WO2023047884A1 - 共重合体及び成形品 - Google Patents

共重合体及び成形品 Download PDF

Info

Publication number
WO2023047884A1
WO2023047884A1 PCT/JP2022/032183 JP2022032183W WO2023047884A1 WO 2023047884 A1 WO2023047884 A1 WO 2023047884A1 JP 2022032183 W JP2022032183 W JP 2022032183W WO 2023047884 A1 WO2023047884 A1 WO 2023047884A1
Authority
WO
WIPO (PCT)
Prior art keywords
autoclave
structural unit
copolymer
difluoroethylene
polymerization
Prior art date
Application number
PCT/JP2022/032183
Other languages
English (en)
French (fr)
Inventor
遼一 矢野
喬大 古谷
Original Assignee
ダイキン工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ダイキン工業株式会社 filed Critical ダイキン工業株式会社
Priority to CN202280061362.4A priority Critical patent/CN117999298A/zh
Priority to EP22872640.2A priority patent/EP4410850A1/en
Publication of WO2023047884A1 publication Critical patent/WO2023047884A1/ja
Priority to US18/618,002 priority patent/US20240247087A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F214/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen
    • C08F214/18Monomers containing fluorine
    • C08F214/182Monomers containing fluorine not covered by the groups C08F214/20 - C08F214/28
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F214/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen
    • C08F214/18Monomers containing fluorine
    • C08F214/184Monomers containing fluorine with fluorinated vinyl ethers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F214/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen
    • C08F214/18Monomers containing fluorine
    • C08F214/26Tetrafluoroethene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F214/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen
    • C08F214/18Monomers containing fluorine
    • C08F214/26Tetrafluoroethene
    • C08F214/262Tetrafluoroethene with fluorinated vinyl ethers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/18Manufacture of films or sheets

