US3818913A - Surgical apparatus for removal of tissue - Google Patents

Surgical apparatus for removal of tissue Download PDF

Info

Publication number
US3818913A
US3818913A US00285002A US28500272A US3818913A US 3818913 A US3818913 A US 3818913A US 00285002 A US00285002 A US 00285002A US 28500272 A US28500272 A US 28500272A US 3818913 A US3818913 A US 3818913A
Authority
US
United States
Prior art keywords
tissue
tube
suction
liquid
suction conduit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US00285002A
Inventor
M Wallach
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to US00285002A priority Critical patent/US3818913A/en
Application granted granted Critical
Publication of US3818913A publication Critical patent/US3818913A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F9/00Methods or devices for treatment of the eyes; Devices for putting-in contact lenses; Devices to correct squinting; Apparatus to guide the blind; Protective devices for the eyes, carried on the body or in the hand
    • A61F9/007Methods or devices for eye surgery
    • A61F9/00736Instruments for removal of intra-ocular material or intra-ocular injection, e.g. cataract instruments

Definitions

  • ABSTRACT Defective or unwanted tissue is removed such as from the lens of an eye directing a pulsating high velocity 128/305 128/278 liquid jet onto the defecting tissue to disintegrate the 17/32, A6191 1/00 tissue and sucking the liquid entraining the disintegra- Fleld of Search ted tissue from the area adjacent the tissue by a suc- 128/305 tion conduit.
  • the liquid is advantageously isotonic and slightly alkaline and one or more jets converging; to a restricted area may be employed, the jets being ejected from a hand 0F TISSUE Inventor: Mark Wallach, 220 E. 63rd St.,
  • PATENTEDJUHZSIGH sumzarz "Eli SURGICAL APPARATUS FOR REMOVAL OF TISSUE BACKGROUND OF THE INVENTION
  • the present invention relates generally to improvements in surgical procedures and apparatus and relates more particularly to an improved method and apparatus for the disintegration and removal of selected sections of animal tissue.
  • Instruments having a vibrating element or emitting pulses have been used for cutting of material for some time for various uses.
  • a vibrating element using a slurryfor cutting has been used for dental work and industrial applications with limited success in lim- SUMMARY OF THE INVENTION It is a principal object of the present invention to provide an improved surgical method and apparatus.
  • Another object of the present invention is to provide an improved'method and apparatus for disintegrating or fragmenting animal tissue in a preselected area and removing such disintegrated tissue from said area.
  • object of the present invention is to provide an improved method and apparatus for disintegrating'and removing animal tissue from a predetermined area without adversely effecting the surrounding tissue and which prevents excessive suction build-up.
  • a further object of the present invention is to provide an improved method and apparatus for disintegrating and removing tissue from inaccessible areas with a minimum of adverse effect of the surrounding and masking tissue.
  • Still a further object of the present invention is to provide a method and apparatus of the above nature characterized by their reliability, simplicity, fine areas of operation, great versatility and adaptability and ease of application even in delicate an highly hazardous environments.
  • the area of treatment can be veryprecisely delineated and obviates the need for any alteration, severance and significant penetration of any adjacent or overlying tissue.
  • Als0,-the incision can be kept very small as contrasted to standard surgical techniques.
  • the jet is produced by a very fine nozzle and the tissue entraining liquid is likewise withdrawn by a very fine conduit.
  • any clogging of the suction conduit by the tissue is eliminated by reversing the liquid flow in the suction conduit in response to a sharp pressure drop therein.
  • Excessive suction build-up can damage an organ of the body, such as an eyeball by collapsing the cornea.
  • the jet quickly dissipates its energy when it impinges onto a yielding surface. This is critical especially when the present suction is used in connection with eye surgery such as removing a hardened lens of the eye, with the tissue surrounding the lens being resilient.
  • the liquid jet contains no abrasive material and is advantageously an isotonic solution of slight alkalinity, for example, of a pH of about 7.4.
  • the pulse, frequency of the jet is advantageously widely variable, depending on the specific organ with which it is used, and can vary from 1 pulse every 15 seconds (4 pulses per minute, i.e., 4 ppm) up to 333 pulses per second (20,000 ppm.). Further, for some applications a continuous fine steam can be used.
  • the pressure is variable between about 15 and about200 pounds persquare inch, preferably between to p.s.i., and its velocity at the point of impingement between about 50 and about 500 feet per second.
  • the liquid jet diameter at the point of impingement is advantageously of a diameter between about 0.001 "and about 0.010 of an inch and may be formed of a single jet stream or a plurality of converging jet streams.
  • the inlet port to the suction conduit may be annular and surround the liquid jet or it may be at the center of converging jets or adjacent to a jet either parallel or Y perpendicular to the jet.
  • the improved method and apparatus may be employed in very delicate and confined areas of little accessibility with a minimum of secondary surgery and is very versatile, adaptable and .easy and convenient to operate with'a minimum of side effects and hazards.
  • FIG. 4 is. a view similar to FIG. 3 of another tip structure
  • FIG. 5 is a sectional view taken along line 5 5 in FIG. 6 is a view similar to FIG. 3 of still another form of tip;
  • FIG. 7 isa view similar to FIG. 3 showing a further tip structure.
  • the reference numeral generally designates the improved apparatus which is employed to great advantage in practicing the present improved process in the removal of unwanted tissue from the lens of a human eye, such as a cataract or the like.
  • the apparatus comprises a fine hand implement 11 which is manipulated by the surgeon and includes three fine tubes joined along their lengths as an integral unit, a nozzle tube 12, a suction tube 13 and a drainage or bathing tube 14.
  • the maximum transverse dimension of the assembled tubes advantageously does not exceed one hundred fifty thousandths of an inch (0150), each tube having an inside diameter of between about 10 and 65 thousandths of an inch (0.010 to 0.065”) and an outside diameter of between about and seventyseven thousandths of an inch (0.020" to 0.077”), the length of the working tip of the assembly advantageously being about three-quarters of an inch for optical applications. Tube length can vary for other surgical applications.
  • the distal end of tube 12 is curved and closed and it is arranged side by side with suction tube 13 whose distal end is open and shortly rearwardly of the distal end of tube 12.
  • a nozzle defining circular port 16 is formed in the joined adjacent walls of tubes 12 and 13 and is directed parallel to the suction or inlet port 17 of suction tube 13.
  • the drainage liquid tube 14 extends somewhat less than the full lengths of tubes 12 and 13 and is provided along its distal length with small outlet ports 18. It should be noted that the diameter of the nozzle port 16 is advantageously between 0.001 and 0.0l0 of an inch. 7
  • the proximate end of the nozzle tube 12 is connected by a high pressure highly flexible tube 19 to the outlet of an adjustable pulsing liquid feed device 20 whose inlet is connected to an elevated tank 21 containing an isotonic solution of the composition previously described.
  • the pulsing device 20 may be of any conventional construction in which the pulse frequency, pulse duration, pressure and liquid'volume velocity output are continuously adjustable by knobs or by corresponding foot operated controls.
  • the device 20 may include a positively displacement pressure pump, such as a piston pump whose stroke is adjustable and which is driven by a variable speed electric motor and is provided'with an adjustable pressure relief or by-pass valve so that the above variable and adjustable parameters are easily and conveniently achievable.
  • a positively displacement pressure pump such as a piston pump whose stroke is adjustable and which is driven by a variable speed electric motor and is provided'with an adjustable pressure relief or by-pass valve so that the above variable and adjustable parameters are easily and conveniently achievable.
  • other systems serving-the same functions may be employe'd.
  • the proximate end of the suction tube 13 is connected by a flexible tube 23 to a vacuum or suction pump 26 to withdraw any liquid and entrained tissue from the area of the suction port 17.
  • a vacuum of between 1 l0 and 130 mm. of mercury has been found satisfactory for eye surgery applications for the suction. However, it can vary according to the surgical application.
  • a pressure sensing element 24 communicates with the tube 23 and is so adjusted that when the suction in tube 23 rise above or conversely when the pressure falls below a predetermined level consequent to the clogging of tube 13 or 23 bytissue sucked up by the tube, it reverses the vacuum pump 26 to reverse the flow in tubes 13 and 23 to eject the clogging tissue. Following the ejection of the clogging material the vacuum pump 36 returns to its normal functioning.
  • the reverse flow in pipes 13 and 23 may be for successive predetermined'intervals until they are unclogged as evidenced by the proper pressure sensed by element 24.
  • the irrigating pipe 14 is connected by a flexible tube 27 to an elevated tank 28 by way of a valve 29 the tank- 28 containing any suitable washing solution, for example of the composition position of the liquid contained in tank 21.
  • This irrigating fluid helps maintain the pressure in the eye and prevents the cornea from collapsing.
  • the flexible tubes 19, 23 and '27 are joined side by side as a highly flexible assembly thereby greatly facilitating the convenient handling and manipulation of the instrument 11.
  • the apparatus 10 In employing the apparatus 10 in operating on the eye, for example in the removal of a cataract, the usual precautions are observed and a small incision i.e., about one hundred seventy-five thousandths of an inch (0.175) is made in the masking tissue, for example in the cornea, to provide access for entry of the instrument 11 into optimum engagement with the unwanted tissue.
  • the lens L to be treated may be in its normal position, but advantageously is prolapsed into the anterior chamber.
  • the instrument 11 is inserted through the preformed incision into confronting engagement with the unwanted tissue and the pulser 20, the vacuum unit 26 is actuated and the valve 29 is opened, the various parameters being adjusted to optimum conditions are dictated by experience and as specified above;
  • a pulsating high velocity fine liquid jet is directed through the nozzle port 16 onto the area of unwanted tissue of lens L to fragment, disintegrate and emulsify the jet-subjected tissue, and the jet liquid containing the entrained and emulsified tissue is sucked up by suction unit 26.
  • the liquid from the tube 14 keeps the eye bathed in the desired manner.
  • the instrument 11 is then manipulated until all the unwanted tissue is fragmented and removed and the instrument 11 is then retracted and the usual post operative procedures followed.
  • the apparatus illustrated in FIGS. 4 and 5 differs from the apparatus 10 primarily in the construction of the instrument 32 which corresponds to the instrument 11.
  • the instrument 32 includes a pair of coaxial inner and outer tubes 33 and 34 respectively,
  • annular outer conduit 36 delineate an annular outer conduit 36 and an inner axial conduit 37.
  • the distal end of outer conduit is closed by an annular end wall 38 provided with circumferentially spaced nozzle defining ports 39 which are directed toward a common central point coaxial with the conduits 36 and 37 and forwardly thereof.
  • the outer conduit 36 is connected by a flexible tube to a liquid pulsing device corresponding to the pulsing device 20 andthe central conduit 37 is connected to a suction pump corresponding to vacuum unit 26, like- .ment 32 is similar to that using the instrument 10.
  • the instrument 41 illustrated in FIG. 6 differs from that last described primarily in that the pulsating jet emanates from the axial'tube and the tissue entraining liquid withdrawn by the surrounding outer annular tube.
  • the instrument 41 includes an outer suction tube 42 open at its distal end and connected by a flexible hose to a suction device corresponding to device 26 and a coaxial tube 43 closed at its distal end and provided with a nozzle defining port 44.
  • the tube 43 is connected by a flexible hose to a liquid pulsing device corresponding to device 20 and the apparatus is employed in the manner, earlier described.
  • the improved instruments 46 include three interconnected rigid side by side longitudinal tubes 47, 48 and 49 respectively.
  • the tube 47 is closed at its distal end and has a nozzle defining centrally located port 50 formed in the front thereof and is connected by a flexible tube to a pulsating liquid source corresponding to the device 20.
  • the second tube 48 is disposed alongside the tube 47 and projects beyond the front end of'tube 47 and is closed at its front end.
  • An elongated suction opening 51 is formed in the side wall of tube 48 on the side, of tube 47 and extends from a point forward of the distal end of tube 47 to substantially the distal end of tube 48.
  • the tube 49 is a bathing liquid tube and is secured to the outer face of tube 48 and is provided with a plurality of longitudinally spaced outlet ports.
  • the tubes 48 and 49 are connected by corresponding flexible tubes to a vacuum unit corresponding to unit26 and to a bathing liquid tank corresponding to tank 28 respectively.
  • the instrument is employed in the manner similar to those earlier described except that the pulsating jet emerging from the nozzle 50 is at an obtuse angle to the 9 treated tissue and directs the tissue entraining liquid toward the large suction opening 51.
  • the source of liquid can be pressurized, such as by a pressurized tank, and a pulser only used.
  • the jet stream from the tip is shown generally cylindrical, it may expand slightly to a conical shape; however, the area of contact should be kept as small as possible. Further, while the jet openings were illustrated as circular, other shapes can be used.
  • An apparatus for disintegrating and removing animal tissue from a preselected enclosed area comprising a hand manipulatable first tube having a distallydisposed outlet port, a liquid pulsating pump having an inlet and an outlet, a source of liquid connected to said pump inlet, means including a flexible conduit connecting said first tube to said pump outlet, a suction conduit including an outlet port disposed proximate said first tube outlet port, a source of suction, and means including a flexible conduit connecting said suction conduit to said source of suction, said pump providing astream of pulsating liquid through said first tube outlet port at a frequency between 1 to 333 cycles per second,-at a pressure above atmospheric pressure of about 15 to about 200 p s i and having a velocity of between 50 and 500 feet per second.
  • the apparatus of claim 1 including means for varyingsaid pulse frequency of said pulsating pump.
  • the apparatus of claim 1 including means for varying the outlet pressure of said pulsating pump.
  • said first tube is longitudinally extending and of annular transverse cross section and having its leading annular end closed and provided with a plurality of outlet passages whose longitudinal axes converge to a common point, the axial portion of said tube defining said suction conduit.
  • the apparatus of claim 1 including means responsive to a drop in pressure in said suction conduit below a predetermined level for reversing the direction of flow in said suction conduit.
  • a nozzle for use with apparatus for disintegrating and removing animal tissue by liquid jets comprising a tubular member having inner and outer coaxial passageways, the outer passageway having a leading annular end closed and provided with a plurality of outlet ports whose longitudinal axes converge to a common point, first means on said nozzle adapted to be coupled to a source of pressurized fluid which interconnects to said outer passageway so that said fluid exits said nozzle through said ports, second means mounted on said nozzle interconnected to said inner passageway and adapted to be coupled to a suction source, whereby a plurality of fluid jets from said ports converge on said point located on the tissue to disintegrate it, and disintegrated portions of tissue and liquid are sucked into and withdrawn through the inner passageway.
  • the method claim 12 further including providing the liquid stream leaving said nozzle tip to have a cross sectional area at the point of impingement on said tissue to not exceeding 0.0000785 square inch.
  • the method of claim 12 including the step of reversing said suction responsive to the clogging of the flow of said sucked liquid by relatively large tissue fragments.
  • the method of claim 12 including the step of providing said liquid to be alkaline.

