行方向に、マイクロ波を入射させた。しかし、マイクロ波の入射方向は、特に限定されるものではない。例えば、誘電体部の表面(プラズマ生成面)に対して垂直方向に、マイクロ波を入射させてもよい。 For example, in the above embodiment, the waveguide is inserted from the rear wall of the vacuum vessel and arranged to protrude forward. However, the arrangement form of the waveguide is not particularly limited. For example, you may arrange | position so that it may extend in the left-right direction of a vacuum vessel. Further, the material and arrangement of the slot antenna in the waveguide, the number, shape, arrangement, etc. of the slots are not particularly limited. For example, the material of the slot antenna may be a nonmagnetic metal, and may be stainless steel or brass in addition to aluminum. Moreover, what gave electroconductive plating, such as silver plating, may be used. The number of slots may be one or two or more. The slot may be formed at a position where the electric field is strong. When a plurality of slots are formed, the arrangement of the slots may be one row or two or more rows. Further, the slots may be arranged in a zigzag shape by changing the arrangement angle of the slots. In the above embodiment, microwaves are incident in a direction parallel to the surface of the dielectric part (plasma generation surface). However, the incident direction of the microwave is not particularly limited. For example, microwaves may be incident in a direction perpendicular to the surface of the dielectric part (plasma generation surface).
 誘電体部の材質、大きさ、形状は、特に限定されない。誘電体部の材質は、形成する薄膜の種類に応じて適宜決定すればよい。また、マイクロ波プラズマを生成するという観点から、誘電率が低く、マイクロ波を吸収しにくい材料が望ましい。例えば、石英の他、アルミナ、ジルコニア、窒化アルミニウム、酸化マグネシウムなどが好適である。 The material, size, and shape of the dielectric part are not particularly limited. What is necessary is just to determine the material of a dielectric material part suitably according to the kind of thin film to form. From the viewpoint of generating microwave plasma, a material having a low dielectric constant and hardly absorbing microwaves is desirable. For example, alumina, zirconia, aluminum nitride, magnesium oxide and the like are preferable in addition to quartz.
 電極部の材質、大きさ、形状は、高周波電圧を印加することができれば、特に限定されない。電極部の材質としては、アルミニウムの他、ステンレス、真鍮、銅、およびこれらの銀めっき品などが挙げられる。 The material, size, and shape of the electrode part are not particularly limited as long as a high-frequency voltage can be applied. Examples of the material for the electrode part include aluminum, stainless steel, brass, copper, and silver-plated products thereof.
 上記実施形態においては、マイクロ波プラズマの生成に、周波数2.45GHzのマイクロ波を用いた。しかし、マイクロ波の周波数は特に限定されない。300MHz~100GHzの周波数帯であれば、いずれの周波数帯を用いてもよい。この範囲の周波数帯としては、例えば、8.35GHz、1.98GHz、915MHzなどが挙げられる。 In the above embodiment, microwaves having a frequency of 2.45 GHz were used for generating microwave plasma. However, the frequency of the microwave is not particularly limited. Any frequency band may be used as long as it is a frequency band of 300 MHz to 100 GHz. Examples of the frequency band in this range include 8.35 GHz, 1.98 GHz, and 915 MHz.
 上記実施形態においては、1Paの圧力下で成膜を行った。しかし、成膜時の圧力は、特に限定されない。例えば、0.5Pa以上100Pa以下、より好適には10Pa以下の圧力にするとよい。また、不純物の混入を抑制し、純度の高い薄膜を形成するという観点から、3Pa以下の圧力が望ましい。また、供給するガスの種類も特に限定されない。アルゴンの他、ヘリウム(He)、ネオン(Ne)、クリプトン(Kr)、キセノン(Xe)などの希ガス、窒素(N)、酸素(O)、水素(H)などを用いてもよい。なお、二種類以上のガスを混合して用いてもよい。 In the above embodiment, the film was formed under a pressure of 1 Pa. However, the pressure during film formation is not particularly limited. For example, the pressure may be 0.5 Pa or more and 100 Pa or less, more preferably 10 Pa or less. In addition, a pressure of 3 Pa or less is desirable from the viewpoint of suppressing the mixing of impurities and forming a thin film with high purity. Further, the type of gas to be supplied is not particularly limited. In addition to argon, noble gases such as helium (He), neon (Ne), krypton (Kr), and xenon (Xe), nitrogen (N 2 ), oxygen (O 2 ), hydrogen (H 2 ), and the like may be used. Good. Two or more kinds of gases may be mixed and used.
 基材は、用途に応じて適宜選択すればよい。例えば、ポリエチレンテレフタレート(PET)フィルム、ポリエチレンナフタレート(PEN)フィルム、ポリフェニレンサルファイド(PPS)フィルム、ポリアミド(PA)6フィルム、PA11フィルム、PA12フィルム、PA46フィルム、ポリアミドMXD6フィルム、PA9Tフィルム、ポリイミド(PI)フィルム、ポリカーボネート(PC)フィルム、フッ素樹脂フィルム、エチレン-ビニルアルコール共重合体(EVOH)フィルム、ポリビニルアルコール(PVA)フィルム、ポリエチレン(PE)、ポリプロピレン(PP)、シクロオレフィンポリマーなどのポリオレフィンフィルムなどを使用することができる。 The base material may be appropriately selected according to the application. For example, polyethylene terephthalate (PET) film, polyethylene naphthalate (PEN) film, polyphenylene sulfide (PPS) film, polyamide (PA) 6 film, PA11 film, PA12 film, PA46 film, polyamide MXD6 film, PA9T film, polyimide (PI) ) Film, polycarbonate (PC) film, fluororesin film, ethylene-vinyl alcohol copolymer (EVOH) film, polyvinyl alcohol (PVA) film, polyethylene (PE), polypropylene (PP), polyolefin film such as cycloolefin polymer, etc. Can be used.
 真空容器、基材支持部材、支持板部、絶縁部材の材質や形状についても、特に限定されない。例えば、真空容器は金属製であればよく、なかでも導電性の高い材料を採用することが望ましい。基材支持部材のテーブル部は、冷却されなくてもよい。 The material and shape of the vacuum vessel, the substrate support member, the support plate portion, and the insulating member are not particularly limited. For example, the vacuum vessel may be made of metal, and it is desirable to employ a highly conductive material among them. The table portion of the substrate support member may not be cooled.
 次に、実施例を挙げて本発明をより具体的に説明する。 Next, the present invention will be described more specifically with reference to examples.
 (1)実施例1~3