Definitions

  • the present disclosure relates to copolymers and molded articles.
  • Fluorine-containing polymers are polymers that are used in many fields. As monomers for producing such polymers, tetrafluoroethylene, vinylidene fluoride, hexafluoropropylene and the like are well known.
  • Patent Document 1 discloses a method for producing 1,2-difluoroethylene. Furthermore, Patent Documents 2 and 3 and Non-Patent Document 1 disclose the compound and a polymer using the same.
  • An object of the present disclosure is to provide a novel copolymer having a structure derived from 1,2-difluoroethylene and a molded article using the same.
  • the present disclosure includes a structural unit (A) derived from 1,2-difluoroethylene, a structural unit (B) derived from tetrafluoroethylene, and a structural unit (C) represented by the following structural formula (1),
  • the copolymerization ratio of the unit (A) and the structural unit (B) is 10/90 to 85/15 mol%, and the structural unit (C) is 0.1 to 30 mol% based on the total amount of the resin. It is a copolymer with
  • R 1 is hydrogen, fluorine, a partially or fully fluorinated hydrocarbon group having 5 or less carbon atoms, or an OR 5 group (R 5 group is a partially or fully fluorinated the following hydrocarbon groups, where R 2 , R 3 and R 4 are each independently hydrogen or fluorine)
  • the copolymer preferably has a refractive index of 1.320 to 1.380.
  • the copolymer preferably has a total light transmittance of 80% or more and a haze value of 45% or less when formed into a press sheet having a thickness of 0.5 mm.
  • the copolymer preferably has a melting point of 100° C. or higher.
  • the structural unit (C) includes hexafluoropropylene, 2,3,3,3-tetrafluoropropene, 1,3,3,3-tetrafluoropropene (Z form) and 1,3,3,3-tetrafluoro
  • a structure derived from at least one monomer selected from the group consisting of propene (E form) and perfluoromethyl vinyl ether is preferred.
  • the above structural unit (C) preferably accounts for 4.0 to 27 mol % of the entire resin.
  • the present disclosure is a molded article containing the copolymer according to any one of the above, wherein the molded article is a film, sheet, tube, hose, sealing material, wire covering material, optical fiber cable, or melt-spun It is also a molded article that is a fiber.
  • copolymers of the present disclosure require certain constitutional units. As a result, it is possible to obtain a novel copolymer having properties that have been difficult to obtain with conventional fluoropolymers.
  • the present disclosure is a copolymer having a structural unit (A) derived from 1,2-difluoroethylene, a structural unit (B) derived from tetrafluoroethylene, and a structural unit (C) derived from the above structural formula (1) is.
  • a copolymer with the structural unit (B) has a lower refractive index than a homopolymer using only the structural unit (A) alone. Therefore, in order to obtain a low refractive index resin, it is preferable to use these together.
  • the transparency tends to deteriorate. Therefore, by further using the structural unit (C) in a predetermined proportion, it is possible to obtain a resin having a low refractive index and excellent transparency at the same time.
  • the resin composition of the present disclosure is a melt-moldable resin, it can be suitably used in the field of melt molding. Furthermore, it can be suitably used in the field of various coating materials.
  • the 1,2-difluoroethylene has a trans-isomer (E-isomer) and a cis-isomer (Z-isomer).
  • the steric configuration is different.
  • the copolymer of the present disclosure may be any of these. Moreover, the mixture of these arbitrary ratios may be sufficient.
  • the above 1,2-difluoroethylene can be used to obtain a copolymer with other monomers by a general method. Furthermore, its copolymerization ratio can be easily changed. Therefore, a copolymer having a specific monomer ratio according to the present invention can be easily obtained.
  • Non-Patent Document 1 it is disclosed that a polymer is obtained by a polymerization reaction using a monomer represented by the following general formula (10) or a monomer composition containing the same as a raw material. ing. However, Non-Patent Document 1 does not disclose a polymer having the structural unit (B).
  • Non-Patent Document 1 a monomer with high purity cannot be obtained. Therefore, a polymer similar to that of the present disclosure cannot be obtained. According to studies by the present inventors, when the compound represented by the general formula (10) is synthesized by the synthesis method in Non-Patent Document 1, various impurities such as vinylidene fluoride are generated. Furthermore, in Non-Patent Document 1, since the purity of the precursor is 90%, components derived from such impurities in the precursor are also generated. In Non-Patent Document 1, there is a description that impurities are removed with a dry ice trap (-78°C). However, such methods cannot remove high-boiling compounds.
  • Non-Patent Document 1 considering that there is a description that the glass transition temperature of the polymer is about 50 ° C., in Non-Patent Document 1, a high-purity monomer is used. I haven't been able to get it.
  • the purity as a monomer is 99.5% by mass or more (more preferably, 99 .8% by mass or more, most preferably 99.9% by mass or more) is preferably obtained using a compound represented by 1,2-difluoroethylene as a raw material.
  • the copolymer of the present disclosure further has a structural unit (B) derived from tetrafluoroethylene.
  • a copolymer that exhibits the specific effects of the present disclosure can be obtained.
  • the copolymer of the present disclosure has a specific proportion of the structural unit (C) derived from the following structural formula (1).
  • Such a copolymer has a low refractive index and has heat resistance by maintaining moderate crystallinity. Furthermore, it can be a resin having good transparency.
  • the structural unit (C) is (R 1 is hydrogen, fluorine, a partially or fully fluorinated hydrocarbon group having 5 or less carbon atoms, or an OR 5 group (R 5 group is a partially or fully fluorinated the following hydrocarbon groups: R 2 , R 3 and R 4 are each independently hydrogen or fluorine), wherein the structural unit (C) is different from the structural unit (B), Structural units derived from tetrafluoroethylene are not included in structural units (C).
  • the structural unit represented by the general formula (1) includes a structure derived from an ethylenic monomer in which at least one of the hydrogen atoms may be substituted with fluorine, and at least one of the hydrogen atoms is substituted with fluorine.
  • Structural units derived from pentenic monomers which may be
  • the copolymer of the present disclosure may use together two or more copolymer structural units corresponding to the structural unit (C).
  • the structural unit represented by general formula (1) above is preferably at least one structural unit selected from the group consisting of structural units represented by general formulas (2) to (6) below.
  • Structural unit (C) further includes hexafluoropropylene, 2,3,3,3-tetrafluoropropene, 1,3,3,3-tetrafluoropropene (Z form) and 1,3,3,3- A structure derived from at least one selected from the group consisting of tetrafluoropropene (E form) and perfluoromethyl vinyl ether is particularly preferred. Since these monomers are generally known, they are inexpensive and readily available, and can suitably achieve the object of the present disclosure.
  • the copolymer of the present disclosure has a copolymerization ratio of the structural unit (A) and the structural unit (B) of 10/90 to 85/15 mol %. Being within such a range is preferable in that a resin having a low refractive index can be obtained. If either of the structural units (A) or (B) is too large, it is not preferable because a sufficiently low refractive index cannot be obtained.
  • the copolymerization ratio is more preferably 15/85 to 85/15 mol %, more preferably 15/85 to 82/18 mol %.
  • the structural unit (C) is 0.1 to 30 mol% relative to the total amount of the resin. Containing the structural unit (C) in such a ratio is preferable in that the transparency can be improved while maintaining the crystallinity.
  • the structural unit (C) exceeds 30 mol %, the crystallinity of the resin is lowered and the resin tends to become an amorphous resin or an elastomer, which is not preferable in that the molded body cannot be maintained in an atmosphere of relatively high temperature.
  • the upper limit of the content of the structural unit (C) is more preferably 30 mol%, most preferably 27 mol%.
  • the lower limit of the content of the structural unit (C) is more preferably 1.0 mol%, most preferably 4.0 mol%.
  • the copolymer of the present disclosure may have structural units other than the above-described structural units (A) to (C) as long as the effects of the present disclosure are not impaired, and the structural units (A) to It may consist only of (C).
  • the amount of structural units other than the structural units (A) to (C) used is not particularly limited, but it is preferably 20 mol% or less, and 15 mol% or less with respect to the total amount of the copolymer. more preferably 10 mol % or less.
  • the copolymer of the present disclosure preferably has a refractive index of 1.320-1.380. That is, it is preferable to use a copolymer with a low refractive index. A copolymer that satisfies such a refractive index can be suitably used in applications that require a low refractive index, such as optical applications.
  • the copolymer of the present disclosure can have a refractive index within the range described above by adjusting the compounding ratio of the monomers.
  • the lower limit of the refractive index is more preferably 1.320, most preferably 1.328.
  • the upper limit of the refractive index is more preferably 1.380, most preferably 1.378.
  • the copolymer of the present disclosure preferably has a total light transmittance of 80% or more and a haze value of 45% or less when formed into a press sheet having a thickness of 0.5 mm. That is, the copolymer of the present disclosure has excellent light transmittance and a small haze value, and thus can be a copolymer having excellent transparency.
  • a copolymer that satisfies such a refractive index can be suitably used in applications that require transparency, such as optical applications.
  • the copolymer of the present disclosure can be made within the range described above by adjusting its resin composition.
  • the above "formation of a press sheet with a thickness of 0.5 mm” is performed by compression molding the copolymer powder at a temperature 20 to 40 ° C. higher than the melting point of the copolymer to form a sheet-like molded product with a thickness of 0.5 mm. by obtaining
  • the total light transmittance was measured according to JIS K7361-1, and the haze was measured according to K7136.
  • HAZE Meter NDH7000SP manufactured by Nippon Denshoku Industries Co., Ltd. was used as the measuring instrument.
  • the copolymer of the present disclosure has a refractive index, a total light transmittance, and a haze value within the ranges described above. That is, it is preferably a copolymer having a low refractive index and excellent transparency. Such a copolymer is preferable in that it can be used particularly suitably in optical applications.
  • the copolymer of the present disclosure preferably has a melting point of 100° C. or higher. That is, it is preferable that the resin is a crystalline resin that has a melting point and that the melting point is 100° C. or higher. A melting point of 100° C. or higher is preferable in that a resin having excellent heat resistance can be obtained.
  • the melting point can be measured according to ASTM D4591 using a differential scanning calorimeter. Specifically, using a differential scanning calorimeter RDC220 (manufactured by Seiko Instruments), the heat of the copolymer is measured at a temperature increase rate of 10 ° C./min, and the temperature corresponding to the peak of the obtained endothermic curve is taken as the melting point. can be done.
  • the method for producing the copolymer of the present disclosure is not particularly limited, and can be carried out by any general polymerization method such as solution polymerization, emulsion polymerization, suspension polymerization, and the like. Solvents, emulsifiers, initiators, and the like used in these polymerizations are not particularly limited, and commonly known ones can be used.
  • the copolymer of the present disclosure can be obtained by copolymerizing monomers from which the structural units (A) to (C) are derived.
  • the structural unit (A) is
  • the compound represented by the general formula (10) preferably has a purity of 99.5% by mass or more for polymerization. A purity of 99.8% by mass or more is more preferable, and a purity of 99.9% by mass or more is even more preferable.
  • the compound represented by the general formula (10) having a purity of 99.9% by mass or more is not particularly limited in its production method, for example, preparative gas chromatography, multistage rectification method. etc. can be mentioned.
  • the copolymer of the present disclosure contains 1,2-difluoroethylene, tetrafluoroethylene and the structural unit (C) in the presence of a polymerization initiator so that each monomer unit is within the content range described above. In addition, it can be produced by copolymerization.
  • Copolymerization may be solution polymerization, bulk polymerization, emulsion polymerization, suspension polymerization, or the like. Turbid polymerization is more preferred.
  • an oil-soluble radical polymerization initiator or a water-soluble radical polymerization initiator can be used, but an oil-soluble radical polymerization initiator is preferred.
  • Oil-soluble radical polymerization initiators may be known oil-soluble peroxides, such as di-n-propyl peroxydicarbonate, diisopropyl peroxydicarbonate, di-sec-butyl peroxydicarbonate, di-2 - dialkyl peroxycarbonates such as ethoxyethyl peroxydicarbonate; peroxyesters such as t-butyl peroxyisobutyrate and t-butyl peroxypivalate; dialkyl peroxides such as di-t-butyl peroxide ; di[fluoro (or fluorochloro) acyl] peroxides; and the like.
  • oil-soluble peroxides such as di-n-propyl peroxydicarbonate, diisopropyl peroxydicarbonate, di-sec-butyl peroxydicarbonate, di-2 - dialkyl peroxycarbonates such as ethoxyethyl peroxydicarbonate; peroxyesters
  • Di[fluoro(or fluorochloro)acyl] peroxides include diacyl represented by [(RfCOO)-] 2 (Rf is a perfluoroalkyl group, ⁇ -hydroperfluoroalkyl group or fluorochloroalkyl group) peroxides.
  • Di[fluoro(or fluorochloro)acyl] peroxides include, for example, di( ⁇ -hydro-dodecafluorohexanoyl) peroxide, di( ⁇ -hydro-tetradecafluoroheptanoyl) peroxide, di( ⁇ -hydro-hexadecafluorononanoyl)peroxide, di(perfluoropropionyl)peroxide, di(perfluorobutyryl)peroxide, di(perfluoropareryl)peroxide, di(perfluorohexanoyl)peroxide , di(perfluoroheptanoyl) peroxide, di(perfluorooctanoyl) peroxide, di(perfluorononanoyl) peroxide, di( ⁇ -chloro-hexafluorobutyryl) peroxide, di( ⁇ -chloro -decafluorohexanoyl
  • the water-soluble radical polymerization initiator may be a known water-soluble peroxide, for example, persulfuric acid, perboric acid, perchloric acid, perphosphoric acid, ammonium salts such as percarbonic acid, potassium salts, sodium salts , organic peroxides such as disuccinic acid peroxide and diglutaric acid peroxide, t-butyl permalate, t-butyl hydroperoxide and the like.