Abstract

Defective or unwanted tissue is removed such as from the lens of an eye directing a pulsating high velocity liquid jet onto the defecting tissue to disintegrate the tissue and sucking the liquid entraining the disintegrated tissue from the area adjacent the tissue by a suction conduit. Upon clogging of the suction conduit and a corresponding change in pressure, the suction action is momentarily reversed to eject the clogging tissue, which avoids excessive suction build-up. The liquid is advantageously isotonic and slightly alkaline and one or more jets converging to a restricted area may be employed, the jets being ejected from a hand manipulated nozzle.

Description

1111 3,818,913 June 25, 1974 3,693,613 9/1972 Kelman..........;.....,.......... 128/303 R Primary ExaminerChanning L. Pace Attorney, Agent, or Firm-Howard C. Miskin [57] ABSTRACT Defective or unwanted tissue is removed such as from the lens of an eye directing a pulsating high velocity 128/305 128/278 liquid jet onto the defecting tissue to disintegrate the 17/32, A6191 1/00 tissue and sucking the liquid entraining the disintegra- Fleld of Search ted tissue from the area adjacent the tissue by a suc- 128/305 tion conduit. Upon clogging of the suction conduit 1 and a corresponding change in pressure, the suction action is momentarily reversed to eject the clogging tissue, which avoids excessive suction build-up. The liquid is advantageously isotonic and slightly alkaline and one or more jets converging; to a restricted area may be employed, the jets being ejected from a hand 0F TISSUE Inventor: Mark Wallach, 220 E. 63rd St.,
New York, NY. 10021 Aug. 30, 1972 Appl. No: 285,002
Int. Cl.........
References Cited UNITED STATES PATENTS United States Patent 191 Wallach 1 SURGICAL APPARATUS FOR REMOVAL [22] Filed:
manipulated nozzle.
11/1970 Adams......, 12/1970 Balamuth... 3/1971 Crowson.... 6/1971 Bankoetal 10/1971 Moss........
16 Claims, 7 Drawing Figures PATENTEUJUNZSIBM SHEET 1.nr 2
PATENTEDJUHZSIGH sumzarz "Eli SURGICAL APPARATUS FOR REMOVAL OF TISSUE BACKGROUND OF THE INVENTION The present invention relates generally to improvements in surgical procedures and apparatus and relates more particularly to an improved method and apparatus for the disintegration and removal of selected sections of animal tissue.
There are numerous surgical procedures which require the removal of selected portions of tissue of an extremely delicate nature with a minimum or no interference with or damage to the surrounding or otherwise healthy tissue. Such procedures are frequently required in surgical operations connected with the eye; such as in the removal of cataracts and similar surgical procedures. The methods and equipment heretofore employed and proposed are awkward and highly time con- .suming in their use, require an extremely high degree of skill, are often accompanied by damage to adjoining healthy tissue and frequent failure and otherwise leave much to .be desired.
Instruments having a vibrating element or emitting pulses have been used for cutting of material for some time for various uses. For example, a vibrating element using a slurryfor cutting has been used for dental work and industrial applications with limited success in lim- SUMMARY OF THE INVENTION It is a principal object of the present invention to provide an improved surgical method and apparatus.
Another object of the present invention is to provide an improved'method and apparatus for disintegrating or fragmenting animal tissue in a preselected area and removing such disintegrated tissue from said area.
Still another, object of the present invention is to provide an improved method and apparatus for disintegrating'and removing animal tissue from a predetermined area without adversely effecting the surrounding tissue and which prevents excessive suction build-up. A further object of the present invention is to provide an improved method and apparatus for disintegrating and removing tissue from inaccessible areas with a minimum of adverse effect of the surrounding and masking tissue. I
Still a further object of the present invention is to provide a method and apparatus of the above nature characterized by their reliability, simplicity, fine areas of operation, great versatility and adaptability and ease of application even in delicate an highly hazardous environments.
The above and other objects of the present invention will become apparent from a reading of the following ing drawings which illustrate preferred forms of the improved apparatus. 7 r
In a sense the present invention is predicated on the discovery that hardened animal tissue in a closely confined and restricted areacan be disintegrated or finely description taken in conjunction with the accompany= i I fragmented by directing a fine pulsating high velocity jet onto the desired area sucking the liquid of the impinging jet which has entrained or emulsified therein the disintegrating tissue; The area of treatment can be veryprecisely delineated and obviates the need for any alteration, severance and significant penetration of any adjacent or overlying tissue. Als0,-the incision can be kept very small as contrasted to standard surgical techniques. The jet is produced by a very fine nozzle and the tissue entraining liquid is likewise withdrawn by a very fine conduit. Advantageously, any clogging of the suction conduit by the tissue is eliminated by reversing the liquid flow in the suction conduit in response to a sharp pressure drop therein. Excessive suction build-up can damage an organ of the body, such as an eyeball by collapsing the cornea. Also, the jet quickly dissipates its energy when it impinges onto a yielding surface. This is critical especially when the present suction is used in connection with eye surgery such as removing a hardened lens of the eye, with the tissue surrounding the lens being resilient.
The liquid jet contains no abrasive material and is advantageously an isotonic solution of slight alkalinity, for example, of a pH of about 7.4. The pulse, frequency of the jet is advantageously widely variable, depending on the specific organ with which it is used, and can vary from 1 pulse every 15 seconds (4 pulses per minute, i.e., 4 ppm) up to 333 pulses per second (20,000 ppm.). Further, for some applications a continuous fine steam can be used. The pressure is variable between about 15 and about200 pounds persquare inch, preferably between to p.s.i., and its velocity at the point of impingement between about 50 and about 500 feet per second. The liquid jet diameter at the point of impingement is advantageously of a diameter between about 0.001 "and about 0.010 of an inch and may be formed of a single jet stream or a plurality of converging jet streams.
The inlet port to the suction conduit may be annular and surround the liquid jet or it may be at the center of converging jets or adjacent to a jet either parallel or Y perpendicular to the jet.
The improved method and apparatus may be employed in very delicate and confined areas of little accessibility with a minimum of secondary surgery and is very versatile, adaptable and .easy and convenient to operate with'a minimum of side effects and hazards.
BRIEF DESCRIPTION OF THE DRAWINGS section of one form of nozzle and suction tip of the apv paratus of FIG. 1;
FIG. 4 is. a view similar to FIG. 3 of another tip structure;
FIG. 5 is a sectional view taken along line 5 5 in FIG. 6 is a view similar to FIG. 3 of still another form of tip; and
FIG. 7 isa view similar to FIG. 3 showing a further tip structure.
DESCRIPTION OF THE PRFERRED EMBODIMENTS Referring now to the drawings, and particularly FIGS. 1 and 3 thereof which illustrate a preferred embodiment of the present invention, the reference numeral generally designates the improved apparatus which is employed to great advantage in practicing the present improved process in the removal of unwanted tissue from the lens of a human eye, such as a cataract or the like. The apparatus comprises a fine hand implement 11 which is manipulated by the surgeon and includes three fine tubes joined along their lengths as an integral unit, a nozzle tube 12, a suction tube 13 and a drainage or bathing tube 14. The maximum transverse dimension of the assembled tubes advantageously does not exceed one hundred fifty thousandths of an inch (0150), each tube having an inside diameter of between about 10 and 65 thousandths of an inch (0.010 to 0.065") and an outside diameter of between about and seventyseven thousandths of an inch (0.020" to 0.077"), the length of the working tip of the assembly advantageously being about three-quarters of an inch for optical applications. Tube length can vary for other surgical applications.
The distal end of tube 12 is curved and closed and it is arranged side by side with suction tube 13 whose distal end is open and shortly rearwardly of the distal end of tube 12. A nozzle defining circular port 16 is formed in the joined adjacent walls of tubes 12 and 13 and is directed parallel to the suction or inlet port 17 of suction tube 13. The drainage liquid tube 14 extends somewhat less than the full lengths of tubes 12 and 13 and is provided along its distal length with small outlet ports 18. It should be noted that the diameter of the nozzle port 16 is advantageously between 0.001 and 0.0l0 of an inch. 7
The proximate end of the nozzle tube 12 is connected by a high pressure highly flexible tube 19 to the outlet of an adjustable pulsing liquid feed device 20 whose inlet is connected to an elevated tank 21 containing an isotonic solution of the composition previously described. The pulsing device 20 may be of any conventional construction in which the pulse frequency, pulse duration, pressure and liquid'volume velocity output are continuously adjustable by knobs or by corresponding foot operated controls. For example, the device 20 may include a positively displacement pressure pump, such as a piston pump whose stroke is adjustable and which is driven by a variable speed electric motor and is provided'with an adjustable pressure relief or by-pass valve so that the above variable and adjustable parameters are easily and conveniently achievable. Of course other systems serving-the same functions may be employe'd.
The proximate end of the suction tube 13 is connected by a flexible tube 23 to a vacuum or suction pump 26 to withdraw any liquid and entrained tissue from the area of the suction port 17. Advantageously, a vacuum of between 1 l0 and 130 mm. of mercury has been found satisfactory for eye surgery applications for the suction. However, it can vary according to the surgical application. A pressure sensing element 24 communicates with the tube 23 and is so adjusted that when the suction in tube 23 rise above or conversely when the pressure falls below a predetermined level consequent to the clogging of tube 13 or 23 bytissue sucked up by the tube, it reverses the vacuum pump 26 to reverse the flow in tubes 13 and 23 to eject the clogging tissue. Following the ejection of the clogging material the vacuum pump 36 returns to its normal functioning. The reverse flow in pipes 13 and 23 may be for successive predetermined'intervals until they are unclogged as evidenced by the proper pressure sensed by element 24.
The irrigating pipe 14 is connected by a flexible tube 27 to an elevated tank 28 by way of a valve 29 the tank- 28 containing any suitable washing solution, for example of the composition position of the liquid contained in tank 21. This irrigating fluid helps maintain the pressure in the eye and prevents the cornea from collapsing. It should be noted that the flexible tubes 19, 23 and '27 are joined side by side as a highly flexible assembly thereby greatly facilitating the convenient handling and manipulation of the instrument 11.
In employing the apparatus 10 in operating on the eye, for example in the removal of a cataract, the usual precautions are observed and a small incision i.e., about one hundred seventy-five thousandths of an inch (0.175) is made in the masking tissue, for example in the cornea, to provide access for entry of the instrument 11 into optimum engagement with the unwanted tissue. The lens L to be treated may be in its normal position, but advantageously is prolapsed into the anterior chamber.
The instrument 11 is inserted through the preformed incision into confronting engagement with the unwanted tissue and the pulser 20, the vacuum unit 26 is actuated and the valve 29 is opened, the various parameters being adjusted to optimum conditions are dictated by experience and as specified above;
A pulsating high velocity fine liquid jet is directed through the nozzle port 16 onto the area of unwanted tissue of lens L to fragment, disintegrate and emulsify the jet-subjected tissue, and the jet liquid containing the entrained and emulsified tissue is sucked up by suction unit 26. The liquid from the tube 14 keeps the eye bathed in the desired manner. The instrument 11 is then manipulated until all the unwanted tissue is fragmented and removed and the instrument 11 is then retracted and the usual post operative procedures followed. It'should be noted that in the event that a large tissue fragment is detached and lodges in tube 13 to clog the tube 13 theaction of the vacuum unit 26 is reversed in response to the pressure sensing device 24 to eject the clogging tissue, which is further fragmented by the jet so that itmay be properly withdrawn by the suction tube 13. Also, since the tissue surrounding the lens is soft and yielding, the jet energy is absorbed by the wall if the jet stream happens to miss the target tissue.
The apparatus illustrated in FIGS. 4 and 5 differs from the apparatus 10 primarily in the construction of the instrument 32 which corresponds to the instrument 11. Specifically the instrument 32 includes a pair of coaxial inner and outer tubes 33 and 34 respectively,
which delineate an annular outer conduit 36 and an inner axial conduit 37. The distal end of outer conduit is closed by an annular end wall 38 provided with circumferentially spaced nozzle defining ports 39 which are directed toward a common central point coaxial with the conduits 36 and 37 and forwardly thereof.
The outer conduit 36 is connected by a flexible tube to a liquid pulsing device corresponding to the pulsing device 20 andthe central conduit 37 is connected to a suction pump corresponding to vacuum unit 26, like- .ment 32 is similar to that using the instrument 10. A
plurality of pulsating high velocity jets 40 from nozzles 39 converge on a point located on the unwanted tissue in lens L to disintegrate the jet subjected tissue which is, entrained in the jet liquid and sucked into and with drawn through the central suction tube 37.
The instrument 41 illustrated in FIG. 6 differs from that last described primarily in that the pulsating jet emanates from the axial'tube and the tissue entraining liquid withdrawn by the surrounding outer annular tube. The instrument 41 includes an outer suction tube 42 open at its distal end and connected by a flexible hose to a suction device corresponding to device 26 and a coaxial tube 43 closed at its distal end and provided with a nozzle defining port 44. The tube 43 is connected by a flexible hose to a liquid pulsing device corresponding to device 20 and the apparatus is employed in the manner, earlier described.
in F167 of the drawings there is shown another form of tissue removing instrument differing from those first described primarily in that the pulsating liquid jet is directed at an angle to the tissue approaching tangency and the liquid suction port extends beyond the nozzle for an extended distance. Specifically the improved instruments 46 include three interconnected rigid side by side longitudinal tubes 47, 48 and 49 respectively. The tube 47 is closed at its distal end and has a nozzle defining centrally located port 50 formed in the front thereof and is connected by a flexible tube to a pulsating liquid source corresponding to the device 20. The second tube 48 is disposed alongside the tube 47 and projects beyond the front end of'tube 47 and is closed at its front end. An elongated suction opening 51 is formed in the side wall of tube 48 on the side, of tube 47 and extends from a point forward of the distal end of tube 47 to substantially the distal end of tube 48. The tube 49 is a bathing liquid tube and is secured to the outer face of tube 48 and is provided with a plurality of longitudinally spaced outlet ports. The tubes 48 and 49 are connected by corresponding flexible tubes to a vacuum unit corresponding to unit26 and to a bathing liquid tank corresponding to tank 28 respectively.
The instrument is employed in the manner similar to those earlier described except that the pulsating jet emerging from the nozzle 50 is at an obtuse angle to the 9 treated tissue and directs the tissue entraining liquid toward the large suction opening 51.
While separate liquid sources are shown, a single source may be used. Also, instead of a pump to produce the pressure for the jet, the source of liquid can be pressurized, such as by a pressurized tank, and a pulser only used. Also, while the jet stream from the tip is shown generally cylindrical, it may expand slightly to a conical shape; however, the area of contact should be kept as small as possible. Further, while the jet openings were illustrated as circular, other shapes can be used.
While there have been described and illustrated preferred embodiments of the present invention it is apparent that numerous alterations, omissions and additions may be made without departing from the spirit thereof.
I claim:
1. An apparatus for disintegrating and removing animal tissue from a preselected enclosed area comprising a hand manipulatable first tube having a distallydisposed outlet port, a liquid pulsating pump having an inlet and an outlet, a source of liquid connected to said pump inlet, means including a flexible conduit connecting said first tube to said pump outlet, a suction conduit including an outlet port disposed proximate said first tube outlet port, a source of suction, and means including a flexible conduit connecting said suction conduit to said source of suction, said pump providing astream of pulsating liquid through said first tube outlet port at a frequency between 1 to 333 cycles per second,-at a pressure above atmospheric pressure of about 15 to about 200 p s i and having a velocity of between 50 and 500 feet per second.
2. The apparatus of claim 1 including means for varyingsaid pulse frequency of said pulsating pump.
3. The apparatus of claim 1 including means for varying the outlet pressure of said pulsating pump.
4. The apparatus of claim 1 wherein said'first tube and said suction conduit are parallel and joined side by side, said suction conduit having an inlet port adjacent the distal end of said first tube, the axis of said outlet port lying in a plane generally perpendicular to the longitudinal axis of said first tube and between thedistal end of said first tube and said inlet port of said suction conduit.
5. The apparatus of claim 1 wherein said first tube is longitudinally extending and of annular transverse cross section and having its leading annular end closed and provided with a plurality of outlet passages whose longitudinal axes converge to a common point, the axial portion of said tube defining said suction conduit.
6. The apparatus of claim 1 wherein said first tube and suction conduit are defined by coaxial inner and outer tubes respectively.
7. The apparatus claim 1 wherein said first tube and suction conduit are arranged side by side, said suction conduit is provided with a longitudinally extending side port, and said first tube includes an outlet port disposed proximally of said suction side-port.
8. The apparatus of claim 1 including means responsive to a drop in pressure in said suction conduit below a predetermined level for reversing the direction of flow in said suction conduit.
9. Apparatus of claim 8 wherein said reversing means returns to normal suction in said suction conduit in response to the suction pressure returning to said predetermined level.
10. Apparatus of claim 1 wherein said nozzle has an outlet port of fromabout 0.001 inch to about 0.010 inch. w
l 1. A nozzle for use with apparatus for disintegrating and removing animal tissue by liquid jets comprising a tubular member having inner and outer coaxial passageways, the outer passageway having a leading annular end closed and provided with a plurality of outlet ports whose longitudinal axes converge to a common point, first means on said nozzle adapted to be coupled to a source of pressurized fluid which interconnects to said outer passageway so that said fluid exits said nozzle through said ports, second means mounted on said nozzle interconnected to said inner passageway and adapted to be coupled to a suction source, whereby a plurality of fluid jets from said ports converge on said point located on the tissue to disintegrate it, and disintegrated portions of tissue and liquid are sucked into and withdrawn through the inner passageway.
12. The method of disintegrating and removing animal tissue from a preselected enclosed area with a nozsion of particles of said tissue from said preselected area.
13. The method claim 12 further including providing the liquid stream leaving said nozzle tip to have a cross sectional area at the point of impingement on said tissue to not exceeding 0.0000785 square inch.
14. The method of claim 12 including the step of reversing said suction responsive to the clogging of the flow of said sucked liquid by relatively large tissue fragments.
15. The method of claim-l2 including the step of providing said liquid to be isotonic.
16. The method of claim 12 including the step of providing said liquid to be alkaline.

