WO2023045770A1 - 吸中打式术用输尿管镜 - Google Patents

吸中打式术用输尿管镜 Download PDF

Info

Publication number
WO2023045770A1
WO2023045770A1 PCT/CN2022/117841 CN2022117841W WO2023045770A1 WO 2023045770 A1 WO2023045770 A1 WO 2023045770A1 CN 2022117841 W CN2022117841 W CN 2022117841W WO 2023045770 A1 WO2023045770 A1 WO 2023045770A1
Authority
WO
WIPO (PCT)
Prior art keywords
suction
channel
ureteroscope
main body
port
Prior art date
Application number
PCT/CN2022/117841
Other languages
English (en)
French (fr)
Inventor
程跃
单剑
陈卿业
吴海良
方立
黄俊俊
谢国海
Original Assignee
宁波新跃医疗科技股份有限公司
宁波市第一医院
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 宁波新跃医疗科技股份有限公司, 宁波市第一医院 filed Critical 宁波新跃医疗科技股份有限公司
Priority to CA3232685A priority Critical patent/CA3232685A1/en
Priority to AU2022350549A priority patent/AU2022350549A1/en
Publication of WO2023045770A1 publication Critical patent/WO2023045770A1/zh

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B1/00Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B1/00Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor
    • A61B1/005Flexible endoscopes
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B1/00Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor
    • A61B1/012Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor characterised by internal passages or accessories therefor
    • A61B1/015Control of fluid supply or evacuation
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B1/00Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor
    • A61B1/012Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor characterised by internal passages or accessories therefor
    • A61B1/018Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor characterised by internal passages or accessories therefor for receiving instruments
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B1/00Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor
    • A61B1/04Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor combined with photographic or television appliances
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B1/00Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor
    • A61B1/06Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor with illuminating arrangements
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B1/00Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor
    • A61B1/307Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor for the urinary organs, e.g. urethroscopes, cystoscopes
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B18/18Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by applying electromagnetic radiation, e.g. microwaves
    • A61B18/20Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by applying electromagnetic radiation, e.g. microwaves using laser
    • A61B18/22Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by applying electromagnetic radiation, e.g. microwaves using laser the beam being directed along or through a flexible conduit, e.g. an optical fibre; Couplings or hand-pieces therefor
    • A61B18/26Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by applying electromagnetic radiation, e.g. microwaves using laser the beam being directed along or through a flexible conduit, e.g. an optical fibre; Couplings or hand-pieces therefor for producing a shock wave, e.g. laser lithotripsy