  • a reducing agent such as sulfites and sulfites may be used in combination with the peroxide, and the amount used may be 0.1 to 20 times the amount of the peroxide.
  • the amount of the radical polymerization initiator to be added is not particularly limited, but an amount that does not significantly decrease the polymerization rate (for example, several ppm to water concentration) or more may be added at the beginning of the polymerization, sequentially, or continuously. and add.
  • the upper limit is a range in which the heat of the polymerization reaction can be removed from the apparatus.
  • surfactants In the above copolymerization, surfactants, hydrophilic compounds, chain transfer agents, and solvents can be used, and conventionally known ones can be used.
  • surfactant known surfactants can be used.
  • nonionic surfactants anionic surfactants, cationic surfactants and the like can be used.
  • Linear or branched fluorine-containing anionic surfactants having 4 to 20 carbon atoms such as ammonium are preferred, and may contain etheric oxygen (that is, an oxygen atom may be inserted between carbon atoms).
  • the amount added is preferably 10 ppm to 20 mass %, more preferably 10 to 5000 ppm, still more preferably 50 to 5000 ppm.
  • a reactive emulsifier can be used as a surfactant.
  • the reactive emulsifier is not particularly limited as long as it is a compound having one or more unsaturated bonds and one or more hydrophilic groups .
  • 2 CFCF2CF ( CF3 ) OCF2CF2COONH4
  • CF2 CFOCF2CF ( CF3 ) OCF ( CF3 ) COONH4 .
  • the amount added (to polymerization water) is preferably 10 to 5000 ppm. More preferably, it is 50 to 5000 ppm.
  • hydrophilic compound known unsaturated hydrophilic compounds and hydrophilic polymers obtained by polymerizing known unsaturated hydrophilic compounds can be used.
  • the amount added (to polymerization water) is preferably 10 to 5000 ppm. More preferably, it is 50 to 5000 ppm.
  • chain transfer agents examples include hydrocarbons such as ethane, isopentane, n-hexane, and cyclohexane; aromatics such as toluene and xylene; ketones such as acetone; ethyl acetate, butyl acetate, dimethyl malonate, and malonic acid; Esters such as diethyl and dimethyl succinate; Alcohols such as methanol, ethanol and isopropanol; Mercaptans such as methyl mercaptan; Carbon tetrachloride, chloroform, methylene chloride, methyl chloride, monoiodomethane, 1-iodoethane, 1-iodine -n-propane, 1-iodoperfluoropropane, 2-iodoperfluoropropane, 1-iodoperfluorobutane, 1-iodoperfluoropentane, 1-iodoperfluorohexane,
  • Examples of the solvent include water, a mixed solvent of water and alcohol, and the like.
  • a fluorinated solvent may be used in solution polymerization, and a fluorinated solvent in addition to water may be used in suspension polymerization.
  • Hydrochlorofluoroalkanes such as CH 3 CClF 2 , CH 3 CCl 2 F, CF 3 CF 2 CCl 2 H, CF 2 ClCF 2 CFHCl; CF 2 ClCFClCF 2 CF 3 , CF 3 CFClCFClCF 3, etc.
  • hydrofluoroalkanes such as CF3CFHCFHCF2CF2CF3 , CF2HCF2CF2CF2H , CF3CF2CF2CF2CF2CF2H ; CH _ _ _ _ _ _ 3OC2F5 , CH3OC3F7CF3CF2CH2OCHF2 , CF3CHFCF2OCH3 , CHF2CF2OCH2F , ( CF3 ) 2CHCF2OCH3 , CF3CF2 _ _ _ _ _ _ _ _ _ _ _ Hydrofluoroethers such as CH2OCH2CHF2 , CF3CHFCF2OCH2CF3 ; perfluorocyclobutane , CF3CF2CF2CF3 , CF3CF2CF2CF2CF3 , CF3CF2 _ _ _ _ Examples include perfluoroalkanes such as CF 2 CF 2
  • the polymerization temperature and polymerization pressure vary depending on the type, amount and vapor pressure of the solvent used and the type of polymerization initiator, but may be ⁇ 15 to 150° C., 0 to 9.8 MPa, and 1 to 24 hours.
  • the polymerization temperature is preferably -15 to 70°C, more preferably 10 to 65°C.
  • the polymerization temperature is preferably 10 to 95°C.
  • the polymerization temperature is preferably 10 to 95°C.
  • Post-polymerization treatment can also be performed by any general method, and if necessary, the resulting copolymer can be dissolved in a general-purpose solvent to form a resin solution.
  • copolymers of the present disclosure can be used as molded article materials such as films, sheets, tubes, hoses, seals, wire jackets, fiber optic cables or melt spun fibers. Such a molded article is also one of the present disclosure. It can also be used as a coating material.
  • the method of molding the molding material into a resin molded body is not particularly limited, and general molding methods such as molding, extrusion molding, injection molding, ram extrusion, press molding, vacuum molding, etc. Molding, transfer molding, blow molding, nanoimprinting, melt spinning, and the like can be used. Further, the molding material of the present disclosure can be used for molding using a coating method such as cast molding by dissolving or dispersing, specifically dissolving, in a solvent.
  • the method of molding the molding material into a resin molding is preferably extrusion molding, molding (in particular, molding by hot pressing after being placed in a mold), injection molding, or ram extrusion molding.
  • resin molded products thus obtained include optical materials, building materials, electronic materials, semiconductor-related materials, display-related materials, automotive materials, ship materials, aircraft materials, power generation-related materials, laminates, and coatings. It can be suitably used in fields such as medicines and lifestyle and leisure goods.
  • optical material examples include optical parts, spectacle lenses, optical lenses, optical cells, DVD discs, photodiodes, antireflection materials, and microlens arrays.
  • building materials examples include show windows, showcases, membrane materials for membrane structure buildings (exercise facilities, garden facilities, atriums, etc.), roof materials, ceiling materials, exterior wall materials, interior wall materials, covering materials, and the like. be done.
  • membrane materials for membrane structures for example, outdoor plate materials such as soundproof walls, windbreak fences, wave overtopping fences, garage canopies, shopping malls, walkway walls, glass scattering prevention films, heat and water resistant sheets, and tents.
  • Examples of the electronic materials include printed wiring boards, wiring boards such as ceramic wiring boards, electronic materials (printed wiring boards, wiring boards, insulating films, release films, etc.), film capacitors, electronic and electrical parts, home appliance exteriors, and precision machine parts. etc. can be mentioned.
  • semiconductor-related materials include protective films for semiconductor elements (e.g., interlayer insulating films, buffer coat films, passivation films, ⁇ -ray shielding films, element sealing materials, interlayer insulating films for high-density mounting substrates, moisture-proof films for high-frequency devices, (For example, moisture-proof films such as RF circuit elements, GaAs elements, InP elements, etc.), pellicle films, photolithography, biochips, and the like.
  • semiconductor elements e.g., interlayer insulating films, buffer coat films, passivation films, ⁇ -ray shielding films, element sealing materials, interlayer insulating films for high-density mounting substrates, moisture-proof films for high-frequency devices, (For example, moisture-proof films such as RF circuit elements, GaAs elements, InP elements, etc.), pellicle films, photolithography, biochips, and the like.
  • protective films for semiconductor elements e.g., interlayer insulating films, buffer coat films, passivation films,
  • Examples of the display-related materials include surface protective films for displays, touch panels, various displays (e.g., PDP, LCD, FED, organic EL, projection TV), surfaces for electrowetting, image forming articles, and the like. can.
  • Examples of the automotive materials include hoods, damping materials, and bodies.
  • Examples of materials related to power generation include solar cells, electrolyte material intermediates for polymer electrolyte fuel cells, electrostatic induction conversion elements (e.g., vibration generators, actuators, sensors, etc.), power generators, microphones, and the like.
  • Examples include electrets used in electrostatic induction conversion elements, surface materials for solar cell modules, mirror protective materials for solar thermal power generation, surface materials for solar water heaters, photovoltaic technology, and the like.
  • Examples of the laminate include a film laminated with a thermoplastic resin such as polyimide.
  • Coating agents include water-repellent coating, release agent, low-reflection coating, antifouling coating, non-adhesive coating, waterproof/moisture-proof coating, insulating film, chemical-resistant coating, etching protective film, low refractive index film, ink-repellent coating, Gas barrier films, patterned functional films, surface protective films for color filters for displays, antifouling/antireflection films for solar cell cover glass, moisture-proof/antireflection coatings for deliquescent crystals and phosphate glass, phase shift masks, Surface protection/antifouling coating for photomasks, liquid-repellent coating for photoresists for immersion lithography, release coating for contact lithography masks, release coating for nanoimprint molds, passivation films for semiconductor devices and integrated circuits, circuit boards, LEDs, etc.
  • Gas barrier films for silver electrodes of light emitting devices liquid crystal alignment films for liquid crystal display devices, lubricating coatings for magnetic recording media, gate insulating films, devices using the electrowetting principle, electret films, chemical-resistant coatings for MEMS processes, medical equipment
  • Antifouling coating, chemical-resistant, antifouling, bio-resistant, liquid-repellent coating for devices using microfluidics technology, low-refractive materials for optical filter multilayer coating, water-repellent materials for hydrophilic water-repellent patterning, patterned optical elements etc. can be mentioned.
  • Examples of the above life and leisure goods include fishing rods, rackets, golf clubs, and projection screens.
  • the 1,2-difluoroethylene E form used in the following examples had a purity of 99.9% by mass or more. The purity was set to 99.9% by mass after confirming that no impurity peak appeared by GC/MS. In addition, a high-purity monomer was obtained by performing production according to the example of Patent Document 1 and separating by preparative gas chromatography.
  • Example 1 After introducing 600 g of deionized water and 0.3 g of methyl cellulose into a stainless steel autoclave having an internal volume of 1.8 L, the inside of the autoclave was sufficiently replaced with vacuum nitrogen. After that, the inside of the autoclave was evacuated, and 450 g of hexafluoropropylene (HFP), 33 g of 1,2-difluoroethylene, and 60 g of tetrafluoroethylene (TFE) were introduced into the evacuated autoclave. was warmed to 29°C. Next, 3.0 g of a methanol solution containing 50% by mass of di-n-propyl peroxycarbonate was charged into the autoclave to initiate polymerization. The starting pressure was 1.2 MPaG.
  • HFP hexafluoropropylene
  • TFE tetrafluoroethylene
  • the resulting resin contained 1,2-difluoroethylene, TFE and HFP in a molar ratio of 46.0/47.5/6.5.
  • the melting point was 190.7°C.
  • Example 2 After introducing 600 g of deionized water into a stainless steel autoclave having an internal volume of 1.8 L, the inside of the autoclave was sufficiently replaced with vacuum nitrogen. After that, the inside of the autoclave was evacuated, and 450 g of HFP, 5 g of 1,2-difluoroethylene, and 28 g of TFE were introduced into the evacuated autoclave, and then the autoclave was heated to 28°C. Next, a perfluorohexane solution (DHP-H ) was charged into the autoclave to initiate polymerization. The starting pressure was 0.9 MPaG. After maintaining the temperature in the autoclave at 28° C.
  • DHP-H perfluorohexane solution
  • the resulting resin contained 1,2-difluoroethylene, TFE and HFP in a molar ratio of 25.6/62.5/11.8.
  • the melting point was 180.0°C.
  • Example 3 A 100 ml stainless steel autoclave was charged with 40 g of dichloropentafluoropropane and 0.91 g of DHP-H, which was cooled with dry ice and replaced with nitrogen, then 2.0 g of TFE, 23.9 g of HFP, 1.2 g of 1,2-difluoroethylene was charged and shaken using a shaker at 25° C. for 14.2 hours. A fluororesin was obtained. The resulting resin contained 1,2-difluoroethylene, TFE and HFP in a molar ratio of 73.7/17.7/8.6. The melting point was 166.5°C.
  • Example 4 The inside of a 500 ml stainless steel autoclave was sufficiently replaced with vacuum nitrogen. After that, the inside of the autoclave was evacuated, and 120 g of 1,1,2,2-tetrafluoroethyl-2,2,2-trifluoroethyl ether (HFE-347pc-f) was placed in the vacuumed autoclave. , 30.5 g of TFE, 155.8 g of HFP, 2.9 g of 1,2-difluoroethylene were introduced and the autoclave was heated to 40.degree.
  • HFE-347pc-f 1,1,2,2-tetrafluoroethyl-2,2,2-trifluoroethyl ether
  • Example 5 The inside of a 500 ml stainless steel autoclave was sufficiently replaced with vacuum nitrogen. After that, the inside of the autoclave was evacuated, and 120 g of HFE-347pc-f, 27.0 g of TFE, 150.0 g of HFP, and 5.1 g of 1,2-difluoroethylene were added to the vacuumed autoclave. After the introduction, the autoclave was warmed to 40°C. Next, 0.5 g of IPP was charged into the autoclave to initiate polymerization. The polymerization pressure at the start was 1.155 MPaG. After the pressure inside the autoclave dropped to 1.082 MPaG, the pressure was released to return to atmospheric pressure, and the product was dried to obtain 3.71 g of fluororesin. The resulting resin contained 1,2-difluoroethylene, TFE and HFP in a molar ratio of 30.4/65.1/4.6. The melting point was 227.9°C.
  • Example 6 The inside of a 500 ml stainless steel autoclave was sufficiently replaced with vacuum nitrogen. After that, the inside of the autoclave was evacuated, and 200 g of HFE-347pc-f, 17.1 g of TFE, 262.0 g of HFP, and 3.7 g of 1,2-difluoroethylene were added to the vacuumed autoclave. After the introduction, the autoclave was warmed to 55°C. Next, 0.52 g of IPP was charged into the autoclave to initiate polymerization. The polymerization pressure at the start was 1.221 MPaG. After the pressure inside the autoclave dropped to 1.204 MPaG, the pressure was released to return to atmospheric pressure, and the product was dried to obtain 2.13 g of fluororesin. The resulting resin contained 1,2-difluoroethylene, TFE and HFP in a molar ratio of 32.1/55.2/12.7. The melting point was 162.3°C.
  • Example 7 The inside of a 500 ml stainless steel autoclave was sufficiently replaced with vacuum nitrogen. After that, the inside of the autoclave was evacuated, and 200 g of HFE-347pc-f, 30.5 g of TFE, 269.2 g of HFP, and 3.0 g of 1,2-difluoroethylene were added to the vacuumed autoclave. After the introduction, the autoclave was warmed to 55°C. Next, 0.6 g of IPP was charged into the autoclave to initiate polymerization. The polymerization pressure at the start was 1.365 MPaG. After the pressure inside the autoclave dropped to 1.340 MPaG, the pressure was released to return to atmospheric pressure, and the product was dried to obtain 2.95 g of fluororesin. The resulting resin contained 1,2-difluoroethylene, TFE and HFP in a molar ratio of 20.5/71.9/7.6. The melting point was 225.2°C.
