WO2023046070A1 - 太阳能电池的绒面结构及其制备方法 - Google Patents

太阳能电池的绒面结构及其制备方法 Download PDF

Info

Publication number
WO2023046070A1
WO2023046070A1 PCT/CN2022/120880 CN2022120880W WO2023046070A1 WO 2023046070 A1 WO2023046070 A1 WO 2023046070A1 CN 2022120880 W CN2022120880 W CN 2022120880W WO 2023046070 A1 WO2023046070 A1 WO 2023046070A1
Authority
WO
WIPO (PCT)
Prior art keywords
contact area
pyramid
suede
textured
mask
Prior art date
Application number
PCT/CN2022/120880
Other languages
English (en)
French (fr)
Inventor
陈红
李汉诚
高纪凡
陈奕峰
Original Assignee
天合光能股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 天合光能股份有限公司 filed Critical 天合光能股份有限公司
Priority to EP22872114.8A priority Critical patent/EP4318600A1/en
Publication of WO2023046070A1 publication Critical patent/WO2023046070A1/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/02Elements
    • C30B29/06Silicon
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B33/00After-treatment of single crystals or homogeneous polycrystalline material with defined structure
    • C30B33/08Etching
    • C30B33/10Etching in solutions or melts
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0236Special surface textures
    • H01L31/02363Special surface textures of the semiconductor body itself, e.g. textured active layers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0236Special surface textures
    • H01L31/02366Special surface textures of the substrate or of a layer on the substrate, e.g. textured ITO/glass substrate or superstrate, textured polymer layer on glass substrate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/06Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers
    • H01L31/068Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers the potential barriers being only of the PN homojunction type, e.g. bulk silicon PN homojunction solar cells or thin film polycrystalline silicon PN homojunction solar cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • H01L31/1804Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof comprising only elements of Group IV of the Periodic Table
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/547Monocrystalline silicon PV cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the invention relates to the technical field of solar cells, in particular to a textured structure of a solar cell and a preparation method thereof.
  • a solar cell is a semiconductor component that can convert sunlight energy into electrical energy.
  • Monocrystalline silicon solar cells have the highest conversion efficiency among silicon series solar cells, and the technology is the most mature.
  • Monocrystalline silicon is a rod-shaped single crystal silicon grown from amorphous silicon or polycrystalline silicon by Czochralski method or suspension zone melting method, and its purity is required to reach more than 99.9999%.
  • the preparation process of monocrystalline silicon solar cells usually includes: (1) in alkaline solution, through anisotropic etching of silicon wafers, to obtain the surface morphology of pyramid structure; (2) using high temperature phosphorus diffusion to form PN junction; (3) ) Using SF 4 and O 2 as raw materials, carry out plasma etching on the edge of the silicon wafer after diffusion to prevent battery short circuit; (4) remove the phosphosilicate glass on the surface of the silicon wafer with HF; (5) adopt PECVD method, Depositing anti-reflection passivation film on the surface; (6) printing back electrode, back electric field and positive electrode; (7) sintering.
  • the surface texturing technology of monocrystalline silicon solar cells is an important step in the preparation process of modern solar cells.
  • the pyramid-shaped line-surface structure is made on the surface of solar cells by chemical corrosion, which can greatly reduce the reflectivity of the surface of solar cells and improve the photoluminescence.
  • Carrier density so as to achieve the purpose of improving the energy conversion efficiency of the battery and reducing the production cost.
  • CN102148292B discloses a method for preparing a textured surface of a solar cell.
  • the textured surface of a solar cell is formed on the surface of the light-receiving side of a silicon wafer of a solar cell.
  • the preparation method adopts the method of nanoimprinting.
  • the mask material on the pre-prepared pattern template is transferred to the surface of the solar cell silicon wafer by imprinting to form a mask layer for the texturing process, which can then be made by wet etching or plasma etching. velvet.
  • CN112768555A discloses a method for making a solar cell suede surface; comprising: a pre-cleaning step; placing the solar cell sheet in a mixed solution for surface cleaning; a damage removal step; Including the first cleaning step; fast large suede step; large suede peak processing step; also includes a second cleaning step between the large suede peak treatment step and the growing small suede step; growing small suede Step: After the step of growing small suede, a third cleaning step is included; after the third cleaning step, a pre-dehydration step is included; after the pre-dehydration step, a heating and drying step is included.
  • CN103441182A discloses a suede treatment method of a solar cell and a solar cell.
  • the method for treating the suede surface includes: using a mixed aqueous solution of HCl and HF to perform preliminary cleaning on the suede surface of the solar cell after texturing, in the mixed aqueous solution of HCl and HF, the mass fraction of HCl is 3% to 7%, and the mass fraction of HF is The mass fraction is 1% to 2%; use the mixed aqueous solution of HNO 3 and HF to etch the suede surface after preliminary cleaning.
  • the mass fraction of HNO 3 is 20% to 50%, and the HF The mass fraction is 0.5% to 5%; use the mixed aqueous solution of H 2 SO 4 and H 2 O 2 to oxidize the etched suede to form an oxide layer, and the mixed aqueous solution of H 2 SO 4 and H 2 O 2 , the mass fraction of H 2 SO 4 is 60% to 80%, and the mass fraction of H 2 O 2 is 5% to 12%.
  • the main function of the suede is light trapping, but after printing the metal grid lines, the suede will be covered, and the suede in this area will not be able to play a role in light trapping.
  • the specific surface area of the textured surface structure is greatly improved compared with the non-textured structure, which increases the contact area between the slurry metal and the PN junction on the textured surface, thereby increasing the metal compounding, which brings negative effects.
  • the object of the present invention is to provide a textured structure of a solar cell and a preparation method thereof.
  • the textured structure of a solar cell provided by the invention the textured surface of the metal grid line coverage area (contact area)
  • the suede surface in the non-covered area (non-contact area) of the surface and the metal grid line forms a suede structure with different microscopic morphology.
  • the contact area with the PN junction on the suede surface reduces the metal recombination by more than 20%, and improves the conversion efficiency.
  • the present invention provides a textured structure of a solar cell, the textured structure includes a textured surface, the textured surface includes a contact area and a non-contact area, and the contact area is provided with a metal grid line, so The specific surface area of the contact area is smaller than the specific surface area of the non-contact area.
  • the suede structure of the solar cell forms the suede structure of different microscopic appearances in the suede surface of the metal grid wire coverage area (contact area) and the suede surface of the metal grid wire non-covered area (non-contact area), which is very
  • the specific surface area of the textured structure in the covered area is much larger than that of the textured structure in the covered area, which reduces the contact area between the slurry metal and the PN junction on the textured surface, reduces metal recombination by more than 20%, and improves conversion efficiency.
  • the specific surface area in the present invention refers to the surface area of the suede structure per unit area.
  • the textured surface is sequentially provided with a PN junction and a passivation layer, and the metal gate line is located on the surface of the passivation layer corresponding to the contact region.
  • the texture reflectance of the contact area is greater than that of the non-contact area.
  • the suede reflectance of the contact area is 8% to 46%, such as 10%, 12%, 14%, 16%, 18%, 20%, 22%, 24%, 26%, 28%, 30%, 32%, 34%, 36%, 38%, 40%, 42%, 44% or 46%, but not limited to the listed values, other unlisted values within the range are also applicable .
  • the suede reflectance of the non-contact area is 5% to 14%, such as 5%, 6%, 7%, 8%, 9%, 10%, 11%, 12%, 13% or 14%. %, but not limited to the listed numerical values, other unlisted numerical values within this numerical range are also applicable.
  • the surface of the non-contact area is an array of irregular structures, and the surface of the contact area is a flat suede.
  • the suede surface in the contact area is planarized in different degrees and with different shapes, which can effectively reduce the contact area between the metal and the suede surface, reduce metal recombination, and improve the conversion efficiency of the battery.
  • the flat suede in the present invention is a relative concept compared to the irregular structure array, which means that the surface of the contact area is flatter than that of the non-contact area, and it can be "flat" in an absolute sense, or it can have Slower undulating structure.
  • the irregular structure array includes pyramidal protrusions or inverted pyramidal depressions all over the place, and the pyramidal protrusions or inverted pyramidal depressions have different sizes and are randomly distributed.