Definitions

  • Another advantage of the present application is to provide a suction-in-hit ureteroscope for surgery, wherein the suction-in-hit ureteroscope can export crushed stones relatively quickly, so as to improve the efficiency of stone removal.
  • the tube lens body includes: a tube structure main body; at least one perfusion channel extending from the rear end to the front end in the tube structure main body, and the at least one perfusion channel has at least one an infusion port; and, a suction channel extending from the front end to the rear end in the tubular structural body, the suction channel having a suction port at the front end;
  • the main body of the tubescope further includes a lithotripsy channel connected to the suction channel, and the lithotripsy mechanism is telescopically arranged in the lithotripsy channel.
  • the stone-breaking mechanism When the stone-breaking mechanism is in the first state, the cutting head extends into the suction channel through the stone-breaking channel to extend out of the suction opening.
  • the tubular structural main body has a front end surface and an outer peripheral surface, and the suction port is formed on the front end surface, wherein the front end surface of the tubular structural main body The first side of the outer peripheral surface and the second side opposite to the first side extend obliquely forward along the axial direction set by the diameter main body.
  • the cutting head of the lithotripsy mechanism is located in the middle region of the suction port.
  • the perfusion port of the perfusion channel has a first orientation for allowing fluid to be directed along the perfusion channel from the perfusion port in the first orientation
  • the first direction of the suction channel is injected into the renal pelvis
  • the suction port of the suction channel has a second orientation that forms a preset angle with the first orientation, so as to allow the fluid to be diverted in the renal pelvis in the first orientation.
  • Two are drawn into the suction channel from the suction port in a second direction pointing to form a fluid loop.
  • the tubular structure main body has a front end surface and an outer peripheral surface formed on the front end surface, and the filling port is formed on the outer peripheral surface of the tubular structural main body , the suction port is formed on the front end surface of the pipe structure main body.
  • Fig. 2 illustrates a schematic diagram of a suction-in-puncture ureteroscope according to an embodiment of the present application.
  • Fig. 4 illustrates a schematic diagram of a tubescope main body of a suction-in-hit ureteroscope according to an embodiment of the present application.
  • Fig. 5A illustrates one of the partial schematic diagrams of a tubescope main body of a suction-in-hit surgical ureteroscope according to an embodiment of the present application.
  • Fig. 6A illustrates a schematic partial cross-sectional view of a tubescope main body of a suction-in-hit surgical ureteroscope according to an embodiment of the present application.
  • Fig. 6B illustrates a partial perspective view of a tubescope main body of a suction-in-hit ureteroscope according to an embodiment of the present application.
  • Fig. 7B is a schematic partial perspective view of a tubescope main body of a suction-in-hit ureteroscope implemented according to a modification of an embodiment of the present application.
  • Fig. 8A illustrates a schematic partial cross-sectional view of a tubescope main body of a suction-in-hit ureteroscope implemented according to another modification of the embodiment of the present application.
  • Fig. 8B is a schematic partial perspective view of a tubescope main body of a suction-in-hit ureteroscope implemented according to another modification of the embodiment of the present application.
  • Fig. 9B illustrates a partial perspective view of a tubescope main body of a suction-in-hit ureteroscope implemented according to yet another modification of the embodiment of the present application.
  • Fig. 10 illustrates another partial cross-sectional schematic view of the tubescope main body of the suction-in-hit ureteroscope according to an embodiment of the present application.
  • Fig. 11A illustrates one of the schematic diagrams of the working process of the suction-in-puncture ureteroscope according to the embodiment of the present application.
  • Fig. 11B illustrates the second schematic diagram of the working process of the suction-in-puncture ureteroscope according to the embodiment of the present application.
  • Fig. 11D illustrates the fourth schematic diagram of the working process of the suction-in-puncture ureteroscope according to the embodiment of the present application.
  • crushed stones ie, crushed stones
  • the crushed stones will be bounced off after being impacted, which makes Crushed stones are difficult to crush further.
  • the crushed stones will be attracted to the discharge inlet of the discharge channel.
  • the larger crushed stones are attracted to the discharge inlet of the discharge channel or a large amount of crushed stones rush to the discharge inlet at the same time, they will block the discharge inlet, resulting in being hit. Broken stones are difficult to pass.
  • the inventors of the present application proposed a "suction-in-beating" calculus exporting scheme, through the mutual cooperation between the suction of crushed stones and the beating of crushed stones, to prevent crushed stones from being trapped at the suction port of the suction channel that can export crushed stones A blockage occurs. Specifically, while the crushed stones are sucked to the suction port by the negative pressure in the suction channel, the crushed stones are further crushed by the stone crushing mechanism located at the suction port .
  • a suction-in-play ureteroscope for surgery which includes: a tubescope main body with a front end and a rear end, including: a tube structure main body; an end extending to at least one perfusion channel at the front end, the at least one perfusion channel having at least one perfusion port at the front end; and extending from the front end to the a suction channel at the rear end, the suction channel has a suction port at the front end; an operating portion operatively coupled to the rear end of the tubescope main body; and a lithotripsy mechanism, movably arranged switchable between a first state and a second state in the main body of the tubular structure, wherein, when in the first state, the cutting head of the stone crushing mechanism protrudes from the suction port for striking stones, When it is in the second state, the cutting head of the rock breaking mechanism retracts to the suction port for hitting the crushed stones blocked in the suction port.
  • the suction-in-hit ureteroscope 100 As shown in FIGS. 2 to 11D , the suction-in-hit ureteroscope 100 according to the embodiment of the present application is illustrated.
  • the aspiration-in-thrust ureteroscope 100 will be described by taking the application of the aspiration-in-thrust ureteroscope 100 to treat stones c in the renal pelvis p as an example.
  • the suction device 800 connected to the tubescope main body 10 through the operating part 20 Attracts debris in the kidney.
  • the at least one perfusion channel 12 has at least one perfusion port 121 located at the front end 110 and at least one first operation port 122 connected to the at least one perfusion port 121, the fluid can reach the kidney from the perfusion port 121 and Impacting stones in the kidney.
  • the suction channel 13 has a suction port 131 located at the front end 110 and a second operating port 132 connected to the suction port 131 , and crushed stones can be sucked to the suction port 131 and discharged from the suction port 131 .
  • the port 131 enters the suction channel 13 to be discharged through the suction channel 13 .
  • the operating part 20 includes an operating body 21 , a first operating end 22 disposed on the operating body 21 and connected to the perfusion channel 12 , and a first operating end 22 disposed on the operating body 21 and connected to the suction channel 13 .
  • the operation part 20 communicates with the perfusion channel 12 through the first operation end 22 connected to the first operation port 122 , and communicates with the second operation port 132 of the second operation port 132 through it.
  • the end 23 communicates with the suction channel 13 .
  • first operating end 22 and the second operating end 23 are not limited by this application.
  • the first operating end 22 and the second operating end 23 are also suitable for allowing other devices to perform other functional operations.
  • the first operating end 22 is adapted to allow the guiding mechanism 600 to pass through the perfusion channel 12 and guide the tubescope main body 10 to a target position.
  • the operation part 20 may also include other operation ends, so as to allow other devices to perform other functional operations.
  • the suction channel 13 not only allows gravel to be sucked to its suction port 131, but also allows the cutting head 32 of the stone crushing mechanism 30 to extend out of the suction port 131 or retract to
  • the suction port 131 is used to beat the gravel blocked in the suction port 131 .
  • the stone crushing mechanism 30 includes a stone crushing body 31 and a cutting head 32 formed on the stone crushing body 31, and the stone crushing mechanism 30 is movably arranged in the tubular structural body 11 to state and a second state.
  • the type of the lithotripsy mechanism 30 is not limited in this application, and the lithotripsy mechanism 30 may be implemented as a holmium laser or other types of tools capable of beating calculi c.
  • the holmium laser can emit laser light, and the energy generated by the holmium laser can make the water between the stone c and the holmium laser form microscopic cavities, and transmit the energy to the stone c to strike the stone c.
  • the water absorbs a large amount of energy, which can reduce the damage of the holmium laser to the tissues around the stone c.
  • the gravel channel 14 extends between the suction channel 13 and the rear end 120 of the tubescope main body 10, and the gravel channel 14 has a channel connected to the suction channel.
  • the communication port 141 of 13 and the third operation port 142 connected to the communication port 141 and located at the rear end 120 .
  • the front end surface 1101 can be designed as a convex slope, a concave slope, a wave slope, and other types of slopes formed between the first side and the second side of the outer peripheral surface 1102. For this, Not limited by this application.
  • the front end surface 1101 is designed as a concave wave-shaped inclined surface formed between the first side and the second side of the outer peripheral surface 1102 .
  • the crushing stone passage 14 is formed on the side of the suction passage 13, and the crushing stone mechanism 30 is telescopically arranged in the crushing stone passage 14, when the crushing stone mechanism 30 When in the first state or the second state, only the front part of the stone crushing mechanism 30 including the cutting head 32 is located in the suction channel 13, and the rear part of the stone crushing mechanism 30 is located in the crushing channel 13. In the stone passage 14, the space in the suction passage 13 is not occupied, so that the crushed stones passing through the suction passage 13 can be prevented from being affected by the crushing mechanism 30 .
  • the formation manner of the perfusion channel 12 , the suction channel 13 and the gravel channel 14 is not limited by the present application.
  • the perfusion channel 12, the suction channel 13 and the gravel channel 14 can be formed by a plurality of holes in the tubular structure body 11 itself, or can be formed by cooperation of a plurality of hollow tube bodies. This application is limited.
  • the suction interference to the fluid is weakened, thereby improving the stone exporting efficiency.
  • the perfusion port 121 of the perfusion channel 12 has a first orientation for allowing fluid to be injected into the renal pelvis p along the perfusion channel 12 from the perfusion port 121 in the first direction pointed in the first orientation,
  • the suction port 131 of the suction channel 13 has a second orientation that forms a preset angle with the first orientation, so as to allow the fluid to be diverted in the renal pelvis p to point to the second orientation in the second orientation. Two directions are sucked into the suction channel 13 from the suction port 131 to form a fluid loop, as shown in FIG. 10 .
  • the second orientation is different from the first orientation, and the first orientation is the same as the first orientation, and the second orientation is opposite to the second orientation, so that the first orientation and the first orientation
  • the angle between the two directions is not 0° or 180°, that is, the first direction and the second direction are not in the same direction, nor are they opposite to each other.
  • the fluid emitted from the filling port 121 along the first direction flows back along the second direction having an included angle with the first direction after being diverted, forming a vortex fluid loop, which can prevent the fluid from flowing from the first direction.
  • the filling port 121 exits along the first direction it directly returns to the suction port 131 facing the same direction as the filling port 121 along the opposite direction of the first direction, thereby reducing the negative pressure in the suction channel 13 interfere with the fluid.
  • the included angle between the first direction and the second direction is greater than or equal to 90° and less than 180°.
  • the second direction is parallel to or infinitely close to the axis set by the tube lens body 10
  • the first direction is parallel to the axis or diameter set by the tube lens body 10.
  • the included angle between the first direction and the second direction is larger than or equal to 90° and smaller than 180°.
  • the first direction is parallel to or infinitely close to the axis set by the tube lens body 10
  • the included angle between the second direction and the axis is greater than 0° and less than is equal to 90°, correspondingly, the included angle between the first direction and the second direction is greater than or equal to 90° and less than 180°.
  • the included angle between the central axis of the filling port 121 and the central axis of the suction port 131 is greater than 0° and less than or equal to 90°, so that the first direction and the The second direction forms a preset included angle.
  • the filling port 121 and the suction port 131 are not flush in the axial direction set by the tube lens body 10, so that the filling port 121 and the suction port can be extended
  • the distance between 131 and the movement path of the fluid can not only reduce the suction interference of the negative pressure in the suction channel 13 on the fluid, but also, because the fluid flows through a wider area, the fluid can be entrained in the fluid movement There are relatively more gravel on the path, which can improve the efficiency of stone export.
  • the non-alignment of the filling port 121 and the suction port 131 in the axial direction set by the tube lens body 10 means that the filling port 121 and the suction port 131 exist in the axial direction. height difference, the distance between the filling port 121 and the suction port 131 and the front end point located at the front of the tube lens main body 10 is different.
  • the distance between the filling port 121 and the front end point of the tube lens body 10 is greater than the distance between the suction port 131 and the front end point of the tube lens body 10, that is, the The suction port 131 is located in front of the filling port 121 in the axial direction set by the tube lens body 10 , and the suction port 131 is closer to the front end of the tube lens body 10 than the filling port 121 .
  • the distance between the filling port 121 and the front end point of the tube lens body 10 is smaller than the distance between the suction port 131 and the front end point of the tube lens body 10, that is,
  • the perfusion port 121 is located in front of the suction port 131 , and the perfusion port 121 is closer to the front end of the tube lens body 10 than the suction port 131 .
  • the filling port 121 and the suction port 131 may be aligned in the axial direction set by the tube lens body 10, which is not limited by the present application. .
  • the filling port 121 and the suction port 131 are two openings isolated from each other. In some embodiments of the present application, the filling port 121 and the suction port 131 are respectively located on two different surfaces.
  • the filling port 121 formed on the outer peripheral surface 1102 of the pipe structure body 11 mainly occupies the axial dimension of the pipe structure body 11 and is formed at the front end of the pipe structure body 11
  • the suction opening 131 of the surface 1101 mainly occupies the radial dimension of the pipe structure main body 11 .
  • the ureteroscope can achieve a large fluid output under a relatively low fluid injection pressure, reducing the risk of increased pressure in the kidney.
  • the front end surface 1101 of the pipe structure main body 11 is designed to be The second side opposite to one side extends obliquely forward along the axis set by the tube lens main body 10 .
  • the front end surface 1101 is designed to extend obliquely forward from the first side to the second side of the outer peripheral surface 1102 along the axis set by the tube lens main body 10 , the corresponding Compared with the front end surface 1101 which is designed to extend flush from the first side to the second side of the suction channel 13 along the set axial direction of the tube lens body 10, the path of fluid detour is extended, not only The attraction interference received is relatively weakened, and because the fluid flows through a wider area, more gravel can be entrained on the path of fluid movement, which can improve the efficiency of calculus export.
  • the diameter of the perfusion channel 12 is equal to or slightly larger than the diameter of the suction channel 13 to achieve flow balance.
  • the diameter of the perfusion channel 12 is equal to or slightly larger than the diameter of the suction channel 13 means: the sum of the equivalent diameters of all the perfusion channels 12 is equal to or slightly larger than the equivalent diameter of all the suction channels 13 The sum of the effective diameters.
  • the number of the suction port 131 is one, and the number of the infusion port 121 is two.
  • the at least one perfusion channel 12 includes a first perfusion channel and a second perfusion channel, the first perfusion channel has a first perfusion port at the front end 110, and the second perfusion channel has a perfusion port at the front end 110.
  • the second filling port of the front end 110 .
  • the first filling port and the second filling port are arranged opposite to each other.
  • the average value of the first inner diameter of the first perfusion channel and the second inner diameter of the second perfusion channel is greater than or equal to half of the diameter of the suction channel 13 , and the perfusion port 121
  • the size matches the size of the first perfusion channel
  • the size of the suction port 131 matches the size of the suction channel 13 .
  • the average diameter of the first perfusion channel and the second perfusion channel refers to the average value of the equivalent diameter of the first perfusion channel and the equivalent diameter of the second perfusion channel.
  • the diameter of the suction channel 13 refers to the equivalent diameter of the suction channel 13 .
  • the perfusion channel 12 is formed around the suction channel 13 , that is, the perfusion channel 12 is an annular channel formed around the suction channel 13 , or in other words, the cross section of the perfusion channel 12 is circular, and the perfusion channel 12 has two perfusion ports 121 formed on the front end 110 .
  • the outer diameter of the tubular structural body 11 is equal to 4.3 mm
  • the diameter of the suction channel 13 is equal to 2.2 mm
  • the equivalent diameter of the first perfusion channel or the second perfusion channel is greater than or equal to 1.2 mm.
  • the size, shape and quantity of the suction port 131 and the filling port 121 are not limited by the present application, and the size and shape of the suction port 131 and the filling port 121 can be adjusted according to actual application conditions. and quantity to achieve a controlled and orderly fluid loop.
  • the positions of the suction port 131 and the filling port 121 are not limited to the present application, and in other specific examples, the suction port 131 and the filling port 121 can be arranged in other positions .
  • the suction port 131 and the infusion port 121 are respectively provided on the outer peripheral surface 1102 and the front end surface.
  • both the suction port 131 and the filling port 121 are provided on the front end surface 1101 of the pipe structure main body 11 .
  • the at least one perfusion channel 12 includes a first perfusion channel and a second perfusion channel, the first perfusion channel has a first perfusion port at the front end 110, and the second perfusion channel The perfusion channel has a second perfusion port located at the front end 110 , and the first perfusion port and the second perfusion port are located on two sides of the suction port 131 .
  • the suction-in-pipe ureteroscope 100 further includes an image acquisition device 300 and a light source 400 installed on the main body 10 of the tubescope to capture images of the kidney and the stones located in the kidney.
  • the positions of the image capture device 300 and the light source 400 are not limited by the present application.
  • the suction port 131 of the suction channel 13 is located within the visible area of the image capture device 300 to capture the The situation near the suction port 131 is convenient for the user to observe the derivation situation of gravel.
  • the light source 400 may be disposed close to the image capture device 300 to provide sufficient light for the image capture device 300 .
  • the tube lens body 10 includes a The flexible part 1010 and the rigid part 1020 combined with the flexible part 1010 .
  • the rigid part 1020 may extend backward from the flexible part 1010 , or, the rigid part 1020 covers at least a part of the flexible part 1010 to ensure local stiffness of the tube lens body 10 .
  • the operating part 20 further includes a fifth operating end 26 operatively connected to the flexible part 1010 and an operating mechanism 28 installed on the fifth operating end 26, wherein the operating mechanism 28 passes through the
  • the fifth operating end 26 is operatively connected to the flexible part 1010 to control the curvature of the flexible part 1010, so that the tube lens main body 10 can reach different target positions, and the curvature of the flexible part 1010 It can be adjusted according to the actual situation.
  • the operating mechanism 28 includes a control line 281 connected to the flexible portion 1010 and a regulator 282 connected to the control line 281, and the regulator 282 is configured to drive the control line 281
  • the flexible part 1010 is pulled to make the flexible part 1010 bend.
  • the structure of the operating mechanism 28 and the way of controlling the bending of the flexible portion 1010 are not limited to the present application, that is, the operating mechanism 28 can be designed as other structures and control the bending of the flexible portion 1010 in other ways .
  • the flexible portion 1010 includes an active bending part 1011 and a passive bending part 1012.
  • the active bending part 1011 can be bent under the control of the operating part 20 and maintain a bent state.
  • the passive bending part 1012 follows the The bending of the active bending portion 1011 bends.
  • the present application also provides a method for using a suction-in-hit ureteroscope, which includes: S110, extending the lithotripsy mechanism and hitting the stone; S120, guiding the crushed stone to the suction port and clamping it at the suction port gravel at the location; S130, retract the gravel mechanism to the suction port and hit the gravel blocked in the suction port, so that the gravel is discharged from the body through the suction channel.
  • the working process of the aspiration-in-discharge ureteroscope 100 will be described below by taking the application of the suction-in-discharge ureteroscope 100 to remove stone c in the renal pelvis p as an example.
  • step S110 the stone crushing mechanism 30 is extended and stones are struck.
  • the tubescope main body 10 can be inserted to an initial predetermined position.
  • the tube scope main body 10 can enter the kidney along the patient's ureter and reach an initial predetermined position.
  • the image acquisition device 300 provided on the tube lens main body 10 and the image output device 500 communicably connected to the image acquisition device 300 can collect and display the image passing through the tube lens main body 10 The image of the surrounding environment at the location, and cooperate with the guide mechanism 600 to guide the suction-in-hit ureteroscope 100 to the initial predetermined position.
  • the guide mechanism 600 can enter the perfusion channel 12 through the operating part 20, and guide the tube lens body 10 to the initial predetermined position, and the tube lens body 10 can reach the initial predetermined position. , the guide mechanism 600 can be taken out.
  • the lithotripsy mechanism 30 may be placed at the initial predetermined position of the kidney before or after insertion of the tubescope body 10 .
  • the rock crushing mechanism 30 is disposed on the fiber optic channel 14 and protrudes or retracts from the suction port 131 .
  • the flexible part 1010 is controlled to bend by the operating mechanism 28 of the operating part 20, so that the suction port 131 and the perfusion port 121 can be directed towards the calculus c at the target position in the renal pelvis p.
  • the flexible part 1010 can be controlled to bend at a desired degree of curvature according to a target position.
  • the suction-in-beat ureteroscope 100 is used to hit the stone c located in the suprarenal pelvis, the flexible part 1010 is controlled to bend at a first degree of curvature.
  • the ureteroscope 100 is used to beat the stone c located in the middle renal pelvis, the flexible part 1010 is controlled to bend at the second degree of curvature.
  • the suction-in-beat ureteroscope 100 When the suction-in-beat ureteroscope 100 is used to beat
  • the flexible portion 1010 When the stone c located in the inferior renal pelvis is struck, the flexible portion 1010 is controlled to bend at a third degree of curvature, and the third degree of curvature is greater than the second degree of curvature and the first degree of curvature.
  • the lithotripsy mechanism 30 may be implemented as the holmium laser.
  • step S120 guide the gravel to the suction port 131 and clamp the gravel located at the suction port 131, as shown in FIG. 11B .
  • the suction-in-beating ureteroscope can be used to The irrigation port 121 of 100 emits fluid to the target location to impact the debris.
  • fluid can be injected into the perfusion channel 12 through the liquid injection device 700 connected to the operation part 20 , and the fluid can be injected into the target position to impact the gravel.
  • the fluid and gravel In the process of impacting gravel, the fluid and gravel can be attracted by negative pressure suction, and the fluid engulfing the gravel is diverted under the action of negative pressure suction, recoil of renal pelvis, etc., and flows back to the place in the second direction.
  • the suction port 131 of the suction-in-beat ureteroscope 100 is used for the operation of circumventing stones. That is, during the process of crushing the stone, guide the fluid to flow back to the suction port 131 of the suction-in-beat ureteroscope 100 in the second direction, wherein the first direction and the second direction There is a preset angle between them.
  • rubble and fluid can be sucked through the suction device 800 connected to the operation part 20 , so that the fluid and rubble can be discharged through the fluid outlet channel 13 to maintain the pressure in the kidney.
  • the pressure on the fluid and the crushed stones can be adjusted by adjusting the air pressure in the suction channel 13. attraction.
  • the direction of the filling port 121 is the first direction
  • the direction of the suction port 131 is the second direction
  • the fluid can flow from the filling port 121 to the first direction along the perfusion channel 12 .
  • step S130 retract the crushing stone mechanism 30 to the suction port 131 and hit the crushed stone at the suction port 131 , so that the crushed stone is discharged from the body through the suction channel 13 .
  • the stone crushing mechanism can 30 retracts to the suction port 131, and hits the gravel at the suction port 131, so that the gravel is crushed or even pulverized, and then can enter the suction channel 13 smoothly from the suction port 131.
  • the crushed stones are locked or clamped in the suction port 131 , the position of the crushed stones is relatively stable, and the crushed stones mechanism 30 can accurately strike the crushed stones at the suction port 131 .
  • the crushed stone is against the inner peripheral wall of the suction channel 13, and when the impact force generated by the crushing mechanism 30 acts on the crushed stone, the crushed stone will Stones will bear most of the energy generated by the crushing mechanism 30 and are therefore easily crushed.
  • the stone crushing mechanism 30 After the stone crushing mechanism 30 is retracted to the suction port 131, it can also flush away the stones that are stuck in the suction port 131, so that the crushed stones that can pass through the suction port 131 will first pass through the suction port. 131 enters the suction channel 13, so that crushed stones can be quickly exported to improve the efficiency of stone removal. In this way, the stone crushing mechanism 30 can not only hit the distant stone c, but also crush or even pulverize the crushed stone near the suction port 131 to prevent the crushed stone from clogging the suction port 131 of the suction channel 13 .
  • the tube lens main body 10 can be rotated so that the stone breaking mechanism 30 can hit the stone c in multiple directions, The fluid emitted from the pouring port 121 can fully impact on the gravel.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Surgery (AREA)
  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Public Health (AREA)
  • General Health & Medical Sciences (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Engineering & Computer Science (AREA)
  • Biomedical Technology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Medical Informatics (AREA)
  • Molecular Biology (AREA)
  • Animal Behavior & Ethology (AREA)
  • Veterinary Medicine (AREA)
  • Biophysics (AREA)
  • Pathology (AREA)
  • Radiology & Medical Imaging (AREA)
  • Electromagnetism (AREA)
  • Otolaryngology (AREA)
  • Urology & Nephrology (AREA)
  • Endoscopes (AREA)