Claims (16)

1. An apparatus for disintegrating and removing animal tissue from a preselected enclosed area comprising a hand manipulatable first tube having a distally disposed outlet port, a liquid pulsating pump having an inlet and an outlet, a source of liquid connected to said pump inlet, means including a flexible conduit connecting said first tube to said pump outlet, a suction conduit including an outlet port disposed proximate said first tube outlet port, a source of suction, and means including a flexible conduit connecting said suction conduit to said source of suction, said pump providing a stream of pulsating liquid through said first tube outlet port at a frequency between 1 to 333 cycles per second, at a pressure above atmospheric pressure of about 15 to about 200 p s i and having a velocity of between 50 and 500 feet per second.
2. The apparatus of claim 1 including means for varying said pulse frequency of said pulsating pump.
3. The apparatus of claim 1 including means for varying the outlet pressure of said pulsating pump.
4. The apparatus of claim 1 wherein said first tube and said suction conduit are parallel and joined side by side, said suction conduit having an inlet port adjacent the distal end of said first tube, the axis of said outlet port lying in a plane generally perpendicular to the longitudinal axis of said first tube and between the distal end of said first tube and said inlet port of said suction conduit.
5. The apparatus of claim 1 wherein said first tube is longitudinally extending and of annular transverse cross section and having its leading annular end closed and provided with a plurality of outlet passages whose longitudinal axes converge to a common point, the axial portion of said tube defining said suction conduit.
6. The apparatus of claim 1 wherein said first tube and suction conduit are defined by coaxial inner and outer tubes respectively.
7. The apparatus claim 1 wherein said first tUbe and suction conduit are arranged side by side, said suction conduit is provided with a longitudinally extending side port, and said first tube includes an outlet port disposed proximally of said suction side port.
8. The apparatus of claim 1 including means responsive to a drop in pressure in said suction conduit below a predetermined level for reversing the direction of flow in said suction conduit.
9. Apparatus of claim 8 wherein said reversing means returns to normal suction in said suction conduit in response to the suction pressure returning to said predetermined level.
10. Apparatus of claim 1 wherein said nozzle has an outlet port of from about 0.001 inch to about 0.010 inch.
11. A nozzle for use with apparatus for disintegrating and removing animal tissue by liquid jets comprising a tubular member having inner and outer coaxial passageways, the outer passageway having a leading annular end closed and provided with a plurality of outlet ports whose longitudinal axes converge to a common point, first means on said nozzle adapted to be coupled to a source of pressurized fluid which interconnects to said outer passageway so that said fluid exits said nozzle through said ports, second means mounted on said nozzle interconnected to said inner passageway and adapted to be coupled to a suction source, whereby a plurality of fluid jets from said ports converge on said point located on the tissue to disintegrate it, and disintegrated portions of tissue and liquid are sucked into and withdrawn through the inner passageway.
12. The method of disintegrating and removing animal tissue from a preselected enclosed area with a nozzle having a working tip comprising the steps of: a. generating a stream of liquid; b. forming the stream into pulses within a frequency of about 1/4 to about 333 cycles per second; c. adjusting the rate of velocity of said stream of liquid from about 50 to about 500 feet per second; d. simultaneously directing the pulsating liquid jet onto a confined area of said tissue to disintegrate said tissue into small particles to form a suspension of particles in said liquid and sucking the suspension of particles of said tissue from said preselected area.
13. The method claim 12 further including providing the liquid stream leaving said nozzle tip to have a cross sectional area at the point of impingement on said tissue to not exceeding 0.0000785 square inch.
14. The method of claim 12 including the step of reversing said suction responsive to the clogging of the flow of said sucked liquid by relatively large tissue fragments.
15. The method of claim 12 including the step of providing said liquid to be isotonic.
16. The method of claim 12 including the step of providing said liquid to be alkaline.
US00285002A 1972-08-30 1972-08-30 Surgical apparatus for removal of tissue Expired - Lifetime US3818913A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US00285002A US3818913A (en) 1972-08-30 1972-08-30 Surgical apparatus for removal of tissue

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US00285002A US3818913A (en) 1972-08-30 1972-08-30 Surgical apparatus for removal of tissue

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US48195274A Continuation-In-Part 1974-06-24 1974-06-24

Publications (1)

Publication Number Publication Date
US3818913A true US3818913A (en) 1974-06-25

Family

ID=23092330

Family Applications (1)

Application Number Title Priority Date Filing Date
US00285002A Expired - Lifetime US3818913A (en) 1972-08-30 1972-08-30 Surgical apparatus for removal of tissue

Country Status (1)

Country Link
US (1) US3818913A (en)