  • the contact area is a sunken flat suede.
  • the present invention performs sinking treatment on the textured surface of the contact area, effectively reduces the carrier transmission path while reducing the contact area between the metal grid line and the textured surface, and improves the conversion efficiency of the battery.
  • the non-contact area is an array of irregular structures, and the contact area is an array of regular structures.
  • the invention regularizes the suede surface in the contact area, which can reduce the contact area between the metal and the suede surface, and at the same time, the metal grid lines are parallel to the regular pyramid structure array, and the metal grid lines can be regularly laid into the grooves between the pyramid structures Among them, the transmission path of carriers is reduced, the broken gate is reduced, the contact resistance is reduced, and the conversion efficiency is improved.
  • the irregular structure array includes pyramid protrusions or inverted pyramid depressions all over the place, and the pyramid protrusions or the inverted pyramid depressions have different sizes and are randomly distributed.
  • the regular structure array includes at least two parallel rows of strip-shaped protrusion structures or strip-shaped groove structures.
  • both the non-contact area and the contact area are arrays of irregular structures.
  • the irregular structure array of the contact area includes first pyramid protrusions all over
  • the irregular structure array of the non-contact area includes second pyramid protrusions all over
  • the height of the first pyramid protrusions is less than the height of the second pyramid protrusion.
  • the irregular structure array of the contact area includes first inverted pyramid depressions throughout
  • the irregular structure array of the non-contact area includes second inverted pyramid depressions throughout
  • the depth of the first inverted pyramid depressions is less than the depth of the second inverted pyramid depression.
  • the irregular structure array of the contact area includes third pyramid protrusions all over
  • the irregular structure array of the non-contact area includes the third inverted pyramid depression all over
  • the height of the third pyramid protrusion is less than the depth of the third inverted pyramid depression.
  • the irregular structure array of the contact area includes fourth inverted pyramid depressions throughout
  • the irregular structure array of the non-contact area includes fourth pyramid protrusions throughout
  • the depth of the fourth inverted pyramid depressions is Less than the depth of the fourth pyramid protrusion.
  • the surface of the contact area forms wavy protrusions all over, and the surface of the non-contact area forms irregular pyramidal protrusions, and the height of the wavy protrusions is smaller than that of the pyramids. Raised height.
  • the core invention of the present invention is to form a textured structure with different microscopic shapes in the contact area and the non-contact area, so as to reduce the contact area between the metal paste and the textured structure in the contact area, so it can be understood that Notably, the present invention has no special requirements and limitations on the specific shape and distribution of the raised structures and the recessed structures in the contact area and the non-contact area.
  • the present invention provides a method for preparing a textured structure of a solar cell as described in the first aspect, including Texturing Method 1 or Texturing Method 2, wherein,
  • the first method of texturing Texturing and depositing on the surface of the silicon wafer to form a mask, removing the mask in some areas, forming a slot, preparing a plane or micro-textured surface at the slot to form a contact area, and removing all the mask , the mask shielding area forms a non-contact area to obtain the suede structure;
  • the second texturing method performing texturing on the surface of the silicon wafer once, performing melting carving on the area where the metal grid line is located to form a contact area, covering the contact area with a mask, and performing secondary texturing on the non-shielded area to form a non-contact area, All masks are removed to obtain the suede structure.
  • the deposition method includes PECVD.
  • the mask comprises silicon nitride.
  • the groove width is 10 ⁇ m to 130 ⁇ m, for example, 10 ⁇ m, 20 ⁇ m, 30 ⁇ m, 40 ⁇ m, 50 ⁇ m, 60 ⁇ m, 70 ⁇ m, 80 ⁇ m, 90 ⁇ m, 100 ⁇ m, 110 ⁇ m, 120 ⁇ m or 130 ⁇ m, but It is not limited to the listed values, and other unlisted values within the range of values are also applicable.
  • the corrosion solution includes acid solution or alkaline solution.
  • the acid solution includes a mixed solution of HF and HNO 3 .
  • the lye includes KOH solution or NaOH solution.
  • the entire mask is removed using HF solution.
  • the second method of texturing specifically includes the following steps:
  • step (I) a laser is used to melt and engrave the structure array.
  • step (II) the silicon oxide layer is removed by acid washing.
  • the acid solution used in the pickling process includes HF.
  • the printing width of the mask is 10 ⁇ m to 130 ⁇ m, such as 10 ⁇ m, 20 ⁇ m, 30 ⁇ m, 40 ⁇ m, 50 ⁇ m, 60 ⁇ m, 70 ⁇ m, 80 ⁇ m, 90 ⁇ m, 100 ⁇ m, 110 ⁇ m, 120 ⁇ m or 130 ⁇ m , but not limited to the listed values, other unlisted values within this range are also applicable.
  • the material of the mask includes paraffin.
  • the invention provides a textured structure of a solar cell, which forms textured structures with different microscopic shapes on the textured surface of the metal grid line coverage area (contact area) and the metal grid line non-covered area (non-contact area).
  • the specific surface area of the regional textured structure is much larger than the specific surface area of the covered regional textured structure, which reduces the contact area between the slurry metal and the PN junction on the textured surface, reduces metal recombination by more than 20%, and improves conversion efficiency.
  • Fig. 1 is the schematic diagram of the suede structure that the embodiment of the present invention 1 provides;
  • Fig. 2 is the schematic diagram of the suede structure that the embodiment of the present invention 2 provides;
  • Fig. 3 is the schematic diagram of the suede structure that the embodiment of the present invention 3 provides;
  • Fig. 4 is the schematic diagram of the suede structure that the embodiment of the present invention 4 provides;
  • Figure 5 is a schematic diagram of the suede structure provided by Embodiment 5 of the present invention.
  • Figure 6 is a schematic diagram of the suede structure provided by Embodiment 6 of the present invention.
  • Figure 7 is a schematic diagram of the suede structure provided by Embodiment 7 of the present invention.
  • Figure 8 is a schematic diagram of the suede structure provided by Embodiment 8 of the present invention.
  • Figure 9 is a schematic diagram of the suede structure provided by Embodiment 9 of the present invention.
  • Figure 10 is a schematic diagram of the suede structure provided by Embodiment 10 of the present invention.
  • the present embodiment provides a textured structure of a solar cell, the textured structure includes a textured surface, and the textured surface is sequentially stacked with a PN junction 12 and a passivation layer 13, and the textured surface includes a contact
  • the area 2 and the non-contact area 1, and the contact area 2 are provided with metal gate lines 3 .
  • the surface of the non-contact area 1 is an irregular array of pyramid structures, including pyramid protrusions all over the place.
  • the pyramid protrusions are of different sizes and randomly distributed.
  • the surface of the contact area 2 is flat suede.
  • the surface of the non-contact area 1 of the suede is distributed with a plurality of pyramid protrusions, and each pyramid protrusion protrudes outwards with respect to the surface of the non-contact area 1 of the suede.
  • the size and distribution position of the pyramid protrusions are random, thus forming an irregular pyramid structure array, and each pyramid protrusion is sequentially stacked with a PN junction 12 and a passivation layer 13 .
  • the surface of the contact area 2 of the texture is a flat texture, and the flat texture is sequentially provided with a PN junction 12 and a passivation layer 13 , and the flat texture is provided with a metal grid line 3 .
  • Example 1 the reflectance of the suede in the contact area 2 is 38%, and the reflectance of the suede in the non-contact area 1 is 8%.
  • this embodiment provides a textured structure of a solar cell, the textured structure includes a textured surface, and the textured surface is sequentially stacked with a PN junction 12 and a passivation layer 13, and the textured surface includes a contact The area 2 and the non-contact area 1, and the contact area 2 are provided with metal gate lines 3 .
  • the surface of the non-contact area 1 is an irregular array of pyramid structures, including inverted pyramid depressions all over the place. The sizes of the inverted pyramid depressions are different and the positions are randomly distributed.
  • the surface of the contact area 2 is a flat suede surface.
  • the surface of the non-contact area 1 of the suede is distributed with a plurality of inverted pyramid depressions, and each inverted pyramid depression is inwardly recessed relative to the surface of the non-contact area 1 of the suede surface, and the plurality of inverted pyramid depressions
  • the size and distribution position of the pyramid depressions are random, thus forming an irregular pyramid structure array, and each inverted pyramid depression is successively provided with a PN junction 12 and a passivation layer 13 .