Abstract

一种吸中打式术用输尿管镜(100),包括:管镜主体(10)、可操作地设置于管镜主体(10)的操作部(20),以及,碎石机构(30);管镜主体(10)包括管结构主体(11)和在管结构主体(11)内从前端部(110)延伸至后端部(120)的吸引通道(13),吸引通道(13)具有位于前端部(110)的吸引口(131);碎石机构(30)可活动地设置于管结构主体(11)内以在第一状态和第二状态之间切换,其中,当处于第一状态时,碎石机构(30)的切割头(32)伸出吸引口(131),用于击打结石,当处于第二状态时,碎石机构(30)的切割头(32)回缩至吸引口(131),用于击打堵塞于吸引口(131)的碎石。吸中打式术用输尿管镜(100)通过"吸中打"的方式避免被击碎的结石在吸引口(131)发生堵塞。

Description

吸中打式术用输尿管镜 技术领域
本申请涉及医疗器械领域,尤其涉及吸中打式术用输尿管镜。
背景技术
近年来,输尿管镜被广泛应用于泌尿系结石疾病的治疗中。具体地,输尿管镜能够自尿道口伸入至输尿管或者肾脏内,医疗工作者可利用输尿管镜配合图像采集设备、照明设备等设备观察肾脏内的情况并击碎目标位置的结石。
在实际应用中,在通过输尿管镜击打结石的过程中,当结石的尺寸较大时,传统的输尿管镜将结石击碎至等效直径为2 mm左右的碎石后难以对其进行粉末化,并且,难以将碎石通过有效的导出机构导出患者体外。因此,通过传统的输尿管镜将结石击碎后,60%-90%的碎石残留于肾脏内,并难以依靠自然排出的方式及时排出体外,这导致碎石的排出率较低。残留的碎石可能在输尿管中形成石街堵塞输尿管,碎石残留是导致结石复发率高的主要原因之一。
为了解决这一问题,能够导出碎石的输尿管镜设计方案被提出。在该设计方案中,输尿管镜设置有碎石排出机构,以将碎石及时排出至体外。然而,在实际应用过程中,碎石容易在输尿管镜的排出机构内发生阻塞,难以被排出患者体外。
因此,需要一种新的结石导出方案,以避免碎石在被导出的过程中发生堵塞。
技术解决方案
本申请的一个优势在于提供了一种吸中打式术用输尿管镜,其中,所述吸中打式术用输尿管镜可通过“吸中打”的方式避免被击碎的结石在吸引口发生堵塞。
本申请的另一个优势在于提供了一种吸中打式术用输尿管镜,其中,所述吸中打式术用输尿管镜的碎石机构不仅可击打形成于肾脏内的结石,而且可击打位于用于导出碎石的吸引通道的吸引口处的碎石,以避免被击碎的结石堵塞于所述吸引口。
本申请的另一个优势在于提供了一种吸中打式术用输尿管镜,其中,所述吸中打式术用输尿管镜可相对快速地将被击碎的结石导出,以提高结石导出效率。
本申请的又一个优势在于提供了一种吸中打式术用输尿管镜,其中,当被击碎的结石被吸引至所述吸引口时,同样位于所述吸引口的碎石机构可对被击碎的结石进行精准击打。
本申请的又一个优势在于提供了一种吸中打式术用输尿管镜,其中,当被击碎的结石被卡止于所述吸引口时,被击碎的结石的位置相对较为稳定,位于所述吸引口的碎石机构更容易将碎石击碎。
在本申请的又一个优势在于提供了一种吸中打式术用输尿管镜,其中,通过对灌注通道的灌注口和吸引通道的吸引口的合理布设,所述吸引口和所述灌注口的设计灵活度相对提高,所述吸引口和所述灌注口的尺寸均可相对增大,这样可使得碎石更加容易通过以防止碎石堵塞于所述吸中打式术用输尿管镜。
通过下面的描述,本申请的其它优势和特征将会变得显而易见,并可以通过权利要求书中特别指出的手段和组合得到实现。
为实现上述至少一优势,根据本申请的一个方面,本申请提供一种吸中打式术用输尿管镜,其包括:
具有前端部和后端部的管镜主体、可操作地耦接于所述管镜主体的后端部的操作部,以及,碎石机构;
所述管镜主体包括:管结构主体;在所述管结构主体内从所述后端部延伸至所述前端部的至少一灌注通道,所述至少一灌注通道具有位于所述前端部的至少一灌注口;以及,在所述管结构主体内从所述前端部延伸至所述后端部的吸引通道,所述吸引通道具有位于所述前端部的吸引口;
所述碎石机构可活动地设置于所述管结构主体内以在第一状态和第二状态之间切换,其中,当处于第一状态时,所述碎石机构的切割头伸出所述吸引口,用于击打结石,当处于第二状态时,所述碎石机构的切割头回缩至所述吸引口,用于击打堵塞于所述吸引口的碎石。
在根据本申请的吸中打式术用输尿管镜中,所述管镜主体进一步包括连通于所述吸引通道的碎石通道,所述碎石机构可伸缩地设置于所述碎石通道,当所述碎石机构处于第一状态时,所述切割头通过所述碎石通道伸入至所述吸引通道以伸出所述吸引口。
在根据本申请的吸中打式术用输尿管镜中,所述碎石通道,包括:主体段和延伸于所述主体段和所述吸引通道之间的连通段,所述连通段连通于所述吸引通道和所述主体段。
在根据本申请的吸中打式术用输尿管镜中,所述连通段的中心轴与所述吸引通道的中心轴之间的夹角为0°-45°。
在根据本申请的吸中打式术用输尿管镜中,所述管结构主体具有前端面和外周面,所述吸引口形成于所述前端面,其中,所述管结构主体的前端面从所述外周面的第一侧向与所述第一侧相对的第二侧沿着所述管径主体所设定的轴向向前倾斜地延伸。
在根据本申请的吸中打式术用输尿管镜中,当所述碎石机构处于第二状态时,所述碎石机构的所述切割头位于所述吸引口的中部区域。
在根据本申请的吸中打式术用输尿管镜中,当所述碎石机构处于第二状态时,所述碎石机构的所述切割头的前端齐平于所述前端面。
在根据本申请的吸中打式术用输尿管镜中,所述碎石通道位于所述吸引通道的侧方。
在根据本申请的吸中打式术用输尿管镜中,所述碎石通道延伸于所述吸引通道和所述管镜主体的后端部之间,所述碎石通道具有连通于所述吸引通道的连通口。
在根据本申请的吸中打式术用输尿管镜中,所述操作部包括连通于所述灌注通道的第一操作端、连通于所述吸引通道的第二操作端和连通于所述碎石通道的第三操作端。
在根据本申请的吸中打式术用输尿管镜中,所述灌注通道的灌注口具有第一朝向,以用于允许流体沿着所述灌注通道从所述灌注口以所述第一朝向指向的第一方向注入肾盂内,所述吸引通道的吸引口具有与所述第一朝向成预设夹角的第二朝向,以用于允许该流体在所述肾盂内被转向后以所述第二朝向指向的第二方向从所述吸引口被吸入所述吸引通道以形成流体回环。
在根据本申请的吸中打式术用输尿管镜中,所述管结构主体具有前端面和形成于所述前端面的外周面,所述灌注口形成于所述管结构主体的所述外周面,所述吸引口形成于所述管结构主体的所述前端面。
通过对随后的描述和附图的理解,本申请进一步的目的和优势将得以充分体现。
本申请的这些和其它目的、特点和优势,通过下述的详细说明,附图和权利要求得以充分体现。
附图说明
通过结合附图对本申请实施例进行更详细的描述,本申请的上述以及其他目的、特征和优势将变得更加明显。附图用来提供对本申请实施例的进一步理解,并且构成说明书的一部分,与本申请实施例一起用于解释本申请,并不构成对本申请的限制。在附图中,相同的参考标号通常代表相同部件或步骤。
图1图示了现有的一种输尿管镜的工作示意图。
图2图示了根据本申请实施例的吸中打式术用输尿管镜的示意图。
图3图示了根据本申请实施例的吸中打式术用输尿管镜的另一示意图。
图4图示了根据本申请实施例的吸中打式术用输尿管镜的管镜主体的示意图。
图5A图示了根据本申请实施例的吸中打式术用输尿管镜的管镜主体的局部示意图之一。
图5B图示了根据本申请实施例的吸中打式术用输尿管镜的管镜主体的局部示意图之二。
图5C图示了根据本申请实施例的吸中打式术用输尿管镜的管镜主体的局部示意图之三。
图5D图示了根据本申请实施例的吸中打式术用输尿管镜的管镜主体的局部示意图之四。
图6A图示了根据本申请实施例的吸中打式术用输尿管镜的管镜主体的局部截面示意图。
图6B图示了根据本申请实施例的吸中打式术用输尿管镜的管镜主体的局部立体示意图。
图7A图示了根据本申请实施例的一个变形实施的吸中打式术用输尿管镜的管镜主体的局部截面示意图。
图7B图示了根据本申请实施例的一个变形实施的吸中打式术用输尿管镜的管镜主体的局部立体示意图。
图8A图示了根据本申请实施例的另一个变形实施的吸中打式术用输尿管镜的管镜主体的局部截面示意图。
图8B图示了根据本申请实施例的另一个变形实施的吸中打式术用输尿管镜的管镜主体的局部立体示意图。
图9A图示了根据本申请实施例的又一个变形实施的吸中打式术用输尿管镜的管镜主体的局部截面示意图。
图9B图示了根据本申请实施例的又一个变形实施的吸中打式术用输尿管镜的管镜主体的局部立体示意图。
图10图示了根据本申请实施例的吸中打式术用输尿管镜的管镜主体的又一局部截面示意图。
图11A图示了根据本申请实施例的吸中打式术用输尿管镜的工作过程示意图之一。
图11B图示了根据本申请实施例的吸中打式术用输尿管镜的工作过程示意图之二。
图11C图示了根据本申请实施例的吸中打式术用输尿管镜的工作过程示意图之三。
图11D图示了根据本申请实施例的吸中打式术用输尿管镜的工作过程示意图之四。
本发明的实施方式
下面,将参考附图详细地描述根据本申请的示例实施例。显然,所描述的实施例仅仅是本申请的一部分实施例,而不是本申请的全部实施例,应理解,本申请不受这里描述的示例实施例的限制。
申请概述
如前所述,在通过输尿管镜击打结石的过程中,当结石的尺寸较大时,传统的输尿管镜将结石击碎至等效直径为2 mm左右的碎石后难以对其进行粉末化,并且,难以将碎石通过有效的导出机构导出患者体外。碎石残留是导致结石复发率高的主要原因之一。
在该设计方案中,输尿管镜设置有碎石排出机构,以将碎石及时排出至体外。然而,在实际应用过程中,碎石容易在输尿管镜的排出机构内发生阻塞,难以被排出患者体外。
具体地,为了将被击碎的结石导出,一些输尿管镜利用负压吸引的原理将被击碎的结石吸引至排出通道,并通过排出通道排出至体外。以通过输尿管镜去除肾盂内的结石为例,如图1所示,首先,用于击碎结石的光纤可自输尿管镜的前端伸出并出射激光,激光能够产生较强的冲击力。接着,激光作用于结石,由于结石嵌顿于肾盂内,结石在受到冲击力后被肾脏相抵,难以后移,并因此承受了激光的大部分能量,进而被击碎。然而刚被击碎的结石处于可移动状态,当激光作用于被击碎的结石(即,碎石)时,因被击碎的结石未被固定,受到冲击力后将被弹开,这使得被击碎的结石难以被进一步击碎。接着,碎石将被吸引至排出通道的排出入口,尺寸较大的碎石被吸引至排出通道的排出入口时或者大量碎石同时涌向排出入口时会堵塞于所述排出入口,导致被击碎的结石难以被排出。
本申请的发明人提出了一种“吸中打”的结石导出方案,通过吸引碎石和击打碎石之间相互配合来避免被击碎的结石在可导出碎石的吸引通道的吸引口发生堵塞。具体地,在通过所述吸引通道内的负压作用将被击碎的结石吸引至所述吸引口的同时,通过位于所述吸引口处的碎石机构对被击碎的结石进行进一步击打。
基于此,本申请提出了一种吸中打式术用输尿管镜,其包括:具有前端部和后端部的管镜主体,包括:管结构主体;在所述管结构主体内从所述后端部延伸至所述前端部的至少一灌注通道,所述至少一灌注通道具有位于所述前端部的至少一灌注口;以及,在所述管结构主体内从所述前端部延伸至所述后端部的吸引通道,所述吸引通道具有位于所述前端部的吸引口;可操作地耦接于所述管镜主体的后端部的操作部;以及,碎石机构,可活动地设置于所述管结构主体内以在第一状态和第二状态之间切换,其中,当处于第一状态时,所述碎石机构的切割头伸出所述吸引口,用于击打结石,当处于第二状态时,所述碎石机构的切割头回缩至所述吸引口,用于击打堵塞于所述吸引口的碎石。