Cited By (124)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3902495A (en) * 1974-01-28 1975-09-02 Cavitron Corp Flow control system
US3930505A (en) * 1974-06-24 1976-01-06 Hydro Pulse Corporation Surgical apparatus for removal of tissue
US4024866A (en) * 1974-12-02 1977-05-24 Hydro Pulse Corporation Surgical apparatus for removal of tissue
US4650461A (en) * 1985-06-10 1987-03-17 Woods Randall L Extracapasular cortex irrigation and extraction
US5074862A (en) * 1988-06-16 1991-12-24 Rausis Claude F Surgical equipment
US5312330A (en) * 1992-05-20 1994-05-17 Summit Technology, Inc. Medical treatment of the eye involving removal of the epithelium
WO1994012132A1 (en) * 1992-11-30 1994-06-09 Neomedix Corporation Ophthalmic lens removal apparatus
WO1995017145A1 (en) * 1993-10-12 1995-06-29 New Jersey Institute Of Technology Method and device for corneal shaping and refractive correction
WO1996008212A2 (en) * 1994-09-12 1996-03-21 Medjet, Inc. Corneal template and surgical procedure for refractive vision correction
US5505729A (en) * 1992-01-16 1996-04-09 Dornier Medizintechnik Gmbh Process and an arrangement for high-pressure liquid cutting
US5669923A (en) * 1996-01-24 1997-09-23 Gordon; Mark G. Anterior capsulotomy device and procedure
US5674226A (en) * 1992-05-07 1997-10-07 Sentinel Medical, Inc. Method and apparatus for tissue excision and removal by fluid jet
US5697945A (en) * 1995-07-27 1997-12-16 Black Hills Regional Eye Institute Corneal surface marker and marking method for reducing irregular astigmatism during lamellar (LASIK) corneal surgery
US5713878A (en) * 1995-06-07 1998-02-03 Surgi-Jet Corporation Hand tightenable high pressure connector
US5752967A (en) * 1995-07-27 1998-05-19 Kritzinger; Michiel S. Corneal surface marker and marking method for improving laser centration
US5755700A (en) * 1995-07-27 1998-05-26 Michiel S. Kritzinger Corneal irrigation cannula and method of using
US5766194A (en) * 1996-12-23 1998-06-16 Georgia Skin And Cancer Clinic, Pc Surgical apparatus for tissue removal
US5800406A (en) * 1995-11-22 1998-09-01 Kritzinger; Michael S. Corneal irrigation cannula
US5827305A (en) * 1996-01-24 1998-10-27 Gordon; Mark G. Tissue sampling device
US5871462A (en) * 1995-06-07 1999-02-16 Hydrocision, Inc. Method for using a fluid jet cutting system
US5934285A (en) * 1995-07-27 1999-08-10 Michiel S. Kritzinger Method for reducing irregular astigmatism and debris/epithelium in the interface during lamellar corneal flap/cap surgery
US5935140A (en) * 1997-07-31 1999-08-10 Buratto; Lucio Method for modifying the curvature of the cornea
US5944686A (en) * 1995-06-07 1999-08-31 Hydrocision, Inc. Instrument for creating a fluid jet
US5989212A (en) * 1998-06-04 1999-11-23 Alcon Laboratories, Inc. Pumping chamber for a liquefaction handpiece having a countersink electrode
US5997499A (en) * 1998-06-04 1999-12-07 Alcon Laboratories, Inc. Tip for a liquefaction handpiece
US6004284A (en) * 1998-06-04 1999-12-21 Alcon Laboratories, Inc. Surgical handpiece
WO1999065408A1 (en) 1998-06-19 1999-12-23 Saphir Medical Method for generating a pulse train of sterile liquid jet for medical uses
US6033395A (en) * 1997-11-03 2000-03-07 Peyman; Gholam A. System and method for modifying a live cornea via laser ablation and mechanical erosion
US6068640A (en) * 1997-02-28 2000-05-30 Medjet Inc. Removal of corneal epithelium
US6080128A (en) * 1998-06-04 2000-06-27 Alcon Laboratories, Inc. Liquefaction handpiece
US6126668A (en) * 1997-04-25 2000-10-03 Innovative Optics, Inc. Microkeratome
US6156036A (en) * 1999-06-11 2000-12-05 Alcon Laboratories, Inc. Surgical handpiece tip
US6179805B1 (en) 1998-06-04 2001-01-30 Alcon Laboratories, Inc. Liquefracture handpiece
US6196989B1 (en) 1998-06-04 2001-03-06 Alcon Laboratories, Inc. Tip for liquefracture handpiece
US6216573B1 (en) 1995-06-07 2001-04-17 Hydrocision, Inc. Fluid jet cutting system
US6231578B1 (en) 1998-08-05 2001-05-15 United States Surgical Corporation Ultrasonic snare for excising tissue
US6315755B1 (en) 1998-06-04 2001-11-13 Alcon Manufacturing, Ltd. Method of controlling a liquefracture handpiece
US6331171B1 (en) 1998-06-04 2001-12-18 Alcon Laboratories, Inc. Tip for a liquefracture handpiece
WO2001097900A1 (en) * 2000-06-21 2001-12-27 Medjet Inc. Method and process for generating a high repetition rate pulsed microjet
US6398759B1 (en) 1998-06-04 2002-06-04 Alcon Manufacturing, Ltd. Liquefracture handpiece tip
US6451017B1 (en) 2000-01-10 2002-09-17 Hydrocision, Inc. Surgical instruments with integrated electrocautery
US6506176B1 (en) 1999-02-17 2003-01-14 Bausch & Lomb Incorporated Methods, apparatus and system for removal of lenses from mammalian eyes
US6511493B1 (en) 2000-01-10 2003-01-28 Hydrocision, Inc. Liquid jet-powered surgical instruments
US20030088259A1 (en) * 2001-08-08 2003-05-08 Staid Kevin P Medical device with high pressure quick disconnect handpiece
US6575929B2 (en) 2000-03-14 2003-06-10 Alcon Manufacturing, Ltd. Pumping chamber for a liquefaction handpiece
US6579270B2 (en) 1998-06-04 2003-06-17 Alcon Manufacturing, Ltd. Liquefracture handpiece tip
US20030125660A1 (en) * 2001-11-21 2003-07-03 Moutafis Timothy E. Liquid jet surgical instruments incorporating channel openings aligned along the jet beam
US6589201B1 (en) 1998-06-04 2003-07-08 Alcon Manufacturing, Ltd. Liquefracture handpiece tip
US6589204B1 (en) 1998-06-04 2003-07-08 Alcon Manufacturing, Ltd. Method of operating a liquefracture handpiece
US6648847B2 (en) 1998-06-04 2003-11-18 Alcon Manufacturing, Ltd. Method of operating a liquefracture handpiece
US20040030349A1 (en) * 2002-08-08 2004-02-12 Mikhail Boukhny Liquefaction handpiece tip
US20040234380A1 (en) * 2001-04-27 2004-11-25 Moutafis Timothy E. High pressure pumping cartridges for medical and surgical pumping and infusion applications
US20040243157A1 (en) * 2002-10-25 2004-12-02 Connor Brian G. Surgical devices incorporating liquid jet assisted tissue manipulation and methods for their use
US20050038417A1 (en) * 2003-08-15 2005-02-17 Ghannoum Ziad R. Tip Assembly
US6860868B1 (en) 1998-06-04 2005-03-01 Alcon Manufacturing, Ltd. Surgical handpiece
US20050159765A1 (en) * 1999-05-18 2005-07-21 Hydrocision, Inc. Fluid jet surgical instruments
US20050192566A1 (en) * 2004-02-26 2005-09-01 Madden Sean C. Surgical handpiece tip
US20060161101A1 (en) * 2005-01-18 2006-07-20 Alcon, Inc. Surgical system and handpiece
US20060212038A1 (en) * 2005-03-16 2006-09-21 Alcon, Inc. Liquefaction handpiece tip
US20060212039A1 (en) * 2005-03-16 2006-09-21 Alcon, Inc. Pumping chamber for a liquefaction handpiece
US20060212037A1 (en) * 2005-03-16 2006-09-21 Alcon, Inc. Pumping chamber for a liquefaction handpiece
US20060217740A1 (en) * 2005-03-25 2006-09-28 Alcon, Inc. Tip assembly
US20070032785A1 (en) * 2005-08-03 2007-02-08 Jennifer Diederich Tissue evacuation device
US20080122407A1 (en) * 2006-06-30 2008-05-29 Alcon, Inc. System for dynamically adjusting operation of a surgical handpiece
US20080154282A1 (en) * 2006-12-20 2008-06-26 Stacy Faught Fluidic Coupling For Surgical Hand Piece
US20080167604A1 (en) * 2007-01-09 2008-07-10 Alcon, Inc. Irrigation/Aspiration Tip
US20090032123A1 (en) * 2007-07-31 2009-02-05 Bourne John M Check Valve
US20090032121A1 (en) * 2007-07-31 2009-02-05 Chon James Y Check Valve
US20090105703A1 (en) * 2000-12-09 2009-04-23 Shadduck John H Method for treating tissue
US20090227998A1 (en) * 2008-03-06 2009-09-10 Aquabeam Llc Tissue ablation and cautery with optical energy carried in fluid stream
US20100076416A1 (en) * 2008-06-17 2010-03-25 Tsunami Medtech, Llc Medical probes for the treatment of blood vessels
US20100094201A1 (en) * 2008-10-13 2010-04-15 Boston Scientific Scimed, Inc. Assisted aspiration catheter system
US7708734B2 (en) 2006-06-30 2010-05-04 Alcon, Inc. Method for dynamically adjusting operation of a surgical handpiece
US7857794B2 (en) 2004-06-14 2010-12-28 Alcon, Inc. Handpiece tip
US20110106019A1 (en) * 2007-11-21 2011-05-05 Piezo Resonance Innovations, Inc. Devices for clearing blockages in in-situ artificial lumens
WO2011097505A1 (en) 2010-02-04 2011-08-11 Procept Corporation Multi fluid tissue resection methods and devices
US8016823B2 (en) 2003-01-18 2011-09-13 Tsunami Medtech, Llc Medical instrument and method of use
US8187269B2 (en) 1998-03-27 2012-05-29 Tsunami Medtech, Llc Medical instruments and techniques for treating pulmonary disorders
US8291933B2 (en) 2008-09-25 2012-10-23 Novartis Ag Spring-less check valve for a handpiece
US8444636B2 (en) 2001-12-07 2013-05-21 Tsunami Medtech, Llc Medical instrument and method of use
US8579892B2 (en) 2003-10-07 2013-11-12 Tsunami Medtech, Llc Medical system and method of use
US8721632B2 (en) 2008-09-09 2014-05-13 Tsunami Medtech, Llc Methods for delivering energy into a target tissue of a body
TWI451915B (en) * 2006-08-28 2014-09-11 Tokyo Electron Ltd Cleaning device
US20140316392A1 (en) * 2013-03-15 2014-10-23 The Regents Of The University Of California Method, Apparatus, and a System for a Water Jet
US8900223B2 (en) 2009-11-06 2014-12-02 Tsunami Medtech, Llc Tissue ablation systems and methods of use
US9161801B2 (en) 2009-12-30 2015-10-20 Tsunami Medtech, Llc Medical system and method of use
US9433457B2 (en) 2000-12-09 2016-09-06 Tsunami Medtech, Llc Medical instruments and techniques for thermally-mediated therapies
US9510853B2 (en) 2009-03-06 2016-12-06 Procept Biorobotics Corporation Tissue resection and treatment with shedding pulses
US9545337B2 (en) 2013-03-15 2017-01-17 Novartis Ag Acoustic streaming glaucoma drainage device
US9561068B2 (en) 2008-10-06 2017-02-07 Virender K. Sharma Method and apparatus for tissue ablation
US9561067B2 (en) 2008-10-06 2017-02-07 Virender K. Sharma Method and apparatus for tissue ablation
US9561066B2 (en) 2008-10-06 2017-02-07 Virender K. Sharma Method and apparatus for tissue ablation
US9693896B2 (en) 2013-03-15 2017-07-04 Novartis Ag Systems and methods for ocular surgery
US9700365B2 (en) 2008-10-06 2017-07-11 Santa Anna Tech Llc Method and apparatus for the ablation of gastrointestinal tissue
US9750638B2 (en) 2013-03-15 2017-09-05 Novartis Ag Systems and methods for ocular surgery
US9915274B2 (en) 2013-03-15 2018-03-13 Novartis Ag Acoustic pumps and systems
US9924992B2 (en) 2008-02-20 2018-03-27 Tsunami Medtech, Llc Medical system and method of use
US9943353B2 (en) 2013-03-15 2018-04-17 Tsunami Medtech, Llc Medical system and method of use
US9962288B2 (en) 2013-03-07 2018-05-08 Novartis Ag Active acoustic streaming in hand piece for occlusion surge mitigation
US10064697B2 (en) 2008-10-06 2018-09-04 Santa Anna Tech Llc Vapor based ablation system for treating various indications
US10179019B2 (en) 2014-05-22 2019-01-15 Aegea Medical Inc. Integrity testing method and apparatus for delivering vapor to the uterus
US10182940B2 (en) 2012-12-11 2019-01-22 Novartis Ag Phacoemulsification hand piece with integrated aspiration and irrigation pump
US10238446B2 (en) 2010-11-09 2019-03-26 Aegea Medical Inc. Positioning method and apparatus for delivering vapor to the uterus
US10299856B2 (en) 2014-05-22 2019-05-28 Aegea Medical Inc. Systems and methods for performing endometrial ablation
US10363061B2 (en) 2002-10-25 2019-07-30 Hydrocision, Inc. Nozzle assemblies for liquid jet surgical instruments and surgical instruments for employing the nozzle assemblies
US10448966B2 (en) 2010-02-04 2019-10-22 Procept Biorobotics Corporation Fluid jet tissue resection and cold coagulation methods
US10485568B2 (en) 2016-06-24 2019-11-26 Hydrocision, Inc. Selective tissue removal treatment device
US10492821B2 (en) 2016-06-24 2019-12-03 Hydrocision, Inc. Selective tissue removal treatment device
US10524822B2 (en) 2009-03-06 2020-01-07 Procept Biorobotics Corporation Image-guided eye surgery apparatus
US10653438B2 (en) 2012-02-29 2020-05-19 Procept Biorobotics Corporation Automated image-guided tissue resection and treatment
US10695126B2 (en) 2008-10-06 2020-06-30 Santa Anna Tech Llc Catheter with a double balloon structure to generate and apply a heated ablative zone to tissue
US10758292B2 (en) 2007-08-23 2020-09-01 Aegea Medical Inc. Uterine therapy device and method
US10881442B2 (en) 2011-10-07 2021-01-05 Aegea Medical Inc. Integrity testing method and apparatus for delivering vapor to the uterus
US11213313B2 (en) 2013-09-06 2022-01-04 Procept Biorobotics Corporation Tissue resection and treatment with shedding pulses
US11284931B2 (en) 2009-02-03 2022-03-29 Tsunami Medtech, Llc Medical systems and methods for ablating and absorbing tissue
US11331140B2 (en) 2016-05-19 2022-05-17 Aqua Heart, Inc. Heated vapor ablation systems and methods for treating cardiac conditions
US11331037B2 (en) 2016-02-19 2022-05-17 Aegea Medical Inc. Methods and apparatus for determining the integrity of a bodily cavity
US11406453B2 (en) 2009-03-06 2022-08-09 Procept Biorobotics Corporation Physician controlled tissue resection integrated with treatment mapping of target organ images
US11490909B2 (en) 2014-05-19 2022-11-08 Walk Vascular, Llc Systems and methods for removal of blood and thrombotic material
US11510689B2 (en) 2016-04-06 2022-11-29 Walk Vascular, Llc Systems and methods for thrombolysis and delivery of an agent
US11653945B2 (en) 2007-02-05 2023-05-23 Walk Vascular, Llc Thrombectomy apparatus and method
US11672561B2 (en) 2015-09-03 2023-06-13 Walk Vascular, Llc Systems and methods for manipulating medical devices
US11678905B2 (en) 2018-07-19 2023-06-20 Walk Vascular, Llc Systems and methods for removal of blood and thrombotic material
US11806066B2 (en) 2018-06-01 2023-11-07 Santa Anna Tech Llc Multi-stage vapor-based ablation treatment methods and vapor generation and delivery systems

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1987907A (en) * 1929-11-22 1935-01-15 Joseph B Jenkins Combination surgical air-blast and suction tip
US3542017A (en) * 1967-11-21 1970-11-24 Moore Products Co Intermittent fluid jet apparatus
US3547110A (en) * 1968-04-18 1970-12-15 Ultrasonic Systems Method and apparatus for maintaining tooth and gingival structures with ultrasonic energy
US3566869A (en) * 1968-12-26 1971-03-02 David Lamar Crowson Vacuum-utilizing hygienic teeth-cleaning system
US3589363A (en) * 1967-07-25 1971-06-29 Cavitron Corp Material removal apparatus and method employing high frequency vibrations
US3614953A (en) * 1968-01-30 1971-10-26 Nat Res Dev Drills for clearing obstructions in arteries
US3693613A (en) * 1970-12-09 1972-09-26 Cavitron Corp Surgical handpiece and flow control system for use therewith