 上記実施形態のスパッタ成膜装置を用いて、基材の表面にシリカ薄膜を形成した。以下、部材の符号は、前出図1、図2に対応している。まず、真空容器8の内部のガスを排気孔81から排出して、真空容器8の内部圧力を8×10-3Paとした。次に、ガス供給管からArガスを供給して、真空容器8の内部圧力を100Paとした。それから、マイクロ波電源52をオンにして、発振された出力400Wのマイクロ波(周波数2.45GHz)により、マイクロ波プラズマP1を生成した。その後、Arガスの流量を絞り、真空容器8の内部圧力を1Paにして、マイクロ波プラズマP1の生成状態を目視確認したところ、安定したマイクロ波プラズマP1が維持されていることを確認した。次に、高周波電源42をオンにして、出力400W、周波数13.56MHzの高周波電圧を電極部40に印加して、高周波プラズマP2を生成した。この状態で、スパッタ成膜を行った。
(1) Examples 1 to 3
A silica thin film was formed on the surface of the substrate using the sputter deposition apparatus of the above embodiment. Hereinafter, the reference numerals of the members correspond to those in FIGS. First, the gas inside the vacuum vessel 8 was discharged from the exhaust hole 81, and the internal pressure of the vacuum vessel 8 was set to 8 × 10 −3 Pa. Next, Ar gas was supplied from the gas supply pipe, and the internal pressure of the vacuum vessel 8 was set to 100 Pa. Then, the microwave power source 52 was turned on, and the microwave plasma P1 was generated by the oscillated microwave of 400 W (frequency: 2.45 GHz). Thereafter, the flow rate of Ar gas was reduced, the internal pressure of the vacuum vessel 8 was set to 1 Pa, and the generation state of the microwave plasma P1 was visually confirmed. As a result, it was confirmed that the stable microwave plasma P1 was maintained. Next, the high-frequency power source 42 was turned on, and a high-frequency voltage having an output of 400 W and a frequency of 13.56 MHz was applied to the electrode unit 40 to generate a high-frequency plasma P2. In this state, sputter film formation was performed.
 スパッタ成膜は、基材20と誘電体部30の前面300との距離(以下、「基材/ターゲット間距離」と称す)を変えて、三種類行った。実施例1においては、基材/ターゲット間距離を6cmにした。実施例2においては、基材/ターゲット間距離を8cmにした。実施例3においては、基材/ターゲット間距離を10cmにした。成膜時間は、いずれも8分間である。 Sputter film formation was performed by changing the distance between the base material 20 and the front surface 300 of the dielectric portion 30 (hereinafter referred to as “base material / target distance”). In Example 1, the base material / target distance was 6 cm. In Example 2, the base material / target distance was 8 cm. In Example 3, the base material / target distance was 10 cm. The film formation time is 8 minutes in all cases.
 (2)比較例1
 マイクロ波プラズマP1を生成させない点以外は、実施例1と同様にして、スパッタ成膜を行った。この場合、基材/ターゲット間距離を6cm、成膜時間を16分間にした。表1に、実施例1~3および比較例1の成膜条件を示す。
Figure JPOXMLDOC01-appb-T000001
(2) Comparative Example 1
Sputter deposition was performed in the same manner as in Example 1 except that the microwave plasma P1 was not generated. In this case, the substrate / target distance was 6 cm, and the film formation time was 16 minutes. Table 1 shows the film forming conditions of Examples 1 to 3 and Comparative Example 1.
Figure JPOXMLDOC01-appb-T000001
 (3)成膜速度の評価
 基材表面の左右方向の中心を基準点にして、基準点から左右方向に各々5mm離間した位置と、その位置から順に左右方向に10mmずつ離間した位置と、を測定点とした。そして、基準点および測定点に形成されたシリカ薄膜の厚さと成膜時間とから、基材表面の位置ごとの成膜速度を算出した。図3に、基材表面の位置ごとの成膜速度をグラフで示す。図3のグラフ中、横軸の成膜位置は、基準点を0mmとし、基準点から左方向の距離をマイナスで、右方向の距離をプラスで示している。基材は、成膜位置-50mm~50mmの間において、誘電体部の前面と正対している。
(3) Evaluation of film formation speed A center point in the left-right direction on the surface of the base material is used as a reference point, a position that is 5 mm apart from the reference point in the left-right direction, and a position that is 10 mm apart in that order from the position. Measurement points were used. And the film-forming speed | rate for every position of the base-material surface was computed from the thickness and the film-forming time of the silica thin film formed in the reference point and the measurement point. In FIG. 3, the film-forming speed | rate for every position of the base-material surface is shown with a graph. In the graph of FIG. 3, the film formation position on the horizontal axis represents the reference point as 0 mm, the distance in the left direction from the reference point is minus, and the distance in the right direction is plus. The substrate is directly opposed to the front surface of the dielectric portion at a film formation position of −50 mm to 50 mm.
 図3に示すように、マイクロ波プラズマを照射しながら成膜を行った実施例1~3の成膜速度は、比較例1の成膜速度と比較して、大幅に大きくなった。また、実施例1~3においては、成膜位置-50mm~50mmにおける成膜速度が、ほぼ一定である。すなわち、誘電体部の前面と正対する位置においては、膜厚がほぼ均一なシリカ薄膜が形成されていることがわかる。以上より、本発明のスパッタ成膜装置によると、従来のRFスパッタリングと比較して、高速に薄膜を形成できることが確認された。また、膜厚が均一な薄膜を形成できることが確認された。 As shown in FIG. 3, the film formation rate of Examples 1 to 3 in which film formation was performed while irradiating microwave plasma was significantly higher than the film formation rate of Comparative Example 1. In Examples 1 to 3, the film formation speed at the film formation position −50 mm to 50 mm is substantially constant. That is, it can be seen that a silica thin film having a substantially uniform film thickness is formed at a position facing the front surface of the dielectric portion. From the above, it was confirmed that the sputter deposition apparatus of the present invention can form a thin film at a higher speed than conventional RF sputtering. Moreover, it was confirmed that a thin film with a uniform film thickness can be formed.
 本発明のスパッタ成膜装置は、例えば、タッチパネル、ディスプレイ、LED(発光ダイオード)照明、太陽電池、電子ペーパーなどに用いられる機能性樹脂フィルムにおける、ガスバリア膜、透明導電膜などの形成に有用である。 The sputter film forming apparatus of the present invention is useful for forming a gas barrier film, a transparent conductive film and the like in a functional resin film used for, for example, a touch panel, a display, LED (light emitting diode) illumination, a solar cell, electronic paper, and the like. .