  • the surface of the contact area 2 of the texture is a flat texture, and the flat texture is sequentially provided with a PN junction 12 and a passivation layer 13 , and the flat texture is provided with a metal grid line 3 .
  • Example 2 the reflectance of the suede in the contact area 2 is 38%, and the reflectance of the suede in the non-contact area 1 is 6%.
  • the present embodiment provides a textured structure of a solar cell, the textured structure includes a textured surface, and the textured surface is sequentially stacked with a PN junction 12 and a passivation layer 13, and the textured surface includes a contact The area 2 and the non-contact area 1, and the contact area 2 are provided with metal gate lines 3 .
  • the surface of the non-contact area 1 is an irregular array of pyramid structures, including pyramid protrusions all over the place.
  • the pyramid protrusions are of different sizes and randomly distributed.
  • the surface of the contact area 2 is a sunken flat suede.
  • the surface of the non-contact area 1 of the suede is distributed with a plurality of pyramid protrusions, and each pyramid protrusion protrudes outwards with respect to the surface of the non-contact area 1 of the suede, and the plurality of pyramids
  • the size and distribution position of the protrusions are random, thus forming an irregular pyramid structure array, and each pyramid protrusion is sequentially stacked with a PN junction 12 and a passivation layer 13 .
  • the surface of the contact area 2 of the suede is a sunken flat suede, that is, the surface of the contact area 2 of the suede is a flat suede, and the surface of the non-contact area 1 of the suede is sunken inwardly, and the flat suede of the depression
  • a PN junction 12 and a passivation layer 13 are sequentially stacked on the top surface, and a metal gate line 3 is provided on the depressed flat suede surface.
  • Example 3 the reflectance of the suede in the contact area 2 is 38%, and the reflectance of the suede in the non-contact area 1 is 8%.
  • this embodiment provides a textured structure of a solar cell, the textured structure includes a textured surface, and the textured surface is sequentially stacked with a PN junction 12 and a passivation layer 13, and the textured surface includes a contact The area 2 and the non-contact area 1, and the contact area 2 are provided with metal gate lines 3 .
  • the surface of the non-contact area 1 is an irregular pyramid structure array, including inverted pyramid depressions all over the place.
  • the inverted pyramid depressions are of different sizes and randomly distributed.
  • the surface of the contact area 2 is a sunken flat suede.
  • the surface of the non-contact area 1 of the suede is distributed with a plurality of inverted pyramid depressions, and each inverted pyramid depression is inwardly recessed relative to the surface of the non-contact area 1 of the suede, and the plurality of inverted pyramids
  • the size and distribution position of the pyramid depressions are random, thus forming an irregular pyramid structure array, and each inverted pyramid depression is successively provided with a PN junction 12 and a passivation layer 13 .
  • the surface of the contact area 2 of the suede is a sunken flat suede, that is, the surface of the contact area 2 of the suede is a flat suede, and the surface of the non-contact area 1 of the suede is sunken inwardly, and the flat suede of the depression
  • a PN junction 12 and a passivation layer 13 are sequentially stacked on the top surface, and a metal gate line 3 is provided on the depressed flat suede surface.
  • Example 4 the reflectance of the textured surface in the contact area 2 is 36%, and the reflectance of the textured surface in the non-contact area 1 is 5%.
  • this embodiment provides a textured structure of a solar cell, the textured structure includes a textured surface, and the textured surface is sequentially stacked with a PN junction 12 and a passivation layer 13, and the textured surface includes a contact The area 2 and the non-contact area 1, and the contact area 2 are provided with metal gate lines 3 .
  • the non-contact area 1 is an irregular array of pyramid structures, including pyramid protrusions all over the place.
  • the pyramid protrusions are of different sizes and randomly distributed.
  • the contact area 2 is a regular structure array, including multiple rows of parallel strip-shaped protrusion structures, and the height of the strip-shaped protrusion structures in the contact area 2 is greater than the height of the pyramid protrusions in the non-contact area 1 .
  • the surface of the non-contact area 1 of the suede is distributed with a plurality of pyramid protrusions, and each pyramid protrusion protrudes outwards with respect to the surface of the non-contact area 1 of the suede.
  • the size and distribution position of the pyramid protrusions are random, thus forming an irregular pyramid structure array, and each pyramid protrusion is sequentially stacked with a PN junction 12 and a passivation layer 13 .
  • the surface of the suede contact area 2 is provided with multiple rows of strip-shaped convex structures, and the multiple rows of strip-shaped convex structures are parallel to each other, and each strip-shaped convex structure is convex outward relative to the surface of the suede contact area 2 and each strip-shaped convex structure protrudes outward relative to the surface of the suede contact area 2.
  • the height of each pyramid protrusion protrudes outward relative to the surface of the non-contact area 1 of the suede.
  • each strip-shaped protrusion structure is sequentially provided with a PN junction 12 and a passivation layer 13 , and the contact area 2 of the textured surface is provided with a metal grid line 3 .
  • Example 5 the reflectance of the textured surface in the contact area 2 is 20%, and the reflectance of the textured surface in the non-contact area 1 is 7%.
  • this embodiment provides a textured structure of a solar cell, the textured structure includes a textured surface, and the textured surface is sequentially stacked with a PN junction 12 and a passivation layer 13, and the textured surface includes a contact The area 2 and the non-contact area 1, and the contact area 2 are provided with metal gate lines 3 .
  • the non-contact area 1 is an irregular array of pyramid structures, including pyramid protrusions all over the place.
  • the pyramid protrusions are of different sizes and randomly distributed.
  • the contact area 2 is a regular structure array, including multiple rows of parallel strip-shaped protrusion structures, and the height of the strip-shaped protrusion structures in the contact area 2 is smaller than the height of the pyramid protrusions in the non-contact area 1 .
  • the surface of the non-contact area 1 of the suede is distributed with a plurality of pyramid protrusions, and each pyramid protrusion protrudes outwards with respect to the surface of the non-contact area 1 of the suede.
  • the size and distribution position of the pyramid protrusions are random, thus forming an irregular pyramid structure array, and each pyramid protrusion is sequentially stacked with a PN junction 12 and a passivation layer 13 .
  • the surface of the suede contact area 2 is provided with multiple rows of strip-shaped convex structures, and the multiple rows of strip-shaped convex structures are parallel to each other, and each strip-shaped convex structure protrudes outward relative to the surface of the suede contact area 2 , and the height of each strip-shaped protrusion structure protruding outward relative to the surface of the contact area 2 of the suede is lower than the height of each pyramid protrusion protruding outward relative to the surface of the non-contact area 1 of the suede, more Rows of strip-shaped protrusion structures parallel to each other form a regular structure array, and each strip-shaped protrusion structure is sequentially provided with a PN junction 12 and a passivation layer 13 , and the contact area 2 of the textured surface is provided with a metal grid line 3 .
  • Example 6 the reflectance of the textured surface in the contact area 2 is 30%, and the reflectance of the textured surface in the non-contact area 1 is 7%.
  • the present embodiment provides a textured structure of a solar cell, the textured structure includes a textured surface, and the textured surface is sequentially provided with a PN junction 12 and a passivation layer 13, and the textured surface includes a contact The area 2 and the non-contact area 1, and the contact area 2 are provided with metal gate lines 3 .
  • Both the non-contact area 1 and the contact area 2 are irregular pyramid structure arrays.
  • the pyramid structure array of contact area 2 comprises the first pyramid protrusion 4 all over
  • the pyramid structure array of non-contact area 1 comprises the second pyramid protrusion 5 all over
  • the height of the first pyramid protrusion 4 is less than the second pyramid protrusion 5 the height of.
  • each second pyramid protrusion 5 faces toward the surface of the non-contact area 1 of the suede.
  • the size and distribution position of the plurality of second pyramid protrusions 5 are random, thereby forming an irregular pyramid structure array.
  • Each second pyramid protrusion 5 is sequentially stacked with a PN junction 12 and a passivation layer 13 .
  • the surface of the contact zone 2 of the suede surface is distributed with a plurality of first pyramid protrusions 4, and each first pyramid protrusion 4 protrudes outwards with respect to the surface of the contact zone 2 of the suede surface, and the plurality of first pyramid protrusions 4
  • the size and distribution position of each are random, thereby forming an irregular pyramid structure array.