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1987907A (en) * 1929-11-22 1935-01-15 Joseph B Jenkins Combination surgical air-blast and suction tip
US3589363A (en) * 1967-07-25 1971-06-29 Cavitron Corp Material removal apparatus and method employing high frequency vibrations
US3542017A (en) * 1967-11-21 1970-11-24 Moore Products Co Intermittent fluid jet apparatus
US3614953A (en) * 1968-01-30 1971-10-26 Nat Res Dev Drills for clearing obstructions in arteries
US3547110A (en) * 1968-04-18 1970-12-15 Ultrasonic Systems Method and apparatus for maintaining tooth and gingival structures with ultrasonic energy
US3566869A (en) * 1968-12-26 1971-03-02 David Lamar Crowson Vacuum-utilizing hygienic teeth-cleaning system
US3693613A (en) * 1970-12-09 1972-09-26 Cavitron Corp Surgical handpiece and flow control system for use therewith

Cited By (225)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3902495A (en) * 1974-01-28 1975-09-02 Cavitron Corp Flow control system
US3930505A (en) * 1974-06-24 1976-01-06 Hydro Pulse Corporation Surgical apparatus for removal of tissue
US4024866A (en) * 1974-12-02 1977-05-24 Hydro Pulse Corporation Surgical apparatus for removal of tissue
US4650461A (en) * 1985-06-10 1987-03-17 Woods Randall L Extracapasular cortex irrigation and extraction
US5074862A (en) * 1988-06-16 1991-12-24 Rausis Claude F Surgical equipment
US5505729A (en) * 1992-01-16 1996-04-09 Dornier Medizintechnik Gmbh Process and an arrangement for high-pressure liquid cutting
US5674226A (en) * 1992-05-07 1997-10-07 Sentinel Medical, Inc. Method and apparatus for tissue excision and removal by fluid jet
US5312330A (en) * 1992-05-20 1994-05-17 Summit Technology, Inc. Medical treatment of the eye involving removal of the epithelium
US5437678A (en) * 1992-11-30 1995-08-01 Neomedix Corporation Ophthalmic lens removal method and apparatus
US5871492A (en) * 1992-11-30 1999-02-16 Optex Ophthalmologics, Inc. Rotary device for removing ophthalmic lens
WO1994012132A1 (en) * 1992-11-30 1994-06-09 Neomedix Corporation Ophthalmic lens removal apparatus
US5690641A (en) * 1992-11-30 1997-11-25 Optex Ophthalmologics, Inc. Rotary device for removing ophthalmic lens
WO1995017145A1 (en) * 1993-10-12 1995-06-29 New Jersey Institute Of Technology Method and device for corneal shaping and refractive correction
US5964775A (en) * 1993-10-12 1999-10-12 New Jersey Institute Of Technology Method and device for corneal shaping and refractive correction
WO1996008212A2 (en) * 1994-09-12 1996-03-21 Medjet, Inc. Corneal template and surgical procedure for refractive vision correction
WO1996008212A3 (en) * 1994-09-12 1996-06-13 Medjet Inc Corneal template and surgical procedure for refractive vision correction
US5556406A (en) * 1994-09-12 1996-09-17 Medjet Inc. Corneal template and surgical procedure for refractive vision correction
AU704188B2 (en) * 1994-09-12 1999-04-15 Medjet, Inc. Corneal template and surgical procedure for refractive vision correction
US5944686A (en) * 1995-06-07 1999-08-31 Hydrocision, Inc. Instrument for creating a fluid jet
US5871462A (en) * 1995-06-07 1999-02-16 Hydrocision, Inc. Method for using a fluid jet cutting system
US6216573B1 (en) 1995-06-07 2001-04-17 Hydrocision, Inc. Fluid jet cutting system
US5713878A (en) * 1995-06-07 1998-02-03 Surgi-Jet Corporation Hand tightenable high pressure connector
US5697945A (en) * 1995-07-27 1997-12-16 Black Hills Regional Eye Institute Corneal surface marker and marking method for reducing irregular astigmatism during lamellar (LASIK) corneal surgery
US5984913A (en) * 1995-07-27 1999-11-16 Michiel S. Kritzinger Corneal aspiration cannula and method of using
US5752967A (en) * 1995-07-27 1998-05-19 Kritzinger; Michiel S. Corneal surface marker and marking method for improving laser centration
US5755700A (en) * 1995-07-27 1998-05-26 Michiel S. Kritzinger Corneal irrigation cannula and method of using
US5934285A (en) * 1995-07-27 1999-08-10 Michiel S. Kritzinger Method for reducing irregular astigmatism and debris/epithelium in the interface during lamellar corneal flap/cap surgery
US5800406A (en) * 1995-11-22 1998-09-01 Kritzinger; Michael S. Corneal irrigation cannula
US5792166A (en) * 1996-01-24 1998-08-11 Gordon; Mark G. Anterior capsulotomy device and procedure
US5669923A (en) * 1996-01-24 1997-09-23 Gordon; Mark G. Anterior capsulotomy device and procedure
US5827305A (en) * 1996-01-24 1998-10-27 Gordon; Mark G. Tissue sampling device
US5947988A (en) * 1996-12-23 1999-09-07 Smith; Sidney Paul Surgical apparatus for tissue removal
US5766194A (en) * 1996-12-23 1998-06-16 Georgia Skin And Cancer Clinic, Pc Surgical apparatus for tissue removal
US6068640A (en) * 1997-02-28 2000-05-30 Medjet Inc. Removal of corneal epithelium
US6126668A (en) * 1997-04-25 2000-10-03 Innovative Optics, Inc. Microkeratome
US5935140A (en) * 1997-07-31 1999-08-10 Buratto; Lucio Method for modifying the curvature of the cornea
US6033395A (en) * 1997-11-03 2000-03-07 Peyman; Gholam A. System and method for modifying a live cornea via laser ablation and mechanical erosion
US8187269B2 (en) 1998-03-27 2012-05-29 Tsunami Medtech, Llc Medical instruments and techniques for treating pulmonary disorders
US9204889B2 (en) 1998-03-27 2015-12-08 Tsunami Medtech, Llc Medical instrument and method of use
US8858549B2 (en) 1998-03-27 2014-10-14 Tsunami Medtech, Llc Medical instruments and techniques for treating pulmonary disorders
US6080128A (en) * 1998-06-04 2000-06-27 Alcon Laboratories, Inc. Liquefaction handpiece
US6331171B1 (en) 1998-06-04 2001-12-18 Alcon Laboratories, Inc. Tip for a liquefracture handpiece
US6589201B1 (en) 1998-06-04 2003-07-08 Alcon Manufacturing, Ltd. Liquefracture handpiece tip
US6179805B1 (en) 1998-06-04 2001-01-30 Alcon Laboratories, Inc. Liquefracture handpiece
US6196989B1 (en) 1998-06-04 2001-03-06 Alcon Laboratories, Inc. Tip for liquefracture handpiece
US6004284A (en) * 1998-06-04 1999-12-21 Alcon Laboratories, Inc. Surgical handpiece
US6648847B2 (en) 1998-06-04 2003-11-18 Alcon Manufacturing, Ltd. Method of operating a liquefracture handpiece
US6287274B1 (en) 1998-06-04 2001-09-11 Alcon Manufacturing, Inc. Liquefaction handpiece
US6315755B1 (en) 1998-06-04 2001-11-13 Alcon Manufacturing, Ltd. Method of controlling a liquefracture handpiece
US6110162A (en) * 1998-06-04 2000-08-29 Alcon Laboratories, Inc. Liquefaction handpiece
US5997499A (en) * 1998-06-04 1999-12-07 Alcon Laboratories, Inc. Tip for a liquefaction handpiece
US6398759B1 (en) 1998-06-04 2002-06-04 Alcon Manufacturing, Ltd. Liquefracture handpiece tip
US5989212A (en) * 1998-06-04 1999-11-23 Alcon Laboratories, Inc. Pumping chamber for a liquefaction handpiece having a countersink electrode
US6579270B2 (en) 1998-06-04 2003-06-17 Alcon Manufacturing, Ltd. Liquefracture handpiece tip
US6589204B1 (en) 1998-06-04 2003-07-08 Alcon Manufacturing, Ltd. Method of operating a liquefracture handpiece
US6860868B1 (en) 1998-06-04 2005-03-01 Alcon Manufacturing, Ltd. Surgical handpiece
US6676628B2 (en) 1998-06-04 2004-01-13 Alcon Manufacturing, Ltd. Pumping chamber for a liquefracture handpiece
WO1999065408A1 (en) 1998-06-19 1999-12-23 Saphir Medical Method for generating a pulse train of sterile liquid jet for medical uses
US6231578B1 (en) 1998-08-05 2001-05-15 United States Surgical Corporation Ultrasonic snare for excising tissue
US6506176B1 (en) 1999-02-17 2003-01-14 Bausch & Lomb Incorporated Methods, apparatus and system for removal of lenses from mammalian eyes
US20050159765A1 (en) * 1999-05-18 2005-07-21 Hydrocision, Inc. Fluid jet surgical instruments
US6960182B2 (en) 1999-05-18 2005-11-01 Hydrocision, Inc. Fluid jet surgical instruments
US7122017B2 (en) 1999-05-18 2006-10-17 Hydrocision, Inc. Fluid jet surgical instruments
US8062246B2 (en) 1999-05-18 2011-11-22 Hydrocision, Inc. Fluid jet surgical instruments
US6156036A (en) * 1999-06-11 2000-12-05 Alcon Laboratories, Inc. Surgical handpiece tip
US6669710B2 (en) 2000-01-10 2003-12-30 Hydrocision, Inc. Liquid jet-powered surgical instruments
US6451017B1 (en) 2000-01-10 2002-09-17 Hydrocision, Inc. Surgical instruments with integrated electrocautery
US6511493B1 (en) 2000-01-10 2003-01-28 Hydrocision, Inc. Liquid jet-powered surgical instruments
US6899712B2 (en) 2000-01-10 2005-05-31 Hydrocision, Inc. Surgical instruments with integrated electrocautery
US20050283150A1 (en) * 2000-01-10 2005-12-22 Hydrocision, Inc. Surgical instruments with integrated electrocautery
US6575929B2 (en) 2000-03-14 2003-06-10 Alcon Manufacturing, Ltd. Pumping chamber for a liquefaction handpiece
US6616677B2 (en) 2000-06-21 2003-09-09 Medjet, Inc. Method and process for generating a high repetition rate pulsed microjet
WO2001097900A1 (en) * 2000-06-21 2001-12-27 Medjet Inc. Method and process for generating a high repetition rate pulsed microjet