Claims (5)

  1.  ターゲットとしての誘電体部と、
     マイクロ波を伝送し、該マイクロ波が通過するスロットが形成されたスロットアンテナを有する矩形導波管を備え、該スロットは該誘電体部により被覆され、該スロットを通過した該マイクロ波にて該誘電体部の表面にプラズマを生成するマイクロ波プラズマ生成機構と、
     該誘電体部の該表面に背向する背向面に配置され高周波にてプラズマを生成する高周波プラズマ生成機構と、
     該誘電体部の該表面に対向して配置される基材と、
    を備え、
     該誘電体部から飛び出したスパッタ粒子を該基材の表面に付着させて薄膜を形成することを特徴とするスパッタ成膜装置。
    A dielectric part as a target;
    A rectangular waveguide having a slot antenna for transmitting a microwave and having a slot through which the microwave passes; the slot being covered by the dielectric portion; and by the microwave passing through the slot A microwave plasma generation mechanism for generating plasma on the surface of the dielectric part;
    A high-frequency plasma generating mechanism that is disposed on a back surface facing the surface of the dielectric portion and generates plasma at a high frequency;
    A base material disposed to face the surface of the dielectric part;
    With
    A sputter deposition apparatus characterized by forming a thin film by adhering sputtered particles protruding from the dielectric portion to the surface of the substrate.
  2.  前記マイクロ波プラズマ生成機構において、前記スロットを通過して前記誘電体部に入射する前記マイクロ波の入射方向は、該誘電体部の前記表面に平行である請求項1に記載のスパッタ成膜装置。 2. The sputter deposition apparatus according to claim 1, wherein, in the microwave plasma generation mechanism, an incident direction of the microwave passing through the slot and entering the dielectric portion is parallel to the surface of the dielectric portion. .
  3.  前記誘電体部は、石英、アルミナ、ジルコニア、窒化アルミニウム、酸化マグネシウムから選ばれる一種からなる請求項1または請求項2に記載のスパッタ成膜装置。 The sputter deposition apparatus according to claim 1 or 2, wherein the dielectric portion is made of one selected from quartz, alumina, zirconia, aluminum nitride, and magnesium oxide.
  4.  前記スロットアンテナは、前記矩形導波管のH面に配置される請求項1ないし請求項3のいずれかに記載のスパッタ成膜装置。 The sputter deposition apparatus according to any one of claims 1 to 3, wherein the slot antenna is disposed on an H surface of the rectangular waveguide.
  5.  前記基材への成膜は、0.5Pa以上100Pa以下の圧力下で行われる請求項1ないし請求項4のいずれかに記載のスパッタ成膜装置。 5. The sputter film forming apparatus according to claim 1, wherein the film formation on the substrate is performed under a pressure of 0.5 Pa or more and 100 Pa or less.
PCT/JP2014/052063 2013-01-30 2014-01-30 Sputtering film forming device WO2014119653A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013015453A JP2014145118A (en) 2013-01-30 2013-01-30 Sputter film deposition apparatus
JP2013-015453 2013-01-30