  • Example 8 The inside of a 500 ml stainless steel autoclave was sufficiently replaced with vacuum nitrogen. After that, the inside of the autoclave was evacuated, and 200 g of HFE-347pc-f, 20.0 g of TFE, 245.0 g of HFP, and 15.0 g of 1,2-difluoroethylene were added to the vacuumed autoclave. After the introduction, the autoclave was warmed to 40°C. Next, 0.7 g of IPP was charged into the autoclave to initiate polymerization. The polymerization pressure at the start was 1.069 MPaG. After the pressure inside the autoclave dropped to 1.054 MPaG, the pressure was released to return to atmospheric pressure, and the product was dried to obtain 2.85 g of fluororesin. The resulting resin contained 1,2-difluoroethylene, TFE and HFP in a molar ratio of 41.9/51.2/6.9. The melting point was 189.7°C.
  • Example 9 The inside of a 500 ml stainless steel autoclave was sufficiently replaced with vacuum nitrogen. After that, the inside of the autoclave was evacuated, and 200 g of HFE-347pc-f, 15.1 g of TFE, 284.7 g of HFP, and 1.2 g of 1,2-difluoroethylene were added to the vacuumed autoclave. After the introduction, the autoclave was warmed to 55°C. Next, 0.7 g of IPP was charged into the autoclave to initiate polymerization. The polymerization pressure at the start was 1.191 MPaG. After the pressure inside the autoclave dropped to 1.176 MPaG, the pressure was released to return to atmospheric pressure, and the product was dried to obtain 1.57 g of fluororesin. The resulting resin contained 1,2-difluoroethylene, TFE and HFP in a molar ratio of 21.1/63.7/15.2. The melting point was 189.7°C.
  • Example 10 A 100 ml stainless steel autoclave was charged with 40 g of HFE-347pc-f and 0.47 g of DHP-H, which was cooled with dry ice and replaced with nitrogen. Fluoromethyl vinyl ether (PMVE), 1.1 g of 1,2-difluoroethylene is charged, shaken with a shaker at 25°C for 6 hours, and then the pressure is released back to atmospheric pressure to dry the product. to obtain 1.32 g of fluororesin. The resulting resin contained 1,2-difluoroethylene, TFE and PMVE in a molar ratio of 38.6/51.1/10.4. The melting point was 156.5°C.
  • PMVE Fluoromethyl vinyl ether
  • Example 11 After introducing 500 g of deionized water into a stainless steel autoclave having an inner volume of 1.8 L, the inside of the autoclave was sufficiently replaced with vacuum nitrogen. After that, the inside of the autoclave was evacuated, and 500 g of HFE-347pc-f, 130 g of PMVE, 4 g of 1,2-difluoroethylene, and 46 g of TFE were introduced into the vacuumed autoclave, and then the autoclave was evacuated. Warmed to 28°C. Next, 3.0 g of DHP-H was charged into the autoclave to initiate polymerization. The starting pressure was 0.52 MPaG. After maintaining the temperature in the autoclave at 28° C.
  • the resulting resin contained 1,2-difluoroethylene, TFE and PMVE in a molar ratio of 17.9/67.5/14.6.
  • the melting point was 172.2°C.
  • Example 12 After introducing 500 g of deionized water into a stainless steel autoclave having an inner volume of 1.8 L, the inside of the autoclave was sufficiently replaced with vacuum nitrogen. After that, the inside of the autoclave was evacuated, and 500 g of HFE-347pc-f of 500 g, 130 g of PMVE, 3 g of 1,2-difluoroethylene, and 37 g of TFE were introduced into the vacuumed autoclave, The autoclave was warmed to 28°C. Next, 3.0 g of DHP-H was charged into the autoclave to initiate polymerization. The starting pressure was 0.47 MPaG. After maintaining the temperature in the autoclave at 28° C.
  • the resulting resin contained 1,2-difluoroethylene, TFE and PMVE in a molar ratio of 13.8/69.0/17.2.
  • the melting point was 176.9°C.
  • Example 13 After introducing 500 g of deionized water into a stainless steel autoclave having an inner volume of 1.8 L, the inside of the autoclave was sufficiently replaced with vacuum nitrogen. After that, the inside of the autoclave was evacuated, and 500 g of HFE-347pc-f, 60 g of PMVE, 9 g of 1,2-difluoroethylene, and 34 g of TFE were introduced into the vacuumed autoclave, and then the autoclave was removed. Warmed to 28°C. Next, 3.0 g of DHP-H was charged into the autoclave to initiate polymerization. The starting pressure was 0.40 MPaG. After maintaining the temperature in the autoclave at 28° C.
  • the resulting resin contained 1,2-difluoroethylene, TFE and PMVE in a molar ratio of 38.3/53.0/8.7.
  • the melting point was 185.3°C.
  • Example 14 After introducing 500 g of deionized water into a stainless steel autoclave having an inner volume of 1.8 L, the inside of the autoclave was sufficiently replaced with vacuum nitrogen. After that, the inside of the autoclave was evacuated, and 500 g of HFE-347pc-f, 200 g of PMVE, 3 g of 1,2-difluoroethylene, and 28 g of TFE were introduced into the vacuumed autoclave, and then the autoclave was removed. Warmed to 28°C. Next, 3.0 g of DHP-H was charged into the autoclave to initiate polymerization. The starting pressure was 0.40 MPaG. After maintaining the temperature in the autoclave at 28° C.
  • the resulting resin contained 1,2-difluoroethylene, TFE and PMVE in a molar ratio of 23.1/51.0/25.9. The melting point was 101.7°C.
  • Example 15 After introducing 500 g of deionized water into a stainless steel autoclave having an inner volume of 1.8 L, the inside of the autoclave was sufficiently replaced with vacuum nitrogen. After that, the inside of the autoclave was evacuated, and 500 g of HFE-347pc-f, 80 g of PMVE, 15 g of 1,2-difluoroethylene, and 27 g of TFE were introduced into the vacuumed autoclave, and then the autoclave was evacuated. Warmed to 28°C. Next, 3.0 g of DHP-H was charged into the autoclave to initiate polymerization. The starting pressure was 0.40 MPaG. After maintaining the temperature in the autoclave at 28° C.
  • the resulting resin contained 1,2-difluoroethylene, TFE and PMVE in a molar ratio of 41.1/47.5/11.4.
  • the melting point was 157.7°C.
  • Example 16 After introducing 500 g of deionized water into a stainless steel autoclave having an inner volume of 1.8 L, the inside of the autoclave was sufficiently replaced with vacuum nitrogen. After that, the inside of the autoclave was evacuated, and 500 g of HFE-347pc-f, 110 g of PMVE, 5 g of 1,2-difluoroethylene, and 35 g of TFE were introduced into the vacuumed autoclave. was warmed to Next, 3.0 g of DHP-H was charged into the autoclave to initiate polymerization. The starting pressure was 0.40 MPaG. After maintaining the temperature in the autoclave at 28° C.
  • the resulting resin contained 1,2-difluoroethylene, TFE and PMVE in a molar ratio of 13.0/64.9/22.1.
  • the melting point was 157.5°C.
  • Example 17 After introducing 500 g of deionized water into a stainless steel autoclave having an inner volume of 1.8 L, the inside of the autoclave was sufficiently replaced with vacuum nitrogen. After that, the inside of the autoclave was evacuated, and 500 g of HFE-347pc-f, 104 g of PMVE, 6 g of 1,2-difluoroethylene, and 35 g of TFE were introduced into the vacuumed autoclave, and then the autoclave was evacuated. Warmed to 28°C. Next, 6.0 g of DHP-H was charged into the autoclave to initiate polymerization. The starting pressure was 0.42 MPaG.
  • the resulting resin contained 1,2-difluoroethylene, TFE and PMVE in a molar ratio of 25.7/59.7/14.6. The melting point was 157.7°C.
  • Example 18 After introducing 500 g of deionized water into a stainless steel autoclave having an inner volume of 1.8 L, the inside of the autoclave was sufficiently replaced with vacuum nitrogen. After that, the inside of the autoclave was evacuated, and 500 g of HFE-347pc-f, 94 g of PMVE, 13 g of 1,2-difluoroethylene, and 33 g of TFE were introduced into the evacuated autoclave, and then the autoclave was evacuated. Warmed to 28°C. Next, 6.0 g of DHP-H was charged into the autoclave to initiate polymerization. The starting pressure was 0.43 MPaG.
  • the resulting resin contained 1,2-difluoroethylene, TFE and PMVE in a molar ratio of 44.4/43.6/12.0. The melting point was 137.9°C.
  • Example 19 After introducing 1280 g of deionized water into a glass-lined stainless steel autoclave having an inner volume of 4.1 L, the inside of the autoclave was sufficiently replaced with vacuum nitrogen. After that, the inside of the autoclave was evacuated, and 1000 g of HFE-347pc-f, 340 g of PMVE, 18 g of 1,2-difluoroethylene, and 101 g of TFE were introduced into the vacuumed autoclave, and then the autoclave was evacuated. Warmed to 28°C. Next, 3.0 g of DHP-H was charged into the autoclave to initiate polymerization. The starting pressure was 0.50 MPaG. After maintaining the temperature in the autoclave at 28° C.
  • the resulting resin contained 1,2-difluoroethylene, TFE and PMVE in a molar ratio of 26.8/55.0/18.2.
  • the melting point was 141.1°C.
  • Example 20 A 100 ml stainless steel autoclave was charged with 40 g of dichloropentafluoropropane and 0.43 g of DHP-H, cooled with dry ice, purged with nitrogen, and added with 6.0 g of TFE and 0.5 g of 2, 3,3,3-Tetrafluoropropene (HFO-1234yf) and 5.5 g of 1,2-difluoroethylene were charged and shaken at 25° C. for 1.3 hours using a shaker. By returning to atmospheric pressure and drying the product, 0.41 g of fluororesin was obtained. The resulting resin contained 1,2-difluoroethylene, TFE and HFO-1234yf in a molar ratio of 44.1/40.0/15.9. The melting point was 109.7°C.
  • Example 21 The inside of a 500 ml stainless steel autoclave was sufficiently replaced with vacuum nitrogen. After that, the inside of the autoclave was evacuated, and 200 g of HFE-347pc-f, 45.0 g of TFE, 2.5 g of HFO-1234yf, and 13.2 g of 1,2-difluoro were placed in the vacuumed autoclave. After introducing the ethylene, the autoclave was warmed to 25°C. Then 2.0 g of DHP-H was charged into the autoclave to initiate polymerization. The polymerization pressure at the start was 0.871 MPaG.
  • the resulting resin contained 1,2-difluoroethylene, TFE and HFO-1234yf in a molar ratio of 32.7/58.5/8.8.
  • the melting point was 189.7°C.
  • Example 22 The inside of a 500 ml stainless steel autoclave was sufficiently replaced with vacuum nitrogen. After that, the inside of the autoclave was evacuated, and 200 g of HFE-347pc-f, 21.0 g of TFE, 2.6 g of HFO-1234yf, and 33.5 g of 1,2-difluoro were placed in the vacuumed autoclave. After introducing the ethylene, the autoclave was warmed to 25°C. Then 2.0 g of DHP-H was charged into the autoclave to initiate polymerization. The polymerization pressure at the start was 0.711 MPaG.
  • the resulting resin contained 1,2-difluoroethylene, TFE and HFO-1234yf in a molar ratio of 58.9/32.6/8.5.
  • the melting point was 127.8°C.
  • Comparative example 1 The inside of a 500 ml stainless steel autoclave was sufficiently replaced with vacuum nitrogen. After that, the inside of the autoclave was evacuated, and 150 g of HFE-347pc-f, 4.0 g of TFE, and 23.0 g of 1,2-difluoroethylene were introduced into the evacuated autoclave, and then the autoclave was removed. Warmed to 28°C. Then 2.0 g of DHP-H was charged into the autoclave to initiate polymerization. The polymerization pressure at the start was 0.5 MPaG.
  • Comparative example 2 The inside of a 500 ml stainless steel autoclave was sufficiently replaced with vacuum nitrogen. After that, the inside of the autoclave was evacuated, and 150 g of HFE-347pc-f, 15.2 g of TFE, and 10.0 g of 1,2-difluoroethylene were introduced into the evacuated autoclave, and then the autoclave was removed. Warmed to 28°C. Then 2.0 g of DHP-H was charged into the autoclave to initiate polymerization. The polymerization pressure at the start was 0.5 MPaG.
  • a mixed gas of 1,2-difluoroethylene/TFE 68/32 mol% was flowed, and the temperature inside the autoclave was maintained at 28°C for 4 hours. was dried to obtain 10.8 g of fluororesin.
  • the resulting resin contained 1,2-difluoroethylene and TFE in a molar ratio of 67.8/32.2. The melting point was 217.2°C.
  • Comparative example 3 The inside of a 500 ml stainless steel autoclave was sufficiently replaced with vacuum nitrogen. After that, the inside of the autoclave was evacuated, and 150 g of HFE-347pc-f, 15.0 g of TFE, and 9.4 g of 1,2-difluoroethylene were introduced into the evacuated autoclave, and then the autoclave was removed. Warmed to 28°C. Then 1.5 g of DHP-H was charged into the autoclave to initiate polymerization. The polymerization pressure at the start was 0.5 MPaG.
  • Comparative example 4 The inside of a 500 ml stainless steel autoclave was sufficiently replaced with vacuum nitrogen. After that, the inside of the autoclave was evacuated, and 150 g of HFE-347pc-f, 20.0 g of TFE, and 6.8 g of 1,2-difluoroethylene were introduced into the evacuated autoclave, and then the autoclave was removed. Warmed to 28°C. Then 1.5 g of DHP-H was charged into the autoclave to initiate polymerization. The polymerization pressure at the start was 0.5 MPaG.
  • the resulting resin contained 1,2-difluoroethylene and TFE in a molar ratio of 19.0/81.0.
  • the melting point was 288.8°C.
  • Comparative example 6 After introducing 1330 g of deionized water and 0.67 g of methyl cellulose into a stainless steel autoclave having an inner volume of 1.8 L, the inside of the autoclave was sufficiently replaced with vacuum nitrogen. After that, the inside of the autoclave was evacuated, and 250 g of 1,2-difluoroethylene, 1 ml of methanol, and 2 g of a methanol solution containing 50% by mass of di-n-propyl peroxycarbonate were introduced into the autoclave in a vacuum state. , the temperature was raised to 45° C. over 1.5 hours, and the temperature was maintained at 45° C.
  • Comparative example 7 After introducing 500 g of deionized water into a stainless steel autoclave having an inner volume of 1.8 L, the inside of the autoclave was sufficiently replaced with vacuum nitrogen. After that, the inside of the autoclave was evacuated, and 500 g of HFE-347pc-f, 323 g of PMVE, 3 g of 1,2-difluoroethylene, and 21 g of TFE were introduced into the vacuumed autoclave, and then the autoclave was evacuated. Warmed to 28°C. Next, 6.0 g of DHP-H was charged into the autoclave to initiate polymerization. The starting pressure was 0.40 MPaG. After maintaining the temperature in the autoclave at 28° C.
  • the resulting resin contained 1,2-difluoroethylene, TFE and PMVE in a molar ratio of 22.2/39.5/38.3. A melting point could not be confirmed.
  • melting point It can be measured according to ASTM D4591 using a differential scanning calorimeter. Specifically, using a differential scanning calorimeter RDC220 (manufactured by Seiko Instruments), the heat of the copolymer was measured at a heating rate of 10° C./min, and the temperature corresponding to the peak of the obtained endothermic curve was taken as the melting point.
  • Total light transmittance and haze The powder of the copolymer was compression-molded at a temperature 20 to 40° C. higher than the melting point of the copolymer to obtain a sheet-like molding having a thickness of 0.5 mm.
  • the total light transmittance was measured according to JIS K7361-1, and the haze was measured according to K7136.
  • a HAZE Meter NDH7000SP manufactured by Nippon Denshoku Industries Co., Ltd. was used as a measuring instrument.
  • the powder of the copolymer was compression-molded at a temperature 20 to 40° C. higher than the melting point of the copolymer to obtain a sheet-like molding having a thickness of 0.5 mm.
  • the refractive index of the press sheet having a thickness of 0.5 mm obtained by the above method was measured using an Abbe refractometer (manufactured by Atago Optical Instruments Manufacturing Co., Ltd.) at 25° C. using sodium D rays as a light source.
  • copolymer of the present disclosure can be suitably used in melt molding, coating agents, and the like.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)