  • Each first pyramid protrusion 4 is sequentially stacked with a PN junction 12 and a passivation layer 13, and the contact area 2 of the suede surface is provided with a metal grid line 3 .
  • each first pyramid protrusion 4 protruding outward relative to the surface of the contact area 2 of the suede is lower than the height of each second pyramid protrusion 5 protruding outward relative to the surface of the non-contact area 1 of the suede .
  • Example 7 the reflectance of the textured surface in the contact area 2 is 25%, and the reflectance of the textured surface in the non-contact area 1 is 7%.
  • this embodiment provides a textured structure of a solar cell, the textured structure includes a textured surface, and the textured surface is sequentially provided with a PN junction 12 and a passivation layer 13, and the textured surface includes a contact The area 2 and the non-contact area 1, and the contact area 2 are provided with metal gate lines 3 .
  • Both the non-contact area 1 and the contact area 2 are irregular pyramid structure arrays.
  • the pyramid structure array of contact area 2 comprises the first inverted pyramid depression 6 that spreads over, and the pyramid structure array of non-contact area 1 comprises the second inverted pyramid depression 7 that spreads over, and the depth of the first inverted pyramid depression 6 is less than the second inverted pyramid depression 7 depth.
  • the surface of the non-contact area 1 of the suede is distributed with a plurality of second inverted pyramid depressions 7, and each second inverted pyramid depression 7 faces toward the surface of the non-contact area 1 of the suede.
  • Inner concave, the size and distribution of multiple second inverted pyramid depressions 7 are random, thereby forming an irregular pyramid structure array, and each second inverted pyramid depression 7 is sequentially provided with a PN junction 12 and a passivation layer 13 .
  • the surface of the contact area 2 of the suede surface is distributed with a plurality of first inverted pyramid depressions 6, each of which is concave inwards with respect to the surface of the contact area 2 of the suede surface, and the plurality of first inverted pyramid depressions 6
  • the size and the distribution position of each are random, thereby forming an irregular pyramid structure array, and each first inverted pyramid depression 6 is sequentially stacked with a PN junction 12 and a passivation layer 13, and the contact area 2 of the suede surface is provided with a metal grid line 3 .
  • the inward recess depth of each first inverted pyramid depression 6 relative to the surface of the suede contact area 2 is shallower than the inward recess depth of each second inverted pyramid depression 7 relative to the inward surface of the suede non-contact area 1 .
  • Example 8 the reflectance of the textured surface in the contact area 2 is 15%, and the reflectance of the textured surface in the non-contact area 1 is 5%.
  • this embodiment provides a textured structure of a solar cell, the textured structure includes a textured surface, and the textured surface is sequentially provided with a PN junction 12 and a passivation layer 13, and the textured surface includes a contact The area 2 and the non-contact area 1, and the contact area 2 are provided with metal gate lines 3 .
  • the pyramid structure array of contact zone 2 comprises the 3rd pyramid protrusion 8 that spreads over, and the pyramid structure array of non-contact zone 1 comprises the 3rd inverted pyramid depression 9 that spreads over, and the height of the 3rd pyramid protrusion 8 is less than the 3rd inverted pyramid depression 9 depth.
  • the surface of the non-contact area 1 of the suede is distributed with a plurality of third inverted pyramid depressions 9, and each of the third inverted pyramid depressions 9 faces toward the surface of the non-contact area 1 of the suede.
  • the size and distribution of multiple third inverted pyramid depressions 9 are random, forming an irregular pyramid structure array.
  • Each third inverted pyramid depression 9 is sequentially stacked with a PN junction 12 and a passivation layer 13 .
  • the surface of the contact area 2 of the suede surface is distributed with a plurality of third pyramid protrusions 8, each of the third pyramid protrusions 8 protrudes outwards with respect to the surface of the contact area 2 of the suede surface, and the plurality of third pyramid protrusions 8
  • the size and the distribution position of each are random, thereby forming an irregular pyramid structure array, and each third pyramid protrusion 8 is sequentially stacked with a PN junction 12 and a passivation layer 13, and the contact area 2 of the suede surface is provided with a metal grid line 3 .
  • each third pyramid protrusion 8 protruding outward relative to the surface of the contact area 2 of the suede is smaller than the depth of the inward recess of each third inverted pyramid depression 9 relative to the surface of the non-contact area 1 of the suede.
  • Example 9 the reflectance of the textured surface in the contact area 2 is 25%, and the reflectance of the textured surface in the non-contact area 1 is 5%.
  • this embodiment provides a textured structure of a solar cell, the textured structure includes a textured surface, and the textured surface is sequentially stacked with a PN junction 12 and a passivation layer 13, and the textured surface includes a contact The area 2 and the non-contact area 1, and the contact area 2 are provided with metal gate lines 3 .
  • Wave-shaped protrusions 10 are formed all over the surface of the contact area 2 , irregular pyramidal protrusions 11 are formed on the surface of the non-contact area 1 , and the height of the wave-shaped protrusions 10 is smaller than that of the pyramidal protrusions 11 .
  • the surface of the non-contact area 1 of the suede is distributed with a plurality of pyramid protrusions 11, and each pyramid protrusion 11 protrudes outwards relative to the surface of the non-contact area 1 of the suede.
  • the size and distribution position of the plurality of pyramid protrusions 11 are random, thereby forming an irregular pyramid structure array, and each pyramid protrusion 11 is sequentially provided with a PN junction 12 and a passivation layer 13 .
  • the surface of the suede contact area 2 is provided with wavy protrusions 10 , which protrude outward relative to the surface of the suede contact area 2 , and the suede contact area 2 is provided with metal grid lines 3 .
  • the height of the wavy protrusions 10 protruding outward relative to the surface of the suede contact area 2 is lower than the height of each pyramidal protrusion 11 protruding outward relative to the surface of the non-contact area 1 of the suede.
  • Example 10 the reflectance of the textured surface in the contact area 2 is 35%, and the reflectance of the textured surface in the non-contact area 1 is 8%.
  • the suede structure includes a suede surface, and the suede surface is sequentially stacked with a PN junction 12 and a passivation layer 13.
  • the suede surface includes a contact area 2 and a non-contact area 1, and the contact area 2 is provided with There are metal grid lines 3 .
  • the irregular structure array of the contact area includes fourth inverted pyramid depressions all over, the irregular structure array of the non-contact area includes fourth pyramid protrusions everywhere, and the depth of the fourth inverted pyramid depressions is smaller than the depth of the fourth pyramid protrusions.
  • the surface of the non-contact area 1 of the suede is distributed with a plurality of fourth pyramid protrusions, each of the fourth pyramid protrusions is opposite to the surface of the non-contact area 1 of the suede.
  • the surface protrudes outward, and the size and distribution position of multiple fourth pyramid protrusions are random, thereby forming an irregular pyramid structure array.
  • Each fourth pyramid protrusion is sequentially stacked with a PN junction 12 and a passivation layer 13 .
  • the surface of the contact area 2 of the suede surface is distributed with a plurality of fourth inverted pyramid depressions, each of which is concave inwardly relative to the surface of the contact area 2 of the suede surface, and the size of the plurality of fourth inverted pyramid depressions and The distribution positions are random, thereby forming an irregular pyramid structure array.
  • Each fourth inverted pyramid depression is sequentially provided with a PN junction 12 and a passivation layer 13 , and the textured contact area 2 is provided with a metal grid line 3 .
  • the inward recess depth of each fourth inverted pyramid depression relative to the surface of the suede contact area 2 is smaller than the outward protrusion height of each fourth pyramid protrusion relative to the suede non-contact area 1 surface.
  • This embodiment provides a method for preparing the suede structure described in Embodiment 1, and the preparation method specifically includes the following steps:
  • PECVD plasma enhanced chemical vapor deposition
  • This embodiment provides a method for preparing the suede structure described in Embodiment 1, and the preparation method specifically includes the following steps:
  • the textured surface of the metal grid line coverage area (contact area) and the metal grid line non-covered area (non-contact area) form different microscopic textures.
  • the specific surface area of the textured structure in the non-covered area is much larger than that of the covered area, which reduces the contact area between the slurry metal and the PN junction on the textured surface, reduces metal recombination by more than 20%, and improves conversion efficiency.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Power Engineering (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Photovoltaic Devices (AREA)