示例性输尿管镜
如图2至图11D所示,根据本申请实施例的所述吸中打式术用输尿管镜100被阐明。为了便于说明,以所述吸中打式术用输尿管镜100应用于治疗肾盂p内的结石c为例对所述吸中打式术用输尿管镜100进行说明。
所述吸中打式术用输尿管镜100可被用于检查肾脏的情况、击碎肾盂p内的结石c,并引导被击碎的结石(即,碎石)排出。在本申请实施例中,所述吸中打式术用输尿管镜100包括具有前端部110和后端部120的管镜主体10、可操作地耦接于所述管镜主体10的所述后端部120的操作部20,以及,用于击打结石的碎石机构30。
在实际应用中,所述管镜主体10作为所述吸中打式术用输尿管镜100的插入部可自尿道伸入至输尿管或者肾脏内,在所述管镜主体10上可设置图像采集设备300和光源400以拍摄肾脏和位于肾脏内的结石的图像。优选地,所述管镜主体10具有光滑的外表面,或者,所述管镜主体10的外表面在进入到患者体内之后是光滑的,以使得所述管镜主体10能够顺利进入肾脏内。如图2所示,所述操作部20作为所述吸中打式术用输尿管镜100与外部设备连接的桥梁能够可通信地连接于图像输出设备500(例如,与所述图像采集设备300可通信地连接的电脑)以获取肾脏的图像,进而便于使用者观察肾盂p内结石c的情况。并且,可操作部件(例如,所述碎石机构30、引导机构600、注液设备700、吸引设备800)可通过所述操作部20进行其他功能性操作。例如,利用通过所述操作部20进入所述管镜主体10的钬激光击打肾盂p内的结石c,再如,利用通过所述操作部20连通于所述管镜主体10的吸引设备800吸引肾脏内的碎石。
具体地,所述管镜主体10包括管结构主体11、至少一灌注通道12、吸引通道13,如图4所示。所述至少一灌注通道12在所述管结构主体11内从所述后端部120延伸至所述前端部110,所述吸引通道13在所述管结构主体11从所述前端部110延伸至所述后端部120。并且,优选地,所述灌注通道12和所述吸引通道13相互独立,以使得通过所述灌注通道12引导流体到达肾脏内冲击碎石、将裹挟着碎石的流体吸引至所述吸引通道13能够同时进行,且避免冲击碎石和吸引碎石之间互相干扰。
所述至少一灌注通道12具有位于所述前端部110的至少一灌注口121和连通于所述至少一灌注口121的至少一第一操作口122,流体可从所述灌注口121到达肾脏并冲击肾脏内的碎石。所述吸引通道13具有位于所述前端部110的吸引口131和连通于所述吸引口131的第二操作口132,被击碎的结石可被吸引至所述吸引口131并从所述吸引口131进入所述吸引通道13,以通过所述吸引通道13被排出。
相应地,所述操作部20包括操作主体21、设置于所述操作主体21并连通于所述灌注通道12的第一操作端22和设置于所述操作主体21并连通于所述吸引通道13的第二操作端23。所述操作部20通过其连通于所述第一操作口122的所述第一操作端22连通于所述灌注通道12,并通过其连通于所述第二操作口132的所述第二操作端23连通于所述吸引通道13。所述第一操作端22适于连接注液设备700,并允许所述注液设备700通过所述灌注通道12将流体注入至肾盂p内以冲击碎石,所述第二操作端23适于连接吸引设备800(例如,气泵),并允许所述吸引设备800通过所述吸引通道13吸引所述吸引通道13附近的流体和碎石。为了控制所述吸引通道13内的负压,在本申请的一个具体实施方式中,所述操作部20进一步包括负压调节器27,所述负压调节器27被配置为调节所述吸引通道13内的气压,如图3和图4所示。
应可以理解,所述第一操作端22和所述第二操作端23的作用并不为本申请所局限。所述第一操作端22和所述第二操作端23也适于允许其他设备进行其他功能性操作。例如,所述第一操作端22适于允许引导机构600穿过所述灌注通道12,并引导所述管镜主体10到达目标位置。也应可以理解,所述操作部20也可包括其他操作端,以允许其他设备进行其他功能性操作。
特别地,在本申请实施例中,所述吸引通道13不仅允许碎石被吸引至其吸引口131,而且允许所述碎石机构30的切割头32伸出所述吸引口131或者回缩至所述吸引口131以击打堵塞于所述吸引口131的碎石。具体地,所述碎石机构30包括碎石主体31和形成于所述碎石主体31的切割头32,所述碎石机构30可活动地设置于所述管结构主体11内以在第一状态和第二状态之间切换。当所述碎石机构30处于第一状态时,所述碎石机构30的切割头32伸出所述吸引口131,用于击打碎石,当所述碎石机构30处于第二状态时,所述碎石机构30的切割头32回缩至所述吸引口131,用于击打堵塞于所述吸引口131的碎石。也就是,所述碎石机构30不仅能够用于击打形成于肾盂p内的结石c,而且能够对被击碎并且堵塞于用于导出结石的通道的碎石进行进一步击打。
值得一提的是,当所述碎石机构30处于第一状态时,所述碎石机构30从所述吸引口131伸出,被击碎后的结石与所述吸引口131相对,更加容易被吸引至所述吸引口131,可提高结石导出效率。
在实际应用中,一些被击碎的结石尺寸较大,达到所述吸引口131处时将堵塞所述吸引口131,难以被导出并阻碍其他碎石被导出,影响结石导出效率,因此需要被进一步击碎。然而刚被击碎的结石处于可移动状态,利用碎石机构30击打可移动的碎石时,一方面,由于可移动的碎石的位置不断变化,碎石机构30难以瞄准,另一方面,如前所述,因被击碎的结石未被固定,受到冲击力后将被弹开,使得碎石难以被导出。
在本申请实施例中,吸引碎石和击打碎石之间可相互配合,以实现对碎石的精准击打,并提高结石导出效率。具体地,被击碎的结石可被吸引至所述吸引口131,所述碎石机构30可切换至第二状态,即,回缩至所述吸引口131,进而对同样位于所述吸引口131处的碎石进行精准击打,被击碎的碎石可通过所述吸引口131进入所述吸引通道13,进而被导出体外。并且,堵塞于所述吸引口131的碎石被卡止于所述吸引口131,位置相对较为稳定。在所述碎石机构30击打所述碎石的过程中,碎石相抵于所述吸引通道13的内周壁,当所述碎石机构30产生的冲击力作用于碎石时,碎石将承受所述碎石机构30产生的大部分能量,因此更加容易被击碎,通过这样的方式,被击碎的结石能够相对快速地被导出,以提高结石导出效率。
当过多的碎石被同时吸引至所述吸引口131时也会堵塞所述吸引口131,所述碎石机构30同样可切换至第二状态,将至少部分碎石击碎或者将多块碎石冲散,使得所述吸引口131保持开放状态,以让碎石快速通过所述吸引口131进入所述吸引通道13,进而被导出体外,以提高结石导出效率。
值得一提的是,所述碎石机构30的类型并不为本申请所局限,所述碎石机构30可被实施为钬激光或者其他类型的能够击打结石c的工具。所述钬激光可出射激光,钬激光产生的能量可使得结石c和所述钬激光之间的水形成微小空泡,并将能量传递至结石c,以击打结石c。在所述钬激光击打结石c的过程中,水吸收了大量能量,可减少钬激光对结石c周围的组织的损伤。
进一步地,所述管镜主体10进一步包括连通于所述吸引通道13的碎石通道14,所述碎石机构30可伸缩地设置于所述碎石通道14,当所述碎石机构30处于第一状态时,所述切割头32通过所述碎石通道14并延伸至所述吸引通道13以伸出所述吸引口131,也就是说,所述碎石机构30的切割头32能够沿着所述碎石通道14进入所述吸引通道13,并伸出所述吸引口131。
在本申请实施例中,所述碎石通道14延伸于所述吸引通道13和所述管镜主体10的所述后端部120之间,所述碎石通道14具有连通于所述吸引通道13的连通口141和连通于所述连通口141并位于所述后端部120的第三操作口142。
相应地,所述操作部20进一步包括连通于所述碎石通道14的第三操作端24,所述操作部20通过连通于所述第三操作口142的所述第三操作端24连通于所述碎石通道14。所述第三操作端24允许所述碎石机构30通过并从与其连通的所述第三操作口142进入所述碎石通道14和与所述碎石通道14连通的吸引通道13。也就是说,所述碎石机构30能够通过所述操作部20的所述第三操作端24从所述第三操作口142进入所述碎石通道14和与所述碎石通道14连通的吸引通道13,进而进入肾脏内对结石c进行击打。
在本申请实施例中,所述碎石通道14包括主体段143和延伸于所述主体段143和所述吸引通道13之间的连通段144,所述连通段144具有与所述吸引通道13连通的所述连通口141,并藉由所述连通口141连通于所述吸引通道13,并且,所述连通段144从所述主体段143沿着预设方向斜向上地延伸至所述吸引通道13。在本申请的一个具体示例中,所述预设延伸方向与所述吸引通道13的中心轴之间的夹角为0°-45°。相应地,所述连通段144的中心轴与所述吸引通道13的中心轴之间的夹角为0°-45°,所述碎石机构30的切割头23能够沿着所述连通段144以相对于所述吸引通道13的中心轴倾斜45°角的方向伸入至所述吸引口131。应可以理解,所述连通段144越陡立,其中心轴与所述吸引通道13的中心轴越接近重合,所述碎石机构30越快通过所述吸引通道13并伸出所述吸引口131。所述连通段144与所述吸引通道13的中心轴之间的夹角也可以为其他角度,例如,30°,60°,对此,并不为本申请所局限。
进一步地,在该具体示例中,当所述碎石机构30处于第二状态时,所述碎石机构30的所述切割头32位于所述吸引口131的中部区域。具体地,在所述碎石机构30从第一状态切换至所述第二状态的过程中,所述碎石机构30能够沿着所述连通段144以所述预设方向的反方向回缩,当所述碎石机构30回缩至所述吸引口131时,所述碎石机构30的所述切割头32位于所述吸引口131的中部区域。
值得一提的是,堵塞于所述吸引口131的碎石与所述吸引通道13的内周壁相抵的位置是不确定的,从所述吸引口131的形成于所述中部区域周围的周缘区域击打碎石时,碎石可能仍然被卡止于所述吸引口131,碎石效率较低。例如,碎石的第一位置和第二位置分别相抵于形成第一周缘区域的内周壁和形成第二周缘区域的内周壁,进而被卡止于所述吸引口131,当所述碎石机构30从所述第一周缘区域击打碎石的第一位置或者从所述第二周缘区域击打碎石的第二位置时,随着第一位置处或者第二位置处的碎裂碎石可能从所述吸引口131脱离,进入所述吸引通道13。然而,当所述碎石机构30击打碎石的悬空于所述吸引口131的位置时,碎石的第一位置或者第二位置可能仍然与内周壁相抵,被卡在所述吸引口131。当碎石机构30从所述吸引口131的中部区域击打碎石时,所述吸引口131的中部区域对应的碎石的中部位置被击碎,碎石将从所述吸引口131脱离。因此,优选地,当所述碎石机构30处于第二状态时,所述碎石机构30的所述切割头32位于所述吸引口131的中部区域。应可以理解,当所述碎石机构30处于第二状态时,所述碎石机构30的所述切割头32也可位于所述吸引口131的其他位置,对此,并不为本申请所局限。
在该具体示例中,所述管结构主体11具有前端面1101和形成于所述前端面1101的外周侧的外周面1102,所述管结构主体11的所述前端面1101从所述外周面1102的第一侧向与所述第一侧相对的第二侧沿着所述管镜主体10所设定的轴向向前倾斜地延伸。例如,所述管结构主体11的所述前端面1101从所述外周面1102所设定的下侧向与所述下侧相对的上侧沿着所述管镜主体10所设定的轴向向前倾斜地延伸,如图5A所示。