US10524847B2 (en) 2000-12-09 2020-01-07 Tsunami Medtech, Llc Medical instruments and techniques for thermally-mediated therapies
US10675079B2 (en) 2000-12-09 2020-06-09 Tsunami Medtech, Llc Method for treating tissue
US9615875B2 (en) 2000-12-09 2017-04-11 Tsunami Med Tech, LLC Medical instruments and techniques for thermally-mediated therapies
US8574226B2 (en) 2000-12-09 2013-11-05 Tsunami Medtech, Llc Method for treating tissue
US9433457B2 (en) 2000-12-09 2016-09-06 Tsunami Medtech, Llc Medical instruments and techniques for thermally-mediated therapies
US20090105703A1 (en) * 2000-12-09 2009-04-23 Shadduck John H Method for treating tissue
US8758341B2 (en) 2000-12-09 2014-06-24 Tsunami Medtech, Llc Thermotherapy device
US20080195058A1 (en) * 2001-04-27 2008-08-14 Hydrocision, Inc. Methods and apparatuses for joining a pumping cartridge to a pump drive
US8851866B2 (en) 2001-04-27 2014-10-07 Hydrocision, Inc. Methods and apparatuses for joining a pumping cartridge to a pump drive
US7717685B2 (en) 2001-04-27 2010-05-18 Hydrocision, Inc. High pressure pumping cartridges for medical and surgical pumping and infusion applications
US20040234380A1 (en) * 2001-04-27 2004-11-25 Moutafis Timothy E. High pressure pumping cartridges for medical and surgical pumping and infusion applications
US20030088259A1 (en) * 2001-08-08 2003-05-08 Staid Kevin P Medical device with high pressure quick disconnect handpiece
US20050267443A1 (en) * 2001-08-08 2005-12-01 Hydrocision, Inc. Medical device with high pressure quick disconnect handpiece
US6923792B2 (en) 2001-08-08 2005-08-02 Hydrocision, Inc. Medical device with high pressure quick disconnect handpiece
US7951107B2 (en) 2001-08-08 2011-05-31 Hydrocision, Inc. Medical device with high pressure quick disconnect handpiece
US8529498B2 (en) 2001-11-21 2013-09-10 Smith & Nephew, Inc. Liquid jet surgical instruments incorporating channel openings aligned along the jet beam
US7431711B2 (en) 2001-11-21 2008-10-07 Hydrocision, Inc. Liquid jet surgical instruments incorporating channel openings aligned along the jet beam
US20090076440A1 (en) * 2001-11-21 2009-03-19 Hydrocision, Inc. Liquid jet surgical instruments incorporating channel openings aligned along the jet beam
US20030125660A1 (en) * 2001-11-21 2003-07-03 Moutafis Timothy E. Liquid jet surgical instruments incorporating channel openings aligned along the jet beam
US9468487B2 (en) 2001-12-07 2016-10-18 Tsunami Medtech, Llc Medical instrument and method of use
US8444636B2 (en) 2001-12-07 2013-05-21 Tsunami Medtech, Llc Medical instrument and method of use
US20040030349A1 (en) * 2002-08-08 2004-02-12 Mikhail Boukhny Liquefaction handpiece tip
US11432838B2 (en) 2002-10-25 2022-09-06 Hydrocision, Inc. Nozzle assemblies for liquid jet surgical instruments and surgical instruments for employing the nozzle assemblies
US10363061B2 (en) 2002-10-25 2019-07-30 Hydrocision, Inc. Nozzle assemblies for liquid jet surgical instruments and surgical instruments for employing the nozzle assemblies
US8162966B2 (en) 2002-10-25 2012-04-24 Hydrocision, Inc. Surgical devices incorporating liquid jet assisted tissue manipulation and methods for their use
US20040243157A1 (en) * 2002-10-25 2004-12-02 Connor Brian G. Surgical devices incorporating liquid jet assisted tissue manipulation and methods for their use
US9597107B2 (en) 2002-10-25 2017-03-21 Hydrocision, Inc. Nozzle assemblies for liquid jet surgical instruments and surgical instruments employing the nozzle assemblies
US9113944B2 (en) 2003-01-18 2015-08-25 Tsunami Medtech, Llc Method for performing lung volume reduction
US8016823B2 (en) 2003-01-18 2011-09-13 Tsunami Medtech, Llc Medical instrument and method of use
US8313485B2 (en) 2003-01-18 2012-11-20 Tsunami Medtech, Llc Method for performing lung volume reduction
US20050038417A1 (en) * 2003-08-15 2005-02-17 Ghannoum Ziad R. Tip Assembly
US8414546B2 (en) 2003-08-15 2013-04-09 Novartis Ag Tip assembly
US8579892B2 (en) 2003-10-07 2013-11-12 Tsunami Medtech, Llc Medical system and method of use
US9907599B2 (en) 2003-10-07 2018-03-06 Tsunami Medtech, Llc Medical system and method of use
US7276060B2 (en) 2004-02-26 2007-10-02 Alcon, Inc. Surgical handpiece tip
US20050192566A1 (en) * 2004-02-26 2005-09-01 Madden Sean C. Surgical handpiece tip
US7857794B2 (en) 2004-06-14 2010-12-28 Alcon, Inc. Handpiece tip
US20060161101A1 (en) * 2005-01-18 2006-07-20 Alcon, Inc. Surgical system and handpiece
US7758585B2 (en) 2005-03-16 2010-07-20 Alcon, Inc. Pumping chamber for a liquefaction handpiece
US20060212038A1 (en) * 2005-03-16 2006-09-21 Alcon, Inc. Liquefaction handpiece tip
US7967799B2 (en) 2005-03-16 2011-06-28 Alcon, Inc. Liquefaction handpiece tip
US20060212039A1 (en) * 2005-03-16 2006-09-21 Alcon, Inc. Pumping chamber for a liquefaction handpiece
US20060212037A1 (en) * 2005-03-16 2006-09-21 Alcon, Inc. Pumping chamber for a liquefaction handpiece
US20060217740A1 (en) * 2005-03-25 2006-09-28 Alcon, Inc. Tip assembly
US20070032785A1 (en) * 2005-08-03 2007-02-08 Jennifer Diederich Tissue evacuation device
US8579893B2 (en) 2005-08-03 2013-11-12 Tsunami Medtech, Llc Medical system and method of use
US7708734B2 (en) 2006-06-30 2010-05-04 Alcon, Inc. Method for dynamically adjusting operation of a surgical handpiece
US20080122407A1 (en) * 2006-06-30 2008-05-29 Alcon, Inc. System for dynamically adjusting operation of a surgical handpiece
US7640119B2 (en) 2006-06-30 2009-12-29 Alcon, Inc. System for dynamically adjusting operation of a surgical handpiece
TWI451915B (en) * 2006-08-28 2014-09-11 Tokyo Electron Ltd Cleaning device
US20080154282A1 (en) * 2006-12-20 2008-06-26 Stacy Faught Fluidic Coupling For Surgical Hand Piece
US11478269B2 (en) 2007-01-02 2022-10-25 Aquabeam, Llc Minimally invasive methods for multi-fluid tissue ablation
US9364250B2 (en) 2007-01-02 2016-06-14 Aquabeam, Llc Minimally invasive devices for the treatment of prostate diseases
US11350964B2 (en) 2007-01-02 2022-06-07 Aquabeam, Llc Minimally invasive treatment device for tissue resection
US9237902B2 (en) 2007-01-02 2016-01-19 Aquabeam, Llc Multi-fluid tissue ablation methods for treatment of an organ
US9232959B2 (en) 2007-01-02 2016-01-12 Aquabeam, Llc Multi fluid tissue resection methods and devices
US10321931B2 (en) 2007-01-02 2019-06-18 Aquabeam, Llc Minimally invasive methods for multi-fluid tissue ablation
US10251665B2 (en) 2007-01-02 2019-04-09 Aquabeam, Llc Multi fluid tissue resection methods and devices
US9232960B2 (en) 2007-01-02 2016-01-12 Aquabeam, Llc Minimally invasive devices for multi-fluid tissue ablation
US20080167604A1 (en) * 2007-01-09 2008-07-10 Alcon, Inc. Irrigation/Aspiration Tip
US7967775B2 (en) 2007-01-09 2011-06-28 Alcon, Inc. Irrigation/aspiration tip
US11653945B2 (en) 2007-02-05 2023-05-23 Walk Vascular, Llc Thrombectomy apparatus and method
US11207118B2 (en) 2007-07-06 2021-12-28 Tsunami Medtech, Llc Medical system and method of use
US7849875B2 (en) 2007-07-31 2010-12-14 Alcon, Inc. Check valve
US20090032121A1 (en) * 2007-07-31 2009-02-05 Chon James Y Check Valve
US20090032123A1 (en) * 2007-07-31 2009-02-05 Bourne John M Check Valve
US11213338B2 (en) 2007-08-23 2022-01-04 Aegea Medical Inc. Uterine therapy device and method
US10758292B2 (en) 2007-08-23 2020-09-01 Aegea Medical Inc. Uterine therapy device and method
US8262645B2 (en) 2007-11-21 2012-09-11 Actuated Medical, Inc. Devices for clearing blockages in in-situ artificial lumens
US20110106019A1 (en) * 2007-11-21 2011-05-05 Piezo Resonance Innovations, Inc. Devices for clearing blockages in in-situ artificial lumens
US9924992B2 (en) 2008-02-20 2018-03-27 Tsunami Medtech, Llc Medical system and method of use
US10595925B2 (en) 2008-02-20 2020-03-24 Tsunami Medtech, Llc Medical system and method of use
US11759258B2 (en) 2008-03-06 2023-09-19 Aquabeam, Llc Controlled ablation with laser energy
US8814921B2 (en) 2008-03-06 2014-08-26 Aquabeam Llc Tissue ablation and cautery with optical energy carried in fluid stream
US10342615B2 (en) 2008-03-06 2019-07-09 Aquabeam, Llc Tissue ablation and cautery with optical energy carried in fluid stream
US11172986B2 (en) 2008-03-06 2021-11-16 Aquabeam Llc Ablation with energy carried in fluid stream
US11033330B2 (en) 2008-03-06 2021-06-15 Aquabeam, Llc Tissue ablation and cautery with optical energy carried in fluid stream
US20090227998A1 (en) * 2008-03-06 2009-09-10 Aquabeam Llc Tissue ablation and cautery with optical energy carried in fluid stream
US11129664B2 (en) 2008-05-31 2021-09-28 Tsunami Medtech, Llc Systems and methods for delivering energy into a target tissue of a body
US11284932B2 (en) 2008-05-31 2022-03-29 Tsunami Medtech, Llc Methods for delivering energy into a target tissue of a body