Abstract

本发明提供了一种太阳能电池的绒面结构及其制备方法,所述绒面结构包括绒面,所述绒面表面包括接触区和非接触区,所述接触区设置有金属栅线,所述接触区的比表面积小于所述非接触区的比表面积。本发明提供的太阳能电池的绒面结构及其制备方法,在金属栅线覆盖区域的绒面和金属栅线非覆盖区域的绒面形成不同微观形貌的绒面结构,非覆盖区域绒面结构的比表面积远大于覆盖区域绒面结构的比表面积,降低浆料金属与绒面上的PN结的接触面积,降低金属复合20%以上,提升转化效率。

Description

太阳能电池的绒面结构及其制备方法 技术领域
本发明涉及太阳能电池技术领域,具体地,涉及一种太阳能电池的绒面结构及其制备方法。
背景技术
太阳能电池为一种半导体组件,它能够将太阳光能转化为电能,单晶硅太阳能电池在硅系列太阳能电池中的转化效率最高,技术最为成熟。单晶硅是将无定型硅或多晶硅通过直拉法或悬浮区熔法从熔体中生长出的棒状单晶硅,纯度要求达到99.9999%以上。单晶硅太阳能电池的制备工艺通常包括:(1)在碱性溶液中,通过各向异性腐蚀硅片,得到金字塔结构的表面形貌;(2)利用高温磷扩散,形成PN结;(3)采用SF 4和O 2为原料,对扩散后的硅片边缘进行等离子刻蚀,防止电池短路;(4)用HF去除硅片表面的磷硅玻璃;(5)采用PECVD方法,在硅片表面沉积减反射钝化薄膜;(6)印刷背电极、背电场以及正电极;(7)烧结。
单晶硅太阳能电池的表面制绒技术是现代太阳能电池制备工艺中的重要一步,通过化学腐蚀的方法在太阳能电池表面制作金字塔状的线面结构,可以大大降低太阳能电池表面的反射率,提高光生载流子密度,从而达到提高电池能量转化效率,降低生产成本的目的。
CN102148292B公开了一种太阳能电池绒面的制备方法,所述太阳能电池绒面形成于太阳能电池硅片的受光面一侧的表面,所述制备方法采用纳米压印的方式,在制绒工艺开始前,将预先制备好的图案模板上的掩模材料以压印的方式转移到太阳能电池硅片表面,形成制绒工艺的掩模层,随后可使 用湿法刻蚀或等离子刻蚀的方法进行制绒。
CN112768555A公开了一种太阳能电池绒面的制作方法;包括:预清洗步骤;将太阳能电池片置于混合溶液中进行表面清洗;去损伤步骤;所述去损伤步骤与快速大绒面步骤之间还包括第一次清洗步骤;快速大绒面步骤;大绒面尖顶处理步骤;所述大绒面尖顶处理步骤与所述生长小绒面步骤之间还包括第二次清洗步骤;生长小绒面步骤;所述生长小绒面步骤之后包括第三次清洗步骤;所述第三次清洗步骤之后包括预脱水步骤;所述预脱水步骤之后包括加热烘干步骤。
CN103441182A公开了太阳能电池的绒面处理方法和太阳能电池。所述绒面处理方法,包括:采用HCl和HF的混合水溶液对制绒后太阳能电池的绒面进行初步清洗,HCl和HF的混合水溶液中,HCl的质量分数为3%~7%,HF的质量分数为1%~2%;采用HNO 3和HF的混合水溶液对初步清洗后的绒面进行刻蚀,HNO 3和HF的混合水溶液中,HNO 3的质量分数为20%~50%,HF的质量分数为0.5%~5%;采用H 2SO 4和H 2O 2的混合水溶液对刻蚀后的绒面进行氧化,形成氧化层,H 2SO 4和H 2O 2的混合水溶液中,H 2SO 4的质量分数为60%~80%,H 2O 2的质量分数为5%~12%。
绒面的主要作用是陷光作用,但是印刷上金属栅线后,将遮挡绒面,该区域的绒面在陷光方面就无法发挥作用了。表面是绒面结构较非绒面结构的比表面积要大大提升,增加了浆料金属与绒面上的PN结的接触面积,从而加大了金属复合,反而带来了负面的效果。
发明内容
针对现有技术存在的不足,本发明的目的在于提供一种太阳能电池的绒面结构及其制备方法,本发明提供的太阳能电池的绒面结构,在金属栅线覆盖区域(接触区)的绒面和金属栅线非覆盖区域(非接触区)的绒面形成不 同微观形貌的绒面结构,非覆盖区域绒面结构的比表面积远大于覆盖区域绒面结构的比表面积,降低浆料金属与绒面上的PN结的接触面积,降低金属复合20%以上,提升转化效率。
为达此目的,本发明采用以下技术方案:
第一方面,本发明提供了一种太阳能电池的绒面结构,所述绒面结构包括绒面,所述绒面表面包括接触区和非接触区,所述接触区设置有金属栅线,所述接触区的比表面积小于非接触区的比表面积。
本发明提供的太阳能电池的绒面结构,在金属栅线覆盖区域(接触区)的绒面和金属栅线非覆盖区域(非接触区)的绒面形成不同微观形貌的绒面结构,非覆盖区域绒面结构的比表面积远大于覆盖区域绒面结构的比表面积,降低浆料金属与绒面上的PN结的接触面积,降低金属复合20%以上,提升转化效率。
需要说明的是,本发明所述比表面积是指单位面积上的绒面结构的表面积。
作为本发明一种可选的技术方案,所述绒面表面依次层叠设置有PN结和钝化层,所述金属栅线位于所述接触区对应的所述钝化层表面。
优选地,所述接触区的绒面反射率大于非接触区的绒面反射率。
可选地,所述接触区的绒面反射率为8%~46%,例如可以是10%、12%、14%、16%、18%、20%、22%、24%、26%、28%、30%、32%、34%、36%、38%、40%、42%、44%或46%,但并不仅限于所列举的数值,该数值范围内其他未列举的数值同样适用。
优选地,所述非接触区的绒面反射率5%~14%,例如可以是5%、6%、7%、8%、9%、10%、11%、12%、13%或14%,但并不仅限于所列举的数值,该数值范围内其他未列举的数值同样适用。
作为本发明一种可选的技术方案,所述非接触区表面为不规则结构阵 列,所述接触区表面为平坦绒面。
本发明对接触区绒面进行了不同程度不同形貌的平坦化处理,可有效降低金属与绒面的接触面积,降低金属复合,提升电池转化效率。需要说明的是,本发明中的平坦绒面是相较于不规则结构阵列的相对概念,是指接触区表面相较于非接触区更平坦,可以是绝对意义的“平整”,也可以有较缓的起伏结构。
可选地,所述不规则结构阵列包括遍布的金字塔凸起或倒金字塔凹陷,所述金字塔凸起或倒金字塔凹陷的大小不同且位置随机分布。
可选地,所述接触区为下陷的平坦绒面。
本发明对接触区绒面做下沉处理,在减少金属栅线与绒面接触面积的同时有效减少载流子的传输路径,提升电池转化效率。
作为本发明一种可选的技术方案,所述非接触区为不规则结构阵列,所述接触区为规则结构阵列。
本发明对接触区绒面做规则化处理,可在减少金属与绒面接触面积的同时,金属栅线与规则的金字塔结构阵列平行,金属栅线可以规则的铺进金字塔结果之间的沟槽中,减少载流子的传输路径,减少断栅,降低接触电阻,提升转化效率。
可选地,所述不规则结构阵列包括遍布的金字塔凸起或倒金字塔凹陷,所述金字塔凸起或所述倒金字塔凹陷的大小不同且位置随机分布。
可选地,所述规则结构阵列包括至少两排相互平行的条形凸起结构或条形凹槽结构。
作为本发明一种可选的技术方案,所述非接触区和接触区均为不规则结构阵列。
可选地,所述接触区的不规则结构阵列包括遍布的第一金字塔凸起,所述非接触区的不规则结构阵列包括遍布的第二金字塔凸起,所述第一金字塔 凸起的高度小于所述第二金字塔凸起的高度。
可选地,所述接触区的不规则结构阵列包括遍布的第一倒金字塔凹陷,所述非接触区的不规则结构阵列包括遍布的第二倒金字塔凹陷,所述第一倒金字塔凹陷的深度小于所述第二倒金字塔凹陷的深度。
可选地,所述接触区的不规则结构阵列包括遍布的第三金字塔凸起,所述非接触区的不规则结构阵列包括遍布的第三倒金字塔凹陷,所述第三金字塔凸起的高度小于所述第三倒金字塔凹陷的深度。
可选地,所述接触区的不规则结构阵列包括遍布的第四倒金字塔凹陷,所述非接触区的不规则结构阵列包括遍布的第四金字塔凸起,所述第四倒金字塔凹陷的深度小于所述第四金字塔凸起的深度。
作为本发明一种可选的技术方案,所述接触区表面形成遍布的波浪形凸起,所述非接触区表面形成不规则的金字塔凸起,所述波浪形凸起的高度小于所述金字塔凸起的高度。
需要说明的是,本发明的核心发明点是在接触区与非接触区形成不同微观形貌的绒面结构,降低金属浆料在接触区内与绒面结构之间的接触面积,因此可以理解的是,本发明对接触区和非接触区内的凸起结构和凹陷结构的具体形状及分布方式不作特殊要求和特殊限定。
第二方面,本发明提供了一种第一方面所述的太阳能电池的绒面结构的制备方法,包括制绒方法一或制绒方法二,其中,
所述制绒方法一:在硅片表面制绒并沉积形成掩膜,去除部分区域的掩膜,形成开槽,在所述开槽处制备平面或微绒面形成接触区,去除全部掩膜,掩膜遮挡区域形成非接触区,得到所述绒面结构;
所述制绒方法二:对硅片表面进行一次制绒,在金属栅线所在区域进行熔融雕琢形成接触区,掩膜遮挡接触区,对非遮挡区域进行二次制绒,形成非接触区,去除全部掩膜,得到所述绒面结构。
作为本发明一种可选的技术方案,所述制绒方法一具体包括如下步骤:
(1)对所述硅片表面进行制绒形成绒面,在所述绒面上沉积形成掩膜;
(2)通过激光去除部分区域的掩膜,形成与金属栅线形状相同的开槽;
(3)采用腐蚀液对开槽区域的绒面进行腐蚀形成接触区,随后去除全部掩膜,掩膜遮挡区域形成非接触区,得到所述绒面结构。