具体地,所述前端面1101可被设计为形成于所述外周面1102的第一侧和第二侧之间的凸形斜面、凹形斜面、波形斜面,以及其他类型的斜面,对此,并不为本申请所局限。在本申请的一个具体示例中,所述前端面1101被设计为形成于所述外周面1102的第一侧和第二侧之间的中部下凹的波形斜面。
应可以理解,在其他实施方式中,所述管结构主体11的所述前端面1101也可被设计为所述管结构主体11的所述前端面1101从所述外周面1102的第一侧向与所述第一侧相对的第二侧沿着所述管镜主体10所设定的轴向齐平地延伸(即,所述前端面1101的靠近所述吸引通道13的第一侧的一端在所述管镜主体10所设定的轴向上齐平于其靠近吸引通道13的第二侧的一端),对此,并不为本申请所局限。
进一步地,所述吸引口131形成于所述前端面1101,并且,所述吸引口131从所述吸引通道13的第一侧向与所述第一侧相对的第二侧沿着所述管镜主体10所设定的轴向向前倾斜地延伸,其中,所述外周面1102的第一侧对应于所述吸引通道13的第一侧,所述外周面1102的第二侧对应于所述吸引通道13的第二侧。相应地,所述吸引口131的形状近似椭圆。所述碎石机构30处于第二状态时,所述碎石机构30的所述切割头32的前端齐平于所述吸引口131的外缘形成的面。所述吸引口131的外缘指的是,所述吸引通道13的内周壁的内周缘。相应地,当所述吸引口131形成于所述前端面1101时,所述切割头32的前端齐平于所述前端面1101。
值得一提的是,所述前端面1101被设计为从所述外周面1102的第一侧向第二侧沿着所述管镜主体10所设定的轴向向前倾斜地延伸时,可为所述吸引口131提供相对较大的分布空间,相应地,所述吸引口131的尺寸相对增大,可允许较多的碎石通过所述吸引通道13,避免碎石堵塞所述吸引口131,提高结石导出效率。
在本申请实施例中,所述碎石通道14形成于所述吸引通道13的侧方,例如,所述碎石通道14可形成于所述吸引通道13的第一侧,如图6A和6B所示;也可形成于所述吸引通道13的与所述第一侧相对的第二侧,如图7A和7B所示;还可形成于所述吸引通道13的第一侧和第二侧之间的第三侧,如图8A和图8B所示;或者,可形成于所述吸引通道13的与所述第三侧相对的第四侧,如图9A和图9B所示。
当所述前端面1101和所述吸引口131被设计为:所述前端面1101从所述外周面1102的第一侧向与所述第一侧相对的第二侧沿着所述管镜主体10所设定的轴向向前倾斜地延伸,所述吸引口131从所述吸引通道13的第一侧向与所述第一侧相对的第二侧沿着所述管镜主体10所设定的轴向向前倾斜地延伸时,所述吸引口131整体的形状与椭圆相近,所述吸引口131设有一长轴L1和一短轴L2,所述吸引口131具有位于所述长轴L1上的第一端点11011和第二端点11012,以及,位于所述短轴L2上的第三端点11013和第四端点11014。所述第一端点11011和所述第二端点11012相对,且所述前端面1101的所述第一端点11011相对于所述第二端点11012较后,也就是,所述第一端点11011位于所述第二端点11012的后方。所述第三端点11013和第四端点11014相对,均位于所述第一端点11011位于所述第二端点11012之间。
所述第一侧是指靠近所述第一端点11011的一侧,所述第二侧是指靠近所述第二端点11012的一侧,所述第三侧是指靠近所述第三端点11013的一侧,所述第四侧是指靠近第四端点11014的一侧。应可以理解,所述碎石通道14可形成于所述吸引通道13的其他侧,例如,所述第一侧和所述第三侧之间的第五侧,对此,并不为本申请所局限。
值得一提的是,所述碎石通道14形成于所述吸引通道13的侧方,并且所述碎石机构30可伸缩地设置于所述碎石通道14内,当所述碎石机构30处于所述第一状态或者第二状态时,仅所述碎石机构30的包括所述切割头32的前部位于所述吸引通道13中,所述碎石机构30的后部位于所述碎石通道14内,不占用所述吸引通道13内的空间,这样,可避免所述碎石机构30影响碎石通过所述吸引通道13。
在本申请实施例的变形实施方式中,所述碎石通道14可形成于所述吸引通道13内,或者所述管结构主体11的其他通道内,对此,并不为本申请所局限。
在本申请实施例中,所述灌注通道12、所述吸引通道13和所述碎石通道14的形成方式并不为本申请所局限。所述灌注通道12、所述吸引通道13和所述碎石通道14可由所述管结构主体11本身具有的多个孔形成,也可由多个空心管体共同配合形成,对此,并不为本申请所局限。
在实际应用中,所述管镜主体10伸入肾脏后,所述碎石机构30(例如,钬激光)可穿过所述管镜主体10到达肾脏内并击打结石c。在所述钬激光击打结石c的过程中,所述灌注通道12可引导流体自其所述灌注口121出射以冲击碎石,并且裹挟着碎石运动。所述吸引通道13内的气压处于负压状态,因此,当流体裹挟着碎石运动至靠近所述吸引口131的位置时,流体和碎石被吸引至所述吸引通道13,而流体在冲击碎石的过程中可能被吸引通道13内的吸引力干扰。
特别地,在本申请的一些具体示例中,通过调整所述灌注口121和所述吸引口131的相对位置关系、控制流体的流向来减弱流体受到的吸引干扰,进而提高结石导出效率。所述灌注通道12的灌注口121具有第一朝向,以用于允许流体沿着所述灌注通道12从所述灌注口121以所述第一朝向指向的第一方向注入所述肾盂p内,所述吸引通道13的吸引口131具有与所述第一朝向成预设夹角的第二朝向,以用于允许该流体在所述肾盂p内被转向后以所述第二朝向指向的第二方向从所述吸引口131被吸入所述吸引通道13以形成流体回环,如图10所示。
所述第二朝向与所述第一朝向不同,且所述第一方向与所述第一朝向相同,所述第二方向与所述第二朝向相反,使得所述第一方向和所述第二方向之间的夹角不为0°或者180°,也就是,所述第一方向和所述第二方向不同向,也不互为反方向。这样,从所述灌注口121沿着所述第一方向出射的流体经过转向后沿着与所述第一方向存在夹角的第二方向回流,形成涡流式的流体回环,可避免流体从所述灌注口121沿着所述第一方向出射后直接沿着所述第一方向的反方向回流至与所述灌注口121朝向相同的吸引口131,进而减弱所述吸引通道13内的负压对所述流体造成干扰。
值得一提的是,在本申请的其他具体示例中,所述第一朝向和所述第二朝向可相同,所述第一方向和所述第二方向也可以同向或者互为反方向,对此,并不为本申请所局限。
在本申请实施例中,所述第一方向与所述第二方向的夹角大于等于90°且小于180°。在一个具体示例中,所述第二方向平行于或者无限接近于所述管镜主体10所设定的轴向,所述第一方向与所述管镜主体10所设定的轴向或径向之间的夹角大于0°小于等于90°,相应地,所述第一方向与所述第二方向的夹角大于等于90°且小于180°。在另一个具体示例中,所述第一方向平行于或者无限接近于所述管镜主体10所设定的轴向,所述第二方向与所述轴向之间的夹角大于0°小于等于90°,相应地,所述第一方向与所述第二方向的夹角大于等于90°且小于180°。
在本申请的一个具体实施方式中,所述灌注口121的中轴线和所述吸引口131的中轴线之间的夹角大于0°小于等于90°,以使得所述第一方向和所述第二方向成预设夹角。
在本申请实施例中,所述灌注口121和所述吸引口131在所述管镜主体10所设定的轴向上不齐平,这样,可延长所述灌注口121和所述吸引口131之间的距离,以及流体的运动路径,不仅可以减少所述吸引通道13内的负压对流体的吸引干扰,而且,由于流体流经的区域范围更广,流体能够裹挟的处于流体的运动路径上的碎石相对更多,可以提高结石导出效率。
这里,所述灌注口121和所述吸引口131在所述管镜主体10所设定的轴向上不齐平指的是,所述灌注口121和所述吸引口131在轴向上存在高度差,所述灌注口121和所述吸引口131分别与位于所述管镜主体10的最前方的前端点之间的距离不同。在一个具体示例中,所述灌注口121与所述管镜主体10的前端点之间的距离大于所述吸引口131与所述管镜主体10的前端点之间的距离,也就是,所述吸引口131在所述管镜主体10所设定的轴向上位于所述灌注口121的前方,所述吸引口131比所述灌注口121更加靠近所述管镜主体10的前端点。在另一个具体示例中,所述灌注口121与所述管镜主体10的前端点之间的距离小于所述吸引口131与所述管镜主体10的前端点之间的距离,也就是,所述灌注口121位于所述吸引口131的前方,所述灌注口121比所述吸引口131更加靠近所述管镜主体10的前端点。
在本申请实施例的变形实施方式中,所述灌注口121和所述吸引口131在所述管镜主体10所设定的轴向上可齐平,对此,并不为本申请所局限。
在本申请实施例中,所述灌注口121和所述吸引口131为相互隔离的两个开口。在本申请的一些实施例中,所述灌注口121和所述吸引口131分别位于两个不同的面。
在本申请的一个具体示例中,所述灌注口121形成于所述管结构主体11的所述外周面1102,所述吸引口131形成于所述管结构主体11的所述前端面1101,如图5A至图5D所示。这样,所述灌注口121朝侧向开放,所述吸引口131朝前开放,流体从形成于所述管结构主体11的外周面1102的所述灌注口121以所述第一方向注入所述肾盂p内,并且被转向后需绕过所述外周面1102以所述第二方向从所述吸引口131被吸入所述吸引通道13,形成涡流式的流体回环,可减弱流体受到的吸引干扰。
特别地,在该具体示例中,形成于所述管结构主体11的外周面1102的所述灌注口121主要占用所述管结构主体11的轴向尺寸,形成于所述管结构主体11的前端面1101的所述吸引口131主要占用所述管结构主体11的径向尺寸。这样,无需在所述管结构主体11的径向尺寸有限的条件下协调所述灌注口121和所述吸引口131在所述管结构主体11的径向上占用的空间比例,所述吸引口131和所述灌注口121的尺寸均可相对增大,所述吸引口131和所述灌注口121的形状、数量的设计灵活度也相对提高。通过对所述灌注口121和所述吸引口131的合理布设,在保证所述吸引通道13的吸引口131的尺寸以使得流体和碎石顺利通过的同时,可保证所述灌注通道12的灌注口121的出液量。
当所述灌注口121的出液量较大时,一方面,从所述灌注口121出射的流体的射程相对延长,对碎石的冲击力相对增大,受到的吸引干扰相对减弱,结石导出效率相对提高。另一方面,所述输尿管镜可在相对较低的注液压力下实现较大的出液量,降低了肾脏内压力升高的风险。
值得一提的是,如前所述,在本申请的一些实施例中,所述管结构主体11的所述前端面1101被设计为从所述外周面1102的第一侧向与所述第一侧相对的第二侧沿着所述管镜主体10所设定的轴向向前倾斜地延伸。值得一提的是,当所述前端面1101设计为从所述外周面1102的第一侧向第二侧沿着所述管镜主体10所设定的轴向向前倾斜地延伸时,相比于所述前端面1101被设计为从所述吸引通道13的第一侧向第二侧沿着所述管镜主体10所设定的轴向齐平地延伸,流体绕行的路程延长,不仅受到的吸引干扰相对减弱,而且由于流体流经的区域范围更广,能够裹挟的处于流体的运动路径上的碎石更多,可提高结石导出效率。
值得一提的是,优选地,所述灌注通道12的直径尺寸等于或者略大于所述吸引通道13的直径尺寸,以实现流量平衡。这里,所述灌注通道12的直径尺寸等于或者略大于所述吸引通道13的直径尺寸指的是:所有所述灌注通道12的等效直径之和等于或者略大于所有所述吸引通道13的等效直径之和。