Publications (1)

Publication Number Publication Date
WO2014119653A1 true WO2014119653A1 (en) 2014-08-07

Family

ID=51262364

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/052063 WO2014119653A1 (en) 2013-01-30 2014-01-30 Sputtering film forming device

Country Status (2)

Country Link
JP (1) JP2014145118A (en)
WO (1) WO2014119653A1 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08236448A (en) * 1995-02-22 1996-09-13 Matsushita Electric Ind Co Ltd Device and method for sputtering
JP2012234643A (en) * 2011-04-28 2012-11-29 Tokai Rubber Ind Ltd Micro wave plasma generator, and magnetron sputtering film formation apparatus using the same

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08236448A (en) * 1995-02-22 1996-09-13 Matsushita Electric Ind Co Ltd Device and method for sputtering
JP2012234643A (en) * 2011-04-28 2012-11-29 Tokai Rubber Ind Ltd Micro wave plasma generator, and magnetron sputtering film formation apparatus using the same

Also Published As

Publication number Publication date
JP2014145118A (en) 2014-08-14

Similar Documents

Publication Publication Date Title
WO2012147771A1 (en) Microwave plasma generation device, and magnetron sputtering film deposition device using same
JP4607073B2 (en) Microwave resonance plasma generating apparatus and plasma processing system including the apparatus
SE521904C2 (en) Hybrid Plasma Treatment Device
JP5907701B2 (en) Film member manufacturing method
JP6576712B2 (en) Microwave plasma generator
JP2009293089A (en) Sputtering system
JP5374590B2 (en) Sputtering equipment
JP6067300B2 (en) Magnetron sputtering film forming apparatus and magnetron sputtering film forming method
WO2014119653A1 (en) Sputtering film forming device
JP5829045B2 (en) Microwave plasma generating apparatus and magnetron sputtering film forming apparatus using the same
WO2013073443A1 (en) Plasma modification and film formation apparatus
JP2005082849A (en) Plasma treatment device
JP5798454B2 (en) Microwave plasma reforming method
WO2014103604A1 (en) Microwave plasma generating apparatus
JP5883274B2 (en) ECR plasma generation apparatus and magnetron sputtering film forming apparatus using the same
JP6644617B2 (en) Magnetron sputter deposition system
JP4967784B2 (en) Microwave plasma generator
JP6579635B1 (en) Static eliminator and plasma generator
JP2007314842A (en) Plasma-generating device and sputtering source using the same
CN110574500B (en) Static eliminating device and plasma generating device
JP2006299353A (en) Film-forming apparatus and film-forming method
JP2005163150A (en) Three-dimensional sputter film deposition apparatus and method
JP2020181752A (en) Microwave plasma generator

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14746313

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14746313

Country of ref document: EP

Kind code of ref document: A1