作为本发明一种可选的技术方案,步骤(1)中,所述沉积方式包括PECVD。
可选地,所述掩膜包括氮化硅。
可选地,步骤(2)中,所述开槽宽度为10μm~130μm,例如可以是10μm、20μm、30μm、40μm、50μm、60μm、70μm、80μm、90μm、100μm、110μm、120μm或130μm,但并不仅限于所列举的数值,该数值范围内其他未列举的数值同样适用。
可选地,步骤(3)中,所述腐蚀液包括酸液或碱液。
可选地,所述酸液包括HF和HNO 3的混合溶液。
可选地,所述碱液包括KOH溶液或NaOH溶液。
可选地,采用HF溶液去除全部掩膜。
作为本发明一种可选的技术方案,所述制绒方法二具体包括如下步骤:
(Ⅰ)对硅片表面进行一次制绒形成绒面,在金属栅线所在区域进行熔融雕琢形成接触区;
(Ⅱ)将所述硅片进行高温氧化,表面形成氧化硅层,再次去除氧化硅层;
(Ⅲ)在硅片表面印刷掩膜遮挡接触区,对非遮挡区域的硅片表面进行二次制绒形成非接触区,去除掩膜,得到所述绒面结构。
作为本发明一种可选的技术方案,步骤(Ⅰ)中,采用激光对结构阵列进行熔融雕琢。
可选地,步骤(Ⅱ)中,通过酸洗去除所述氧化硅层。
可选地,所述酸洗过程采用的酸液包括HF。
可选地,步骤(Ⅲ)中,所述掩膜的印刷宽度为10μm~130μm,例如可以是10μm、20μm、30μm、40μm、50μm、60μm、70μm、80μm、90μm、100μm、110μm、120μm或130μm,但并不仅限于所列举的数值,该数值范围内其他未列举的数值同样适用。
可选地,所述掩膜的材质包括石蜡。
与现有技术相比,本发明的有益效果为:
本发明提供了一种太阳能电池的绒面结构,在金属栅线覆盖区域(接触区)的绒面和金属栅线非覆盖区域(非接触区)形成不同微观形貌的绒面结构,非覆盖区域绒面结构的比表面积远大于覆盖区域绒面结构的比表面积,降低浆料金属与绒面上的PN结的接触面积,降低金属复合20%以上,提升转化效率。
附图说明
图1为本发明实施例1提供的绒面结构的示意图;
图2为本发明实施例2提供的绒面结构的示意图;
图3为本发明实施例3提供的绒面结构的示意图;
图4为本发明实施例4提供的绒面结构的示意图;
图5为本发明实施例5提供的绒面结构的示意图;
图6为本发明实施例6提供的绒面结构的示意图;
图7为本发明实施例7提供的绒面结构的示意图;
图8为本发明实施例8提供的绒面结构的示意图;
图9为本发明实施例9提供的绒面结构的示意图;
图10为本发明实施例10提供的绒面结构的示意图;
附图标记说明:
1-非接触区;2-接触区;3-金属栅线;4-第一金字塔凸起;5-第二金字塔凸起;6-第一倒金字塔凹陷;7-第二倒金字塔凹陷;8-第三金字塔凸起;9-第三倒金字塔凹陷;10-波浪形凸起;11-金字塔凸起;12-PN结;13-钝化层。
具体实施方式
需要理解的是,在本发明的描述中,术语“中心”、“纵向”、“横向”、“上”、“下”、“前”、“后”、“左”、“右”、“竖直”、“水平”、“顶”、“底”、“内”、“外”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本发明和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本发明的限制。此外,术语“第一”、“第二”等仅用于描述目的,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有“第一”、“第二”等的特征可以明示或者隐含地包括一个或者更多个该特征。在本发明的描述中,除非另有说明,“多个”的含义是两个或两个以上。
下面结合附图并通过具体实施方式来进一步说明本发明的技术方案。
实施例1
如图1所示,本实施例提供了一种太阳能电池的绒面结构,所述绒面结构包括绒面,绒面表面依次层叠设置有PN结12和钝化层13,绒面表面包括接触区2和非接触区1,接触区2设置有金属栅线3。
非接触区1表面为不规则的金字塔结构阵列,包括遍布的金字塔凸起,金字塔凸起的大小不同且位置随机分布,接触区2表面为平坦绒面。
具体来说,如图1所示,绒面的非接触区1的表面分布有多个金字塔凸 起,各金字塔凸起均相对于绒面的非接触区1的表面向外凸出,多个金字塔凸起的大小及分布位置随机,从而形成不规则的金字塔结构阵列,各金字塔凸起均依次层叠设置有PN结12和钝化层13。绒面的接触区2的表面为平坦绒面,平坦绒面依次层叠设置有PN结12和钝化层13,且平坦绒面设置有金属栅线3。
在实施例1中,接触区2的绒面的反射率为38%,非接触区1的绒面的反射率为8%。
实施例2
如图2所示,本实施例提供了一种太阳能电池的绒面结构,所述绒面结构包括绒面,绒面表面依次层叠设置有PN结12和钝化层13,绒面表面包括接触区2和非接触区1,接触区2设置有金属栅线3。
非接触区1表面为不规则的金字塔结构阵列,包括遍布的倒金字塔凹陷,倒金字塔凹陷的大小不同且位置随机分布,接触区2表面为平坦绒面。
具体来说,如图2所示,绒面的非接触区1的表面分布有多个倒金字塔凹陷,各倒金字塔凹陷相对于绒面的非接触区1的表面向内凹入,多个倒金字塔凹陷的大小及分布位置随机,从而形成不规则的金字塔结构阵列,各倒金字塔凹陷均依次层叠设置有PN结12和钝化层13。绒面的接触区2的表面为平坦绒面,平坦绒面依次层叠设置有PN结12和钝化层13,且平坦绒面设置有金属栅线3。
在实施例2中,接触区2的绒面的反射率为38%,非接触区1的绒面的反射率为6%。
实施例3
如图3所示,本实施例提供了一种太阳能电池的绒面结构,所述绒面结构包括绒面,绒面表面依次层叠设置有PN结12和钝化层13,绒面表面包括接触区2和非接触区1,接触区2设置有金属栅线3。
非接触区1表面为不规则的金字塔结构阵列,包括遍布的金字塔凸起,金字塔凸起的大小不同且位置随机分布,接触区2表面为下陷的平坦绒面。
具体来说,如图3所示,绒面的非接触区1的表面分布有多个金字塔凸起,各金字塔凸起相对于绒面的非接触区1的表面向外凸出,多个金字塔凸起的大小及分布位置随机,从而形成不规则的金字塔结构阵列,各金字塔凸起均依次层叠设置有PN结12和钝化层13。绒面的接触区2的表面为下陷的平坦绒面,即,绒面的接触区2的表面为平坦绒面,且相对于绒面的非接触区1的表面向内凹陷,下陷的平坦绒面依次层叠设置有PN结12和钝化层13,且下陷的平坦绒面设置有金属栅线3。
在实施例3中,接触区2的绒面的反射率为38%,非接触区1的绒面的反射率为8%。
实施例4
如图4所示,本实施例提供了一种太阳能电池的绒面结构,所述绒面结构包括绒面,绒面表面依次层叠设置有PN结12和钝化层13,绒面表面包括接触区2和非接触区1,接触区2设置有金属栅线3。
非接触区1表面为不规则的金字塔结构阵列,包括遍布的倒金字塔凹陷,倒金字塔凹陷的大小不同且位置随机分布,接触区2表面为下陷的平坦绒面。
具体来说,如图4所示,绒面的非接触区1的表面分布有多个倒金字塔凹陷,各倒金字塔凹陷相对于绒面的非接触区1的表面向内凹入,多个倒金字塔凹陷的大小及分布位置随机,从而形成不规则的金字塔结构阵列,各倒金字塔凹陷均依次层叠设置有PN结12和钝化层13。绒面的接触区2的表面为下陷的平坦绒面,即,绒面的接触区2的表面为平坦绒面,且相对于绒面的非接触区1的表面向内凹陷,下陷的平坦绒面依次层叠设置有PN结12和钝化层13,且下陷的平坦绒面设置有金属栅线3。
在实施例4中,接触区2的绒面的反射率为36%,非接触区1的绒面的反射率为5%。
实施例5
如图5所示,本实施例提供了一种太阳能电池的绒面结构,所述绒面结构包括绒面,绒面表面依次层叠设置有PN结12和钝化层13,绒面表面包括接触区2和非接触区1,接触区2设置有金属栅线3。
非接触区1为不规则的金字塔结构阵列,包括遍布的金字塔凸起,金字塔凸起的大小不同且位置随机分布。接触区2为规则结构阵列,包括多排相互平行的条形凸起结构,接触区2的条形凸起结构的高度大于非接触区1金字塔凸起的高度。
具体来说,如图5所示,绒面的非接触区1的表面分布有多个金字塔凸起,各金字塔凸起均相对于绒面的非接触区1的表面向外凸出,多个金字塔凸起的大小及分布位置随机,从而形成不规则的金字塔结构阵列,各金字塔凸起均依次层叠设置有PN结12和钝化层13。绒面的接触区2的表面设置有多排条形凸起结构,,且多排条形凸起结构相互平行,各条形凸起结构均相对于绒面的接触区2的表面向外凸出,且各条形凸起结构相对于绒面的接触区2的表面向外凸出的高度均高于各金字塔凸起相对于绒面的非接触区1的表面向外凸出的高度,多排相互平行的条形凸起结构形成规则结构阵列,各条形凸起结构均依次层叠设置有PN结12和钝化层13,且绒面的接触区2设置有金属栅线3。
在实施例5中,接触区2的绒面的反射率为20%,非接触区1的绒面的反射率为7%。
实施例6
如图6所示,本实施例提供了一种太阳能电池的绒面结构,所述绒面结构包括绒面,绒面表面依次层叠设置有PN结12和钝化层13,绒面表面包 括接触区2和非接触区1,接触区2设置有金属栅线3。