Abstract

1,2-ジフルオロエチレンに由来する構造を有する新規な共重合体及びこれを使用した成形品を提供する。 1,2-ジフルオロエチレンに由来する構成単位(A)、テトラフルオロエチレンに由来する構成単位(B)及び下記構造式(1)で表される構成単位(C)を含み、構成単位(A)と構成単位(B)の共重合比が10/90~85/15モル%であり、構成単位(C)が樹脂全量に対して0.1~30モル%である共重合体。 (R1は、水素、フッ素、一部若しくは全部がフッ素化された炭素数5以下の炭化水素基、又は、OR5基(R5基は、一部若しくは全部がフッ素化された炭素数5以下の炭化水素基。R2,R3,R4は、それぞれ独立し水素又はフッ素である) 

Description

共重合体及び成形品
本開示は、共重合体及び成形品に関する。
含フッ素重合体は極めて多くの分野において使用されている重合体である。このような重合体を製造するための単量体としては、テトラフルオロエチレン、ビニリデンフルオライド、ヘキサフロロプロピレン等が周知である。 
1,2-ジフルオロエチレンは、その製造方法が特許文献1に開示されている。更に、特許文献2,3及び非特許文献1に、当該化合物及びこれを使用した重合体が開示されている。
国際公開2019/216239号 中国特許出願公開第108102260号明細書 中国特許出願公開第106633548号明細書
Poly(vinylene fluoride)、 Synthesis and Properties W.S. Durrell et. al. Journal of Polymer Scienece: Part A Vol.3,P2975-2982 (1965)
本開示は、1,2-ジフルオロエチレンに由来する構造を有する新規な共重合体及びこれを使用した成形品を提供することを目的とするものである。
本開示は、1,2-ジフルオロエチレンに由来する構成単位(A)、テトラフルオロエチレンに由来する構成単位(B)及び下記構造式(1)で表される構成単位(C)を含み、構成単位(A)と構成単位(B)の共重合比が10/90~85/15モル%であり、構成単位(C)が樹脂全量に対して0.1~30モル%であることを特徴とする共重合体である。 
Figure JPOXMLDOC01-appb-C000002
(Rは、水素、フッ素、一部若しくは全部がフッ素化された炭素数5以下の炭化水素基、又は、OR基(R基は、一部若しくは全部がフッ素化された炭素数5以下の炭化水素基。R,R,Rは、それぞれ独立し水素又はフッ素である)
上記共重合体は、屈折率が1.320~1.380であることが好ましい。上記共重合体は、0.5mm厚さのプレスシートを形成した場合、全光線透過率80%以上且つ、ヘイズ値が45%以下であることが好ましい。上記共重合体は、融点が100℃以上であることが好ましい。
上記構成単位(C)は、ヘキサフルオロプロピレン、2,3,3,3-テトラフルオロプロペン、1,3,3,3-テトラフルオロプロペン(Z体)及び1,3,3,3-テトラフルオロプロペン(E体)及びパーフルオロメチルビニルエーテルからなる群より選択される少なくとも1種の単量体に由来する構造であることが好ましい。上記構成単位(C)は、樹脂全体に対して4.0~27モル%であることが好ましい。
本開示は、上述したいずれかに記載の共重合体を含有する成形品であって、前記成形品が、フィルム、シート、チューブ、ホース、シール材、電線被覆材、光ファイバーケーブル又は溶融紡糸された繊維である成形品でもある。
本開示の共重合体は、特定の構成単位を必須とするものである。これによって、従来のフッ素系重合体では得ることが困難であった性質を有する新規の共重合体とすることができる。
以下、本開示を詳細に説明する。本開示は、1,2-ジフルオロエチレンに由来する構成単位(A)、テトラフルオロエチレンに由来する構成単位(B)及び上記構造式(1)に由来する構成単位(C)を有する共重合体である。 
上記構成単位(A)のみを単独で使用した単独重合体よりも、構成単位(B)との共重合体は屈折率が小さいものとなる。よって、低屈折率の樹脂を得るためには、これらを併用することが好ましい。構成単位(A)及び構成単位(B)のみの共重合体の場合は、透明性が悪化しやすい。このため、更に、構成単位(C)を所定の割合で併用することによって、低屈折率を有し、同時に透明性にも優れる樹脂とすることができる。また、本開示の樹脂組成物は、溶融成形可能な樹脂であることから、溶融成形の分野において好適に使用することができる。さらに、各種のコーティング材の分野においても好適に使用することができる。 
(構成単位(A)) 1,2-ジフルオロエチレンは、公知化合物であるが、従来は、主に冷媒としての使用について検討されており、重合単量体としての検討はほとんど行われていない。
上記1,2-ジフルオロエチレンは、トランス体(E体)とシス体(Z体)とが存在する。 
Figure JPOXMLDOC01-appb-C000003
よって、トランス体のみを原料として使用した場合、シス体のみを原料として使用した場合、これらの混合物を原料として使用した場合とで、その立体配置に相違を生じる。本開示の共重合体は、これらのいずれであってもよい。また、これらの任意の割合の混合物であってもよい。 
上記1,2-ジフルオロエチレンは、その他の単量体と一般的な方法で共重合体を得ることができる。さらに、その共重合割合も容易に変化させることができる。したがって、本願発明の特定の単量体割合である共重合体を容易に得ることができる。 
なお、上述した非特許文献1においては、下記一般式(10)で表される単量体又はこれを含有する単量体組成物を原料として使用した重合反応によって重合体を得ることが開示されている。しかし、当該非特許文献1中においては、構成単位(B)を有する重合体については、開示されていない。 
また、非特許文献1では、純度が高い単量体を得ることができない。したがって、本開示と同様の重合体を得ることができない。本発明者らの検討によると、非特許文献1における合成方法によって一般式(10)で表される化合物を合成すると、フッ化ビニリデン等の各種不純物が発生する。更に、非特許文献1においては、前駆体の純度が90%であることから、このような前駆体中の不純物に由来する成分も発生する。非特許文献1においては、ドライアイストラップ(-78℃)で不純物を除去する旨の記載が存在する。しかし、このような方法では、高沸点化合物は除去することができない。上述したように、非特許文献1においては、重合体のガラス転移温度が50℃程度である旨の記載が存在していることも考慮すれば、非特許文献1においては、高純度のモノマーを得ることができていない。 
本開示の共重合体は、特定の樹脂組成に由来する各種効果が期待されるものであることから、本開示においては、単量体として純度が99.5質量%以上(より好ましくは、99.8質量%以上、最も好ましくは、99.9質量%以上)である1,2-ジフルオロエチレンで表される化合物を原料として使用して、得られたものであることが好ましい。 
(構成単位(B)) 本開示の共重合体は、更に、テトラフルオロエチレンに由来する構成単位(B)を有するものである。このような構成単位を有することで、本開示の特定の効果を奏する共重合体とすることができる。
(構成単位(C)) 本開示の共重合体は、下記構造式(1)に由来する構成単位(C)を特定の割合で有するものである。
このような共重合体は、低屈折率であり、適度な結晶性を維持することで耐熱性を有するものである。さらに、良好な透明性を有する樹脂とすることもできる。
上記構成単位(C)は、
Figure JPOXMLDOC01-appb-C000004
(Rは、水素、フッ素、一部若しくは全部がフッ素化された炭素数5以下の炭化水素基、又は、OR基(R基は、一部若しくは全部がフッ素化された炭素数5以下の炭化水素基。R,R,Rは、それぞれ独立し水素又はフッ素である)である。なお、上記構成単位(C)は、構成単位(B)と相違するものであり、テトラフルオロエチレンに由来する構成単位は、構成単位(C)に包含されない。 
上記一般式(1)で表される構造単位としては、水素原子の少なくとも1つがフッ素で置換されていてもよいエチレン性単量体に由来する構造、水素原子の少なくとも1つがフッ素で置換されていてもよいプロピレン性単量体に由来する構造単位、水素原子の少なくとも1つがフッ素で置換されていてもよいブテン性単量体に由来する構造単位、水素原子の少なくとも1つがフッ素で置換されていてもよいペンテン性単量体に由来する構造単位等を挙げることができる。本開示の共重合体は、構成単位(C)に該当する2種以上の共重合構造単位を併用するものであってもよい。上記一般式(1)で表される構造単位は、下記一般式(2)~(6)で表される構造単位からなる群より選択される少なくとも1の構造単位であることが好ましい。 
Figure JPOXMLDOC01-appb-C000005
構成単位(C)は、更には、ヘキサフルオロプロピレン、2,3,3,3-テトラフルオロプロペン、1,3,3,3-テトラフルオロプロペン(Z体)及び1,3,3,3-テトラフルオロプロペン(E体)及びパーフルオロメチルビニルエーテルからなる群より選択される少なくとも1種に由来する構造であることが特に好ましい。これらの単量体は、一般的に知られたものであるから、安価で入手が容易であり、かつ、本開示の目的を好適に達成することができる。 
本開示の共重合体は、構成単位(A)と構成単位(B)の共重合比が10/90~85/15モル%である。このような範囲内であることで、低屈折率の樹脂が得られる点で好ましい。構成単位(A)(B)のいずれかが多すぎる場合には、充分な低屈折率を得ることができない点で好ましくない。上記共重合比は、15/85~85/15モル%であることがより好ましく、15/85~82/18モル%であることがより好ましい。 
本開示の共重合体は、構成単位(C)が樹脂全量に対して0.1~30モル%である。このような割合で構成単位(C)を含むことで、結晶性を維持した状態で、透明性を向上させることができるという点で好ましい。また、構成単位(C)が30モル%を超えると、樹脂の結晶性が低下して、非晶樹脂あるいはエラストマーとなりやすく、比較的温度の高い雰囲気下で成型体を維持できない点で好ましくない。上記構成単位(C)の含有量の上限は、30モル%であることがより好ましく、27モル%であることが最も好ましい。 
構成単位(C)が0.1モル%未満であると、低屈折率と透明性を両立することが困難である点で好ましくない。上記構成単位(C)の含有量の下限は、1.0モル%であることがより好ましく、4.0モル%であることが最も好ましい。 
本開示の共重合体は、本開示の効果を損なわない範囲で、上述した構成単位(A)~(C)以外の構成単位を有するものであっても差し支えないし、上記構成単位(A)~(C)のみからなるものであってもよい。なお、構成単位(A)~(C)以外の構成単位の使用量は特に限定されるものではないが、共重合体全量に対して20モル%以下であることが好ましく、15モル%以下であることがより好ましく、10モル%以下であることが最も好ましい。 
本開示の共重合体は、屈折率が1.320~1.380であることが好ましい。すなわち、低屈折率の共重合体とすることが好ましい。このような屈折率を満たす共重合体は、光学用途等、低屈折率が求められる用途において好適に使用することができる。本開示の共重合体は、モノマーの配合比等を調整することで、上述した範囲の屈折率とすることができる。 
上記屈折率の下限は、1.320であることがより好ましく、1.328であることが最も好ましい。上記屈折率の上限は、1.380であることがより好ましく、1.378であることが最も好ましい。 
本開示の共重合体は、0.5mm厚さのプレスシートを形成した場合、全光線透過率80%以上且つ、ヘイズ値が45%以下であることが好ましい。すなわち、本開示の共重合体は、光透過性に優れ、かつ、ヘイズ値も小さいことから、透明性が優れた共重合体とすることができる。このような屈折率を満たす共重合体は、光学用途等、透明性が求められる用途において好適に使用することができる。本開示の共重合体は、その樹脂組成を調整することで、上述した範囲内のものとすることができる。 
上記「0.5mm厚さのプレスシートの形成」は、共重合体の粉体を共重合体の融点よりも20~40℃高い温度で圧縮成形し、厚み0.5mmのシート状の成形品を得ることによって行った。 
上記方法で得た厚さ0.5mmのプレスシートについて、全光線透過率測定は、JIS K7361-1、ヘイズの測定はK7136にそれぞれ従って測定した。測定器は、HAZE Meter NDH7000SP(日本電色工業株式会社製)を用いた。 
本開示の共重合体は、屈折率、全光線透過率、ヘイズ値のすべてにおいて、上述した範囲内のものであることがより好ましい。すなわち、低屈折率であり、かつ、透明性にも優れる共重合体であることが好ましい。このような共重合体は、光学用途において、特に好適に使用することができる点で好ましいものである。 
本開示の共重合体は、融点が100℃以上であることが好ましい。すなわち、融点が存在するような結晶性の樹脂であり、かつ、その融点が100℃以上であることが好ましい。融点が100℃以上であることで、耐熱性に優れた樹脂とすることができる点で好ましい。 
上記融点は、示差走査熱量計を用い、ASTM  D4591に準拠して測定することができる。具体的には、示差走査熱量計RDC220(Seiko Instruments社製)を用い、昇温速度10℃/分にて共重合体の熱測定を行い、得られる吸熱曲線のピークにあたる温度を融点とすることができる。 
本開示の共重合体の製造方法は特に限定されるものではなく、溶液重合、乳化重合、懸濁重合等の任意の一般的な重合方法によって行うことができる。これらの重合において使用する溶媒、乳化剤、開始剤なども特に限定されず、一般的な公知のものを使用することができる。
(重合方法)
本開示の共重合体は、上記構成単位(A)~(C)の由来となる単量体を共重合することで得ることができる。
構成単位(A)は、
Figure JPOXMLDOC01-appb-C000006
で表される単量体に基づくものである。上記一般式(10)で表される化合物は公知化合物であり、例えば、特許文献1に記載した方法によって製造することができる。 
上記一般式(10)で表される化合物は、純度が99.5質量%以上であるものを使用して重合を行うことが好ましい。純度が99.8質量%以上がより好ましく、純度が99.9質量%以上がさらに好ましい。純度が99.9質量%以上である一般式(10)で表される化合物は、その製造方法を特に限定されるものではなく、例えば、分取ガスクロマトグラフィ、多段階式の精留によって行う方法等を挙げることができる。 
不純物を多く含有する一般式(10)で表される単量体を使用すると、共重合成分が共重合体に取り込まれにくくなり、これによって所望の樹脂が得られなくなるという問題もある。具体的には、例えば、ヘキサフロロプロピレンとの共重合を行う場合、非特許文献1においては、ほとんどヘキサフロロプロピレン単位は共重合体中に取り込まれないとされている。しかし、本発明者らが行った実験によると、純度が高い単量体を原料として使用すると、ヘキサフロロプロピレンと一般式(10)で表される単量体の共重合体を得ることができる。 
このように、純度が高い単量体を使用することで、純度が低い単量体を使用した場合と比較して共重合の傾向が相違することが明らかとなった。これによって、非特許文献1とは相違する新たな組成の共重合体を得ることができる。 
本開示の共重合体は、重合開始剤剤の存在下に、1,2-ジフルオロエチレン、テトラフルオロエチレン及び構造単位(C)を、各単量単位が上述した含有量の範囲内となるように、共重合することにより製造することが出来る。
共重合は、溶液重合、塊状重合、乳化重合、懸濁重合等であってよいが、工業的に実施が容易である点で、乳化重合または懸濁重合、溶液重合が好ましく、溶液重合及び懸濁重合がより好ましい。
重合開始剤としては、油溶性ラジカル重合開始剤、または水溶性ラジカル重合開始剤を使用できるが、油溶性ラジカル重合開始剤が好ましい。
油溶性ラジカル重合開始剤としては、公知の油溶性の過酸化物であってよく、たとえば、ジノルマルプロピルパーオキシジカーボネート、ジイソプロピルパーオキシジカーボネート、ジsec-ブチルパーオキシジカーボネート、ジ-2-エトキシエチルパーオキシジカーボネートなどのジアルキルパーオキシカーボネート類;t-ブチルパーオキシイソブチレート、t-ブチルパーオキシピバレートなどのパーオキシエステル類;ジt-ブチルパーオキサイドなどのジアルキルパーオキサイド類;ジ[フルオロ(またはフルオロクロロ)アシル]パーオキサイド類;などが代表的なものとしてあげられる。
ジ[フルオロ(またはフルオロクロロ)アシル]パーオキサイド類としては、[(RfCOO)-](Rfは、パーフルオロアルキル基、ω-ハイドロパーフルオロアルキル基またはフルオロクロロアルキル基)で表されるジアシルパーオキサイドが挙げられる。
ジ[フルオロ(またはフルオロクロロ)アシル]パーオキサイド類としては、たとえば、ジ(ω-ハイドロ-ドデカフルオロヘキサノイル)パーオキサイド、ジ(ω-ハイドロ-テトラデカフルオロヘプタノイル)パーオキサイド、ジ(ω-ハイドロ-ヘキサデカフルオロノナノイル)パーオキサイド、ジ(パーフルオロプロピオニル)パーオキサイド、ジ(パーフルオロブチリル)パーオキサイド、ジ(パーフルオロパレリル)パーオキサイド、ジ(パーフルオロヘキサノイル)パーオキサイド、ジ(パーフルオロヘプタノイル)パーオキサイド、ジ(パーフルオロオクタノイル)パーオキサイド、ジ(パーフルオロノナノイル)パーオキサイド、ジ(ω-クロロ-ヘキサフルオロブチリル)パーオキサイド、ジ(ω-クロロ-デカフルオロヘキサノイル)パーオキサイド、ジ(ω-クロロ-テトラデカフルオロオクタノイル)パーオキサイド、ω-ハイドロ-ドデカフルオロヘプタノイル-ω-ハイドロヘキサデカフルオロノナノイル-パーオキサイド、ω-クロロ-ヘキサフルオロブチリル-ω-クロロ-デカフルオロヘキサノイル-パーオキサイド、ω-ハイドロドデカフルオロヘプタノイル-パーフルオロブチリル-パーオキサイド、ジ(ジクロロペンタフルオロブタノイル)パーオキサイド、ジ(トリクロロオクタフルオロヘキサノイル)パーオキサイド、ジ(テトラクロロウンデカフルオロオクタノイル)パーオキサイド、ジ(ペンタクロロテトラデカフルオロデカノイル)パーオキサイド、ジ(ウンデカクロロトリアコンタフルオロドコサノイル)パーオキサイドなどが挙げられる。
水溶性ラジカル重合開始剤としては、公知の水溶性過酸化物であってよく、たとえば、過硫酸、過ホウ酸、過塩素酸、過リン酸、過炭酸などのアンモニウム塩、カリウム塩、ナトリウム塩、ジコハク酸パーオキサイド、ジグルタル酸パーオキサイドなどの有機過酸化物、t-ブチルパーマレート、t-ブチルハイドロパーオキサイドなどが挙げられる。サルファイト類、亜硫酸塩類のような還元剤を過酸化物に組み合わせて使用してもよく、その使用量は過酸化物に対して0.1~20倍であってよい。