在本申请的一个具体实施方式中,所述吸引口131的数量为1,所述灌注口121的数量为2。相应地,所述至少一灌注通道12包括第一灌注通道和第二灌注通道,所述第一灌注通道具有位于所述前端部110的第一灌注口,所述第二灌注通道具有位于所述前端部110的第二灌注口。优选地,所述第一灌注口和所述第二灌注口被相对地设置。
在该实施方式中,所述第一灌注通道的第一内径和所述第二灌注通道的第二内径的均值大于等于所述吸引通道13的直径的二分之一,所述灌注口121的尺寸与所述第一灌注通道的尺寸相匹配,所述吸引口131的尺寸与所述吸引通道13的尺寸相匹配。这里,所述第一灌注通道和所述第二灌注通道的平均直径是指所述第一灌注通道的等效直径和所述第二灌注通道的等效直径的平均值。所述吸引通道13的直径指的是所述吸引通道13的等效直径。更具体地,所述管结构主体11的外径等于4.3毫米,所述吸引通道13的直径等于2.2毫米,所述第一灌注通道或者所述第二灌注通道的等效直径大于等于1.2毫米。
在本申请的另一个具体实施方式中,所述灌注通道12环绕地形成于所述吸引通道13的周围,也就是,所述灌注通道12为环绕地形成于所述吸引通道13周围的环形通道,或者说,所述灌注通道12的横截面为环形,所述灌注通道12具有形成于所述前端部110的两个灌注口121。在该具体实施方式中,所述管结构主体11的外径等于4.3毫米,所述吸引通道13的直径等于2.2毫米,所述第一灌注通道或者所述第二灌注通道的等效直径大于等于1.2毫米。
应可以理解,所述吸引口131和所述灌注口121的尺寸、形状和数量并不为本申请所局限,可根据实际应用情况调整所述吸引口131和所述灌注口121的尺寸、形状和数量以实现可控有序的流体回环。
值得一提的是,所述吸引口131和所述灌注口121的位置并不为本申请所局限,在其他具体示例中,所述吸引口131和所述灌注口121可被设置于其他位置。在本申请的另一个具体示例中,所述吸引口131和所述灌注口121分别被设置于所述外周面1102和所述前端面。
在本申请的又一个具体示例中,所述吸引口131和所述灌注口121均被设置于所述管结构主体11的所述前端面1101。具体地,在该具体示例中,所述至少一灌注通道12包括第一灌注通道和第二灌注通道,所述第一灌注通道具有位于所述前端部110的第一灌注口,所述第二灌注通道具有位于所述前端部110的第二灌注口,所述第一灌注口和所述第二灌注口分居于所述吸引口131的两侧。
在本申请实施例中,所述吸中打式术用输尿管镜100进一步包括安装于所述管镜主体10的图像采集设备300和光源400,以拍摄肾脏和位于肾脏内的结石的图像。所述图像采集设备300和光源400的位置并不为本申请所局限,优选地,所述吸引通道13的所述吸引口131位于所述图像采集设备300的可视区域内,以采集所述吸引口131附近的情况,以便于使用者观察碎石的导出情况。所述光源400可设置于靠近所述图像采集设备300的位置,以为所述图像采集设备300提供足够的光量。
相应地,所述操作部20进一步包括可通信地连接于所述图像采集设备300的第四操作端25。并且,所述图像输出设备500(例如,与所述图像采集设备300可通信地连接的电脑)可通过所述操作部20可通信地连接于所述图像采集设备300以获取肾脏的图像,以便于使用者观察所述肾盂p内的结石c的情况。
值得一提的是,为了在保证所述管镜主体10能够弯曲以到达不同目标位置的同时保证所述管镜主体10的挺度,所述管镜主体10包括邻近于所述前端部110的柔性部1010和结合于所述柔性部1010的刚性部1020。所述刚性部1020可自所述柔性部1010向后延伸,或者,所述刚性部1020包覆所述柔性部1010的至少一部分,以保证所述管镜主体10的局部挺度。
相应地,所述操作部20进一步包括可操作地连接于所述柔性部1010的第五操作端26和安装于所述第五操作端26的操作机构28,其中,所述操作机构28通过所述第五操作端26可操作地连接于所述柔性部1010,以控制所述柔性部1010的弯曲度,使得所述管镜主体10可到达不同目标位置,并且,其柔性部1010的弯曲度可根据实际情况调整。在一个具体示例中,所述操作机构28包括连接于所述柔性部1010的控制线281和连接于所述控制线281的调节器282,所述调节器282被配置为驱动所述控制线281牵引所述柔性部1010以使得所述柔性部1010发生弯曲。所述操作机构28的结构和控制所述柔性部1010弯曲的方式并不为本申请所局限,也就是,所述操作机构28可被设计为其他结构并通过其他方式控制所述柔性部1010弯曲。
在一个具体示例中,所述管镜主体10的所述前端部110的至少一部分为所述柔性部1010,使得所述灌注通道12和所述吸引通道13可弯曲,所述吸引口131和所述灌注口121能够朝向目标位置的结石c。所述柔性部1010包括主动弯曲部分1011和被动弯曲部分1012,所述主动弯曲部分1011可在所述操作部20的操控作用下弯曲,并且维持弯曲状态,所述被动弯曲部分1012随着所述主动弯曲部分1011的弯曲而弯曲。
本申请还提供了一种吸中打式术用输尿管镜的使用方法,其包括:S110,伸出碎石机构并击打结石;S120,导引碎石至吸引口处并夹持位于吸引口处的碎石;S130,回缩所述碎石机构至所述吸引口并击打堵塞于所述吸引口的碎石,以使得碎石通过所述吸引通道被排出体外。
下面以所述吸中打式术用输尿管镜100应用于去除肾盂p内的结石c为例对所述吸中打式术用输尿管镜100的工作过程进行说明。
在步骤S110中,伸出碎石机构30并击打结石。在通过碎石机构30击打结石之前,需要进行准备工作。具体地,首先,可插入管镜主体10至初始预定位置。具体地,所述管镜主体10可沿着患者的输尿管进入肾脏,并到达初始预定位置。在这一过程中,可藉由设置于所述管镜主体10的图像采集设备300和与所述图像采集设备300可通信地连接的图像输出设备500采集并显示所述管镜主体10途经之处的周围环境的图像,并且配合引导机构600引导所述吸中打式术用输尿管镜100到达所述初始预定位置。具体地,所述引导机构600可通过所述操作部20进入所述灌注通道12,并引导所述管镜主体10到达所述初始预定位置,所述管镜主体10到达所述初始预定位置后,可取出所述引导机构600。
在插入所述管镜主体10之前或者插入所述管镜主体10之后,可将所述碎石机构30置于肾脏的所述初始预定位置。具体地,所述碎石机构30设置于所述光纤通道14,并从所述吸引口131伸出或者缩回。
接着,通过所述操作部20的所述操作机构28控制所述柔性部1010弯曲,使得所述吸引口131和所述灌注口121能够朝向肾盂p内目标位置的结石c。
在通过所述操作部20的所述操作机构28控制所述柔性部1010弯曲的过程中,可根据目标位置控制所述柔性部1010以预期的弯曲度弯曲。当所述吸中打式术用输尿管镜100被用于对位于肾上盂的结石c进行击打时,所述柔性部1010被控制以第一弯曲度弯曲,当所述吸中打式术用输尿管镜100被用于对位于肾中盂的结石c进行击打时,所述柔性部1010被控制以第二弯曲度弯曲,当所述吸中打式术用输尿管镜100被用于对位于肾下盂的结石c进行击打时,所述柔性部1010被控制以第三弯曲度弯曲,所述第三弯曲度大于所述第二弯曲度和所述第一弯曲度。
在通过所述碎石机构30击打结石c的过程中,如图11A所示,可将所述碎石机构30伸出至所述吸引口131的前方,以对处于所述目标位置的结石c进行击打,所述碎石机构30可被实施为所述钬激光。
在步骤S120中,导引碎石至吸引口131处并夹持位于吸引口131处的碎石,如图11B所示。具体地,在通过所述碎石机构30对结石c进行击打的过程中,或者,在通过所述碎石机构30将结石c击碎后,可从所述吸中打式术用输尿管镜100的灌注口121出射流体至目标位置以冲击碎石。具体地,可通过连接所述操作部20的所述注液设备700向所述灌注通道12注入流体,并使得所述流体被注入至目标位置以冲击碎石。
在冲击碎石的过程中,可通过负压吸引的方式吸引流体和碎石,裹挟着碎石的流体在负压吸引、肾盂p反冲等作用下被转向,并以第二方向回流至所述可回环排石的术用所述吸中打式术用输尿管镜100的吸引口131。也就是,在冲击碎石的过程中,导引该流体以第二方向回流至所述吸中打式术用输尿管镜100的吸引口131,其中,所述第一方向与所述第二方向之间具有预设夹角。具体地,可通过连接所述操作部20的所述吸引设备800吸引碎石和流体,使得所述流体和碎石通过所述出液通道13排出以维持肾脏内的压力。在将碎石吸引至所述吸中打式术用输尿管镜100的吸引通道13的吸引口131处的过程中,可通过调节所述吸引通道13内的气压调节对所述流体和碎石的吸引力。
在申请实施例中,所述灌注口121的朝向为第一朝向,所述吸引口131的朝向为第二朝向,流体可沿着所述灌注通道12从所述灌注口121以所述第一朝向指向的第一方向注入肾盂p内,并被转向后以所述第二朝向指向的第二方向从所述吸引口131被吸入所述吸中打式术用输尿管镜100的所述吸引通道13以形成流体回环。
在将碎石导引至所述吸引口131的过程中,一些尺寸较大的碎石将被夹持于所述吸引口131,导致所述吸引口131被堵塞。相应地,可所述碎石机构30击碎碎石或者将碎石冲开。
相应地,在步骤S130中,回缩所述碎石机构30至所述吸引口131并击打所述吸引口131处的碎石,以使得碎石通过所述吸引通道13被排出体外。具体地,如图11C和11D所示,当被击碎的结石被流体冲击至或者被吸引至所述吸引口131并被夹持于所述吸引口131处时,可将所述碎石机构30回缩至所述吸引口131,并对所述吸引口131处的碎石进行击打,使得碎石碎化甚至粉末化,进而能够从所述吸引口131顺利进入所述吸引通道13。
值得一提的是,由于碎石被卡止或者夹持于所述吸引口131,碎石的位置较为稳定,所述碎石机构30可对吸引口131处的碎石进行精准击打。并且,在所述碎石机构30击打所述碎石的过程中,碎石相抵于所述吸引通道13的内周壁,当所述碎石机构30产生的冲击力作用于碎石时,碎石将承受所述碎石机构30产生的大部分能量,因此容易被击碎。
所述碎石机构30缩回至所述吸引口131后,也可将被卡止于所述吸引口131的结石冲开,让能够通过所述吸引口131的碎石先从所述吸引口131进入所述吸引通道13,这样,可将被击碎的结石快速地导出,以提高结石导出效率。这样,碎石机构30不仅能够击打远处的结石c,而且能够碎化甚至粉末化所述吸引口131附近的碎石,以防止碎石堵塞于所述吸引通道13的吸引口131。
值得一提的是,在通过所述碎石机构30对结石c进行击打的过程中,可转动所述管镜主体10,使得所述碎石机构30可对结石c进行多方位击打,从所述灌注口121出射的流体可对碎石进行全面冲击。
综上,基于本申请实施例的所述吸中打式术用输尿管镜100和利用输尿管镜去除结石的方法被阐明,其中,所述吸中打式术用输尿管镜100通过“吸中打”的结石导出方案来避免被击碎的结石发生堵塞,以提高结石导出效率。
本领域的技术人员应理解,上述描述及附图中所示的本发明的实施例只作为举例而并不限制本发明。本发明的目的已经完整并有效地实现。本发明的功能及结构原理已在实施例中展示和说明,在没有背离所述原理下,本发明的实施方式可以有任何变形或修改。