US11141210B2 (en) 2008-05-31 2021-10-12 Tsunami Medtech, Llc Systems and methods for delivering energy into a target tissue of a body
US11478291B2 (en) 2008-05-31 2022-10-25 Tsunami Medtech, Llc Methods for delivering energy into a target tissue of a body
US11179187B2 (en) 2008-05-31 2021-11-23 Tsunami Medtech, Llc Methods for delivering energy into a target tissue of a body
US20100076416A1 (en) * 2008-06-17 2010-03-25 Tsunami Medtech, Llc Medical probes for the treatment of blood vessels
US8911430B2 (en) 2008-06-17 2014-12-16 Tsunami Medtech, Llc Medical probes for the treatment of blood vessels
US8579888B2 (en) 2008-06-17 2013-11-12 Tsunami Medtech, Llc Medical probes for the treatment of blood vessels
US10548653B2 (en) 2008-09-09 2020-02-04 Tsunami Medtech, Llc Methods for delivering energy into a target tissue of a body
US8721632B2 (en) 2008-09-09 2014-05-13 Tsunami Medtech, Llc Methods for delivering energy into a target tissue of a body
US8291933B2 (en) 2008-09-25 2012-10-23 Novartis Ag Spring-less check valve for a handpiece
US11813014B2 (en) 2008-10-06 2023-11-14 Santa Anna Tech Llc Methods and systems for directed tissue ablation
US10842549B2 (en) 2008-10-06 2020-11-24 Santa Anna Tech Llc Vapor ablation system with a catheter having more than one positioning element and configured to treat pulmonary tissue
US10695126B2 (en) 2008-10-06 2020-06-30 Santa Anna Tech Llc Catheter with a double balloon structure to generate and apply a heated ablative zone to tissue
US9561067B2 (en) 2008-10-06 2017-02-07 Virender K. Sharma Method and apparatus for tissue ablation
US11779430B2 (en) 2008-10-06 2023-10-10 Santa Anna Tech Llc Vapor based ablation system for treating uterine bleeding
US10064697B2 (en) 2008-10-06 2018-09-04 Santa Anna Tech Llc Vapor based ablation system for treating various indications
US9561066B2 (en) 2008-10-06 2017-02-07 Virender K. Sharma Method and apparatus for tissue ablation
US10842557B2 (en) 2008-10-06 2020-11-24 Santa Anna Tech Llc Vapor ablation system with a catheter having more than one positioning element and configured to treat duodenal tissue
US11589920B2 (en) 2008-10-06 2023-02-28 Santa Anna Tech Llc Catheter with a double balloon structure to generate and apply an ablative zone to tissue
US9561068B2 (en) 2008-10-06 2017-02-07 Virender K. Sharma Method and apparatus for tissue ablation
US11020175B2 (en) 2008-10-06 2021-06-01 Santa Anna Tech Llc Methods of ablating tissue using time-limited treatment periods
US10842548B2 (en) 2008-10-06 2020-11-24 Santa Anna Tech Llc Vapor ablation system with a catheter having more than one positioning element
US9700365B2 (en) 2008-10-06 2017-07-11 Santa Anna Tech Llc Method and apparatus for the ablation of gastrointestinal tissue
US20170049470A1 (en) * 2008-10-13 2017-02-23 Boston Scientific Scimed, Inc. Thrombectomy catheter with control box having pressure/vacuum valve for synchronous aspiration and fluid irrigation
US10499944B2 (en) * 2008-10-13 2019-12-10 Boston Scientific Scimed, Inc. Thrombectomy catheter with control box having pressure/vacuum valve for synchronous aspiration and fluid irrigation
US11497521B2 (en) 2008-10-13 2022-11-15 Walk Vascular, Llc Assisted aspiration catheter system
US20100094201A1 (en) * 2008-10-13 2010-04-15 Boston Scientific Scimed, Inc. Assisted aspiration catheter system
US9510854B2 (en) * 2008-10-13 2016-12-06 Boston Scientific Scimed, Inc. Thrombectomy catheter with control box having pressure/vacuum valve for synchronous aspiration and fluid irrigation
US11284931B2 (en) 2009-02-03 2022-03-29 Tsunami Medtech, Llc Medical systems and methods for ablating and absorbing tissue
US11406453B2 (en) 2009-03-06 2022-08-09 Procept Biorobotics Corporation Physician controlled tissue resection integrated with treatment mapping of target organ images
US9510853B2 (en) 2009-03-06 2016-12-06 Procept Biorobotics Corporation Tissue resection and treatment with shedding pulses
US10524822B2 (en) 2009-03-06 2020-01-07 Procept Biorobotics Corporation Image-guided eye surgery apparatus
US8900223B2 (en) 2009-11-06 2014-12-02 Tsunami Medtech, Llc Tissue ablation systems and methods of use
US9161801B2 (en) 2009-12-30 2015-10-20 Tsunami Medtech, Llc Medical system and method of use
WO2011097505A1 (en) 2010-02-04 2011-08-11 Procept Corporation Multi fluid tissue resection methods and devices
US10448966B2 (en) 2010-02-04 2019-10-22 Procept Biorobotics Corporation Fluid jet tissue resection and cold coagulation methods
US10499973B2 (en) 2010-08-13 2019-12-10 Tsunami Medtech, Llc Medical system and method of use
US11457969B2 (en) 2010-08-13 2022-10-04 Tsunami Medtech, Llc Medical system and method of use
US11160597B2 (en) 2010-11-09 2021-11-02 Aegea Medical Inc. Positioning method and apparatus for delivering vapor to the uterus
US10238446B2 (en) 2010-11-09 2019-03-26 Aegea Medical Inc. Positioning method and apparatus for delivering vapor to the uterus
US10881442B2 (en) 2011-10-07 2021-01-05 Aegea Medical Inc. Integrity testing method and apparatus for delivering vapor to the uterus
US11464536B2 (en) 2012-02-29 2022-10-11 Procept Biorobotics Corporation Automated image-guided tissue resection and treatment
US10653438B2 (en) 2012-02-29 2020-05-19 Procept Biorobotics Corporation Automated image-guided tissue resection and treatment
US11737776B2 (en) 2012-02-29 2023-08-29 Procept Biorobotics Corporation Automated image-guided tissue resection and treatment
US10182940B2 (en) 2012-12-11 2019-01-22 Novartis Ag Phacoemulsification hand piece with integrated aspiration and irrigation pump
US9962288B2 (en) 2013-03-07 2018-05-08 Novartis Ag Active acoustic streaming in hand piece for occlusion surge mitigation
US9750638B2 (en) 2013-03-15 2017-09-05 Novartis Ag Systems and methods for ocular surgery
US9943353B2 (en) 2013-03-15 2018-04-17 Tsunami Medtech, Llc Medical system and method of use
US11672584B2 (en) 2013-03-15 2023-06-13 Tsunami Medtech, Llc Medical system and method of use
US9867636B2 (en) * 2013-03-15 2018-01-16 The Regents Of The University Of California Method, apparatus, and a system for a water jet
US9545337B2 (en) 2013-03-15 2017-01-17 Novartis Ag Acoustic streaming glaucoma drainage device
US11413086B2 (en) 2013-03-15 2022-08-16 Tsunami Medtech, Llc Medical system and method of use
US9915274B2 (en) 2013-03-15 2018-03-13 Novartis Ag Acoustic pumps and systems
US20140316392A1 (en) * 2013-03-15 2014-10-23 The Regents Of The University Of California Method, Apparatus, and a System for a Water Jet
US9693896B2 (en) 2013-03-15 2017-07-04 Novartis Ag Systems and methods for ocular surgery
US11213313B2 (en) 2013-09-06 2022-01-04 Procept Biorobotics Corporation Tissue resection and treatment with shedding pulses
US11490909B2 (en) 2014-05-19 2022-11-08 Walk Vascular, Llc Systems and methods for removal of blood and thrombotic material
US10179019B2 (en) 2014-05-22 2019-01-15 Aegea Medical Inc. Integrity testing method and apparatus for delivering vapor to the uterus
US10575898B2 (en) 2014-05-22 2020-03-03 Aegea Medical Inc. Systems and methods for performing endometrial ablation
US10299856B2 (en) 2014-05-22 2019-05-28 Aegea Medical Inc. Systems and methods for performing endometrial ablation
US11219479B2 (en) 2014-05-22 2022-01-11 Aegea Medical Inc. Integrity testing method and apparatus for delivering vapor to the uterus
US11350963B2 (en) 2014-06-30 2022-06-07 Procept Biorobotics Corporation Fluid jet tissue ablation apparatus
US11903606B2 (en) 2014-06-30 2024-02-20 Procept Biorobotics Corporation Tissue treatment with pulsatile shear waves
US11672561B2 (en) 2015-09-03 2023-06-13 Walk Vascular, Llc Systems and methods for manipulating medical devices
US11331037B2 (en) 2016-02-19 2022-05-17 Aegea Medical Inc. Methods and apparatus for determining the integrity of a bodily cavity
US11510689B2 (en) 2016-04-06 2022-11-29 Walk Vascular, Llc Systems and methods for thrombolysis and delivery of an agent
US11331140B2 (en) 2016-05-19 2022-05-17 Aqua Heart, Inc. Heated vapor ablation systems and methods for treating cardiac conditions
US11278305B2 (en) 2016-06-24 2022-03-22 Hydrocision, Inc. Selective tissue removal treatment device
US10485568B2 (en) 2016-06-24 2019-11-26 Hydrocision, Inc. Selective tissue removal treatment device
US10492821B2 (en) 2016-06-24 2019-12-03 Hydrocision, Inc. Selective tissue removal treatment device
US11806066B2 (en) 2018-06-01 2023-11-07 Santa Anna Tech Llc Multi-stage vapor-based ablation treatment methods and vapor generation and delivery systems
US11864809B2 (en) 2018-06-01 2024-01-09 Santa Anna Tech Llc Vapor-based ablation treatment methods with improved treatment volume vapor management
US11678905B2 (en) 2018-07-19 2023-06-20 Walk Vascular, Llc Systems and methods for removal of blood and thrombotic material