ラジカル重合開始剤の添加量は、特に限定はないが、重合速度が著しく低下しない程度の量(たとえば、数ppm対水濃度)以上を重合の初期に一括して、または逐次的に、または連続して添加すればよい。上限は、装置面から重合反応熱を除熱出来る範囲である。
上記の共重合においては、界面活性剤、親水性化合物、連鎖移動剤、および、溶媒を使用することができ、それぞれ従来公知のものを使用することができる。
界面活性剤としては、公知の界面活性剤が使用でき、たとえば、非イオン性界面活性剤、アニオン性界面活性剤、カチオン性界面活性剤などが使用でき、パーフルオロヘキサン酸アンモニウム、パーフルオロオクタン酸アンモニウムなどの炭素数4~20の直鎖または分岐した含フッ素アニオン性界面活性剤が好ましく、エーテル結合性酸素を含んでもよい(すなわち、炭素原子間に酸素原子が挿入されていてもよい)。添加量(対重合水)は、好ましくは10ppm~20質量%であり、より好ましくは10~5000ppmであり、さらに好ましくは50~5000ppmである。また、界面活性剤として反応性乳化剤を使用することができる。反応性乳化剤は、不飽和結合と親水基とをそれぞれ1つ以上有する化合物であれば特に限定されないが、例えば、CH=CFCFOCF(CF)CFOCF(CF)COONH、CH=CFCFCF(CF)OCFCFCOONH、CF=CFOCFCF(CF)OCF(CF)COONHがあげられる。添加量(対重合水)は、好ましくは10~5000ppmである。より好ましくは、50~5000ppmである。
親水性化合物としては、公知の不飽和親水性化合物及び公知の不飽和親水性化合物を重合することによって得られた親水性ポリマーが使用できる。添加量(対重合水)は、好ましくは10~5000ppmである。より好ましくは、50~5000ppmである。
連鎖移動剤としては、たとえば、エタン、イソペンタン、n-ヘキサン、シクロヘキサンなどの炭化水素類;トルエン、キシレンなどの芳香族類;アセトンなどのケトン類;酢酸エチル、酢酸ブチル、マロン酸ジメチル、マロン酸ジエチル、コハク酸ジメチルなどのエステル類;メタノール、エタノール、イソプロパノールなどのアルコール類;メチルメルカプタンなどのメルカプタン類;四塩化炭素、クロロホルム、塩化メチレン、塩化メチル、モノヨードメタン、1-ヨードエタン、1-ヨード-n-プロパン、1-ヨードパーフルオロプロパン、2-ヨードパーフルオロプロパン、1-ヨード-パーフルオロブタン、1-ヨード-パーフルオロペンタン、1-ヨード-パーフルオロヘキサン、1,3-ジヨードパーフルオロプロパン、1,3-ジヨード-2-クロロパーフルオロプロパン、1,4-ジヨードパーフルオロブタン、1,5-ジヨード-2,4-ジクロロパーフルオロペンタン、1,6-ジヨードパーフルオロヘキサン、1,8-ジヨードパーフルオロオクタン、1,12-ジヨードパーフルオロドデカン、1,16-ジヨードパーフルオロヘキサデカン、ジヨードメタン、1,2-ジヨードエタン、1,3-ジヨード-n-プロパン、CFBr、BrCFCFBr、CFCFBrCFBr、CFClBr、BrCFCFClBr、CFBrClCFClBr、BrCFCFCFBr、BrCFCFBrOCF、1-ブロモ-2-ヨードパーフルオロエタン、1-ブロモ-3-ヨードパーフルオロプロパン、1-ブロモ-4-ヨードパーフルオロブタン、2-ブロモ-3-ヨードパーフルオロブタン、3-ブロモ-4-ヨードパーフルオロブテン-1、2-ブロモ-4-ヨードパーフルオロブテン-1、ベンゼンのモノヨードモノブロモ置換体、ジヨードモノブロモ置換体、ならびに(2-ヨードエチル)および(2-ブロモエチル)置換体等のハロゲン化炭化水素などが挙げられる。これらの化合物は、単独で使用してもよく、相互に組み合わせて使用することもできる。連鎖移動剤の添加量は、用いる化合物の連鎖移動定数の大きさにより変わりうるが、通常重合溶媒に対して0.01~20質量%の範囲で使用される。
溶媒としては、水や、水とアルコールとの混合溶媒等が挙げられる。
溶液重合では、フッ素系溶媒、懸濁重合では、水に加えて、フッ素系溶媒を使用してもよい。フッ素系溶媒としては、CHCClF、CHCClF、CFCFCClH、CFClCFCFHCl等のハイドロクロロフルオロアルカン類;CFClCFClCFCF、CFCFClCFClCF等のクロロフルオロアルカン類;CFCFHCFHCFCFCF、CFHCFCFCFCFH、CFCFCFCFCFCFCFH等のハイドロフルオロアルカン類;CHOC、CHOCCFCFCHOCHF、CFCHFCFOCH、CHFCFOCHF、(CFCHCFOCH、CFCFCHOCHCHF、CFCHFCFOCHCF等のハイドロフルオロエーテル類;パーフルオロシクロブタン、CFCFCFCF、CFCFCFCFCF、CFCFCFCFCFCF等のパーフルオロアルカン類等が挙げられ、なかでも、パーフルオロアルカン類、ハイドロフルオロエーテル類が
好ましい。フッ素系溶媒の使用量は、懸濁性および経済性の面から、水性媒体に対して10~100質量%が好ましい。
重合温度、重合圧力は、用いる溶媒の種類、量および蒸気圧や重合開始剤の種類によって異なるが、-15~150℃、0~9.8MPa、1~24時間であってよい。特に、溶液重合において重合開始剤としてフッ素原子を含有する油溶性ラジカル重合開始剤を使用する場合、重合温度が-15~70℃であることが好ましく、10~65℃であることがより好ましい。乳化重合および懸濁重合においてフッ素原子を含有する油溶性ラジカル重合開始剤を使用する場合、重合温度が10~95℃であることが好ましい。重合開始剤として水溶性ラジカル重合開始剤を使用する場合、重合温度が10~95℃であることが好ましい。 
重合後の処理も任意の一般的な方法によって行うことができ、必要に応じて、得られた共重合体を汎用溶媒に溶解して、樹脂溶液とすることができる。 
本開示の共重合体は、フィルム、シート、チューブ、ホース、シール材、電線被覆材、光ファイバーケーブル又は溶融紡糸された繊維等の成形品材料として使用することができる。このような成形品も本開示の一つである。また、コーティング材料として使用することもできる。 
このような成形品とする場合において、成形用材料を樹脂成形体に成形する方法は特に限定されず、一般的な成形方法、例えばモールド成形、押出成形、射出成形、ラム押出し、プレス成形、真空成形、トランスファ成形、ブロー成形、ナノインプリント、溶融紡糸等を用いることができる。また、本開示の成形用材料は、溶媒に溶解または分散、具体的には溶解させることにより、キャスト成形等のコーティング方法を用いた成形に用いることができる。成形用材料を樹脂成形体に成形する方法は、押出成形、モールド成形(特に、金型に入れてホットプレスによるモールド成形)、あるいは、射出成形、ラム押出し成形が好ましい。 
このようにして得られた樹脂成形品の具体的な用途として、光学材料、建材、電子材料、半導体関連材料、ディスプレイ関連材料、自動車材料、船舶材料、航空機材料、発電関連材料、積層体、コート剤、生活レジャー用品等の分野において好適に使用することができる。 
上記光学材料としては、例えば、光学部品、眼鏡レンズ、光学レンズ、光学セル、DVD用ディスク、フォトダイオード、反射防止材料、マイクロレンズアレイ等が挙げられる。 
上記建材としては、例えば、例えばショーウインドウ、ショーケースや、膜構造建築物(運動施設、園芸施設、アトリウム等)の膜材、屋根材、天井材、外壁材、内壁材、被覆材等があげられる。また、膜構造建築物の膜材だけではなく、例えば、屋外使用板材として、防音壁、防風フェンス、越波柵、車庫天蓋、ショッピングモール、歩行路壁、ガラス飛散防止フィルム、耐熱・耐水シート、テント倉庫のテント材、日よけ用膜材、明かり取り用の部分屋根材、ガラスに替わる窓材、ガラス代替等の開口部材、炎仕切り用膜材、カーテン、外壁補強、防水膜、防煙膜、不燃透明仕切り、道路補強、インテリア(照明、壁面、ブランド等)、エクステリア(テント、看板等)、大規模温室、膜材(屋根材、天井材、外壁材、内壁材等)を挙げることができる。 
上記電子材料としては、プリント配線基板、セラミック配線基板などの配線基板、電子材料(プリント基板、配線基板、絶縁膜、離型膜等)、フィルムコンデンサー、電子・電気部品、家電外装、精密機械部品等を挙げることができる。 
上記半導体関連材料としては、半導体素子の保護膜(たとえば、層間絶縁膜、バッファーコート膜、パッシベーション膜、α線遮蔽膜、素子封止材、高密度実装基板用層間絶縁膜、高周波素子用防湿膜(たとえば、RF回路素子、GaAs素子、InP素子等の防湿膜。)、ペリクル膜、フォトリソグラフィー、バイオチップ等を挙げることができる。 
上記ディスプレイ関連材料としては、ディスプレイ、タッチパネル、各種ディスプレイ(たとえば、PDP、LCD、FED、有機EL、プロジェクションTV。)等の表面保護膜、エレクトロウェッティング用の表面、画像形成物品等を挙げることができる。上記自動車材料としては、幌、制振材、ボディ等を挙げることができる。 
上記発電関連材料としては、太陽電池、固体高分子型燃料電池用の電解質材料の中間体、静電誘導型変換素子(例えば、振動型発電機、アクチュエータ、センサ等)、発電装置、マイクロフォン等の静電誘導型変換素子に用いられるエレクトレット、太陽電池モジュールの表面材料、太陽熱発電用のミラー保護材、ソーラー温水器の表面材等、光起電力技術等を挙げることができる。上記積層体としては、ポリイミド等の熱可塑性樹脂と積層したフィルムを挙げることができる。 
コート剤としては、撥水コート、離型剤、低反射コート、防汚コート、非粘着コート、防水・防湿コート、絶縁膜、耐薬品コート、エッチング保護膜、低屈折率膜、撥インクコート、ガスバリア膜、パターン化された機能膜、ディスプレイ用カラーフィルターの表面保護膜、太陽電池カバーガラス用防汚・反射防止膜、潮解性結晶やリン酸系ガラスの防湿・反射防止コート、位相シフトマスク、フォトマスクの表面保護・防汚コート、液浸リソグラフィ用フォトレジストの撥液コート、コンタクトリソマスクの離型コート、ナノインプリントモールドの離型コート、半導体素子や集積回路のパッシベーション膜、回路基板やLED等発光素子の銀電極のガスバリア膜、液晶表示素子の液晶配向膜、磁気記録媒体の潤滑コート、ゲート絶縁膜、エレクトロウェッティング原理を用いたデバイス、エレクトレット膜、MEMSプロセスの耐薬品コーティング、医療器具の防汚コート、マイクロフルイディクス技術を利用したデバイスの耐薬・防汚・耐バイオ・撥液コート、光学フィルター多層膜コートの低屈折材料、親水撥水パターニングの撥水性材料、パターン化された光学素子等を挙げることができる。 
上記生活レジャー用品としては、釣りざお、ラケット、ゴルフクラブ、映写幕等を挙げることができる。
以下、本開示を実施例に基づいて具体的に説明する。以下の実施例においては特に言及しない場合は、「部」「%」はそれぞれ「質量部」「質量%」を表す。 
(一般式(10)で表される単量体)
以下の各実施例において使用する際の1,2-ジフルオロエチレンE体は、純度99.9質量%以上のものであった。なお、純度は、GC/MSによって不純物のピークが現れないことを確認し、99.9質量%とした。なお、特許文献1の実施例に従って製造を行い、分取ガスクロマトグラフィによって分離を行うことで、高純度の単量体を得た。
実施例1
内容積1.8Lのステンレス製オートクレーブに、脱イオン水600g、メチルセルロース0.3gを導入した後、オートクレーブ内を十分に真空窒素置換した。その後、オートクレーブ内を真空脱気し、真空状態となったオートクレーブ内に、450gのヘキサフルオロプロピレン(HFP)、33gの1,2-ジフルオロエチレン、60gのテトラフルオロエチレン(TFE)導入した後、オートクレーブを29℃に加温した。次に、ジノルマルプロピルパーオキシカーボネートを50質量%含むメタノール溶液3.0gをオートクレーブ内に投入して重合を開始した。開始時の圧力は1.2MPaGであった。オートクレーブ内の温度を35℃に3.5時間維持した後、放圧して大気圧に戻し、反応生成物を水洗、乾燥してフッ素樹脂の粉末を4.0g得た。得られた樹脂は1,2-ジフルオロエチレンとTFEとHFPをモル%比で46.0/47.5/6.5の割合で含んでいた。融点は190.7℃であった。
実施例2
内容積1.8Lのステンレス製オートクレーブに、脱イオン水600gを導入した後、オートクレーブ内を十分に真空窒素置換した。その後、オートクレーブ内を真空脱気し、真空状態となったオートクレーブ内に、450gのHFP、5gの1,2-ジフルオロエチレン、28gのTFEを導入した後、オートクレーブを28℃に加温した。次に、ジ-(2,2,3,3,4,4,5,5,6,6,7,7-ドデカフルオロヘプタノイル)パーオキサイドを8質量%含むパーフルオロヘキサン溶液(DHP-H)を6.0gオートクレーブ内に投入して重合を開始した。開始時の圧力は0.9MPaGであった。オートクレーブ内の温度を28℃に2時間維持した後、放圧して大気圧に戻し、反応生成物を水洗、乾燥してフッ素樹脂の粉末を3.2g得た。得られた樹脂は1,2-ジフルオロエチレンとTFEとHFPをモル%比で25.6/62.5/11.8の割合で含んでいた。融点は180.0℃であった。
実施例3
100mlのステンレス製オートクレーブに、40gのジクロロペンタフルオロプロパン、0.91gのDHP-Hを仕込み、これをドライアイスにて冷却し、窒素置換した後、2.0gのTFE、23.9gのHFP、1.2gの1,2-ジフルオロエチレンを仕込み、振とう機を用いて25℃で14.2時間振とうした後、放圧して大気圧に戻し、生成物を乾燥することで1.42gのフッ素樹脂を得た。得られた樹脂は1,2-ジフルオロエチレンとTFEとHFPをモル%比で73.7/17.7/8.6の割合で含んでいた。融点は166.5℃であった。
実施例4
500mlのステンレス製オートクレーブ内を十分に真空窒素置換した。その後、オートクレーブ内を真空脱気し、真空状態となったオートクレーブ内に、120gの1,1,2,2-テトラフルオロエチル-2,2,2-トリフルオロエチルエーテル(HFE-347pc-f)、30.5gのTFE、155.8gのHFP、2.9gの1,2-ジフルオロエチレンを導入した後、オートクレーブを40℃に加温した。次に、0.4gのジイソプロピルパーオキシジカーボネートを42.5質量%含む2,2,3,3-テトラフルオロ-1-プロパノール(IPP)をオートクレーブ内に投入して重合を開始した。開始時の重合圧力は1.114MPaGであった。オートクレーブ内の圧力が1.050MPaGまで降下した後、放圧して大気圧に戻し、生成物を乾燥することで5.67gのフッ素樹脂を得た。得られた樹脂は1,2-ジフルオロエチレンとTFEとHFPをモル%比で21.5/73.3/5.2の割合で含んでいた。融点は243.4℃であった。
実施例5
500mlのステンレス製オートクレーブ内を十分に真空窒素置換した。その後、オートクレーブ内を真空脱気し、真空状態となったオートクレーブ内に、120gのHFE-347pc-f、27.0gのTFE、150.0gのHFP、5.1gの1,2-ジフルオロエチレンを導入した後、オートクレーブを40℃に加温した。次に、0.5gのIPPをオートクレーブ内に投入して重合を開始した。開始時の重合圧力は1.155MPaGであった。オートクレーブ内の圧力が1.082MPaGまで降下した後、放圧して大気圧に戻し、生成物を乾燥することで3.71gのフッ素樹脂を得た。得られた樹脂は1,2-ジフルオロエチレンとTFEとHFPをモル%比で30.4/65.1/4.6の割合で含んでいた。融点は227.9℃であった。
実施例6
500mlのステンレス製オートクレーブ内を十分に真空窒素置換した。その後、オートクレーブ内を真空脱気し、真空状態となったオートクレーブ内に、200gのHFE-347pc-f、17.1gのTFE、262.0gのHFP、3.7gの1,2-ジフルオロエチレンを導入した後、オートクレーブを55℃に加温した。次に、0.52gのIPPをオートクレーブ内に投入して重合を開始した。開始時の重合圧力は1.221MPaGであった。オートクレーブ内の圧力が1.204MPaGまで降下した後、放圧して大気圧に戻し、生成物を乾燥することで2.13gのフッ素樹脂を得た。得られた樹脂は1,2-ジフルオロエチレンとTFEとHFPをモル%比で32.1/55.2/12.7の割合で含んでいた。融点は162.3℃であった。
実施例7
500mlのステンレス製オートクレーブ内を十分に真空窒素置換した。その後、オートクレーブ内を真空脱気し、真空状態となったオートクレーブ内に、200gのHFE-347pc-f、30.5gのTFE、269.2gのHFP、3.0gの1,2-ジフルオロエチレンを導入した後、オートクレーブを55℃に加温した。次に、0.6gのIPPをオートクレーブ内に投入して重合を開始した。開始時の重合圧力は1.365MPaGであった。オートクレーブ内の圧力が1.340MPaGまで降下した後、放圧して大気圧に戻し、生成物を乾燥することで2.95gのフッ素樹脂を得た。得られた樹脂は1,2-ジフルオロエチレンとTFEとHFPをモル%比で20.5/71.9/7.6の割合で含んでいた。融点は225.2℃であった。
実施例8
500mlのステンレス製オートクレーブ内を十分に真空窒素置換した。その後、オートクレーブ内を真空脱気し、真空状態となったオートクレーブ内に、200gのHFE-347pc-f、20.0gのTFE、245.0gのHFP、15.0gの1,2-ジフルオロエチレンを導入した後、オートクレーブを40℃に加温した。次に、0.7gのIPPをオートクレーブ内に投入して重合を開始した。開始時の重合圧力は1.069MPaGであった。オートクレーブ内の圧力が1.054MPaGまで降下した後、放圧して大気圧に戻し、生成物を乾燥することで2.85gのフッ素樹脂を得た。得られた樹脂は1,2-ジフルオロエチレンとTFEとHFPをモル%比で41.9/51.2/6.9の割合で含んでいた。融点は189.7℃であった。
実施例9
500mlのステンレス製オートクレーブ内を十分に真空窒素置換した。その後、オートクレーブ内を真空脱気し、真空状態となったオートクレーブ内に、200gのHFE-347pc-f、15.1gのTFE、284.7gのHFP、1.2gの1,2-ジフルオロエチレンを導入した後、オートクレーブを55℃に加温した。次に、0.7gのIPPをオートクレーブ内に投入して重合を開始した。開始時の重合圧力は1.191MPaGであった。オートクレーブ内の圧力が1.176MPaGまで降下した後、放圧して大気圧に戻し、生成物を乾燥することで1.57gのフッ素樹脂を得た。得られた樹脂は1,2-ジフルオロエチレンとTFEとHFPをモル%比で21.1/63.7/15.2の割合で含んでいた。融点は189.7℃であった。
実施例10