Claims (12)

  1. 一种吸中打式术用输尿管镜,其特征在于,包括:
    具有前端部和后端部的管镜主体、可操作地耦接于所述管镜主体的后端部的操作部,以及,碎石机构;
    所述管镜主体包括:管结构主体;在所述管结构主体内从所述后端部延伸至所述前端部的至少一灌注通道,所述至少一灌注通道具有位于所述前端部的至少一灌注口;以及,在所述管结构主体内从所述前端部延伸至所述后端部的吸引通道,所述吸引通道具有位于所述前端部的吸引口;
    所述碎石机构可活动地设置于所述管结构主体内以在第一状态和第二状态之间切换,其中,当处于第一状态时,所述碎石机构的切割头伸出所述吸引口,用于击打结石,当处于第二状态时,所述碎石机构的切割头回缩至所述吸引口,用于击打堵塞于所述吸引口的碎石。
  2. 根据权利要求1所述的吸中打式术用输尿管镜,其中,所述管镜主体进一步包括连通于所述吸引通道的碎石通道,所述碎石机构可伸缩地设置于所述碎石通道,当所述碎石机构处于第一状态时,所述切割头通过所述碎石通道伸入至所述吸引通道以伸出所述吸引口。
  3. 根据权利要求2所述的吸中打式术用输尿管镜,其中,所述碎石通道,包括:主体段和延伸于所述主体段和所述吸引通道之间的连通段,所述连通段连通于所述吸引通道和所述主体段。
  4. 根据权利要求3所述的吸中打式术用输尿管镜,其中,所述连通段的中心轴与所述吸引通道的中心轴之间的夹角范围为0°-45°。
  5. 根据权利要求3所述的吸中打式术用输尿管镜,其中,所述管结构主体具有前端面和外周面,所述吸引口形成于所述前端面,所述管结构主体的前端面从所述外周面的第一侧向与所述第一侧相对的第二侧沿着所述管镜主体设定的轴向向前倾斜地延伸。
  6. 根据权利要求4所述的吸中打式术用输尿管镜,其中,当所述碎石机构处于第二状态时,所述碎石机构的所述切割头位于所述吸引口的中部区域。
  7. 根据权利要求6所述的吸中打式术用输尿管镜,其中,当所述碎石机构处于第二状态时,所述切割头的前端齐平于所述前端面。
  8. 根据权利要求2至7的任一所述的吸中打式术用输尿管镜,其中,所述碎石通道位于所述吸引通道的侧方。
  9. 根据权利要求2所述的吸中打式术用输尿管镜,其中,所述碎石通道延伸于所述吸引通道和所述管镜主体的后端部之间,所述碎石通道具有连通于所述吸引通道和所述碎石通道的连通口。
  10. 根据权利要求2所述的吸中打式术用输尿管镜,其中,所述操作部包括连通于所述灌注通道的第一操作端、连通于所述吸引通道的第二操作端和连通于所述碎石通道的第三操作端。
  11. 根据权利要求1所述的吸中打式术用输尿管镜,其中,所述灌注通道的灌注口具有第一朝向,以用于允许流体沿着所述灌注通道从所述灌注口以所述第一朝向指向的第一方向注入肾盂内,所述吸引通道的吸引口具有与所述第一朝向成预设夹角的第二朝向,以用于允许该流体在所述肾盂内被转向后以所述第二朝向指向的第二方向从所述吸引口被吸入所述吸引通道以形成流体回环。
  12. 根据权利要求1所述的吸中打式术用输尿管镜,所述管结构主体具有前端面和形成于所述前端面的外周面,所述灌注口形成于所述管结构主体的所述外周面,所述吸引口形成于所述管结构主体的所述前端面。
PCT/CN2022/117841 2021-09-22 2022-09-08 吸中打式术用输尿管镜 WO2023045770A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CA3232685A CA3232685A1 (en) 2021-09-22 2022-09-08 Impact-during-suction surgical ureteroscope
AU2022350549A AU2022350549A1 (en) 2021-09-22 2022-09-08 Impact-during-suction surgical ureteroscope