Similar Documents

Publication Publication Date Title
US3818913A (en) Surgical apparatus for removal of tissue
US3930505A (en) Surgical apparatus for removal of tissue
US4024866A (en) Surgical apparatus for removal of tissue
US5788667A (en) Fluid jet vitrectomy device and method for use
US4898574A (en) Lithotomic apparatus
EP0444071A1 (en) Surgical instrument
US5151084A (en) Ultrasonic needle with sleeve that includes a baffle
US3857387A (en) Ultrasonic cataract removal method and apparatus
US5562610A (en) Needle for ultrasonic surgical probe
US4634420A (en) Apparatus and method for removing tissue mass from an organism
US4715848A (en) Gastro-intestinal lavage system and method
US5213569A (en) Tip for a tissue phacoemulsification device
US5318518A (en) Irrigating catheter
US5324282A (en) Surgical instrument with input power transducer
US4891044A (en) Ophthalmic aspirating/irrigating device
US5674226A (en) Method and apparatus for tissue excision and removal by fluid jet
JPH05505331A (en) Cavity cleaning device
US5562612A (en) Apparatus and method for reverse flow irrigation and aspiration of interior regions of the human eye
US3952732A (en) Ultrasonic cataract removal method and apparatus
US5151083A (en) Apparatus for eliminating air bubbles in an ultrasonic surgical device
EP0076302A4 (en) Continuous flow urological endoscopic apparatus.
EP2320842B1 (en) Device for ophthalmic surgery, in particular for cataract removal, provided with a system for dynamically maintaining intraocular pressure
US7063713B1 (en) Method for severing or removing a biological structure, especially bones
JP2007061610A (en) Nozzle
WO2002098288A2 (en) Hand piece for use in a dermal abrasion system