100mlのステンレス製オートクレーブに、40gのHFE-347pc-f、0.47gのDHP-Hを仕込み、これをドライアイスにて冷却し、窒素置換した後、5.0gのTFE、10.0gのパーフルオロメチルビニルエーテル(PMVE)、1.1gの1,2-ジフルオロエチレンを仕込み、振とう機を用いて25℃で6時間振とうした後、放圧して大気圧に戻し、生成物を乾燥することで1.32gのフッ素樹脂を得た。得られた樹脂は1,2-ジフルオロエチレンとTFEとPMVEをモル%比で38.6/51.1/10.4の割合で含んでいた。融点は156.5℃であった。
実施例11
内容積1.8Lのステンレス製オートクレーブに、脱イオン水500gを導入した後、オートクレーブ内を十分に真空窒素置換した。その後、オートクレーブ内を真空脱気し、真空状態となったオートクレーブ内に、500gのHFE-347pc-f、130gのPMVE、4gの1,2-ジフルオロエチレン、46gのTFEを導入した後、オートクレーブを28℃に加温した。次に、DHP-Hを3.0gオートクレーブ内に投入して重合を開始した。開始時の圧力は0.52MPaGであった。オートクレーブ内の温度を28℃に1.5時間維持した後、放圧して大気圧に戻し、反応生成物を水洗、乾燥してフッ素樹脂の粉末を4.3g得た。得られた樹脂は1,2-ジフルオロエチレンとTFEとPMVEをモル%比で17.9/67.5/14.6の割合で含んでいた。融点は172.2℃であった。
実施例12
内容積1.8Lのステンレス製オートクレーブに、脱イオン水500gを導入した後、オートクレーブ内を十分に真空窒素置換した。その後、オートクレーブ内を真空脱気し、真空状態となったオートクレーブ内に、500gのHFE-347pc-fを500g、130gのPMVE、3gの1,2-ジフルオロエチレン、37gのTFEを導入した後、オートクレーブを28℃に加温した。次に、DHP-Hを3.0gオートクレーブ内に投入して重合を開始した。開始時の圧力は0.47MPaGであった。オートクレーブ内の温度を28℃に1.3時間維持した後、放圧して大気圧に戻し、反応生成物を水洗、乾燥してフッ素樹脂の粉末を2.2g得た。得られた樹脂は1,2-ジフルオロエチレンとTFEとPMVEをモル%比で13.8/69.0/17.2の割合で含んでいた。融点は176.9℃であった。
実施例13
内容積1.8Lのステンレス製オートクレーブに、脱イオン水500gを導入した後、オートクレーブ内を十分に真空窒素置換した。その後、オートクレーブ内を真空脱気し、真空状態となったオートクレーブ内に、500gのHFE-347pc-f、60gのPMVE、9gの1,2-ジフルオロエチレン、34gのTFEを導入した後、オートクレーブを28℃に加温した。次に、DHP-Hを3.0gオートクレーブ内に投入して重合を開始した。開始時の圧力は0.40MPaGであった。オートクレーブ内の温度を28℃に1時間維持した後、放圧して大気圧に戻し、反応生成物を水洗、乾燥してフッ素樹脂の粉末を2.5g得た。得られた樹脂は1,2-ジフルオロエチレンとTFEとPMVEをモル%比で38.3/53.0/8.7の割合で含んでいた。融点は185.3℃であった。
実施例14
内容積1.8Lのステンレス製オートクレーブに、脱イオン水500gを導入した後、オートクレーブ内を十分に真空窒素置換した。その後、オートクレーブ内を真空脱気し、真空状態となったオートクレーブ内に、500gのHFE-347pc-f、200gのPMVE、3gの1,2-ジフルオロエチレン、28gのTFEを導入した後、オートクレーブを28℃に加温した。次に、DHP-Hを3.0gオートクレーブ内に投入して重合を開始した。開始時の圧力は0.40MPaGであった。オートクレーブ内の温度を28℃に2.1時間維持した後、放圧して大気圧に戻し、反応生成物を水洗、乾燥してフッ素樹脂の粉末を2.9g得た。得られた樹脂は1,2-ジフルオロエチレンとTFEとPMVEをモル%比で23.1/51.0/25.9の割合で含んでいた。融点は101.7℃であった。
実施例15
内容積1.8Lのステンレス製オートクレーブに、脱イオン水500gを導入した後、オートクレーブ内を十分に真空窒素置換した。その後、オートクレーブ内を真空脱気し、真空状態となったオートクレーブ内に、500gのHFE-347pc-f、80gのPMVE、15gの1,2-ジフルオロエチレン、27gのTFEを導入した後、オートクレーブを28℃に加温した。次に、DHP-Hを3.0gオートクレーブ内に投入して重合を開始した。開始時の圧力は0.40MPaGであった。オートクレーブ内の温度を28℃に0.6時間維持した後、放圧して大気圧に戻し、反応生成物を水洗、乾燥してフッ素樹脂の粉末を1.2g得た。得られた樹脂は1,2-ジフルオロエチレンとTFEとPMVEをモル%比で41.1/47.5/11.4の割合で含んでいた。融点は157.7℃であった。
実施例16
内容積1.8Lのステンレス製オートクレーブに、脱イオン水500gを導入した後、オートクレーブ内を十分に真空窒素置換した。その後、オートクレーブ内を真空脱気し、真空状態となったオートクレーブ内に、500gのHFE-347pc-f、110gのPMVE、5gの1,2-ジフルオロエチレン、35gTFEを導入した後、オートクレーブを28℃に加温した。次に、DHP-Hを3.0gオートクレーブ内に投入して重合を開始した。開始時の圧力は0.40MPaGであった。オートクレーブ内の温度を28℃に0.8時間維持した後、放圧して大気圧に戻し、反応生成物を水洗、乾燥してフッ素樹脂の粉末を2.1g得た。得られた樹脂は1,2-ジフルオロエチレンとTFEとPMVEをモル%比で13.0/64.9/22.1の割合で含んでいた。融点は157.5℃であった。
実施例17
内容積1.8Lのステンレス製オートクレーブに、脱イオン水500gを導入した後、オートクレーブ内を十分に真空窒素置換した。その後、オートクレーブ内を真空脱気し、真空状態となったオートクレーブ内に、500gのHFE-347pc-f、104gのPMVE、6gの1,2-ジフルオロエチレン、35gのTFEを導入した後、オートクレーブを28℃に加温した。次に、DHP-Hを6.0gオートクレーブ内に投入して重合を開始した。開始時の圧力は0.42MPaGであった。重合圧力を保持するため、1,2-ジフルオロエチレン/TFE/PMVE=25.5/59.5/15.0mоl%の混合ガスを流し、重合開始時から90分毎にDHP-Hを6g、3時間30分後からは90分毎にDHP-Hを3g投入し、オートクレーブ内の温度を28℃に16.5時間維持した後、放圧して大気圧に戻し、反応生成物を水洗、乾燥してフッ素樹脂の粉末を45g得た。得られた樹脂は1,2-ジフルオロエチレンとTFEとPMVEをモル%比で25.7/59.7/14.6の割合で含んでいた。融点は157.7℃であった。
実施例18
内容積1.8Lのステンレス製オートクレーブに、脱イオン水500gを導入した後、オートクレーブ内を十分に真空窒素置換した。その後、オートクレーブ内を真空脱気し、真空状態となったオートクレーブ内に、500gのHFE-347pc-f、94gのPMVE、13gの1,2-ジフルオロエチレン、33gのTFEを導入した後、オートクレーブを28℃に加温した。次に、DHP-Hを6.0gオートクレーブ内に投入して重合を開始した。開始時の圧力は0.43MPaGであった。重合圧力を保持するため、1,2-ジフルオロエチレン/TFE/PMVE=44.0/44.0/12.0mоl%の混合ガスを流し、重合開始時から90分毎にDHP-Hを6g、9時間後からは60分毎にDHP-Hを3g投入し、オートクレーブ内の温度を28℃に14.5時間維持した後、放圧して大気圧に戻し、反応生成物を水洗、乾燥してフッ素樹脂の粉末を42g得た。得られた樹脂は1,2-ジフルオロエチレンとTFEとPMVEをモル%比で44.4/43.6/12.0の割合で含んでいた。融点は137.9℃であった。
実施例19
内容積4.1Lのガラスライニングされたステンレス製オートクレーブに、脱イオン水1280gを導入した後、オートクレーブ内を十分に真空窒素置換した。その後、オートクレーブ内を真空脱気し、真空状態となったオートクレーブ内に、1000gのHFE-347pc-f、340gのPMVE、18gの1,2-ジフルオロエチレン、101gのTFEを導入した後、オートクレーブを28℃に加温した。次に、DHP-Hを3.0gオートクレーブ内に投入して重合を開始した。開始時の圧力は0.50MPaGであった。オートクレーブ内の温度を28℃に1時間維持した後、放圧して大気圧に戻し、反応生成物を水洗、乾燥してフッ素樹脂の粉末を5.7g得た。得られた樹脂は1,2-ジフルオロエチレンとTFEとPMVEをモル%比で26.8/55.0/18.2の割合で含んでいた。融点は141.1℃であった。
実施例20
100mlのステンレス製オートクレーブに、40gのジクロロペンタフルオロプロパン、0.43gのDHP-Hを仕込み、これをドライアイスにて冷却し、窒素置換した後、6.0gのTFE、0.5gの2,3,3,3-テトラフルオロプロペン(HFO-1234yf)、5.5gの1,2-ジフルオロエチレンを仕込み、振とう機を用いて25℃で1.3時間振とうした後、放圧して大気圧に戻し、生成物を乾燥することで0.41gのフッ素樹脂を得た。得られた樹脂は1,2-ジフルオロエチレンとTFEとHFO-1234yfをモル%比で44.1/40.0/15.9の割合で含んでいた。融点は109.7℃であった。
実施例21
500mlのステンレス製オートクレーブ内を十分に真空窒素置換した。その後、オートクレーブ内を真空脱気し、真空状態となったオートクレーブ内に、200gのHFE-347pc-f、45.0gのTFE、2.5gのHFO-1234yf、13.2gの1,2-ジフルオロエチレンを導入した後、オートクレーブを25℃に加温した。次に、2.0gのDHP-Hをオートクレーブ内に投入して重合を開始した。開始時の重合圧力は0.871MPaGであった。オートクレーブ内の圧力が0.856MPaGまで降下した後、放圧して大気圧に戻し、生成物を乾燥することで1.90gのフッ素樹脂を得た。得られた樹脂は1,2-ジフルオロエチレンとTFEとHFO-1234yfをモル%比で32.7/58.5/8.8の割合で含んでいた。融点は189.7℃であった。
実施例22
500mlのステンレス製オートクレーブ内を十分に真空窒素置換した。その後、オートクレーブ内を真空脱気し、真空状態となったオートクレーブ内に、200gのHFE-347pc-f、21.0gのTFE、2.6gのHFO-1234yf、33.5gの1,2-ジフルオロエチレンを導入した後、オートクレーブを25℃に加温した。次に、2.0gのDHP-Hをオートクレーブ内に投入して重合を開始した。開始時の重合圧力は0.711MPaGであった。オートクレーブ内の圧力が0.696MPaGまで降下した後、放圧して大気圧に戻し、生成物を乾燥することで1.82gのフッ素樹脂を得た。得られた樹脂は1,2-ジフルオロエチレンとTFEとHFO-1234yfをモル%比で58.9/32.6/8.5の割合で含んでいた。融点は127.8℃であった。
比較例1
500mlのステンレス製オートクレーブ内を十分に真空窒素置換した。その後、オートクレーブ内を真空脱気し、真空状態となったオートクレーブ内に、150gのHFE-347pc-f、4.0gのTFE、23.0gの1,2-ジフルオロエチレンを導入した後、オートクレーブを28℃に加温した。次に、2.0gのDHP-Hをオートクレーブ内に投入して重合を開始した。開始時の重合圧力は0.5MPaGであった。重合圧力を保持するため、1,2-ジフルオロエチレン/TFE=85/15mоl%の混合ガスを流し、オートクレーブ内の温度を28℃に5.2時間維持した後、放圧して大気圧に戻し、生成物を乾燥することで12.2gのフッ素樹脂を得た。得られた樹脂は1,2-ジフルオロエチレンとTFEをモル%比で85.5/14.5の割合で含んでいた。融点は210.0℃であった。
比較例2
500mlのステンレス製オートクレーブ内を十分に真空窒素置換した。その後、オートクレーブ内を真空脱気し、真空状態となったオートクレーブ内に、150gのHFE-347pc-f、15.2gのTFE、10.0gの1,2-ジフルオロエチレンを導入した後、オートクレーブを28℃に加温した。次に、2.0gのDHP-Hをオートクレーブ内に投入して重合を開始した。開始時の重合圧力は0.5MPaGであった。重合圧力を保持するため、1,2-ジフルオロエチレン/TFE=68/32mоl%の混合ガスを流し、オートクレーブ内の温度を28℃に4時間維持した後、放圧して大気圧に戻し、生成物を乾燥することで10.8gのフッ素樹脂を得た。得られた樹脂は1,2-ジフルオロエチレンとTFEをモル%比で67.8/32.2の割合で含んでいた。融点は217.2℃であった。
比較例3
500mlのステンレス製オートクレーブ内を十分に真空窒素置換した。その後、オートクレーブ内を真空脱気し、真空状態となったオートクレーブ内に、150gのHFE-347pc-f、15.0gのTFE、9.4gの1,2-ジフルオロエチレンを導入した後、オートクレーブを28℃に加温した。次に、1.5gのDHP-Hをオートクレーブ内に投入して重合を開始した。開始時の重合圧力は0.5MPaGであった。重合圧力を保持するため、1,2-ジフルオロエチレン/TFE=54/46mоl%の混合ガスを流し、オートクレーブ内の温度を28℃に2.8時間維持した後、放圧して大気圧に戻し、生成物を乾燥することで10.7gのフッ素樹脂を得た。得られた樹脂は1,2-ジフルオロエチレンとTFEをモル%比で53.9/46.1の割合で含んでいた。融点は232.8℃であった。
比較例4
500mlのステンレス製オートクレーブ内を十分に真空窒素置換した。その後、オートクレーブ内を真空脱気し、真空状態となったオートクレーブ内に、150gのHFE-347pc-f、20.0gのTFE、6.8gの1,2-ジフルオロエチレンを導入した後、オートクレーブを28℃に加温した。次に、1.5gのDHP-Hをオートクレーブ内に投入して重合を開始した。開始時の重合圧力は0.5MPaGであった。重合圧力を保持するため、1,2-ジフルオロエチレン/TFE=42/58mоl%の混合ガスを流し、オートクレーブ内の温度を28℃に1.8時間維持した後、放圧して大気圧に戻し、生成物を乾燥することで13.1gのフッ素樹脂を得た。得られた樹脂は1,2-ジフルオロエチレンとTFEをモル%比で42.4/57.6の割合で含んでいた。融点は246.5℃であった。
比較例5
500mlのステンレス製オートクレーブ内を十分に真空窒素置換した。その後、オートクレーブ内を真空脱気し、真空状態となったオートクレーブ内に、150gのHFE-347pc-f、26.0gのTFE、2.1gの1,2-ジフルオロエチレンを導入した後、オートクレーブを28℃に加温した。次に、1.0gのDHP-Hをオートクレーブ内に投入して重合を開始した。開始時の重合圧力は0.6MPaGであった。重合圧力を保持するため、1,2-ジフルオロエチレン/TFE=18/82mоl%の混合ガスを流し、オートクレーブ内の温度を28℃に45分間維持した後、放圧して大気圧に戻し、生成物を乾燥することで11.3gのフッ素樹脂を得た。得られた樹脂は1,2-ジフルオロエチレンとTFEをモル%比で19.0/81.0の割合で含んでいた。融点は288.8℃であった。
比較例6
内容積1.8Lのステンレス製オートクレーブに、脱イオン水1330g、メチルセルロース0.67gを導入した後、オートクレーブ内を十分に真空窒素置換した。その後、オートクレーブ内を真空脱気し、真空状態となったオートクレーブ内に、1,2-ジフルオロエチレン250g、メタノール1ml及びジノルマルプロピルパーオキシカーボネートを50質量%含むメタノール溶液2gをオートクレーブ内に投入し、1.5時間かけて45℃まで昇温した後、45℃で3時間維持した後、ジノルマルプロピルパーオキシカーボネートを50質量%含むメタノール溶液を更に4g導入した。その後、45℃を4時間維持した。この間の最高到達圧力は2.7MPaGであった。その後、放圧して大気圧に戻し、反応生成物を水洗、乾燥してフッ素樹脂の粉末を198g得た。融点は196.3℃であった。
比較例7
内容積1.8Lのステンレス製オートクレーブに、脱イオン水500gを導入した後、オートクレーブ内を十分に真空窒素置換した。その後、オートクレーブ内を真空脱気し、真空状態となったオートクレーブ内に、500gのHFE-347pc-f、323gのPMVE、3gの1,2-ジフルオロエチレン、21gのTFEを導入した後、オートクレーブを28℃に加温した。次に、DHP-Hを6.0gオートクレーブ内に投入して重合を開始した。開始時の圧力は0.40MPaGであった。オートクレーブ内の温度を28℃に6時間維持した後、放圧して大気圧に戻し、反応生成物を水洗、乾燥してフッ素樹脂の粉末を2.5g得た。得られた樹脂は1,2-ジフルオロエチレンとTFEとPMVEをモル%比で22.2/39.5/38.3の割合で含んでいた。融点は確認できなかった。
得られた各共重合体について、以下の方法で評価を行った。結果を表1に示す。
 (共重合体の組成比)
 共重合体組成は、溶液NMR法、もしくは溶融NMR法により測定した。
 <溶液NMR法>
 測定装置:バリアン社製 VNMRS400
 共鳴周波数:376.04(Sfrq)
 パルス幅:30°
 <溶融NMR法>
 測定装置:ブルカージャパン社製 AVANCE300 
 共鳴周波数:282.40[MHz] 
 パルス幅:45°
(融点)
示差走査熱量計を用い、ASTM  D4591に準拠して測定することができる。具体的には、示差走査熱量計RDC220(Seiko Instruments社製)を用い、昇温速度10℃/分にて共重合体の熱測定を行い、得られる吸熱曲線のピークにあたる温度を融点とした。
(全光線透過率及びヘイズ)
共重合体の粉体を共重合体の融点よりも20~40℃高い温度で圧縮成形し、厚み0.5mmのシート状の成形品を得た。
上記方法で得た厚さ0.5mmのプレスシートについて、全光線透過率測定は、JIS K7361-1、ヘイズの測定はK7136にそれぞれ従って測定した。測定器は、HAZE Meter NDH7000SP(日本電色工業株式会社製)を用いた。
(屈折率)
共重合体の粉体を共重合体の融点よりも20~40℃高い温度で圧縮成形し、厚み0.5mmのシート状の成形品を得た。
上記方法で得た厚さ0.5mmのプレスシートの屈折率は、ナトリウムD線を光源として25℃において、アッベ屈折率計(アタゴ光学機器製作所製)を用いて測定した。
Figure JPOXMLDOC01-appb-T000007
上記表1の結果から、本開示の共重合体は低屈折率、透明性、耐熱性という効果を兼ね備えた優れた物性を有するものであることが明らかである。
本開示の共重合体は、溶融成形やコーティング剤等において好適に使用することができる。 