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202111096813.1 2021-09-22
CN202111096813.1A CN115836833A (zh) 2021-09-22 2021-09-22 吸中打式术用输尿管镜

Publications (1)

Publication Number Publication Date
WO2023045770A1 true WO2023045770A1 (zh) 2023-03-30

Family

ID=85575126

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/117841 WO2023045770A1 (zh) 2021-09-22 2022-09-08 吸中打式术用输尿管镜

Country Status (4)

Country Link
CN (1) CN115836833A (zh)
AU (1) AU2022350549A1 (zh)
CA (1) CA3232685A1 (zh)
WO (1) WO2023045770A1 (zh)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100240950A1 (en) * 2009-03-18 2010-09-23 Richard Wolf Gmbh Uretero-Renoscope
US20140275762A1 (en) * 2013-03-14 2014-09-18 The Charlotte-Mecklenburg Hospital Authority D/B/A Carolinas Healthcare System Ureteroscope and Associated Method For The Minimally Invasive Treatment of Urinary Stones
CN208259737U (zh) * 2017-09-07 2018-12-21 刘浩 一种泌尿结石微创碎石手术机械
CN213488693U (zh) * 2020-09-01 2021-06-22 宁波新跃医疗科技股份有限公司 双目式输尿管镜
CN113316428A (zh) * 2019-01-18 2021-08-27 Ipg光子公司 高效的多功能的内窥镜器械
WO2021190669A1 (zh) * 2020-03-26 2021-09-30 珠海市司迈科技有限公司 一种电子输尿管软镜、装置、系统及使用方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100240950A1 (en) * 2009-03-18 2010-09-23 Richard Wolf Gmbh Uretero-Renoscope
US20140275762A1 (en) * 2013-03-14 2014-09-18 The Charlotte-Mecklenburg Hospital Authority D/B/A Carolinas Healthcare System Ureteroscope and Associated Method For The Minimally Invasive Treatment of Urinary Stones
CN208259737U (zh) * 2017-09-07 2018-12-21 刘浩 一种泌尿结石微创碎石手术机械
CN113316428A (zh) * 2019-01-18 2021-08-27 Ipg光子公司 高效的多功能的内窥镜器械
WO2021190669A1 (zh) * 2020-03-26 2021-09-30 珠海市司迈科技有限公司 一种电子输尿管软镜、装置、系统及使用方法
CN213488693U (zh) * 2020-09-01 2021-06-22 宁波新跃医疗科技股份有限公司 双目式输尿管镜

Also Published As

Publication number Publication date
AU2022350549A1 (en) 2024-05-02
CN115836833A (zh) 2023-03-24
CA3232685A1 (en) 2023-03-30

Similar Documents

Publication Publication Date Title
US3818913A (en) Surgical apparatus for removal of tissue
CN113907838A (zh) 一种泌尿外科结石粉碎吸取设备
EP2086481B1 (en) Phacoemulsification cannula with improved purchase
CA2147323A1 (en) Endoscopic lithotripsy system
CN213488692U (zh) 分区工作式输尿管镜用管和分区工作式输尿管镜
US20230190525A1 (en) Phacoemulsification handle with sensor and surge control system and method
CN109998672A (zh) 一种鞘管帽及具有鞘管帽的内窥镜导引鞘
CN108403211A (zh) 多功能膀胱肾盂取石镜
WO2023045770A1 (zh) 吸中打式术用输尿管镜
WO2024061277A1 (zh) 集中排布式电子输尿管硬镜
US5980529A (en) Work tip for surgical ultrasonic device
WO2023045769A1 (zh) 可回环排石的术用输尿管镜
CN115886996A (zh) 远近双击式输尿管镜和利用输尿管镜去除结石的方法
CN115836836A (zh) 用于输尿管镜的导引装置和输尿管镜
CN115836835A (zh) 用于输尿管镜的碎石装置和输尿管镜
CN115670353A (zh) 免鞘肾结石治疗设备
CN115919454A (zh) 多激光冲能式输尿管镜及其工作方法
CN115919244A (zh) 反冲防堵式输尿管镜和用于输尿管镜的防堵塞方法
CN208756160U (zh) 多功能膀胱肾盂取石镜
CN115919246A (zh) 灌排平衡式输尿管镜
CN115886706A (zh) 振动装置和振动防堵式输尿管镜
CN211094487U (zh) 镜鞘一体输尿管软镜
CN115462747A (zh) 输尿管镜及其去除结石的方法
CN211023086U (zh) 一种鞘管帽及具有鞘管帽的内窥镜导引鞘
CN206080485U (zh) 一种防死角输尿管软镜

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22871818

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 3232685

Country of ref document: CA

WWE Wipo information: entry into national phase

Ref document number: AU2022350549

Country of ref document: AU

WWE Wipo information: entry into national phase

Ref document number: 2022871818

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2022871818

Country of ref document: EP

Effective date: 20240422

ENP Entry into the national phase

Ref document number: 2022350549

Country of ref document: AU

Date of ref document: 20220908

Kind code of ref document: A