非接触区1为不规则的金字塔结构阵列,包括遍布的金字塔凸起,金字塔凸起的大小不同且位置随机分布。接触区2为规则结构阵列,包括多排相互平行的条形凸起结构,接触区2的条形凸起结构的高度小于非接触区1金字塔凸起的高度。
具体来说,如图6所示,绒面的非接触区1的表面分布有多个金字塔凸起,各金字塔凸起均相对于绒面的非接触区1的表面向外凸出,多个金字塔凸起的大小及分布位置随机,从而形成不规则的金字塔结构阵列,各金字塔凸起均依次层叠设置有PN结12和钝化层13。绒面的接触区2的表面设置有多排条形凸起结构,且多排条形凸起结构相互平行,各条形凸起结构均相对于绒面的接触区2的表面向外凸出,且各条形凸起结构相对于绒面的接触区2的表面向外凸出的高度均低于各金字塔凸起相对于绒面的非接触区1的表面向外凸出的高度,多排相互平行的条形凸起结构形成规则结构阵列,各条形凸起结构均依次层叠设置有PN结12和钝化层13,且绒面的接触区2设置有金属栅线3。
在实施例6中,接触区2的绒面的反射率为30%,非接触区1的绒面的反射率为7%。
实施例7
如图7所示,本实施例提供了一种太阳能电池的绒面结构,所述绒面结构包括绒面,绒面表面依次层叠设置有PN结12和钝化层13,绒面表面包括接触区2和非接触区1,接触区2设置有金属栅线3。
非接触区1和接触区2均为不规则的金字塔结构阵列。接触区2的金字塔结构阵列包括遍布的第一金字塔凸起4,非接触区1的金字塔结构阵列包括遍布的第二金字塔凸起5,第一金字塔凸起4的高度小于第二金字塔凸起5的高度。
具体来说,如图7所示,绒面的非接触区1的表面分布有多个第二金字塔凸起5,各第二金字塔凸起5均相对于绒面的非接触区1的表面向外凸出,多个第二金字塔凸起5的大小及分布位置随机,从而形成不规则的金字塔结构阵列,各第二金字塔凸起5均依次层叠设置有PN结12和钝化层13。绒面的接触区2的表面分布有多个第一金字塔凸起4,各第一金字塔凸起4均相对于绒面的接触区2的表面向外凸出,多个第一金字塔凸起4的大小及分布位置随机,从而形成不规则的金字塔结构阵列,各第一金字塔凸起4均依次层叠设置有PN结12和钝化层13,且绒面的接触区2设置有金属栅线3。各第一金字塔凸起4相对于绒面的接触区2的表面向外凸出的高度均低于各第二金字塔凸起5相对于绒面的非接触区1的表面向外凸出的高度。
在实施例7中,接触区2的绒面的反射率为25%,非接触区1的绒面的反射率为7%。
实施例8
如图8所示,本实施例提供了一种太阳能电池的绒面结构,所述绒面结构包括绒面,绒面表面依次层叠设置有PN结12和钝化层13,绒面表面包括接触区2和非接触区1,接触区2设置有金属栅线3。
非接触区1和接触区2均为不规则的金字塔结构阵列。接触区2的金字塔结构阵列包括遍布的第一倒金字塔凹陷6,非接触区1的金字塔结构阵列包括遍布的第二倒金字塔凹陷7,第一倒金字塔凹陷6的深度小于第二倒金字塔凹陷7的深度。
具体来说,如图8所示,绒面的非接触区1的表面分布有多个第二倒金字塔凹陷7,各第二倒金字塔凹陷7均相对于绒面的非接触区1的表面向内凹入,多个第二倒金字塔凹陷7的大小及分布位置随机,从而形成不规则的金字塔结构阵列,各第二倒金字塔凹陷7均依次层叠设置有PN结12和钝化层13。绒面的接触区2的表面分布有多个第一倒金字塔凹陷6,各第一倒 金字塔凹陷6均相对于绒面的接触区2的表面向内凹入,多个第一倒金字塔凹陷6的大小及分布位置随机,从而形成不规则的金字塔结构阵列,各第一倒金字塔凹陷6均依次层叠设置有PN结12和钝化层13,且绒面的接触区2设置有金属栅线3。各第一倒金字塔凹陷6相对于绒面的接触区2的表面向内凹入的深度均浅于各第二倒金字塔凹陷7相对于绒面的非接触区1的表面向内凹入的深度。
在实施例8中,接触区2的绒面的反射率为15%,非接触区1的绒面的反射率为5%。
实施例9
如图9所示,本实施例提供了一种太阳能电池的绒面结构,所述绒面结构包括绒面,绒面表面依次层叠设置有PN结12和钝化层13,绒面表面包括接触区2和非接触区1,接触区2设置有金属栅线3。
接触区2的金字塔结构阵列包括遍布的第三金字塔凸起8,非接触区1的金字塔结构阵列包括遍布的第三倒金字塔凹陷9,第三金字塔凸起8的高度小于第三倒金字塔凹陷9的深度。
具体来说,如图9所示,绒面的非接触区1的表面分布有多个第三倒金字塔凹陷9,各第三倒金字塔凹陷9均相对于绒面的非接触区1的表面向内凹入,多个第三倒金字塔凹陷9的大小及分布位置随机,从而形成不规则的金字塔结构阵列,各第三倒金字塔凹陷9均依次层叠设置有PN结12和钝化层13。绒面的接触区2的表面分布有多个第三金字塔凸起8,各第三金字塔凸起8均相对于绒面的接触区2的表面向外凸出,多个第三金字塔凸起8的大小及分布位置随机,从而形成不规则的金字塔结构阵列,各第三金字塔凸起8均依次层叠设置有PN结12和钝化层13,且绒面的接触区2设置有金属栅线3。各第三金字塔凸起8相对于绒面的接触区2的表面向外凸出的高度均小于各第三倒金字塔凹陷9相对于绒面的非接触区1的表面向内凹入 的深度。
在实施例9中,接触区2的绒面的反射率为25%,非接触区1的绒面的反射率为5%。
实施例10
如图10所示,本实施例提供了一种太阳能电池的绒面结构,所述绒面结构包括绒面,绒面表面依次层叠设置有PN结12和钝化层13,绒面表面包括接触区2和非接触区1,接触区2设置有金属栅线3。
接触区2表面形成遍布的波浪形凸起10,非接触区1表面形成不规则的金字塔凸起11,波浪形凸起10的高度小于金字塔凸起11的高度。
具体来说,如图10所示,绒面的非接触区1的表面分布有多个金字塔凸起11,各金字塔凸起11均相对于绒面的非接触区1的表面向外凸出,多个金字塔凸起11的大小及分布位置随机,从而形成不规则的金字塔结构阵列,各金字塔凸起11均依次层叠设置有PN结12和钝化层13。绒面的接触区2的表面设置有波浪形凸起10,波浪形凸起10相对于绒面的接触区2的表面向外凸出,绒面的接触区2设置有金属栅线3。波浪形凸起10相对于绒面的接触区2的表面向外凸出的高度均低于各金字塔凸起11相对于绒面的非接触区1的表面向外凸出的高度。
在实施例10中,接触区2的绒面的反射率为35%,非接触区1的绒面的反射率为8%。
在本发明的另一实施例中,绒面结构包括绒面,绒面表面依次层叠设置有PN结12和钝化层13,绒面表面包括接触区2和非接触区1,接触区2设置有金属栅线3。接触区的不规则结构阵列包括遍布的第四倒金字塔凹陷,非接触区的不规则结构阵列包括遍布的第四金字塔凸起,第四倒金字塔凹陷的深度小于第四金字塔凸起的深度。也就是说,在本发明的另一实施例中,绒面的非接触区1的表面分布有多个第四金字塔凸起,各第四金字塔凸 起均相对于绒面的非接触区1的表面向外凸出,多个第四金字塔凸起的大小及分布位置随机,从而形成不规则的金字塔结构阵列,各第四金字塔凸起均依次层叠设置有PN结12和钝化层13。绒面的接触区2的表面分布有多个第四倒金字塔凹陷,各第四倒金字塔凹陷均相对于绒面的接触区2的表面向内凹入,多个第四倒金字塔凹陷的大小及分布位置随机,从而形成不规则的金字塔结构阵列,各第四倒金字塔凹陷均依次层叠设置有PN结12和钝化层13,且绒面的接触区2设置有金属栅线3。各第四倒金字塔凹陷相对于绒面的接触区2的表面向内凹入的深度均小于各第四金字塔凸起相对于绒面的非接触区1的表面向外凸出的高度。
实施例11
本实施例提供了一种实施例1所述的绒面结构的制备方法,所述制备方法具体包括如下步骤:
(1)对硅片表面进行制绒形成绒面,采用等离子体增强化学气相沉积法(Plasma Enhanced Chemical Vapor Deposition,缩写为PECVD)在绒面上沉积形成SiN x掩膜;
(2)通过激光去除部分区域的掩膜,形成与金属栅线3形状相同的开槽;
(3)采用HF和HNO 3的混合酸液对开槽区域绒面进行腐蚀形成接触区2,随后采用HF溶液去除全部掩膜,掩膜遮挡区域形成非接触区1,得到所述绒面结构。
实施例12
本实施例提供了一种实施例1所述的绒面结构的制备方法,所述的制备方法具体包括如下步骤:
(1)对硅片表面进行一次制绒形成绒面,在金属栅线3所在区域进行熔融雕琢,形成接触区2;
(2)将硅片进行高温氧化,表面形成氧化硅层,采用HF去除氧化硅层;
(3)在硅片表面印刷掩膜遮挡接触区2,对硅片表面进行二次制绒,形成非接触区1,去除掩膜,得到所述绒面结构。
综上所述,本发明实施例提供的太阳能电池的绒面结构,在金属栅线覆盖区域(接触区)的绒面和金属栅线非覆盖区域(非接触区)形成不同微观形貌的绒面结构,非覆盖区域绒面结构的比表面积远大于覆盖区域绒面结构的比表面积,降低浆料金属与绒面上的PN结的接触面积,降低金属复合20%以上,提升转化效率。
申请人声明,以上所述仅为本发明的具体实施方式,但本发明的保护范围并不局限于此,所属技术领域的技术人员应该明了,任何属于本技术领域的技术人员在本发明揭露的技术范围内,可轻易想到的变化或替换,均落在本发明的保护范围和公开范围之内。