Claims (7)

  1. 1,2-ジフルオロエチレンに由来する構成単位(A)、
    テトラフルオロエチレンに由来する構成単位(B)及び
    下記構造式(1)で表される構成単位(C)を含み、
    構成単位(A)と構成単位(B)の共重合比が10/90~85/15モル%であり、
    構成単位(C)が樹脂全量に対して0.1~30モル%であることを特徴とする共重合体。
    Figure JPOXMLDOC01-appb-C000001
    (Rは、水素、フッ素、一部若しくは全部がフッ素化された炭素数5以下の炭化水素基、又は、OR基(R基は、一部若しくは全部がフッ素化された炭素数5以下の炭化水素基。R,R,Rは、それぞれ独立し水素又はフッ素である)
  2. 屈折率が1.320~1.380である請求項1記載の共重合体。
  3. 0.5mm厚さのプレスシートを形成した場合、全光線透過率80%以上且つ、ヘイズ値が45%以下である請求項1~2のいずれかに記載の共重合体。
  4. 融点が100℃以上である請求項1~3のいずれかに記載の共重合体。
  5. 構成単位(C)は、ヘキサフルオロプロピレン、2,3,3,3-テトラフルオロプロペン、1,3,3,3-テトラフルオロプロペン(Z体)及び1,3,3,3-テトラフルオロプロペン(E体)及びパーフルオロメチルビニルエーテルからなる群より選択される少なくとも1種の単量体に由来する構造である請求項1~4のいずれかに記載の共重合体。
  6. 構成単位(C)は、樹脂全体に対して4.0~27モル%である請求項1~5のいずれかに記載の共重合体。
  7. 請求項1~6のいずれかに記載の共重合体を含有する成形品であって、前記成形品が、フィルム、シート、チューブ、ホース、シール材、電線被覆材、光ファイバーケーブル又は溶融紡糸された繊維である成形品。
PCT/JP2022/032183 2021-09-27 2022-08-26 共重合体及び成形品 WO2023047884A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN202280061362.4A CN117999298A (zh) 2021-09-27 2022-08-26 共聚物和成型品
EP22872640.2A EP4410850A1 (en) 2021-09-27 2022-08-26 Copolymer and molded article
US18/618,002 US20240247087A1 (en) 2021-09-27 2024-03-27 Copolymer and molded article

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021-156398 2021-09-27
JP2021156398A JP7231863B1 (ja) 2021-09-27 2021-09-27 共重合体及び成形品

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US18/618,002 Continuation US20240247087A1 (en) 2021-09-27 2024-03-27 Copolymer and molded article

Publications (1)

Publication Number Publication Date
WO2023047884A1 true WO2023047884A1 (ja) 2023-03-30

Family

ID=85382471

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/032183 WO2023047884A1 (ja) 2021-09-27 2022-08-26 共重合体及び成形品

Country Status (5)

Country Link
US (1) US20240247087A1 (ja)
EP (1) EP4410850A1 (ja)
JP (1) JP7231863B1 (ja)
CN (1) CN117999298A (ja)
WO (1) WO2023047884A1 (ja)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008038682A1 (en) * 2006-09-28 2008-04-03 Asahi Glass Company, Limited Novel fluorine-containing polymer
JP2015500377A (ja) * 2011-12-29 2015-01-05 チョンハオ チェングァン リサーチ インスティテュート オブ ケミカル インダストリー カンパニー リミテッドZhonghao Chenguang Research Institute Of Chemical Industry Companylimited 耐低温フッ素含有エラストマー及びその製造方法
WO2016076369A1 (ja) * 2014-11-13 2016-05-19 旭硝子株式会社 蓄電デバイス用バインダー組成物及びその製造方法
CN106633548A (zh) 2016-12-28 2017-05-10 长园电子(东莞)有限公司 一种聚偏氟乙烯热收缩套管及其制备方法
CN108102260A (zh) 2017-12-20 2018-06-01 上海长园电子材料有限公司 一种偏氟弹性双壁热收缩套管及其制备方法
WO2019216239A1 (ja) 2018-05-07 2019-11-14 ダイキン工業株式会社 1,2-ジフルオロエチレン及び/又は1,1,2-トリフルオロエタンの製造方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008038682A1 (en) * 2006-09-28 2008-04-03 Asahi Glass Company, Limited Novel fluorine-containing polymer
JP2015500377A (ja) * 2011-12-29 2015-01-05 チョンハオ チェングァン リサーチ インスティテュート オブ ケミカル インダストリー カンパニー リミテッドZhonghao Chenguang Research Institute Of Chemical Industry Companylimited 耐低温フッ素含有エラストマー及びその製造方法
WO2016076369A1 (ja) * 2014-11-13 2016-05-19 旭硝子株式会社 蓄電デバイス用バインダー組成物及びその製造方法
CN106633548A (zh) 2016-12-28 2017-05-10 长园电子(东莞)有限公司 一种聚偏氟乙烯热收缩套管及其制备方法
CN108102260A (zh) 2017-12-20 2018-06-01 上海长园电子材料有限公司 一种偏氟弹性双壁热收缩套管及其制备方法
WO2019216239A1 (ja) 2018-05-07 2019-11-14 ダイキン工業株式会社 1,2-ジフルオロエチレン及び/又は1,1,2-トリフルオロエタンの製造方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
W. S. DURRELL: "Poly(vinylene fluoride), Synthesis and Properties", JOURNAL OF POLYMER SCIENCE: PART A, vol. 3, 1965, pages 2975 - 2982, XP093075291, DOI: 10.1002/pol.1965.100030824

Also Published As

Publication number Publication date
CN117999298A (zh) 2024-05-07
JP2023047470A (ja) 2023-04-06
US20240247087A1 (en) 2024-07-25
JP7231863B1 (ja) 2023-03-02
EP4410850A1 (en) 2024-08-07

Similar Documents

Publication Publication Date Title
JP7315863B2 (ja) フルオロポリマーの製造方法
EP3604350B1 (en) Production method for fluoropolymer, surfactant for polymerization, and use of surfactant
JP6196983B2 (ja) 架橋性フッ化ビニリデンおよびトリフルオロエチレンポリマー
JP7112000B2 (ja) フルオロポリマーの製造方法、重合用界面活性剤及び界面活性剤の使用
JP6169097B2 (ja) フッ化ビニリデン−トリフルオロエチレンポリマーに基づく架橋性組成物
JP7360058B2 (ja) フルオロポリマーの製造方法
JP7352110B2 (ja) フルオロポリマーの製造方法、ポリテトラフルオロエチレンの製造方法、パーフルオロエラストマーの製造方法および組成物
US7538171B2 (en) Fluorine-containing copolymer
JP7193747B2 (ja) フルオロポリマーの製造方法
WO2020226178A1 (ja) フルオロポリマーの製造方法及びフルオロポリマー
WO2019156175A1 (ja) フルオロポリマーの製造方法、重合用界面活性剤、界面活性剤の使用及び組成物
WO2023277139A1 (ja) フルオロポリマー組成物の製造方法およびフルオロポリマー組成物
US20090247691A1 (en) Fluorine-containing copolymer
JP7256409B2 (ja) 含フッ素重合体及びその製造方法
JP7231863B1 (ja) 共重合体及び成形品
US20230416421A1 (en) Production method of fluoropolymer aqueous dispersion
WO2023182229A1 (ja) フルオロポリマーの製造方法および組成物

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22872640

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 202280061362.4

Country of ref document: CN

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2022872640

Country of ref document: EP

Effective date: 20240429