Claims (17)

  1. 一种太阳能电池的绒面结构,其特征在于,所述绒面结构包括绒面,所述绒面表面包括接触区和非接触区,所述接触区设置有金属栅线,所述接触区的比表面积小于所述非接触区的比表面积。
  2. 根据权利要求1所述的绒面结构,其特征在于,所述绒面表面依次层叠设置有PN结和钝化层,所述金属栅线位于所述接触区对应的所述钝化层表面;
    所述接触区的绒面的反射率大于所述非接触区的绒面的反射率。
  3. 根据权利要求2所述的绒面结构,其特征在于,所述接触区的绒面的反射率为8%~46%;所述非接触区的绒面反射率5%~14%。
  4. 根据权利要求1-3任一项所述的绒面结构,其特征在于,所述非接触区表面为不规则结构阵列,所述接触区表面为平坦绒面;
    所述不规则结构阵列包括遍布的金字塔凸起或倒金字塔凹陷,所述金字塔凸起或所述倒金字塔凹陷的大小不同且位置随机分布;
  5. 根据权利要求4所述的绒面结构,其特征在于,所述接触区为下陷的平坦绒面。
  6. 根据权利要求1-3任一项所述的绒面结构,其特征在于,所述非接触区为不规则结构阵列,所述接触区为规则结构阵列;
    所述不规则结构阵列包括遍布的金字塔凸起或倒金字塔凹陷,所述金字塔凸起或所述倒金字塔凹陷的大小不同且位置随机分布;
    所述规则结构阵列包括至少两排相互平行的条形凸起结构或条形凹槽结构。
  7. 根据权利要求1-3任一项所述的绒面结构,其特征在于,所述非接触区和所述接触区均为不规则结构阵列;
    所述接触区的不规则结构阵列包括遍布的第一金字塔凸起,所述非接 触区的不规则结构阵列包括遍布的第二金字塔凸起,所述第一金字塔凸起的高度小于所述第二金字塔凸起的高度;
    或者,所述接触区的不规则结构阵列包括遍布的第一倒金字塔凹陷,所述非接触区的不规则结构阵列包括遍布的第二倒金字塔凹陷,所述第一倒金字塔凹陷的深度小于所述第二倒金字塔凹陷的深度;
    或者,所述接触区的不规则结构阵列包括遍布的第三金字塔凸起,所述非接触区的不规则结构阵列包括遍布的第三倒金字塔凹陷,所述第三金字塔凸起的高度小于所述第三倒金字塔凹陷的深度;
    或者,所述接触区的不规则结构阵列包括遍布的第四倒金字塔凹陷,所述非接触区的不规则结构阵列包括遍布的第四金字塔凸起,所述第四倒金字塔凹陷的深度小于所述第四金字塔凸起的深度。
  8. 根据权利要求1-3任一项所述的绒面结构,其特征在于,所述接触区表面形成遍布的波浪形凸起,所述非接触区表面形成不规则的金字塔凸起,所述波浪形凸起的高度小于所述金字塔凸起的高度。
  9. 一种如权利要求1-8任一项所述的太阳能电池的绒面结构的制备方法,其特征在于,包括制绒方法一或制绒方法二,其中,
    所述制绒方法一:在硅片表面制绒并沉积形成掩膜,去除部分区域的掩膜,形成开槽,在所述开槽处制备平面或微绒面形成接触区,去除全部掩膜,掩膜遮挡区域形成非接触区,得到所述绒面结构;
    所述制绒方法二:对硅片表面进行一次制绒,在金属栅线所在区域进行熔融雕琢形成接触区,掩膜遮挡接触区,对非遮挡区域进行二次制绒,形成非接触区,去除全部掩膜,得到所述绒面结构。
  10. 根据权利要求9所述的制备方法,其特征在于,所述制绒方法一具体包括如下步骤:
    (1)对所述硅片表面进行制绒形成绒面,在所述绒面上沉积形成掩膜;
    (2)通过激光去除部分区域的掩膜,形成与金属栅线形状相同的开槽;
    (3)采用腐蚀液对开槽区域的绒面进行腐蚀形成接触区,随后去除全部掩膜,掩膜遮挡区域形成非接触区,得到所述绒面结构。
  11. 根据权利要求10所述的制备方法,其特征在于,步骤(1)中,所述沉积方式包括PECVD;所述掩膜包括氮化硅。
  12. 根据权利要求10所述的制备方法,其特征在于,步骤(2)中,所述开槽的宽度为10μm~130μm。
  13. 根据权利要求10所述的制备方法,其特征在于,步骤(3)中,所述腐蚀液包括酸液或碱液;所述酸液包括HF和HNO 3的混合溶液;所述碱液包括KOH溶液或NaOH溶液;采用HF溶液去除全部掩膜。
  14. 根据权利要求9所述的制备方法,其特征在于,所述制绒方法二具体包括如下步骤:
    (Ⅰ)对所硅片表面进行一次制绒形成绒面,在金属栅线所在区域进行熔融雕琢形成接触区;
    (Ⅱ)将所述硅片进行高温氧化,表面形成氧化硅层,再次去除所述氧化硅层;
    (Ⅲ)在所述硅片表面印刷掩膜遮挡接触区,对非遮挡区域的硅片表面进行二次制绒形成非接触区,去除掩膜,得到所述绒面结构。
  15. 根据权利要求14所述的制备方法,其特征在于,步骤(Ⅰ)中,采用激光对结构阵列进行所述熔融雕琢。
  16. 根据权利要求14所述的制备方法,其特征在于,步骤(Ⅱ)中,通过酸洗去除所述氧化硅层,所述酸洗过程采用的酸液包括HF。
  17. 根据权利要求14所述的制备方法,其特征在于,步骤(Ⅲ)中,所述掩膜的印刷宽度为10μm~130μm;所述掩膜的材质包括石蜡。
PCT/CN2022/120880 2021-09-23 2022-09-23 太阳能电池的绒面结构及其制备方法 WO2023046070A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP22872114.8A EP4318600A1 (en) 2021-09-23 2022-09-23 Texture structure of solar cell and preparation method therefor

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202111114953.7A CN114256363A (zh) 2021-09-23 2021-09-23 一种太阳能电池的绒面结构及制备方法
CN202111114953.7 2021-09-23

Publications (1)

Publication Number Publication Date
WO2023046070A1 true WO2023046070A1 (zh) 2023-03-30

Family

ID=80790183

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/120880 WO2023046070A1 (zh) 2021-09-23 2022-09-23 太阳能电池的绒面结构及其制备方法

Country Status (3)

Country Link
EP (1) EP4318600A1 (zh)
CN (1) CN114256363A (zh)
WO (1) WO2023046070A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114256363A (zh) * 2021-09-23 2022-03-29 天合光能股份有限公司 一种太阳能电池的绒面结构及制备方法
CN115050852B (zh) * 2022-06-08 2024-04-30 宁夏隆基乐叶科技有限公司 一种太阳能电池及其制备方法

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101304057A (zh) * 2007-05-10 2008-11-12 科冠能源科技股份有限公司 具平坦接触区的太阳能电池及其制程
CN102148292B (zh) 2011-03-22 2012-07-04 上海采日光伏技术有限公司 太阳能电池绒面的制备方法
CN103441182A (zh) 2013-07-23 2013-12-11 新奥光伏能源有限公司 太阳能电池的绒面处理方法及太阳能电池
CN109346535A (zh) * 2018-09-14 2019-02-15 江苏林洋光伏科技有限公司 激光制备硅太阳能电池选择性绒面及发射极的方法
CN110828583A (zh) * 2019-09-24 2020-02-21 苏州腾晖光伏技术有限公司 正面局域钝化接触的晶硅太阳电池及其制备方法
CN112768555A (zh) 2020-12-31 2021-05-07 中建材浚鑫(桐城)科技有限公司 一种太阳能电池绒面的制作方法
CN113328012A (zh) * 2021-06-24 2021-08-31 浙江爱旭太阳能科技有限公司 降低复合速率的perc电池的制作方法和perc电池
CN114256363A (zh) * 2021-09-23 2022-03-29 天合光能股份有限公司 一种太阳能电池的绒面结构及制备方法
CN216213480U (zh) * 2021-09-23 2022-04-05 天合光能股份有限公司 一种太阳能电池的绒面结构

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101304057A (zh) * 2007-05-10 2008-11-12 科冠能源科技股份有限公司 具平坦接触区的太阳能电池及其制程
CN102148292B (zh) 2011-03-22 2012-07-04 上海采日光伏技术有限公司 太阳能电池绒面的制备方法
CN103441182A (zh) 2013-07-23 2013-12-11 新奥光伏能源有限公司 太阳能电池的绒面处理方法及太阳能电池
CN109346535A (zh) * 2018-09-14 2019-02-15 江苏林洋光伏科技有限公司 激光制备硅太阳能电池选择性绒面及发射极的方法
CN110828583A (zh) * 2019-09-24 2020-02-21 苏州腾晖光伏技术有限公司 正面局域钝化接触的晶硅太阳电池及其制备方法
CN112768555A (zh) 2020-12-31 2021-05-07 中建材浚鑫(桐城)科技有限公司 一种太阳能电池绒面的制作方法
CN113328012A (zh) * 2021-06-24 2021-08-31 浙江爱旭太阳能科技有限公司 降低复合速率的perc电池的制作方法和perc电池
CN114256363A (zh) * 2021-09-23 2022-03-29 天合光能股份有限公司 一种太阳能电池的绒面结构及制备方法
CN216213480U (zh) * 2021-09-23 2022-04-05 天合光能股份有限公司 一种太阳能电池的绒面结构

Also Published As

Publication number Publication date
EP4318600A8 (en) 2024-03-20
EP4318600A1 (en) 2024-02-07
CN114256363A (zh) 2022-03-29

Similar Documents

Publication Publication Date Title
WO2023046070A1 (zh) 太阳能电池的绒面结构及其制备方法
US8937243B2 (en) Structures and methods for high-efficiency pyramidal three-dimensional solar cells
WO2022100081A1 (zh) 一种高效太阳能电池及其制备方法
CN114678446A (zh) 一种低成本接触钝化全背电极太阳能电池及其制备方法
CN105762205B (zh) 一种具有透明电极的p型晶体硅太阳能电池及其制备方法
CN113809205B (zh) 太阳能电池的制备方法
CN216213480U (zh) 一种太阳能电池的绒面结构
CN103456837A (zh) 局部背场钝化太阳能电池的制造方法
WO2023077772A1 (zh) 太阳能电池及其制备方法
CN117153953B (zh) 开膜式双面TOPCon电池的制备方法
JP2023549905A (ja) 太陽光発電電池及び太陽光発電モジュール
CN112349802B (zh) 一种铸锭单晶或多晶非晶硅异质结太阳电池的制作方法
CN110165002A (zh) 一种太阳能电池制备方法和太阳能电池
CN112466986A (zh) 一种选择性发射极电池的碱抛光制造方法
CN114447142B (zh) 一种N型TOPCon太阳能电池及其制作方法
CN107731940B (zh) 一种perc多晶硅太阳能电池及其制备方法
CN111341880A (zh) 太阳能电池的制造方法
CN117059681B (zh) 太阳能电池及其制造方法、光伏组件
CN114256381A (zh) N型TopCon电池片及其制备方法
CN116387370A (zh) P型背接触电池结构、制作方法及太阳能电池
CN115207169B (zh) P型ibc太阳能电池片及其制备方法、电池组件和光伏系统
JP6695916B2 (ja) 太陽電池及びその製造方法
KR102042267B1 (ko) 태양 전지 및 이의 제조 방법
CN111640807A (zh) 具有v型槽绒面结构的制绒片及其制备方法和应用
CN115036381A (zh) 一种p型硅背接触电池和制备方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22872114

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2022872114

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2022872114

Country of ref document: EP

Effective date: 20231025

NENP Non-entry into the national phase

Ref country code: DE